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Abstract
We give an extension of Rubio de Francia’s extrapolation theorem for functions taking
values in UMD Banach function spaces to the multilinear limited range setting. In
particular we show how boundedness of an m-(sub)linear operator

T : L p1(w
p1
1 ) × · · · × L pm (w

pm
m ) → L p(w p)

for a certain class of Muckenhoupt weights yields an extension of the operator to
Bochner spaces L p(w p; X) for a wide class of Banach function spaces X , which
includes certain Lebesgue, Lorentz and Orlicz spaces. We apply the extrapolation
result to various operators, which yields new vector-valued bounds. Our examples
include the bilinearHilbert transform, certain Fouriermultipliers and various operators
satisfying sparse domination results.
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1 Introduction

Scalar-valued extrapolation, using the theory of Muckenhoupt weights, has proven
to be an essential tool in harmonic analysis. The classical extrapolation result (see
[59] and [29, Chap. IV]) says that if a (sub)linear operator T satisfies for a fixed
p0 ∈ (1,∞) and all weights w in the Muckenhoupt class Ap0 the norm inequality

‖T f ‖L p0 (w) ≤ C ‖ f ‖L p0 (w) (1.1)

for all f ∈ L p0(w), then we have for all p ∈ (1,∞) and all weights w ∈ Ap

‖T f ‖L p(w) ≤ C ‖ f ‖L p(w) (1.2)

for all f ∈ L p(w). Numerous generalizations of this result have appeared, see for
example [4,21,22,32,35]. We mention several of them.

It was shown by Grafakos and Martell [32] that extrapolation extends to the multi-
linear setting. Indeed, they showed that given fixed exponents p1, . . . , pm ∈ (1,∞),
if for an m-(sub)linear operator T and all weights w

p j
j ∈ Ap j we have

‖T ( f1, . . . , fm)‖L p(w p) ≤ C
m∏

j=1

‖ f j‖L p j (w
p j
j )

,

where w = ∏m
j=1 w j and 1

p = ∑m
j=1

1
p j
, then the same estimate holds for all p j ∈

(1,∞), weights w
p j
j ∈ Ap j and w and p as before.

Considering a different kind of generalization, it was shown byAuscher andMartell
[4] that a limited range version of the extrapolation result holds: if there are exponents
0 < p− < p+ ≤ ∞ such that the estimate (1.1) is valid for a fixed p0 ∈ (p−, p+) and
all weights w in the Muckenhoupt and Reverse Hölder class Ap0/p− ∩ RH(p+/p0)′ ,
then (1.2) is valid for all p ∈ (p−, p+) and all weights w ∈ Ap/p− ∩ RH(p+/p)′ .

Vector-valued extensions of the extrapolation theory have also been considered.
Through an argument using Fubini’s Theorem, the initial estimate (1.1) immediately
implies not only the estimate (1.2) for all p ∈ (1,∞), but also for extensions of the
operator T to functions taking values in the sequence spaces �s or more generally
Lebesgue spaces Ls for s ∈ (1,∞). Moreover, Rubio de Francia showed in [60,
Theorem 5] that one can take this even further. Indeed, this result states that assuming
(1.1) holds for some p0 ∈ (1,∞) and for all weights w ∈ Ap0 , then for each Banach
function space X with the UMD property, T extends to an operator T̃ on the Bochner
space L p(X) which satisfies

∥∥T̃ f
∥∥

L p(X)
≤ C ‖ f ‖L p(X)

for all p ∈ (1,∞) and all f ∈ L p(X). Recently, it was shown by Amenta, Veraar,
and the first author in [2] that given p− ∈ (0,∞), if (1.1) holds for p0 ∈ (p−,∞)

and all weights w ∈ Ap0/p− , then for each Banach function space X such that X p−
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has the UMD property, T extends to an operator T̃ on the Bochner space L p(w; X)

and satisfies

∥∥T̃ f
∥∥

L p(w;X)
≤ C ‖ f ‖L p(w;X)

for all p ∈ (p−,∞), all weights w ∈ Ap/p− and all f ∈ L p(w; X). Here X p− is the
p−-concavification of X , see Sect. 2 for the definition.

Vector-valued estimates in harmonic analysis have been actively developed in the
past decades. Important for the mentioned vector-valued extrapolation are the equiv-
alence of the boundedness of the vector-valued Hilbert transform on L p(X) and
the UMD property of X for a Banach space X (see [9,13]) and the fact that for a
Banach function space X the UMD property implies the boundedness of the lattice
Hardy–Littlewood maximal operator on L p(X) (see [10,61]). For recent results in
vector-valued harmonic analysis in UMD Banach function spaces, see for example
[8,25,36,38,66].

In the recent work [21] by Cruz-Uribe and Martell both the limited range and the
multilinear extrapolation result were combined, yielding a unified multilinear limited
range version of the extrapolation result in the scalar-valued case. This result also
covers vector-valued extensions to �s for certain s ∈ (0,∞). This opened the question
whether a unified multilinear limited range extrapolation theorem also holds for more
generalBanach function spaces. In thiswork,wegive a positive answer to this question.

We now state our main result, in which we denote X ∈ UMDp−,p+ for the technical

assumption that
(
(X p−)∗

)(p+/p−)′ has the UMD property, see Sect. 3 for a thorough
discussion of this assumption. A more general version of this theorem can be found
in Theorem 4.3 below.

Theorem 1.1 Let m ∈ N and fix 0 < p−
j < p+

j ≤ ∞ for j ∈ {1, . . . , m}. Let T be

an operator defined on m-tuples of functions and suppose there exist p j ∈ (p−
j , p+

j )

such that for all weights w
p j
j ∈ Ap j /p−

j
∩ RH(p+

j /p j )
′ and f j ∈ L p j (w

p j
j ) we have

∥∥T ( f1, . . . , fm)
∥∥

L p(w p)
≤ C

m∏

j=1

‖ f j‖L p j (w
p j
j )

,

with w = ∏m
j=1 w j ,

1
p = ∑m

j=1
1
p j

, and where C > 0 depends only on the character-

istic constants of the weights. Moreover, assume that T satisfies one of the following
conditions:

(i) T is m-linear.
(ii) T is m-sublinear and positive valued.

Let X1, . . . , Xm be quasi-Banach function spaces over a σ -finite measure space (S, μ)

and define X = X1 . . . Xm. Assume that for all simple functions f j : R
d → X j the

function T̃ f : R
d → X given by

T̃ ( f1, . . . , fm)(x, s) := T ( f1(·, s), . . . , fm(·, s))(x), x ∈ R
d , s ∈ S
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is well-defined and strongly measurable. If X j ∈ UMDp−
j ,p+

j
, then for all p j ∈

(p−
j , p+

j ) and weights w
p j
j ∈ Ap j /p−

j
∩ RH(p+

j /p j )
′ , T̃ extends to a bounded operator

on L p1(w
p1
1 ; X1) × · · · × L pm (w

pm
m ; Xm) with

∥∥T̃ ( f1, . . . , fm)
∥∥

L p(w p;X)
≤ C ′

m∏

j=1

‖ f j‖L p j (w
p j
j ;X j )

,

for all f j ∈ L p j (w
p j
j ; X j ), with w and p are as before, and where C ′ > 0 depends

on the p j , p−
j , p+

j , the characteristic constants of the weights, and the spaces X j .

Remark 1.2 • If T is a linear operator as in Theorem 1.1, we have for f j ⊗ ξ j ∈
L p j (w

p j
j ) ⊗ X j that

T̃ ( f1 ⊗ ξ1, . . . , fm ⊗ ξm) = T ( f1, . . . , fm) ⊗ ξ1 . . . ξm ∈ L p(w p) ⊗ X .

So in this case T̃ is automatically well-defined and strongly measurable for all
simple functions f j : R

d → X .
• Although we state Theorem 1.1 for Banach function spaces, it extends to spaces
isomorphic to a closed subspace of a Banach function space and by standard
representation techniques also to certainBanach lattices, see [54,57] for the details.

• In [21] scalar-valued multilinear limited range extrapolation is proven through
off-diagonal extrapolation. Relying on this result, in this paperwe prove the vector-
valued multilinear limited range result. Our method does not directly generalize
to the off-diagonal setting, which leaves vector-valued off-diagonal extrapolation
as an open problem.

• In Theorem 1.1 one could allow for p−
j = 0. In this case one would have to

interpret X j ∈ UMD0,p+
j
as X j ∈ UMDp,p+

j
for some p ∈ (0, p+

j ).

Even in the linear case m = 1 our result is new in the sense that it extends the main
result of [2] to allow for finite p+

j , which yields many new applications. We are now
able to consider, for example, Riesz transforms associated to elliptic operators through
theweighted estimates obtained in [4].Manymore examples of such operators can also
be considered through recent advances in the theory of sparse dominations. Indeed,
for example for certain Fourier multipliers such as Bochner-Riesz multipliers as well
as for spherical maximal operators, sparse bounds have been found. Sparse bounds
naturally imply weighted norm estimates which, through our result, yield bounded
vector-valued extensions for such operators. For a more elaborate discussion as well
as for references we refer the reader to Sect. 5.

Our result is also new in the full range multilinear case, i.e., if p−
j = 1, p+

j = ∞
for all j ∈ {1, . . . , m}. This can, for example, be applied to multilinear Calderón–
Zygmund operators, as these satisfy the appropriate weighted bounds to apply our
result. We elaborate on this in Sect. 5.

Finally, for the case m = 2 our result yields new results for boundedness of the
vector-valued bilinear Hilbert transform B̃HT, due to known scalar-valued weighted
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bounds as were first established by Culiuc et al. [24]. Bounds for the vector-valued
bilinear Hilbert transform B̃HT have useful applications in PDEs, see [5] and refer-
ences therein. The precise result we obtain can be found in Theorem 5.1.

Remark 1.3 In the recent work [53] of Li et al., and the recent work [58] of the second
author, scalar-valued extrapolation results were obtained using the multilinear weight
classes from [52], which were made public after this paper first appeared. Rather than
considering a condition for each weight individually, these weight classes allow for an
interaction between the various weights, making them more appropriately adapted to
the multilinear setting. This gives rise to the problem of extending these results to the
vector-valued case. To facilitate this, it seems that an appropriate multilinear UMD
condition on tuples of Banach function spaces is required. We leave this as a basis for
future research.

This article is organized as follows:

• In Sect. 2 we summarize the preliminaries on Muckenhoupt weights, product
quasi-Banach function spaces and the UMD property.

• In Sect. 3 we discus the UMDp−,p+ property and give examples of quasi-Banach
function spaces satisfying the UMDp−,p+ property.

• In Sect. 4 we prove our main result in terms of (m +1)-tuples of functions, proving
Theorem 1.1 as a corollary.

• In Sect. 5 we prove new vector-valued bounds for various operators.

2 Preliminaries

2.1 MuckenhouptWeights

A locally integrable functionw : R
d → (0,∞) is called a weight. For p ∈ [1,∞) and

a weight w the space L p(w) is the subspace of all measurable functions f : R
d → C,

which we denote by f ∈ L0(Rd), such that

‖ f ‖L p(w) :=
(∫

Rd
| f (x)|pw(x) dx

)1/p

< ∞.

By a cube Q ⊆ R
d we will mean a half-open cube whose sides are parallel to the

coordinate axes and for a locally integrable function f ∈ L0(Rd) we will write
〈 f 〉Q := 1

|Q|
∫

Q f dx .
For p ∈ [1,∞) we will say that a weight w lies in the Muckenhoupt class Ap and

write w ∈ Ap if it satisfies

[w]Ap := sup
Q

〈w〉Q〈w1−p′ 〉p−1
Q < ∞,

where the supremum is taken over all cubes Q ⊆ R
d and the second factor is replaced

by (ess infQ w)−1 if p = 1. We define A∞ := ⋃
p∈[1,∞) Ap.
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Lemma 2.1 Let p ∈ [1,∞) and w ∈ Ap.

(i) w ∈ Aq for all q ∈ [p,∞) with [w]Aq ≤ [w]Ap .

(ii) If p > 1, w1−p′ ∈ Ap′ with [w]
1
p
Ap

= [w1−p′ ]
1
p′
Ap′ .

(iii) If p > 1, there exists an ε > 0 such that w ∈ Ap−ε and [w]Ap−ε ≤ C p [w]Ap .

The first two properties of Lemma 2.1 are immediate from the definition. For the
third see [31, Corollary 7.2.6]. The linear estimate of [w]Ap−ε in terms of [w]Ap can
be found in [39, Theorem 1.2]. Note that self-improvement properties for Ap weights
are classical. We opt to use this quantitative version of the result for clarity in the proof
of our main theorem.

For s ∈ [1,∞) we say that w ∈ A∞ satisfies a reverse Hölder property and write
w ∈ RHs if

[w]R Hs := sup
Q

〈ws〉
1
s
Q〈w〉−1

Q < ∞.

We will require the following properties of the reverse Hölder classes, see [42].

Lemma 2.2 Let r ∈ (1,∞), s ∈ [1,∞) and define p = s(r − 1) + 1. For w ∈ A∞
the following are equivalent

(i) w ∈ Ar ∩ RHs.
(ii) ws ∈ Ap.
(iii) w1−r ′ ∈ Ap′ .

Moreover we have

max
{[w]s

R Hs
, [w]s

Ar

} ≤ [ws]Ap ≤ ([w]Ar [w]R Hs

)s
.

For n ∈ N we will write φa,b,... for a non-decreasing function [1,∞)n → [1,∞),
depending on the parameters a, b, . . . and the dimension d. This function may change
from line to line. We need non-decreasing dependence on the Muckenhoupt charac-
teristics in our proofs. In [2, Appendix A] it is shown how to deduce non-decreasing
dependence from amore general estimate in terms of theMuckenhoupt characteristics.

2.2 Banach Function Spaces

Let (S, μ) be a σ -finite measure space. A subspace X of L0(S) equipped with a
quasi-norm ‖ · ‖X is called a quasi-Banach function space if it satisfies the following
properties:

(i) If ξ ∈ L0(S) and η ∈ X with |ξ | ≤ |η|, then ξ ∈ X and ‖ξ‖X ≤ ‖η‖X .
(ii) There is an ξ ∈ X with ξ > 0.
(iii) If 0 ≤ ξn ↑ ξ with (ξn)∞n=1 a sequence in X , ξ ∈ L0(S) and supn∈N‖ξn‖X < ∞,

then ξ ∈ X and ‖ξ‖X = supn∈N‖ξn‖X .

It is called a Banach function space if ‖ · ‖X is a norm. A Banach function space
X is called order continuous if for any sequence 0 ≤ ξn ↑ ξ ∈ X it holds that
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‖ξn − ξ‖X → 0. Order continuity of a Banach function space X ensures that its dual
X∗ is again a Banach function space (see [54, Sect. 1.b]), and that the Bochner space
L p(S′; X) is a Banach function space over (S × S′, μ × μ′) for any σ -finite measure
space (S′, μ′). As an example we note that any reflexive Banach function space is
order-continuous.

A quasi-Banach function space X is said to be p-convex for p ∈ (0,∞] if
∥∥∥∥

( n∑

k=1

|ξk |p
) 1

p
∥∥∥∥

X

≤
( n∑

k=1

‖ξk‖p
X

) 1
p

for all ξ1, . . . , ξn ∈ X with the usual modification when p = ∞. It is said to be
p-concave when the reverse inequality holds. Usually the defining inequalities for
p-convexity and p-concavity include a constant depending on p and X , but as shown
in [54, Theorem 1.d.8], X can be renormed equivalently such that these constants
equal 1. See [54, Sect. 1.d] for a thorough introduction of p-convexity and concavity
in Banach function spaces and see [43] for the quasi-Banach function space case.

We define the p-concavification of a quasi-Banach function space X for p ∈ (0,∞)

by

X p := {ξ ∈ L0(S) : |ξ | 1p ∈ X} = {|ξ |p sgn ξ : ξ ∈ X},
equipped with the quasi-norm ‖ξ‖X p := ∥∥|ξ | 1p ∥∥p

X . Note that X p is a Banach function
space if and only if X is p-convex. In particular, X is a Banach function space if and
only if it is 1-convex.

For two quasi-Banach function spaces X0, X1 over the same measure space (S, μ)

we define the vector space X0 · X1 as

X0 · X1 := {ξ0 · ξ1 : ξ0 ∈ X0, ξ1 ∈ X1}

and for ξ ∈ X0 · X1 we define

‖ξ‖X0·X1 := inf
{‖ξ0‖X0‖ξ1‖X1 : |ξ | = ξ0 · ξ1, 0 ≤ ξ0 ∈ X0, 0 ≤ ξ1 ∈ X1

}

We call X0 · X1 a product quasi-Banach function space if ‖ · ‖X0·X1 defines a complete
quasi-norm on X0 · X1. We will mostly be working with so called Calderón–
Lozanovskii products. These are product quasi-Banach function spaces of the form
X1−θ
0 · X θ

1 for some θ ∈ (0, 1), see [15,55]. Of course the definition of product
quasi-Banach function spaces and Calderón–Lozanovskii products can be canoni-
cally extended to m quasi-Banach function spaces over the same measure space for
any m ∈ N. We give a few examples of product Banach function spaces, see also [12].

Example 2.3 Fix m ∈ N and let (S, μ) be an atomless or atomic σ -finite measure
space.

(i) Lebesgue spaces: L p(S) = L p1(S) . . . L pm (S) for p j ∈ (0,∞) and 1
p =

∑m
j=1

1
p j
.
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(ii) Lorentz spaces: L p,q(S) = L p1,q1(S) . . . L pm ,qm (S) for p j , q j ∈ (0,∞), 1
p =

∑m
j=1

1
p j

and 1
q = ∑m

j=1
1

q j
.

(iii) Orlicz spaces: L	(S) = L	1(S) . . . L	m (S) for Young functions	 j and	−1 =
	−1

1 . . . 	−1
m .

We will use the following properties of product Banach function spaces:

Proposition 2.4 Let X , X0, X1 be Banach function spaces over a σ -finite measure
space (S, μ) and let θ ∈ (0, 1).

(i) If X0 or X1 is reflexive, then X1−θ
0 · X θ

1 = [X0, X1]θ .
(ii) If X0 or X1 is reflexive, then X1−θ

0 · X θ
1 is reflexive.

(iii)
(
X1−θ
0 · X θ

1

)∗ = (
X∗
0

)1−θ · (
X∗
1

)θ
.

(iv) (X θ )∗ = (X∗)θ · L1/(1−θ)(S).
(v) If X0 and X1 have the UMD property, then X1−θ

0 · X θ
1 has the UMD property.

Part (i) follows from [15], it has been extended to the product quasi-Banach function
space setting in [44,45]. Part (ii) is proven in [55, Theorem 3]. It also follows from
[15] through complex interpolation. Part (iii) is proven in [55, Theorem 2] and for
(iv) see [62, Theorem 2.9]. Finally part (v) follows from part (i) and [41, Proposition
4.2.17], see also the next section on the UMD property.

2.3 The UMD Property

We say that a Banach space X has the UMD property if the martingale difference
sequence of any finite martingale in L p(
; X) is unconditional for some (equivalently
all) p ∈ (1,∞). TheUMDproperty implies reflexivity and if X has theUMDproperty,
then X∗ has the UMD property as well. Standard examples of Banach spaces with the
UMD property include reflexive L p-spaces, Lorentz spaces, Orlicz spaces, Sobolev
spaces, Besov spaces and Schatten classes. For a thorough introduction to the theory
of UMD spaces we refer the reader to [14,41].

Throughout this paper we will consider Banach function spaces with the UMD
property. In this case we have a characterisation of the UMD property in terms of the
lattice Hardy-Littlewood maximal operator, which for simple f : R

d → X is defined
by

M̃ f (x) := sup
Q

〈| f |〉Q 1Q(x),

where the supremum is taken over all cubes Q ⊆ R
d (see [30] for the details). The

boundedness of M̃ on both L p(Rd ; X) and L p(Rd ; X∗) for some (equivalently all)
p ∈ (1,∞) is equivalent to X having the UMD property by a result of Bourgain
[10] and Rubio de Francia [61]. Moreover, if X has the UMD property we have the
following weighted bound for all p ∈ (1,∞), w ∈ Ap and f ∈ L p(w; X)

∥∥M̃ f
∥∥

L p(w;X)
≤ φX ,p([w]Ap )

∥∥ f
∥∥

L p(w;X)
, (2.1)

see [30]. Amore precise dependence on the weight characteristic can be found in [34].
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The UMD property of a Banach function space X implies that certain q-
concavifications of X also have the UMD property, see [61, Theorem 4].

Proposition 2.5 (Rubio de Francia) Let X be a Banach function space over a σ -finite
measure space (S, μ) such that X has the UMD property. Then there exists an ε > 0
such that such that Xq has the UMD property for all 0 < q < 1 + ε.

Note that the difficult part of Proposition 2.5 is the claim that Xq has theUMDproperty
for 1 < q < 1 + ε.

3 The UMDp−,p+ Property of Quasi-Banach Function Spaces

For our main result we need an extension of the UMD property, as we will often con-
sider quasi-Banach function spaces of which a concavification has the UMD property.
In particular, we will use the following notion:

Definition 3.1 Let X be a quasi-Banach function space and let 0 < p− < p+ ≤ ∞.
Thenwe say X has theUMDp−,p+ property if and only if X is p−-convex, p+-concave
and

(
(X p−)∗

)(p+/p−)′ has the UMD property. We denote this by X ∈ UMDp−,p+ .

Note that X is a Banach function space with the UMD property if and only if
X ∈ UMD1,∞ and we denote this by X ∈ UMD.

Remark 3.2

• The p−-convexity in Definition 3.1 implies that X p− is a Banach function space,
so its dual (X p−)∗ is non-trivial. Moreover (X p−)∗ is a Banach function space,
since it has the UMD property by Proposition 2.5 and is therefore reflexive, which
implies that X p− is order-continuous.

• The p+-concavity assumption in Definition 3.1 is not restrictive, as any quasi-
Banach function space with the UMD property is actually isomorphic to a Banach
function space (see [19]), which implies that (X p−)∗ is (p+/p−)′-convex and thus
that X is p+-concave by [54, Sect. 1.d]

We first show some basic results for the UMDp−,p+ property.

Proposition 3.3 Fix 0 < p− < p+ ≤ ∞ and let X be a quasi-Banach function space
over a σ -finite measure space (S, μ) such that X ∈ UMDp−,p+ .

(i) X p− ∈ UMD1,p+/p− .
(ii) X∗ ∈ UMDp′+,p′− if p− ≥ 1.
(iii) X ∈ UMD p̃−, p̃+ for all p̃− ∈ (0, p−] and p̃+ ∈ [p+,∞].
(iv) If 1 < p− < p+ < ∞, then X = [Y , L2(S)]θ for a Banach function space

Y ∈ UMD and θ = 2/max{p′−, p+}.
(v) L p(S′; X) ∈ UMDp−,p+ for all p ∈ (p−, p+) and any σ -finite measure space

(S′, μ′).
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Proof Part (i) follows directly from the definition. For part (ii) the p′+-convexity and

p′−-concavity follow from [54, Sect. 1.d]. If p− = 1, the claim is that
(
(X∗)p′+

)∗ ∈
UMD, which is clear. Assuming p− > 1, we have by Proposition 2.4

((
(X∗)p′+

)∗)(p′−/p′+)′ =
(((

(X p−)∗
)p′+/p− · L p′−/p′+(S)

)∗)(p′−/p′+)′

=
(((

(X p−)∗
)(p+/p−)′θ · L1(S)1−θ

)∗)1/θ

=
((

(X p−)∗
)(p+/p−)′

)∗
· (

L∞(S)
)(1−θ)/θ

=
((

(X p−)∗
)(p+/p−)′

)∗

with θ := 1
(p′−/p′+)′ < 1, since taking a product with L∞(S)(1−θ)/θ = L∞(S) has no

effect on the space. Thus we conclude that X∗ ∈ UMDp′+,p′− .
For part (iii) the p′+-convexity and p′−-concavity follow from [56, Theorem 4.2].

First assume that p− = 1 and let p̃− ∈ (0, 1). By Proposition 2.4(iv) we have

(
(X p̃−)∗

)(p+/ p̃−)′ = (X∗) p̃−(p+/ p̃−)′ · L
p+− p̃−

(1− p̃−)p+ (S) = (X∗)p′+θ · L1(S)1−θ (3.1)

with

θ := p̃−(p+ − 1)

p+ − p̃−
< 1.

By assumption (X∗)p′+ ∈ UMD, so

[
(X∗)p+ , L1(S)

]∗
θ

= [(
(X∗)p′+

)∗
, L∞(S)

]
θ

=
((

(X∗)p′+
)∗

)θ

∈ UMD

by Propositions 2.4 and 2.5. Using Proposition 2.4(i), we obtain from (3.1) that X ∈
UMD p̃−,p+ . For arbitrary 0 < p− < p+ ≤ ∞ we know that X ∈ UMD p̃−,p+
for all p̃− ∈ (0, p−] by (i) and Proposition 2.5 yields that X ∈ UMD p̃−, p̃+ for all
p̃+ ∈ [p+,∞].

For part (iv) note that X ∈ UMDp′,p with p = max{p′−, p+} by part (iii). Therefore

Y :=
((

(X p′
)∗

)(p/p′)′
)∗

∈ UMD .

Then using Proposition 2.4 we have

X =
((

(X p′
)∗

)1/p′ · L p(S)

)∗
= [(

(X p′
)∗

)(p/p′)′
, L2(S)

]∗
2/p = [Y , H ]θ .
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Finally part (v) follows from [41, Proposition 4.2.15] as

((
L p(S′; X)p−)∗)(p+/p−)′ = L

(p+−p−)p
p+(p−p−)

(
S′; (

(X p−)∗
)(p+/p−)′)

.

��
Nextwenote howproduct quasi-Banach function spaceswork under theUMDp−,p+

property. In particular the following result describes some properties of the space X
in our main theorem, Theorem 1.1.

Proposition 3.4 Let X1, . . . , Xm be quasi-Banach function spaces. For j = 1, . . . , m
let 0 < p−

j < p+
j ≤ ∞ and assume that X j ∈ UMDp−

j ,p+
j
. Let X = X1 . . . Xm, then

X ∈ UMDp−,p+ , where 1
p− := ∑m

j=1
1

p−
j

and 1
p+ := ∑m

j=1
1

p+
j

.

Proof We will prove the proposition for m = 2. The general case can be proven by

induction, cf. the proof of Lemma 4.2. First note that X p− = X
p−
1 (p−/p−

1 )

1 · X
p−
2 (p−/p−

2 )

2
is a Banach function space by assumption, so X is p−-convex. By Proposition 2.4 we
have

(
(X p−)∗

)(p+/p−)′ = (
(X p−

1 · X p−
2 )∗

)(p+/p−)′

= (
(X

p−
1

1 )∗
)(p+

1 /p−
1 )′(1−θ) · (

(X
p−
2

2 )∗
)(p+

2 /p−
2 )′θ

with

θ =
1

p−
2

− 1
p+
2

1
p− − 1

p+
.

Thus by Proposition 2.4(v) and Remark 3.2 we know that X ∈ UMDp−,p+ . ��
The UMDp−,p+ property of a quasi-Banach function space X looks quite technical.

However, as we will see in the next example, this abstract assumption is quite natural
for concrete examples of Banach function spaces.

Example 3.5 Let 0 < p− < p+ ≤ ∞ and let X be a quasi-Banach function space
over an atomless or atomic σ -finite measure space (S, μ). Then X ∈ UMDp−,p+ in
each of the following cases:

(i) The Lebesgue spaces X = L p(S) for p ∈ (p−, p+).
(ii) The Lorentz spaces X = L p,q(S) with p, q ∈ (p−, p+).
(iii) The Orlicz spaces X = L	(S) for which t �→ 	(t1/p) is a convex function and

t �→ 	(t1/q) is a concave function with p, q ∈ (p−, p+).

Note that Theorem 1.1 for the Lebesgue spaces described in Example 3.5(i) follows
directly from scalar-valued limited range extrapolation using Fubini’s theorem, see
also [23].
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Proof Note that (i) is a special case of (ii). For (ii) the p−-convexity and p+-concavity
follow from [56, Theorems 4.4 and 5.1]. Furthermore by the definition of L p,q(S) and
the duality of Lorentz spaces (see [37]) we have that

(
(X p−)∗

)(p+/p−)′ = ((
L p/p−,q/p−(S)

)∗)(p+/p−)′ = L
(p+−p−)p
p+(p−p−)

,
(p+−p−)q
p+(q−p−) (S).

Since Lr ,s(S) ∈ UMD for r , s ∈ (1,∞) (see [41]), this proves (ii).
For (iii) note that L	(S) is p-convex and q-concave by [46]. So Y :=(

(X p−)∗
)(p+/p−)′ is (p+−p−)p

p+(p−p−)
-convex and (p+−p−)q

p+(q−p−)
-concave. By [54, Theorem 1.f.1]

this implies that both Y and Y ∗ are uniformly convex. Note that Y is an Orlicz space
with Young function �(t) = ϕ∗(t (p+−p−)/p−), where ϕ(t) = 	(t1/p−), and Y ∗ is an
Orlicz space with Young function �∗. Therefore we know by [46, Proposition 1] that
both � and its conjugate function �∗ satisfy the 2-condition. Thus it follows from
[28, Theorem 6.2] that Y ∈ UMD. ��

We end our discussion of the UMDp−,p+ property by extending the result of Rubio
de Francia for the UMD property of Banach function spaces in Proposition 2.5 to the
UMDp−,p+ property of quasi-Banach function spaces.

Theorem 3.6 Let 0 < p− < p+ ≤ ∞ and let X be a quasi-Banach function space
over a σ -finite measure space (S, μ) such that X ∈ UMDp−,p+ . Then there exists an
ε > 0 such that such that X ∈ UMDp−q−,p+/q+ for all 0 < q−, q+ < 1 + ε.

Proof By Proposition 3.3(i) we may assume p− = 1 without loss of generality. Note
that the case p+ = ∞ was already included in Proposition 2.5, so we restrict our
attention to p+ < ∞.

Applying Proposition 2.5 to (X∗)p′
yields an r1 > 1 such that (X∗)p′+r1 ∈ UMD.

Furthermore since p′+ > 1 we know that X∗ ∈ UMD and thus also X ∈ UMD. So
by Proposition 2.5 applied to X there exists an r2 > 1 such that Xr2 ∈ UMD. Define
r = min{r1, r2, 1 + 1

p′+
}.

Let θ = r ′
p++r ′ ∈ (0, 1) and define the complex interpolation space

Y := [(Xr )∗, (X∗)p′+r ]θ .

Note that since (Xr )∗, (X∗)p′+r ∈ UMD, we know by Proposition 2.4(v) that Y ∈
UMD as well. Moreover using Proposition 2.4 we have

Y = (
(Xr )∗

)1−θ · (
(X∗)p′+r )θ

= (
(Xr )∗

)1−θ ·
((

(Xr )1/r )∗
)p′+rθ

= (
(Xr )∗

) p+
p++r ′ ·

((
(Xr )∗

)1/r · Lr ′
(S)

) p′+rr ′
p++r ′

= (
(Xr )∗

) p++p′+r ′
p++r ′ · L

p++r ′
p′+r (S)
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Define

α := p+ + p′+r ′

p+ + r ′ , β := p′+r

p+ + r ′ < p′+(r − 1) < 1.

Again by Proposition 2.4 we have

Y = (
(Xr )∗

)α · L
1
β (S) =

((
(Xr )∗

) α
α+β · L

α+β
β (S)

)α+β

= (
(X

rα
α+β )∗

)α+β
.

Take q− = rα
α+β

. Then we have

q− = rα

α + β
= r(p+ + p′+r ′)

p+ + p′+r ′ + p′+r
= p+r + p′+r ′ + p′+r

p+ + p′+r ′ + p′+r
> 1. (3.2)

Moreover

α + β − rα

p+
= p+ + p′+r ′ + p′+r − r − (p′+ − 1)(r + r ′)

p+ + r ′ = 1

and therefore

(p+/q−)′ = α + β

α + β − rα
p+

= α + β.

So Y = (
(Xq−)∗

)(p+/q−)′ and since Y ∈ UMD, this implies that X ∈ UMDq−,p+ .
By applying Proposition 2.5 once more, we can find a q+ > 1 such that
X ∈ UMDq−,p+/q+ . By Proposition 3.3(iii), this completes the proof with ε =
min{q− − 1, q+ − 1} > 0. ��

4 Proof of theMain Result

In this section we will prove our main result, Theorem 1.1. The proof of Theorem 1.1
consists of following ingredients:

• The extension of Rubio de Francia’s result for the UMD property to the setting of
the UMDp−,p+ property, proven in Theorem 3.6.

• A vector-valued Rubio de Francia iteration algorithm, see Lemma 4.1.
• A result for the product of weighted Bochner spaces, proven below in Lemma 4.2.

We start with the Rubio de Francia iteration algorithm lemma. We remark that Rubio
de Francia iteration algorithms also play a key role in scalar-valued extrapolation, see
for example [23]. Recall that wewriteφa,b,... for a non-decreasing function [1,∞)2 →
[1,∞), depending on the parameters a, b, . . . and the dimension d.

Lemma 4.1 Fix 1 < r < r+ ≤ ∞ and let Y be a Banach function space over a
σ -finite measure space (S, μ) with Y ∈ UMDr ′+,∞. For all w ∈ Ar ∩ RH(r+/r)′ and
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nonnegative u ∈ Lr ′
(w; Y ) there is a nonnegative v ∈ Lr ′

(w; Y ) such that u ≤ v,
‖v‖Lr ′

(w;Y )
≤ 2‖u‖Lr ′

(w;Y )
, and v(·, s)w ∈ A1 ∩ RHr ′+ with

max
{[v(·, s)w]A1 , [v(·, s)w]R Hr ′+

} ≤ φY ,r ,r+
([w]Ar , [w]R H(r+/r)′

)

for μ-a.e s ∈ S.

Proof Fix w ∈ Ar ∩ RH(r+/r)′ and u ∈ Lr ′
(w; Y ). Define

uw := (uw)r ′+ and X := Lr ′/r ′+
(
w1−r ′ ; Y r ′+

)
.

Then uw ∈ X . By Lemma 2.2(iii) we know that for p := (∗)r+/r ′(r −1)+1 we have
w1−r ′ ∈ Ap′ with

[w1−r ′ ]
1
p′
Ap′ = [

w(r+/r)′] 1
p
Ap

≤ ([w]Ar [w]R H(r+/r)′
)(r+/r)′

So since

p′ = 1 + 1

(∗)r+/r ′(r − 1)
= r ′

r ′+

we know that M̃ is bounded on X by (2.1) with

∥∥M̃
∥∥

X→X ≤ φY ,r ,r+
([w]Ar , [w]R H(r+/r)′

)
. (4.1)

Define

v := w−1 ·
( ∞∑

n=0

M̃nuw(
2
∥∥M̃

∥∥
X→X

)n

)1/r ′+

where M̃n is given by n iterations of M̃ . As M̃nuw is nonnegative we know that u ≤ v.
Furthermore v ∈ Lr ′

(w; Y ) with

‖v‖Lr ′
(w;Y )

=
∥∥∥∥

∞∑

n=0

M̃nuw(
2
∥∥M̃

∥∥
X→X

)n

∥∥∥∥
1/r ′+

X

≤ 2‖uw‖1/r ′+
X = 2‖u‖Lr ′

(w;Y )
.

Moreover, since
M̃

(
(vw)r ′+

)
(·, s) ≤ 2

∥∥M̃
∥∥

X→X (v(·, s)w)r ′+ ,

we know that (v(·, s)w)r ′+ ∈ A1 for μ-a.e s ∈ S. Thus it follows from (4.1) and
Lemma 2.2 that v(·, s)w ∈ A1 ∩ RHr ′+ with

max
{[v(·, s)w]A1 , [v(·, s)w]R Hr ′+

} ≤ φY ,r ,r+
([w]Ar , [w]R H(r+/r)′

)

for μ-a.e s ∈ S ��
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Next we prove the result for the product of weighted Bochner spaces, which follows
from the properties of product Banach function spaces in Proposition 2.4 and complex
interpolation of weighted Bochner spaces.

Lemma 4.2 Fix m ∈ N and r ∈ (1,∞). Let Y1, . . . , Ym be reflexive Banach function
spaces over a σ -finite measure space (S, μ), let w1, . . . , wm be weights and take
θ1, . . . , θm ∈ (0, 1) such that

∑m
j=1 θ j = 1. Define Y = Y θ1

1 . . . Y θm
m and w =

∏m
j=1 w

θ j
j . Then we have

Lr (w; Y ) = Lr (w1; Y1
)θ1 . . . Lr (wm; Ym

)θm

Proof We will prove the lemma by induction. For m = 1 the result is trivial. Now
assume that the statement holds for m = k − 1 for some k ∈ N. We will show the
statement for m = k.

Let θ̃ j = θ j
1−θk

for j = 1, . . . , k − 1 and define

X = Y θ̃1
1 . . . Y θ̃k−1

k−1 , v =
m∏

j=1

w
θ̃ j
j .

Using Proposition 2.4(i) twice and complex interpolation of weighted Bochner spaces
(see [65, Theorem 1.18.5] and [12]) we get

Lr (w; Y ) = Lr (w; [X , Yk]θk

) = [
Lr (v; X), Lr (wk; Yk)

]
θk

= Lr (v; X
)1−θk · Lr (wk; Yk

)θk

=
(

Lr (w1; Y1
)θ̃1 . . . Lr (wk−1; Yk−1

)θ̃k−1

)1−θk

· (
Lr (wk; Yk

))θk

= Lr (w1; Y1
)θ1 . . . Lr (wk; Yk

)θk ,

which proves the lemma. ��

With these preparatory lemmata we are now ready to prove our main theorem. We
first state and prove the result in terms of (m + 1)-tuples of functions. Afterwards, we
present the main result, Theorem 1.1, as a corollary. We write φ

j=1,...,m
a j ,b j ,...

for a non-

decreasing function [1,∞)2m → [1,∞) depending on the parameters a j , b j , . . . for
j = 1, . . . , m and the dimension d.

Theorem 4.3 (Multilinear limited range extrapolation for vector-valued functions)
Fix m ∈ N, let X1, . . . , Xm be quasi-Banach function spaces over a σ -finite measure
space (S, μ) and define X = X1 . . . Xm. Let

F ⊆ L0+(Rd ; X) × L0+(Rd ; X1) × · · · × L0+(Rd; Xm).
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For j = 1, . . . , m fix 0 < p−
j < p+

j ≤ ∞ and assume that X j ∈ UMDp−
j ,p+

j
.

Moreover assume that for all p j ∈ (p−
j , p+

j ), weights w
p j
j ∈ Ap j /p−

j
∩ RH(p+

j /p j )
′

and ( f , f1, . . . , fm) ∈ F , we have

‖ f (·, s)‖L p(w p) ≤ φ
j=1,...,m
p j ,p−

j ,p+
j

(
[w p j

j ]A
p j /p−

j
, [w p j

j ]R H
(p+

j /p j )
′

) m∏

j=1

‖ f j (·, s)‖
L p j (w

p j
j )

(4.2)
for μ-a.e. s ∈ S, where 1

p = ∑m
j=1

1
p j

and w = ∏m
j=1 w j .

Then for all p j ∈ (p−
j , p+

j ), weights w
p j
j ∈ Ap j /p−

j
∩ RH(p+

j /p j )
′ , and

( f , f1, . . . , fm) ∈ F , we have

‖ f ‖L p(w p;X) ≤ φ
j=1,...,m
X j ,p j ,p−

j ,p+
j

(
[w p j

j ]A
p j /p−

j
, [w p j

j ]R H
(p+

j /p j )
′

) m∏

j=1

‖ f j‖L p j (w
p j
j ;X j )

,

(4.3)
with w and p as before.

Proof Wesplit the proof in two steps. In the first stepwe show that the conclusion of the
theorem holds for specific choices of p j ∈ (p−

j , p+
j ). In the second step we conclude

that the result holds for all p j ∈ (p−
j , p+

j ) through scalar-valued extrapolation.

Step 1 Let 1 < β < min
j

p+
j

p−
j
. We will first prove the theorem for p j := β · p−

j . Let

( f , f1, . . . , fm) ∈ F and take weightsw
p j
j ∈ Ap j /p−

j
∩ RH(p+

j /p j )
′ for j = 1, . . . , m.

From Theorem 3.6 and Lemma 2.1(iii) it follows that there exists an 1 < α < β such
that

X j ∈ UMDα p−
j ,p+

j
and w

p j
j ∈ Ap j /(α p−

j ) ∩ RH
(∗)p+

j /p j
′ (4.4)

with [w p j
j ]A

p j /(α p−
j )

≤ C p j ,p−
j
[w p j

j ]A
p j /p−

j
for all j ∈ {1, . . . , m}. We define

q j := α p−
j and q := α

β
p.

Note that

p

q
= β

α
= p j

q j
and

1

q
= β

α

m∑

j=1

1

p j
=

m∑

j=1

1

q j
.

Let u j ∈ L(p j /q j )
′
(w

p j
j ; (X

q j
j )∗). By Proposition 3.3 and (4.4) we may apply

Lemma 4.1 for j = 1, . . . , m with

r = p j/q j , r+ = p+
j /q j , Y = (X

q j
j )∗,

and weight w
p j
j to find nonnegative v j ∈ L(p j /q j )

′
(w

p j
j ; (Xq j )∗) such that
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• u j ≤ v j .
• ‖v j‖L(p j /q j )

′
(w

p j
j ;(X

q j
j )∗) ≤ 2.

• v j (·, s)w
p j
j ∈ Aq j /p−

j
∩ RH(p+

j /q j )
′ with for μ-a.e. s ∈ S

max
{[v j (·, s)w

p j
j ]A

q j /p−
j
, [v j (·, s)w

p j
j ]R H

(p+
j /q j )

′
}

≤ φX j ,p j ,p−
j ,p+

j

([w p j
j ]A

p j /p−
j
, [w p j

j ]R H
(p+

j /p j )
′
)
.

We set v = ∏m
j=1 v

1/q j
j w

p j /q j
j so that

( m∏

j=1

u
p/p j
j

)
w p ≤

m∏

j=1

v
q/q j
j w

qp j /q j
j = vq .

Let ( f , f1, . . . , fm) ∈ F . By Fubini’s theorem,Hölder’s inequality, the assumption
(4.2), and the properties of the v j we have

∫

Rd

∫

S
f q

m∏

j=1

u
p/p j
j dμw p dx ≤

∫

S

∫

Rd
f qvq dx dμ

≤
∫

S
φ

j=1,...,m
q j ,p−

j ,p+
j

([v j (·, s)w
p j
j ]A

q j /p−
j
, [v j (·, s)w

p j
j ]R H

(p+
j /q j )

′
)

×
m∏

j=1

‖ f j (·, s)‖q

Lq j (v j w
p j
j )

dμ(s)

≤ φ
j=1,...,m
X j ,p j ,p−

j ,p+
j

([w p j
j ]A

p j /p−
j
, [w p j

j ]R H
(p+

j /p j )
′
)

×
m∏

j=1

(∫

S

∫

Rd
f

q j
j v jw

p j
j dx dμ

)q/q j

≤ φ
j=1,...,m
X j ,p j ,p−

j ,p+
j

([w p j
j ]A

p j /p−
j
, [w p j

j ]R H
(p+

j /p j )
′
)

×
m∏

j=1

‖ f
q j
j ‖q/q j

L p j /q j (w
p j
j ;X

q j
j )

‖v j‖q/q j

L(p j /q j )
′
(w

p j
j ;(X

q j
j )∗)

≤ φ
j=1,...,m
X j ,p j ,p−

j ,p+
j

([w p j
j ]A

p j /p−
j
, [w p j

j ]R H
(p+

j /p j )
′
)

×
( m∏

j=1

‖ f j‖L p j (w
p j
j ;X j )

‖u j‖1/q j

L(p j /q j )
′
(w

p j
j ;(X

q j
j )∗)

)q

.

(4.5)

Now by Lemma 4.2 with

r = p/q, Y j = X
q j
j , θ j = q/q j
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and weights w
p j
j , Proposition 2.4(iii) and the duality of Bochner spaces (see [41,

Corollary 1.3.22]), we have

L p/q(w p; Xq)∗ = L(p1/q1)′(w p1
1 ; (Xq1

1 )∗
)q/q1 . . . L(pm/qm )′(w pm

m ; (Xqm
m )∗

)q/qm .

Thus, picking u ∈ L p/q(w p; Xq)∗ of norm 1, by taking an infimum over all decom-

positions u = ∏m
j=1 u

p/p j
j with u j ∈ L(p j /q j )

′(
w

p j
j ; (X

q j
j )∗

)
, we may conclude from

(4.5) that

∫

Rd

∫

S
f qu dμw p dx ≤ φ

j=1,...,m
X j ,p j ,p−

j ,p+
j

([w p j
j ]A

p j /p−
j
, [w p j

j ]R H
(p+

j /p j )
′
)

×
( m∏

j=1

‖ f j‖L p j (w
p j
j ;X j )

)q

.

Thus, the result for these specific p j ’s follows from

‖ f ‖q
L p(w p;X)

= ‖ f q‖L p/q (w p;Xq ) = sup
‖u‖L p/q (wp ;Xq )∗=1

∫

Rd

∫

S
f qu dμw p dx .

Step 2:We may finish the proof for general p j ’s by appealing to the scalar-valued
limited range multilinear extrapolation result by Cruz-Uribe and Martell [21]. Indeed,
we define a new family

F̃ := {(‖ f ‖X , ‖ f1‖X1 , . . . , ‖ fm‖Xm

) : ( f , f1, . . . , fm) ∈ F}
.

Then F̃ ⊂ L0+(Rd)m+1 and by Step 1 we have

∥∥ f̃
∥∥

L p(w p)
≤ φ

j=1,...,m
X ,p−

j ,p+
j

([w p j
j ]A

p j /p−
j
, [w p j

j ]R H
(p+

j /p j )
′
) m∏

j=1

∥∥ f̃ j
∥∥

L p j (w
p j
j )

for certain p j ∈ (p−
j , p+

j ), all ( f̃ , f̃1, . . . , f̃m) ∈ F̃ , and all weights w
p j
j ∈ Ap j /p−

j
∩

RH(p+
j /p j )

′ . The result for general p j ∈ (p−
j , p+

j ) then follows directly from [21,

Theorem 1.3 and Corollary 1.11], proving the assertion. ��
Finally, we will prove the main result from the introduction, which is a direct

corollary of Theorem 4.3.

Proof of Theorem 1.1 We wish to apply Theorem 4.3 to the collection

F = {
(|T̃ ( f1, . . . , fm)|, | f1|, . . . , | fm |) : f j : R

d → X j simple
}
.

Our assumption implies that there are p j ∈ (p−
j , p+

j ) so that for all weights w
p j
j ∈

Ap j /p−
j
∩ RH(p+

j /p j )
′ the a priori estimate (4.2) in Theorem 4.3 holds. By appealing to
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the scalar-valued limited range multilinear extrapolation result [21] we may conclude
that (4.2) in fact holds for all p j ∈ (p−

j , p+
j ) andweightsw

p j
j ∈ Ap j /p−

j
∩ RH(p+

j /p j )
′ .

Thus, Theorem 4.3 implies that

∥∥T̃ ( f1, . . . , fm)
∥∥

L p(w p;X)
≤ C

m∏

j=1

‖ f j‖L p j (w
p j
j ;X j )

(4.6)

for all simple functions f j : R
d → X j , where C depends only on the X j , p j , and the

characteristic constants of the weights. If T is m-linear, then (4.6) extends directly
to all f j ∈ L p j (w

p j
j ; X j ) by density. If T is m-sublinear and positive valued, then

we fix simple functions f j : : R
d → X j for j ∈ {2, . . . , m}. For any pair of simple

functions f1, g1 : R
d → X1 we have

T̃ ( f1, . . . , fm) = T̃ ( f1 − g1 + g1, f2 . . . , fm)

≤ T̃ ( f1 − g1, f2 . . . , fm) + T̃ (g1, f2 . . . , fm)

so that

∥∥T̃ ( f1, . . . , fm) − T̃ (g1, f2 . . . , fm)
∥∥

L p(w p;X)

≤ ∥∥T̃ ( f1 − g1, f2 . . . , fm)
∥∥

L p(w p;X)

≤ C ‖ f1 − g1‖L p1 (w
p1
1 ;X1)

m∏

j=2

‖ f j‖L p j (w
p j
j ;X j )

.

Thus, (4.6) extends to arbitrary f1 ∈ L p1(w
p1
1 ; X1) by density. Iterating this argument

for j = 2, . . . m proves the result. ��

5 Applications

In this section we apply our main result to various operators, for which we obtain new
vector-valued bounds.

5.1 The Bilinear Hilbert Transform

For d = 1, The bilinear Hilbert transform BHT is defined by

BHT( f , g)(x) = p. v.
∫

R

f (x − t)g(x + t)
dt

t
.

After its initial introduction by Calderón, it took thirty years until L p estimates were
established by Lacey and Thiele [50]. They showed that for p1, p2 ∈ (1,∞] with
1
p = 1

p1
+ 1

p2
< 3

2 one has

‖BHT( f , g)‖L p ≤ C‖ f ‖L p1 ‖g‖L p2 . (5.1)
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As forweighted bounds, thefirst resultswere obtainedbyCuliuc et al. [24], and through
the extrapolation result ofCruz-Uribe andMartell the range of exponentswas increased
[21], in particular recovering the full range of exponents for the unweighted result
(5.1). It was already shown in [21] that this result implies corresponding vector-valued
bounds for BHT for certain �s-spaces. Moreover, vector-valued bounds for BHT have
also been considered by Benea and Muscalu [5]. In particular, they consider functions
taking values in iterated Ls-spaces, see [5, Theorem 8] including the case s = ∞.

Through our main result we are able to obtain a new bounded vector-valued exten-
sion of the bilinear Hilbert transform. By combining the weighted estimates in [21,
Theorem 1.18] with Theorem 1.1, we get:

Theorem 5.1 Let q1, q2 ∈ (1,∞) so that 1
q1

+ 1
q2

< 1. For j ∈ {1, 2}, define

p−
j := 2q j

1 + q j
, p+

j := 2q j .

Let X = X1 · X2, where X1, X2 are quasi-Banach function spaces over a σ -finite
measure space (S, μ) satisfying X j ∈ UMDp−

j ,p+
j
. Then for all p1, p2 with p j ∈

(p−
j , p+

j ) and all weights w1, w2 satisfying w
p j
j ∈ Ap j /p−

j
∩ RH(p+

j /p j )
′ we have

∥∥B̃HT( f , g)
∥∥

L p(w p;X)
≤ C ′‖ f ‖L p1 (w

p1
1 ;X1)

‖g‖L p2 (w
p2
2 ;X2)

for all f ∈ L p1(w
p1
1 ; X1), g ∈ L p2(w

p2
2 ; X2), where 1

p = 1
p1

+ 1
p2

, w = w1w2, and

where C ′ > 0 depends only on the X j , p j , q j , and the characteristic constants of the
weights.

By Example 2.3 we have �s = �s1 · �s2 for s1, s2 ∈ (0,∞) and 1
s = 1

s1
+ 1

s2
. Thus,

we recover [21, Theorem 1.29] by Example 3.5. It is implicit from the arguments in
[24] that there are more general weighted estimates for BHT leading to a wider range
of vector-valued extensions. For a technical discussion on this, we refer the reader to
[21, Sect. 5].

Furthermore by Proposition 3.3(v) we can also handle iterated Ls-spaces as con-
sidered by Benea and Muscalu [5], but our results do not overlap as we do not obtain
bounds involving L∞-spaces. Such spaces might be in the scope of a generalized ver-
sion of our main theorem usingmultilinear weight classes combined with amultilinear
UMD condition, see also Remark 1.3 and [58].

Finally, we mention the vector-valued bounds obtained by Hytönen, Lacey, and
Parissis [40] for the related bilinear quartile operator (the Fourier-Walsh model of
BHT). They consider estimates involving triples of more general UMD Banach
spaces with so called quartile type q. It is unknown whether these estimates hold
for BHT itself. Note that a Banach function space X ∈ UMDp−,p+ has quartile type
max{p′−, p+} by Proposition 3.3(iv) and [40, Proposition 4.1].

5.2 Multilinear Calderón–Zygmund Operators

Let T be an m-linear operator, initially defined for m-tuples f1, . . . , fm ∈ C∞
c (Rd),

that satisfies
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T ( f1, . . . , fm)(x) =
∫

(Rd )m
K (x, y1, . . . , ym)

m∏

j=1

f j (y j ) dy,

whenever x /∈ ∩m
j=1 supp f j , where K is a kernel defined in (Rd)m+1 outside of the

diagonal y0 = y1 = · · · = ym . If K satisfies the estimate

|∂α0
y0 . . . ∂αm

ym
K (y0, . . . , ym)| ≤ C

(∑m
j,k=0 |y j − yk |

)md+|α1|+···+|αm |

for all multi-indices α j so that
∑m

j=1 |α j | ≤ 1 and if there exist p1, . . . , pm so that T

extends to a bounded operator L p1 × · · · L pm → L p with 1
p = ∑m

j=1
1
p j
, then T is

called an m-linear Calderón-Zygmund operator.
Multilinear Calderón-Zygmund operators first appeared in the work [20] by Coif-

man and Meyer. Weighted estimates for these operators have been considered for
example by Grafakos and Torres in [33] and subsequently by Grafakos and Martell
in [32], where it was shown that for all p j ∈ (1,∞), all weights w

p j
j ∈ Ap j , and all

f j ∈ L p j (w
p j
j ) we have

∥∥T ( f1, . . . , fm)
∥∥

L p(w p)
≤ C

m∏

j=1

‖ f j‖L p j (w
p j
j )

,

where w = ∏m
j=1 w j and 1

p = ∑m
j=1

1
p j
, and where C depends only on the charac-

teristic constants of the weights. Thus, by Theorem 1.1 we obtain the following result:

Theorem 5.2 Let T be an m-linear Calderón-Zygmund operator and suppose
X1, . . . , Xm ∈ UMD. Then for all p j ∈ (1,∞), all weights w

p j
j ∈ Ap j , and all

f j ∈ L p j (w
p j
j ; X j ) we have

∥∥T̃ ( f1, . . . , fm)
∥∥

L p(w p;X)
≤ C ′

m∏

j=1

‖ f j‖L p j (w
p j
j ;X j )

,

where X = X1 . . . Xm, w = ∏m
j=1 w j ,

1
p = ∑m

j=1
1
p j

, and where C ′ depends only on

the X j , p j , and the characteristic constants of the weights.

This result is new, as previously only �s-valued extensions had been considered
in [32].

We wish to point out that, using a more appropriate multilinear weight condition,
more generalweighted bounds formultilinearCalderón-Zygmund operators have been
found in [52].
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5.3 Limited Range Extrapolation

The remaining examples are for the linear case m = 1.

Example 5.3 (Fourier multipliers I) For a < b, q ∈ [1,∞), and a function m :
[a, b] → C we define the q-variation norm

‖m‖V q ([a,b]) := ‖m‖L∞([a,b]) + sup

⎛

⎝
n−1∑

j=0

|m(t j+1) − m(t j )|q
⎞

⎠

1
q

,

where the supremum is taken over all partitions a = t0 < . . . < tn = b of the interval
[a, b]. Let D := { ± (2k, 2k+1] : k ∈ Z

}
be the dyadic decomposition of R. Then we

define a class of multipliers

V q(D) := {
m : R → C : sup

I∈D
‖m|I ‖V q (I ) < ∞}

.

For q > 2 and p+ := 2
( q
2

)′ it was shown by Król [48, Theorem A(ii)] that for
all p ∈ [2, p+), w ∈ Ap/2 ∩ RH(p+/p)′ and m ∈ V q(D) the Fourier multiplier Tm

defined by F (Tm f ) = mF f satisfies

‖Tm‖L p(w)→L p(w) < ∞.

Therefore one may readily apply Theorem 1.1 with p− = 2 to the linear operator
Tm . So for any Banach function space X such that X ∈ UMD2,p+ we find for all
p ∈ (2, p+), all w ∈ Ap/2 ∩ RH(p+/p)′ and m ∈ V q(D) that

∥∥T̃m
∥∥

L p(w;X)→L p(w;X)
< ∞.

Note that [48, Theorem A(i)] was already extrapolated to the vector-valued setting by
Amenta, Veraar, and the first author in [2], proving that form ∈ V q(D)with q ∈ [1, 2]
the Fourier multiplier Tm has a bounded vector-valued extension for Banach function
spaces X ∈ UMDq,∞. Furthermore extensions of [48, TheoremA] for operator-valued
Fourier multipliers have been obtained in [1].

Example 5.4 (Riesz transforms associated with elliptic operators) Let A ∈ L∞(Rd ;
C

d×d) satisfy an ellipticity condition Re(A(x)ξ · ξ) ≥ λ|ξ |2 for a.e. x ∈ R
d , and all

ξ ∈ C
d . Then we may consider a second order divergence form operator

L := − div(A∇ f ),

defined on L2, which due to the ellipticity condition on A generates an analytic semi-
group (e−t L)t>0 in L2. Let 1 ≤ p− < p+ ≤ ∞. If both the semigroup and the gradient
family (

√
t∇e−t L)t>0 satisfy L p−–L p+ off-diagonal estimates, then the Riesz trans-

form R := ∇L−1/2 is a bounded operator in L p(w) for all p ∈ (p−, p+) and all
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weights w ∈ Ap/p− ∩ RH(p+/p)′ , see [4,7]. The values of p− and p+ for which
such off-diagonal estimates hold depend on the dimension d and on the matrix-valued
function A and are studied in detail in [3]. The result we obtain is that if a Banach
function space X satisfies X ∈ UMDp−,p+ , then for all p ∈ (p−, p+) and all weights
w ∈ Ap/p− ∩ RH(p+/p)′ we have

∥∥R̃
∥∥

L p(w;X)→L p(w;X)
< ∞.

This result is new in the sense that previously such boundswere previously only known
for X = �s through the limited range extrapolation result in [4].

Next, we consider a class of operators satisfying a certain sparse domination prop-
erty. A collection S of cubes in R

d is called sparse if there is a pairwise disjoint
collection of sets (EQ)Q∈S so that for each Q ∈ S wehave EQ ⊆ Q and |Q| ≤ 2|EQ |.
We say that a (sub)linear operator T satisfies the sparse domination property with
parameters 1 ≤ p− < p+ ≤ ∞ if there is a C > 0 so that for all compactly supported
smooth functions f , g : R

d → C we have

|〈T f , g〉| ≤ C sup
S sparse

∑

Q∈S
〈| f |p−〉

1
p−
Q 〈|g|p+〉

1
p+
Q |Q|, (5.2)

where the supremum runs over all sparse collections of cubes S. For an operator T
we denote the optimal constant C appearing in (5.2) by ‖T ‖S(p−,p+). Estimates in the
form (5.2) were first considered in [7] where it was shown that

‖T ‖S(p−,p+) < ∞ ⇒ ‖T ‖L p(w)→L p(w) < ∞

for p ∈ (p−, p+) and w ∈ Ap/p− ∩ RH(p+/p)′ by giving a quantitative estimate
in terms of the characteristic constants of the weight. Thus, we may readily apply
Theorem 1.1 with m = 1 to any linear or positive-valued sublinear T such that
‖T ‖S(p−,p+) < ∞. This yields the following result:

Theorem 5.5 Let T be a linear or a positive-valued sublinear operator and let X be
a Banach function space over a σ -finite measure space (S, μ). Assume that for all
simple functions f : R

d → X the function T̃ f (x, s) := T ( f (·, s))(x) is well-defined
and strongly measurable.

If there are 1 ≤ p− < p+ ≤ ∞ such that

X ∈ UMDp−,p+ , ‖T ‖S(p−,p+) < ∞,

then for all p ∈ (p−, p+), all weights w ∈ Ap/p− ∩RH(p+/p)′ , and all f ∈ L p(w; X),
we have ∥∥T̃ f

∥∥
L p(w;X)

≤ C‖ f ‖L p(w;X), (5.3)

where C depends only on X, p, p−, p+, and the characteristic constants of w.

We emphasize again that if T is linear, then T̃ f is automatically well-defined and
strongly measurable for any simple function f : R

d → X , see also Remark 1.2.
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We conclude this section by giving several examples of operators satisfying sparse
bounds.

Example 5.6 (Fourier multipliers II) For each δ ≥ 0, the Bochner-Riesz multiplier Bδ

is defined as the FouriermultiplierF (Bδ f ) = (1−|ξ |2)δ+F f , where t+ = max(t, 0).
For δ ≥ (d − 1)/2, Bδ satisfies weighted bounds ‖Bδ‖L p(w)→L p(w) < ∞ for any
p ∈ (1,∞) and any w ∈ Ap, see [11,26,63].

The situation ismore complicatedwhen 0 < δ < (d−1)/2 andweighted bounds for
such δ have, for example, been considered in [17,18,27]. The idea to quantify weighted
bounds for Bδ for 0 < δ < (d − 1)/2 through sparse domination was initiated by
Benea, Bernicot, and Luque [6]. It was shown by Lacey, Mena, and Reguera that for
this range of δ there are explicit subsets Rδ,d of the plane so that

‖Bδ‖S(p−,p+) < ∞

for (p−, p+) ∈ Rδ,d , see [51]. We also refer the reader to the recent work by Kesler
and Lacey [47] containing certain sparse endpoint bounds in dimension d = 2.

As far as we know, the only vector-valued estimates that have been shown for Bδ

have been for X = �s , see [6]. For any p−, p+ and δ for which ‖Bδ‖S(p−,p+) < ∞,
we obtain by Theorem 5.5 that inequality (5.3) with T̃ = B̃δ holds for any Banach
function space X satisfying X ∈ UMDp−,p+ , yielding new vector-valued estimates.

Example 5.7 (Spherical maximal operators) Let (Sd−1, σ ) denote the unit sphere in
R

d equipped with its normalized Euclidean surface measure σ . For a smooth function
f on R

d we denote by Ar f (x) the average of f over the sphere centered at x of radius
r > 0, i.e.,

Ar f (x) :=
∫

Sd−1
f (x − rω) dσ(ω).

We respectively define the lacunary spherical maximal operator and the full spherical
maximal operator by

Mlac f := sup
k∈Z

|A2k f |, Mfull f := sup
r>0

|Ar f |,

the latter having been introduced by Stein [64] and the former having been studied
by Calderón [16]. It was shown by Lacey [49] that for explicit subsets Ld , Fd of the
plane we have

‖Mlac‖S(p−,p+) < ∞, for (p−, p+) ∈ Ld ,

‖Mfull‖S(p−,p+) < ∞, for (p−, p+) ∈ Fd .

These results recover the previous known L p-bounds for these operators and yield
weighted bounds.

To apply Theorem 5.5 to Mlac and Mfull, one needs to check that these operators
have well-defined and strongly measurable extensions to X -valued simple functions
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with X a Banach function space over (S, μ). This can be checked as in [34, Lemma
3.1]. Therefore it follows from Theorem 5.5 that if (p−, p+) ∈ Ld or (p−, p+) ∈ Fd ,
then for any Banach function space X ∈ UMDp−,p+ we obtain the bound (5.3) for
T̃ = M̃lac or T̃ = M̃full respectively. As far as we know, this is the first instance that
vector-valued extensions have been considered for these operators.
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