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Robust Path Planning via Learning From
Demonstrations for Robotic Catheters

in Deformable Environments
Zhen Li , Chiara Lambranzi, Di Wu , Member, IEEE, Alice Segato , Federico De Marco,

Emmanuel Vander Poorten , Member, IEEE, Jenny Dankelman , Member, IEEE, and Elena De
Momi , Senior Member, IEEE

Abstract—Objective: Navigation through tortuous and
deformable vessels using catheters with limited steering
capability underscores the need for reliable path planning.
State-of-the-art path planners do not fully account for the
deformable nature of the environment. Methods: This work
proposes a robust path planner via a learning from demon-
strations method, named Curriculum Generative Adversar-
ial Imitation Learning (C-GAIL). This path planning frame-
work takes into account the interaction between steerable
catheters and vessel walls and the deformable property of
vessels. Results: In-silico comparative experiments show
that the proposed network achieves a 38% higher success
rate in static environments and 17% higher in dynamic envi-
ronments compared to a state-of-the-art approach based on
GAIL. In-vitro validation experiments indicate that the path
generated by the proposed C-GAIL path planner achieves
a targeting error of 1.26 ± 0.55 mm and a tracking error
of 5.18 ± 3.48 mm. These results represent improvements
of 41% and 40% over the conventional centerline-following
technique for targeting error and tracking error, respec-
tively. Conclusion: The proposed C-GAIL path planner
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outperforms the state-of-the-art GAIL approach. The in-vitro
validation experiments demonstrate that the path gener-
ated by the proposed C-GAIL path planner aligns better
with the actual steering capability of the pneumatic arti-
ficial muscle-driven catheter utilized in this study. There-
fore, the proposed approach can provide enhanced support
to the user in navigating the catheter towards the target
with greater accuracy, effectively meeting clinical accu-
racy requirements. Significance: The proposed path plan-
ning framework exhibits superior performance in managing
uncertainty associated with vessel deformation, thereby
resulting in lower tracking errors.

Index Terms—Deep learning, endovascular intervention,
path planning, steerable catheter, vessel deformation.

I. INTRODUCTION

ENDOVASCULAR procedures are a rapidly emerging field
in medicine. The number of patients treated has constantly

increased over the past few decades [1]. These procedures in-
crease patient comfort, reduce risks, and improve outcomes com-
pared to traditional open surgery. However, navigation through
narrow, fragile, and deformable vessels, using traditional non-
steerable catheters and guidewires, requires considerable skill
and experience [2]. Steerable catheters and navigation guidance
could potentially lower the skill that would be required for
percutaneous treatment [3]. Commercial robotic platforms can
attest to the robot-assisted trend, such as CorPathTM GRX
(Corindus, Waltham, USA), SenseiTM X and Magellan (J&J
robotics, New Brunswick, USA), AmigoTM (Catheter Robotics
Inc. Budd Lake, USA), R-OneTM (Robocath, Rouen, France)
and NiobeTM (Stereotaxis, St. Louis, USA). In the last decades,
different research groups have focused their efforts on the de-
velopment of steerable catheters [4], [5], [6], [7]. For exam-
ple, a proof-of-concept medical robotic platform, composed
of a multi-lumen catheter shaft and magnetically actuated
microcatheter, was developed in [7].

In this study, we explore the application of a novel robotic
catheterization system, as detailed in [7], [8], in the context of
Percutaneous Coronary Intervention (PCI) for Chronic Total
Occlusion (CTO) treatment. This system employs a robotic
catheter, innovatively designed with one to two internal lumens.
These lumens serve the critical function of carrying micro-
catheters with magnetic steering capabilities. A key operational
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TABLE I
STATE-OF-THE-ART PATH PLANNING METHODS FOR ENDOVASCULAR CATHETERIZATION (FROM 2011 TO 2022)

aspect of this system involves the precise navigation of the
robotic catheter to an anchor position proximal to the aortic
root. Upon reaching this location, the magnetic microcatheters
are subsequently deployed into the coronary arteries, setting
the stage for the ensuing treatment procedures. The primary
objective of this research is to develop a safe, accurate, and
robust path planner for the robotic catheter. This path planner is
essential for ensuring the robotic catheter’s efficient navigation
to the aforementioned anchor position near the aortic root.
Limited steering capability underscores the need for reliable
path planning [9]. However, the complex interaction between the
steerable catheter and vessel walls and the deformable property
of the vessels makes reliable and real-time path planning a hard
problem.

This work presents a robust and accurate path planning frame-
work to improve risk management. Specifically, this framework
can reduce the uncertainty in vessel deformation, thereby mini-
mizing tracking errors. The main contributions are:

� proposing a novel path planning approach, named Curricu-
lum Generative Adversarial Imitation Learning (C-GAIL),
which outperforms existing models by offering optimal
path planning while adhering to the constraints of robotic
catheters. Notably, the C-GAIL integrates a Curriculum
Learning (CL) module and a Behavioral Cloning (BC)
module, distinguishing it from models like Proximal Pol-
icy Optimization (PPO) + Generative Adversarial Imita-
tion Learning (GAIL) ([10], [11]), by enabling progressive
training in complex environments from demonstrations;

� presenting a path planning framework for a motorized
steerable catheter, which uniquely considers both the
deformable nature of the environment and the dynamic
movements of the target, setting it apart from existing path
planning methods;

� validating the proposed path planner for a motorized steer-
able catheter in an in-vitro setting using a teleoperation
control strategy. These experiments underscore the algo-
rithm’s feasibility in generating suitable paths that align
with the actual steering capability of the catheter, further
demonstrating the advantages of the C-GAIL model over
a traditional centerline-following approach.

II. RELATED WORK

Over the last decade, several path planning methods for
steerable/non-steerable catheters/guidewires have been pro-
posed to assist clinicians. Table I summarizes the state-of-the-art
from 2011 to 2022, in terms of path planning methodology,
type of medical instrument used, type of environment (presence
of dynamic changes), and type of validation (in-silico, in-vitro,
ex-vivo, in-vivo). In the following a very brief description of the
main types of planners is given. For a more detailed literature
review, please refer to [40], [41].

A. Node-Based (NB) Methods

Node-based algorithms use an information structure to rep-
resent the environment map. Studies [12] and [13] extracted
the vessel centerline and built an exploration tree along the
centerline. The aim of this method is to keep the tip of the
instrument away from the walls. Nevertheless, path exploration
inside the information structure is not mentioned in those stud-
ies. Graph search strategies such as Depth First Search (DFS)
algorithm [14], Dijkstra algorithm [15], [16], [17] and A* al-
gorithm [18], [19] were employed to generate a path solution
in a tubular environment with multi-branches. For movement in
the cardiac chamber, a wall-following strategy employing haptic
vision was developed in [20] by Fagogenis et al. to keep a certain
distance from the heart wall.

B. Sampling-Based (SB) Methods

Sampling-based methods randomly sample in the robot’s con-
figuration space or workspace to generate new tree vertices. Then
collision-free vertices are connected as tree edges. Fauser et
al. [21], [22], [23] introduced a bi-directional Rapidly-exploring
Random Tree (bi-RRT) method for instruments that follow
curvature constrained trajectories in vena cava or aorta. The
study in [24] implemented an improved RRT algorithm for
cerebrovascular interventions. The expansion direction of the
random tree is a compromise between the new randomly sam-
pled node and the target. This strategy can improve the con-
vergence speed of the algorithm. However, their work did not
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take into account any kinematic constraints governing catheter
movement.

C. Optimization-Based (OB) Methods

Path planning can be formulated as an optimization problem
and solved by numerical solvers. Gao et al. [25] proposed an
improved Ant Colony Optimization (ACO) algorithm to plan
an optimal path that also accounted for factors such as catheter
diameter, vascular length, diameter, curvature and torsion. Nev-
ertheless, the high computational time with an average value
of 12.32 s makes it infeasible in real-time scenarios. Qi et
al. [26] formulated the path planning as an optimization problem
under the inverse kinematics modeling of continuum robots.
However, the optimization problem is solved locally without
considering long-term cumulative costs. Li et al. [27] proposed
a fast path planning approach via a local Genetic Algorithm (GA)
optimization. The approach is able to account for constraints on
the catheter curvature, but the optimization algorithm is based
on vessel centerlines that are sensitive to deformations of the
anatomical model.

D. Learning-Based (LB) Methods

Learning-based methods use statistical tools and machine
learning algorithms for path planning. Rafii-Tari et al. [28],
[29] and Chi et al. [10], [30], [31] proposed Learning from
Demonstrations (LfD) approaches to optimize trajectories or
learn motion primitives using expert demonstrations. Zhao et
al. proposed a Generative Adversarial Network (GAN) frame-
work for real-time path planning and evaluated it in 2D-DSA
images [32]. The work in [33], [34], [35], [36], [37], [38], [39]
developed Reinforcement Learning (RL) approaches to predict
a sequence of actions to reach a target. LfD methods based
on GAIL were adapted into other medical scenarios [11], [42]
because of their ability to compromise between learning the dis-
tribution and ensuring the generalization of trajectories. In com-
parison with the PPO + GAIL model employed in neurosurgery
as described in [11], our developed C-GAIL network incorpo-
rates additional enhancements through the inclusion of both the
BC and CL modules. Moreover, the deformation dynamics in
our endovascular intervention setting markedly diverge from
those in neurosurgery. Specifically, deformation in our context
is induced not solely by the catheter’s interaction with the vessel
walls but also by the periodic motion associated with the heart-
beat. Conversely, neurosurgical procedures typically involve a
curvilinear needle trajectory, a simpler navigational challenge
than the complex, long, and tortuous routes encountered in blood
vessel navigation. These distinctions underscore the specialized
challenges of path planning within endovascular interventions
relative to neurosurgical applications.

E. Limitations

Current approaches lack planning capabilities that actually
take into account the deformable nature of the environment,
even while those studies were verified in a soft environment [10],
[13], [19], [20], [30], [31], [39]. Moreover, most of the studies

Fig. 1. Parameterization of a robotic catheter agent: The catheter tip
has configuration qt at time t. The agent can perform an insertion
movement Δl along the yA axis and can bend with angle α about
the xA axis and with angle γ about the zA axis, respectively, in the tip
frame FA. The catheter segments following the tip adopt the previous
configurations sequentially.

that looked at deformable environments were actually developed
for passive, non-steerable instruments [10], [13], [30], [31],
[39]. The wall-following algorithm [20] was only tested on a
short path along the inner heart-wall. This approach could be
considered efficient if there are few feasible routes to reach the
target. However, in scenarios where there are multiple feasible
routes, the solution provided by a wall-following algorithm can-
not ensure optimality and may cause the catheter to enter other
branches along the vessel wall. This algorithm has limited appli-
cation scenarios. For navigation along vessels, wall-following is
not advisable as it could cause the catheter to come into excessive
contact with fragile tissue, plaque or calcium that should actually
be avoided.

In summary, there is a need for a reliable path planner elabo-
rated in this work that takes into account the deformable nature
of the environment and the kinematics of steerable catheters. The
paper is built up as follows. Section III introduces the modeling
and path planning methods. Section IV presents an in-silico and
in-vitro experimental setup, followed by experimental results in
Section V. Conclusions and future directions are summarized in
Section VI.

III. MATERIALS AND METHODS

A. Moving Agent

The tip of the catheter is considered as the moving agent. The
movement of the catheter is fully determined by the tip under
the assumption of Follow-The-Leader (FTL) deployment [3].
While this assumption may not seem very realistic for a catheter
with a single bendable segment, it will be shown that it leads to
reasonable results.

A fixed coordinate frame FA is attached to the tip of the
catheter as shown in Fig. 1. The agent can perform an insertion
movementΔl along the yA axis and can bend with angleα about
the xA axis and with angle γ about the zA axis, respectively. The
pose of the agent is determined and updated at each time step by
the 3-dimensional continuous action space A = [α, γ,Δl]. The
pose is defined by the tip’s positionpt = [x, y, z] and orientation
rt = [α, 0, γ] in a global frame F0. Using a transformation
matrix, the agent configuration qt can be defined by its pose
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Fig. 2. The environment is represented by an aortic anatomy, the
obstacle space Cobst, the free space Cfree, the centerline space
Ccenterline, and the target space Ctarget. The catheter moves from
the start configuration q0 and proceeds to move to reach the target
configuration qg . (a) Top view on the aortic model. (b) Cross-sectional
view of the open lumen of the descending aorta.

as below, where the superscript T means transpose.

qt =

[
R(α, 0, γ) [x, y, z]T

0T 1

]
(1)

The geometric constraints of the catheter, such as its outer
diameter and the length of the distal segment L, along with the
kinematic constraints, such as the maximum bending angle θmax

and the maximum insertion speed, are considered in the agent’s
motion. θtmax is the maximum bending angle the catheter can
bend at time t, given an insertionΔl. The bending angle is within
the range of [−θtmax, θ

t
max]. This range further depends on the

insertion speed vt and time interval Δt because Δl = vtΔt.

θtmax =
θmaxΔl

L
(2)

B. Dynamic Environment

An effective planner should address the level of uncertainty
that is present in this problem. Due to the deformable nature
of vessels, pre-planned paths will deviate from the reality.
Rigidly following such outdated paths may lead to intense
contact with the fragile anatomy. A realistic and auto-adaptive
simulator to predict vessels’ global deformation induced by the
catheter’s contact and cyclic heartbeat motion was proposed in
our previous work [43], [44]. The vessel modeling is based
on a Position-based Dynamics (PBD) approach. It discretizes
an object into a particle system composed of particles. Then
it computes the system’s time evolution by directly updating
particle positions, subject to a set of equality and inequality
constraints. In the developed simulator [43], the deformable
property was calibrated according to a stress-strain curve which
appropriately depicts the biomechanics properties. Moreover,
the heartbeat motion was calibrated according to the averaged
annulus displacement from 60 patients with aortic stenosis.

In this work, for the construction of the 3D dynamic environ-
ment (see Fig. 2), let us define:

� the “configuration space” Cspace as the set of all the
possible agent configurations qt;

� the “obstacle space” Cobst ⊂ Cspace that is the space
occupied by the vessel wall that limits the area in which
the catheter can move;

� the “free space” Cfree ⊂ Cspace that is the set of all
possible agent configurations qt within the aorta lumen
without collisions with other objects;

� the “centerline space” Ccenterline that is the shortest path
computed via the Voronoi Diagram from the descending
aorta to the left and right coronaries;

� the “target space” Ctarget ⊂ Cspace that is the volume
where the target configuration qg can locate. Once the
delivery catheter reaches the target space, a micro-catheter
can be inserted from a channel of the delivery catheter [7].
qg changes randomly at every learning episode within
Ctarget. Importantly, the target moves in concert with
the deformation of the vessels, which is induced by the
catheter’s contact and the cyclic motion of the heartbeat.
This movement is achieved by linking the target with one
of the particles within the PBD system;

� the agent start configuration q0 that is located in the
descending aorta.

C. Path Planning

The path planning problem can be described as: the agent has
to find an admissible set of configurations Qt = {q0, . . ., qg} to
move from a start position p0 ∈ q0 to a target position pg ∈ qg .
The target position is reached when the distance between the
agent and the target is smaller than a distance threshold ε.

The state of the agent consists of its pose, that can be changed
through the actions of rotation and insertion A = [α, γ,Δl].
In training, the agent learns to maximize the reward function
by taking actions according to its policy τ , expressed in the
paragraph Reward Function and by observing its interaction
with the environment, described in the subsequent paragraph
Observations.

1) Reward Function: The reward function R(τ) = rt asso-
ciated with each time step t is designed to optimize the path
according to a combination of multiple criteria: the number of
steps, the number of collisions, reaching the target position,
passing through the centerline waypoints, bending angle. The
reward rt consists of two main parts: rend, a reward added at the
end of a learning episode; rin, a relatively small reward added at
each step during a learning episode. The reward rt is expressed
in (3)–(5).

rt = rend + rin (3)

rend =

⎧⎪⎨
⎪⎩
robst if qt ∈ Cobst

rexit if qt /∈ Cfree and qt /∈ Cobst

rtarget if ||pt − pg|| < ε

(4)

rin = rstep + rcenterline + rbending (5)

� robst is a negative reward that is given if a collision between
the catheter tip and vessel walls is detected. We only
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TABLE II
VALUES OF THE REWARD FUNCTION PARAMETERS

take that collision into account because it has a higher
risk during navigation. An episode terminates when a
non-minor collision occurs;

� rexit is a negative reward when the agent tries to exit from
the open lumen down the descending aorta;

� rtarget is a positive reward given to the agent when it
reaches the target;

� rstep is a negative reward given at each time step. It is set
to keep the total number of steps of the trajectory as small
as possible;

� rcenterline is a positive reward if the agent reaches a
waypoint in Ccenterline;

� rbending is a positive reward that is given when the bending
action is bigger than a threshold. This reward was intro-
duced to overcome the tendency of the network to avoid
producing actions near the catheter’s maximum bending
angle. To pass tortuous areas, the maximal bending range
is often needed to be able to pass.

The values of the reward function parameters obtained with
an empirical method are summarized in Table II. All rewards
are set within the interval of [-1, 1]. The minimum value of “-1”
is assigned to prohibited behaviors such as violent collisions
with the vessel walls. The maximum value of “1” is assigned to
reaching the target, which is the agent’s task. The other rewards
are chosen based on their frequency. For instance, since rstep
occurs very often, if it is not small enough, it can lead to a large
cumulative reward. Similarly, the bending reward also has the
potential to lead to a large cumulative reward. In contrast, the
number of centerline points is relatively small, with only around
100 points, and not all of them are reachable if the catheter
constraints are met. Hence, this positive reward is set slightly
larger.

2) Observations: At every step, the agent collects observa-
tions ot, which are composed of:

� the agent configuration qt;
� the normalized distance from the agent to the target u =

||pg−pt||
dmax

, where dmax is the maximum distance between
the agent and the target when qt ∈ Cfree;

� the direction from the agent to the target v = pg − pt;
� a set of raycast observations oray . Each raycast detects the

presence of the aortic wall along its direction within the
ray length.

3) C-GAIL Network: The new network proposed in this pa-
per, named C-GAIL network, is built around the combination of
the principles of LfD and RL (see Fig. 3). The LfD component
is realized through BC and GAIL networks. The PPO network
has two parts: the actor network provides an action given the
observation; the critic network that evaluates the actor network
using the extrinsic reward and suggests modification according

Fig. 3. The proposed C-GAIL network architecture. The extrinsic re-
ward signal considers the reward given by interacting with the environ-
ment, such as curriculum and PPO modules. The intrinsic reward has a
policy that considers other factors, and it is defined inside the learning
algorithm: for GAIL about the similarity of the path with respect to the
expert demonstrations, for curiosity about the difference between the
predicted and the actual path.

to a gradient ascent policy. The actor network updates its actions
according to three policies: the BC policy, PPO policy, and
the GAIL generator policy. The curiosity module [45] acts as
an intrinsic reward signal that enables the agent to explore its
environment in novel states to help escape local minima of the
policy function. The curiosity module contains an inverse and
forward network. The inverse network predicts the action be-
tween observations, while the forward network predicts the next
encoded observation. The difference between the predicted and
actual encoded observations is defined as the loss of the forward
network. Therefore, through curiosity-driven exploration, the
agent can predict the outcome of its actions and acquire skills that
may be valuable in the future. The curriculum learning module
acts on the environment by progressively adding complexity dur-
ing the training [46]. The curriculum learning module optimizes
the bending angle while respecting the reachable bending range
of the catheter. Specifically, in curriculum learning, the learning
progress is measured through the reward function and once the
agent performance improves, θmax is decreased for the next level
of learning. Finally, the agent is able to try actions in different
reachable bending ranges and obtain globally optimal paths.

The proposed network can be represented as a set of modules
with weights, that define the contribution of each module to
the loss function. These modules interact with the environment
and with each other. The goal is to come up with an optimal
combination of the strengths of the different modules such that
a performance is achieved that exceeds those of the offered
demonstrations. The training is based on the linear combination
of the respective RL and LfD losses:

L = κ(1− μ)LPPO + λLGAIL + κμLBC + νLcuriosity

(6)
where LPPO is the PPO critic network loss (see its definition
in [47]), LGAIL is the GAIL loss [48], LBC is the BC loss [49],
Lcuriosity is the curiosity loss [45]. The weight μ indicates the
degree to which we prioritize the influence of BC over the policy
relative to PPO, with a higher weight indicating a higher learning
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rate of imitation from demonstrations and a lower weight indicat-
ing more operations attempting to maximize reward rather than
imitating. The following weights were found empirically to work
well: κ = 0.2, λ = 0.8, μ = 0.7, ν = 0.02. The GAIL is given
the highest weight because the method combines two paradigms
and reward types, intrinsic and extrinsic. The selection process
for these weights involved a systematic evaluation. Initially, a
wide array of weight combinations underwent testing in pre-
liminary trials to pinpoint those substantially impacting model
performance. This was followed by narrowing our focus to
specific ranges surrounding these effective values. The definitive
weights were selected based on their consistent contribution to
enhanced performance metrics, detailed in Section IV-C.

D. Clinical Workflow for the Proposed Path Planner

Regarding the clinical translation of this work, the anticipated
clinical workflow is designed as follows.

� Firstly, a 3D mesh model is reconstructed from the pre-
operative Computed Tomography Angiography (CTA)
images of a specific patient using the AW server (GE
Healthcare). Based on this 3D model, a patient-specific
deformable environment is built using the PBD simula-
tor [43]. In this simulator, Particle Swarm Optimization
(PSO) is employed to derive the optimal PBD parameters
that accurately replicate the stress-strain curve of blood
vessels and to simulate the vessels’ movements resulting
from heartbeat. The calibration of heartbeat movements is
based on the average annulus displacement derived from
60 patients with aortic stenosis. Furthermore, should data
on the specific properties of a patient’s blood vessels be
available, the simulator can be tailored to reflect patient-
specific characteristics.

� Then, the proposed C-GAIL network undergoes train-
ing with expert-provided, patient-specific demonstrations,
which may encompass approximately 70 instances. This
model can either be trained anew for an individual patient
or adapted from an existing model to accommodate minor
anatomical differences. The training process in the PBD
simulator is expected to take approximately six hours.

� Given the desired target configuration, the proposed C-
GAIL path planner gives a set of configurations to move
from a starting position to the target and outputs an optimal
path for the catheter.

� (optional) A patient-specific phantom is manufactured,
and clinicians can teleoperate the robotic catheter to per-
form in-vitro experiments. The C-GAIL path is rendered
through a Graphical User Interface (GUI), serving as path
guidance for the clinicians. This enables clinicians to ac-
quire experience prior to the actual interventions, thereby
reducing the likelihood of encountering unforeseen situa-
tions.

� For in-vivo, ex-vivo, or clinical practice, the C-GAIL path
is rendered through a GUI and serves as path guidance for
the clinicians. The clinicians can teleoperate the robotic
catheter to reach the clinical target site by following the
C-GAIL path.

IV. EXPERIMENTAL SETUP

The proposed workflow for the simulation and in-vitro user
study is illustrated in Fig. 4. Firstly, a 3D mesh model is re-
constructed from the CTA images of a specific patient, and a
deformable environment is built using the PBD approach [43].
Then, the proposed C-GAIL network is trained using demonstra-
tions provided by experts, which outputs an optimal path for the
catheter. The C-GAIL network utilizes expert demonstrations
to learn and transfer expert experience, which can provide path
references for non-expert users and even autonomous catheters.

In addition to evaluating the path planning algorithm based
on C-GAIL, this paper also includes control experiments (path
following experiments) to verify the feasibility of executing the
planned path. The in-vitro experiments used human-in-the-loop
teleoperation control to guide the catheter along the planned
path. It is worth noting that while control strategies are not the
focus of this paper, they were merely included in the experiments
to evaluate the feasibility and performance of the path planner.
Teleoperation is more commonly used and easier to implement
in practice, making it the method of choice for the in-vitro
experiments. It is important to note that any control algorithm
could theoretically be used to execute the path planned in this
paper.

A. In-Silico Path Planning Setup

1) Hardware Specification: Experiments are carried out on
a computer equipped with an Intel(R) Core(TM) i9-9900KF
CPU @3.60 GHz 3.60 GHz processor and 32.0 GB RAM, with
an NVIDIA GeForce RTX2080Ti GPU card.

2) Experimental Protocol: The purpose of the in-silico ex-
periments is to validate that, given the curvature constraints of
the robotic catheter, the paths obtained by the proposed C-GAIL
network have better performance than the state-of-the-art GAIL
approach in a static environment and are also capable to operate
in a complex dynamic environment.

Training and testing were conducted in a single aortic model.
For the training, 70 demonstrations were recorded using a joy-
stick by one expert user, who performed catheter navigation
through vessels in the aortic model for a PCI. The “expert
user” mentioned pertains to an individual proficient with both
joystick operation and this specific simulator. Future research
endeavors will focus on training cardiologists, who possess at
least five years of endovascular procedure experience, in the
operation of this simulator system. Subsequently, we plan to
collect their demonstrations to further enrich our study. The
number of experiments for comparison was set to 100. Different
start configurations in the descending aorta and possible target
positions were chosen to make the training more generally valid.
There are three possible start configurations distributed within
5.3 cm along the descending aorta. There are five target positions
distributed in a spherical space with a radius of 3 cm near the
coronaries and the vessel walls. Furthermore, the target moves
in response to vessel deformations, which are triggered by the
catheter’s contact and the periodic motion of the heartbeat.
The introduction of variability into the simulation model en-
riches the training data with diverse configurations. While such
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Fig. 4. Workflow for simulation and in-vitro user study. First, a 3D model is reconstructed from CTA images for a specific patient, and a deformable
environment is built. Next, based on expert demonstrations, the C-GAIL network is trained to provide an optimal path. This path is then rendered
through a GUI for the in-vitro experiments and serves as path guidance for users.

TABLE III
TRAINING PARAMETERS FOR C-GAIL AND GAIL

variability may initially impede convergence, it has the potential
to significantly improve the network model’s robustness and
generalizability, as discussed in [50]. The robustness will be
assessed through performance metrics, to be detailed in Sec-
tion IV-C, with a particular focus on success rate and targeting
error.

The C-GAIL network training was carried out in two phases:
pre-training in a rigid, computationally less heavy environment,
where the tuning of the network parameter settings is performed;
re-training in a deformable environment, starting with the previ-
ously tuned network settings. Pre-training helps reduce the time
required to obtain network settings with empirical parameters
and compare the differences in agent behavior under different
settings. The training parameters for the C-GAIL is presented
in Table III.

The work from Chi et al. [10] is used as a reference to compare
with. It’s important to note that we do not directly adopt the
parameters from Chi et al.’s work, as we are addressing different
robotic platforms. Instead, to keep consistency in comparison,
we set the same training parameters for the state-of-the-art GAIL
and our proposed C-GAIL. The GAIL network architecture
of [10] is adopted with minor modifications: each layer has 64
units and a Swish activation function [51]. The GAIL network
undergoes training with an additional set of 70 demonstrations,

recorded by the same expert user and within the same simula-
tion environment as utilized for the C-GAIL training process.
The prior studies by Chi et al. [30], [31] introduced an LfD
method based on Dynamical Movement Primitives (DMPs) and
Gaussian Mixture Models (GMMs). Later, they improved the
RL part by including model-free GAIL loss. Therefore, their
GAIL network model was selected for comparison in our study.
Other methodologies applied in deformable environments, as
summarized in Table I, are primarily designed for passive, non-
steerable instruments. The wall-following technique described
in [20] is not apt for navigating through vessels with multiple
branches. The hybrid A* approach [19] seeks the optimal path
in a 2D plane, whereas the true 3D optimal path is determined
using RRT*. However, RRT* may not be ideal in tightly narrow
and tortuous vessels due to its potential to produce sub-optimal
paths that run dangerously close to vessel walls.

B. In-Vitro Validation Setup

1) Hardware Specification: The in-vitro experimental
setup, including the following devices, is depicted in Fig. 5.

a) Phantom: Experiments were performed in a transpar-
ent, deformable silicone aortic phantom (T-S-N-002, Elastrat
Sarl, Geneva, Switzerland).

b) Robotic catheter: The custom-made robotic catheter
is fabricated out of Nitinol using metal laser cutting technology
and is actuated by four integrated Pneumatic Artificial Muscles
(PAMs) [53], [54]. The outer diameter of the catheter is 7 mm,
and the length is 900 mm. The distal Nitinol segment is 75 mm
long and includes a 50 mm long steerable distal segment. This
steerable distal segment has 2-Degree of Freedom (DoF) bend-
ing motion by concurrently controlling two antagonistic pairs of
the PAMs. The maximum bending angle is 90◦.
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Fig. 5. In-vitro experimental setup to validate the proposed path plan-
ning approach: (a) Silicone aortic phantom; (b) robotic catheter; (c)
Aurora EM field generator; (d) sleeve-based catheter driver; (e) wireless
controller; (f) the GUI as visual feedback.

c) Electromagnetic field generator: An Electromag-
netic (EM) field generator (Northern Digital Inc., Waterloo,
Canada) is placed beneath the phantom. A 6-DoF EM sensor
(Northern Digital Inc., Waterloo, Canada) is embedded at the
tip of the catheter to track its pose.

d) Catheter driver: The robotic catheter driver system
is described in [55]. The sleeve-based catheter driver has two
pneumatically actuated grippers that grasp the catheter alter-
nately and insert the catheter in a relay fashion. The maximum
insertion (and retraction) speed is set as 5mm/s.

e) Joystick: The teleoperated catheter insertion and
bending are realized through velocity control of the catheter
driver and pressure control of the PAMs, respectively, using a
wireless controller (Yues, Dublin, Ireland).

f) GUI: The path planning is visualized by a GUI, which
includes an external projected view showing the aorta, path, and
pose of the catheter tip, and an internal view showing the next
waypoint and suggested bend direction. Guided by the internal
view, users are advised on the optimal direction and degree of
bend needed from the catheter tip’s current position to achieve
precise positioning.

2) Experimental Protocol: The objective of the in-vitro
experiments is to validate whether the path obtained from the
proposed C-GAIL path planner is more compatible with the
actual steering capability of the catheter. Therefore, it can also
be verified whether this path can better help the user steer the
catheter accurately to the target.

For the in-vitro comparison with C-GAIL, we chose the
traditional centerline-following approach. The centerline path is
widely used in interventions [56], [57], whereas GAIL approach

(which was served as a comparison in the in-silico experiments)
has not yet been validated in clinical practice. Moreover, both
GAIL and C-GAIL are RL approaches, which have limited
interpretability. Therefore, it may be suggested to use traditional
approaches in parallel with learning-based approaches in order
to provide a more transparent and explainable analysis. By
comparing C-GAIL with the traditional centerline approach, a
more interpretable comparison can be achieved.

User-involved control experiments were carried out. A single
participant with an engineering background and prior experience
with robotic catheters was involved. This individual had not
participated in the in-silico experiments and was distinct from
the expert user who provided the demonstrations for network
training. In each trial, the user teleoperates with the robotic
catheter, tries to pass through each waypoint, and finally reaches
the target. During experiments, the user is instructed not to
directly observe the transparent phantom. The user is instead
required to rely on visual feedback provided by the GUI dis-
played on a conventional 2D monitor for his (her) teleoper-
ation actions. The GUI provides critical feedback to users. It
displays the catheter’s tip pose, captured through EM tracking.
By visualizing this alongside the rendered phantom, users can
effectively gauge their proximity to the vessel walls. This feature
is instrumental in preventing collisions or applying excessive
force against the vessels. The maximum operation time is set to
3 minutes. If the maximum operation time is exceeded and the
target is still not reached, the experiment will be forcibly stopped
and be regarded as a failure. Setting this stopping criterion can
avoid the following two cases: 1) The user rushes to finish the
experiment without considering the performance; 2) The user
tries excessively to get better performance while the procedure
is very time-consuming.

The user’s performance was compared in two scenarios: with
the C-GAIL assistance and centerline assistance. The waypoints
from Ccenterline were utilized in the centerline-following ap-
proach. The C-GAIL network was trained using different targets
and obtained a path to reach an unseen target (that was not
used during training). To largely eliminate the impact of the
user’s learning curve, the user is required to be pre-trained.
Only when the learning curve converges to a plateau can we
assume that the user has stable catheter manipulation abilities.
The user pre-training experiments are repeated ten times. After
that, control experiments with the same C-GAIL path are con-
ducted ten times. Similarly, the pre-training experiments with the
centerline and the control experiments with the same centerline
are repeated ten times each. The experiments with the C-GAIL
path are first performed to eliminate experience learned from the
other scenario.

C. Performance Metrics

To evaluate clinical performance during endovascular proce-
dures, clinicians typically utilize a range of benchmarks, such as
patient outcomes, procedural success, and safety measures [58].
Engineering studies [59], [60] have focused on objectively de-
termining cardiologists’ proficiency through catheter kinematics
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analysis. Building upon these established evaluation approaches,
our research integrates specific performance metrics to thor-
oughly quantify the performance of in-silico and in-vitro exper-
imental results. The statistically significant difference between
the proposed method and others is evaluated via the Kruskal-
Wallis test in this work, with a significance level of 0.05.

1) Success Rate (δ): Success rate represents the percentage
of successes among the total number of attempts.

δ = ns/n (7)

where ns is the number of successes to reach the target within a
given time, and n is the number of attempts.

2) Timesteps (Ts): For in-silico experiments, at each time
step, the agent receives observations, takes an action according
to its policy and receives rewards. Ts is defined as the number
of time steps moving from the start configuration to the target.

Ts = Ng −N0 + 1 (8)

where N0 and Ng are the first and last time step, respectively.
3) Duration (T ): Duration is the length of time a single

experiment lasts from start to stop. An experiment stops when
the target or the maximum duration has been reached.

T = tg − t0 (9)

where t0 and tg are the first and last timestamp, respectively.
The total duration of the procedure assumes significance not
only in terms of its impact on patient safety but also in relation
to patient comfort and recovery. Prolonged procedures may lead
to increased patient discomfort and extended recovery periods,
making duration a valuable indicator of procedure performance,
particularly with regard to safety. Moreover, extended durations
place a burden on hospital resources, tying up catheterization
labs and medical personnel and potentially escalating opera-
tional expenses.

4) Tracking Error (Tr): Tracking error is the distance be-
tween the in-vitro trajectory obtained from the EM sensor and the
desired path. The desired path is obtained through path planning,
followed by B-spline curve fitting and resampling. This criterion
is used to evaluate the path following capability.

Tr(t) = ||pd
t − pt|| (10)

where pd
t is the desired position and pt is the actual position.

Tracking error is employed as a safety metric, with lower track-
ing errors denoting a trajectory that closely matches the intended
path, thereby indicating a lower likelihood of complications,
including vascular damage.

5) Targeting Error (Ta): Targeting error is the minimum
distance to the target along the trajectory. This criterion is used
to evaluate the accuracy when reaching the target.

Ta = min ||qg − pt|| (11)

Targeting error is utilized as an indicator of procedural technical
success, where reduced targeting error represents precise device
placement.

Fig. 6. In-silico performance comparison between the proposed C-
GAIL network (purple) and the state-of-the-art GAIL network [10] (red),
with respect to (a) example of trajectories, (b) targeting error Ta, and (c)
timesteps Ts. An ablation study of the C-GAIL is presented when μ = 0,
λ = 0 or ν = 0. (∗, p < 0.05 using Kruskal-Wallis test).

V. RESULTS AND DISCUSSION

A. In-Silico Path Planning

The performance comparison of the proposed C-GAIL and
the state-of-the-art GAIL [10] in a static environment is pre-
sented in Fig. 6. The number of experiments for comparison is
set to 100, and results are reported regardless of whether the
target was successfully reached. Fig. 6(a) shows an example
of trajectories obtained by these two approaches. The C-GAIL
approach generates paths with smaller targeting errors (see
Fig. 6(b)). An ablation study of the C-GAIL is also presented,
investigating its performance when μ = 0, λ = 0, or ν = 0. If
we set the threshold ε = 10, the success rate of the C-GAIL
network, originally at 80%, decreases to 11%, 58%, and 48% for
the scenarios when μ = 0, λ = 0, and ν = 0 respectively. The
ablation study results, as shown in Fig. 6(b), indicate that BC,
GAIL and curiosity modules are all critical for accurate target
reaching. Compared to the PPO + GAIL framework utilized
in neurosurgery, as detailed by Segato et al. [11], our C-GAIL
network introduces further advancements by integrating both
the BC and CL modules. The ablation study reveals a significant
decline in performance in the absence of the BC module, i.e.,
when μ = 0. Consequently, it is inferred that the method by
Segato et al. would underperform compared to our proposed
approach. Furthermore, the robustness of the proposed network
is verified by the success rate of the C-GAIL network, that is
80%, compared to that of the GAIL network [10] which is only
42%, when ε = 10 . However, compared to GAIL, C-GAIL
requires more timesteps to reach the target (see Fig. 6(c)). This
indicates that either the path is longer or there are more samples
taken along the path to achieve the same level of path length. The
duration is affected by a large number of failures that often cause
early termination of the experiment. A common failure is that
the path planning tends to stop due to non-minor collision with
the aortic arch and are therefore unsuccessful attempts. Minor
collisions that cause slight deformation within reasonable stress
ranges were considered harmless [61]. In our prior simulator
study [43], the maximum permissible force applied by the user
varies with the anatomical structure involved. For instance, in
the aorta, the maximum force is capped at 0.8N. An absolute
collision force is determined using Newton’s Second Law of
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Fig. 7. In-silico performance of the proposed C-GAIL network in static
and dynamic environments: (a) The intra-operative adaptation of the
pre-operative path qpre when the environment is deformable and the
target moves; (b) Targeting error Ta and (c) Timesteps Ts in static and
dynamic environments. (∗, p < 0.05 using Kruskal-Wallis test).

Motion. A collision is classified as minor if the resultant force
is below the maximum threshold and there is no penetration.

The agent was then trained using pre-trained weights from the
static environment in a dynamic environment, where deforma-
tions are caused by contact with the catheter and the heartbeat
motion. Fig. 7(a) demonstrates the ability of real-time planning
in a complex dynamic environment with deformable vessels and
a moving target. The top zoom-in view shows that the paths of
pre-trained qpre and intraoperatively trained qintra are initially
close and then separate in the aortic arch, where the degree
of deformation is greater. The bottom zoom-in view shows the
change from the initial target position qgpre to the intraoperative
target position qgintra. Fig. 7(b) and (c) present performance
comparisons in static and dynamic environments. The timesteps
are much more in the deformable environment. This is due to
the fact that there are more possibilities when interacting with a
deformable environment than with a static one. Due to the greater
complexity of navigation and low success rate, targeting error is
larger and more widely distributed than in the static environment.
Nevertheless, when considering only the successful trials, the
targeting error is observed to be 4.76 ± 0.57 mm in the static
environment and 7.57 ± 0.65 mm in the dynamic environment,
respectively, demonstrating comparable results. The success rate
of 17% is relatively low but indicates that it is possible to find
a feasible path in a constrained environment, compared to the
success rate of 0% for the GAIL network [10] in the dynamic
environment. A common failure is the inability to reach the
moving targets with a distance threshold of 10 mm. Including
this distance threshold to reach a target in the curriculum module
would improve network performance, such as success rate. This
would be investigated at a later stage. The limited bending
capability of robotic catheters and the presence of moving
targets in deformable environments led to a reduced success rate
within a limited number of timesteps. Despite the relatively low
success rate of C-GAIL, it has outperformed the state-of-the-art
approach.

One limitation of our proposed method, particularly in medi-
cal applications, is the exclusion of blood fluid flow dynamics in

Fig. 8. In-vitro performance comparison between C-GAIL path and
centerline, with respect to (a) tracking error Tr , (b) targeting error Ta,
and (c) duration T . (∗, p < 0.05 using Kruskal-Wallis test).

our developed simulator. To address this, future iterations should
incorporate fluid dynamics, potentially using subject-specific
geometries as suggested in [62], [63]. The presence of blood
introduces friction and resistance against the catheter as it moves
through the vessels [64]. Integrating fluid dynamics could yield
more precise predictions of vessel deformation and catheter
movement. Such enhancements are likely to elevate the realism
of the simulated scenarios, thereby improving the accuracy of
the path planning to better reflect real-world conditions.

B. In-Vitro Validation

To essentially eliminate the impact of the user’s learning
curve, the user is required to be pre-trained. For example, the
learning curve of the targeting error by following the C-GAIL
path decreased from 3.6 to ∼ 2 mm in ten trials. The user can
achieve a targeting error of 0.23 mm in the later stage. Since
the learning curve converges to a plateau, it can be concluded
that the user has stable catheter manipulation ability. A video is
made available showing example experiments of following the
C-GAIL path and the centerline1.

The performance comparison between the C-GAIL path and
the centerline is shown in Fig. 8. The C-GAIL path leads to
a smaller tracking error of 5.18± 3.48 mm. It confirms that
C-GAIL leads to a path that can be followed better by the robotic
catheter. Furthermore, the C-GAIL path also shows a smaller tar-
geting error of 1.26 ± 0.55 mm (Fig. 8(b)). Clinicians typically
indicate an accuracy range of 1–3 mm as acceptable [65], [66].
Therefore, the mean targeting error of 1.26 mm effectively meets
these clinical accuracy requirements. Following the C-GAIL
path takes a longer time than following the centerline. This is
interpretable given that since the user learned that the centerline
waypoints could not be reached anyway when passing the aortic
arch, the user kept inserting the catheter at the maximum bending
angle and spent less effort following the centerline. While in
the other scenario, the user realized that (s)he could follow the
C-GAIL path waypoints. Therefore, it takes a longer time than
following the centerline. Two of the ten experiments with the
C-GAIL path took longer because the user made a retraction
motion in order to re-reach the target more accurately. Both the
C-GAIL path and centerline following experiments had a 100%
success rate. To reduce tracking and targeting errors, future

1https://youtu.be/GhBi_xHTMFw

https://youtu.be/GhBi_xHTMFw
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Fig. 9. Representative in-vitro trajectories (blue) and path guidance
(black) using: (a) C-GAIL path, and (b) centerline.

efforts could explore the use of control input devices offering a
broader range of motion than joysticks, such as haptic devices.

Fig. 9 presents a representative graphical comparison of actual
trajectories and path guidance in two scenarios: following the
C-GAIL path and following the centerline. The trajectories of
the catheter tip following the C-GAIL path are more stable and
smoother, with a curvature of 3.1 ± 26.6 mm −1, compared to
a curvature of 3.5 ± 38.9 mm−1 when following the centerline.
In the other scenario, the catheter tip can follow the centerline
well at the beginning. However, the trajectory then moves away
from the centerline as the catheter passes through the aortic arch
due to the limited bending capability. It is important to clarify
that the trajectory refers to the movement of the catheter tip.
In the in-vitro environment, where gravity plays a role, contact
between the catheter body and the vessel walls is unavoidable.
However, such contact poses minimal risk due to the catheter
body’s non-sharp nature. The focus of this study does not extend
to the catheter’s back-end configuration, which may be pertinent
for advancing to higher levels of autonomy, such as achieving
autonomous navigation along the vessels [40]. For this objective,
capturing the entire catheter’s shape using Fiber Bragg Grating
(FBG) could prove beneficial.

In this research, the robotic catheter operation was facil-
itated through teleoperation. The control technique does not
influence the path planning phase because the catheter’s con-
straints, including its bending capabilities, have been preemp-
tively incorporated. Additionally, this dimension was further
investigated in a subsequent study [67], wherein 15 participants
with diverse experience levels evaluated the system’s effec-
tiveness using C-GAIL path planning within various modes of
interaction.

C. Transferability

To further generalize the proposed path planning frame-
work, in-silico experiments were conducted in a different aortic
anatomy (Materialise NV, Leuven, Belgium). 70 demonstrations
were recorded, and 100 testing trials were performed. The

TABLE IV
IN-SILICO PERFORMANCE OF THE PROPOSED C-GAIL NETWORK IN A

DIFFERENT AORTIC ANATOMY

Fig. 10. Examples of in-silico C-GAIL paths in a different aortic
anatomy (Materialise NV, Leuven, Belgium).

success rate of the proposed C-GAIL network was 79% when
ε = 10. Other performance values with respect to targeting error
and timesteps are summarized in Table IV. Representative paths
obtained by the C-GAIL approach are shown in Fig. 10. These
results indicate the robustness and feasibility of applying the
proposed path planning framework in anatomies with different
geometries.

This paper employs an EM sensor to measure the tip pose,
which has been validated in a phantom study. EM sensor has
demonstrated its efficacy also in in-vivo environments [68],
[69] considering its small size (< 1 mm in diameter and <
10 mm in length) and bio-compatibility. Furthermore, other
sensors, such as FBG sensor, as well as imaging modalities,
can also be utilized to obtain the catheter tip pose and the body
shape. In certain specific cases (e.g., free space), the catheter
tip pose can also be obtained with a sensorless approach, e.g.,
an accurate forward kinematic model if control variables are
provided [54]. One limitation of this study is that there was
no intra-operative environment reconstruction for the in-vitro
experiments. Instead, a simulated deformable model was uti-
lized to predict intra-operative deformations. In clinical settings,
real-time vessel reconstruction from IntraVascular UltraSound
(IVUS) or Optical Coherence Tomography (OCT) images would
be suitable for providing raycast observations elaborated in this
work.

VI. CONCLUSION

This study set out to design a robust path planning approach
respecting the kinematics of robotic catheters and real-time
changes in deformable cluttered environments. This path plan-
ning approach uniquely accounts for both the deformable nature
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of the environment and the dynamic movements of the target,
distinguishing it from existing methods. In-vitro experiments
and an extensive follow-up user study [67] underscore the al-
gorithm’s feasibility in generating suitable paths that align with
the actual steering capability of the catheter and the deformable
environment, thereby enhancing navigation support with greater
accuracy.

The insights gained from this study add to the rapidly expand-
ing field of autonomous navigation for robotic catheters. The
findings of this study suggest that the proposed path planner can
effectively handle the uncertainty present in vessel deformation.

A limitation of our study is the absence of intra-operative
environment reconstruction during the in-vitro experiments. In
clinical practice, real-time reconstruction of vessels using IVUS
or OCT images would be advantageous for generating the
raycast observations discussed herein. Further clinical studies
that involve real-time vessel reconstruction will be carried out.
Additionally, future efforts could benefit from integrating blood
fluid flow dynamics into the simulator, thereby increasing the
realism of simulated scenarios and enhancing path planning
accuracy.

REFERENCES

[1] A. P. Durko et al., “Annual number of candidates for transcatheter aortic
valve implantation per country: Current estimates and future projections,”
Eur. Heart J., vol. 39, no. 28, pp. 2635–2642, 2018.

[2] R. Aggarwal et al., “Virtual reality simulation training can improve inexpe-
rienced surgeons’ endovascular skills,” Eur. J. Vasc. Endovascular Surg.,
vol. 31, no. 6, pp. 588–593, 2006.

[3] C. Culmone et al., “Follow-the-leader mechanisms in medical devices: A
review on scientific and patent literature,” IEEE Rev. Biomed. Eng., vol. 16,
pp. 439–455, 2023.

[4] T. da Veiga et al., “Challenges of continuum robots in clinical context: A
review,” Prog. Biomed. Eng., vol. 2, no. 3, 2020, Art. no. 032003.

[5] A. Ali et al., “First expert evaluation of a new steerable catheter in
an isolated beating heart,” Cardiovasc. Eng. Technol., vol. 11, no. 6,
pp. 769–782, 2020.

[6] N. Nayar, S. Jeong, and J. P. Desai, “Design and control of 5-DoF
robotically steerable catheter for the delivery of the mitral valve implant,”
in Proc. IEEE Int. Conf. Robot. Automat., 2021, pp. 12268–12274.

[7] M. H. D. Ansari et al., “Proof-of-concept medical robotic platform for
endovascular catheterization,” in Proc. Conf. New Technol. Comput. Robot.
Assist. Surg., 2022.

[8] G. Borghesan et al., “ATLAS: Autonomous intraluminal surgery: System
specifications for targeted intraluminal interventions,” 2020. [Online].
Available: https://atlas-itn.eu/d102_main/

[9] A. Favaro et al., “An evolutionary-optimized surgical path planner for
a programmable bevel-tip needle,” IEEE Trans. Robot., vol. 37, no. 4,
pp. 1039–1050, Aug. 2021.

[10] W. Chi et al., “Collaborative robot-assisted endovascular catheterization
with generative adversarial imitation learning,” in Proc. IEEE Int. Conf.
Robot. Automat., 2020, pp. 2414–2420.

[11] A. Segato et al., “Inverse reinforcement learning intra-operative path
planning for steerable needle,” IEEE Trans. Biomed. Eng., vol. 69, no. 6,
pp. 1995–2005, Jun. 2022.

[12] J. Wang et al., “Intravascular catheter navigation using path planning and
virtual visual feedback for oral cancer treatment,” Int. J. Med. Robot.
Comput. Assist. Surg., vol. 7, no. 2, pp. 214–224, 2011.

[13] J.-Q. Zheng et al., “Towards 3D path planning from a single 2D fluoro-
scopic image for robot assisted fenestrated endovascular aortic repair,” in
Proc. IEEE Int. Conf. Robot. Automat., 2019, pp. 8747–8753.

[14] D. Huang et al., “An interactive 3D preoperative planning and training
system for minimally invasive vascular surgery,” in Proc. IEEE 12th Int.
Conf. Comput. Aided Des. Comput. Graph., 2011, pp. 443–449.

[15] H. Qian et al., “Towards rebuild the interventionist’s intra-operative natural
behavior: A fully sensorized endovascular robotic system design,” in Proc.
IEEE Int. Conf. Med. Imag. Phys. Eng., 2019, pp. 1–7.

[16] Y. Cho et al., “Image processing based autonomous guidewire navigation
in percutaneous coronary intervention,” in Proc. IEEE Int. Conf. Consum.
Electron. Asia, 2021, pp. 1–6.

[17] P. Schegg et al., “Automated planning for robotic guidewire navigation
in the coronary arteries,” in Proc. IEEE 5th Int. Conf. Soft Robot., 2022,
pp. 239–246.

[18] S. R. Ravigopal, T. A. Brumfiel, and J. P. Desai, “Automated motion control
of the COAST robotic guidewire under fluoroscopic guidance,” in Proc.
IEEE Int. Symp. Med. Robot., 2021, pp. 1–7.

[19] S. R. Ravigopal et al., “Fluoroscopic image-based 3-D environment
reconstruction and automated path planning for a robotically steerable
guidewire,” IEEE Robot. Automat. Lett., vol. 7, no. 4, pp. 11918–11925,
Oct. 2022.

[20] G. Fagogenis et al., “Autonomous robotic intracardiac catheter navigation
using haptic vision,” Sci. Robot., vol. 4, no. 29, 2019, Art. no. eaaw1977.

[21] J. Fauser et al., “Generalized trajectory planning for nonlinear interven-
tions,” in Proc. Int. Workshop Comput. Assist. Robot. Endoscopy, 2018,
pp. 46–53.

[22] J. Fauser et al., “Planning for flexible surgical robots via Bézier spline
translation,” IEEE Robot. Automat. Lett., vol. 4, no. 4, pp. 3270–3277,
Oct. 2019.

[23] J. Fauser et al., “Optimizing clearance of Bézier spline trajectories for
minimally-invasive surgery,” in Proc. Int. Conf. Med. Imag. Comput. Imag.
Assist. Interv., 2019, pp. 20–28.

[24] J. Guo, Y. Sun, and S. Guo, “A training system for vascular interventional
surgeons based on local path planning,” in Proc. IEEE Int. Conf. Mecha-
tron. Automat., 2021, pp. 1328–1333.

[25] M. Gao et al., “Three-dimensional path planning and guidance of leg
vascular based on improved ant colony algorithm in augmented reality,”
J. Med. Syst., vol. 39, no. 11, 2015, Art. no. 133.

[26] F. Qi et al., “Kinematic analysis and navigation method of a cable-driven
continuum robot used for minimally invasive surgery,” Int. J. Med. Robot.
Comput. Assist. Surg., vol. 15, no. 4, 2019, Art. no. e2007.

[27] Z. Li et al., “Path planning for endovascular catheterization under curvature
constraints via two-phase searching approach,” Int. J. Comput. Assist.
Radiol. Surg., vol. 16, no. 4, pp. 619–627, 2021.

[28] H. Rafii-Tari et al., “Learning-based modeling of endovascular navigation
for collaborative robotic catheterization,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Interv., 2013, pp. 369–377.

[29] H. Rafii-Tari et al., “Hierarchical HMM based learning of navigation prim-
itives for cooperative robotic endovascular catheterization,” in Proc. Int.
Conf. Med. Imag. Comput. And Comput. Assist. Interv., 2014, pp. 496–503.

[30] W. Chi et al., “Trajectory optimization of robot-assisted endovascular
catheterization with reinforcement learning,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst., 2018, pp. 3875–3881.

[31] W. Chi et al., “Learning-based endovascular navigation through the use
of non-rigid registration for collaborative robotic catheterization,” Int. J.
Comput. Assist. Radiol. Surg., vol. 13, no. 6, pp. 855–864, 2018.

[32] Y. Zhao et al., “Surgical GAN: Towards real-time path planning for pas-
sive flexible tools in endovascular surgeries,” Neurocomputing, vol. 500,
pp. 567–580, 2022.

[33] A. T. Tibebu et al., “Towards autonomous robotic catheter navigation
using reinforcement learning,” in Proc. Joint Workshop New Technol.
Comput./Robot. Assist. Surg., 2014, pp. 163–166.

[34] H. You et al., “Automatic control of cardiac ablation catheter with deep
reinforcement learning method,” J. Mech. Sci. Technol., vol. 33, no. 11,
pp. 5415–5423, 2019.

[35] T. Behr et al., “Deep reinforcement learning for the navigation of neu-
rovascular catheters,” Curr. Directions Biomed. Eng., vol. 5, no. 1, pp. 5–8,
2019.

[36] L. Karstensen et al., “Autonomous guidewire navigation in a two dimen-
sional vascular phantom,” Curr. Directions Biomed. Eng., vol. 6, no. 1,
2020, Art. no. 20200007.

[37] J. Kweon et al., “Deep reinforcement learning for guidewire navigation
in coronary artery phantom,” IEEE Access, vol. 9, pp. 166409–166422,
2021.

[38] F. Meng et al., “Evaluation of a reinforcement learning algorithm for vas-
cular intervention surgery,” in Proc. IEEE Int. Conf. Mechatron. Automat.,
2021, pp. 1033–1037.

[39] L. Karstensen et al., “Learning-based autonomous vascular guidewire
navigation without human demonstration in the venous system of a porcine
liver,” Int. J. Comput. Assist. Radiol. Surg., vol. 17, pp. 2033–2040, 2022.

[40] A. Pore et al., “Autonomous navigation for robot-assisted intraluminal
and endovascular procedures: A systematic review,” IEEE Trans. Robot.,
vol. 39, no. 4, pp. 2529–2548, Aug. 2023.

https://atlas-itn.eu/d102_main/


336 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 72, NO. 1, JANUARY 2025

[41] D. Wu et al., “A review on machine learning in flexible surgical and
interventional robots: Where we are and where we are going,” Biomed.
Signal Process. Control, vol. 93, 2024, Art. no. 106179.

[42] A. Pore et al., “Learning from demonstrations for autonomous soft-tissue
retraction,” in Proc. IEEE Int. Symp. Med. Robot., 2021, pp. 1–7.

[43] Z. Li et al., “Position-based dynamics simulator of vessel deformations for
path planning in robotic endovascular catheterization,” Med. Eng. Phys.,
vol. 110, 2022, Art. no. 103920.

[44] Z. Li et al., “Simulation of deformable vasculature for robot-assisted en-
dovascular catheterization,” in Proc. Conf. Int. Soc. Med. Innov. Technol.,
2022, pp. 1–2.

[45] D. Pathak et al., “Curiosity-driven exploration by self-supervised predic-
tion,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 2778–2787.

[46] S. Narvekar et al., “Source task creation for curriculum learning,” in Proc.
Int. Conf. Auton. Agents Multiagent Syst., 2016, pp. 566–574.

[47] J. Schulman et al., “Proximal policy optimization algorithms,” 2017,
arXiv:1707.06347.

[48] J. Ho et al., “Generative adversarial imitation learning,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 29, 2016, pp. 4572–4580.

[49] F. Torabi et al., “Behavioral cloning from observation,” in Proc. 27th Int.
Joint Conf. Artif. Intell., 2018, pp. 4950–4957.

[50] W. Xiao et al., “Multigoal visual navigation with collision avoidance via
deep reinforcement learning,” IEEE Trans. Instrum. Meas., vol. 71, 2022,
Art. no. 2505809.

[51] P. Ramachandran et al., “Searching for activation functions,” 2017,
arXiv:1710.05941.

[52] A. Juliani et al., “Unity: A general platform for intelligent agents,” 2018,
arXiv:1809.02627.

[53] A. Devreker et al., “Fluidic actuation for intra-operative in situ imaging,”
in 2015 IEEE/RSJ Int. Conf. Intell. Robots Syst., 2015, pp. 1415–1421.

[54] D. Wu et al., “Hysteresis modeling of robotic catheters based on long
short-term memory network for improved environment reconstruction,”
IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 2106–2113, Apr. 2021.

[55] O. Al-Ahmad et al., “Force control with a novel robotic catheterization
system based on braided sleeve grippers,” IEEE Trans. Med. Robot.
Bionics, vol. 5, no. 3, pp. 602–613, Aug. 2023.

[56] J. P. Sobocinski et al., “The benefits of EVAR planning using a 3D
workstation,” Eur. J. Vasc. Endovascular Surg., vol. 46, no. 4, pp. 418–423,
2013.

[57] S. Ramcharitar et al., “Technology insight: Magnetic navigation in coro-
nary interventions,” Nature Clin. Pract. Cardiovasc. Med., vol. 5, no. 3,
pp. 148–156, 2008.

[58] E. C. Saricilar et al., “Evaluation of tools to assess operative competence
in endovascular procedures: A systematic review,” ANZ J. Surg., vol. 91,
no. 9, pp. 1682–1695, 2021.

[59] C. Duran et al., “Kinematics effectively delineate accomplished users of
endovascular robotics with a physical training model,” J. Vasc. Surg.,
vol. 61, no. 2, pp. 535–541, 2015.

[60] E. B. Mazomenos et al., “Catheter manipulation analysis for objective per-
formance and technical skills assessment in transcatheter aortic valve im-
plantation,” Int. J. Comput. Assist. Radiol. Surg., vol. 11, pp. 1121–1131,
2016.

[61] X. Ye et al., “A fast and stable vascular deformation scheme for inter-
ventional surgery training system,” Biomed. Eng. Online, vol. 15, no. 1,
pp. 1–14, 2016.

[62] E. L. Schwarz et al., “Beyond CFD: Emerging methodologies for predictive
simulation in cardiovascular health and disease,” Biophys. Rev., vol. 4,
no. 1, 2023, Art. no. 011301.

[63] T. Jianu et al., “Autonomous catheterization with open-source simulator
and expert trajectory,” 2024, arXiv:2401.09059.

[64] R. M. Wagner et al., “Bio-tribology of vascular devices: A review of tis-
sue/device friction research,” Biotribology, vol. 25, 2021, Art. no. 100169.

[65] H. Nijland et al., “Evaluation of accuracy and precision of CT-guidance
in radiofrequency ablation for osteoid osteoma in 86 patients,” PLoS One,
vol. 12, no. 4, 2017, Art. no. e0169171.

[66] F. Bourier et al., “Sensor-based electromagnetic navigation (mediguide):
How accurate is it? A phantom model study,” J. Cardiovasc. Electrophys-
iol., vol. 26, no. 10, pp. 1140–1145, 2015.

[67] D. Wu et al., “Comparative analysis of interactive modalities for intuitive
endovascular interventions,” IEEE Trans. Vis. Comput. Graph., early ac-
cess, Feb. 06, 2024, doi: 10.1109/TVCG.2024.3362628.

[68] M. Ourak et al., “Fusion of biplane fluoroscopy with fiber Bragg grating
for 3D catheter shape reconstruction,” IEEE Robot. Automat. Lett., vol. 6,
no. 4, pp. 6505–6512, Oct. 2021.

[69] X. T. Ha et al., “Robust catheter tracking by fusing electromagnetic track-
ing, fiber Bragg grating and sparse fluoroscopic images,” IEEE Sensors J.,
vol. 21, no. 20, pp. 23422–23434, Oct. 2021.

Open Access provided by ‘Politecnico di Milano’ within the CRUI CARE Agreement

https://dx.doi.org/10.1109/TVCG.2024.3362628


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




