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Abstract

Carbon fiber reinforced plastics (CFRPSs) are attracting growing attention in industry because
of their enhanced properties. Preforming of thermoset carbon fiber prepregs is one of the most
common production techniques of CFRPs. To simulate preforming, several computational
methods have been developed. Most of these methods, however, obtain the material properties
directly from experiments such as uniaxial tension and bias-extension where the coupling effect
between tension and shear is not considered. Neglecting this coupling effect deteriorates the
prediction accuracy of simulations. To address this issue, we develop a Bayesian model
calibration and material characterization approach in a multiscale finite element preforming
simulation framework that utilizes mesoscopic representative volume element (RVE) to account
for the tension-shear coupling. A new geometric modeling technique is first proposed to generate
the RVE corresponding to the close-packed uncured prepreg. This RVE model is then calibrated
with a modular Bayesian approach to estimate the yarn properties, test its potential biases against

the experiments, and fit a stress emulator. The predictive capability of this multiscale approach is
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further demonstrated by employing the stress emulatthe macroscale preforming simulation

which shows that this approach can provide accymat@ictions.

Keywords: Prepreg; Preforming; Bayesian Calibration; Gaussian Processes, Multiscale

Smulations

1 Introduction

Carbon fiber reinforced plastics (CFRPs) are of Imutterest in the industry nowadays
because of their superior properties such as highgth-to-weight ratio, high modulus to weight
ratio, good dimensional stability, excellent damagerance, and good corrosion and fatigue
resistance [1-3]. Utilization of these materialshe aerospace and automotive industries leads to
significant weight reduction of equipment systen@mpared to the conventional metal

dominated products; resulting in improved fuel emog and carbon emission [4-6].

To automatically manufacture CFRP parts in largangties, many processes have been
proposed and developed including resin transfedmgl(RTM) [7, 8], fiber deposition [9-12],
pultrusion [13], and thermoforming [14-16]. Thetéat process is a proper choice to produce
parts for transportation equipment as it can pr@va high production rate with relatively
complicated surface geometries, good product guakind low facility cost. In the
thermoforming process, the first step is to staglets of thermoset carbon fiber prepregs (i.e.,
fabric impregnated by uncured thermoset resin)niroptimized fiber orientation combination.
Then, these plane laminates are heated to softeresin and subsequently formed to the desired
3D shape on a press machine during the preformem &inally, the parts are cured to solidify
the resin and achieve the designed part shapd §l.7ln the thermoforming process, most of the

fiber re-orientation is introduced in the preforgiistep which replaces the conventional high-



cost and low-rate hand laying work. Since mecharstifiness and strength of the composites
are mostly affected by the fiber direction [19} tbelection of the preforming parameters such as
process temperature and initial fiber orientatisnimportant to the final part performance

including shear and kink bands development in thawe under various loading conditions [20].

To optimize the preforming parameters and produsfeat-free parts, numerous tests with
different parameter combinations are commonly cotetli[21]. However, the consumption of
raw material and the long development period irsgethe cost and time of production;
hampering the practicality of thermoforming. To eek$ this issue, several computational
models based on the finite element (FE) method baea developed to simulate the preforming
process to predict the fiber orientation, geometvyinkling behavior on the part, and the
forming force [4, 14, 21-24]. For reliable predats, there is a need for characterizing and

employing realistic and accurate material propsiitiethe computational models.

Intra-ply tension and intra-ply shear behaviors thee two important material performances
that dominate the behavior of the prepreg she@étseShear is the most dominant deformation
mode in the composite forming, an internationaladmrative team have developed the widely
accepted bias-extension benchmark test to chaiaeténe intra-ply shear accurately [25].
Uniaxial tension test is also employed by manyasseers for intra-ply tension characterization
because of its convenience in carrying out the THs¢se two tests provide reliable results but
have some drawbacks. The major one is that theysetimited loading states. For example,
the uniaxial tension test can only introduce pwmsion deformation while the bias-extension
test can only introduce pure shear deformation.cegthe coupling between tension and shear

cannot be physically characterized and subsequémiiyemented into the numerical model.



Although in most cases this neglection will noteaff the prediction of geometry and fiber
orientation significantly due to the fact that #teear modulus of the uncured prepreg is always
several orders of magnitude smaller than its tensibdulus, it will introduce errors in the
prediction of preforming stress and punch force &edce, reduce the analysis accuracy of

defects, such as breakage, pull-out, and separattithre fiber yarns.

Several new test devices such as the biaxial terspparatus [26] and the picture frame
apparatus with tension adjustment [27] have beesigded to address the above issue. In
practice, however, even these complex devices tatmeer the entire strain states that the
prepreg will undergo during preforming due to tlemplexity of three-dimensional geometry
and the resulting nonlinear loading paths. Addaibn these experimental characterization
methods are at the macroscale and hence do notdprawightful information on how the
mesoscale composite structure and constituentstafiechanical properties of the materials.

The cost of raw materials and test time also nedsktconsidered in planning experiments.

In this paper, we develop a new multiscale prefagmsimulation method based on the
prepreg characterization by the mesoscopic reptadesn volume element (RVE) to account for
the tension-shear coupling and apply it to the greing simulation of a 2x2 twill thermoset
prepreg. To address the challenge of unknown mhgearameters at mesoscale, a Bayesian
model calibration and validation approach is depetbfor integrating the calibrated mesoscale
stress emulator with macroscale part performamoelations. The flowchart of our approach is
illustrated inFig. 1. Our method starts by accurately modeling the smguc RVE in terms of
both structure and yarn material (aka constitutie®). Then, we calibrate our RVE simulator

against mesoscopic experiments with a modular Bayespproach to estimate the mesoscopic



yarn properties [28] and build an accurate andpeesive stress emulator. We note that this
emulator is learned at the mesoscale and acteasotitorthogonal material constitutive law by
replacing the expensive mesoscale RVE simulatiangagh integration point during the

macroscale preforming analysis. The validity anedpotive power of our approach is tested by

comparing the macroscale simulation and experinheggalts.

Mesoscale Calibration experiments: Macroscale
* Uniaxial tension P
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Fig. 1 (Color online) Flowchart of the developed multiscale preforming simulation method: The Bayesian
calibration utilizes the RVE and experiments toadiitthe yarn properties and the mesoscale strestagmn The
stress emulator is then implemented into the ndmegonal material model for macroscopic prefornmatio

simulation.

The rest of the paper is organized as follows. ét. 2, we summarize the experimental
measurement of the temperature condition during pheforming process for material
characterization. We elaborate on our FE modelihghe mesoscopic RVE (including the
structure construction and the yarn material model)Sec. 3. The developed Bayesian
calibration method that identifies the mesoscopityproperties and builds the Gaussian process
(GP) stress emulator (i.e., mesoscale constituavwg is detailed in Sec. 4. We validate our
approach in Sec. 5 by comparing our macroscale latmn results on the double-dome
preforming process against experimental data. Hpempis concluded in Sec. 6 by summarizing

the contributions and potential future works.



2 Temperature Condition for the Prefor ming Experiment

Preforming is a temperature varying process becaiisthe hot prepreg sheet and the
cold/warm tools used in the process. In our expemtmusing the double-dome benchmark
geometry [29], the thermoset prepreg was firstdebat an oven to around G and then placed
under the press for preforming, d&@. 2 (a). The press was kept at 23 by the coolant within
it for fast production rate, so the temperaturéhefprepreg dropped from the initial value during
the process. The temperature history at the tdjacicenter, the bottom surface center, and one

side point on the top surface of the prepreg arasored by thermocouples and plottedFig. 2

(b).
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Fig. 2 (Color online) Double-dome preforming test setup: (a) The press for the preforming, aflo) the prepreg

temperature history plot. The plot indicates thea prepreg temperature drops rapidly from theahifio °C to
around 23C when it is placed under the press.

The plot indicates that the prepreg reached tadhgerature of around AT in the oven.
Then, it was cooled down gradually to around?@%y the air during the transportation from the
oven to the press. When it was placed under th&sptbe cooling rate increased greatly due to
the heat conduction between the hot prepreg anddliemetal. In particular, the temperature
dropped 2C°C within the first 2 seconds. Meanwhile, it toole foress 10 seconds to contact the

punch and the prepreg and another 6 seconds &hfithie preforming. Therefore, the actual



temperature of the prepreg during the preformiraggss was very close to 23, i.e., the press
temperature. As a result, it is reasonable to perfthe characterization of the prepreg with

uncured thermoset resin and simulate the preforminige fixed temperature of 2G.

3 Mesoscopic RVE Modeling

The RVE is the repeatable unit in the compositeenelt and we model it as dry fabric
without the surrounding resin since the prepregtaioa soft uncured thermoset resin and its
shear stiffness is negligible compared to thatwed composites. Several different approaches
have been developed by researchers to construcs R accurate woven patterns and yarn
geometrical features because of their significafiuénce on the RVE stress response under
deformation. One approach is to directly use CAfitvgare to design and output the RVE
structure [30, 31]. This approach, while being igttHorward and suitable for a specific
composite structure, is time-consuming becausegdoh specific composite, the structure needs
to be drawn individually, and when the yarn surfgeemetries become complex, the yarn cross-
section shape needs to be manually identified. ®memnlize the design process and
accommodate for more composite structures, gearaetmodeling software packages such as
TexGen [32] and WiseTex [33] are developed. Theskages store large libraries for different
composite patterns and can generate the corresgpmE structure given the geometrical
features such as RVE length, yarn width, yarn heighd so on. However, the automatically
generated structures usually have fixed shape efy#iin cross-sections and yarn centerlines.
These simplifications are suitable for loose wowveraterials but result in yarn-to-yarn
penetration in close-packed composites (Sig 3). In this case, fine-tuning the geometry by
modifying the position, dimension [34], or utilijrnon-symmetrical shapes [35] of the local

yarn cross-section is essential. These proceduresever, involve complicated geometry



manipulation and are time-consuming. For capturmgye accurate and detailed structures in
RVE, researchers have recently employed X-ray mrienoography to directly obtain the
geometry of the composites [36-38]. This is a psing technique but is quite expensive and

requires careful image processing.

| <

Fig. 3 (Color Online) Yarn-yarn penetration in the RVE: The white circles illustrate locations of the ydoayarn

penetration in the composite prepreg RVE geometglehgenerated by TexGen.

3.1 Construction of the Mesoscopic RVE Structure

To achieve a fine balance between speed and agcuragenerating the RVE structure, we
propose a novel 2-step geometrical modeling metiitdda one-time post-processing to modify
the local yarn geometry generated by TexGen. Inmethod, the rough composite structure
without yarn-to-yarn penetration is first generalbgdTexGen in Step 1 with the specified woven
pattern and key characteristic sizes, such as wegvattern, yarn width, yarn gap, and yarn
thickness. Then, the mesh and the local yarn @tem corresponding to the structure is
imported to a commercial finite element softwardagus Explicit, in Step 2 to compress the
structure in the thickness direction to satisfy theepreg thickness requirements while
maintaining the already assigned features. Findétlg, deformed mesh and the local material

orientation are exported to build the RVE for vatmaterial characterization.

We employ this method to build a 2x2 twill prepregh uncured thermoset resin developed

by Dow Chemical Company with the surface and cemsgion shown inFig. 4. The



characteristic dimensions of the yarns and theaapethickness of the prepreg are obtained via
the Alicona Infinite Focus microscope and the aalipespectively. The measured data are listed

in Table 1.
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Fig. 4 (Color Online) 2x2 twill prepreg: (a) Surface angb) Cross-section.

Table 1. Characteristic dimensions of the 2x2 twill: The yarn characteristic dimensions (in mm) are iobthvia

the Alicona Infinite Focus microscope and the agerarepreg thickness is measured by the caliper.

Yarn width Yarn gap Yarn thickness Prepreg thickness

2.430 + 0.112 0.004 + 0.004 0.503 + 0.012 0.85+0.15

To construct the RVE structure, we first input #werage values of the yarn width, yarn gap,
yarn thickness, and the 2x2 twill pattern in TexGEable 1 indicates that the yarn gap is very
small, less than 10 um, compared to the yarn tleiskrand the yarn width. To minimize the
yarn-to-yarn penetration, we set the shape of #ma’'y cross-section to lenticular. However, this
simple change is insufficient to avoid the penearatompletely (se€&ig. 3), so we artificially
enlarge the TexGen prepreg structure thickness @86mm to 1.2 mm. The result is illustrated

in Fig. 5 and as it can be observed there is no longer angtmation between different yarns.

()
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Fig. 5 (Color Online) TexGen rough geometry model with the thickness of the prepreg as of 1.2 mm: (a) The

structure, andb) the cross-section of the correspondent mesh.

The drawback of this thickness enlargement, howeés¢hat many gaps are introduced in the
structure. Comparison between the cross-sectiogaman Fig. 4(b) and Fig. 5(b) clearly
demonstrates this loose-packed issue. These mitiffiaps significantly affect the prediction
capability of the RVE simulator: Upon exerting lodle inner gaps will greatly soften the RVE,
reduce the response moduli, and elongate the ummlul@gion. To make such a loosely-packed
RVE behave similarly to the real prepreg, very éaand unrealistic yarn moduli need to be

employed for the yarn material properties.

As a solution, we introduce the compression metm&tep 2 to close these artificial gaps in
the RVE. To this end, two rigid plates are employedcompress the prepreg RVE in the
thickness direction to reduce the thicknes$.85 mm, which is the average value of the real
material, se&ig. 6. This step is performed using the Abaqus expsiciver and its rationality is
supported by the fact that there is no strict aanst for the yarn cross-section shape and the
longitudinal path. Fixed boundary conditions arelegal to the sides of the RVE to avoid
changing its side lengths upon compression. At stége, the mechanical properties of the
prepreg yarn have not be characterized yet bedaegerequire calibration by the RVE, whose
structure has not been obtained yet. As a resulhid compression simulation, the elastic moduli
of the yarn in compression are selected to be d@neesas the existing ones for the also highly
anisotropic cured unidirectional composite. ThesBomn’'s ratios are set to be zero in all
directions to avoid altering the yarn width dudhe yarn deformation in the thickness direction.
It should be noted that these yarn properties aleudilized to generate the RVE structure. They

are not the same as the ones in the following @estifor the prepreg virtual material
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characterization. General contact with the hardtamormal behavior is applied to the yarns

and the plates to avoid the yarn-to-yarn and yasplate penetration during the deformation.

After the compression, the corresponding mesh aoal Imaterial directions of the RVE are
exported to evaluate the dimensions and penetraliom yarn thickness is inevitably reduced by
around6% because of the compression, but it is insignificaampared to the 5% variation of
the real material value. Apart from the thickness other characteristics of this RVE structure

are the same as the ones in the real prepreg,cayarn-to-yarn penetration is observed.

Fig. 6 (Color Online) Prepreg RVE compression in FE software Abaqus. Two rigid plates are introduced to
adjust the RVE thickness.

In summary, our 2-step geometrical modeling apgr@an conveniently generate mesoscopic
RVE structure with accurate characteristic dimemsjaveave pattern, and yarn packing density

of the real material without penetration.

3.2 Mesoscopic Yarn Material Model

In addition to the RVE structure, the yarn matemabdel should also be correctly
implemented to have the RVE simulations corresptonceality. Because preforming is a one-
step loading process on the uncured prepreg whermaterial recovery after the deformation is
not included, the yarns within the RVE can be aslito be purely elastic. Furthermore, the
prepreg yarns that consist of quasi-unidirectiditedrs and uncured resin exbibit a transversely

isotropic material property [39]. Direct implemetida of such a material behavior, however,
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leads to numerical errors considering the yarn-yateractions and yarn cross-section geometry.
We illustrate the possible error with an exampleskghthe compression load is applied along the
width to a single yarn. This loading condition isitg common for the prepreg in shear
deformation where, as illustrated Fig. 7 (a), in the real yarn the fibers rearrange as thenresi
flows. Consequently, the yarn deforms (i.e., imehsions change) while preserving the basic
elliptical shape. In the FE simulation, the yartréated as a continuum with relatively flat cross-
section geometry where, if the transversely isotropaterial model is utilized, numerical errors
such as artificial bending and excessive elemestbdion will appear especially on the edges, as
can be seen ifig. 7 (b). To address this issue, the transverse sheareastbh/compression
behaviors in the yarn material model are decoufdecbntrol the bending and distortion of the
yarn while maintaining its compression property,[4Q]. With this approach, a deformation

mode similar to the real material can be achieasdhown irig. 7 ().

e - — -« —> -
[ [ I

Fiber Bending Avoiding
Rearrangement Behavior Bending

: } '
@D Ly e
132 (a) (b) (©)

Fig. 7 (Color Online) Illustration of the yarn cross-section deformation upon compression along the width
direction: (a) Real material deformation modé)) FE deformation mode with transversely isotropictarial

model, andc) FE deformation mode with decoupled material mad&lE.

Based on the decoupling approach, we model theyging an anisotropic elastic constitutive
law with distinct Young’s and shear moduli in diff@t directions. This constitutive law is

defined in the co-rotational frame which is updateith the deformation gradient tensor to

12



accurately trace the local fiber orientation upargé yarn deformation and rotation under the
RVE deformation. In the prepreg yarns, the verfy stirbon fibers are aligned in the longitudinal
direction along which the applied load is predomthapresent. Meanwhile, the soft uncured
resin governs the transverse deformation. Therefbie straightforward to decouple the yarn
deformation in the longitudinal and transversedioms by setting both Poisson’s ratigs and

v;3 t0 0. Additionally, to ensure numerical stability, wet ghe transverse Poisson’s ratio (i.e.,
v,3) t00.3. For the yarn shear moddli,, G;; andG,;, we coupled them with the transverse
modulus of the yar#, for the ease of calibration and manually adjustrtiio be from 1 to 25
times larger thai,. It was found that if the shear moduli are too krmmampared tcE,, the
artificial bending inFig. 7 (b) will happen. If they are too large, on the othandh, then
significant transverse compression of the yarn wél observed even before the yarn-to-yarn
contact.G,, andG,5 to bel5 times larger, an@,; to be 10 times larger thdf are found to be
able to obtain the similar yarn deformation pattesrthat observed experimentally. The unknow
material properties then are yarn longitudinal mosg#;, transverse modulus,, and friction

coefficienty. The yarn constitutive law is expressed as:

-1 -1
F 0 0
1 03
E R
03 1
do =[s;] " - de = B2 B 10 - de, #Eq.3 — 1
5 0 0
15
0 0 &
15
0 A
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whereg is the yarn local stresESl-j] is the compliance tensor, aads the yarn local strain.
Once the structure and the material model of th& Rye generated, they are inputted to the
Abaqus Explicit for FE simulation given the norntiale strain along the yarns, the shear angle,
and the mesoscopic yarn properties. The normal stteen and the shear are applied via the
periodic boundary condition (PBC) to ensure theueaie representation of the deformation by
RVE [42]. C3D6 and C3D8 full integration elemente amployed for discretization to avoid the
hourglass issue. After the simulation, the strdssazh element is extracted and averaged to
obtain the stress response of the RVE. The medhaproperties of the mesoscopic uncured
prepreg yarn including elastic moduli, PoissonBosa and friction coefficient are difficult to
directly characterize because of the small sizesthgle yarn specimen preparation, and the soft
resin. As a result, we manually adjust the unknoatemal properties at this stage and the stress
prediction from the RVE is compared to the experitak data. One of the best example
comparisons is illustrated ifig. 8 whenE,, E,, andp are40 GPa, 15 MPa, and1.0,
respectively. The RVE simulation agrees very weathvihe experiment result when the shear
angle is less than 0.6 radian, validating the p-siigproach developed. When the shear angle
further increases, the discrepancy between thelaiion and the experiment becomes large,
indicating the necessities for a proper calibraatgorithm, which will be elaborated on in Sec.

4.
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Fig. 8 One bias-extension simulation example using the RVE with E; = 40 GPa, E, = 15 MPa, and u = 1.0:

(a) lllustration of the von Mises stress contour o@ RVE; (b) Comparison of the simulation and experiment true
shear stress.

4 Bayesian Calibration of Yarn Material Properties

In this section, we employ experimental datdijoEstimate the calibration parameters of our
RVE simulator (i.e.E;, E,, andp), (i) Determine whether the RVE simulator is biased, @i
Build a cheap-to-evaluate emulator to replace ttpersive RVE simulator during macroscale
analyses. To this end, we adopt a modularized veisi the Bayesian calibration framework of

Kennedy and O’Hagan (KOH) [43-45]. The Bayesian elaghdating formulation of KOH is:
z(x) =n(x,0") + 6(x) + €, #Eq.4 — 1

wherez(x) is the true response (which corresponds to exgeriatly measured stresses in our
case),x = [e'11,€ 22,7 12]T are the controllable input®* = [E;, E;, u*]T are the true but
unknown mesoscopic yarn properties (i.e., the catitin parameters) that do not dependrpn
n(x, 8) is the computer simulatos(x) is the bias function, anglis the zero-mean Gaussian
noise with unknown variance',,, €',, denote the normal true strain along the warp aaft w

yarns, ang/’,, represents the shear angle of the fabric. It techdhat we have distinguished

15



between the genefizvalues off and their true (but unknown) values that corresptm our

specific material by placing superscripts on thigefaones. The motivation behind including
6(x) in Eq.4 — 1 is that no computer simulator is a perfect repreg®n of the corresponding
physical system due to, e.g., our lack of knowledmeplifying or incorrect assumptions, and

approximations made to address computational costs.

The goal of Bayesian calibration is to combine ¢hdata sources (experiments, simulations,
and prior knowledge from our experience in thedfigb estimate the unknowns. As illustrated in
Fig. 9, this process starts by replacing the expensiveosm®pic RVE simulator with the GP
emulator (aka metamodei)x, ). Then, the uniaxial tension experimental data #ed prior
knowledge on the mesoscopic yarn propeii@) are used to fit the GP emulatifx) to the
bias function. Our reason for introducifi¢x) is that even if the true calibration parametersewe
known (which are not) and used in simulations, gtress predictions from the RVE simulator
might not match with the experiments. At the trstege, the joint posterior distribution of the
mesoscopic yarn propertip$@|d) are obtained gived, i.e., the collection of experimental and
simulation data. Finally, the updated emulator Bmpared against the bias-extension
experimental data for validation. Once validatée, apdated emulator is used as the constitutive
law to predict the stress response of the RVE uadgrstrain state. In the following subsections,
we elaborate on each module and provide an exengterial on GP emulation for interested

readers in the supporting materials.

We refer the interested readers to [46-49] for itetadiscussions on Bayesian updating of
computer simulators but note here that the adop@gkesian formulation(i) quantifies the

uncertainty in the estimated calibration paramebgrdinding their joint posterior distribution

! In a computer simulation, one can choose almoswalues forE;, E,, andu.

16



rather than just a point estimate, diid accounts for prior information and various souroés
uncertainty including noise, lack of knowledge sumh simulator biases, and data scarcity

associated with both experiments and computer sithonis.

Computer . . GP Emulator, | . Posterior of 0,
| Simulation Simulation Data n(x, 8) GP Bias, 6(x) . p(8]d)
a1 | | Meded

I ! E Posterior of
Experimental Pri . : n(x,0),8(x), z(x)
Data rioron 8,p(8)) | Module 4

Validation

Fig. 9 (Color Online) Modular Bayesian calibration: The approach has four stages and enables estinthgng

potential simulator bias as well as the joint pastalistribution of the calibration parameters.

4.1 Modulel: GP Modeling of Mesoscopic RVE Simulator

The mesoscopic RVE simulator is computationallyesgive, rendering Bayesian calibration
(where the stress needs to be evaluated for mampioations ofx and@) infeasible. For
instance, the simulation illustrated Fig. 8 took 2 hours on 6 12-core Xeon processors. To
address this issue, we replace the simulator wita GP emulatom(x,8) where x =
[€'11, €22, 7 12]T and@ = [E,, E,, u]" are defined as before. Ongéx, 0) is fitted, it can be used
for fast prediction of the homogenized mesoscopiess components = [g;4, 055, 0;,] for

arbitrary combinations of andeé.

To fit n(x, @), we desigr200 space-filling experiments with Sobol sequence [BO0fhe six-
dimensional space gk, 8] with the input ranges aof; € [-2,2]%, €5, € [-2,2]%, ¥'1, €
[0,1] radian, E; € [20,60] GPa, E, € [5,25] MPa, andu € [0.15,3]. The ranges fof are

chosen wide enough to ensure that the true (butawRk) calibration parameters are covered.
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The ranges fox are also selected wide enough to cover the staedasvthat will be experienced
during double-dome preforming simulation in Sec.where n(x,0) will be used as a
constitutive law. In each simulation, the matepiedperties are set & (i = 1, ..., 200) while x;
is applied as PBCs. To apply the deformation, tbemal true strain along the warp and weft
yarnse';; ande’,, are first applied and then the RVE is shearedottfam to the target shear
angley’';,.
4.2 Module2: Priorson the Bias Function and Calibration Parameters

In this module, the experimental data and the pr@mrd(x) and@ are used to estimate the
parameters of the bias function and the noise negiedby maximizing the likelihood that the

experimental data follow the formulationfly. 4 — 1 [43, 46, 48, 49, 51].

Our experimental data consist of stress-strainesiat 23°C from the uniaxial tension and
bias-extension tests [52], sEgy. 11. We hold out the bias-extension data for validaand use
20 equally-spaced data points from the uniaxial am&xperiment for calibration. The reasons
for using 20 data points rather than the entire curve are (Ha€Computational errors and
expenses rapidly increase in Bayesian analyseleadataset size increases, &iigl20 points
sufficiently characterize the curve kig. 11(c): The stable tensile stage contains information on
E; while the initial undulation stage (which is sificantly influenced by the yarn interactions)

embodies information of, andu.

It should be noted that the stress from the RVEuktion is expressed in the orthogonal
coordinate which is aligned with the initial yarirettions. The stress from the bias-extension
test, however, is expressed in the coordinatedligiis 45° from the initial yarn directions. To

account for the coordinate transformation, the sation of three stress components from the
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RVE simulation, i.e.@+qz, is calculated and compared with the stress from t

experiment. Due to the symmetry betwegpando,, in the bias-extension test, the summation

can be simplified t@;; + g,.

We place a GP prior on the bias function which etsally implies that the posterior ¢ (x)
is also a GP. GP priors have been successfully asqtiors in a wide range of applications to
model the potential biases of computer simulatdnere a prior the functional form of the bias
function is unknown [43, 46, 53-57]. AdditionalBs listed in column one ifable 2, we choose
uniform prior distributions (based on our exper@ntor @ which cover the entire range where
n(x, ) is fitted over. Uniform prior distributions aregberred (over, e.g., normal distribution)
since we only know the range of the values éhatan take (and not, e.g., their most likely
values). These ranges are chosen wide enough tioeetigt the true (but unknown) calibration
parameters are covered. Additionally, this choicargntees that large variances are used to
avoid diminishing the effect of the experimentaladan the joint posterior distribution @f(see
Eq.4 - 2).
Table 2. Prior and posterior distribution of the calibration parameters. The priors omd = [E,, E,, u] are

uniform and denoted withini(lower bound, upper bound). Unlike the prior, the posterior distributions thie

calibration parameters are neither uniform nor jredelent.

Prior Distribution Posterior M ode
E;~Uni(20,60)GPa, E,~Uni(5,25)MPa, u~Uni(0.15, 3) 46.8 GPa
23.5 MPa
1.3

4.3 Module 3: Posterior of the Calibration Parameters
Following Fig. 9, the posterior distribution @& is obtained via Bayes’ theorem after the two
GP metamodelg(x, 8) andé (x) are fitted and the noise variance is estimated:
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p(0|d) = a x p(d|0)p(0), #Eq.4 — 2

whered represents the vector of all the available dadenfboth simulations and experiments,
p(0]|d) is the posterior of the calibration parametp(gl|0) is the Gaussian likelihoog(8) is

the prior, andx is the normalizing constant that ensuyé8|d) integrates td.

Summary statistics of the posterior distributioe @rovided inTable 2. To obtain more
insight into the posterior distributions, the maajidistribution of each parameter is calculated

by integrating out the rest of the parameters fteenposterior distribution:

p(6ild) = f a x p(d|0)p(8) dO_#Eq.4 — 3
0.

where@ _; denotedd without theit"* element. The results are shownFilg. 10 and demonstrate
that the marginal variances are relatively largéctviwas expected sin€é) there are multiple
sources of uncertainty such as experimental andlatian errors and simulator bias, amd)
limited data are employed in the Bayesian analybis:calibration data as shown by the dashed
black line inFig. 11(a) is only available on a three dimensional (3D) euiw the 3D strain
space. It should be noted here that the upper bowt is smaller than the homogeneous
longitudinal Young’s modulus of general cured carldtoer composite yarns with 50% fiber
volume fraction (i.e., 110 GPa) because (i) therfibolume fraction in the uncured prepreg is
smaller than that in the cured prepreg since thm ifows out under pressure in curing, and (ii)
the fabric in the uncured prepreg is loose, ilee, ftber have local waviness which reduces the
yarn’s longitudinal modulus under tension. Reseasdtk in [58] shows a similar uncured

prepreg yarn’s longitudinal modulus of around 46Ha.
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Fig. 10 (Color Online) Marginal posterior distributions on the calibration parameters: The posterior and prior

are indicated with solid blue and dotted red limespectively.

4.4 Module4: Posterior of the Responses

To predict the stress for an arbitrary deformastate Eq.4 — 1 can be employed. However,
since@” is not knowng is used in the right-hand side (RHS)E¥.4 — 1. To eliminate the
dependency of the RHS @&) the RHS is then integrated with respect to thegy@r distribution
of . This integration is generally done via, e.g., Mo@arlo methods and quadrature rules [50,

57, 59-61]. In this work, we use quasi Monte Carlo.

Fig. 11 illustrates the predictions of the orthogonalstreomponents by the updated emulator
under various deformation states. The normal strgss plotted against the normal true strain
along warp and weft yarns;;; and¢’,,, for two different values of';, in Fig. 11 (a).
Similarly, the shear stress, is plotted inFig. 11 (b) where its symmetry with respect 4Q,
ande’,, is evident. Compared g ,, 0, is less sensitive tp';,. It can also be observed that
monotonically increases as any of the strain coraptmincrease. This monotonic behavior is
also observed ifig. 11 (a) but is slightly compromised when there is no ststain (i.e., in the
red surface). This small inconsistency may be di(i)tdynamic explicit numerical issues such

as the artificially high strain rate, which reaches20 / s under the maximum deformation
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condition, to reduce the run-time in the RVE sintiola, and(ii) lack of simulation data with

very smally’;, which results in extrapolation during the Bayesialtibration.

In Fig. 11 (c) the uniaxial tension test is plotted. Since tkist tvas used for calibration, the
model predictions are expected to match the tdst délaFig. 11 (d) the bias extension test and
our predictions are plotted. Since this data ateused in calibration, this figure illustrates that
the calibration has been effective in learning $iiess-strain behavior. The posterior of the
resulting GP model (i.e., the left-hand-sid&in 4 — 1) can now be used as the constitutive law

of integration points in the macroscopic preformangulations.

Yie=0mm y'p,=1

5
= = Uniaxial tension test S = = Bias extension test
~ QL
S = Model prediction E 10} = Model prediction
S 10 = /
E i 5 <
0. - | ) b
N — i S 9
002 0.02 0.01 002 o 0.5 |
(a) €92 €1 (b) €9 €' © €11 ¢'12=10) (@) Y12

Fig. 11 (Color Online) Posterior mean of the responses: (a) Normal stress as a function of normal true strain
along the yarns for two different shear ang(b}.Shear stress as a function of normal true straingathe yarns for
two different fabric shear angléc) Uniaxial tension test used in calibration vs. predictions.(d) Bias extension

test which is not used in calibration vs. our pc&dns.

To demonstrate the effect of including the biasfiom inEq. 4 — 1, we illustrate its posterior
distribution inFig. 12 under the two experimental setup conditions. & uhiaxial tension test,
the posterior o6 (x) is positive, indicating that the stress predicifmom the RVE simulator are
generally smaller (arounti0%, compare the y-axis ofig. 11(c) and Fig. 12(a)) than the
experimentally measured stresses. The slight aunwam Fig. 12(a) is mainly due to numerical
errors and noise. In the bias extension test, tstepior of§(x) is initially positive and then

negative. This implies that our RVE simulator firahderestimates the stress and then
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overestimates it. The underestimation is due tdemtigg the large static friction coefficient (due
to the large relative sliding/rotation between frepreg yarns during preforming) and only
including the dynamic coefficient in the RVE. Theason behind overestimation is that in the
real specimen, when the shear deformation is \&geland closed to shear locking, there might
be some slight sliding and “pull-out” of yarns teduce the pure shear resistance. This
deformation mode is not measured during the exmarirand is neglected in the RVE as it only
happens near the shear locking. As a result, th& Rwdel will overestimate the stress

prediction when the shear deformation is large.
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Fig. 12 (Color Online) Posterior of the bias function: The posterior is obtained under two loading caod (a)

uniaxial tension, an¢b) bias extension.

5 Integration of the M esoscopic Emulator with Macroscopic Preforming Simulation

As the constitutive law of the 2x2 twill prepregtivuncured thermoset resin, the mesoscopic
stress emulator obtained in Sec. 4, is implememtd Abaqus Explicit in the non-orthogonal
coordinate [14] as VUMAT for the macroscopic prefang process simulation. For this
multiscale constitutive law, the deformation ingonsists of the normal true straip; ande’,,
along the warp and the weft yarn directions, argl shear angle’,,. These inputs are all
calculated using the non-orthogonal coordinate rdlym. The predicted stress components

o = [041,0,2,0;1,] @are obtained in the Abaqus orthogonal materiardioate directly. Hence,
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the constitutive law does not require coordina@ngformation of the stress and has the

following format:

= 0-22(8’11,8,22,)/,12) ,#EQ6_1

012(5'11:5’22’)/'12)

022

! ! !
[011] <711(<g 11 € 22,Y 12)
012

We note that our emulator is learned over the ravfge,; € [—2,2]%, &5, € [-2,2]%,
Y'12 € [0,1] radian. Both tensile and compressive behaviors are cermidin the emulator.
This emulator is applied to each of the five indival integration points in the through-the-
thickness direction of the S4R shell element, dmadefore, the bending behavior of the prepreg
is captured in the preforming simulation. For thefodmation states outside these ranges, the
prepreg will transfer into the shear locking stated the VUMAT employs the shear locking

state algorithm from the decoupled non-orthogonadieh [14].

The macroscopic double-dome benchmark preformingemxent is simulated with the
multiscale VUMAT for the prepreg with uncured theset resin at 23C. The simulation setup
is illustratedFig. 13 (a): One layer of prepreg in £45 fiber orientatiorfasmed in this process
where the displacement of the punch is 90 mm, aadbinder force increases linearly from 4000
N to 8200 N based on the experimental measuremé&hts.thickness of the prepreg layer is
orders of magnitude smaller compared to its leragtth width, so the prepreg is discretized by
S4R shell elements to reduce the computational ddst tools are simulated as rigid bodies,
hence, their element type will not affect the siatian results. S3 elements are selected to
discretize the tools because of their excellenv-amesh capability for complex geometries. The

friction coefficient between the tool and the peapis set to 0.3 according to the experimental
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measurement. This friction coefficient, as wellthe one between the yarn in the mesoscopic
RVE, is the constant dynamic one. The reason it tth& preforming process leads to large

prepreg deformation which, in turn, results in &asiiding between the tools and prepreg at the
macroscale and large sliding and rotation betwlenyarns at the mesoscale. Hence, the static

friction is neglected.

The simulation result is compared against the dotaimed from the tension-shear decoupled
non-orthogonal material model developed in [14] chhiis also calibrated via the same
experimental data. The final prepreg sheet geonwetd/the yarn angle distribution results are
demonstrated ifrig. 13 (b) together with the real preformed part. The drawdistance and the
yarn angle at the sampling locations from the sahoih and the experiment are listedlable 3.
The comparison indicates that our method with tamshear coupling leads to around 4% and
5% improvement for draw-in and average yarn angleeations A to F over the decoupled

model.
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Fig. 13 (Color online) Preforming simulation: (a) Simulation setup(b) Final part shapes and yarn angle

distributions, andc) Punch force comparison. (h), the A-E points indicate the yarn angle measupiogjtions.

The punch force-displacement curves from the twauition cases and the experiment are
compared inFig. 13 (c). The plots demonstrate that the new multiscaléopreng simulation
method predicts the punch force nearly the samé@sexperimental one compared to the
simulation using the decoupled material model, Whinderestimates the experimental punch
force by around 26%. The small discrepancy betweeriorces from the new simulation method
and the experiment when the punch displacemenhesain ove70 mm may be caused by the
negligence of the prepreg thickness variation leyshell elements in the simulation. The small
force discrepancy when the punch displacement safrgen20 to 50 mm, however, may be
resulted from the fact that the temperature at slocetions of the prepreg has not reached to 23
°C completed at the initial stage of the preformiegding to softer material behavior compared

to the one for the simulation.

Table 3. Draw-in distance and yarn angle comparison between the simulation and the experiment: The

simulation results are frothe new multiscale material model and the tenstasdecoupled material model.
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Comparison Draw-in A B C D E F

Multiscale model 42.25 mm 8@ 88 73 540 5P 6r”

Decoupled model | 40.22mm | 8% 89 71° 40° 43 65

Experiment 49.02mm | 80° 8& 71° 49 56 66°

As a summary, our newly developed Bayesian cabbramaterial model with tension-shear
coupling for multiscale simulation of prepreg pmafiing can predict the draw-in distance and
the yarn angle variation on the preformed prepkégre importantly, it also predicts the punch
force history with high accuracy. This new multiscenodel, therefore, has stronger predictive
capability and can serve as a powerful tool fot parformance prediction, process parameters

optimization, material design, and defect analj@iguture preforming works.

6 Conclusion and Future Work

In this paper, we developed a numerical Bayesidibrated characterization method for
identifying material behavior of a prepreg in prefing based on a new multiscale material
model consisting of the mesoscopic RVE and the as&opic process simulation. This method
can take the tension-shear coupling effect intosiaration, which is important for accurately
predicting preforming force and the resulting blastlape. In our approach, a new 2-step FE
modeling technique is first developed to generhterhesoscopic prepreg RVE structure. This
RVE is then utilized to identify the complex tensishear coupling effect of the woven prepreg
at the condition of the preforming. The Bayesialibcation is applied to the RVE simulator to
identify the mesoscopic yarn material propertieBiciv are difficult to be directly measured via
physical tests. The calibration algorithm also jles an inexpensive but accurate GP emulator

which replaces the computationally costly mesoscdgVE simulator that is used at each
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integration point in the macroscopic preforming wiation. For the multiscale part, the

mesoscopic stress emulator is implemented into Adagxplicit in the non-orthogonal

coordinate as VUMAT so that the tension-shear dagpéffect of the woven prepreg can be
considered in the mesoscopic preforming simulatidre comparison for preforming a double-
dome geometry used in the benchmark test [29] eetwtiee simulation with the new multiscale
material model, the tension-shear decoupled ndmgdnal model, and the experimental result
indicates that our new model is superior to theodpted one and can reliably predict draw-in

distance, yarn angle distribution, and punch fancte preforming process.

We calibrated the GP stress emulator via the ualidagnsion test and validated it against the
bias-extension test. Employing other tests witlfedgint loading conditions such as biaxial
tension will provide additional evidence of the mabdalidity. Additionally, we used material
properties at constant temperatures while thisat the case in the experiments where the
cooling effect from tools and air affects prepregctmanical behaviors. Considering temperature-
dependent properties to achieve a higher accusaogycommended for future work. Moreover,
the multiscale method presented here is establishea hierarchical scheme, so the path
dependency of the prepreg deformation is negledtbd. concurrent scheme can be utilized in
future work for the multiscale preforming simulatito model the prepreg behavior with higher

fidelity.
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