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During the last two decades, increasing vessel size in major German estuaries has led to the significant change of the local 
loading regime i.e. increased importance of ship-induced waves and currents.  As a consequence, the intensity of ship-induced 
loads has increased considerably, resulting in damage to rock structures such as revetments, training walls, and groynes.  
Research into the causes of rock structure deterioration by the Federal Waterways Engineering and Research Institute (BAW) 
has shown that for large ships in relatively narrow waterways, the long-period primary ship wave loading has become the most 
prescient factor for rock structure damage.  Looking into the future, it can be expected that the increase in the vessel dimensions 
will lead to an increase in the ship-wave loading.  For this reason, analysing long-term changing trends of long-period ship 
waves and vessel speed to understand the wave-structure interaction is of significant importance.  In this study, the stochastic 
characterization of long-period primary wave height, drawdown, and speed of the vessel through the water at Juelssand in the 
Lower Elbe Estuary was analysed via extreme value analysis and copula modeling, and the bivariate return periods were 
calculated. The one-parameter bivariate copula was utilized to analyse the data.  The dependence pattern between the variables 
was investigated using five parametric copula families: Gaussian, Gumbel, Clayton, Frank, and student’s t.  

Keywords: Bivariate Copula, Extreme value analysis, Juelssand, Long-period ship wave, Rock groyne, Wave-structure 

interaction.   

 

 

1.  Introduction  

River and coastal infrastructures shall be designed to 

withstand severe environmental conditions, such as waves, 

water levels, and large wind speeds. Structural collapses 

typically take place when two or more of these incidents 

reach extreme values simultaneously. Therefore, the design 

of river and coastal infrastructures requires the analysis of 

extreme circumstances that the structure is expected to 

encounter during its lifetime, to ensure sufficient structural 

capacity against critical infrastructure’s loads. In relatively 

narrow navigation channels, the primary waves play a 

significant role in designing proper coastal defense 

structures. However, design circumstances for river and 

coastal structures can be characterized by the joint 

distribution of several environmental loads. Following 

certain environmental conditions, there may be correlations 

between environmental loads, which affect the relative 

frequency of occurrence for each. Thus, multivariate 

analysis of the extreme environment is essential in flood 

risk assessment and coastal design. To determine the return 

periods for design periods of a structure and consequently 

the critical design values, the theory of return period has 

been extensively used in infrastructure design practices. For 

this purpose, the extreme value analysis is typically 

performed in the univariate case. However, determining 

return periods for more than one variable deals with 

additional issues that require to be considered. In the 
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bivariate case, the direct relation between critical design 

value and return period in the univariate case is no longer 

valid. For bivariate return periods, different approaches can 

be applied depending on whether the variables are 

considered to be dependent or independent. For both 

independent and dependent circumstances, two hazard 

scenarios AND-risk and OR-risk can be investigated 

(Salvadori et al. 2016).   

Over the past 15-20 years, continuing damage to rock 

structures such as revetment, training walls, and rock 

groynes have been witnessed across major German 

estuaries (BAW 2010;  BAW 2012) Shipping fleet changes, 

particularly increasing ship dimensions resulted in severe 

ship-induced waves on estuary infrastructures. 

Investigations by  BAW (2010) and BAW (2012) have 

shown that the long-period primary ship waves are the most 

intense hydraulic loadings for structural failure in several 

regions of German estuaries. Moreover, ship-induced wave 

loadings are likely to increase in magnitude and frequency, 

since container vessels keep growing in size. Besides, the 

proportion of waterway traffic corresponding to ultra-large 

container vessels (ULCV) of the Triple E and New 

Panamax classes are likely to rise. Hence, estimation of 

long-term changing trends of groyne loads and variables 

affecting the load data such as vessel speed and vessel 

dimensions and derivation of univariate critical design 

values associated with different return periods 𝑇, are crucial 

for safety control and design of groyne structure. Besides, 

determining the joint distributions and bivariate return 

periods to calculate design periods, is of great importance. 

In this regard, prototype implementations and 

investigations have been conducted by the Federal 

Waterways Engineering and Research Institute (BAW) to 

assess the performance of the optimised groyne designs 

against long-term ship wave loadings at Juelssand in the 

Lower Elbe Estuary (Melling et al. 2020). The groyne in the 

tidal Lower Elbe was reconstructed and optimised to 

increase its structural resistance. Ship-induced wave loads 

were recorded during the field experiment. In this study the 

stochastic characterization and long-term variability of the 

primary wave height (𝐻𝑝), drawdown (𝐷𝑟) and speed of a 

vessel through water (𝑉𝑖) were analysed via extreme value 

analysis and copula modeling. 

The method of extreme value analysis (EVA) is 

typically implemented by applying the cumulative 

distribution functions to estimate the long-term variation as 

well as the extrapolation of historical data of a variable of 

interest (Goda 1992). The unknown parameters of the 

distribution function can be obtained using fitting methods 

such as maximum likelihood estimate (MLE), method of 

moments (MOM), least square method (LSM), etc. 

(Martins and Stedinger 2000; Coles et al. 2001). 

Niroomandi et al. (2018) performed extreme value analysis 

based on generalized extreme value distribution and 

generalized Pareto distribution functions to obtain design 

wave heights for different wave periods. 

Additionally, for risk assessment and design 

conditions of coastal infrastructures, understanding the 

joint behavior of stochastic variables is essential. The joint 

distribution and dependence structure between each pair of 

stochastic variables can be determined through bivariate 

copula modeling. By applying copula approaches, the 

dependence structure is determined separately from the 

marginal distributions (Genest and Favre 2007). For the 

bivariate copulas, different copula families have proved 

their effectiveness: the Elliptical copulas such as the 

Gaussian or t copulas, and the Archimedean copulas such 

as the Gumbel or Clayton copulas to characterize the 

precipitation for risk assessment of infrastructures 

(Morales-Nápoles et al. 2017), the Hierarchical 
Archimedean copulas to characterize the wave-storms in 

the Catalan coast  (Lin-Ye et al. 2016) and the vine-copula 

for characterization of time series significant wave height 

and the associated mean zero-crossing periods in the North 

sea (Jäger and Nápoles 2017) have been applied and found 

valuable. 

The main objective of this study is to define the 

bivariate probabilities of exceedance and consequently the 

bivariate return periods for design periods for each pair of 

variables primary wave height, drawdown, and speed of 

vessel through water. To reach this goal, for hazard 

scenarios AND-risk and OR-risk, the traditional approach 

for independent random variables and the copula-based 

approach for dependent random variables were 

implemented. In the traditional method, all variables are 

considered to be extreme and treated separately since they 

are assumed to be independent. Thus, the possible 

dependence between variables or processes is not taken into 

account. In the copula-based method, only the dominant 

variable is extreme and its concomitants are not necessarily 

extreme. The correlation between every pair of variables is 

calculated using copulas.  

This paper outlines the necessary steps to be able to 

calculate bivariate exceedance probabilities and bivariate 

return periods and provides the results of such an analysis 

applied to the data recorded at an optimised groyne 

structure at Juelssand in the Lower Elbe estuary. Initially, 

the univariate extreme value analysis (EVA) based on the 

generalized extreme value distribution function (GEV) was 

performed and the critical design values for extreme data 

were obtained. Calculating the bivariate return periods (for 

dependent random variables) requires the determination of 

joint distribution between each pair of random variables. 

For this purpose, five copula families comprising Gaussian, 

student’s t, Clayton, Gumbel, and Frank were used.  

2.  Wave-structure Interaction  

The water level alterations generated by a passing ship are 

divided into the systems of primary and secondary waves 

(Schiereck and Verhagen 2012). Fig. 1 shows the schematic 

depiction of primary and secondary ship-induced waves 

system in confined and shallow water. The primary wave 

begins with a bow wave, afterward a depression in water 

level is established along the vessel’s hull and a stern wave 

is produced at the end. This stern wave generally 

https://www.powerthesaurus.org/have_demonstrated_their_effectiveness/synonyms
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contributes to severe damage to the coastal defence 

structures. The long-period primary wave travels across the 

coastline at an identical speed with the vessel speed and is 

hydraulically bound to the vessel hull. As a result of the 

stern wave transition, the ambient water level is restored as 

the water level depression (drawdown) is reimbursed with 

the slope supply flow (Melling et al. 2020). The primary 

wave height is obtained as the difference between the 

highest and lowest water levels. While the drawdown is the 

difference between the ambient water level and the lowest 

water level.  

 

Fig.1. Schematic cross-section of ship wave loading in shallow 

and confined water with parameters description (Melling et al. 

2020). 

3.  Site Description and Prototype Field Survey  

The investigated groyne structure (B29) is situated at the 

Juelssand on the Lower Elbe Estuary, alongside the main 

channel to the Hamburg port (Fig. 2). In this region, the 

groyne structures experience significant structural failure 

owing to the action of the ship-induced waves on them. 

Thus, pilot research was done by BAW, and the groyne B29 

was reconstructed using optimised design approaches. 

Sufficient long-time series of loading data were recorded at 

the groyne prototype with a monitoring program. To 

measure the water level alterations, pressure sensors 

(Driesen & Kern and RBR) were installed on the groyne at 

its different locations in the head, crest, foot, and root areas. 

The wave recording for the groyne B29 was conducted in 

the time interval of the field experiment from 07.2015 to 

02.2019 (Melling et al. 2020). In this study, the wave 

measurements at the pressure sensor 1 installed on the tip 

of the groyne (Fig. 2) were carried out for over 18000 events 

from which the extreme values were extracted.   

 

Fig.2. Study site location at Juelssand with investigated groyne 

B29 (The position of pressure sensor 1 is shown by a white dot). 

4.  Extreme Value Analysis (EVA) 

Extreme value analysis (EVA) is a probabilistic technique 

that allows for estimating the likelihood of extreme events 

in a sample (Coles et al. 2001). EVA has wide utilization 

in various fields of study such as business, finance, public 

health, climate change, marine coastal engineering, etc. 

There are two methods for extreme value analysis 

comprising block maxima and peak-over threshold (POT). 

In the block maxima approach, the data are divided into the 

constant non-overlapping intervals named block (e.g., 

annual, seasonal, monthly, and daily maxima), then the 

peak value of each block is chosen. The extreme value 

distribution is then fitted to a sample of maxima. For the 

POT approach, the high threshold values are initially 

selected, then the extreme value analysis is performed for 

the data above the given thresholds. Theoretically, it has 

been proven that for an adequately long sequence of 

independent and identically distributed random variables, 

the maxima of a sample of size n, can be fitted into the 

generalized extreme value distribution (GEV). The 

cumulative distribution function of the GEV distribution 

(𝐺(𝑧)) is given as follows (Coles et al. 2001):  

𝐺(𝑧) = 𝑒𝑥𝑝 {− [1 + 𝜀 (
𝑧 − 𝜇

𝜎
)]

−1
𝜀⁄

}   𝜀 ≠ 0        (1) 

𝐺(𝑧) = 𝑒𝑥𝑝 {−exp (− (
𝑧 − 𝜇

𝜎
))}    𝜀 = 0            (2) 

where 𝜀, 𝜎 and 𝜇 are the shape, scale, and location 

parameters, respectively. The GEV distribution consists of 

three types: for 𝜀 = 0 (Type Ⅰ) the GEV is Gumbel 

distribution, for 𝜀 > 0 (Type Ⅱ) is Fréchet distribution and 

for 𝜀 < 0 (Type Ⅲ) is Weibull distribution. One main 

application of EVA is the approximation of the critical 

design value (𝑋𝐶), a value that is estimated to exceed in the 

unit of time 𝑇. For example, on average every 50 years, 

which causes structural destruction. The critical design 

value 𝑋𝐶 associated with a return period 𝑇 = 1/𝑃(𝑋 > 𝑋𝐶) 

(𝑃 is the probability of exceedance) is the inverse of the 
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cumulative distribution function of the generalized extreme 

value distribution 𝐺(𝑧) and can be determined as follows 

(Coles et al. 2001): 

𝑋𝐶 = 𝐺−1(1 − 𝑃) = 𝜇 −
𝜎

𝜀
[1 − {− log(1 − 𝑃)}−𝜀]  𝜀 ≠ 0  (3) 

𝑋𝐶 = 𝐺−1(1 − 𝑃) = 𝜇 − 𝜀𝑙𝑜𝑔{− log(1 − 𝑃)}  𝜀 = 0        (4) 

In this paper, primarily the generalized extreme value 

distribution (GEV) function was fitted to the monthly 

maxima data (41 data), and the critical design values for 

different return periods for the primary wave height, 

drawdown, and speed of vessel through water variables 

were obtained. It has to be noted that in this case, all the 

variables were considered extreme. The unknown 

parameters of the fitted GEV distributions were obtained 

through the maximum likelihood estimate (MLE) method. 

The maximum likelihood is a common and flexible 

approach for the estimation of unknown parameters of a 

distribution function. Amongst fitting methods, the MLE is 

unique as it shows high adaptability to the changes in the 

models. Particularly, by modifying the model through 

changing the estimating equations, the underlying 

technique remains unchanged. Additionally, the MLE 

assigns the greatest probabilities to the observations, by 

adapting a model with the highest likelihood (Coles et al. 

2001). Given return periods and exceedance probabilities, 

the design values were calculated.  

5.  Bivariate Copula 

A bivariate copula is a joint distribution on a unit 

hypercube for which the marginal distribution of each 

random variable is uniform on the interval [0, 1]. Copulas 

are utilized to characterize the dependence structure 

between random variables. Assuming 𝑋 and 𝑌 continuous 

random variables, their joint  cumulative distribution 

function 𝐹𝑋,𝑌(𝑥, 𝑦) can be described in terms of copula and 

univariate marginal distribution functions (Morales-

Nápoles et al. 2017):  

 𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐶[𝐹𝑋(𝑥), 𝐹𝑌(𝑦)] = 𝐶(𝑢, 𝑣)            (5)  

where 𝐶 is the copula function, 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) are the 

marginal cumulative distribution functions of the random 

variables 𝑋 and 𝑌 (or uniform ranks of  𝑋 and 𝑌), and 𝑢 and 

𝑣 are marginal uniform variates on the interval [0, 1]. In 

copula modeling, the rank correlation coefficient is equal to 

Pearson’s product-moment correlation coefficient 

computed with the ranks of random variables 𝑋 and 𝑌. The 

Pearson’s product-moment correlation is defined as:  

𝜌 (𝑋, 𝑌) =
𝐸(𝑋, 𝑌) − 𝐸(𝑋)𝐸(𝑌)

√var(𝑋)var(𝑌)
                    (6)  

In the current study, the joint distribution between 

every pair of random variables was modeled using copula 

functions. Two types of copulas comprising Elliptical 

(Gaussian and student’s t) copulas and Archimedean 

(Clayton, Gumbel, and Frank) copulas were fitted to the 

data, and the dependence pattern between each pair of 

variables was determined. For copula modeling, the 

primary wave height is considered the dominant variable, 

and hence extreme. The remaining variables (drawdown 

and speed of vessel through water) are its concomitants and 

not necessarily extreme.  The goodness of fit tests for 

copulas Cramer-von Mises M statistic and semi-

correlations techniques were performed for different 

copulas. The Cramer-von Mises M statistic is the sum of 

square variations between the fitted (parametric) and 

empirical copulas and for a sample of length n is defined as 

follows  (Genest, Rémillard, and Beaudoin 2009).  

𝑀𝑛(𝑢) = ∑{𝐶𝜃𝑛
(𝑢) − 𝐵(𝑢)}

2
,      𝑢 ∈ [0,1]2      (7)

|𝑢|

 

where 𝐶𝜃𝑛
(𝑢) is the parametric copula, 𝜃𝑛 is the unknown 

parameter of parametric copula which can be derived from 

the observations and 𝐵(𝑢) = ∑ 1(𝑈𝑖 ≤ 𝑢) is the empirical 

copula. The best-fit copula can be defined based on the 

lowest values of the Cramer-von Mises M statistic test. The 

method of semi-correlation is another diagnostic technique 

to obtain the best fit copula (Joe 2015). In the semi-

correlation test, Pearson's product-moment correlation 

coefficients are calculated in the upper and lower quadrants 

of the observations transformed to standard normal. 

Positive correlations are corresponding to the upper right 

(NE) and lower left (SW) which are computed according 

to the following formulas (Morales-Nápoles et al. 2017): 

𝜌𝑛𝑒 = 𝜌(𝑍𝑖 , 𝑍𝑗|𝑍𝑖 > 0, 𝑍𝑗 > 0)                     (8) 

𝜌𝑠𝑤 = 𝜌(𝑍𝑖 , 𝑍𝑗|𝑍𝑖 ≤ 0, 𝑍𝑗 < 0)                     (9) 

where (𝑍𝑖 , 𝑍𝑗) is the standard normal transformation of 

(𝑋𝑖 , 𝑋𝑗). The negative semi-correlations in the upper left 

𝜌𝑛𝑤 (NW) and lower right 𝜌𝑠𝑒 (SE) can be computed 

analogously to Eqs. (8) and (9). In general, the rank 

correlation coefficient of the whole dataset is compared to 

the largest absolute value of semi-correlation in a specific 

quadrant and the opposite quadrant reveals tail 

dependence.  

6.  Bivariate Extreme Value Analysis 

The process of performing extreme value analysis for two 

or more variables is more complicated than performing 

univariate EVA. For the univariate analysis, the most 

extreme observations of a set of variables are obtained by 

extracting the maximum or minimum values. For bivariate 

cases,  peak values of one most dominant variable are 

selected. For the remaining variables, the corresponding 

concomitant values recorded coinciding with the dominant 

variable are chosen. For the bivariate extreme value 

analysis, various methodologies can be applied based on 
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that the variables are taken into account dependent or 

independent. For instance, the AND bivariate exceedance 

probability of two independent random variables that occur 

simultaneously is calculated by multiplying the univariate 

probabilities of occurrence of variables. For dependent 

events, the joint distribution and dependence structure 

between every pair of variables can be determined in terms 

of bivariate distributions and copulas. By applying a copula 

function, the dependence structure is obtained 

independently from the marginal distributions (Sellés Valls 

2019).  

6.1. Bivariate return period 

Using the definition of the univariate return period (section 

4), for different hazard scenarios of AND-risk and OR-risk  

(Salvadori et al. 2016), the bivariate return periods for the 

dependent random variable 𝑋 and 𝑌 are given as follows: 

𝑇𝐴𝑁𝐷 =
1

𝑃(𝑋>𝑥,𝑌>𝑦)
=

1

1−𝐹𝑋(𝑥)−𝐹𝑌(𝑦)+𝐶(𝐹𝑋,𝐹𝑌)
       (10)                                          

𝑇𝑂𝑅 =
1

𝑃(𝑋>𝑥 𝑜𝑟 𝑌>𝑦)
=

1

1−𝐶(𝐹𝑋,𝐹𝑌)
                   (11)       

where 𝐶 is the copula. For the AND-return period (𝑇𝐴𝑁𝐷), 

both variables exceed their critical design values, while for 

the OR-return period (𝑇𝑂𝑅), at least one of the variables 

exceeds its critical design value. For independent random 

variables, all the variables are considered extreme, and 

extreme value analysis is applied individually to each 

random variable (traditional approach). To calculate the 

AND bivariate probabilities of exceedance, we can easily 

multiply both individual probabilities of exceedance. The 

OR bivariate exceedance probability is equal to the sum of 

the individual probabilities mines the AND bivariate 

probability of exceedance.  

7.  Results and discussion 

To design the river and coastal structures, it is essential to 

take into consideration the impact of multivariate 

environmental loads. Accordingly, the joint distribution 

between variables is commonly determined. Moreover, by 

calculating the joint probabilities of occurrence, the joint 

return periods for design periods are obtained. To achieve 

this objective, in this study, primarily the univariate critical 

design values for the primary wave height (𝐻𝑝), drawdown 

(𝐷𝑟) and speed of vessel through water (𝑉𝑖) variables were 

obtained by fitting the generalized extreme value 

distribution function (GEV) to the extreme values. Since 

the observations at groyne B29 were recorded for the 

duration of 6 years (2015-2019), sufficient data are not 

available to perform the GEV method for the yearly 

maxima. Thus, for each random variable, 41 monthly 

maxima observations were extracted, which is sufficient to 

obtain reliable results as according to Cook (1985), at least 

20 extreme observations are essential to perform the Block 

maxima method. The monthly maxima were arranged in 

ascending order and the non-exceedance probabilities (𝑃𝑖) 

were calculated through plotting position formula of 

Weibull as follows (Goda 2011): 

𝑃𝑖 =
𝑚

𝑁 + 1
                                   (12) 

where 𝑚 is observations in the ascending order and 𝑁 is the 

number of data. In Fig. 3, the fitted GEV distribution to 

extreme observations for primary wave height is shown in 

terms of the cumulative exceedance probability plot. The 

solid line is the calculated values resulting from the fitted 

GEV distribution. In addition, the 95% and 68% confidence 

intervals are plotted. Most of the empirical values fall 

within the 95% confidence intervals, indicating that the 

GEV is a reliable model for the investigated data. The 

parameters and type of the GEV distribution for each 

random variable are presented in Table 1. The type of GEV 

is typically determined based on the shape parameter. For 

the primary wave height variable, the shape parameter 

revealed a Fréchet distribution, however, its value is 

approximately zero, and thus the best fit distribution is 

considered Gumbel. For the drawdown variable, the shape 

parameter is negative, but it's very close to zero, thus a 

Gumbel distribution was interpreted. The distribution of 

speed of vessel through water was obtained as Weibull. For 

different return periods, the univariate design values are 

derived from Eqs. (3) and (4 ) (Table 2).  

 

Fig.3. Cumulative exceedance probability plot for the extreme 

primary wave height variable. 

Table 1. Parameters of the GEV distributions and type of 

GEV fit. 

variables 

Shape 

parameter 

𝜀  

Scale 

parameter 

𝜎 (𝑚) 

location 

parameter 

𝜇 (𝑚) 

Fitted 

GEV 

 

𝐻𝑝 0.0031 0.12 0.72 Gumbel 

 𝐷𝑟  -0.04 0.07 0.62 Gumbel 

 𝑉𝑖 -0.3 1.9 16.17 Weibull 

https://www.powerthesaurus.org/straightforwardly/synonyms
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At the next phase, the joint distribution and 

dependence pattern between each pair of variables were 

determined through copulas. The correlation between 

primary wave height and drawdown and the transformation 

from empirical data (Fig. 4 (a)) to pseudo-observations 

(Fig. 4 (b)) are illustrated. The Spearman’s correlation 

coefficient for 𝐻𝑝 and 𝐷𝑟 was obtained 0.7. For the pair 𝐻𝑝 

and 𝑉𝑖 and the pair 𝐷𝑟 and 𝑉𝑖, the Spearman’s correlation 

coefficient was obtained 0.44 and 0.17, respectively. The 

pseudo-observations are the observations transformed into 

the intervals [0,1] using the empirical margins. The data 

were fitted to the five copulas. The goodness of fit semi-

correlation results for primary wave height and drawdown 

is shown in Fig. 4 (c). Results of semi-correlations and 

Cramer-von Mises M statistic indicated that the best-fit 

copula for the pair 𝐻𝑝 and 𝐷𝑟 and the pair 𝐻𝑝 and 𝑉𝑖 is 

Gumbel. The Gaussian copula is the best model for 𝐷𝑟 and 

𝑉𝑖 in terms of dependence structure. The results of copula 

modeling (best-fit copula) will be used to calculate the 

bivariate probabilities of exceedance and consequently the 

bivariate return periods.  

 
               (a) 

 

 
             (b) 

 

 
               (c) 

Fig.4. Primary wave height and drawdown: (a) original 

observations, (b) pseudo-observations, (c), semi-correlations at 

each quadrant. 

Results of bivariate exceedance probabilities and 

bivariate return periods for both independent and dependent 

random variables for AND-risk and OR-risk hazard 

scenarios are shown in Tables 2 and 3. It has to be noted 

that since the analysis was conducted for monthly maxima 

data, for a return period equal to 10 years, the corresponding 

exceedance probability is calculated as 1/(10*12)= 

0.00833. The wave measurements were carried out for 12 

months.  

Table 2. Univariate design values (columns 3-6), probabilities of 

exceedance, and return periods for AND-risk and OR-Risk 

scenarios (random variables are considered to be independent and 

extreme). 

Return 

period 

(years) 

Univariate 

exceedance 

probability 

(yearly) 

𝐻𝑝 

(m) 

𝐷𝑟 
(m) 

𝑉𝑖 
(kn) 

10 8.33E-03 1.32 0.96 21 

25 3.33E-03 1.43 1.02 21.36 

50 1.60E-03 1.52 1.06 21.58 

100 8.33E-04 1.6 1.1 21.75 

Table 2 (continued) 

AND 

exceedance 

probability  

AND 

return 

period  

OR 

exceedance 

probability 

OR return 

period  

6.94E-05 1.44E+04 1.66E-02 6.03E+01 
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1.11E-05 9.02E+04 6.65E-03 1.50E+02 

2.56E-06 3.91E+05 3.20E-03 3.13E+02 

6.94E-07 1.44E+06 1.67E-03 6.00E+02 

Table 3. Probabilities of exceedance (P) and return periods (R) for 

AND-risk and OR-risk scenarios (random variables are considered 

to be dependent, only 𝐻𝑝 is extreme). 

Return 

period 
(years) 

AND-

P 

AND-

P 

AND-

P 

AND-

R 

AND-

R 
AND-R 

 
(𝐻𝑝, 

𝐷𝑟) 

(𝐻𝑝, 

𝑉𝑖) 

(𝐷𝑟, 

𝑉𝑖) 

(𝐻𝑝, 

𝐷𝑟) 

(𝐻𝑝, 

𝑉𝑖) 
(𝐷𝑟, 𝑉𝑖) 

10 
4.51E-

03 

3.57E-

03 

2.75E-

04 
18.46 23.34 303 

25 
1.86E-

03 

1.91E-

03 

1.16E-

04 
44.75 43.44 712.77 

50 
9.53E-

04 

1.07E-

03 

6.56E-

05 
87.35 77.24 1269.98 

100 
5.08E-

04 

6.21E-

04 

3.69E-

05 
163.98 134.07 2256.43 

Table 3 (continued) 

Return 

periods 
(year) 

OR-P OR-P OR-P OR-R OR-R OR-R 

 (𝐻𝑝, 

𝐷𝑟) 

(𝐻𝑝, 

𝑉𝑖) 

(𝐷𝑟, 

𝑉𝑖) 

(𝐻𝑝, 

𝐷𝑟) 

(𝐻𝑝, 

𝑉𝑖) 

(𝐷𝑟, 

𝑉𝑖) 

10 1.21E-

02 

1.56E-

02 

1.9E-

02 
6.85 5.32 4.37 

25 4.04E-

03 

1.11E-

02 

1.31E-

02 
16.52 7.6 6.34 

50 2.62E-
03 

9.58E-
03 

1.11E-
02 

31.75 8.69 7.6 

100 1.41E-

03 

8.79E-

03 

9.62E-

03 
58.96 9.47 8.65 

 

Considering the traditional method (independent 

variables), the return period of a response that is based on 

the parameters from an AND probability is smaller than the 

return period for the given parameter combination. 

Whereas, the return periods derived from an OR probability 

of exceedance could be more reasonable in this case. 

However,  since there is a correlation between each pair of 

random variables, it is essential to consider the dependency 

between them. The return periods resulting from OR 

probabilities for dependent variables (Table 3) are smaller 

than the return periods for univariate variables (Table 2, 

column 1), and are smaller than OR-return periods for 

independent random variables (Table 2). This is a direct 

impact of considering the dependence between variables. 

Thus, the OR-return period resulting from the dependent 

case could not be used herein.  

Taken into consideration both independent and 

dependent cases,  the AND probabilities of exceedance for 

the traditional method (Table 2) are smaller than the 

calculated AND probabilities of exceedance for the 

dependent variables (copula-based method) (Table 3). As a 

consequence, the obtained return periods from the 

traditional method are much greater than those derived from 

the copula-based method, which is not reasonable. 

Generally, the more reliable return periods were obtained 

from the OR-return period for independent random 

variables and AND-return periods for dependent random 

variables. However, since in the infrastructure design 

practices, it is essential to consider the interaction between 

variables, thus, the AND-return periods for dependent 

random variables may be taken for a reliable design.  

8. Conclusion 

In the current study, the stochastic characterization of 

primary wave height (𝐻𝑝) and drawdown (𝐷𝑟) and speed 

of vessel through water (𝑉𝑖) was investigated for an 

optimised groyne design at Juelssand in the Lower Elbe 

Estuary and bivariate return periods for AND-risk and OR-

risk hazard scenarios were calculated by considering 

random variables both dependent and independent. The 

univariate critical design values were obtained by fitting 

the GEV distribution function to the extreme observations. 

The dependence pattern between each pair of variables was 

determined using copulas. The fitted GEV distribution for 

𝐻𝑝 and 𝐷𝑟 considered as Gumbel, and the Weibull 

distribution was the best fit for 𝑉𝑖. Results of copula 

modeling indicated that the Gumbel copula is the best 

model for the pair 𝐻𝑝 and 𝐷𝑟 and the pair 𝐻𝑝 and 𝑉𝑖. The 

best-fit copula for 𝐷𝑟  and 𝑉𝑖 was found to be Gaussian. The 

results of the bivariate analysis indicated that the AND-

return periods for the dependent model may be considered 

for a design.   
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