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ABSTRACT

Understanding the behaviour of a software system plays a key
role in its development and maintenance processes. Unfortunately,
accurate and concise models are not always available during devel-
opment, due to the rapid changes in the structure and scale systems
may undergo during this phase. Finite State Machines (FSM) are a
natural and prevalent template for modeling system behaviour, and
inferring such models through profiling, source code analysis, and
log analysis has been an active area of research over the last decades.
However, the applicability of existing techniques is restricted by
different factors: profiling introduces significant overhead, which is
infeasible for many real-time systems; the source code of a system
may not always be available for analysis; and current log analysis
approaches do not scale well with the number of logs produced by
the system. In this paper, four meta-heuristic search approaches are
used to create FSM models for the XRP Ledger consensus algorithm
from its logs, addressing the scalability problem by approximating
a FSM while only exploring a small portion of the search space.
Random Selection Stochastic Hill Climber (RSSHC), Tournament
Selection Stochastic Hill Climber (TSSHC), Simulated Annealing
(SA), and Pareto Simulated Annealing (PSA) are considered. The
performance of the model produced by each algorithm is quantified
using an accuracy-based evaluation technique, and the accuracy,
conciseness, and runtime of the approaches are compared. The
results indicate that PSA produces the most accurate and least con-
cise models with a consistent accuracy of over 92%. RSSHC and
TSSHC obtain solutions with a slightly lower accuracy, but signifi-
cantly better conciseness, while SA produces the most compact and
least accurate models. All four algorithms produce results within
minutes and scale linearly with the size of the problem.

1 INTRODUCTION

Understanding the behaviour of a software system is an essential
prerequisite for any developer looking to extend or maintain it. A
prevalent modeling technique for software systems is based on Fi-
nite State Machines (FSM), a model extensively studied in literature
and used for applications such as program analysis and compre-
hension [11], model checking [9] and test case generation [16, 29].
Unfortunately, due to the fact that constructing a minimal FSM is an
NP-Hard problem [4], current techniques for generating accurate
state models are computationally demanding and have infeasible
run times for large systems. For these reasons, such system mod-
els are not commonly used in the practical software development
process [34].

Currently, several approaches exist for inferring system models.
A common method of model inference is automatic FSM construc-
tion through source code analysis [5, 12, 20]. This technique works
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well for many systems, but suffers from the fundamental limitation
that it requires access to the full source code of the target system,
possibly including third party dependencies, which are often not
available.

An alternative model inference approach is profiling, which
consists of measuring the performance of a system’s components
under different configurations. Several machine learning-based pro-
filing techniques that treat the system both as a white-box [37] and
a black-box [17] exist, with different underlying ideas. However,
many such approaches underestimate the configuration space of
modern software systems, and as a result undersample the number
of configurations required to find performance anomalies [18, 37].
Additionally, profiling introduces a significant performance over-
head on the target system [32], which is inconvenient for some
real-time systems where performance is crucial, like the one con-
sidered in this work.

The inference technique used in this work is based on analyzing
a system’s log traces [39]. This approach presents two key advan-
tages: it requires no access to the source code of the system and it
introduces no additional overhead on the execution of the program.
Log analysis has been used to infer system-level models [33, 35],
with promising results in terms of accuracy, but limited in scalabil-
ity. In recent years, approaches based on the divide-and-conquer
paradigm [26] and parallelization [36] have improved the scalabil-
ity of log analysis by splitting the task into smaller subproblems.
However, a log analysis-based model inference technique that pro-
duces an accurate and concise model and which scales well with
the number of log traces used as input is not yet available.

In this paper, the scalability problem of current model inference
techniques is addressed in a manner which only requires a set of
log traces produced by the target system and a configuration of log
templates describing what form a particular log entry can take. The
goal is to construct a concise and accurate system-level model that
describes the behaviour illustrated by the log traces.

To achieve this goal, several meta-heuristic search algorithms are
used to minimize an initial (naive) model. First, the naive model is
built from a set of log traces and is then minimized through the use
of Random Selection Stochastic Hill Climber (RSSHC), Tournament
Selection Stochastic Hill Climber (TSSHC), Simulated Annealing
(SA) or Pareto Simulated Annealing (PSA). RSSHC and TSSHC
are heuristic search algorithms which aim improve a solution by
applying small mutations to it and only accept a new potential
solution when its evaluation is better than the current one. SA is
a probabilistic search algorithm used to find the global minimum
of a function, which iteratively improves an initial solution while
occasionally allowing so-called hill climbing moves (operations
which worsen the current solution) in the hope of escaping local
minima. SA lends itself to this problem as it has several advantages,



namely that its different components can be tuned to accentuate
either speed or global convergence, and that it has been extensively
studied and has shown very good results in hard combinatorial
optimization problems [2, 15, 21, 28]. PSA is a variation of SA that
iterates over multiple solutions as opposed to a single one, and
seeks to optimize several objective functions. The latter mechanism
offers a more accurate way of evaluating a model, as single objective
functions may fail to capture subtle trade-offs between the features
of a solution.

The evaluation of the prototype implementation of the algo-
rithms focuses on three key aspects: scalability, accuracy and con-
ciseness. Scalability is assessed in terms of the runtime of the algo-
rithm as a function of the number of log traces used to construct
the model. To this end, several datasets of an increasing number
of traces are used to infer a model, and the average runtime of
several executions for each size of dataset is considered. Accuracy
is assessed in terms of specificity and recall. Finally, conciseness is
measured in terms of the percentage of states merged during the
minimization stage. All three evaluations are carried out on datasets
composed of log traces generated by the XRP Ledger Consensus Al-
gorithm [8]. This system has been chosen for three primary reasons:
(1) it produces large quantities of logs during the many consensus
rounds carried out by a blockchain node, (2) the documentation
and open source implementation make it possible for an accurate
syntax to be described, and (3) it is a prime example of a large
scale real-time system for which profiling would have a significant
negative impact on performance.

The results indicate that PSA produces the most accurate and
least concise models with a consistent accuracy of over 92%, and a
size reduced by only 13% on average when compared to the initial
model. RSSHC and TSSHC obtain solutions with a slightly lower
accuracy, but significantly better conciseness, while SA produces
the most compact and least accurate models. PSA is the only algo-
rithm to offer multiple trade-offs between size and accuracy within
its solutions. The scalability assessment shows that all four algo-
rithms scale linearly with the amount of traces used in the train
and validation phases, and produce models in minutes for a dataset
of 1000 log traces.

In summary, the main contributions of this work consist of: (1)
a log analysis model inference algorithm based on meta-heuristic
search, (2) an open source prototype implementation in Python [6],
and (3) the empirical evaluation of the quality of the solution and
scalability of the algorithm, tested on log traces produced by the
XRP Ledger Consensus Algorithm.

The remainder of this paper is organized as follows: Section 2 con-
tains basic definitions of the terms and concepts used throughout
the paper. Section 3 provides a detailed description of the different
components of the inference algorithm and reasons behind the
choices made. The manner in which the algorithm is evaluated,
as well as the exact parameter choices are described in Section 4.
The results and their most impactful implications are presented
in Section 5. Threats to validity, as well as the reproducibility and
the robustness of the results are reflected upon in Sections 6 and 7
respectively. Finally, Section 8 provides recommendations for future
work and concludes the paper.

2 BACKGROUND

This section provides basic definitions of the most important terms
and concepts used throughout the paper.

Log entry: A log entry is a string of alphanumeric characters
created by a software system in order to record some information
about the state of the system during execution. Yuan and Zhou
[39] identify two components of a log entry: a static part that is
common for all log entries produced by the occurance of an event,
and a variable part, which may change based on the circumstances
that events occurs in. A simplified version of a typical log entry
produced by the XRP Ledger’s consensus algorithm has the form:
2020-Mar-02 DBG: Peer A votes YES on B.In this example, the
underlined sequences, namely the date, peer names, and the value
of the vote are variable parts, while the rest of the entry is static.

Log trace: A log trace is a file containing multiple ordered log
entries, usually one on each line of the file. Formally, a log trace
is a list of entries (x1, ..., xp), x; € &, with & the set of all possible
log entries of a system. A trace is called true if that trace can be
produced by the system during normal execution and negative if it
cannot.

Log template: A log template is a regular expression that exhaus-
tively models all the forms a particular type of log entry can have.
For the previous log entry example, a corresponding regular expres-
sion would have the following form: [Date] DBG: Peer [A-Z]
votes (YES|NO) on [A-Z].

Syntax tree: A syntax tree is a specialized type of prefix tree that
efficiently models the set of all possible log entries in &. The syntax
3 is the set of all log templates 7~ that accept exactly all the members
of &. Formally, a syntax tree is defined as the tuple S = {R, N, L},
with R the root, Ns the set of nodes and L the set of links (or
edges). A node n; contains a partial template p; that matches a part
of a log template, while (n;,n;j) € Ls < Je; j, an edge between the
two nodes. A full log template 7™ is part of the syntax < 3(ny, ...ny)
such that ny = R A Vij<jck, (ni, ni1) € Ls A Bm — (ng,ny) €
Ls AT = p1p2...pr, meaning that a template is part of the syntax
if and only if there exists a path in the syntax tree starting from the
root and ending in a leaf such that the concatenation of the partial
templates of the nodes along that path results in the full template.

Finite State Machine: A variation of the theoretical model of a
finite state machine (FSM) put forward by Sipser [27] is used. Here,
an FSM is a 5-tuple (@, 2, 8, gs, F), where Q is the set of states, T is
the alphabet or syntax, § : Q X £ — Q is the transition function,
qs € Q is the start state, and F C Q is the set of all final states.
Here, states represent the conceptual set of circumstances that the
system is experiencing at the time of recording the log statement.
The alphabet or syntax describes the possible transitions between
states through log templates described by the syntax tree. These
transitions are specifically modeled through the transition function,
which describes for each state, which neighbouring state can be
reached through a particular log template 7~ € 3. Finally, the start
(or initial) state g is the state that the machine begins execution in
and the set of final states F defines which states result in acceptance
at the end of execution. In practice, the FSM is used to decide which
traces are produced by the system and which are not. Specifically,
an FSM accepts a log trace X = (x1, ..., xp) <> {q1, .-~ qn). qi € Q
such that g1 = ¢s and g, € Fand fori = 1,...n — 1, qi4+1 € 8(qi, xi)-
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3 APPROACH

This section provides a detailed analysis of the different stages
of the inference algorithm, which can be divided into two large
conceptual steps. First, an initial naive FSM model is built from the
configuration and log traces given as input, the aim of which is to
provide a starting point for the search algorithms. In the second step,
RSSHC, TSSHC, SA, or PSA are used to minimize the naive model
using a series of state merges, with the goal of balancing a model’s
accuracy and conciseness. The second step is where the complexity
and challenge of the approach lie, particularly in choosing which
states to merge, the strategy to use to perform the merge, and
the appropriate parameters which best fit the problem. Subsection
3.1 contains a detailed description of the initial model inference.
RSSHC and the general framework of the search algorithms are
presented in subsection 3.2. TSSHC and the heuristic neighbour
selection procedure are highlighted in Subsection 3.3. SA and its
components are discussed in Subsection 3.4. Finally, the multiple
objective formulation of PSA is outlined in Subsection 3.5.

3.1 Initial model inference

The initial model inference phase is responsible for converting
the set log traces provided as input into a FSM yielding a starting
point for the minimization algorithms. This section of the program
follows a greedy approach, which operates under the constraint
described in equation 1.

Vx € & 3!q € Q | q describes 7 (x) (1)

With & the set of log entries present in the trace set, Q the set
of states in the FSM model, and 7 (x) the template describing a log
entry x. Informally, this means that to each template describing
one or more log entries in the set of traces used to build the initial
model corresponds exactly one state in the resulting FSM. This is
a corollary of the higher-level assumption that log entries with
the same static part are produced by the same underlying software
component. The main advantage of this approach is the compact
size of the resulting model - which scales up with the minimum
number of unique log templates exhaustively describing the log
trace set. This benefit is crucial for the scalability of the program,
as it allows for the number of traces that the model is built on to
vary significantly, while still producing models of comparable sizes:
new states are only added to the FSM if log templates that have not
been encountered before are observed. The model concisely and
effectively describes each sequence of templates that appears in
the log traces. The initial model inference procedure is described
in Algorithm 1.

An alternative initial inference algorithm was considered with-
out this constraint, which results in the initial model being con-
structed as a prefix tree. However, under this alternative approach,
the number of states in the FSM would scale linearly with the total
number of log entries in the log trace set. Empirically, this has
been observed to increase the number of states in the initial model
by three orders of magnitude for datasets containing hundreds of
log traces. Although this alternative approach has an important
advantage in that the resulting FSM displays perfect specificity, its
size and the complexity required to remove non-determinism in the
minimization stage make it an inferior choice in terms of scalability.

Algorithm 1: Initial Model Inference

Data: Log trace directory t, Syntax ¥
1 initialize model # with start state so and final state S
2 for trace t; do

3 S < S0;

4 for entry xj int; do

5 T templute(Z,xj);

6 if 7 ¢ stateTemplates(P) then
7 n < newState(P,T);
8 addEdge(P, s, n);

9 S n;

10 else

1 n « getState(P, T);
12 addEdge (P, s, n);

13 S n;
| addEdge(P,s, Sf);

15 return P;

As aresult, this approach has only been used to synthesize negative
traces for the validation and test sets and is not part of the inference
algorithm. Further details on how negative traces are produced are
discussed in Section 4.4.2.

3.2 Random Selection Stochastic Hill Climber
(RSSHC)

The RSSHC algorithm is conceptually the most basic candidate and
is used as a base for the other three, more complex approaches.
RSSHC aims to minimize the objective function f, defined in Equa-
tion 2.

Flx) = SP + RiC +5Z @)

With REC the recall, SP the specificity, and SZ the relative size of
the solution when compared to the initial model. To retain the stan-
dard minimizing formulation used in literature, all three metrics
are inverted, i.e., defined on the domain [0, 1], where 0 is the global
optimum and the quality of the solution worsens as it approaches
1. More details on the procedure used to calculate those metrics are
provided in Section 4.4. To minimize this objective function, RSSHC
randomly selects two states to merge, generating a neighbour of
the current solution in the search space. This procedure is repeated
iteratively, replacing the current solution with the generated neigh-
bour only if the neighbour’s evaluation is better than of the current
model.

The neighbourhood structure employed is generated through
two-state merges - that is, merging any two states s; and s3 € Q,
except the initial and the final states. Two types of merges are uti-
lized: OR merges, which make the FSM more general, and AND
merges, which make the FSM more specific. Formally, if prior to
the merge §(so, 71) = s1 and 8(s3,72) = s2, then after an OR
merge 5(s € {so,s3}, 71 V T2) = s1, and after an AND merge
(s € {s0,s3}, (71, T2)) = s1 - that is, the sequence of templates
(71, 72) has to appear in that order for the transition to be possible.
The OR merge’s tendency to generalize the FSM comes from the
self-loops that may occur in the model as a result of consecutive
identical templates appearing in log traces. It is important to note
that merging two states cannot result in a non-deterministic FSM,
since all states are distinct prior to the merge and the merge creates
no duplicates.



Algorithm 2: The Hill Climber Algorithm

Algorithm 3: Simulated Annealing

Data: Maximum number of iterations k;;ax
1 generate € Q k=0,T = ty;
2 while k < k;nax do
3 ' « selectNeighbour (N (w));
4 A — f(o0') = f(w);
5 if A < 0 then
6 | weof

ke—k+1;

<

8 return w;

3.3 Tournament Selection Stochastic Hill
Climber (TSSHC)

TSSHC expands on the basis provided by RSSHC by introducing a
more sophisticated heuristic in the neighbour selection procedure.
Specifically, TSSHC only considers parent-child merges - that is, a
state s2 can only be merged into a different state s1 if there exists
a transition 6(s1,7) = sz. Additionally, a tournament selection
algorithm is used to decide which states to merge out of a sample
of candidate state pairs.

The rationale behind only considering parent-child merges is
that log entries reflect internal changes of the system during execu-
tion, either in its state or in the active software component. From
this expectation, it follows that fundamentally similar or strongly
connected software components often produce adjacent log entries,
and merging would be a reasonable improvement to the concise-
ness of the model. Conversely, merging states that are far apart in
the model may result in disconnected software components being
stitched together in the resulting FSM. This heuristic is used in
TSSHC, SA and PSA.

Selection methods have been extensively studied as they are
crucial for many genetic algorithms, where they determine the rate
of progress. However, the focus of standard methods such as fitness
proportionate selection (FPS) or tournament selection (TS) is choos-
ing parents out of a population for producing multiple offspring
[19], which is not the aim of the neighbour selection procedure in
the problem formulation at hand. More advanced selection methods
have also been recently developed [14, 38] and show promising
results, but have not been tested on a similar problem.

In this paper, a tournament selection method is used, as it intro-
duces very little additional overhead to the algorithm, and can even
be parallelized, while still allowing the local search to be guided.
The neighbour fitness function is defined in Equation 3.

arg min{V7, |6(x, 7)|} 3)

That is, the fitness function seeks to minimize the number of
outgoing edges of the candidate state. The fitness function is applied
once in selecting a state, while the state’s neighbour is selected
randomly. The reason for such a heuristic is that states with fewer
outgoing edges are more likely to correspond to weakly connected
software components in the original system and as such make for
better candidates for being merged with neighbouring states. To
decrease the runtime of the algorithm, only a statistically significant
random sample of size 7 is considered. For flexibility purposes, 7
can be provided as a parameter.

Data: Cooling schedule t, repetition schedule m, Evaluation function f, number of
iterations kynqx, history array size r
1 generatew € Q, k=0,T = ty;
2 while k < k;pgx do

3 while m < my do

4 ' « selectNeighbour (N (w));

5 A« f(o') - f(w);

6 if A <0 then

7 | oo

8 else

_A 1

9 @ — o’ with probability e Tk Ar
10 mem+1;
1m| k—k+1;

12 return w;

3.4 Simulated Annealing (SA)

Simulated Annealing (SA) is a convergent local search algorithm
that makes use of probabilistic worsening moves (mutations which
result in worse evaluations) to escape local optima in the hope of
finding a global optima for discrete and continuous optimization
problems. The defining aspect of SA is its variable temperature
parameter that is lowered over time, which is used to control the
probability of accepting a worse solution. This mechanism makes it
possible for the algorithm to escape so-called valleys, regions of the
search space in which no adjacent solution offers an improvement
with respect to the evaluation function, with a higher probability
earlier in the algorithm and a progressively lower one throughout
the execution. In recent decades, SA has been used in a variety
of optimization problems, including operations management [21],
different scheduling problems [15, 28], and the travelling salesman
problem [30], with good results for problem-tailored algorithms.
The pseudocode of the SA algorithm is given in Algorithm 3.

The cooling schedule is an integral part of any SA algorithm,
which has a vital role in the speed with which the algorithm con-
verges. A cooling schedule is fully defined by (1) an initial tem-
perature fo, (2) a temperature change rule u(t), (3) the amount of
iterations for which a temperature is kept and (4) a stopping cri-
terion. Many schedules have been proposed, tested and surveyed,
with temperature update rules ranging from simple geometrically
decreasing ones to sophisticated heuristic methods [10, 31]. In this
work, the schedule proposed by Lundy and Mees [22] is employed,
based on a comparison of five schedules conducted by Cohn and
Fielding [10] on several instances of the travelling salesman prob-
lem. Based on their comparison, the schedule of Aarts [1], which
in some cases outperforms that of Lundy and Mees, has also been
considered and could be a good fit for specific problem instances.

Ultimately, the schedule of Lundy and Mees has been chosen be-
cause of its faster average convergence and smaller computational
overhead. The amount of iterations for which a temperature is kept
has been defined as % -max;(|N(wj)l), a statistically significant
sample of the largest neighbourhood in the current front. An initial
temperature of 1 has been chosen to allow greater diversification in
the initial iterations, and the stopping criterion is left as a parameter
to the user. Using these parameters, the cooling schedule is formally
defined as the 4-tuple described in Equation 4.
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=1

u(t) = -
(to, u(t), my, kmax) = Lpt @
O T mi = & - max; (IN (@)

kmax =n

Finally, a modified acceptance criterion has been used in line 9 of
the algorithm, where the average of the last r iterations’ As is used
to decrease the acceptance probability, with the aim of restricting
the number of accepted worsening solutions. This choice has been
made on the basis of the empirical observation that differences
caused by mutations tend to be numerically small due to the domain
of the evaluation function being [0, 1]. For SA, the same neighbour
selection procedure is used as in TSSHC.

3.5 Pareto Simulated Annealing (PSA)

First proposed by Serafini [24, 25], Multiple Objective Simulated
Annealing (MOSA) has been developed as an extension of the SA
algorithm, capable of producing multiple solutions while exploring
the search space using a larger number of candidates.

The idea behind MOSA is that instead of providing one solution, a
set of non-dominated solutions is generated with respect to multiple
evaluation functions. It is said that a solution x dominates a solution
y & Vf;, fi(x) < fi(y) and 3j s.t. fj(x) < fj(y), where f; are the
evaluation criteria. Informally, this means that x is at least as good
as y in every criterion, and strictly better in at least one criterion. A
Pareto set is a set S satisfying the following property:Vx € S,fly € S
s.t. y dominates x, meaning that the members of the Pareto set are
non-dominated with respect to every other member. Additionally,
instead of iterating on a single candidate solution, mutations are
independently applied to each model in a set called the frontier. This
formulation lends itself perfectly to the goal of FSM minimization,
as accuracy and conciseness need to be balanced, and a single
solution may not illustrate the possible trade-offs.

Although several variations of MOSA exist, here the adaptable
framework proposed by Czyzaak and Jaszkiewic [13] known as
Pareto Simulated Annealing (PSA) is used, because of its combina-
tion of single-objective evaluation and adaptable weights, which
increase the likelihood of escaping local minima. The key aspect
of this algorithm is the usage of random adaptable weights as a
means of exploring distant sections of the search space. The general
formulation of the procedure is given in Algorithm 4.

Where normalizedW eights() generates and normalizes uniformly

distributed weights in [0, 1] such that EjAj.‘ = 1and adaptWeights(A*)

increases the weights assigned to superior traits and decreases the
ones related to inferior ones, according to the equation 5, before
normalizing again.

alN%, if fi(x) > fi(z)
adaptWeights(A*, a) = {A}r] U f

-, if fj(x) < fj(2)
Additionally, the acceptance function P is defined by equation 6.

This function is a modified version of one of the two rules proposed

by the original authors, which results in stricter acceptance criterion

®)

for this problem, with A_fj the mean of the last r absolute differences
|A fjx’y| for feature j. The division by the mean of the last r feature

Algorithm 4: Pareto Simulated Annealing

Data: Cooling schedule t, repetition schedule m, evaluation functions f, max. number of
iterations ky,qx, frontier size s, scaling parameter «, history array size r

generate S ={ w1, ..., 0s € QL k=0,T = ty;

create the set M of potentially efficient solutions from S;

while k < k;pax do

1

2

3

4 while m < my do

5 for x in S do

6 y « selectNeighbour (N (x));

7 if y is non-dominated by x then

8 L update(M, y);

9 z « closestNonDominated(S, x);
10 if not z and not A* then

1 |  A* < normalizedWeights();
12 else

13 L A* — adaptWeights(AX, a);
14 | x < y with probability P(x,y,t,A*, f)
15 | mem +1;
16 | kek+1

17 return M;

As and the choice of the minimum value among the j features are
done to normalize the value of the acceptance criterion, similarly

to SA.

Aj Afjx’y
P(x,y,t, A", f) = min(1, exp(minj(T . = ))) (6)

J

Finally, two noteworthy aspects of Algorithm 4 are that (1) it
does not provide the user with one definite solution - the user
would have to choose the model that best suits their needs out of
the available solutions and (2) the innermost iteration loop over the
frontier S can be almost fully parallelized, which stands to bring a
significant boost to the algorithm’s performance.

4 EMPIRICAL STUDY

This section outlines the various contributing factors to the ex-
perimental results. Subsection 4.1 highlights the main goals of the
experiments and the research questions they aim to answer. Details
about the prototype and the benchmarks used for evaluation are
presented in Subsection 4.2. A list of the parameters used for each
algorithm is provided in Subsection 4.3. Finally, the experimental
protocol is detailed in Subsection 4.4.

4.1 Experimental goal

The aim of the empirical study is to determine the viability of meta-
heuristic based algorithms as a scalable model inference technique
which produces accurate and concise results. Both scalability and
accuracy are of paramount importance to the viability of the al-
gorithm in practical software development tasks such as program
comprehension or test case generation, leading to two core research
questions the study aims to answer:

RQ1. How effective are RSSHC, TSSHC, SA, and PSA at inferring a
concise and accurate state model for the XRP Ledger Consensus
Algorithm?

RQ2. How efficiently do RSSHC, TSSHC, SA, and PSA scale in terms
of runtime with regard to the number of traces used as input?



Table 1: Experimental Parameters

Parameter Value Remarks
Tournament size 77 5
Tournament p 0.75 -
K-fold CV k 5 Standard in literature

Cooling Schedule S 0.2546 Used for TSP in [10]
Neighbourhood sample size W Similar value as [31]

History array size r 100 -

PSA Frontier size s 16 Used in [13]

SA and PSA kmax 10 Empirical choice

RSSHC and TSSHC iterations  |states(init)| Empirical choice

4.2 Benchmark and Prototype Details

As a benchmark, log traces produced by nodes of the XRP Ledger
system have been chosen. The scope of the study has been limited
to the Consensus Algorithm (CA), a round-based algorithm that is
repeated numerous times during a node’s execution which helps
determine the state of the blockchain. The CA logs have been
filtered out of the system-wide logs on a per-trace basis. Using
these traces, 10 separate datasets of varying sizes have been created
by selecting distinct random log traces from a pool of size 1000.

4.3 Parameter settings

For reproducibility purposes, the complete list of parameters used
in the algorithms is given in Table 1. The majority of the chosen
parameters are either standard values used in literature or suggested
values by the original proposers of the algorithm. These choices
have been made on the basis of the work of Arcuri and Fraser [3],
who found that although far from optimal, default parameter values
perform sufficiently well, and that tuning is most effective when it
is carried out on a varied number of problem instances. Since such
tuning is not feasible within the scope of this research and optimal
values are not necessary to assess the viability of the approach,
default values have been opted for instead.

4.4 Experimental Protocol

This section describes the evaluation strategies and quantifiers
used to assess the final set of FSM models. First, the metrics used to
describe accuracy and scalability are discussed. Second, the exact
methods used to produce the results are described.

4.4.1 Metrics. To quantify the accuracy of a model, two different

metrics are used: specificity, defined as SP = % and recall,
defined as REC = %, where an accepted true trace in the

test set is a true positive (TP), and a rejected true trace in the test
set is a false negative (FN). The converse holds for true and false
negatives as well. These measures have been used in many previous
works on model inference [23, 26, 35] and capture the model’s
ability to reject negative traces and accept true ones, respectively.
In addition, a model’s size is calculated in relation to theA sjze of
the initial model produced by Algorithm 1: SZ = %
These three metrics SP, REC, SZ also constitute the three evaluation
functions used in Algorithm 4, as well as the components of the
single-objective evaluation function described in Equation 2.

The scalability of the algorithm is assessed in terms of its runtime
as a function of the number of log traces used to train the model.

4.4.2  Evaluation strategy. Specificity and recall are evaluated using
the standard k-fold cross-validation (KFCV) technique. This method
splits the dataset into k roughly equally sized folds, of which k-1
are used as the train set and the remainder is used as the test set.
Over k iterations, each fold is used once as the test set and k-1
times as part of the train set. Additionally, the evaluation algorithm
also splits the k-1 folds composing the train set into a building set
used to construct the initial model and an evaluation set, used to
approximate REC and SP during the minimization algorithm. This
split is done randomly in the current train set, following a 4:1 ratio
of traces.

For RSSHC, TSSHC, and SA, the average result over the k itera-
tions of the KFCV algorithm is shown. For PSA, since the algorithm
returns many solutions instead of one, only the most accurate solu-
tion in each set is considered (in terms of w)’ and the average
of the selected values is presented.

To produce negative traces for the evaluation of specificity, a
technique similar to those used in other model inference studies
[26, 35] has been employed. For each true trace from either the
validation or the test sets, between one and three random mutations
are sequentially applied. These mutations include (1) swapping two
adjacent log sections, (2) swapping two random log sections and (3)
deleting a random log section. If after performing these mutations,
the resulting trace is accepted by the prefix tree built from all
positive traces in the entire dataset, then the procedure is repeated.
In this context, a log section is a sequence (x1, ..., X ) of consecutive
log entries that can be modeled by the same log template (7, ..., 7).

Scalability is measured by running each algorithm on each avail-
able dataset a total of 5 times, following a single 4:1 split (into a
train set and a validation set). The reported number is the mean of
the 5 runtimes for each dataset.

The prototypes of the RSSHC, TSSHC, SA, and PSA inference
algorithms have been implemented in Python 3.9, without paral-
lelization at any stage. All experiments have been carried out on a
Manjaro 21.0.5 machine running on an Intel Core i7-8550U CPU at
1.80GHz, with 8GB of RAM.

5 RESULTS

This section lays out an overview of results of the empirical study,
as well as their most impactful insights. Subsection 5.1 focuses on
accuracy and conciseness, while Subsection 5.2 discusses scalability.

5.1 Accuracy and conciseness

The accuracy (measured in terms of REC and SP) and conciseness
(measured in terms of compression), as well as the objective evalu-
ation results are displayed in Table 2. A visualization of the results
is provided in Figures 1 and 2. The results indicate that all three
metrics of evaluation vary significantly between the algorithms.
Of the candidate algorithms, SA consistently produces the least
accurate solutions, while also having the largest variation with
regard to the number of traces used (cca. +20 pp. between 250 and
750 traces, respectively). However, it also produces the most concise
solutions. When analyzing the individual results produced by SA, a
discrepancy between the solutions for many of the KFCV iterations
stands out: it is common for SA to produce an extremely concise
model with perfect specificity and 0 recall (sometimes a 3 state
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Table 2: Comparison of accuracy, conciseness, and evaluation between Random Selection Stochastic Hill Climber (RSSHC),
Tournament Selection Stochastic Hill Climber (TSSHC), Simulated Annealing (SA), and Pareto Simulated Annealing (PSA)

. states(FSM - . SP+S.
Conciseness= w Accuracy = REC+SP Objective Evaluation = REC+SP+SZ
[states(initial)| 2 3
Datasetsize | RSSHC — TSSHC ~ SA  PSAgcc  PSAgp; | RSSHC  TSSHC  SA  PSAgcc  PSAgp; | RSSHC  TSSHC  SA  PSAgec  PSAgp; | PSAsetsize
100 0.54 0.56 0.72 0.27 0.42 0.90 0.85 0.71 0.90 0.87 0.78 0.75 0.71 0.69 0.72 75
150 0.45 0.51 0.71 0.16 0.39 0.92 0.88 0.78 0.92 0.89 0.76 0.76 0.76 0.67 0.72 10.9
200 0.54 0.54 0.72 0.15 0.46 0.89 0.91 0.78 0.90 0.88 0.78 0.79 0.76 0.65 0.74 14.6
250 0.48 0.5 0.75 0.18 0.43 0.93 0.92 0.66 0.93 0.91 0.78 0.78 0.69 0.68 0.75 143
300 0.49 0.55 0.71 0.12 0.42 0.93 0.91 0.77 0.92 0.9 0.78 0.79 0.75 0.65 0.74 17.4
350 0.48 0.49 0.67 0.15 0.43 0.93 0.92 0.77 0.93 0.9 0.78 0.77 0.74 0.67 0.74 16.6
400 0.47 0.53 0.77 0.08 0.43 0.93 0.9 0.71 0.93 0.9 0.78 0.77 0.73 0.65 0.74 17.9
450 0.48 0.55 0.68 0.2 0.42 0.95 0.92 0.75 0.94 0.91 0.79 0.79 0.73 0.69 0.75 16.7
500 0.51 0.54 0.75 0.14 0.47 0.92 0.92 0.7 0.93 0.89 0.78 0.79 0.72 0.67 0.75 20.5
550 0.51 0.56 0.69 0.1 0.44 0.94 0.91 0.76 0.94 0.89 0.79 0.79 0.74 0.66 0.74 249
600 0.46 0.56 0.77 0.12 0.45 0.93 0.92 0.71 0.94 0.9 0.77 0.80 0.73 0.67 0.75 225
650 0.48 0.55 0.68 0.11 0.46 0.93 0.92 0.8 0.94 0.91 0.78 0.80 0.76 0.67 0.76 23.6
700 0.48 0.58 0.64 0.16 0.42 0.93 0.92 0.85 0.94 0.91 0.78 0.80 0.78 0.68 0.75 20.5
750 0.46 0.54 0.71 0.1 0.47 0.94 0.92 0.74 0.94 0.92 0.78 0.79 0.73 0.66 0.77 245
800 0.52 0.55 0.73 0.11 0.47 0.93 0.92 0.75 0.94 0.89 0.79 0.79 0.74 0.66 0.75 279
850 0.5 0.52 0.66 0.12 0.45 0.92 0.92 0.84 0.94 0.9 0.78 0.79 0.78 0.66 0.75 26.8
900 0.51 0.54 0.72 0.09 0.43 0.93 0.92 0.71 0.94 0.9 0.79 0.79 0.71 0.65 0.74 24
950 0.53 0.56 0.73 0.07 0.42 0.93 0.92 0.71 0.94 0.91 0.79 0.80 0.71 0.65 0.75 27.6
1000 0.47 0.53 0.78 0.09 0.46 0.93 0.92 0.7 0.94 0.9 0.77 0.79 0.73 0.65 0.75 27.6
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Figure 1: Comparison of the accuracy of the solutions of
RSSHC, TSSHC, SA, and PSA, as a function of input size.

FSM). The reason this occurs is likely the neighbourhood structure:
accepting a solution whose evaluation is worse than the previous
one may result in a so-called random restart, or a jump to an un-
related section of the search space. Similarly, accepting a chain of
worse solutions may result in a FSM which due to the chosen neigh-
bourhood structure cannot be improved, since previous merges
cannot be undone. The latter situation may cause the occasional 3
state model, which cannot trade off conciseness for accuracy and as
such cannot be improved. A more suitable neighbourhood structure
may be required to improve the performance of SA.

PSA produces the most accurate results in 16 out of the 18 scenar-
ios. The drastic increase in accuracy (up to 25 pp.) when compared
to SA highlights the benefit of the multi-objective approach. In

Number of log traces

Figure 2: Comparison of the compression of the solutions of
RSSHC, TSSHC, SA, and PSA, as a function of input size.

addition to displaying the most accurate results, PSA is the only
algorithm that offers the user a choice of trading off accuracy for
conciseness: this is highlighted by the PSAgcc and PSA,p; lines
in Figures 1 and 2, which show the most accurate and the best
performing (according to the evaluation in Equation 2) models in
the Pareto solution set: the user can choose to sacrifice 5 pp. of
accuracy for a more concise model, with between 15 and 25 pp.
higher compression.

RSSHC and TSSHC perform very similarly and are differenti-
ated by at most 5 pp. both in terms of compression and accuracy.
The results help validate the previous conjecture, namely, that the
main reason for the comparatively poor performance of SA is the
acceptance of worse solutions, as it is the only significant difference



250 1 -8~ psa
TSHC

- SA

8- RSHC

200 A

-

v

o
L

Runtime (s)

100 +

50 4

T T T T T
200 400 600 800 1000
Number of log traces

Figure 3: Comparison of the runtimes RSSHC, TSSHC, SA,
and PSA as a function of input size.

between TSSHC and SA. Since neither RSSHC nor TSSHC accept
solutions which decrease the objective evaluation, the random re-
sets that the SA based algorithms are vulnerable to are avoided.
Both RSSHC and TSSHC consistently perform within 5 pp. of the
most accurate solution of PSA, while their results are much more
concise (up to 45 pp. higher compression). When compared to the
best PSA solution according to the evaluation function, both al-
gorithms outperform PSA in terms of accuracy and conciseness
consistently. Finally, the similarity of the results indicates that the
state selection heuristic stated in Equation 3 does not have a sig-
nificant impact on the performance of the algorithms. However,
tests on a broader range of datasets are required to validate this
conjecture. Finally, TSSHC and RSSHC produce the best results in
terms of the objective evaluation function described in Equation 2,
as they are unaffected by the worsening moves allowed by SA.

Across all algorithms, the number of traces used in the train and
validation sets does not have a significant impact on the perfor-
mance of the algorithm for datasets composed of at least 250 log
traces, both in terms of accuracy and conciseness. For fewer traces,
a significant decrease in accuracy is apparent in PSA and TSSHC,
and to a lesser extent in RSSHC. For PSA, a linear increase in the
size of the solution set has been observed.

RQ1: PSA produces the most accurate results, which come at the
cost of conciseness. PSA is also the only algorithm to provide
multiple possible trade-offs in one iteration. SA consistently gives
the most compact and least accurate solutions, but due to random
resets, it often produces 3-state models, which are unusable. With
over 90% accuracy in the vast majority of runs, RSSHC and TSSHC
offer a marginally less accurate and much more compact solution
than PSA, but do not allow for a choice to be made by the user.
SA and PSA are most likely held back by the neighbourhood
structure, which results in occasional random resets.

5.2 Scalability

The scalability results are displayed in Figure 3. The results indicate
linear scalability for all candidate algorithms considered.

Of the compared algorithms, PSA is by far the slowest. This is
the consequence of evaluating multiple solutions at each iteration,
as opposed to a single one. However, PSA has the most to gain from
parallelization: each inner iteration could be theoretically sped up
by a factor of s, the frontier size parameter. This parameter is also
paramount to the performance of the algorithm, as it determines
how many evaluation steps are performed for each iteration. The
user may determine this paremeter based on their requirements.

RSSHC, TSSHC, and SA all perform similarly and are consid-
erably faster than PSA, with runtimes of around one minute for
1000 traces. The overhead introduced by the tournament selection
process in TSSHC and SA is negligeable. Additionally, the runtime
of these approaches could be improved by the parallelization of the
validation process.

RQ2: The runtime of all four algorithms scales linearly with
the number of traces in the train and valdiation sets. PSA is the
slowest, while RSSHC, TSSHC, and SA perform very similarly. At
under 5 minutes for PSA and around 1 minute for RSSHC, TSSHC,
and SA for 1000 traces, all algorithms are viable approaches for
the practical software development process from a runtime per-
spective.

6 THREATS TO VALIDITY

In this section, the possible threats to the validity of the study and
the measures taken to ameliorate them are outlined.

Threats to conclusion validity concern the degree to which the
conclusions reached about the relationships in the data are rea-
sonable. To enhance the robustness of the results, each consid-
ered dataset has been randomly selected from the larger set of
1000 traces, to not introduce any potential bias through a possibly
skewed selection procedure. Furthermore, the accuracy tests have
been performed using the k-fold cross-validation technique, so as
to provide statistical significance to the reported values. However, a
broader set of both data points and statistical analysis tests would be
required to validate the difference in performance of the considered
algorithms and cement the outlined conclusions.

Threats to external validity concern the degree to which the
findings of this work may be generalized. The largest threat to
external validity is the data that the models have been trained on.
In particular, all data in this study has a single system at its origin,
which is limiting the scope of the evaluation of the algorithm. To
mitigate this, the log traces used to train, validate and test the
models have been picked at random from a much larger sample
than the study aims to experiment on. In the future, this threat can
be tackled by extending the study to include datasets from other
systems and compare the algorithms on a per-system basis.

7 RESPONSIBLE RESEARCH

Reproducibility is a key aspect of the scientific method. It provides
transparity and is necessary to establish credibility and to allow
others to understand one’s work. To ensure reproducibility, several
measures have been taken. First, the code has been made publicly
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available through a version-controlled git repository. Each third
party component or script has been listed in the repository, along
with the specific version that was used to produce the results. The
log traces used to train and assess the models have been made
publicly available [7]. In addition, the scripts used to produce the
reported results as well as the scripts used to create the plots are
present in the repository. Lastly, a list of all the used parameters is
given in Table 1.

Randomness is at the core of each of the tested approaches, which
use it at several points in the algorithm, most notably in choosing
a neighbour of the current solution and in deciding whether or not
to keep a worse solution in the case of SA and PSA. Randomness
is also part of the k-fold cross-validation algorithm, particularly in
the splitting of the log trace set into k different disjoint subsets. To
reduce the statistical fluctuations caused by randomness in the exe-
cution time, the validation procedure scalability has been executed
several times, and the average performance has been reported in the
results. Additional external factors that could introduce fluctuations
have been minimized by performing the tests on the same machine.
Finally, the option to provide a seed to the pseudo-random number
generator is provided in the code.

8 CONCLUSION AND FUTURE WORK

In this paper, the scalability problem of current log analysis model
inference techniques has been tackled using four meta-heuristic
search approaches. The proposed inference algorithm first con-
structs an initial model and then uses a search algorithm to mini-
mize this starting solution. Here, four algorithms were considered:
RSSHC, TSSHC, SA, and PSA, which are based on local search and
simulated annealing respectively. Each algorithm iterates over ei-
ther one solution or a set of solutions to which it applies a mutation,
seeking to minimize the evaluation function, which is based on the
model’s size and accuracy.

The empirical evaluation of the algorithm’s performance has
been conducted on a total of 1000 log traces produced by the XRP
Ledger’s Consensus Algorithm. The results indicate that PSA pro-
duces the most accurate models, followed by RSSHC, TSSHC, and
SA. The most accurate solutions of PSA are the least concise, while
RSSHC and TSSHC offer a marginally less accurate solution with
significantly better conciseness, and SA offers the most concise and
least accurate solutions. PSA is the only algorithm to offer multiple
trade-offs in the solution set. The scalability assessment indicates
that the runtimes of all variants of the approach scale linearly with
the number of traces used to train and evaluate the models and
that all candidate algorithms are fast enough to be feasibly used in
practical software development. PSA is the slowest at cca. 5 minutes
for 1000 traces, whereas RSSHC, TSSHC, and SA all perform very
similarly at about one minute per 1000 traces.

In the future, a neighbourhood structure which causes fewer
random resets for SA based algorithms could be explored, which
would likely have the most significant positive impact on the per-
formance of the algorithms. The heuristics that are part of the
PSA algorithm could be refined and made more problem specific,
especially through parameter tuning. Additionally, the approach
would require to be tested on a broader range of systems before any
definitive conclusions can be drawn about its general performance.

Finally, the integration of the presented approaches with different
model inference techniques could also be a valuable contribution.
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