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Water treatment plants (WTPs) are characterised as complex configurations of repairable and deteriorating
components. Previous studies have mainly focused on the average or steady-state availability of such systems
while ignoring inherent characteristics like degradation. The current research proposes a two-level hierarchical
model for long-term availability analysis of WTPs. To do so, at the component level, a condition-based technique
(semi-Markov) or a failure-based technique (non-homogeneous Poisson process) is proposed based on the type

and amount of available data while at the system level a reliability block diagram can be used to combine the
component-level availabilities. The application of the methodology has been demonstrated on a real case study

in the Netherlands.

1. Introduction

The water sector provides essential services to the public, including
the production and supply of drinking water, and collection and
treatment of wastewater. To do this, the water sector relies on treat-
ment plants and infrastructure networks located in urban and rural
areas. These assets have generally a long life, often over 50 years, and
the majority of the spent utilities relates to these assets [1].

In many countries, water infrastructures are aging and their con-
dition is deteriorating [2]. Although drinking and surface water quality
is improving in many countries, leakage, infrastructure failure and the
associated cost are still high [3]. During the first decade of the 21°
century, many customers, for instance in Australia and England, have
been affected by insufficient supply capacity and reliability and in-
creasing water bills [4,5].

Large sums of money are involved in the management of water
systems [2]. Water sector decision-makers have to decide how to spend
this money efficiently so as to maintain the services at the required level
both in the short and long terms.

Water treatment plants (WTPs) form an essential part of the

drinking water and wastewater systems and can be characterised with
three features: (i) they are complex systems consisting of a multitude of
components; (ii) their components experience deterioration, that is,
their performance decreases due to ageing; (iii) WTPs are repairable
systems, i.e., given some components failure they can keep operating
without a complete system shutdown and replacement.

Asset management is seen as one of the promising methods for the
management of complex and asset-intensive companies. Asset man-
agement is about managing the lifecycle of physical assets [6-9], with
the aim of providing present and future required service levels in the
most cost effective way [7]. It provides a coherent set of tools and
methods for operation, maintenance and investment activities for the
assets [10]. An important objective of asset management is providing
and optimising maintenance strategies.

The effectiveness of maintenance strategies can be evaluated by
means of asset performance indicators. Well-known indicators are re-
liability, availability and maintainability. Reliability is defined as the
probability of an asset not failing in a predefined period of time.
Reliability provides a measure of the frequency of failures and does not
take the downtime into account. Maintainability of an asset can be
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homogeneous poisson process; PDF, probability density function; PLP, power law process; QRP, quasi-renewal process; RBD, reliability block diagram; SMDP, semi-
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defined as its ability to be retained in or restored to a specified condi-
tion, given the use of prescribed procedures and resources. Availability
is the probability of an asset being in a functional state as a result of
previous failures and repairs. In fact, availability accounts for both re-
liability and maintainability, and therefore is a more informative index
for evaluating WTPs as it is not the continuous operation of WTPs (as an
indication of reliability) or their ease of maintenance (as an indication
of maintainability) but their overall operational time (as an indication
of availability) that matters.

Availability can be expressed in different forms, such as mission
availability, average availability and instantaneous availability. The
instantaneous availability is a time-variant variable, and due to its
ability to account for deterioration of assets is considered in the current
research. Conversely, average availability cannot properly deal with
deteriorating assets as it provides an average value. Furthermore, WTPs
are continuous production systems and therefore mission availability
does not apply.

Maintenance strategies can be divided into corrective maintenance,
preventive maintenance and improving maintenance [11]. Recently,
there has been a trend from corrective maintenance to preventive
maintenance [12,13], which itself can further be distinguished into
scheduled maintenance and predictive maintenance. Scheduled main-
tenance is a well-known type of maintenance based on operation or
calendar time, while predictive maintenance is undertaken based on the
current state and the estimated remaining lifetime of an asset.

In order to ensure that WTPs deliver the service levels required by
the society, the facility managers will have to provide and continuously
optimise maintenance strategies based on a proper assessment of their
effect on the WTP’s long-term availability. To this end, methodologies
would be required for assessing the instantaneous availability of com-
plex systems with repairable and deteriorating components.

2. Literature review

The literature does not provide many studies that describe meth-
odologies for availability assessment of WTPs. However, numerous
studies concern methodologies for comparable systems. The consulted
studies are discussed and evaluated through four criteria:

o Is the methodology able to model repairable components?

e Is the methodology able to model deteriorating components?

o Is the methodology able to model complex system configurations?
o Is the methodology able to model the instantaneous availability?

Regarding the foregoing criteria, some works incorporate com-
plexity in their methodology, but do not consider instantaneous avail-
ability or repairable and deteriorating components [14,15]. Other
works present methodologies for repairable systems but do not consider
the instantaneous availability, deterioration, or complexity of the
system [16-20]. Those which consider deterioration, however, do not
deal with complexity, repairability, or instantaneous availability [11].
Table 1 provides an overview of all the discussed literature and how
they relate to the afore-mentioned four criteria.

As can be seen from Table 1, only one of the consulted studies
covers all the four criteria. Cai et al. [35] obtained the reliability and
availability of subsea blowout preventers based on a dynamic Bayesian
network approach. However, their method only deals with moderate
complexity (i.e. series and parallel structures) and not high complexity
(e.g. k-out-of-n redundancy and bridge structures) as often seen in
WTPs. This study is therefore aimed at proposing a methodology that
can handle all the aforementioned four criteria. Section 3 describes the
techniques used to develop the methodology and how they are com-
bined. Section 4 presents the application of the methodology to a WTP.
Section 5 is devoted to the discussion of the methodology and the re-
sults while section 6 provides the conclusions.
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3. Methodology

In this study, a two-level hierarchical model is proposed to combine
several modelling techniques. The two main advantages of a hier-
archical modelling approach are: (i) it reduces the model complexity,
and (ii) it enables the identification of critical components or sub-
systems [21]. First, modelling at system level is dealt with in Section
3.1 using reliability block diagram (RBD). Section 3.2 provides a
flowchart for selecting the most optimal model at component level
while Section 3.3 demonstrate the application of the selected meth-
odologies to the components. The structure of the methodology is given
in Fig. 1.

3.1. System availability modelling

In order to compute the system availability based on the compo-
nents’ availability, combinatorial models can be used. Reliability Block
Diagram (RBD) is one of the most widely used combinatorial models
[22]. With an RBD, the system availability A(t) can be calculated as a
function of the components availability A; (t). This can be expressed as:

A@) =P (A0, A1), .. A (D) (€8]

where the structure function y depends on the system configuration
[23]. For independent components, the structure function of an RBD
can be obtained by deriving the minimal path sets [23-27].

Fig. 2 shows the RBD of a system consisting of three components in
parallel, followed by three components in series. By using the minimal
path sets the following system availability function can be obtained:

AWM = (A + Ay + Ay — LAy — AiAy — ArAs + AiAsAy) AyAsAg

3.2. Model selection

At component level two different models can be used: a condition-
based model (SMP model) and a failure-based model (NHPP model).
For each component the asset manager must decide which model to
apply. It should be noted that there is a distinction between the model
selection for current use and the model selection for optimal use. The
former is purely based on the data that is currently available, whereas
the latter is related to the type of data that should be recorded in the
future aiming at optimal availability modelling. The flowchart in Fig. 3.
presents the model selection for optimal use.

® First, to determine if the NHPP model could be used, the question is
whether sufficient failure events could be recorded. In the case of
components of high reliability which do not frequently fail, suffi-
cient failure data cannot be recorded and the answer would be ‘no’.
If the components experience failure, the question arises here is
whether the failures have been recorded, and if so, whether they are
sufficient. According to Rigdon and Basu [28], at least five failure
events have to be recorded in order to use the NHPP model. If less
than five failures events are recorded, more events should be re-
corded until there are sufficient data for using the NHPP model.
However, one should take into account the time it would take to
record sufficient failure events. If it is not reasonable to wait long
enough to have sufficient events recorded, the NHPP model should
not be chosen.

Second, to determine if the SMP model can be applied, the asset
manager must find out if sufficient condition data could be re-
corded. For components for which condition monitoring is not
possible at all (either continuous or periodic) the SMP model cannot
be applied. If the condition can be monitored for the concerned
component, the next question is whether sufficient condition data
can be collected within reasonable time. If not, the SMP model is not
the optimal choice.
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Table 1
Overview of the consulted literature.
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Which criteria is considered by the methodology?

Year Reference Method Repairable system Deterioration Complex configuration Instantaneous availability
2001 [11] SMP X
2002 [27] SMP, CTMC X X X
2003 [22] Hierarchical model (Markov process) X
2004 [20] Hierarchical model (Markov process) X X
2005 [12] SMDP X X
2006 [31] Hierarchical model (Markov process + FTA) X X X
2006 [13] Markov process X X
2008 [6] ARP X
2008 [32] Hierarchical model (Markov process + FTA) X X X
2008 [17] Markov process X X
2008 [18] NHPP X X
2009 [23] FTA X X
2009 [14] SMDP X X
2009 [28] QRP X X X
2010 [29] Markov process X X X
2010 [7]1 Fuzzy Bayesian method X X
2010 [33] NHPP, MCS X X
2012 [25] Markov process (+ RBD) X
2012 [15] SMP X X
2013 [24] Hierarchical model (CTMC + RBD) X X X
2013 [35] DBN X X X X
2013 [16] SMP X X
2013 [4] RBD, FTA X
2014 [8] MDP + RBD X X
2014 [34] (N)HPP, MCS, (ARP) X X
2015 [30] ARP X X X
2015 [19] VAP X X
2015 [21] DBN X X
2015 [5] FTA X
2016 [26] Hierarchical model (Markov process + DFT) X X
2016 [9] FTA X X
2018 [10] Minimal path sets X
System: § 3.1 3.3. Component availability modelling
. The modelling approach at the component level is illustrated in
Components: § 3.3 |« Model selection: § 3.2

Fig. 1. Structure of the methodology.

Fig. 2. RBD for a combined system consisting of parallel and serial sub-systems.

The methodology depicted in Fig. 3 facilitates the choice between
two different techniques for modelling component availability over
time. If both techniques can be applied to a component, model selection
should be based on economic considerations. On the other hand, if
neither of the models can be applied, the component average avail-
ability as the ratio of the total downtime to a defined period of time can
be used as input data to the RBD to calculate the system availability. For
example, consider a pump which has failed five times over the last ten
years, and the average downtime as a result of failure has been esti-
mated as two days. This would result in an average availability of 0.997
for the pump. Clearly, this does not provide any information regarding
deterioration and maintenance but assures all components are included
in the RBD.

Fig. 4, where two different techniques are proposed: the semi-Markov
process (SMP) and the non-homogeneous Poisson process (NHPP). SMP
results in a condition-based model, while NHPP results in a failure-
based model. For both models, the uptimes and downtimes of compo-
nents are generated via inverse transform sampling (ITS), where one
uptime and one downtime form a cycle. The distribution of the uptimes
depends on whether SMP or NHPP is selected while the downtimes are
assumed to be lognormal for both models. Finally, the availability is
modelled over time using Monte Carlo simulation.

3.3.1. Semi-Markov process

The conventional Markov process is characterised by exponentially
distributed holding times, meaning the transition probabilities are
constant in time and independent of how long the component has been
in a certain state. This limitation can be relaxed via SMP, in which the
holding times are described by non-exponential distributions [29,30].
For many real-life situations this is a more realistic way of modelling
deterioration and therefore the SMP has been more adapted for avail-
ability modelling [29,31-35].

However, SMP (as all types of Markov models) is not well equipped
for modelling complex systems. The number of states grows ex-
ponentially with the size of the model leading to the notorious state-
space explosion problem [36]. Nevertheless, SMP can deal with dete-
rioration and repairability of system components and thus still applic-
able to the availability modelling of components within a complex
system.

In SMP, the uptimes are often described by Weibull distribution
[32,37-41]. This is a well-known assumption in the field of reliability
engineering as it can fit a wide range of distributions by varying its
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Could sufficient No
failure data
be recorded?

Could sufficient Could sufficient

condition data condition data
be recorded? be recorded?

Y Y
Economic consideration S
for NPP or SMP model NHPP model SMP model Average availability
Fig. 3. Flowchart for optimal model selection at component level.
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Fig. 4. Approach for availability modelling at component level.

parameters [29]. The probability density function (PDF) of a two-
parameter Weibull distribution is given by:

f = g(g)ﬁqexp(—(é)ﬁ) V t>0 @

where 8 = shape parameter; 6 = scale parameter; andt = time. Given
a dataset, the parameters can be estimated using the Maximum Like-
lihood Estimation (MLE) method [42,43].

3.3.2. Non-homogeneous poisson process

NHPP is known for its ability to model repairable systems [44,45].
Specifically, it can deal with repairable systems which deteriorate over
time. Different types of NHPP exist, among which the power law pro-
cess (PLP) is very popular [44] with the same failure rate (intensity
function) of Weibull distribution:
) = g(g)’“ V i>0

3

When > 1, PLP resembles a deteriorating system, where the times
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sembles a system subject to random failure, and PLP changes to a
homogenous Poisson process whereas for § < 1, the times between
failures become stochastically larger, and PLP resembles an improving
system. PLP has been used to model the failure patterns of a variety of
deteriorating systems such as power systems [46], machineries
[18,49-51], and water mains [47].

Although PLP can model repairable and deteriorating components,
it cannot be used to aggregate the failure of different components, and
is thus not suitable for failure assessment of systems. Besides, when
modelling failures, PLP does not consider downtimes and thus cannot
model instantaneous availability. This latter drawback could be alle-
viated by including the downtimes via lognormal distribution.

In order to find out whether a component is deteriorating, a trend
test such as the Laplace trend test or the MIL-HDBK-189 test should be
applied to the component’s failure data [48]. If the data do not show a
trend, a homogeneous Poisson process (HPP) should be applied instead
of a NHPP or PLP. Furthermore, to find out if multiple components
deteriorate in a similar fashion, a likelihood ratio test may be em-
ployed. Rigdon and Basu [45] provide such tests for both the HPP and
the PLP.

3.3.3. Distribution of downtimes

The inclusion of downtimes is required for computations regarding
availability. With the SMP model this is realised through involving
downtimes for specific states that correspond to non-availability. With
the NHPP model this could be achieved through cycles of alternating
up- and downtimes. For the downtimes the lognormal distribution is
used, which is a commonly chosen distribution for repairs [24,27]. The
PDF of the lognormal distribution is given by:

_(In() - p?
202

) = ) Vo ot>0;

1
(V2mo?)t eXp(

— 00 < u{oo; 0)0 @

where y = scale parameter, 0 = shape parameter, and t = time. The
parameters can be estimated using the MLE method [48].

3.3.4. Inverse transform sampling

One iteration within the Monte Carlo simulation consists of con-
secutive cycles of up- and downtimes. Simulation of the individual up-
and downtimes is done via inverse transform sampling (ITS). The
general approach in ITS is to use the distribution function of a random
variable, take its inverse cumulative density function (CDF) and
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generate random numbers according to this inverse CDF by using the
uniform distribution [49]:

e Let F(x) be any invertible CDF of continuous random variable x

® Take F(x) = U, where U is a random generated number from the
continuous uniform distribution U [0, 1]

e Then: X = F~1(U)

Applying ITS, the availability can be modelled for one iteration for
both the SMP and the NHPP models.

3.3.5. Monte Carlo simulation

With the simulation of one iteration only the instantaneous avail-
ability according to that single iteration can be modelled. Therefore,
Monte Carlo simulation is applied to combine the results of many single
iterations. A discrete time space is used and for each point in time the
average of the availability amounts over n iterations is computed. The
availability of the i" iteration at time ¢ is given by A;(t), which is a
binary measure depending on whether the iteration at ¢ belongs to an
uptime (A4; () = 1) or a downtime (4; () = 0). The result approximates
the stochastic availability of a component, which is defined as the
probability of the component being available at ¢ [50,51]:

" A®
A =PAM=1)= Z+ o

4. Application of the methodology

The application of the methodology which was developed in the
previous section is demonstrated through a water facility in the
Netherlands. The facility’s main drinking water treatment plant is
called Leiduin. Since complete and unambiguous data is not available
within the managing company, data for the SMP and NHPP techniques
has been elicited using experts.

4.1. System description

The focus in this case study is on a sub-system consisting of three
consecutive process steps: rapid sand filtration, ozonation and softening
(Fig. 5). Pumps and valves that are relevant to the availability of the
water treatment plant as a whole are included in the case study as well.
The interest of Leiduin’s asset managers lies in the development of the
availability over a time period of 30 years. Due to constraints in the pre-
treatment process, the concerned sub-system of Leiduin has a maximum
production capacity of 2400m>/h. In the present study, the term
availability for both the system and its components is specified as the
‘probability that the system (or component) is up and able to meet the
maximum production capacity’. Consequently, every component is ei-
ther in an ‘available state’ or ‘unavailable state’.

Rapid Sand Filtration

Ozonation
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4.1.1. Rapid sand filtration

The first treatment step of the considered system is the rapid sand
filtration, consisting of six filters. These filters take out suspended
particles in the water. These filters have to be periodically backwashed
in order to unclog. Each filter has a maximum capacity of 600 m>/h,
resulting in a total maximum capacity of 3600 m®/h. Since the sub-
system’s overall production capacity is constrained to 2400 m®/h, the
rapid sand filtration needs at least 4 out of 6 installed filters to be
working in order to meet the maximum production capacity. From the
sand filters the water flows through pipelines to the ozonation step.

4.1.2. Pipelines

Pipelines connecting the different treatment steps are part of the
system as well. However, discussions with the site personnel uncovered
that no failures are known for the pipelines on site, and therefore they
are assumed to have an availability of 1, and will not be addressed in
the subsequent sections.

4.1.3. Ozonation

The next treatment step is the ozonation, which is a disinfection step
to kill off bacteria, viruses and pesticides. The treatment takes place in a
multi-chambered cellar, where the water is brought into contact with
the ozone. Leiduin has two ozone streets, Ozone street 1 and 2. These
streets consist of an ozone generator, a cooling system, a multi-cham-
bered cellar and an ozone dispensing system. Each of the ozone streets
can handle 2800 m®/h, and thus able to meet the maximum production
capacity alone.

4.1.4. Pumps

After the ozonation, the water is pumped to the softening process.
Ozone street 1 is connected to Pumps 1 and 2 while Ozone street 2 is
connected to Pumps 3 and 4. Both pumping units have a parallel con-
figuration in order to provide redundancy. Each pump has a capacity of
2500 m®/h, which is sufficient to meet the maximum production ca-
pacity.

4.1.5. Valve

Valves are used to direct flows of water through the pipeline system.
In the present sub-system one important valve is present. The valve is
located between the ozone streets and the pumps. The valve makes it
possible to bypass the water flow from Ozone street 1 to Pumps 3 and 4
and from Ozone street 2 to Pumps 1 and 2. The capacity of the valve is
3600 m*/h in either direction.

4.1.6. Softening reactors

Water is then pumped to the softening reactors. In the softening
reactors the water comes into contact with sodium hydroxide, letting
calcium precipitate on sand grains. When the grains increase in size,
they sink to the bottom and are subsequently drained from the

Softening

Water
and air

Fig. 5. Treatment steps in the sub-system of Leiduin (www.waternet.nl).
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Table 2
Model selection per component.

Component Model selection
Rapid sand filters NHPP

Ozone streets SMP

Pumps SMP

Valves Average availability
Softening reactors NHPP

softening reactor. There are four softening reactors in total, each with a
maximum production capacity of 800m3®/h. In order to meet the
maximum production capacity of the sub-system (2400 m*/h), at least 3
of the 4 softening reactors need to be operating at full capacity. After
this softening process step the water flows towards the next treatment
step, the carbon filtration, which is not included in this case study.

4.2. Selection of appropriate techniques at component level

After the identification of the sub-system’s components, the next
step is selecting the appropriate technique (SMP, NHPP, or neither) for
assessing each component’s availability using the flowchart in Fig. 3.
The rapid sand filters are taken as an example for applying the flow-
chart. It is assumed that for the rapid sand filters sufficient failure
events have been recorded over the past years (this proposes both SMP
and NHPP as potential techniques). Besides, according to the plant
operators and asset managers, it is practically not possible to determine
the condition of the filters (this rules out SMP as an option). As such,
the NHPP model could be used to model the availability of the rapid
sand filters. Following the same procedure, appropriate techniques for
the other components can be identified as in Table 2.

4.3. Availability assessment of components

4.3.1. Availability of rapid sand filtration

MIL-HDBK-189 test and Laplace test are applied to the data of the
rapid sand filters. These suggest there is no trend in the data of any of
the filters (Appendix A), indicating that the rapid sand filters can be
modelled by an HPP, which is similar to an NHPP with 8 = 1. In order
to find out if the data from all the filters can be pooled together, a
likelihood ratio test can be performed. This test measures the equality
of the filters based on the failure data. The outcome of the test at a
significance level of @ = 0.05 does not reject the equality of the filters,
meaning the data from all filters can be pooled. Since the filters are
modelled via HPP, only the parameter 6 has to be estimated (8 = 1).
The repair time data of all the filters is assumed to identically follow a
lognormal distribution. The parameters of both the HPP model (up-
times) and the lognormal distribution (downtimes) are calculated using
the MLE approach as in Table 3.

These parameters of the lognormal distribution are used for the
NHPP model. The availability of a rapid sand filter has been depicted in
Fig. 6. At the beginning, the availability of the sand filter is equal to 1.0
(initial condition) but soon descends to a steady amount of about 0.987.
This steady availability is consistent with the HPP and its random
failure behaviour.

4.3.2. Availability of ozonation unit
Four discrete upstates are assumed for the ozone streets: state 1

Table 3
Parameter estimations for the NHPP model of the rapid sand filtration.

Uptimes (HPP) Downtimes (Lognormal)

683.12 1 4.89 0.98
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corresponds to the same as new and state 4 refers to the last dete-
rioration state before failure. The condition of both the ozone streets
can be monitored continuously. When an ozone street is monitored to
be in state 4, maintenance is performed immediately. However, the
condition improvement due to maintenance decreases over time. The
first three repair actions for an ozone street return its condition back to
state 2. The 4™, 5™ and 6" repairs result in state 3. Then, the 7™ repair
action is a perfect repair (renewal), so afterwards the ozone street is
assumed to be the same as new. This procedure is repeated thereafter so
the next repair can be seen as the first repair of a new cycle. One
downstate (state 5) is assumed to describe all repair actions. The
parameters for the holding time distributions can be estimated using
MLE as presented in Table 4. Fig. 7 shows the availability of one of the
ozone streets, modelled with the SMP model.

It should be noted that the distribution parameters of the holding
time of state 4 cannot be estimated. When an ozone street enters state 4,
a repair action is performed immediately so the holding times are cut
off. In the SMP model the holding time for state 4 is always equal to one
day, not influencing the model outcome.

4.3.3. Availability of pumps

Similar to the ozone streets, four discrete upstates are assumed and
the condition can be monitored continuously. When a pump is mon-
itored to be in state 4, maintenance is performed, the influence of which
decreases over time. The first five repair actions for a pump return its
condition to state 2. This type of imperfect repair is described by a
downstate as state 5. The 6™ repair action is a perfect repair (renewal),
bringing the pump back to state 1 (same as new). The equivalent
downstate is referred to as state 6. The parameters for the holding time
distributions can be estimated using MLE as listed in Table 5. Fig. 8
shows the availability of a single pump. For the same reasons as for the
ozonation unit, the holding time distribution for state 4 of the pumps
cannot be estimated.

4.3.4. Availability of softening reactors

The trend tests suggest that there is a trend in the failure data of the
softening reactors (Appendix A). In order to find out if the data from all
reactors can be pooled together a likelihood ratio test is performed. The
likelihood ratio test fails to reject the equality of the failure data of the
softening reactors. It is yet unknown if the trend in the data is signalling
a deteriorating system or an improving system. Therefore, the para-
meters of the NHPP model have to be estimated via MLE. The para-
meter f confirms that the data follows a deteriorating trend, since the
95% confidence interval of f8 is greater than 1.0 (Table 6). The avail-
ability of a softening reactor has been displayed in Fig. 9. The avail-
ability behaviour is consistent with a deteriorating NHPP where due to
its minimal repair the uptimes are stochastically decreasing with time,
leading to an ever-decreasing availability.

4.4. Avdilability assessment of the system

Based on the system description in Section 4.1, the system can be
modelled using a RBD as shown in Fig. 10. Based on the availability of
its components, the system availability can be computed by deriving
the minimal path sets for the different types of configurations in the
RBD. The system availability (Fig. 11) clearly shows a deteriorating
behaviour, where the availability declines over time.

5. Discussion

From an asset manager’s point of view, the aim is to optimise the
system configuration and maintenance strategy in order to satisfy the
availability demands in the most cost-efficient way. This challenge has
caused a shift from preventive and corrective maintenance towards
predictive, condition-based maintenance. To evaluate changes to the
system configuration or maintenance strategies it is important to gain
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insights about the system availability over time, decreased by asset
deterioration and increased via maintenance actions. The proposed
methodology has been developed with the aim of assisting asset man-

An important feature of the methodology is that it is data driven.
The SMP model is based on condition data, so it is important to know if
and how the condition of assets can be determined. For some assets it is
possible to monitor the condition continuously, which would be the
ideal situation, whereas for other assets the condition can only be de-
termined through periodic inspections. Aiming for uniform condition
monitoring a standard, such as the Dutch NEN-2767 standard [52],
could serve as a guideline to asset managers. The NHPP model, on the
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Fig. 6. Instantaneous availability over 30 years for rapid sand filter.
Table 4
Parameter estimations for SMP model of the ozone streets.
State Distribution Parameter ¢ -
agers of WTPs in this regard.
B 0 u o
1 Weibull 11.15 100.46 - -
2 Weibull 5.47 80.76 - -
3 Weibull 2.36 72.77 - -
4 - — - - -
5 Lognormal - - 1.02 0.29
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Fig. 7. Instantaneous availability over 30 years for ozone street.
Table 5
Parameter estimations for SMP model of the pumps.
State Distribution Parameter
B [Z] u o
1 Weibull 4.38 52.33 - -
2 Weibull 3.49 39.89 - -
3 Weibull 3.91 30.17 - -
4 _ _ _ _ _
5 Lognormal - - 0.35 0.56
6 Lognormal - - 3.03 0.08
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other hand, is driven by failure data. It must be well defined when an
asset has failed and the recording of failures needs to be accurate and
uniform. In case of data scarcity, it is possible to use expert judgement
as input for the modelling at component level. Many models for expert
judgement elicitation exist in the literature. Cooke and Goossens [53]
discuss two models for critical infrastructures.

Likewise, the information regarding the performed maintenance
actions must be well registered. Information on the type of active
maintenance strategy, the influence of a maintenance action on the
asset condition, and the time it takes to perform the maintenance action
are of significant importance for accurate availability modelling.
Without a proper definition and collection of condition data, failure
data and maintenance actions, adoption of the methodology by asset
managers and other users might prove difficult. Subsequently, the
proposed methodology can be used as a demonstration of the usefulness
and importance of collecting data in producing tangible insights into
temporal availability of assets and asset systems.

The present study can further be improved by relaxing some of the
simplifying assumptions made in the development of the methodology.
First, it is assumed that components deteriorate and/or fail in-
dependently, which is inevitable if the system is to be modelled using
RBD technique. This assumption seems to be simplistic since in real-life
systems there would be dependencies between components due to
common-cause failures or load-sharing (in parallel sub-systems). A so-
lution could be the application of (dynamic) Bayesian belief networks
[17,50,54,55] to account for conditional dependencies, which can be
pursued in future works.

Second, it should be noted that this study focusses on availability
modelling, which is a first step in the optimisation process of main-
tenance strategies and system configurations. The next step would be
the conducting a cost-benefit analysis, in order to ensure an affordable
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Fig. 8. Instantaneous availability over 30 years for pumps.

Table 6
Parameter estimation for the NHPP model of the softening reactors.

Parameter Value Confidence bounds 95%
B 2.84 2.13 3.54
Cl 4748.71 Not applicable
[ 4.00
o 1.81
1,000
0,990
20980 |
g
8
g
- 0,970
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Fig. 9. Instantaneous availability over 30 years for softening reactors.

high availability. In this regard, the Semi-Markov Decision Process
(SMDP) - as an extension of the SMP model - could be used to find
optimal maintenance strategies [33,56,57] and Life Cycle Costing (LCC)
techniques could be applied for discounting future revenue and ex-
penses of maintenance strategies in the NHPP model [58].

Third, with the SMP model multiple condition states can be in-
cluded, where each condition state is corresponding to a value for the
instantaneous availability of the concerned component. In the proposed
methodology this instantaneous availability is assumed to be a binary
variable (either 1 or 0). Therefore, an extension to the SMP model could
be the inclusion of intermediate values for the instantaneous avail-
ability. This would allow the modelling of partly available (or

210

degraded) components as a result of deterioration. For example, within
a WTP this could be relevant for different types of filters experiencing
degrees of clogging and thus not working with 100% efficiency.

Fourth, inclusion of other types of models at the component level
could relax some assumptions. For the NHPP model the application of
imperfect repair models, such as Virtual Age Process (VAP) models are
recommended to be investigated [59-61].They relax the assumption of
minimal repair for the NHPP model (or perfect repair for the HPP
model). VAP models such as the Arithmetic Reduction of Intensity (ARI)
and the Arithmetic Reduction of Age (ARA), introduced by Doyen and
Gaudoin [59] fit well with the Power Law Process used in the NHPP
model. One should keep in mind, however, that with the generalisation
to imperfect repair models, demands on data become more challenging
as in addition to failures and repair times, the effect of repairs on the
asset has to be estimated too.

6. Conclusions

In order to ensure water availability to society, asset managers of
WTPs are in need for tools to assess long-term availability. Complex
configurations and repairable and deteriorating assets are inherent
characteristics of these plants. However, methodologies capable of
modelling the instantaneous availability and simultaneously addressing
repairability and deterioration of WTP are lacking.

Therefore, the current research presents a two-level model for as-
sessing the instantaneous availability of WTPs: (i) choosing between a
condition-based technique (SMP) and a failure-based technique (NHPP)
at the component level, and (ii) application of a RBD to calculate the
availability at the system level. The proposed methodology is ex-
emplified by a case study of a Dutch WTP, where data has been elicited
from experts. Assessing the availability of the components and the
system, it was shown that the WTP was presenting a deteriorating be-
haviour over a 30-year period.

This research has relied on the simplifying assumption of in-
dependent deterioration and failure of components. Therefore, the
performance of the developed methodology can further be improved by
applying more sophisticated techniques than RBD so that conditional
dependencies can be accounted for.
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Fig. 11. Instantaneous availability of the water treatment facility over 30 years.

Appendix A
Trend test statistics from the NHPP models

The trend tests work as follows: for the Laplace test there is no trend if the test statistic falls within the interval bounds corresponding to the
chosen significance level of the standard normal distribution. Thus, a significance level of « = 0.05 means that the interval bounds are about — 1.96
and + 1.96.

For the MIL-HDBK-189 test, if the test statistic falls within the interval bounds for a chosen significance level, there is no trend in the data. The
interval bounds of this test are data specific and are included within Tables A1 and A2.

Table Al
Trend test statistics on the data of the rapid sand filtration.
MIL-HDBK-189 Trend Test Laplace Outcome of tests
Trend Test (a = 0.05)
Filter Test Lower Upper Test statistic
statistic bound bound
1 32.17 16.79 46.98 0.03 No trend in data
2 35.78 19.81 51.97 -0.97 No trend in data
3 45.55 22.88 56.90 -1.79 No trend in data
4 44.85 27.57 64.20 —-0.91 No trend in data
5 44.85 22.88 56.90 0.36 No trend in data
6 44.07 19.81 51.97 —0.46 No trend in data
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Table A2
Trend test statistics on the data of the softening reactors.
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MIL-HDBK-189 Trend Test

Laplace Trend Test Outcome of tests (@ = 0.05)

Reactor Test statistic Lower bound Upper bound Test statistic
1 11.47 18.29 49.48 6.81 Trend in data exists
2 15.35 22.88 56.90 3.95 Trend in data exists
3 3.870 12.40 39.36 12.60 Trend in data exists
4 12.33 15.31 44.46 8.24 Trend in data exists
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