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Abstract In this paper, a new simple oscillator
model is considered describing ice-induced vibrations
of upstanding, water-surrounded, and bottom-founded
offshore structures. Existing models are extended by
taking into account deformations of an ice floe and a
moving contact interaction between an ice rod, which
is cut out from the floe, and the oscillator which repre-
sents the offshore structure. Special attention is paid to
a type of ice-induced vibrations of structures, known
as frequency lock-in, and characterized by having the
dominant frequency of the ice forces near a natural fre-
quency of the structure. A new asymptotical approach
is proposed that allows one to include ice floe deforma-
tions and to obtain a nonlinear equation for the simple
oscillator vibrations. The instability onset, induced by
resonance effects for the oscillator and generated by
the ice rod structure interaction, is studied in detail.
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1 Introduction

Vertically sided, bottom-founded offshore structures
occasionally experience sustained vibrations due to
drifting ice sheets crushing against them.Usually, three
regimes of interaction are distinguished: intermittent
crushing, frequency lock-in, and continuous brittle
crushing. In this paper, we introduce a mathematical
model for a special type of ice-induced vibrations (IIV)
of structures, known as frequency lock-in, and charac-
terized by having the dominant frequency of the ice
forces near a natural frequency of the structure. The
first model of IIV was proposed in [1], where the ice
failure was considered as a sequence of discrete events.
This model was extended in [2] and more recently in
[3], where randomness of the ice failure is taken into
account. Mathematically, these models describe oscil-
lators under an external-time dependent force, which
simulates an action of the discrete events of ice failure.
These models exhibit a resonance effect as a possible
source of large IIVs. Other IIVmodels treat the ice fail-
ure as a continuous process (see, for example [4]) and
can be applied for large ice velocities. In this case, the
crushing ice force has a relatively low magnitude, and
structure oscillations have low magnitudes and high
frequencies. As was mentioned in [3], these situations
are less important for safety applications since danger-
ous vibrations start with smaller velocities. Also some
other models were proposed in [5–10]. Depending on
the model, the interaction is described as a function of
different sets of parameters related to the ice and the
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structure. In this paper, we propose a model extend-
ing the previous ones, in particular, those suggested in
[1,2] and [3,10]. A novelty with respect to the previ-
ous investigations is that we study the ice deformations
in more detail. We describe deformations of the ice
rod taking into account possible viscous ice behavior
(in [10] the small ice floe nonlinear deformation was
taken into account) and a moving contact between the
structure and the ice. For the simple oscillator–ice inter-
actions, we also take into account extrusion effects. As
a result, this leads to a difficult problem,which involves
partial differential equations (PDEs) for the ice rod and
ordinary differential equations (ODEs) for the oscilla-
tor. The main difficulty is that these PDE and ODE
are coupled through boundary conditions for the ice
rod deformations on a contact line between the ice rod
and the oscillator. This contact line is unknown. The
problem is solved by means of an asymptotic approach
and by using a mechanical model for the ice rod defor-
mation during the interaction with the oscillator. This
asymptotic approach allows us to find a nonlinear ODE
for the oscillator, where ice deformations are included.
The resulting equation for the IIV terms involves many
parameters, but a crucial parameter is the ice velocity
v. The dynamics of such oscillator models can be stud-
ied by well-knownmethods (see, for example [11,12]).
The following results are obtained by an asymptotic
investigation and by numerical simulations. We show
that ice rod deformation patterns arise which are gen-
erated by an interaction between the oscillator and the
rod. This ice rod deformation is exponentially decreas-
ing along the ice rod length, and moreover, the oscil-
lator is forced to oscillate with a frequency close to
the oscillators natural frequency �. We obtain a plot
describing how the oscillator’s amplitude A depends
on the ice velocity v. For some parameter choices, this
plot shows a significant peak for the amplitude A. For
small rod speeds v, we have a small oscillation ampli-
tude A, as well as for large v. The height and width
of the peak depend on the system parameters. These
results essentially depend on the ice velocity v and are
consistent with experimental data (see [2]). We find a
newmechanism for the oscillator’s behavior which can
be described by a resonance between the external load,
the oscillator, and the part of the ice rod (boundary
layer) inducing an oscillator–ice rod interaction during
the rod’s motion with speed v. This paper is organized
as follows. In Sect. 2 of this paper, the problem is for-
mulated, and in Sects. 3 and 4, the problem is solved

approximately by using asymptotic methods. Stabil-
ity issues and resonances are discussed in Sect. 5, and
finally in Sect. 6, some conclusions are drawn.

2 Statement of the problem

Following [1–3,5], we consider an offshore structure
as a one-degree-of-freedom oscillator and the ice floe
as a system of ice rods, whose properties include local
failure (for details, see [5]). In particular, we consider
a simple oscillator, which interacts with one of such
rods. Considering only one rod follows from the theory
which was proposed in [13]. As mentioned in [5], in
order to simulate the behavior of the structure during
the frequency lock-in regime, the condition was set that
the ice should always be in contact with the structure,
i.e., no gap should exist between the ice edge and the
structure. On the basis of this requirement, the equation
describing the simple oscillator dynamics is given by:

qtt + �2q + αqt = μ, (1)

where q = q(t) is the oscillator displacement, �2 =
G
M , where � is the oscillator frequency, and M , and G
are the mass and rigidity of the oscillator respectively,
and α > 0 is a positive damping coefficient. For (1) the
following initial conditions are used:

q(0) = 0, qt (0) = 0. (2)

The term μ in (1) defines a force which is acting on the
oscillator due to the ice rod, and has the form

μ = EF

M

(
ux + δ0

E
uxt

)
|x=q(t), (3)

where u = u(x, t) is the longitudinal ice rod displace-
ment, E is an ice Young’s modulus, F is the ice rod
cross-sectional area, and δ0 is the ice bulk viscosity
coefficient. The term ux in the right-hand side of (3)
defines the contribution of linear deformations, and
the term uxt is the ice viscosity. It should be observed
that the boundary conditions at x = q(t) also play an
important role in other applications (see in [14–18])
when, for instance, longitudinal oscillations in axially
moving cables are considered. The following equation
describes the dynamics of the ice rod, which is defined
on the semi-infinite domain: Iq = {x : q < x < ∞}.
EFuxx − mutt + δ0uxxt = Q, (4)

Q = −β(st − ut ) − k0(s − u), (5)
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On a simple oscillator problem describing ice-induced vibrations 153

where u(x, t) is the unknown ice rod displacement,
m is the ice rod mass per unit length, Q is a force
per unit length occurring in the rod due to its side-
surface contact with other ice rods in the space around
the rod in the ice floe that is considered in (4). The ice
floe is drifting along the x-axis. The parameters β, δ0,
and k0 are positive. The parameter β is the ice shear
viscosity, and the parameter k0 characterizes the rod
compression which is caused by stresses due to the ice
rod compression in the transverse direction by other ice
rods and thus defines “the load spreading capacity of
the foundation” according to [13]. The parameter k0 =
Ehγ

2(1−ν2)
, where h is the ice floe thickness, the parameter

ν is the Poisson ratio, the parameter γ is a coefficient
determining the rate of decrease in the displacement u
over the ice rod length and can be found experimentally
(see also [13] for further details). In other words, the ice
floe behavior can be modeled by a generalized spring
and a generalized dashpot as suggested in [19]. The
function s(t) describes the shift of the ice rod, and we
suppose that s(t) is defined by

s(t) = −vt + ρ(t), (6)

where v > 0 is the relative ice velocity, and

ρ(t) =
∞∑
n=1

dnH(t − tn). (7)

Here, tn are time moments when the ice rod crushes at
x = q(t); dn are the lengths of ice blocks that split off,
and H(z) stands for the Heaviside step function. The
time moments tn are defined by the condition

p(tn) = pc, (8)

that is, the pressure p in the ice attains a critical level
pc. The pressure p can be computed by the relation

p(t) = p0
v(t − tn)

s(t)
, (9)

where tn is themoment of the previous break, and p0 =
(uxmc20)|t=0 is the initial pressure in the rod, where
c0 = √

r/m is the ice sound velocity. Therefore, the
breaks are determined by the relation

p(tn+1) = p0
v(tn+1 − tn)

s(tn+1)
= pc. (10)

We introduce the following boundary conditions:

u(q(t), t) = q(t), u(x, t) → 0, f or x → +∞.

(11)

The first one is a contact relation between the ice rod
and the oscillator, and the second one is a radiation
condition at infinity. The initial conditions are given by

u(x, 0) = φ0(x), ut (x, 0) = φ1(x), x ∈ (q(0),∞),

(12)

where φ j (x) are fast decreasing functions in x for x →
∞. For example, one can suppose that

|φ j (x)| < c j exp(−b j x), b j , c j > 0. (13)

Notice that the differential equations, boundary and
initial conditions can be transformed to a dimen-
sionless form when we rescale the variables. For
the rescaling, the following relations are used: x̄ =
x/h, q̄ = q/h, s̄ = s/h, ū = u/h, d̄k = dk/h, c20 =
EF/m, v̄ = v/c0, t̄ = tc0/h, ᾱ = hα/c0, β̄ =
hc0β/EF, k̄0 = k0h2/EF, �̄ = h�/c0, δ̄0 =
δ0c0/Eh, ε = mh/M . It is obvious that the parame-
ter ε is small. To simplify notations, we omit now the
bars and obtain the final equations:

qtt + �2q + αqt = ε(ux + δ0uxt )|x=q(t), (14)

u(q(t), t) = q(t), and u(x, t) → 0,

for x → +∞, t ≥ 0, (15)

and

uxx − utt − βut − k0u + δ0uxxt = −βst − k0s,

t > 0, q(t) < x < ∞, (16)

and the initial conditions are

q(0) = q0, qt (0) = q1, (17)

u(x, 0) = φ0(x),

ut (x, 0) = φ1(x), q(0) < x < ∞. (18)

In the next two sections, we will approximate the
solution of the initial boundary value problems (14)–
(18).

3 Asymptotic solutions of the oscillator equation

The asymptotic approach to study Eq. (14) is well
known; see [12,14,18]. Let τ = εt be a slow time.
It is assumed that α = εᾱ, where 0 < ᾱ < C , with
C a positive constant independent of ε. Furthermore, it
should be observed that the right-hand side of (14) is
of order ε and depends on t and q. For that reason, we
seek solutions q of (14) in the form
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q = q0(t, τ ) + εq1(t, τ ) + · · · , (19)

where

q0 = A(τ ) sin(�t + φ(τ)),

and where the amplitude A and the phase φ are
unknown slowly varying functions in time. From (19),
it follows that

q0t = (� + εφτ )A(τ ) cos(�t + φ(τ))

+ εA(τ )τ sin(�t + φ(τ)),

q0t t = −�2q0 + 2ε�(Aτ cos(�t + φ(τ))

− Aφτ sin(�t + φ(τ)) + O(ε2).

By substituting these relations into (1), and by taking
together terms of order ε, one obtains the following
equation for q1:

q1t t + �2q1 = S1(A, φ, t, ε), (20)

where

S1 = 2�(−Aτ cos(�t + φ(τ))

+ Aφτ sin(�t + φ(τ))) + R(A, φ, t), (21)

and

R(A, φ, t) = μ(A sin(�t+φ(τ)), A� cos(�t+φ), t)

− ᾱA� cos(�t + φ). (22)

For large times t = O(ε−1), Eq. (20) has a bounded
solution in t if and only if

�

2π

∫ 2π/�

0
S1(A, φ, t, ε) cos(�t + φ)dt = 0, (23)

and

�

2π

∫ 2π/�

0
S1(A, φ, t, ε) sin(�t + φ)dt = 0. (24)

Finally, it follows from (23) and (24) that the following
system of equations for the amplitude A and the phase
φ are obtained:

�Aτ = �

2π

∫ 2π/�

0
R(A, φ, t) cos(�t + φ)dt, (25)

and

�Aφτ = − �

2π

∫ 2π/�

0
R(A, φ, t) sin(�t+φ)dt. (26)

We investigate this system in the next section. To sim-
plify the formulas, we will use the notation

〈 f 〉 = �

2π

∫ 2π/�

0
f (t)dt (27)

for the averaged quantities.

4 Asymptotics for ice rod displacement

4.1 Assumptions

The aim of this subsection is to express the displace-
ment u(x, t) in q and obtain an equation involving q
only. We use the following assumption:

0 < � 	 k1/20 , (28)

i.e., the natural frequency of the oscillator is small with
respect to the cutoff frequency of the ice rod. We also
assume that all coefficients associated with friction and
damping effects are small, i.e.,

0 < β, δ0 	 �. (29)

It is useful to introduce two other small parameters

η = βk−1/2
0 	 1, λ = �k−1/2

0 	 1. (30)

To find u, we first define an auxiliary function V (t)
as a solution of the following second-order ODE:

Vtt + βVt + k0V = βst + k0s. (31)

We seek u in the form u = V (t) + ū, where ū satisfies
the following equation,

ūxx − ūt t − βūt + δ0ūxxt − k0ū = 0, (32)

and the boundary and initial conditions:

ū(q(t), t) = q(t) − V (t), (33)

lim
x→+∞ ū(x, t) = −V (t), (34)
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On a simple oscillator problem describing ice-induced vibrations 155

Fig. 1 This plot shows a typical dependence of s(t) on time.
The parameter values are d = dn = 1, �t = tn+1 − tn = 5, and
v = 0.2

ū(x, 0) = φ0(x) − V (0),

ūt (x, 0) = φ1(x) − V ′(0), (35)

where V ′ = dV/dt . In the next subsections, we deter-
mine the auxiliary function V and construct an asymp-
totic approximation for ū.

4.2 Computation of V (t)

To simplify computations, let us assume that dn = d.
Then, s(t) is a periodic function with period T = d/v.
We use a Fourier expansion for V . Consider the plot
of s(t) (see Fig. 1). In this plot, a sawtooth curve is
presented. Computing the Fourier coefficients of s, we
have

s(t) =
∑
n∈Z

ŝn exp(i2πnt/T ), (36)

where T is the period and

ŝn = id

2πn
, for n �= 0, and ŝ0 = d/2, (37)

where ω = 2π/T = 2πv/d is the frequency of ice
floe splitting off. Therefore,

V (t) =
∑
n∈Z

V̂n exp(iωnt) + Ṽ (t), (38)

where the function Ṽ (t) is the homogeneous solution
of (31 ) and decreases in t with an exponential rate. The
Fourier coefficients in (38) are defined by

V̂n = ŝn(k0 + iβnω)

k0 − (nω)2 + iβnω
, n �= 0. (39)

The coefficient V̂0 = d/2 is the mean shift of the oscil-
lator. Note that the term Ṽ (t) is exponentially decreas-
ing in t , and therefore,we can remove that term for large
times t � β−1. Moreover, if η = βk−1/2

0 is small, then
V̂n is large for n ≈ k0/ω. This means that resonances
occur induced by the periodic breaking-off of ice from
the ice rod. These results for V̂n will be used in the next
subsections, and we will see that these resonances can
create an onset for instability in the oscillator dynamics.

4.3 Asymptotics for ū

Let us introduce a new variable: y = x − q(t). Then,
for ū(x, t) = ũ(y, t) one has

ũ yy − ũt t − βũt + δ0ũt yy − k0ũ = Lũ = g[ũ, q],
(40)

where L denotes the differential operator defined by

Lw = wyy − wt t − βwt − k0w + δ0wyyt ,

and g is a functional of u and q defined by

g[ũ, q] = g1qt + g2qtt + g3q
2
t , (41)

with

g1 = −2ũ yt−βũ y+δ0ũ yyy, g2 = −ũ y, g3 = ũ yy .

(42)

The boundary conditions become

ũ(0, t) = q(t) − V (t), (43)

lim
y→+∞ ũ(y, t) = −V (t), (44)

and the initial data take the form

ũ(y, 0) = φ0(y − q(0)) − V (0),

ũt (y, 0) = φ1(y − q(0)) − V ′(0), y ∈ (0,+∞).

(45)

Due to our assumptions (28) and (29) on the param-
eters �,β and δ0, the term g is small. Thus, we can
construct an approximation of the solution to the initial
boundary value problems (IBVP) (40)–(45) as follows.
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We set ũ = ũ(0) + ũ(1) + ũ(2), where ũk are solutions
of the following IBVPs:

Lũ(0) = 0, (46)

ũ(0)(0, t) = q(t) − V (t),

lim
y→+∞ ũ(0)(y, t) = −V (t),

ũ(0)(y, 0) = ũ(0)
t (y, 0) = 0, (47)

Lũ(1) = g[ũ(0) + ũ(1) + ũ(2), q], (48)

ũ(1)(0, t) = 0, ũ(1)(y, 0) = 0,

lim
y→+∞ ũ(1)(y, t) = 0, (49)

ũ(1)
t (y, 0) = 0, (50)

Lũ(2) = 0, (51)

ũ(2)(0, t) = 0, lim
y→+∞ ũ(2)(y, t) = 0, (52)

ũ(2)(y, 0) = φ0(y) − V (0), y ∈ (0,+∞), (53)

ũ(2)
t (y, 0) = φ1(y) − V ′(0), y ∈ (0,+∞). (54)

Let us find ũ0. We write this function as a sum

ũ(0) = U (q) +U (V ), (55)

where

LU (q) = 0, U (q)(0, t) = q(t), lim
y→+∞U (q) = 0,

(56)

and

LU (V ) = 0, U (V )(0, t) = −V (t),

lim
y→+∞U (V ) = −V (t). (57)

Problem (57) can be solved by using the Fourier
decomposition method, yielding

U (V )(y, t) =
∑
n∈Z

Un(y) exp(iωnt), (58)

where the coefficientsUn are solutions of the following
BVPs:

(1 + δ0inω)
d2Un

dy2
− ω̂2

nUn = 0, (59)

Un(0) = −V̂n, lim
y→+∞Un(y) = −V̂n, (60)

where V̂n is defined in (39), and the complex frequen-
cies ω̂n are defined by

ω̂2
n = k0 + iβωn − n2ω2. (61)

In order to satisfy the boundary condition at y → +∞,
we choose the complex roots such that Re ω̂n < 0. In
order to find an asymptotic approximation for U (q),
we use the assumption (28). Due to this assumption,
the free oscillations of the ice rod defined by rela-
tion (56) have frequencies larger than k1/20 , while q(t)
oscillates with the frequency approximately equal to
�. Therefore, to obtain an approximation for U (q), we
can remove the derivatives with respect to t in the right-
hand side of eq. (56). That procedure gives the asymp-
totics

U (q)(y, t) = q(t)(U (y) + O(λ)), (62)

where λ is defined by (30), and U (y) satisfies

(1 + δ0i�)
d2U

dy2
− ω̂2U = 0, (63)

U (0) = 1, lim
y→+∞U (y) = 0, (64)

and

ω̂2 = k0 + iβ� − �2. (65)

In (65), as usual the signs of the complex roots are
chosen such that the real parts of ω̂ are negative. Then,
for �2 	 k0 (when the ice rod speed v is small), we
have

ω̂ ≈ −k0
1/2 − i

β�

2k1/20

. (66)

To find Un(y) on the interval y ∈ (0,∞), we per-
form the following standard procedure. Let us replace
the conditions (60) by

Un(y, L)|y=0,L = −V̂n . (67)

We solve the corresponding BVP problem for each L
and then let L → +∞. Then, one obtains

Un(y, L) = −V̂n exp(ω̄n y) + V̂n exp(ω̄n(L − y)).

The second term vanishes as L → +∞ for all y ∈
[0, R], where R is fixed. As a result, we obtain the
following solutions of the above IBVPs:

Un(y) = −V̂n exp(ω̄n y), (68)

U (y) = Re exp(ω̄y), (69)

where

ω̄n = ω̂n(1 + δ0in�)−1/2. (70)
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On a simple oscillator problem describing ice-induced vibrations 157

These representations are valid for all compact inter-
vals, y ∈ [0, R]. Note that the oscillator and the ice rod
interact at the boundary y = 0 ; thus, these formulas
allow us to describe this interaction. As a result, we
find that

ũ(0)(y, t) = q(t)Re exp(ω̄y)

−
+∞∑
n∈Z

V̂n exp(ω̄n y + inωt). (71)

The Fourier series in the right-hand side of the (71) con-
verges since V̂n is O(n−2). Note that for small veloci-
ties v one has

ũ(0)(y, t) ≈ (q(t) − V (t)) exp(−√
k0y).

This solution describes a localized slowly oscillating
oscillator. For large velocities, one can get

ũ(0)(y, t) ≈ q(t) exp(−√
k0y) sin

(
β�y

2k1/20

)

− V (t − y) exp(−βy/2).

This solution has two terms. The first term describes a
fast exponentially decaying (in y) function generated
by the ice–oscillator interaction which oscillates with
the frequency �. The second term describes a wave
slowly decreasing in y = x − q. The wave propagates
along the ice rod from the rod edge to x = ∞. The rates
of decrease in space of the ice rod structure interaction
and the wave are different. The first rate is proportional
to

√
k0 and the second one to β/2.

Our next step is to find the function ũ(1), which is the
solution of the nonlinear initial boundary value prob-
lems (48) and (50). Equation (48) for ũ(1) is nonlinear
and extremely complicated to solve in general. How-
ever, if we take into account that A 	 1 and � 	 1,
i.e., consider small oscillations with a small frequency,
then we observe that ũ(1), ũ(2) 	 ũ(0), and thus we can
remove ũ1 and ũ(2) in g[ũ, q]. Furthermore, to obtain
an asymptotic approximation for ũ(1), we can repeat the
analysis as given earlier.We again use assumption (28),
and thereforewe can suppose that in (48) the expression
for g[u(0), q] is dominated by the frequency � in the
functions q, qt , qtt . Then, according to (41), a natural
approximation for ũ(1) is:

ũ(1)(y, t) = G1(y, t)qt (t) + G2(y, t)qtt (t)

+ G3(y, t)q
2
t (t) + O(λ),

where the functions Gi (y, t) are defined by LGi =
gi . Using the Fourier decomposition for ũ(0) and the
relation (42), one obtains

g1 = −Re(2ω̄qt + (βω̄ − δ0ω̄
3)q) exp(ω̄y)

+
∑
n∈Z

ω̄n(2inω + β − δ0ω̄
2
n)V̂n

× exp(ω̄n y + iωnt), (72)

g2 = −Re(ω̄q exp(ω̄y))+
∑
n∈Z

ω̄n V̂n exp(ω̄n y+iωnt),

(73)

g3 = Re ω̄2q exp(ω̄y) −
∑
n∈Z

ω̄2
n V̂n exp(ω̄n y + iωnt).

(74)

From (48)–(50) and by using (72)–(74), one can now
determine Gi (y, t) for i = 1, 2, 3, yielding

G1(y, t) = y
(
G10(y, t) + G11q + G12qt

)
, (75)

G2(y, t) = y
(
G20 + G21q

)
, (76)

G3(y, t) = y
(
G30 + G31q

)
, (77)

where

G10 =
∑
n∈Z

(inω + β/2 − δ0ω̄
2
n/2)V̂n

× exp(ω̄n y + iωnt), (78)

G11 = −0.5(β − δ0ω̄
2)Re exp(ω̄y), (79)

G12 = −Re exp(ω̄y), (80)

G20 = 0.5
∑
n∈Z

V̂n exp(ω̄n y + iωnt), (81)

G21 = 0.5Re exp(ω̄y), (82)

G30 = −0.5
∑
n∈Z

ω̄n V̂n exp(ω̄n y + iωnt), (83)

G31 = 0.5Re ω̄ exp(ω̄y). (84)

Let us consider the function ũ(2)(y, t). One can show
that the L2-norm of this function tends to zero in t with
an exponential rate. In fact, using the Fourier integral
for ũ(2), one can show that all the Fourier coefficients
decrease in time t with exponential rates. To this end,
we first note that due to assumption (13) and relations
(71)–(74), the functions ũ(0) and ũ(1) also exponentially
decay in y as y → +∞. Let u(2)

0 (y, t), u(2)
1 (y, t) be
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the odd extensions of ũ(2)(y, t) and ũ(2)
t (y, t) for all y,

i.e., u(2)
0 (y, t) = ũ(2)(y, t) and u(2)

1 (y, t) = ũ(2)
t (y, t)

for y > 0 and ũ(2)
0 (y, t) = −ũ(2)(|y|, t), ũ(2)

1 (y, t) =
−ũ(2)

t (|y|, t) for y < 0. Then, ũ(2)
0 (y, 0) is a smooth

and exponentially decreasing function in |y| . Consider
the Fourier expansions

u(2)
l (y, t) = 1√

π

∫ ∞

−∞
û(l)
k (t) exp(iky)dk, l = 0, 1.

Since u(2)
l (y, 0) is an exponentially decreasing func-

tion, the coefficients û(l)
k (0) = r (l)

k are smooth in k.
Let us turn now to Eq. (51). From that equation, one
obtains the linear differential equation for û(0)

k (t)

d2û(0)
k (t)

dt2
+ β

dû(0)
k (t)

dt
+ (k0 + k2)û(0)

k (t) = 0,

where the initial data are

û(0)
k (0) = r (0)

k ,
dû(0)

k (t)

dt
|t=0 = r (1)

k .

The solutions of that differential equation can be com-
puted directly, yielding

û(0)
k (t) = C1(k) exp(λ̄k,+ t) + C2(k) exp(λ̄k,− t),

where

λ̄k,± = −β ± √
β2 + 4(k0 + k2)

2
,

andCl(k) are constants smoothly depending on k since
they are linear combinations of smooth r (l)

l . Finally, we
see that the Fourier coefficients of the solution ũ(2(y, t)
are smooth and exponentially decreasing functions in
t . Therefore, the contributions in the equation for q(t)
induced by ũ(2(y, t) are not essential for large times.

4.4 Deformation at the edge of the rod

In this subsection, it will be shown which ODE the
oscillator displacement function q(t) satisfies. At y =
0, the boundary condition (14) becomes for ũ(y, t):

qtt + �2q + ᾱqt = ε(ũ y(0, t) − δ0q(t)ũ yy(0, t)

+ δ0ũ yt (0, t)). (85)

The relations obtained in the previous subsections
show that the deformation ũ y at y = 0 has the form

ũ y(0, t) = S(t, q, qt , qtt ), (86)

where

S(t, q, qt , qtt ) = Re ω̄q + F0(t)

+ F1(t)qt + F2(t)qtt

+ F3(t)q
2
t + F4(t)qqt

+ F5(t)qqtt + F6(t)qq
2
t , (87)

where

F0(t) = −
∑
n∈Z

ω̄n V̂n exp(iωnt), (88)

and

F1 = G10(y, t)|y=0, F2 = G20(y, t)|y=0,

F3 = (G12 + G30)(y, t)|y=0, F4 = G11(y, t)|y=0

F5 = G21(y, t)|y=0, F6 = G31(y, t)|y=0.

As a result, we obtain

F1(t) =
∑
n∈Z

(
inω + β

2
− δ0ω̄

2
n

2

)
V̂n exp(iωnt), (89)

F2(t) = 1

2

∑
n∈Z

V̂n exp(iωnt), (90)

and

F3(t) = −1 − 1

2

∑
n∈Z

ω̄n V̂n exp(iωnt), (91)

F4 = −β − δ0 Re ω̄2

2
,

F5 = −1/2, F6 = Re ω̄

2
. (92)

We also need the expression

ũ yy(0, t)qt = S̃(t, q, qt , qtt ), (93)

which has the form

S̃(t, q, qt , qtt ) = (G̃10 + G̃11q + G̃12qt )q
2
t

+ (G̃20 + G̃21q)qttqt

+ (G̃30 + G̃31q)q3t + F̃0qt , (94)

where

F̃0(t) = −
∑
n∈Z

ω̄2
n V̂n exp(iωnt), (95)
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and

G̃i j (t) = ∂Gi j (y, t)

∂y
|y=0. (96)

Using (86), (88), (89), and (90), one obtains the fol-
lowing equation for q(t):

qtt + �2q + ᾱqt = εξ(t, q, qt , qtt ), (97)

where

ξ = S(t, q, qt , qtt ) + δ0

(
dS

dt
− S̃(t, q, qt , qtt )

)
.

(98)

In the next section, the ODE for q(t) will be studied
by using the averaging method as presented in Section
3 of this paper.

5 Instability and other effects

5.1 Equations for A and φ

In Sect. 3, it has been shown that the solution q(t)
of (97) can be approximated by q0 = A(τ ) sin(�t +
φ(τ)), where A(τ ) and φ(τ) have to satisfy (25)
and (26), respectively. From Sect. 3 and from the
“Appendix,” it follows that A(τ ) has to satisfy:

�
d A

dτ
= D0(v) + D1(v)A + D2(v)A2 + D3(v)A3

≡ P(A; v), (99)

where the coefficients Di are also given in “Appendix.”
The analytical and numerical analysis of the expres-
sions for Di shows that the Di ’s have the following
properties. The coefficient D3 is proportional to the
small parameter δ0 and is negative. For β � δ0 and√
k0 � β, the coefficient D0 has a sharp maximum

when ω ≈ �, i.e., when we have a resonance between
the external load and the oscillator. The other coeffi-
cients D1, D2 show weaker resonances for 2ω ≈ �

and 3ω ≈ �. Moreover, for β � δ0 and
√
k0 � β,

there exists a weak resonance between the oscillator
and the ice floe structure for ω ≈ √

k0. Note that if
β 	 δ0, then this last resonance is much stronger than
the resonances between the oscillator and the external

Fig. 2 Dependence of P(a; v) on A for different values of v,
and for δ0 = 0.3. It should be observed that starting from small v
values, the curve for P(A; v) first moves up for increasing values
of v, and then moves down abruptly for v values in between
v = 1.2 and v = 1.4

load (ice crushing). For the phase φ, one has (see also
(26)):

A
dφ

dτ
= Φ2(v, A), (100)

where the right-hand side does not depend on the phase
φ. Equation (99) canbe studied completely in an analyt-
ical way. Consider Fig. 2 for the possible plots of the
polynomial P(A, v) as a function of A. The polyno-
mial can have either three real roots, two real roots ( of
which one consists of two coinciding roots) or a single
real root a1. In the third case that single root is a global
attractor, i.e., A(τ ) → a1(v) as τ → +∞. In the first
case if we have the roots a1(v) < a2(v) < a3(v), the
solution A(τ ) goes either to a1 or to a3 as τ → +∞.
If A(0) = 0 and a2 > 0 then A(τ ) → a1. If A(0) = 0
and a2 < 0, then A(τ ) → a3. Note that a3 has the order
δ−1
0 � 1 for bounded Di and a1 = O(1). So, when a2
changes sign, we can observe a transition from small
oscillator amplitudes to large ones. Therefore, Eq. (99)
can describe dynamical bifurcations as Di (v) changes
in v. A geometric model of these bifurcations is shown
in Fig. 2.

The amplitude plots are given in Figs. 3 and 4; that is,
in these figures, the stable equilibrium amplitudes A of
Eq. (99) are given as function of v. The first plot shows
the case k0 � �2, and the second one corresponds to
a more interesting situation when k0 is close to �2. In
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Fig. 3 Dependence of the equilibrium amplitude A of Eq. (99)
on the ice rod speed v for the parameters k0 = 25, d = 1,
β = 0.2, ᾱ = 4, and δ0 = 0.1

Fig. 4 Dependence of the equilibrium amplitude A of Eq. (99)
on the ice rod speed v for the parameters k0 = 2, d = 1, β = 0.2,
ᾱ = 0, and δ0 = 0.1

the second case,we have amore complicated resonance
between the external load, the rod, and the oscillator–
ice structure localized at the edge of the rod, and defined
by (71). This resonance, in our opinion, leads to a sharp
drop in amplitude as observed in experiments [4].

6 Discussion and conclusions

In this paper, a simple oscillator model is proposed
to describe a continuous contact between the offshore
structure (i.e., the oscillator) and the ice floe. It is a

Fig. 5 Dependence of the oscillator displacement on time. Com-
parison of an asymptotic and numerical solutions

characteristic property for IIV regimes describing con-
tinuous brittle crushing and frequency lock-in and, to
a certain degree, intermittent crushing. The analyti-
cal methods as proposed in this paper allow analyz-
ing the dynamic behavior of the oscillator. To verify
the obtained asymptotic approximations of the solu-
tion, it is firstly compared with the numerical solu-
tion of the system of equations describing the prob-
lem. To find numerical solutions of the equations, the
finite differences method is used and a uniform spa-
tial grid is introduced. A monotone finite-difference
scheme of the second order is used. The scheme is
a generalization of the well-known Crank–Nicolson
method. To obtain the solutions, an artificial viscos-
ity is introduced in the finite-difference scheme. The
obtained finite-difference equations are solved by a
sweep method (the Thomas algorithm). The numerical
method has been tested on elasticity model problems
and has been compared with the known analytical solu-
tions. Smooth and discontinuous solutions have been
considered. This testing proved the correctness of the
used finite-difference scheme. The calculations (see its
results in Fig. 5) show that the asymptotic (curve 2
) and numerical solutions (curve 1) are close to each
other at times of order 1/ε . The model as proposed
in this paper has been compared with some current
IIV models. A separate problem is to choose the sys-
tem parameters necessary for the calculations. Such a
parameter as bulk viscosity (or a relaxation time value
related to it) has been found experimentally in [20–23].
In the papers [20–23], the authorsevaluated the ice vis-
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Fig. 6 Dependence of the oscillator displacement on time for
different values of the ice rod bulk viscosity during frequency
lock-in at an indention speed of 0.023 ms−1

cosity parameter values and determined the spread of
those values. For IIV problems, the authors of [24,25]
have computed the ice viscosity characteristic param-
eters. Therefore, the authors of this paper decided to
take the δ0 values from [20–24] and determined the
effect of the viscosity coefficient value variations on
the oscillator displacements. For that reason, also some
calculations in the lock-in regime have been presented.
The results are given in Fig. 6. Curve 1 corresponds
to the viscosity coefficient value δ0 = 3 × 109 Pa s;
Curve 2 corresponds to the value δ0 = 109 Pa s; and
Curve 3 corresponds to the value δ0 = 12 × 109 Pa s.
The results presented in Fig. 6 reveal that the variation
of δ0 by a factor 12 does not effect significantly the
behavior of the curves. The calculations reveal that we
have satisfactory results that agree well with the results
obtained by using other IIV models and experiments,
when the parameter value δ0 is taken in agreement
with the data from [21,24]. Because of that, we take
δ0 = 3 × 109 Pa s and β = 0.75 × 109 Pa s in our cal-
culations. Figure 7a compares the oscillator displace-
ment in the lock-in regime with the results obtained in
[26] for a 0.023ms−1 speed. Curve 1 corresponds to the
displacements calculated by the model proposed in this
paper, Curve 2 is built up by using the displacement val-
ues found in the model from [26], and Curve 3 is based
on experimental data as given in [26]. The amplitudes
of displacements as obtained in this paper are close to
the displacements found in [26] and are in a good agree-
ment with the experimental data. In Figure 7b, Curve 1
describes displacements obtained with the help of the

(a)

(b)

Fig. 7 Dependence of the oscillator displacement on time dur-
ing frequency lock-in at an indention speed of 0.023 ms−1 and
continuous brittle crushing at a velocity of 0.13 ms−1

model proposed in this paper for the continuous brit-
tle crushing at 0.13 ms−1; Curve 2 describes displace-
ments for the same regimes, but obtained by using the
model proposed in [26], and Curve 3 describes exper-
imental data from [26].The curves presented in Fig. 7
show that the displacement amplitudes calculated by
using the model proposed in this paper are half the
value as those in [26] for times t < 39s but for times
t > 39s the difference in values is not so big. At the
same time, the values of the oscillator amplitude calcu-
lated with the help of the proposed model in this paper
and the experimental one are in a satisfactory agree-
ment. In Figure 8a, the ice force, which is acting on
the oscillator in the lock-in regime, is compared with
the results obtained in [26] for a 0.023 ms−1 speed.
Curve 1 corresponds to the values calculated by the
model proposed in this paper, and Curve 2 is based on
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(a)

(b)

Fig. 8 Dependence of the ice force on time during frequency
lock-in at an indention speed of 0.023 ms−1 and continuous brit-
tle crushing at a velocity of 0.13 ms−1

experimental data as given in [26] for a 0.023 ms−1

speed. In Fig. 8b, Curve 1 describes the ice forces as
obtained with the help of the proposed model in this
paper for the continuous brittle crushing at 0.13 ms−1,
and Curve 2 describes the experimental data from [26].
In Fig. 9a, Curve 1 depicts the oscillator displacements
in the lock-in regime at 0.18 ms−1 as obtained by
the model presented in this paper; Curve 2 and Curve
3 give the model results and experimental data from
[27], respectively. For the lock-in regime presented in
Fig. 9a, all curves are in good agreement. In Fig. 9b,
oscillator displacement comparisons are presented in
the intermittent crushing regime at a 0.02 ms−1 speed.
In this case, the displacement amplitude as calculated
by using the proposed model is in good agreement with
that presented in [27]. In Fig. 10a, Curve 1 describes
the ice forces in the lock-in regime at 0.18 ms−1 speed
as obtained by the proposed model in this paper, and

(a)

(b)

Fig. 9 Dependence of the oscillator displacement on time dur-
ing frequency lock-in at an indention speed of 0, 18 ms−1 and
intermittent crushing regime at a velocity of 0.02 ms−1

Curve 2 gives the experimental data as given in [27].
In Fig. 10b, the proposed model results and the experi-
mental data are compared for the intermittent crushing
regime at 0,02 msec-1. The amplitudes of the forces as
obtained in this paper are close to the values found in
[26,27] and are in a good agreement with the experi-
mental data. In Fig. 11a, one can compare the results as
obtained by using the model as proposed in this paper
and themodel as proposed in [3] for the lock-in regime.
The figure shows that the displacement amplitudes as
obtained by using the model proposed in this paper
are less than the ones as obtained in [3]. Figure 11b
shows results for the continuous brittle crushing. The
amplitudes as obtained byusing the proposedmodel are
20% less than the ones as obtained in [3]. Thus, based
on the comparison with the models that were proposed
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(a)

(b)

Fig. 10 Dependence of the ice force on time during frequency
lock-in at an indention speed of 0.18ms−1 and intermittent crush-
ing regime at a velocity of 0.02 ms−1

earlier, we can conclude that the model as proposed in
this paper can be used for the evaluation of the struc-
ture vibration amplitudes in the lock-in regime. For the
other vibration regimes, the model results underesti-
mate the values when compared to the results obtained
by using other current models. The calculations show
that the asymptotic solutions as obtained can be used
for the primary evaluation of the behavior of a struc-
ture interacting with the ice floe. Of course, the simple
model proposed in the paper needs updating and fur-
ther improvement with factors that have not been taken
into account. In this paper, a new model is proposed
to describe the interaction between an ice rod and an
oscillator. This model takes into account deformations
of the ice floe. Themodel is analytically investigated by
asymptotic methods. The model presented in the paper
provides an explanation for the initiation of nonlinear
dynamic oscillator frequency regimes as a result of its

(a)

1

2

(b)

Fig. 11 Comparison of the dependence of oscillator displace-
ment on time by the proposed model and model suggested by
G. Huang (where � is the maximum displacement of the mass
corresponding to the static application of the maximum failure
ice force and ω is the natural angular frequency of the structure)

interaction with a moving ice floe. The second possible
cause of the nonlinear dynamic frequency regimes is
the nonlinear ice behavior (breaking stress/deformation
rate), which has not been taken into account by the pro-
posedmodel, but that can be introduced into an updated
model in future research. The model describes the start
of the amplitude sharp raise at the lock-in regime and
the amplitude sharp drop when the regime is chang-
ing to the continuous brittle crushing. In the authors’
opinion, the cause of the amplitude sharp rise at the
lock-in regime is the oscillator resonance caused by
the moving ice floe. The resonance observed depends
not only on the oscillator parameters and the ice floe
velocity, but also on physical–mechanical ice charac-
teristics, in particular, on relations among such param-
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eters as a Young’s modulus, an ice thickness, a contact
area size, dynamic viscosity, ice shear viscosity and a
parameter determining an ice rod contraction caused
by other rods in the oscillator’s area. Apart from the
ω = � frequency, resonances are possible at 2ω = �

and 3ω = � frequencies that contribute to the ampli-
tude growth. Besides, at certain conditions given in the
paper, a resonance between the oscillator and an ice rod
part adjoining the contact area is also possible. A com-
plex dynamic regime occurs in this zone, including two
processes. The first process is localized frequencies of
the rod end at an � oscillation frequency. The second
process is a slowly dampening wave depending on x–q
variables and propagating along the ice rod. Thus, these
localized frequencies lead to amplitude disruption and
transformation to a continuous brittle crushing. This
complicated resonance between the external load, the
rod, and the oscillator–ice structure located at the edge
of the rod can occur and can lead to sharp drops in the
amplitudes as also has been observed in experiments
(see [4]). Themodel used in [24–26] represents a struc-
ture as continuous and, therefore, is more general. We
would like to point out that the model proposed in this
paper can be further updated. It might be necessary to
consider a continuous structure instead of the oscilla-
tor, to take into account water and wind effects, loss
of contact between an oscillating structure and ice in
intermittent crushing regimes and other factors.
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Appendix

Let us consider the averages (see also Sect. 3):

R = R1 + δ0(R2 − R3), (101)

where

R1 = 〈S cos(�t + φ)〉,
R2 =

〈
dS

dt
cos(�t + φ)

〉

and

R3 = 〈S̃ cos(�t + φ)〉,
where S and S̃ are defined by (87) and (94) with

q(t) = A(τ ) sin(�t + φ(τ)),

qt (t) = �A(τ ) cos(�t + φ(τ)),

qtt (t) = −�2q(t).

Computation of D3

The cubic contribution, proportional to A3, is the sum
of the following averages:

J1 = F6〈qq2t cos(�t + φ)〉,
J2 = δ0F6〈(qq2t )t cos(�t + φ)〉,
J3 = −δ0G̃11〈qq2t cos(�t + φ)〉,
J4 = −δ0G̃12〈q3t cos(�t + φ)〉,
J5 = −δ0G̃21〈qtqqtt cos(�t + φ)〉,

and

J6 = −δ0〈G̃30q
3
t cos(�t + φ)〉.

We note that due to Eqs. (96) and (78)–(83), one has

G̃12 = −Re ω̄, G̃21 = 0.5Re ω̄, (102)

G̃11 = −0.5Re(β − δ0ω
2)ω̄, (103)

and

G̃30 = −0.5
∑
n∈Z

ω̄2
nVn exp(inωt). (104)

Weobserve that all averages,which involve sin(�t+
φ)n or cos(�t + φ)m , where n or m are odd, are equal
to zero. Therefore, J1 = J3 = 0. For small d, the term
J6 is not small only if one of the resonance conditions

nω ≈ 2�, nω ≈ 4� (105)

holds for some integer n > 0. The terms J2, J4 and J5
can be computed and are given by

J2 = δ0�
3 Re ω̄/8, J5 = −J2,

J4 = 3δ0�
3 Re ω̄/8.

As a result, we obtain

D3 ≈ A−3(J2 + J4 + J5) = 3

8
δ0�

3 Re ω̄ < 0. (106)

For large k0, one has Reω̄ < −√
k0.
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Relations for D0, D1 and D2

Assuming that δ0 > 0 is small, to compute D1 and D2,
we take into account only the averages, which have
order O(1) and do not involve the parameter δ0. We
observe that the coefficient D1 is defined by the average

D1 = A−1〈F1(t)qt + F2(t)qtt , cos(�t + φ)〉 (107)

and

D2 = A−2〈F3(t)q2t , cos(�t + φ)〉. (108)

To compute these averages, let us introduce the auxil-
iary functions

J+
m,n =

∫ 2π/�

0
exp(inωt) cos(m�t),

and

J−
m,n =

∫ 2π/�

0
exp(inωt) sin(m�t).

We note that

J+
m,n = −i

(
exp(i2πωn/�) − 1

) ωn

(ωn)2 − (m�)2

and

J−
m,n = (

exp(i2πωn/�) − 1
) �m

(ωn)2 − (m�)2
.

We see that these expressions describe resonance
effects at nω ≈ m�. Then, we find that

D1 ≈ 0.5�
∑
n∈Z

inωV̂n(J
+
0,n + J+

2,n)

− 0.25�2
∑
n∈Z

V̂n J
−
2,n, (109)

and

D2 ≈ −0.125�2
∑
n∈Z

ω̄n V̂n(J
+
3,n + 3J+

1,n). (110)

Similarly, for D0 one has

D0 ≈ −
∑
n∈Z

ω̄n V̂n J
+
1,n . (111)
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