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Abstract 

Carbon fiber reinforced plastics (CFRPs) are attracting growing attention in industry because 

of their enhanced properties. Preforming of thermoset carbon fiber prepregs is one of the most 

common production techniques of CFRPs. To simulate preforming, several computational 

methods have been developed. Most of these methods, however, obtain the material properties 

directly from experiments such as uniaxial tension and bias-extension where the coupling effect 

between tension and shear is not considered. Neglecting this coupling effect deteriorates the 

prediction accuracy of simulations. To address this issue, we develop a Bayesian model 

calibration and material characterization approach in a multiscale finite element preforming 

simulation framework that utilizes mesoscopic representative volume element (RVE) to account 

for the tension-shear coupling. A new geometric modeling technique is first proposed to generate 

the RVE corresponding to the close-packed uncured prepreg. This RVE model is then calibrated 

with a modular Bayesian approach to estimate the yarn properties, test its potential biases against 

the experiments, and fit a stress emulator. The predictive capability of this multiscale approach is 
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further demonstrated by employing the stress emulator in the macroscale preforming simulation 

which shows that this approach can provide accurate predictions.  

Keywords: Prepreg; Preforming; Bayesian Calibration; Gaussian Processes; Multiscale 

Simulations 

1 Introduction 

Carbon fiber reinforced plastics (CFRPs) are of much interest in the industry nowadays 

because of their superior properties such as high strength-to-weight ratio, high modulus to weight 

ratio, good dimensional stability, excellent damage tolerance, and good corrosion and fatigue 

resistance [1-3]. Utilization of these materials in the aerospace and automotive industries leads to 

significant weight reduction of equipment systems compared to the conventional metal 

dominated products; resulting in improved fuel economy and carbon emission [4-6]. 

To automatically manufacture CFRP parts in large quantities, many processes have been 

proposed and developed including resin transfer molding (RTM) [7, 8], fiber deposition [9-12], 

pultrusion [13], and thermoforming [14-16]. The latter process is a proper choice to produce 

parts for transportation equipment as it can provide a high production rate with relatively 

complicated surface geometries, good product quality, and low facility cost. In the 

thermoforming process, the first step is to stack layers of thermoset carbon fiber prepregs (i.e., 

fabric impregnated by uncured thermoset resin) in an optimized fiber orientation combination. 

Then, these plane laminates are heated to soften the resin and subsequently formed to the desired 

3D shape on a press machine during the preforming step. Finally, the parts are cured to solidify 

the resin and achieve the designed part shape [17, 18]. In the thermoforming process, most of the 

fiber re-orientation is introduced in the preforming step which replaces the conventional high-
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cost and low-rate hand laying work. Since mechanical stiffness and strength of the composites 

are mostly affected by the fiber direction [19], the selection of the preforming parameters such as 

process temperature and initial fiber orientation is important to the final part performance 

including shear and kink bands development in the weave under various loading conditions [20]. 

To optimize the preforming parameters and produce defect-free parts, numerous tests with 

different parameter combinations are commonly conducted [21]. However, the consumption of 

raw material and the long development period increase the cost and time of production; 

hampering the practicality of thermoforming. To address this issue, several computational 

models based on the finite element (FE) method have been developed to simulate the preforming 

process to predict the fiber orientation, geometry, wrinkling behavior on the part, and the 

forming force [4, 14, 21-24]. For reliable predictions, there is a need for characterizing and 

employing realistic and accurate material properties in the computational models. 

Intra-ply tension and intra-ply shear behaviors are the two important material performances 

that dominate the behavior of the prepreg sheets. Since shear is the most dominant deformation 

mode in the composite forming, an international collaborative team have developed the widely 

accepted bias-extension benchmark test to characterize the intra-ply shear accurately [25]. 

Uniaxial tension test is also employed by many researchers for intra-ply tension characterization 

because of its convenience in carrying out the test. These two tests provide reliable results but 

have some drawbacks. The major one is that they achieve limited loading states. For example, 

the uniaxial tension test can only introduce pure tension deformation while the bias-extension 

test can only introduce pure shear deformation. Hence, the coupling between tension and shear 

cannot be physically characterized and subsequently implemented into the numerical model. 
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Although in most cases this neglection will not affect the prediction of geometry and fiber 

orientation significantly due to the fact that the shear modulus of the uncured prepreg is always 

several orders of magnitude smaller than its tensile modulus, it will introduce errors in the 

prediction of preforming stress and punch force and hence, reduce the analysis accuracy of 

defects, such as breakage, pull-out, and separation of the fiber yarns. 

Several new test devices such as the biaxial tension apparatus [26] and the picture frame 

apparatus with tension adjustment [27] have been designed to address the above issue. In 

practice, however, even these complex devices cannot cover the entire strain states that the 

prepreg will undergo during preforming due to the complexity of three-dimensional geometry 

and the resulting nonlinear loading paths. Additionally, these experimental characterization 

methods are at the macroscale and hence do not provide insightful information on how the 

mesoscale composite structure and constituents affect mechanical properties of the materials. 

The cost of raw materials and test time also need to be considered in planning experiments. 

In this paper, we develop a new multiscale preforming simulation method based on the 

prepreg characterization by the mesoscopic representative volume element (RVE) to account for 

the tension-shear coupling and apply it to the preforming simulation of a 2x2 twill thermoset 

prepreg.  To address the challenge of unknown material parameters at mesoscale, a Bayesian 

model calibration and validation approach is developed for integrating the calibrated mesoscale 

stress emulator with macroscale part performance simulations.  The flowchart of our approach is 

illustrated in Fig. 1. Our method starts by accurately modeling the mesoscopic RVE in terms of 

both structure and yarn material (aka constitutive) law. Then, we calibrate our RVE simulator 

against mesoscopic experiments with a modular Bayesian approach to estimate the mesoscopic 



 
5 

 

yarn properties [28] and build an accurate and inexpensive stress emulator. We note that this 

emulator is learned at the mesoscale and acts as the non-orthogonal material constitutive law by 

replacing the expensive mesoscale RVE simulations at each integration point during the 

macroscale preforming analysis. The validity and predictive power of our approach is tested by 

comparing the macroscale simulation and experimental results.  

 

Fig. 1 (Color online) Flowchart of the developed multiscale preforming simulation method: The Bayesian 

calibration utilizes the RVE and experiments to obtain the yarn properties and the mesoscale stress emulator. The 

stress emulator is then implemented into the non-orthogonal material model for macroscopic preformation 

simulation. 

The rest of the paper is organized as follows. In Sec. 2, we summarize the experimental 

measurement of the temperature condition during the preforming process for material 

characterization. We elaborate on our FE modeling of the mesoscopic RVE (including the 

structure construction and the yarn material model) in Sec. 3. The developed Bayesian 

calibration method that identifies the mesoscopic yarn properties and builds the Gaussian process 

(GP) stress emulator (i.e., mesoscale constitutive law) is detailed in Sec. 4. We validate our 

approach in Sec. 5 by comparing our macroscale simulation results on the double-dome 

preforming process against experimental data. The paper is concluded in Sec. 6 by summarizing 

the contributions and potential future works. 



 
6 

 

2 Temperature Condition for the Preforming Experiment 

Preforming is a temperature varying process because of the hot prepreg sheet and the 

cold/warm tools used in the process. In our experiment using the double-dome benchmark 

geometry [29], the thermoset prepreg was first heated in an oven to around 70 ºC and then placed 

under the press for preforming, see Fig. 2 (a). The press was kept at 23 ºC by the coolant within 

it for fast production rate, so the temperature of the prepreg dropped from the initial value during 

the process. The temperature history at the top surface center, the bottom surface center, and one 

side point on the top surface of the prepreg are measured by thermocouples and plotted in Fig. 2 

(b).  

 

Fig. 2 (Color online) Double-dome preforming test setup: (a) The press for the preforming, and (b) the prepreg 

temperature history plot. The plot indicates that the prepreg temperature drops rapidly from the initial 70 ºC to 

around 23 ºC when it is placed under the press. 

The plot indicates that the prepreg reached to the temperature of around 70 ºC in the oven. 

Then, it was cooled down gradually to around 45 ºC by the air during the transportation from the 

oven to the press. When it was placed under the press, the cooling rate increased greatly due to 

the heat conduction between the hot prepreg and the cold metal. In particular, the temperature 

dropped 20 ºC within the first 2 seconds. Meanwhile, it took the press 10 seconds to contact the 

punch and the prepreg and another 6 seconds to finish the preforming. Therefore, the actual 
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temperature of the prepreg during the preforming process was very close to 23 ºC, i.e., the press 

temperature. As a result, it is reasonable to perform the characterization of the prepreg with 

uncured thermoset resin and simulate the preforming at the fixed temperature of 23 ºC. 

3 Mesoscopic RVE Modeling  

The RVE is the repeatable unit in the composite material and we model it as dry fabric 

without the surrounding resin since the prepreg contains soft uncured thermoset resin and its 

shear stiffness is negligible compared to that of cured composites. Several different approaches 

have been developed by researchers to construct RVEs with accurate woven patterns and yarn 

geometrical features because of their significant influence on the RVE stress response under 

deformation.  One approach is to directly use CAD software to design and output the RVE 

structure [30, 31]. This approach, while being straightforward and suitable for a specific 

composite structure, is time-consuming because, for each specific composite, the structure needs 

to be drawn individually, and when the yarn surface geometries become complex, the yarn cross-

section shape needs to be manually identified. To generalize the design process and 

accommodate for more composite structures, geometrical modeling software packages such as 

TexGen [32] and WiseTex [33] are developed. These packages store large libraries for different 

composite patterns and can generate the corresponding RVE structure given the geometrical 

features such as RVE length, yarn width, yarn height, and so on. However, the automatically 

generated structures usually have fixed shape of the yarn cross-sections and yarn centerlines. 

These simplifications are suitable for loose woven materials but result in yarn-to-yarn 

penetration in close-packed composites (see Fig. 3). In this case, fine-tuning the geometry by 

modifying the position, dimension [34], or utilizing non-symmetrical shapes [35] of the local 

yarn cross-section is essential. These procedures, however, involve complicated geometry 
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manipulation and are time-consuming. For capturing more accurate and detailed structures in 

RVE, researchers have recently employed X-ray micro-tomography to directly obtain the 

geometry of the composites [36-38]. This is a promising technique but is quite expensive and 

requires careful image processing. 

 

Fig. 3 (Color Online) Yarn-yarn penetration in the RVE: The white circles illustrate locations of the yarn-to-yarn 

penetration in the composite prepreg RVE geometry model generated by TexGen. 

3.1 Construction of the Mesoscopic RVE Structure 

To achieve a fine balance between speed and accuracy in generating the RVE structure, we 

propose a novel 2-step geometrical modeling method with a one-time post-processing to modify 

the local yarn geometry generated by TexGen. In our method, the rough composite structure 

without yarn-to-yarn penetration is first generated by TexGen in Step 1 with the specified woven 

pattern and key characteristic sizes, such as weaving pattern, yarn width, yarn gap, and yarn 

thickness. Then, the mesh and the local yarn orientation corresponding to the structure is 

imported to a commercial finite element software, Abaqus Explicit, in Step 2 to compress the 

structure in the thickness direction to satisfy the prepreg thickness requirements while 

maintaining the already assigned features. Finally, the deformed mesh and the local material 

orientation are exported to build the RVE for virtual material characterization. 

We employ this method to build a 2x2 twill prepreg with uncured thermoset resin developed 

by Dow Chemical Company with the surface and cross-section shown in Fig. 4. The 
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characteristic dimensions of the yarns and the average thickness of the prepreg are obtained via 

the Alicona Infinite Focus microscope and the caliper, respectively. The measured data are listed 

in Table 1. 

 

Fig. 4 (Color Online) 2x2 twill prepreg: (a) Surface and (b) Cross-section. 

Table 1. Characteristic dimensions of the 2x2 twill: The yarn characteristic dimensions (in mm) are obtained via 

the Alicona Infinite Focus microscope and the average prepreg thickness is measured by the caliper. 

Yarn width Yarn gap Yarn thickness Prepreg thickness 

2.430 � 0.112 0.004 � 0.004 0.503 � 0.012 0.85 � 0.15 

To construct the RVE structure, we first input the average values of the yarn width, yarn gap, 

yarn thickness, and the 2x2 twill pattern in TexGen. Table 1 indicates that the yarn gap is very 

small, less than 10 µm, compared to the yarn thickness and the yarn width. To minimize the 

yarn-to-yarn penetration, we set the shape of the yarn’s cross-section to lenticular. However, this 

simple change is insufficient to avoid the penetration completely (see Fig. 3), so we artificially 

enlarge the TexGen prepreg structure thickness from 0.85

 to 1.2	

. The result is illustrated 

in Fig. 5 and as it can be observed there is no longer any penetration between different yarns. 
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Fig. 5 (Color Online) TexGen rough geometry model with the thickness of the prepreg as of 1.2 mm: (a) The 

structure, and (b) the cross-section of the correspondent mesh. 

The drawback of this thickness enlargement, however, is that many gaps are introduced in the 

structure. Comparison between the cross-section images in Fig. 4(b) and Fig. 5(b) clearly 

demonstrates this loose-packed issue. These artificial gaps significantly affect the prediction 

capability of the RVE simulator: Upon exerting load, the inner gaps will greatly soften the RVE, 

reduce the response moduli, and elongate the undulation region. To make such a loosely-packed 

RVE behave similarly to the real prepreg, very large and unrealistic yarn moduli need to be 

employed for the yarn material properties. 

As a solution, we introduce the compression method as Step 2 to close these artificial gaps in 

the RVE. To this end, two rigid plates are employed to compress the prepreg RVE in the 

thickness direction to reduce the thickness to 0.85	

, which is the average value of the real 

material, see Fig. 6. This step is performed using the Abaqus explicit solver and its rationality is 

supported by the fact that there is no strict constraint for the yarn cross-section shape and the 

longitudinal path. Fixed boundary conditions are applied to the sides of the RVE to avoid 

changing its side lengths upon compression. At this stage, the mechanical properties of the 

prepreg yarn have not be characterized yet because they require calibration by the RVE, whose 

structure has not been obtained yet. As a result, in the compression simulation, the elastic moduli 

of the yarn in compression are selected to be the same as the existing ones for the also highly 

anisotropic cured unidirectional composite. The Poisson’s ratios are set to be zero in all 

directions to avoid altering the yarn width due to the yarn deformation in the thickness direction. 

It should be noted that these yarn properties are only utilized to generate the RVE structure. They 

are not the same as the ones in the following sections for the prepreg virtual material 
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characterization. General contact with the hard contact normal behavior is applied to the yarns 

and the plates to avoid the yarn-to-yarn and yarn-to-plate penetration during the deformation. 

After the compression, the corresponding mesh and local material directions of the RVE are 

exported to evaluate the dimensions and penetration. The yarn thickness is inevitably reduced by 

around 6% because of the compression, but it is insignificant compared to the 5% variation of 

the real material value. Apart from the thickness, all other characteristics of this RVE structure 

are the same as the ones in the real prepreg, and no yarn-to-yarn penetration is observed. 

 

Fig. 6 (Color Online) Prepreg RVE compression in FE software Abaqus: Two rigid plates are introduced to 

adjust the RVE thickness. 

In summary, our 2-step geometrical modeling approach can conveniently generate mesoscopic 

RVE structure with accurate characteristic dimensions, weave pattern, and yarn packing density 

of the real material without penetration.  

3.2 Mesoscopic Yarn Material Model 

In addition to the RVE structure, the yarn material model should also be correctly 

implemented to have the RVE simulations correspond to reality. Because preforming is a one-

step loading process on the uncured prepreg where the material recovery after the deformation is 

not included, the yarns within the RVE can be assumed to be purely elastic. Furthermore, the 

prepreg yarns that consist of quasi-unidirectional fibers and uncured resin exbibit a transversely 

isotropic material property [39]. Direct implementation of such a material behavior, however, 
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leads to numerical errors considering the yarn-yarn interactions and yarn cross-section geometry. 

We illustrate the possible error with an example where the compression load is applied along the 

width to a single yarn. This loading condition is quite common for the prepreg in shear 

deformation where, as illustrated in Fig. 7 (a), in the real yarn the fibers rearrange as the resin 

flows. Consequently, the yarn deforms (i.e., its dimensions change) while preserving the basic 

elliptical shape. In the FE simulation, the yarn is treated as a continuum with relatively flat cross-

section geometry where, if the transversely isotropic material model is utilized, numerical errors 

such as artificial bending and excessive element distortion will appear especially on the edges, as 

can be seen in Fig. 7 (b). To address this issue, the transverse shear and tension/compression 

behaviors in the yarn material model are decoupled to control the bending and distortion of the 

yarn while maintaining its compression property [40, 41]. With this approach, a deformation 

mode similar to the real material can be achieved, as shown in Fig. 7 (c). 

 

Fig. 7 (Color Online) Illustration of the yarn cross-section deformation upon compression along the width 

direction: (a) Real material deformation mode, (b) FE deformation mode with transversely isotropic material 

model, and (c) FE deformation mode with decoupled material model in FE. 

Based on the decoupling approach, we model the yarn using an anisotropic elastic constitutive 

law with distinct Young’s and shear moduli in different directions. This constitutive law is 

defined in the co-rotational frame which is updated with the deformation gradient tensor to 
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accurately trace the local fiber orientation upon large yarn deformation and rotation under the 

RVE deformation. In the prepreg yarns, the very stiff carbon fibers are aligned in the longitudinal 

direction along which the applied load is predominantly present. Meanwhile, the soft uncured 

resin governs the transverse deformation. Therefore, it is straightforward to decouple the yarn 

deformation in the longitudinal and transverse directions by setting both Poisson’s ratios ��� and 

��� to 0. Additionally, to ensure numerical stability, we set the transverse Poisson’s ratio (i.e., 

���) to 0.3. For the yarn shear moduli ���, ��� and ���, we coupled them with the transverse 

modulus of the yarn �� for the ease of calibration and manually adjust them to be from 1 to 25 

times larger than ��. It was found that if the shear moduli are too small compared to ��, the 

artificial bending in Fig. 7 (b) will happen. If they are too large, on the other hand, then 

significant transverse compression of the yarn will be observed even before the yarn-to-yarn 

contact. ��� and ��� to be 15 times larger, and ��� to be 10 times larger than �� are found to be 

able to obtain the similar yarn deformation pattern as that observed experimentally. The unknow 

material properties then are yarn longitudinal modulus ��, transverse modulus ��, and friction 

coefficient μ. The yarn constitutive law is expressed as: 

�� = ������� ∙ �� =

 !
!!!
!!!
!!!
!!
" 1�� 0 0
0 1�� −0.3��0 −0.3��

1��
$

$
10�� 0 0
0 15�� 0
0 0 15��%&

&&&
&&&
&&&
&&
'��

∙ ��, #�*. 3 − 1  
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where � is the yarn local stress, ����� is the compliance tensor, and � is the yarn local strain. 

Once the structure and the material model of the RVE are generated, they are inputted to the 

Abaqus Explicit for FE simulation given the normal true strain along the yarns, the shear angle, 

and the mesoscopic yarn properties. The normal true strain and the shear are applied via the 

periodic boundary condition (PBC) to ensure the accurate representation of the deformation by 

RVE [42]. C3D6 and C3D8 full integration elements are employed for discretization to avoid the 

hourglass issue. After the simulation, the stress of each element is extracted and averaged to 

obtain the stress response of the RVE. The mechanical properties of the mesoscopic uncured 

prepreg yarn including elastic moduli, Poisson’s ratios, and friction coefficient are difficult to 

directly characterize because of the small size, the single yarn specimen preparation, and the soft 

resin. As a result, we manually adjust the unknow material properties at this stage and the stress 

prediction from the RVE is compared to the experimental data. One of the best example 

comparisons is illustrated in Fig. 8 when �� , �� , and μ  are 40	�+, , 15	-+, , and 1.0 , 

respectively. The RVE simulation agrees very well with the experiment result when the shear 

angle is less than 0.6 radian, validating the 2-step approach developed. When the shear angle 

further increases, the discrepancy between the simulation and the experiment becomes large, 

indicating the necessities for a proper calibration algorithm, which will be elaborated on in Sec. 

4. 
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Fig. 8 One bias-extension simulation example using the RVE with ./ = 0$	123, .4 = /5	623, and 7 = /. $: 

(a) Illustration of the von Mises stress contour on the RVE; (b) Comparison of the simulation and experiment true 

shear stress. 

4 Bayesian Calibration of Yarn Material Properties 

In this section, we employ experimental data to 89: Estimate the calibration parameters of our 

RVE simulator (i.e., ��, ��, and μ), 89: Determine whether the RVE simulator is biased, and 8999: 
Build a cheap-to-evaluate emulator to replace the expensive RVE simulator during macroscale 

analyses. To this end, we adopt a modularized version of the Bayesian calibration framework of 

Kennedy and O’Hagan (KOH) [43-45]. The Bayesian model updating formulation of KOH is: 

;8<: = =8<, >∗: @ A8<: @ B, #�*. 4 − 1  

where ;8<: is the true response (which corresponds to experimentally measured stresses in our 

case), < = CD′��, D′��, F′��GH are the controllable inputs, >∗ = C��∗, ��∗, I∗GH  are the true but 

unknown mesoscopic yarn properties (i.e., the calibration parameters) that do not depend on <, 

=8<, >: is the computer simulator, A8<: is the bias function, and B is the zero-mean Gaussian 

noise with unknown variance. D′��, D′�� denote the normal true strain along the warp and weft 

yarns, and F′�� represents the shear angle of the fabric. It is noted that we have distinguished 
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between the generic1 values of > and their true (but unknown) values that correspond to our 

specific material by placing superscripts on the latter ones. The motivation behind including 

A8<: in �*. 4 − 1 is that no computer simulator is a perfect representation of the corresponding 

physical system due to, e.g., our lack of knowledge, simplifying or incorrect assumptions, and 

approximations made to address computational costs. 

The goal of Bayesian calibration is to combine three data sources (experiments, simulations, 

and prior knowledge from our experience in the field) to estimate the unknowns. As illustrated in 

Fig. 9, this process starts by replacing the expensive mesoscopic RVE simulator with the GP 

emulator (aka metamodel) =8<, >:. Then, the uniaxial tension experimental data and the prior 

knowledge on the mesoscopic yarn properties J8>: are used to fit the GP emulator A8<: to the 

bias function. Our reason for introducing A8<: is that even if the true calibration parameters were 

known (which are not) and used in simulations, the stress predictions from the RVE simulator 

might not match with the experiments. At the third stage, the joint posterior distribution of the 

mesoscopic yarn properties J8>|L: are obtained given L, i.e., the collection of experimental and 

simulation data. Finally, the updated emulator is compared against the bias-extension 

experimental data for validation. Once validated, the updated emulator is used as the constitutive 

law to predict the stress response of the RVE under any strain state. In the following subsections, 

we elaborate on each module and provide an extensive tutorial on GP emulation for interested 

readers in the supporting materials.  

We refer the interested readers to [46-49] for detailed discussions on Bayesian updating of 

computer simulators but note here that the adopted Bayesian formulation: 89: quantifies the 

uncertainty in the estimated calibration parameters by finding their joint posterior distribution 
                                                           
1 In a computer simulation, one can choose almost any values for ��, ��,	and I. 
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rather than just a point estimate, and 899: accounts for prior information and various sources of 

uncertainty including noise, lack of knowledge such as simulator biases, and data scarcity 

associated with both experiments and computer simulations. 

 

Fig. 9 (Color Online) Modular Bayesian calibration: The approach has four stages and enables estimating the 

potential simulator bias as well as the joint posterior distribution of the calibration parameters. 

4.1 Module 1: GP Modeling of Mesoscopic RVE Simulator 

The mesoscopic RVE simulator is computationally expensive, rendering Bayesian calibration 

(where the stress needs to be evaluated for many combinations of <  and >) infeasible. For 

instance, the simulation illustrated in Fig. 8 took 2 hours on 6 12-core Xeon processors. To 

address this issue, we replace the simulator with the GP emulator =8<, >:  where < =
CD′��, D′��, F′��GH and > = C��, ��, IGH are defined as before. Once =8<, >: is fitted, it can be used 

for fast prediction of the homogenized mesoscopic stress components � = CM��, M��, M��G for 

arbitrary combinations of < and >. 

To fit =8<, >:, we design 200 space-filling experiments with Sobol sequence [50] in the six-

dimensional space of C<, >G with the input ranges of D′�� ∈ C−2, 2G%, D′�� ∈ C−2, 2G%, F′�� ∈
C0, 1G	O,�9,P , �� ∈ C20, 60G	�+, , �� ∈ C5, 25G	-+, , and I ∈ C0.15, 3G. The ranges for >  are 

chosen wide enough to ensure that the true (but unknown) calibration parameters are covered. 
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The ranges for < are also selected wide enough to cover the stress values that will be experienced 

during double-dome preforming simulation in Sec. 5 where  =8<, >:  will be used as a 

constitutive law. In each simulation, the material properties are set as >� (9 = 1,… , 200) while <� 
is applied as PBCs. To apply the deformation, the normal true strain along the warp and weft 

yarns D′�� and D′�� are first applied and then the RVE is sheared to conform to the target shear 

angle F′��.  

4.2 Module 2: Priors on the Bias Function and Calibration Parameters 

In this module, the experimental data and the priors on A8<: and > are used to estimate the 

parameters of the bias function and the noise variance by maximizing the likelihood that the 

experimental data follow the formulation in �*. 4 − 1 [43, 46, 48, 49, 51]. 

Our experimental data consist of stress-strain curves at 23 ºC from the uniaxial tension and 

bias-extension tests [52], see Fig. 11. We hold out the bias-extension data for validation and use 

20 equally-spaced data points from the uniaxial tension experiment for calibration. The reasons 

for using  20  data points rather than the entire curve are that 89: Computational errors and 

expenses rapidly increase in Bayesian analyses as the dataset size increases, and 899: 20 points 

sufficiently characterize the curve in Fig. 11(c): The stable tensile stage contains information on 

�� while the initial undulation stage (which is significantly influenced by the yarn interactions) 

embodies information on �� and I. 

It should be noted that the stress from the RVE simulation is expressed in the orthogonal 

coordinate which is aligned with the initial yarn directions. The stress from the bias-extension 

test, however, is expressed in the coordinate that aligns 45 º from the initial yarn directions. To 

account for the coordinate transformation, the summation of three stress components from the 
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RVE simulation, i.e., 
8RSSTRUU:� @ M�� , is calculated and compared with the stress from the 

experiment. Due to the symmetry between M�� and M�� in the bias-extension test, the summation 

can be simplified to M�� @ M��. 

We place a GP prior on the bias function which essentially implies that the posterior of A8<: 
is also a GP. GP priors have been successfully used as priors in a wide range of applications to 

model the potential biases of computer simulators where a prior the functional form of the bias 

function is unknown [43, 46, 53-57]. Additionally, as listed in column one in Table 2, we choose 

uniform prior distributions (based on our experience) for > which cover the entire range where 

=8<, >: is fitted over. Uniform prior distributions are preferred (over, e.g., normal distribution) 

since we only know the range of the values that > can take (and not, e.g., their most likely 

values). These ranges are chosen wide enough to ensure that the true (but unknown) calibration 

parameters are covered. Additionally, this choice guarantees that large variances are used to 

avoid diminishing the effect of the experimental data on the joint posterior distribution of > (see 

�*. 4 − 2).  

Table 2. Prior and posterior distribution of the calibration parameters: The priors on > = C��, ��, IG  are 

uniform and denoted with VP98WXYZO	[X\P�, \JJZO	[X\P�:. Unlike the prior, the posterior distributions of the 

calibration parameters are neither uniform nor independent. 

Prior Distribution Posterior Mode 

��~VP9820, 60:�+,,	��~VP985, 25:-+,, I~VP980.15, 3: 
 

^46.8	�+,23.5	-+,1.3 _ 
4.3 Module 3: Posterior of the Calibration Parameters 

Following Fig. 9, the posterior distribution of > is obtained via Bayes’ theorem after the two 

GP metamodels =8<, >: and A8<: are fitted and the noise variance is estimated: 
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J8>|L: = ` × J8L|>:J8>:, #�*. 4 − 2  

where L represents the vector of all the available data from both simulations and experiments, 

J8>|L: is the posterior of the calibration parameters, J8L|>: is the Gaussian likelihood, J8>: is 

the prior, and ̀ is the normalizing constant that ensures J8>|L: integrates to 1. 

Summary statistics of the posterior distribution are provided in Table 2. To obtain more 

insight into the posterior distributions, the marginal distribution of each parameter is calculated 

by integrating out the rest of the parameters from the posterior distribution: 

J8b�|L: = c ` × J8L|>:J8>:>~d �>~�#�*. 4 − 3  

where >~� denotes > without the 9ef element. The results are shown in Fig. 10 and demonstrate 

that the marginal variances are relatively large which was expected since 89: there are multiple 

sources of uncertainty such as experimental and simulation errors and simulator bias, and 899: 
limited data are employed in the Bayesian analysis: the calibration data as shown by the dashed 

black line in Fig. 11(a) is only available on a three dimensional (3D) curve in the 3D strain 

space. It should be noted here that the upper bound on �� is smaller than the homogeneous 

longitudinal Young’s modulus of general cured carbon fiber composite yarns with 50% fiber 

volume fraction (i.e., 110 GPa) because (i) the fiber volume fraction in the uncured prepreg is 

smaller than that in the cured prepreg since the resin flows out under pressure in curing, and (ii) 

the fabric in the uncured prepreg is loose, i.e., the fiber have local waviness which reduces the 

yarn’s longitudinal modulus under tension. Research work in [58] shows a similar uncured 

prepreg yarn’s longitudinal modulus of around 46.4 GPa. 
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Fig. 10 (Color Online) Marginal posterior distributions on the calibration parameters: The posterior and prior 

are indicated with solid blue and dotted red lines, respectively. 

 

4.4 Module 4: Posterior of the Responses 

To predict the stress for an arbitrary deformation state, �*. 4 − 1 can be employed. However, 

since >∗ is not known, > is used in the right-hand side (RHS) of �*. 4 − 1. To eliminate the 

dependency of the RHS on >, the RHS is then integrated with respect to the posterior distribution 

of >. This integration is generally done via, e.g., Monte Carlo methods and quadrature rules [50, 

57, 59-61]. In this work, we use quasi Monte Carlo. 

Fig. 11 illustrates the predictions of the orthogonal stress components by the updated emulator 

under various deformation states. The normal stress M�� is plotted against the normal true strain 

along warp and weft yarns, D′��  and D′�� , for two different values of F′��  in Fig. 11 (a).  

Similarly, the shear stress M�� is plotted in Fig. 11 (b) where its symmetry with respect to D′�� 

and D′�� is evident. Compared to M��, M�� is less sensitive to F′��. It can also be observed that M�� 

monotonically increases as any of the strain components increase. This monotonic behavior is 

also observed in Fig. 11 (a) but is slightly compromised when there is no shear strain (i.e., in the 

red surface). This small inconsistency may be due to 89: dynamic explicit numerical issues such 

as the artificially high strain rate, which reaches to 20 / s under the maximum deformation 
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condition, to reduce the run-time in the RVE simulation, and 899: lack of simulation data with 

very small F′�� which results in extrapolation during the Bayesian calibration.  

In Fig. 11 (c) the uniaxial tension test is plotted. Since this test was used for calibration, the 

model predictions are expected to match the test data. In Fig. 11 (d) the bias extension test and 

our predictions are plotted. Since this data are not used in calibration, this figure illustrates that 

the calibration has been effective in learning the stress-strain behavior. The posterior of the 

resulting GP model (i.e., the left-hand-side in �*. 4 − 1) can now be used as the constitutive law 

of integration points in the macroscopic preforming simulations. 

 

Fig. 11 (Color Online) Posterior mean of the responses: (a) Normal stress as a function of normal true strain 

along the yarns for two different shear angles. (b) Shear stress as a function of normal true strain along the yarns for 

two different fabric shear angle. (c) Uniaxial tension test used in calibration vs. our predictions. (d) Bias extension 

test which is not used in calibration vs. our predictions. 

To demonstrate the effect of including the bias function in �*. 4 − 1, we illustrate its posterior 

distribution in Fig. 12 under the two experimental setup conditions. In the uniaxial tension test, 

the posterior of A8<: is positive, indicating that the stress predictions from the RVE simulator are 

generally smaller (around 10% , compare the y-axis of Fig. 11(c) and Fig. 12(a)) than the 

experimentally measured stresses. The slight curvature in Fig. 12(a) is mainly due to numerical 

errors and noise. In the bias extension test, the posterior of A8<: is initially positive and then 

negative. This implies that our RVE simulator first underestimates the stress and then 
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overestimates it. The underestimation is due to neglecting the large static friction coefficient (due 

to the large relative sliding/rotation between the prepreg yarns during preforming) and only 

including the dynamic coefficient in the RVE. The reason behind overestimation is that in the 

real specimen, when the shear deformation is very large and closed to shear locking, there might 

be some slight sliding and “pull-out” of yarns to reduce the pure shear resistance. This 

deformation mode is not measured during the experiment and is neglected in the RVE as it only 

happens near the shear locking. As a result, the RVE model will overestimate the stress 

prediction when the shear deformation is large.  

 

Fig. 12 (Color Online) Posterior of the bias function: The posterior is obtained under two loading conditions (a) 

uniaxial tension, and (b) bias extension. 

5 Integration of the Mesoscopic Emulator with Macroscopic Preforming Simulation 

As the constitutive law of the 2x2 twill prepreg with uncured thermoset resin, the mesoscopic 

stress emulator obtained in Sec. 4, is implemented into Abaqus Explicit in the non-orthogonal 

coordinate [14] as VUMAT for the macroscopic preforming process simulation. For this 

multiscale constitutive law, the deformation input consists of the normal true strain ε′�� and ε′�� 

along the warp and the weft yarn directions, and the shear angle γ′�� . These inputs are all 

calculated using the non-orthogonal coordinate algorithm. The predicted stress components 

� = Cσ��, σ��, σ��G are obtained in the Abaqus orthogonal material coordinate directly. Hence, 
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the constitutive law does not require coordinate transformation of the stress and has the 

following format: 

^M��M��M��_ = jM��kDl��, Dl��, Fl��mM��kDl��, Dl��, Fl��mM��kDl��, Dl��, Fl��mn , #�*. 6 − 1  

We note that our emulator is learned over the range of D′�� ∈ C−2, 2G%, D′�� ∈ C−2, 2G%, 

F′�� ∈ C0, 1G	O,�9,P. Both tensile and compressive behaviors are considered in the emulator. 

This emulator is applied to each of the five individual integration points in the through-the-

thickness direction of the S4R shell element, and therefore, the bending behavior of the prepreg 

is captured in the preforming simulation. For the deformation states outside these ranges, the 

prepreg will transfer into the shear locking state, and the VUMAT employs the shear locking 

state algorithm from the decoupled non-orthogonal model  [14]. 

The macroscopic double-dome benchmark preforming experiment is simulated with the 

multiscale VUMAT for the prepreg with uncured thermoset resin at 23 ºC. The simulation setup 

is illustrated Fig. 13 (a): One layer of prepreg in ±45 fiber orientation is formed in this process 

where the displacement of the punch is 90 mm, and the binder force increases linearly from 4000 

N to 8200 N based on the experimental measurements. The thickness of the prepreg layer is 

orders of magnitude smaller compared to its length and width, so the prepreg is discretized by 

S4R shell elements to reduce the computational cost. The tools are simulated as rigid bodies, 

hence, their element type will not affect the simulation results. S3 elements are selected to 

discretize the tools because of their excellent auto-mesh capability for complex geometries. The 

friction coefficient between the tool and the prepreg is set to 0.3 according to the experimental 
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measurement. This friction coefficient, as well as the one between the yarn in the mesoscopic 

RVE, is the constant dynamic one. The reason is that the preforming process leads to large 

prepreg deformation which, in turn, results in large sliding between the tools and prepreg at the 

macroscale and large sliding and rotation between the yarns at the mesoscale. Hence, the static 

friction is neglected. 

The simulation result is compared against the one obtained from the tension-shear decoupled 

non-orthogonal material model developed in [14] which is also calibrated via the same 

experimental data. The final prepreg sheet geometry and the yarn angle distribution results are 

demonstrated in Fig. 13 (b) together with the real preformed part. The draw-in distance and the 

yarn angle at the sampling locations from the simulation and the experiment are listed in Table 3. 

The comparison indicates that our method with tension-shear coupling leads to around 4% and 

5% improvement for draw-in and average yarn angle at locations A to F over the decoupled 

model. 
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Fig. 13 (Color online) Preforming simulation: (a) Simulation setup, (b) Final part shapes and yarn angle 

distributions, and (c) Punch force comparison. In (b), the A-E points indicate the yarn angle measuring positions. 

The punch force-displacement curves from the two simulation cases and the experiment are 

compared in Fig. 13 (c). The plots demonstrate that the new multiscale preforming simulation 

method predicts the punch force nearly the same as the experimental one compared to the 

simulation using the decoupled material model, which underestimates the experimental punch 

force by around 26%. The small discrepancy between the forces from the new simulation method 

and the experiment when the punch displacement reaches to over 70	

 may be caused by the 

negligence of the prepreg thickness variation by the shell elements in the simulation. The small 

force discrepancy when the punch displacement ranges from 20 to 50	

, however, may be 

resulted from the fact that the temperature at some locations of the prepreg has not reached to 23 

ºC completed at the initial stage of the preforming, leading to softer material behavior compared 

to the one for the simulation. 

Table 3. Draw-in distance and yarn angle comparison between the simulation and the experiment: The 

simulation results are from the new multiscale material model and the tension-shear decoupled material model. 
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Comparison Draw-in A B C D E F 

Multiscale model 42.25	

 86º 88º 73º 54º 57º 67º 

Decoupled model 40.22	

 89º 89º 71º 40º 45º 65º 

Experiment 49.02	

 80º 88º 71º 49º 56º 66º 

As a summary, our newly developed Bayesian calibrated material model with tension-shear 

coupling for multiscale simulation of prepreg preforming can predict the draw-in distance and 

the yarn angle variation on the preformed prepreg. More importantly, it also predicts the punch 

force history with high accuracy. This new multiscale model, therefore, has stronger predictive 

capability and can serve as a powerful tool for part performance prediction, process parameters 

optimization, material design, and defect analysis for future preforming works. 

6 Conclusion and Future Work 

In this paper, we developed a numerical Bayesian-calibrated characterization method for 

identifying material behavior of a prepreg in preforming based on a new multiscale material 

model consisting of the mesoscopic RVE and the macroscopic process simulation. This method 

can take the tension-shear coupling effect into consideration, which is important for accurately 

predicting preforming force and the resulting blank shape. In our approach, a new 2-step FE 

modeling technique is first developed to generate the mesoscopic prepreg RVE structure. This 

RVE is then utilized to identify the complex tension-shear coupling effect of the woven prepreg 

at the condition of the preforming. The Bayesian calibration is applied to the RVE simulator to 

identify the mesoscopic yarn material properties, which are difficult to be directly measured via 

physical tests. The calibration algorithm also provides an inexpensive but accurate GP emulator 

which replaces the computationally costly mesoscopic RVE simulator that is used at each 
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integration point in the macroscopic preforming simulation. For the multiscale part, the 

mesoscopic stress emulator is implemented into Abaqus Explicit in the non-orthogonal 

coordinate as VUMAT so that the tension-shear coupling effect of the woven prepreg can be 

considered in the mesoscopic preforming simulation. The comparison for preforming a double-

dome geometry used in the benchmark test [29] between the simulation with the new multiscale 

material model, the tension-shear decoupled non-orthogonal model, and the experimental result 

indicates that our new model is superior to the decoupled one and can reliably predict draw-in 

distance, yarn angle distribution, and punch force in the preforming process. 

We calibrated the GP stress emulator via the uniaxial tension test and validated it against the 

bias-extension test. Employing other tests with different loading conditions such as biaxial 

tension will provide additional evidence of the model validity. Additionally, we used material 

properties at constant temperatures while this is not the case in the experiments where the 

cooling effect from tools and air affects prepreg mechanical behaviors. Considering temperature-

dependent properties to achieve a higher accuracy is recommended for future work. Moreover, 

the multiscale method presented here is established in a hierarchical scheme, so the path 

dependency of the prepreg deformation is neglected. The concurrent scheme can be utilized in 

future work for the multiscale preforming simulation to model the prepreg behavior with higher 

fidelity. 
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