
Predictive 
modelling of 
facial features 
from DNA

G.C.M Jans

Master Thesis

MSc Technical Medicine



 

2 

PREDICTIVE MODELLING OF FACIAL FEATURES FROM 

DNA 

  

 

Guusje Catherina Maria Jans 

Student number: 4318455 

September 30th, 2021 

 

 

Thesis in partial fulfilment of the requirements for the joint degree of Master of Science in 

Technical Medicine 

 Leiden University ; Delft University of Technology ; Erasmus University Rotterdam 

 

 

Master thesis project (TM30004 ; 35 ECTS) 

 Track: Imaging & Intervention 

 Department of oral and maxillofacial surgery, Erasmus MC 

 Department of Radiology and Nuclear Medicine, Erasmus MC 

 December 2020 – September 2021 

 

Supervisors: 

Prof. Dr. Eppo Wolvius 

Dr. Gennady Roshchupkin  

 

Thesis committee members:  

Prof. Dr. Eppo Wolvius  Erasmus MC  Medical supervisor, Chairman 

Dr. Gennady Roshchupkin     Erasmus M  C Technical supervisor 

Dr. Xucong Zhang     TU Delft  Independent evaluator 

An electronic version of this thesis is available at http://repository.tudelft.nl/ 

 

http://repository.tudelft.nl/


 

4 

Summary 
Background: In recent years, attention to the genetic architecture of normal-range variation in facial 

morphology has risen and through GWAS genetic loci associated with facial morphology have been 

identified. However these give no insight in how the face is shaped by genetics. To investigate the 

relationship between the genotype and the phenotype, predictive modelling can be used. Predictive 

modelling is a term used to describe genetic prediction models: tools that aim to predict a phenotype 

from the genotype. 

Objectives: The objective of this project was to investigate the possibility of predictive modelling of 

facial features from DNA. This method could be used to visualize the variation in facial features caused 

by the underlying genetics 

Methods: In this project the LDAK genetic prediction model was used, this is a software package for 

phenotype prediction, which uses multilinear regression. Two different datasets were used for this 

study: Generation R and the Rotterdam Study. Generation R data existed of subjects at the age of nine 

years old and from the Rotterdam study subjects ≥ 45 years old were included. The datasets were 

processed individually. From both datasets, phenotype and genotype data was used. The phenotype 

data consisted of 3D facial meshes that were reduced to 200 endophenotypes with an auto-encoder 

prior to this study, and genotype data consisted of SNPs acquired using genotyping arrays. The 

prediction model was trained on 90% of the data, the other 10% was used for testing, where the facial 

morphology was predicted based on the SNPs. To evaluate the prediction a similarity measure was 

computed between the predicted faces and the ground truth faces. The similarity measure was 

computed between each predicted face and all ground truth faces in the test set, thereafter they were 

ranked in ascending order based on the computed similarity. Next the rank of the true ground truth 

was determined. Based on the ranking, an accuracy plot was constructed for both datasets and the 

accuracy ratios (AR) were computed. 

Results: For the Generation R dataset the AR found was 0.06 for the Generation R dataset and 0.02 

for the Rotterdam Study dataset. The results indicate there is some predictive power, however the 

AR’s are only slightly above the lower bound for presence of predictive performance. Furthermore, 

there was a difference in the AR for the Generation R and Rotterdam Study dataset, which could be 

the result of increased environmental component in facial morphology which reduced the genetic 

predictability. However, currently the predictive power is minimal. This could be caused by several 

factors, such as the number of subjects and prediction model that is restricted to only linear 

relationships.  

Conclusion: The objective of this project was to explore the possibility of predictive modelling of facial 

features from DNA. It was found that there was some predictive power, however this was very limited. 

Research on predictive modelling of facial features is still in early stages and further research is 

required to improve the predictive power. 
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1 Introduction 
Like all organisms humans are defined by their phenotype, this encompasses, amongst other things, 

our physical appearance (1,2). The way we look is part of our identity, it contains information about 

who we are, for example our age, sex and ancestry. Similarity in physical appearance amongst siblings 

and relatives, suggest there is hereditary component. Over the years, numerous studies have been 

conducted investigating the heritability of phenotypic traits (3). The heritability of a trait is determined 

by the variation in phenotype that can be explained genetically. Family and twin studies are therefore 

well suited to investigated the genetic component of traits and have been widely used (3–5). The DNA 

stores the information that is passed on through generations, the inheritable genetic identity (6). In 

1990 an international project started to sequence and map the human genome, called the Human 

Genome Project (7). The Human Genome Project has had an enormous scientific impact and led to 

more research into human genetic variation and its associations with human health (8).  For a long 

time, the focus of genetic research was on the genetics underlying diseases and anomalies, and less 

on the genetics of variation in ‘normal’ phenotypes (9). 

The human face is a complex, multipartite trait containing our most visible and distinguished features. 

It provides the means to communicate with others, show emotions and displays information about 

our health, age, sex and ancestry. Studies have showed that our facial features are shaped by genetic, 

epigenetic, environmental factors and their interactions (10–12). Heritability of facial features is, for 

example, clearly visible in monozygotic twins and, to a lesser extent, amongst related individuals. It 

has been shown that some parts of the face are more susceptible for environmental factors, while 

others are predominantly modelled by genetics (10). In recent years, studies have been conducted on 

the relation between genes and normal-range variation of the face, aiming to develop tools that are 

able to predict facial morphology based on DNA. This concept is known under different terms in 

literature: DNA phenotyping, molecular photofitting and predictive modelling. The terms all represent 

the same concept: predicting the externally visible characteristics of an individually-based on their 

DNA. The added value of this concept compared to GWAS is the visualisation of variation caused by 

facial genetics compared to solely the identification of SNPs affecting phenotype without a measure 

of their effect. 

In this literature study I have explored the topic of predictive modelling of facial features based on 

DNA. I will discuss the potential applications of predictive modelling of the face, the current 

possibilities of the technique. I will discuss in the genetics of facial morphology and the SNPs that have 



 

9 

been identified. In addition, I will explore the different methodologies to go from genotype to 

phenotype, what techniques are available and what steps need to be taken. 

2 Applications of predictive modelling 
Predictive modelling of facial features is still at an early stage; however, it is an interesting subject for 

multiple fields of study. Development of the concept has clinical, forensic and anthropological 

relevance. Predictive modelling has numerous ways to add to our medical knowledge and clinical 

practice. In the past, the focus of genetic research has been on craniofacial anomalies and not on 

normal-range variation of facial shape and features (13). However, understanding the genetics of 

normal-range variation of the face is relevant for multiple reasons. First, understanding the genetic 

architecture of facial features may aide in comprehending the underlying genetic basis of disease traits 

(14). Second, it could aide in unravelling the contributions of genetic and environmental factors on 

facial morphology, since both play a role in shaping the facial features (10,11,15). Third, predictive 

modelling potentially enable identification of shared facial traits, diseases and genes (10,13,16,17). 

Identifying these facial traits can aide in determining (future) health risks and play a role in diagnostics 

and making prognoses (13,17).  

Predictive modelling of facial features is also an interesting subject for forensic purposes. DNA found 

at a crime scene could provide investigators with a description of the person of interest when lacking 

witness reports or when there is no success with conventional DNA profiling, this is called Forensic 

DNA Phenotyping (FDP) (18–20). FDP could potentially narrow down the list of suspects based on facial 

appearance (11). To reconstruct a face from a DNA profile comprehension of the genetic architecture 

and expression mechanisms underlying facial features is required and our knowledge on these 

subjects is limited, therefore FDP currently remains a long way off (20–23). 

Third, predictive modelling of facial features has potential for anthropologic applications (14,18)(18). 

Ancestry and physical appearance are profoundly related; for example skin colour gives away 

information on an individual’s ancestry (13). Moreover, when comparing individuals from distinct 

populations differences in facial morphology are clearly observable, however variation is also present 

within populations (13). Prediction of facial shape of our ancestors could aide in several 

anthropological topics, e.g. where we come from, how and why we have evolved and maybe even 

why we look the way we do (4,13,14)  

3 Current possibilities of predictive modelling 
Numerous studies have been conducted regarding the prediction of externally visible characteristics 

or EVC’s. The current applications of predictive modelling are limited to prediction of  a few traits, 

amongst those are the colour of the eyes, the hair and the skin (21–25). Researchers at the Erasmus 

University Medical Centre have successfully developed a system that is able to predict these three 

pigmentation related traits, called the HIrisPlex-S System (26). The system comprises three separate 

statistical prediction models and the traits are predicted categorically, meaning that for each trait a 

set of colours is predefined. This varies greatly from the true situation, where eye, hair and skin colour 

are on a continuous spectrum. Moreover, the model performance varies and performance best for 

blue and brown eye colour, red hair and dark-to-black skin.  Table 1 provides an overview of the EVC’s 

that are possible to predict based on DNA.  

Advances have been made in the prediction  of other EVC’s such as baldness/hair loss, hair structure, 

presence of moles, height and age, but these attempts have not been successful yet (11,22,30). 

Scientific research into these traits is at different stages, for a few traits research is focused on finding 
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the underlying genetic architecture, while for other traits prediction models have been developed but 

are not distinctive (22). 

 

 

Table 1. This table  provides an overview of the EVC's that can be predicted based on DNA (26–29). 

4 Facial Genetics 
The embryological development of the external face starts during the 4th gestational week, when six 

pharyngeal arches arise, and the development is closely related to neural crest cells (13,31–33).  These 

are pluripotent cells that are major contributors to the facial tissues, they will differentiate into bone, 

cartilages and the majority of the facial connective tissues (34,35). Between the 4th and 8th week major 

development takes place through a series of highly coordinated and precisely timed events (13,32,36). 

By week 8 the externally visible facial features have formed and the skeleton of the face is cartilaginous 

and by week 12 ossification of the face and cranium is in an advanced stage (37,38). Post-natally, the 

face develops following general somatic growth, with periods of steady growth mixed with periods of 

rapid growth (13). The embryological development of the face is well known, meanwhile the 

underlying genetics of facial features remain largely unknown. 

Understanding the genetic architecture of facial morphology could help us understand the origin of 

normal-range variation, differences within and between populations and possibly uncovering the 

genes underlying medical conditions. There is substantial evidence that there is a genetic component 

in the shape of facial features, for example differences between males and females or resemblances 

amongst (monozygotic) twins and between relatives (4,11,13,39). As discussed in section two 

understanding the genetic architecture of the face is relevant for different reasons. In recent years, 

much effort has gone into finding the genetics underlying facial features (13). There are different types 

of studies have contributed to the identification of genes affecting facial morphology (4). Animal, 

dysmorphology, population and familial studies can uncover genetic loci underlying facial morphology 

(4). Once potential marker genes have been identified, there association with the face can be further 

investigated. Finding associations between genes and traits can be done using Genome-Wide 

Association Studies (GWAS) (4). A GWAS tests single-nucleotide polymorphisms (SNPs) for 

associations with phenotypes. As a result of eleven GWAS 271 SNPs affecting facial morphology have 

been identified so far (4,13,33,40–49). Figure 1 provides an overview of the number of SNPs found 

over the last years. As visible in the graph, the number of associated SNPs has progressed slowly up 

to this January, when a study identified 203 SNPs associated to facial morphology (48). While various 

Publication Externally Visible 

Characteristic

No. of SNPs Specification

Sex N/A Determine male/female

Biographic ancestry N/A Categorical prediction, 5 categories 

(Africa, Europe, S. Asia, E. Asia, 

S. America.)

Eye colour 24

Categorical prediction, 3 eye colour 

categories

Hair colour 24

Categorical prediction, 4 hair colour 

categories

Skin colour 36

Categorical prediction, 5 skin 

colour categories

Kukla-Bartoszek et al., 2015 Freckling
10 Categorical prediction, non-, 

medium- or heavily-freckled

Liu et al., 2014
Height 180

Predict tall stature (AUC = 0,75)

Chaitanya et al., 2018

Keating et al., 2013
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populations have been included in the GWAS the studied population was predominantly European, 

with seven studies including solely subjects of European ancestry. Studies including different 

populations have shown that allele frequencies at identified SNPs have large differences between 

populations (44,50). The distinctive differences in facial feature between populations may be reflect 

the underlying genetic variation (51). 

When looking at the associations between SNPs and facial regions, it stands out that multiple SNPs 

are associated to the same facial region, e.g. the nose bridge or chin protrusion. This highlights the 

polygenic nature of the face, where traits are influenced by different, interacting genes (11). The 

contributions of the each SNP to the shared traits are unknown and in prediction models it is often 

assumed that all contribute equally (52). However, it is more likely that the contributions aren’t 

equally distributed, but vary amongst the SNPs (13).  

 

 

Figure 1. Overview of the progress in the number of SNPs associated to facial morphology over the years.  

 

5 From genotype to phenotype 

5.1 Quantification of facial phenotype 
To predict the facial phenotype it is necessary to measure facial traits by quantitative means. There 

are several methods for facial quantification, however due to the complex morphology of the face this 

is challenging task. The accuracy and reproducibility of the quantification is crucial to ensure 

meaningful results in studies regarding genetics and facial phenotype. One method to quantify facial 

phenotype is landmarking. Landmarking is the process of  identifying locations on a face that can be 

reproduced on a second representation, for example the inner corner of the eye. Landmarking can be 

performed on both 2D and 3D facial data (53). Two types of landmarks exist: anatomical landmarks 
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and pseudo-anatomical landmarks. The first ones are defined anatomically, while the second type is 

computed through mathematical definitions.  The procedure of landmarking can be either manual or 

automated (53). Manual annotation is sensitive to inter- and intra-user variations and error-prone 

(53–55). Therefore, automatic methods are preferred and different (semi)automated methods have 

been developed over the years (53,54). However, human influence cannot be fully eradicated, as many 

of the automatic methods are trained on manually annotated faces.. Böhringer et al. has grouped the 

different methods into four classes: template based, active shape, deep learning and generative (53). 

Each of the classes with their own advantages and disadvantages. An overview of the four classes can 

be found in table 2.  Even though landmarking has improved with the development of automatic 

methods, a number of issues remain and landmarking is therefore not the most desirable method to 

quantify facial phenotype. First, landmarks are insufficient to describe curves and surfaces such as the 

cheekbones and forehead, since landmark positions along such  shapes are not homologous and 

therefor reproduction across individuals is impossible (56,57). Second, landmarking focusses on a local 

level of facial phenotype and does not quantify the larger, more general aspects, which are believed 

to be of great importance to facial appearance (53,58).  

 

A different method to quantify facial phenotype are dense surface models (DSM’s). A DSM of a face is 

a digital representation of the face consisting of points in a 3D-space (59). There are different 

automatic methods developed to create DSM’s of faces. One of the methods to build a DSM of a face 

is described by Hutton et al. (60). They start with nine manually placed landmarks which are 

biologically homologous, such as the inner and outer corners of the eyes and mouth. From there they 

build a 3D point distribution model using thin-plate spline warping. In figure 2 a dense surface model 

is shown created with Hutton’s method (60).  

Landmarking method Specification Strengths Weaknesses

Template based models

These models use a template for a landmark that is derived from 

training samples and will be used for comparison on a target 

image. A template is can be average image patches around 

landmarks or a full set of image patches. The template can be 

raw image pathes or a transformation like a wavelet transform. 

Can handle texture 

information very well

This methods is very dependent on the 

image registration.

Geometrically not flexible: poor 

performance when the image differs 

greatly from training data. 

Active shape models

Active shape models place a graph on an image and try to align it 

with the existing edges. The graph is often trained on a sample 

set, in this way it has seen 'possible shapes'. This improves the 

procedure

Has the ability to 

capture and predict 

facial expression

Performance depends on distinctive and 

well-recognizable edges

Deep learning Deep learning models consists of algorithms that iteratively 

estimate parameters in order to optimize the outcome of the 

learning objective. 

Pre-processing of the 

input images is not 

required. 

The models require large trainingsets, 

need careful tuning and the algortihm is a 

'black box'.

Generative models Alternative approaches that do not belong to the other categories. 

For example atlas based methods, where an atlas containing the 

landmarks is transformed to match the new images.

NA NA

Table 1. An overview of the different landmarking methods described by Böhringer et al. (2019), a specification of the methods, 
their strengths and weaknesses (53). 



 

13 

 

Figure 2. A dense surface model created by Hutton et al. (60) 

Despite of the progress in methods for quantification of facial phenotype, it remains a complex task. 

One of the difficulties of quantification of facial shape is the influence of pose and emotions as the 

both lead to variations in the face  (61). 

5.2 Prediction models 
There are several approaches to predicting traits from SNPs, in this section I will discuss the different 

models proposed in literature and the necessity of representative heritability models. Most of the 

prediction models discussed in literature are an extension to linear regression. Zhang et al. (2020) 

tested four different prediction models for 14 different traits, binary, categorical as well as continuous 

traits (52). They developed software containing the prediction models: lasso regression, ridge 

regression, Bolt-LMM (linear mixed model) and BayesR. These are all extensions to linear regression, 

and each model has different prior distributions regarding the SNP effect sizes. There was no tool with 

the best overall performance, the best-performing tool depended on the trait predicted. However, in 

all cases it was either Bolt-LMM or BayesR. The Bolt-LMM uses a Bayesian linear mixed model to test 

the association between SNPs and traits. The linear mixed model contains both the fixed and random 

effects attributed to SNPs (62). BayesR or Bayesian linear regression uses probability distributions 

rather than point estimates, it assumes the outcome comes from a probability distribution (63). The 

estimated outcome is improved as more data is gathered. The method of BayesR was also 

implemented in a prediction model by Lloyed-Jones et al. (64). In these two studies they did not aim 

to predict facial characteristics, therefore it is unknown if the used prediction models are fitting for 

facial phenotype. However, they did include a number of the phenotypes that were continuous as is 

the facial phenotype. The highest reported R2 values for the continuous traits by the Bolt-LMM and 

BayesR prediction models were 0.345 and 0.352 respectively. Thus the effect size of the prediction 

models is weak, however this can be caused by varies reasons and does not have to be the direct 

effect of the algorithms. 

Claes (2014) and Fagertun (2015) did compute prediction models for facial phenotypes (11,12). Claes 

et al. (2014) used an extension to linear regression: bootstrapped response-based imputation 

modelling (BRIM) (12).  The algorithm uses response variables to compute one or more predictor 

variables: the response-based imputed predictor variable (RIP). The RIP variables models the effect of 

input variables on facial phenotype, with input variables being sex for example. A principal component 

analysis was performed to construct a model of the face from a 3D representation of the face, for each 

PCA a RIP variable was computed. They found that ancestry and sex had a higher effect size than the 

individual SNPs. This directly issues the shortcomings of the method; they don’t account for polygenic 

effects. By testing each SNP individually the effect of gene interactions is not taken into account, whilst 
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it is known that the face has of a the polygenic nature (48). Fagertun et al. (2015) applied linear 

regression in their prediction model (11). First they computed 37 principal components of the facial 

phenotype, the shape components. They performed their research with 2D data. A GWAS was 

performed on the shape components and determined the genetic principal components. Thereafter, 

the performed linear regression on each shape component. The found 6 shape components that could 

be predicted with statistical significance. The complexity of the face is not well represented by 2D 

data, which makes it difficult to determine the suitability of this method of predictive modelling of 

facial phenotype.  

Beside the prediction algorithm, there are other factors that contribute to the performance of the 

prediction. First, the heritability model used in the prediction model. The heritability model describes 

the expected heritability contributed by each SNP. It is often assumed that all associated SNPs have 

the same contribution (52). Zhang et al. (2020) has proven that by using different heritability models, 

for example heritability models where the contribution of a SNP is attributed to minor allele 

frequencies or local levels of linkage disequilibrium and functional annotations, the performance of 

the prediction models increases (52). Thus, taking the polygenic nature of traits into account improves 

the performance of the prediction model. Second, the sample size for training the prediction models 

influences the performance of prediction models. Zhang et al (2020) tested the effect of enlarging the 

sample size and found that enlarging the training set by a quarter led to an 19% increase in the effect 

size (R2) of the prediction model (52).  

6 Discussion 
Predictive modelling of facial phenotype from DNA is a rapidly evolving field, which has gotten more 

and more attention over the past years. There are several reasons as to why it is an interesting subject, 

as it has potential applications for multiple fields. First, predictive modelling is an interesting subject 

for the medical field and there are several potential applications for the technique within this field. 

Second, the technique is very interesting for forensic purposes as it could aide in reconstructing the 

appearance of a suspect. Third, predictive modelling could be used for several anthropological 

applications, such as how and why humans have evolved. Currently, there are a few prediction tools 

available for externally visible characteristics based on genetic information, such as the colour of the 

eyes, the hair and the skin. Researchers have tried to predict other traits, such baldness pattern and 

hair structure, however attempts have been futile so far. To predict facial phenotype, understanding 

of the underlying genetic architecture is required. In 2012 the first SNPs associated with facial regions 

were identified, two separate studies found six SNPs in total. Currently there have been 271 SNPs 

identified, with some SNPs overlapping the associated regions. This highlights the polygenic nature of 

the face, where several genes affect a feature. In addition to understanding the genetic architecture 

of the face, two other components are crucial for predictive modelling: a quantification method of 

facial phenotype and a prediction algorithm. First, The face is a complex structure which makes it 

difficult to capture the shape correctly, one of the methods to quantify the facial phenotype is 

landmarking. However, landmarks are suitable to capture curves and surfaces, and are therefor not 

preferable for predictive modelling. A different method is dense surface models, which are a 

representation of the face in a 3D space and is better suited for capturing the complex morphology. 

Second, the prediction method has to model the relationship between the SNPs and the phenotype. 

The prediction methods currently used are extensions to linear regression, the performance of the 

methods remains low and the models have a small effect size. 

Due to the complexity of the genetic architecture, complex morphology of the face and the unknown 

relationship of between the genotype and phenotype, predictive modelling is very challenging task. 
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The prediction methods currently used have not reached high effect size. Artificial intelligence, and 

deep learning in particular, can be a future direction for predictive modelling of the face.  Deep 

learning is very well suited for challenging problems because of its ability to handle large datasets and 

model complex relationships. Novel deep learning algorithms allow for  interpretable neural networks 

and enable the linkage of genes to specific traits. Therefor, exploring these techniques could help in 

the further development of predictive modelling of facial shape from DNA.  
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1 Introduction 
 

The face is one of our most important human features, it houses four of our five senses and provides 

the means to communicate with others. It enables us to show emotions, express ourselves and holds 

clues regarding one’s identity: our age, sex and ancestry. This results in the face being a complex, 

multipartite structure. Even more so since each face is unique and distinguishable, yet every face is 

composed of the exact same features: two eyes, a nose, a mouth, cheekbones, a jawline etcetera. 

The development of the face starts during the fourth gestational week and follows a precisely-timed 

path of gene expressions and molecular interactions (1). Postnatally, the face develops following a 

pattern of periods with steady growth mixed with periods of rapid growth, peaking during puberty (1). 

The development of the face is influenced by genetic, environmental, epigenetic factors and their 

interactions (2–4). The influence of the genetic component can be seen in resemblances amongst 

relatives and the likeness between monozygotic twins. The influence of environment is present from 

the moment of conception and continues to influence facial morphology during the whole lifetime 

(1,2,5). Research has found that some regions of the face are more influenced by environmental 

factors while others are predominantly shaped by genes (1). The genetic influence on a phenotype, in 

this case facial morphology, is quantified as the heritability; the proportion of variation in a phenotype 

explained by genetic variance (2,6). Djordjevic et al. investigated the genetic contributions to facial 

morphology, and found that genetic component explain up to 70% of phenotype variance, with some 

regions being more susceptible to genetic influences than others (2). 

While it is known that a large portion of phenotypic variance is explained by genetics, the underlying 

genetic architecture is mostly unknown (1,7). For a long time, the focus of genetic research was on 

the genetics of diseases and not so much on the genetics of normal-range variation (1,2). Recently, 

this field has gotten more attention and a number genetic loci underlying facial features have been 

identified through multiple studies (8–19). Understanding the genetic architecture is relevant for 

several reasons. First, understanding the genetics of normal-range variation may aide in the 

comprehension of the genetic basis of diseases (20). Second, it could help unravelling the 

contributions of genetic and environmental factors on the face. 

The high heritability and genes associated with facial morphology are part of identifying the genetic 

architecture of the facial features, however these don’t give insight in how the facial features are 

shaped by genetics. To investigate the relationship between the genotype and the phenotype, 

predictive modelling can be used. Predictive modelling is a term used to describe genetic prediction 

models: Tools that predict the phenotype of an individual based on the DNA. For some traits, 

successful predictive models are available, such as the colour of the eyes, skin and hair (21). 

In this thesis project, the possibility of predictive modelling of facial features from DNA was explored. 

The prediction of facial features is a complicated task due to three main reasons. First, the facial 

morphology is a complex trait since it is a collection of different features and there is not a uniform 

approach to capture variation is the phenotype. Second, for predictive modelling a large dataset is 

needed for a model to find associations between variations in genotype and phenotype. Third, the 

heritability of the face is known, however the exact mechanisms are not; the contribution of individual 

genes to the phenotype and gene interactions are unknown. 

The aim of the thesis project was to explore the possibility of predictive modelling of facial features 
and to investigate factors that influence the prediction of facial features. Specifically, the influence of 
age and gender on the prediction were investigated. As the body ages, structural changes in tissues 
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occur, leading to morphological changes in the face (22). In addition, exposure to environmental 
factors such as UV-light, nutrition and toxins (such as alcohol and cigarette smoke) contributes to aging 
of the face (22). Thus the contribution of the environmental component on facial features increases 
due to long-term exposure to environmental factors. To investigate this, the predictive modelling was 
applied to two separate datasets: one with a study population of children and one with a study 
population of adults.  

  



 

23 

2 Methods & Materials 

2.1 Study design 
In this chapter I will discuss the methods used for my thesis project. First, I will describe the outline of 

the methods and discuss the different steps of the project. In the subsections I will dive deeper into 

each step and give a detailed description. The project pipeline can be divided into five main steps: 

data pre-processing, dimensionality reduction, the genetic prediction model, 3D facial shape 

reconstruction and the similarity measure. The complete pipeline of this project is visualized in Figure 

1, where each step is enclosed by a dashed rectangle with the number of the step in the upper left 

corner. 

The first step was pre-processing of the datasets. For this study, data was used from two independent 

studies: Generation R and the Rotterdam Study. From both studies two sets of data were utilized: 

genetic data and phenotype data. The genetic data consisted of single nucleotide polymorphisms 

(SNPs) for each dataset. The phenotype data were 3D facial meshes composed of 5023 vertices. The 

high-dimensionality of the phenotype data is not desirable for a prediction model (23). Liu et al. were 

able to decrease the dimensionality of the phenotype data from 5023 vertex per subject to 200 points 

using an auto-encoder(5). These 200 points are referred to as endophenotypes. The endophenotypes 

computed by Liu et al. were used as the phenotype data for the prediction model (5). 

The third step in the pipeline is the genetic prediction model. For this project the LDAK-Bolt-Predict 

model was used. The LDAK-Bolt-Predict model (LDAK model) is a linear regression model where the 

heritability contributed by each SNP is computed beforehand based on a specified heritability model 

(24). In this way it differs from other existing models where the effect size of each SNP is assumed to 

be constant. The prediction model was trained on a subset of the samples and the remainder was 

used for testing. For testing, the endophenotypes of the individuals were predicted based on their 

genotypes using the trained LDAK model, i.e. the models outputted two hundred endophenotypes for 

each subject in the test set. 

Step four encompasses the reconstruction of the face from the 200 endophenotypes to a 3D facial 

mesh of 5023 vertex. For the reconstruction Liu’s framework was used (5). After step four, there is a 

predicted 3D facial mesh for each subject from the test set.  

Fifth, to evaluate the performance of the prediction models, a similarity measure was computed 

between the predicted 3D facial mesh and the original 3D facial. As mentioned in the introduction, 

the face is a very complex structure, because of the presence of the eyes, nose and mouth and because 

of the different curves and surfaces such as the cheekbones, forehead and jaw. To evaluate the 

performance, different similarity measures were computed as well as different methods for 

performance evaluation.  

In the following subsections, I will go more into the details of each step of the pipeline. 
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2.2 Study population and data pre-processing 
During this project, genotype and phenotype data were used from two different studies. Part of the 

research objective is to evaluate the influence of age on the prediction of facial features from DNA. 

The two studies have very different populations, the study population of Generation R are children 

who are followed from foetal life until young adulthood (25), and that of the Rotterdam Study are 

adults over the age of 45 (26).  

 

2.2.1 Generation R 
Generation R is a multi-ethnic prospective cohort study that investigates the growth, development 
and health of children in Rotterdam. In total, 9778 women with a delivery data between April 2002 
and January 2006 were included in the cohort (27). The Generation R study aims to identify genetic 
and environmental causes in normal and abnormal development, growth and health of a child (27). 
From foetal life until young adulthood data is collected from the parents and children, in the form of, 
amongst other things, questionnaires, physical examinations, behavioural observations, biological 
sampling (27). The main objective of the study is to uncover why some children have an optimal 
development whilst others don’t or show suboptimal development (4). 
For this thesis project, genetic data and phenotype data gathered in the Generation R study were 
used. As mentioned above, the phenotype data used for this project are the endophenotypes derived 
from 3D facial images.  
 

2.2.2 The Rotterdam Study 
The Rotterdam Study is a prospective cohort study as well, the study started in 1990 in the Ommoord 

district in Rotterdam (29). The study was initiated in response to the demographic changes leading to 

aging populations worldwide, as it was foreseen that this would lead to increasing numbers of chronic 

illnesses in mid- and late-life (29). The objective of the study is to uncover causes of diseases, identify 

risk factors and find targets for preventive interventions (29). In the first and second cohort, the study 

included participants over the age of 55 years, the third cohort participants aged 45 years and above 

Figure 1: This contains the visualized pipeline of this project. The project can be categorized into five steps, each step is 
marked by a dashed rectangle with the number of the step in the upper left corner. 
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were included as well. The fourth cohort, started in 2016, includes participants from the age of 40 

years (29). A thorough examination is performed upon entry of the study, the baseline, and every 

three to six years re-examination takes place, data is collected in the form of interviews, imaging, and 

biological sampling (29). For this thesis project, genetic data and phenotype data gathered in the 

Rotterdam study were included. 

2.2.3 Data formats 

Genotype 

The genetic data used for the prediction were single nucleotide polymorphisms (SNPs). The SNPs were 

obtained using genotyping arrays, however the studies used different arrays to detect the SNPs. The 

SNPs from Generation R were obtained using genome wide Illumina 610 or 660 Quad chips (30). For 

the Rotterdam study different arrays were used between the cohorts. For the first and second cohort 

(RS-I, II) a 550K Illumina array was used and for the third cohort (RS-III) a 610K Illumina array was used 

(31). For both studies, the non-imputed SNPs were used.  

Phenotype 

The phenotype data used for this project are the endophenotypes derived from 3D facial meshes. The 

3D facial meshes were computed from 3D facial images. The 3D facial images of both study 

populations were captured using a 3dMD camera system. Participants were asked to maintain a 

neutral expression for the 3D images. The 3D images are favourable to 2D image since they preserve 

depth information. Moreover, the influence of head pose and lighting is minimized. The 3D facial 

meshes are all composed of the same number of vertices and triangles and aligned to all be in the 

same position and orientation. Vertices are points in 3D space, between the vertices triangles are 

formed which results in a 3D surface mesh. Figure 2 visualizes how the 3D facial mesh is computed 

from the 5023 vertices. Because all meshes are aligned, the vertices have the same positions in 

different individuals (e.g. vertex i is the tip of the nose for all individuals). This makes that vertex 

between subjects are pairs and one-to-one comparison is possible.  

  



 

26 

 

2.2.4 Data inclusion 
From the Generation R and Rotterdam study participants were included in the dataset for this project 

if both genetic and phenotype data was available. In case of siblings in the dataset, only one sibling 

was included in the dataset. Since the inclusion of siblings can lead to correlations based on ancestry 

and not due to causality, which influences the performance of the genetic prediction model (32). 

Because the Rotterdam Study consists of different cohorts, the genetic data of each cohort were 

merged into one dataset. 

For Generation R data from subjects at the age of 9 was included, the first time they got their 3D facial 

images taken. It was assumed the influence of environment is smaller at a younger age. Therefore the 

3D facial images were used that were obtained at the youngest age. For the Rotterdam Study all 

available subjects were included, there was no upper or lower age threshold.   

Figure 2. The 3D facial images are represented by 5023 3D points (vertices). The 3D facial images are visualized as a 3D point 
cloud in column A. To transform the separate vertices into a connected mesh. Triangles are computed between the vertices. 
This results into one consecutive mesh, like column B shows. When removing the edges of the triangles a  smooth mesh 
remains such as in column C.  
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2.3 Dimensionality Reduction 
As mentioned earlier, the complexity of facial morphology poses a challenge for research regarding 

facial morphology. During this study, an autoencoder was utilized to manage this obstacle. An auto-

encoder is a type of neural network that aims to copy the input of the model to the output. At first 

glance, this does not seem particularly useful. However, what makes an auto-encoder special is that 

they can be restricted internally, which forces the network to learn the useful properties of the data 

(33). This restriction is possible because of the bottleneck in the architecture of the network (34), as 

visualized in Figure 3. An auto-encoder consists of two parts: an encoder and a decoder (33). The 

encoder is able to map the input into the lower dimensional code, this lower dimension is called the 

latent space (35). Thus, the latent space is a compressed representation of the input. The decoder 

reconstructs the input of back from the latent space to the dimensionality of the input data, thus the 

output is a reconstruction of the input. The auto-encoder learns through minimizing the 

reconstruction error, also referred to as the loss function, this is a measure of error between the input 

and the output. 

The lower dimensionality of the latent space can be beneficial for the performance of a tasks like 

classification and a smaller dimensionality requires less computational power and runtime (33). 

Moreover, because of the compression of the input data the latent space contains the important 

information or features that represent the input data.  

The endophenotypes used in this study were computed using Liu’s framework, a 3D graph auto-

encoder (5). Figure 4 shows the architecture of the Auto-encoder used by Liu. The latent space of the 

framework was set to 200 latent features, these latent features are the endophenotypes. The authors 

investigated the influence of different latent space sizes on the reconstruction error and a trade-off 

was made between the reconstruction error and the dimensional complexity, setting the latent space 

size to 200 features (5). 

Liu’s framework is capable to compress the 3D facial shapes, consisting of 5023 vertices, into 200 

latent features. The decoder of the framework can reconstruct the 3D facial mesh of 5023 points from 

the 200 latent features. The auto-encoder is specific for a study population, thus it was trained 

separately for the Generation R dataset and the Rotterdam Study data set. For the Generation R 

dataset the auto-encoder was trained on ~9000 subjects. For the Rotterdam Study the network was 

trained on ~5700 subjects. 

 

 

Figure 3: The general architecture of an auto-encoder. The input X is fed into the encoder, which compresses the input into 
a lower dimensionality, the latent space. The decoder resamples the latent space into the output X’, a reconstruction of the 
input. 
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2.4 Genetic prediction model 
To perform the genetic prediction of facial features, the LDAK-Bolt-Predict model (LDAK model)was 

used during this project (24). This model is part of the LDAK-software, which contains tools for genetic 

prediction of complex traits, either from individual-level data or summary statistics. The LDAK 

software distinguishes itself from other available tools by allowing the user the specify the heritability 

model, which determines the expected heritability of each SNP (24). In contrast to most prediction 

tools, where a constant heritability is used for all SNPs. The SNP heritability is the proportion of 

phenotypic variance that is explained by SNPs (6). The LDAK software was tested for several complex 

traits (binary, continuous and ordinal) and all eight tools outperformed existing prediction models 

which use the GCTA model (24). The LDAK model is a multilinear regression models described by 

Equation 1, Where 𝑋𝑗 is the genotype for SNP j and 𝛽𝑗 is the effect size for SNP j (24).  

[1]  𝐸[𝑌] =  𝑋1 ∙ 𝛽1 + 𝑋2 ∙ 𝛽2 +  … +  𝑋𝑚 ∙ 𝛽𝑚 =  𝑋 ∙ 𝛽   

Equation 1: the linear model of the LDAK prediction model 

Since two different datasets were used, two separate LDAK-models were trained and tested: one for 

Generation R and one for the Rotterdam Study. Before running the model, the expected heritability 

contributed by each SNP, 𝐸[ℎ𝑗
2], was computed. This was done with the heritability model, for this 

project the BLD-LDAK heritability model was used (36). This model determines the 𝐸[ℎ𝑗
2] based on 66-

parameters: 64 functional annotations, local levels of linkage disquilibrium and the minor allele 

frequency (MAF) (24). The computation of the expected heritability of each SNP was computed using 

the LDAK software (36). For the prediction model, the LDAK-Bolt-Predict model was used, which is 

recommended for individual-level genotype and phenotype data. Each of the tools from the LDAK 

software uses a different prior distribution for the SNP effect size 𝛽𝑗. For the LDAK-Bolt-predict model 

the effect size 𝛽𝑗 is based on the 𝐸[ℎ𝑗
2] and two pre-defined variables. During training the effect size 

𝛽𝑗 is updated iteratively. 

Figure 4. The architecture of the auto-encoder used by Liu et al. The orange layers are the encoder, the blue layers are the 
decoder. The dimensionality of the input image is gradually decreased from 5023x3 to 200 latent features (5). The decoder 
resamples the latent features to the dimensions of the input image. 
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Age and sex were added as covariates to the model. The model was trained on ninety percent of the 

datasets, the remaining ten percent was used as the test set. The LDAK model performs multilinear 

regression for each endophenotype individually, thus no interaction between the endophenotypes is 

possible and they are seen as independent phenotypes. For each endophenotype the R2 was 

computed. 

 

 

2.5 Similarity Measure 
During this project, several approaches were used to evaluate the performance and to compute the 

similarity measure. In section 2.5.2 the different methods for the evaluation of the performance and 

similarity metrics are described. However, before analysing the performance of the genetic prediction 

method, the reconstruction error of the auto-encoder was computed. Both the ground truth as the 

predicted face are represented by a mesh made up of 5023 vertices and 9851 triangular faces (28). 

The 3D facial image was captured with the 3D camera system and was translated into the 3D mesh. 

However, the predicted faces were reconstructed into a 3D mesh from the 200 endophenotypes. This 

was done with the decoder from the auto-encoder, as described in section 2.3. The aim of the auto-

encoder is to minimize the reconstruction error between the input and the output, however some loss 

of information is inevitable due to the bottleneck architecture. The reconstruction error was 

computed to investigate the extent to which differences between the ground truth and predicted face 

are due to the reconstruction error and not as a result of the prediction accuracy. 

2.5.1 Reconstruction Error 
Since the reconstruction error influences the similarity measure between the prediction and the 

ground truth, it is necessary to know the reconstruction error of the auto-encoder. The reconstruction 

error was evaluated using the Generation R test set. The ground truths were fed into the encoder and 

reconstructed with the decoder without making changes the endophenotypes in the latent space. To 

quantify the reconstruction error the mean Euclidean distance was calculated for every vertex-pair 

using Equation 2, where 𝑣𝑖is the vertex in the ground truth and 𝑣𝑟
𝑖  is that same vertex in the 

reconstructed face. Thereafter, the total mean error was computed, i.e. the mean of the 5023 vertex 

errors. 

[2] 𝑑(𝑣𝑖, 𝑣𝑟
𝑖) =  √(𝑥 − 𝑥𝑟)2 + (𝑦 − 𝑦𝑟)2 + (𝑧 − 𝑧𝑟)2  𝑓𝑜𝑟 𝑖 = [1, … ,5023] 

Equation 2 

The reconstruction error for each vertex was visualized in a template face with a heatmap.  

2.5.2 Similarity Metrics 
For the similarity measure a global and a learning-based metric were computed. The metrics differ in 
the way the total error between two 3D facial meshes in computed. The global similarity metric 
consisted of calculating the mean squared error (MSE) between two 3D facial meshes. For this metric, 

Equation 3 was used. Where 𝑣𝑟𝑒𝑓
𝑖  is the vertex in the reference face and 𝑣𝑖 is the corresponding vertex 

in the test set. The error between two vertices, 𝑣𝑟𝑒𝑓
𝑖 − 𝑣𝑖, is the Euclidean distance (see Equation 2 ). 

 

[3] 𝑀𝑆𝐸 =  
1

𝑛
 ∑ ( 𝑣𝑟𝑒𝑓

𝑖 −  𝑣𝑖 )2𝑛
𝑖=1 , 𝑓𝑜𝑟 𝑖 = [1, … , 5023].  

  𝑊ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠  
Equation 3 
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For the learning-based metric, a weight between zero and one was assigned to each vertices-pair. This 
was done with the idea that some vertices are more predictable than others and thus are more 
important for the prediction evaluation. To compute the weights, the test sets were split into two 
subsets: 70% of the samples were used for training the weights and 30% for testing. Equation 4 is the 
formula of the computation of the MSE using the learning-based metric. The error between the two 

vertices, 𝑣𝑟𝑒𝑓
𝑖 −  𝑣𝑖, is the Euclidean distance between them (see Equation 2) 

 

[4] 𝑀𝑆𝐸 =  
1

𝑛
 ∑ ( 𝑤𝑖 ∗ (𝑣𝑟𝑒𝑓

𝑖 −  𝑣𝑖) )2𝑛
𝑖=1 , 𝑓𝑜𝑟 𝑖 = [1, … , 5023].  

  𝑊ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑎𝑛𝑑 𝑤𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑣𝑒𝑡𝑟𝑖𝑐𝑒𝑠 −
𝑝𝑎𝑖𝑟 𝑖.  
Equation 4 

The weights for each vertex-pair, 𝑤𝑖, were trained using a PyTorch nn.Linear module. This is a single 

layer network with 5023 inputs, 𝑖𝑖, one for each vertex, one neuron and a single output. The inputs 

are the vertex-pair errors. The output is the total error between the prediction and the ground truth, 

in the ideal scenario this would be zero (i.e. the prediction is perfect). The architecture of the linear 

module is visualised in Figure 5.  

 

Initially, all inputs had the same weight, this was set to one. During training of the model the loss 

between the output and the desired output is calculated and used to compute the gradient. The 

weights are updated using stochastic gradient descent with a learning rate of 0.1 and the number of 

epochs was 5. The weights trained in the model are applied in Equation 4. 

2.5.3 Performance evaluation metrics 
In addition to the two different similarity metrics, two different metrics for performance evaluation 
were used. First, to investigate whether the predicted face was most similar to the corresponding 
ground truth or another individual in the test set, a similarity measure was computed between each 
prediction and all ground truths in the test set. For the similarity measure, both the global and the 
learning-based metric were computed as described by Equation 3 and Equation 4. Thus for each 
predicted face there was a similarity measure to all ground truths. These were sorted in an ascending 
order, the ground truth with the smallest MSE was deemed as the ‘closest’ to the prediction and so 
on. Next, the rank of the corresponding ground truth was determined (e.g. if the MSE between the 

Figure 5: network architecture for the learning-based metric. The input layer contains 
an input for each vertex-pair, a weight is assigned to each input.  
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prediction and ground truth of subject i was the second smallest, it would be ranked second). The 
ranking method is visualized in Figure 6.  
 

Thus, the first performance evaluation focusses on identification of the correct individual based on 

the predicted face from the genetic prediction model. 

Second, there is the possibility that individuals in the dataset are in close resemblances to each other. 

In this case, there is the probability that the predicted faces are in close resemblance to other subjects 

in the test set. To get an insight in this scenario, a second performance measure was computed. The 

similarity measure between all ground truth faces in the test set was computed, using both similarity 

metrics. The similarity metrics were ranked the same manner as described above, in ascending order. 

In addition, the similarity measure between each ground truth and their prediction was computed 

using both similarity metrics as well. Next, the position in the ranking of the similarity metric between 

the ground truth and prediction was determined. Figure 7 visualizes the ranking process for this 

similarity measure. 

 

 

The performance evaluation was performed using the complete test sets. In addition, the test sets 

were divided into sub-sets based on sex and ethnicity. The latter could solely be done for the 

Generation R dataset, from the Rotterdam Study information on ethnicity was not available.   

 

Figure 6. Visual representation of the second similarity measure. 

Figure 7. Visual representation of the method for ranking used in similarity measure three. 
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2.5.4 Accuracy Ratio 
For both prediction evaluation metrics, the accuracy ratio (AR) was computed. The AR allows a 

quantitative comparison between the different datasets. It is the ratio of the improvement of the 

prediction model over a random model (the baseline) to the performance improvement of a perfect 

model . The AR is a value between zero and one, where zero indicates no improvement over the 

baseline and one a perfect model. The concept of the AR is visualized in Figure 8. The AR is calculated 

using Equation 5.  

[5] 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 =
𝐵

(𝐴+𝐵)
  

Equation 5: Formula to compute the Accuracy Ratio 

  

 

The baseline is the chance the correct individual is in the top-n when randomly picking n-individuals 

from the dataset. To compute the baseline, Equation 6 was used. 

[6] 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =  
𝑛

𝑚
 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 

Equation 6: Formula used to determine the baseline 

  

Figure 8: Visualisation of the accuracy ratio 
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4 Results 

4.1 Data pre-processing 
Before training of the prediction model, data was included from the Rotterdam Study and Generation 

R. From the Rotterdam Study 3197 subjects were included after removal of relatives. The genotype 

data of consisted of 545.018 SNPs, obtained with Illumina genotyping arrays (31). Figure 10a shows 

the flowchart for the data selection. From Generation R 2774 subjects were included, after removal 

of relatives. Figure 10b shows the flow diagram of the subject exclusion for Generation R. 518.243 

SNPs were used for the genetic prediction for Generation R. Both datasets were split into a training 

and test set, 90% of the data was used for training of the LDAK prediction model and 10% was used 

for testing the model. The split of the data into the training and test set was randomized. The 

characteristics of the training and test sets can be found in Table 2. 

Figure 10b: Flowchart of study data selection for 
Generation R. The diagram shows the exclusion 
and inclusion of subjects from the Generation R 
study. 

Figure 10a: Flowchart of study data selection for the 
Rotterdam Study. Flow diagram shows the exclusion and 
inclusion of subjects from the Rotterdam Study. 

Table 2: Subject characteristics of the training and test sets for the Generation R and the Rotterdam Study. 
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4.2 Reconstruction Error 
The endophenotypes used for the prediction were reconstructed to a 3D facial mesh using the auto-

encoder described in section 2.3. The reconstruction error of the auto-encoder was evaluated by 

running the test-set (n = 257) through the auto-encoder without altering the endophenotypes in the 

latent space. The mean error for each vertex-pair is visualized in Figure 11 on a template facial mesh. 

The error, Euclidean distance, was calculated between each vertex-pair for all 257 individuals (i.e. 

5023 pairs per individual, for all 257 individuals in the test-set). Figure 12 is a histogram of the errors 

for all subjects. Thereafter, the overall mean error was computed. The overall mean error found was 

0,43 mm with a standard deviation of 0,08 mm. 

 

 

 

4.3  Performance LDAK-model 
To predict the endophenotypes, multilinear regression was performed for each endophenotype 

individually. Figure 13 displays a scores plot for one of the endophenotypes. For each endophenotype, 

the R2 was computed. The R2 are visualised using a heatmap in Figure 14. The top left is the R2 for 

endophenotype one, the second endophenotype is on the right from endophenotype one and so one.  

 

Figure 12: Histogram of all errors between the vertex-
pairs of the ground truth and reconstructed facial 
meshes. 

Figure 11: Heatmap of the mean error for each vertex-pair visualized on a template face 
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4.4 Performance of the prediction  
As described in section 2.5 two different similarity metrics were used as well as two metrics for 

performance evaluation. First, I will discuss the results obtained using the first performance evaluation 

metric (described by Figure 6). Where the ranking is performed from the predicted face to all ground 

truths in the test set. I will include the results for both the global similarity metric and the learning-

based similarity measure. Second, I will describe the results found using the second performance 

evaluation metric, for both the global as the learning-based similarity metric.  

4.4.1 Prediction evaluation measure one 
For Generation R there were 257 subjects in the test set, for the Rotterdam Study there were 320 

subjects in the test set. Figure 15, contains the accuracy plots for the prediction with the BLD-LDAK 

heritability model for the global and learning-based metrics for the Generation R test set. Figure 16 

shows the accuracy plots for the Rotterdam Study. In both figures, the blue line indicates the baseline 

accuracy. 

Figure 13: The scores plots for endophenotype 23. A) Scores plot from the Rotterdam Study model. B) The scores plot from 
the Generation R model 

Figure 14: heatmaps of the R-squared for each endophenotype. A) contains the r-squared for the Rotterdam 
Study endophenotypes. B) contains the heatmap for the Generation R endophenotypes. 
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Figure 15: Accuracy plots of the LDAK-prediction model for Generation R. Figure A shows the accuracy plot for the 
global similarity measure. Figure B displays the accuracy plot of the LDAK-prediction using the learning-based 
similarity metric 

Figure 16: the accuracy plots for the LDAK prediction of the Rotterdam Study dataset. Figure 12A shows the accuracy 
plot when using the global metric. Figure 12B contains the accuracy plot when using the learning-based metric as the 
similarity measure. 
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The test sets used for the accuracy plots in Figure 15 and Figure 16 contained all subjects, there was 

no division made based on sex or ethnicity. In the next step, the test sets were divided into subsets 

based on these characteristics. For the Generation R the test set was once separated based on gender 

and the similarity metrics and performance evaluation were computed. In addition, the test set was 

divided based on ethnicity, western or non-western, and evaluated. For the Rotterdam Study there is 

no data available on ethnicity, thus only a division by sex was made. The results of this different sub-

groups are visible in Figure 17. 

In addition to the accuracy plots, the accuracy ratio was computed. The AR was computed to make 

comparison between the different datasets, Generation R and Rotterdam Study, and the different 

sub-groups, sex and ethnicity, possible. The AR’s for the different datasets and sub-sets can be found 

in Table 3 

 

 

Table 3: Accuracy Ratio for the different datasets and sub-sets. 
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Figure 17: Accuracy plots for the different sub-sets of the Generation R and Rotterdam Study test sets. For each sub-set, both the global metric as well as the learning-based metric were computed. 
The top row (A-D) are the accuracy plots for the Generation R test set split by sex. The middle row (E – H) are the accuracy plots for the sub-sets of the Rotterdam Study. The bottom row (I – L) 
contains the accuracy plots for the Generation R data split by Ethnicity.  
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4.4.2 Prediction evaluation measure two 
For the second prediction evaluation measure the similarity measure between the prediction and the 

ground truth and the similarity measure between all ground truths in the test set was calculated. 

These were sorted in ascending order and the position of the predicted face was determined based 

on the value of the similarity measure, as visualized in Figure 7. As in section 4.4.1, the similarity was 

computed using the global metric as well as the learning-based metric. 

For the visualisation of these results, a heatmap was computed of the MSE between the ground truths. 

A high MSE means a low similarity between subjects. The rank of the predicted face was marked with 

a white square. There was chosen to use a heatmap to visualize the magnitude of the similarity 

measures between the ground truth and to get insight whether they were very diverse or close to 

each other. Figure 18 shows the heatmaps for the complete test sets of Generation R and the 

Rotterdam Study. 

The datasets were also divided into sub-sets based on sex and ethnicity (for Generation R), and the 

similarity metrics and performance evaluation were computed. These results can be found in Figure 

19. 

 

Figure 18: Heatmap plots of the LDAK prediction for the Generation R and the Rotterdam Study datasets using the second 
prediction evaluation measure. The top row (A-B) are the heatmaps for the Generation R dataset, figure A is for the global 
metric and figure B is for the le learning-based metric, which is why the x-axis has a smaller range. The bottom row (C-D) 
contains the heatmaps for the Rotterdam Study dataset. Figure C contains the result for the global similarity metric and D for 
the learning-based metric. 
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Figure 19: Heatmap plots for the different sub-sets of the Generation R and Rotterdam Study test sets. For each sub-set, both the global metric as well as the learning-based metric were 
computed. The top row (A-D) are the heatmap plots for the Generation R test set split by sex. The middle row (E – H) are the heatmap plots for the sub-sets of the Rotterdam Study. The bottom 
row (I – L) contains the heatmap plots for the Generation R data split by Ethnicity. 
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In addition to the heatmap plots, the AR was calculated for the second performance evaluation 

method. The AR was computed for each sub-set as well. The AR for the different datasets and sub-

sets can be found in Table 4.  

  

Table 4: Accuracy Ratio for each sub-set for the second predication evaluation measure. 



 

42 

5 Discussion 

5.1 Interpretation of the results 
The objective of this project was to explore the possibility of predictive modelling of facial features 

from DNA. Research on predictive modelling of facial features is in the early stage and has gotten more 

attention in recent years. In this project a genetic prediction model based on multilinear regression 

was used, called the LDAK-prediction model. In this chapter I will discuss the results found in the 

project and review the limitations of the project. Finally, recommendations for future research 

regarding this subject are described.  

5.1.1 Reconstruction Error 
The mean error found for the reconstruction of the endophenotypes into a facial mesh was in 

accordance to the reconstruction error described by the developers of the auto-encoder framework 

(37). In this project a mean error of 0,43 ± 0,08 mm was found, the mean error found by the developers 

was 0,426 ± 0,538 mm. The mean error for each vertex was visualized in Figure 11, this showed there 

were no regions with notable higher or lower mean errors. When looking at the histogram of all errors 

in Figure 12, it is visible that there are a small number of errors larger than one millimetre. One 

explanation for these outliers is noise in the ground truth due to facial hair such as the eyelashes and 

eyebrows. As visible in Figure 11, the eyes have a slightly higher mean error compared to the rest of 

the face, this is caused by the eyelashes. The eyelashes cause a rough surface around the eyes, which 

leads to a higher error between the ground truth and the reconstruction, since the latter one does not 

reconstruct the eyelashes. 

The overall reconstruction error found is small and conform the error described in literature, with the 

highest error found around the eyes. As a result, the predicted faces and ground truths can be 

compared fairly, as the reconstruction error will not have large effect on the similarity measure. Thus, 

the similarity measure will be the result of inaccuracy of the prediction and not the reconstruction 

error. 

5.1.2 Genetic prediction model 
For the Generation R dataset and Rotterdam Study dataset the LDAK model was separately trained 

and tested. The R2 found for the endophenotypes in the Generation R dataset were higher than those 

for the Rotterdam Study dataset. However, for both datasets the majority of the R2 were negative. 

This indicates that the LDAK model was not well suited to model the endophenotypes based on the 

predictors (i.e. the SNPs). There are several explanations for this finding. First, the effect size of each 

SNP was computed based on the training samples. The LDAK documentation advices a sample sizes 

larger than 5000 subjects to compute the SNP effect size, unfortunately this number of samples was 

not available in the datasets used. Second, the LDAK model is restricted to linear relationships while 

it is unknown whether the relationship between facial morphology and genetics is linear. This will be 

discusses in more details in the limitations section. Third, facial morphology is a very complex, 

multidimensional trait which complicates the predictability and thus the performance of the genetic 

prediction model. The LDAK model is currently the best genetic prediction model for phenotype 

prediction, however it was not well suited for the complexity of genetic prediction of facial features. 

5.1.3 First performance evaluation measure 
Evaluating the performance of the genetic prediction model comes with several difficulties and there 

are several ways to analyse the performance of the prediction model depending on the objective. The 

complexity of the facial morphology poses a challenge for computing a similarity measure between 
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the predicted face and the ground truth. Since the face is a multipartite trait and consists of curves, 

surfaces and edges, it is difficult to capture all these features into one similarity measure. 

When comparing at the two different metrics to measure the similarity between the predictions and 

the ground truths, there was not a larger difference found in the AR between the measures. It is 

noticeable however, that for the Generation R dataset, the results are better for the Global metric and 

for the Rotterdam Study the learning-based metric led to (slightly) higher AR’s. It is important to 

highlight the difference in AR’s are minimal and they may be the result of noise. Initially it was assumed 

the learning-based metric would lead to an improvement in the AR, since the ‘important’ vertices were 

given a higher weight. One explanation to why this expectation was not realised is due to the small 

sample sets available to train the weights. The test sets consisted only of 10% of the total datasets 

and from the test sets 70% was used for training the weights. Especially in the subsets (sex, ethnicity) 

these numbers were really low. 

The results for the Generation R and the Rotterdam Study datasets are both for the global metric as 

the learning-based metric, apart from one instance, slightly better. This is in correspondence with the 

expectation that due to long-term exposure of environmental factors, the face gets less predictable 

from DNA over the years. However, only a small difference between the two datasets was found, 

where a larger difference was expected between the two datasets. 

When splitting the datasets into subsets based on sex or ethnicity, no distinct change was found in the 

AR. In the LDAK-prediction model sex was used as an covariate, thus it was expected the performance 

of the prediction would not have increased for these subsets. 

Finally, the AR’s found were all only slightly above zero. An AR above zero indicates a predictive 

performance better than the baseline. The AR’s found in this research were above this threshold, 

however only marginally. Therefor it is difficult to conclude whether the findings are the result of some 

predictive power of the genetic prediction model or the result of noise. 

5.1.4 Second performance evaluation metric 
In addition to the first performance evaluation metric a second metric was computed. The aim of this 

second metric was to investigate whether there was resemblance between individuals in the dataset 

as this could influence the evaluation of the prediction. For example, if two individuals, A and B, look 

similar to each other it can be expected that the predicted face of individual A has a high similarity to 

the ground truth of individual B. This effect could influence the outcome of the first performance 

evaluation metric. As visible in Figure 18 the similarity measure between the ground truths was quite 

high compared to the similarity measure between the predictions and ground truths. Which indicates 

there is a level of resemblance amongst individuals in the datasets. This is disadvantageous to the AR 

of the first performance evaluation metric. In addition, it is visible there are a few outliers in the 

dataset, such as subject 228 from Generation R and 260 for the Rotterdam Study, these subjects had 

a very low similarity measure to all other subjects in the test sets.  

Similar to the first performance evaluation metric, there was no clear improvement in the AR’s for the 

learning-based metric compared to the global metric. This is most likely due to the same cause: a low 

number of samples to train the weights. 

The accuracy ratio’s for the second performance evaluation metric are higher than those found for 

the first metric. The AR for the second metric indicates a fairly good ability to identify the predicted 

face corresponding to the ground truth from set containing other ground truths. However, the second 

performance evaluation metric is not suitable for determining the predictive performance of the 

genetic prediction model. The objective of the model is to predict the face as similar to the ground 
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truth face as possible. Therefore the first predication evaluation metric is the most important for the 

prediction performance. 

 

5.2 Limitations 
In addition to the findings of this thesis project, I would like to discuss a number of limitations of the 

project. First, the prediction model used in this project poses several limitations. The LDAK-model uses 

multilinear regression which is only able to model linear relationships between the genotype and the 

phenotype and restricts the prediction in that way. The exact effect of genes on facial morphology is 

unknown and restricting this relationship to linearity confines the research. The relationship could be 

non-linear due to gene-interactions, epistaxis or environmental contributors. In section 5.3 I will 

describe a method to model non-linear genotype-phenotype relations (38). With the LDAK-model 

each endophenotype is predicted separately, i.e. multilinear regression is performed for all two 

hundred independently. In this way the endophenotypes are assumed to be unrelated and have no 

influence on each other. However, research have found that different regions of the face are 

associated with the same genes (1). This suggests there is a connection between regions and modelling 

the endophenotypes independently does not allow this. 

Second, the complexity of the facial morphology poses a big challenge for the performance evaluation 

of the prediction. Since the face consists of several regions and features, such as the nose, mouth and 

cheekbones, it is difficult to grasp this into one measure. In this project, the error for each vertex was 

computed and then the MSE of all 5023 vertex errors was calculated. This is limited as the error is the 

Euclidean distance thus there is no information on the direction of the error: the negative or positive 

direction in each plane. Moreover, with this method there is no evaluation of differences curves and 

surfaces. 

Third, it is known that some regions are shaped predominantly by genes and others by the 

environment (1). Thus, it can be expected that the prediction of the regions influenced most by 

environment are less predictable and vice versa. With the learning-based metric it was attempted to 

account for this aspect and focus on the more predictable regions. However, we found no clear 

improvement in the results. This could be due to the small sample size that did not allow adequate 

training of the weights. A different method to encompass for the higher relative contribution of genes 

to some regions could be by predefining the weights for these regions, as it is known which regions 

are more susceptible to genetic influence. 

Fourth, the developers of the LDAK software advise a sample set of at least 5000 subjects to perform 

a heritability analysis. For both datasets, this number of subjects was not available. Therefore, the 

heritability analysis is below optimal, which can result in incorrect effect sizes for the SNPs used for 

the genetic prediction model. To ensure an optimal heritability computation, more subjects should be 

included in the datasets.  

Fifth, the reconstruction of the 3D facial mesh from the endophenotypes is restricted by the variation 

in faces in the training set. The auto-encoder learns the optimal reconstruction parameters based on 

a loss function, the error between the input and the output. When subjects differ from the subjects in 

the training data, the auto-encoder will not be able to reconstruct these faces correctly since it never 

had to handle the parameters before. 

Sixth, from the Generation R dataset the facial images of children at the age of 9 years were used. It 

was assumed that the younger the subject, the more the face was shaped by genetics and less by 
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environmental factors, as there had been less exposure to these. However, this is not certain. For 

future research, facial images at different ages can be analysed. 

Finally, the facial meshes were computed from images captured with a 3D camara system. Since, 3D 

facial meshes were used, the effect of head pose, and lighting are diminished. In addition, subjects 

were asked to maintain a neutral facial expression to reduce the influence of facial expression. 

However, a neutral expression in all subjects cannot be guaranteed, which may influence the 

prediction evaluation between the predicted and ground truth face. In addition, the 3D camera system 

captures the facial hear and skin texture, these are both absent in the predicted faces. Which also 

influences the prediction evaluation.  

5.3 Future research 
Predictive modelling of facial features from DNA is still in early stages and the objective of this project 

was to explore the topic and the possibilities. Future research should be conducted within this field 

and based on the findings in this project and the limitations, a few recommendations can be made. 

First, in this project a model based on multilinear regression was used, which restricts the prediction 

to linear relations between the genotype and phenotype. Non-linear prediction models should be 

explored f as they enable different relations between the genotype and phenotype. The GenNet 

framework is a possibility for a non-linear prediction model (39). It is a deep learning framework 

developed for phenotype predictions and enables the user to define their own architecture. In 

addition, the framework is designed to be interpretable and provides information on the weight 

assigned to each input, i.e. their contribution to the output. 

Second, it is recommended to investigate different similarity metrics to evaluate the prediction 

accuracy. Due to the complexity of facial morphology, computing a meaningful similarity measure is 

challenging. However, improvements can be made, and more advanced methods should be explored. 

For example, focussing more on the regions that are associated with higher heritability. Or evaluation 

of the direction of the displacement in the x-, y- and z-plane, whether there are shifts in the negative 

or positive directions. An other possibility could be by performing a principal component analysis and 

analysing the principal components. 

Third, larger sample sets are suggested for future research. To compute the heritability of the SNPs, 

more samples lead to better calculation of the effect size. And currently, the sample sets are smaller 

than advised. In addition, larger sample sets improve the power of the project. Since the face is high 

dimensional, more subjects available is better for the prediction. Moreover, more variation in ethnicity 

and age is recommended. As ancestry and facial morphology are highly related (1). 

Fourth, currently only a small number of SNPs associated with the face have been identified. For that 

reason, in this project all SNPs available were used for the prediction model. In the future, when more 

SNPs have been identified, the genetic prediction model could be based on these SNPs instead of all 

SNPs available. 

Finally, some regions of the face are predominantly influenced by genes and others by environmental 

factors (1). In future research, the focus could be on the regions mainly associated with genetics. For 

example by predefining weights for area’s that are associated with a higher genetic contribution. 

Genetic prediction of the regions shaped predominantly by environmental factors will not be 

successful, as you are trying to model a relationship that does not exist.  
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6  Conclusion 
The objective of this study was to explore the possibilities of predictive modelling of facial features 

from DNA. The results found in this study indicate the presence of (some) predictive power, however 

this is currently very limited. The results for the Generation R dataset were slightly higher than for the 

Rotterdam Study dataset. Due to long-term exposure to environmental factors the contribution of the 

environmental component to the face increases with age, thus prediction based on genetics becomes 

less accurate. This assumption seemed somewhat true, however no substantial difference in 

prediction accuracy was found. 

Predictive modelling of the facial morphology is a complex task due to the high-dimensionality of the 

face and the complexity of a suitable similarity measure, amongst other things. Research in this field 

is still in an early stage and although the predictive power of the model is currently low, the results 

warrant further research. Future research could be in the direction of different prediction models that 

allow modelling of non-linear relationships, improved metrics for computing the similarity measure 

between two faces and predictions based solely on genetic loci associated with the face. 
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7 Ethical Analysis 
Technology has greatly impacted medical practice and continues to do so with the continuous 

development of new innovations. With the increasing role of technology in healthcare, new ethical 

questions arise. My master program focusses on the contributions of medical technology, on how it 

aides in therapies and the value of technology in healthcare, but there is little attention to the ethical 

side of medical technology. During my internships I saw some of the ethical dilemmas that arise as a 

result of medical technology and I wanted to know more about how to analyse and carry out a careful 

evaluation of these kind of questions. For that reason I wanted to do an internship at the department 

of Medical Ethics, Philosophy and History of Medicine. During this internship I had the chance to learn 

more about the ethics of medicine and medical technology, and got to participate in a research project 

about the ethics of eHealth technology. For my master thesis I wanted to include this side of medical 

technology, therefore I carried out an ethical analysis of my thesis subject. In this chapter I will discuss 

the analysis and give a background to the relevance of ethics of medical technology.  

7.1 Introduction 
Ethics has been connected to medicine since Antiquity, it was Hippocrates who first linked ethical 

principles to the responsibilities of a doctor. Being a competent doctor meant more than being skilled 

in medical procedures, it encompasses taking account of your moral obligations as a professional (40). 

Nowadays, ethical committees are in place to evaluate moral questions, collaborating with medical 

professionals, patients and other relevant parties to evaluate the ethical point of view. With the rapid 

advancement of technology in medicine, new moral questions arise continuously. The first time 

technology was used in medicine, was in 1816 when the stethoscope was introduced by French 

physician René Laennec (41). Since then technology has rapidly expanded into all areas of medicine, 

irreversibly changing the relationship between patient and doctor, but also the way we define sickness 

and health (42,43). Technology has provide life-sustaining treatments, can take over organ functions 

or visualize the insides of the human body without damaging its integrity. In recent years, medical 

technology has moved towards the field of data science (44). Enormous amounts of data are gathered 

through electronic medical records, which offers new opportunities. Data science and artificial 

intelligence offer possibilities such as identifying risk factors and analysing vital signs (43,45). 

Technology has enlarged the power of medicine, but also led to new ethical questions in the field of 

medical practice. Careful evaluation of these questions is necessary to protect patients autonomy and 

privacy (46). Moreover, exploring ethical issues can be an opportunity for enhancing technology by 

starting a debate and requiring an analysis of different standpoints (47).  

There are several methods to assess the ethical dimensions of medical technology. For the analysis of 

my thesis subject I have chosen to use the framework created by Prof. Dr. Schermer, Chair of the 

department Medical ethics, philosophy and history of medicine at Erasmus MC (48). The framework 

can be used to systematically map the ethical aspects of technology. The framework consists of four 

steps: goals, means, unintended effects and finally an evaluation (48). First, the goals of the technology 

are analysed, and whether these are at the benefit of the subject or for other stakeholders. Other  

stakeholders could be medical professionals, family members or insurance companies. Second, the 

means of the technology are evaluated (48). This translates in an analyses of the intention of the 

technology, is this technology morally acceptable. In addition, the risks and the secondary effects of 

the technology are analysed. Third, the unintentional effects are explored. The effect of medical 

technology is often not limited to their intended purpose, there are often secondary effects to new 

technologies (40,48). Since these are unexpected effects it is difficult to fully describe them, however 

an educated guess can be made. And the moral acceptability of these effects is evaluated. Finally, an 

assessment of is made whether the technology is proportional to the goal and whether the pro’s and 
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con’s are in harmony. It is important to take the goals, pro’s and cons and the unintentional effects all 

into account (48).  

1. Goals 
In this thesis project, the medical technology explored was predictive modelling of facial features from 

DNA using a multilinear regression model. The goal of predictive modelling of facial features is to get 

an understanding of the genetic architecture underlying facial features and the effect of genetics on 

the phenotype. In the past, research regarding facial genetics was focussed on the genetics of diseases 

and anomalies, and not so much on the genetics of normal-range facial variation (1). In recent years, 

genes associated with facial morphology have been identified, however their effect on the 

‘phenotype’ is not known. Insight in these effects could aide in comprehending the genetic basis of 

disease and unravelling the contributions of genetic and environmental factors on the face. The 

stakeholders in this goal are researchers and medical professionals, as it would lead to a bigger 

understanding of facial genetics. The technology will not lead to individual benefits for the subjects in 

the dataset used during this project. At this stage it is not possible to say the goal is met, as the 

research is still at a very early stage and it is an explorative project. Moreover, there is a chance that 

the goal mentioned will never be met, since it is a very complex task which may even not be possible.  

2. Means 
I believe the intention of the technology itself is good. The technology used is a multilinear regression 

model, which is a morally acceptable technology, it poses no harm or risk to users. The risks and 

secondary effects of the technology are, I believe, mainly in the data used for the model and the 

interpretation of the results. The data used for the model has a large impact on the reliability of the 

results as it could lead to biases or a distorted view. A model is only capable of learning relationships 

that are present within the input data, therefore it is limited by the diversity in this set. For example, 

if an input set solely contains male subjects, the model is not have any predictive power for female 

subjects. Or when there is no ethnic diversity in the input dataset, the model is only useful for that 

particular ethnicity. It is very important to be aware of these implications and consider them carefully. 

In addition, the results can be processed in different ways which influences the outcome and 

conclusions made. Close examination of the results and evaluation methods is crucial to draw reliable 

and fair conclusions.  

3. Unintended effects  
As mentioned earlier, it is difficult to describe the unintended effects. However, when brainstorming 

about the possible unintended effects the following things came to mind. First, promising preliminary 

results could lead to an idea of in depth understanding of the genetic architecture of facial 

morphology. This could hold back future research and lack of a critical view on the subject, where you 

are not open to exceptions or oddities. Second, this technology could lead to the idea of being able to 

fully predict the face from DNA. This notion is untrue, since the face is not solely shaped by genetics. 

Facial morphology is the result of genetic, environmental and epigenetic factors and their interactions 

(1). Thus, full prediction of the face from DNA is not possible. It is important to emphasize this and 

keep this in mind. When this is disregarded and the belief exists the prediction is perfect, it could lead 

to illegitimate conclusions. Especially in the field of forensics, where this could for example potentially 

lead to wrongful identification and accusation. 

4. Assessment 
When evaluating whether the technology is proportional to the goal, weighing the pro’s, cons and 

unintended effects, I believe that this technology is acceptable. Currently, there are no other methods 

available to investigate the goal of this technology. In addition, little is known about the magnitude of 



 

49 

influence of the genotype on normal-range variation in facial morphology. Insights in the genetic 

architecture could aide in, amongst other thigs, understanding the genetic basis of diseases and the 

relative contribution of genotype on facial morphology. Currently, this research is still in a very early 

stage and the feasibility of the technology remains a question. If research on this topic continues to 

develop and proves to be feasible, there are other fields of study that see potential in this technology, 

such as anthropology and forensics. The applications in these fields of study come with their own 

ethical questions and should be carefully evaluated if research on the topic moves in that direction. 

Especially applications of this technology for forensic purposes raise ethical questions (regarding 

autonomy, privacy and justification) and application in this field should be carefully evaluated as it 

could lead to worrisome situations, such as wrongful identifications or accusations. Due to the 

extensiveness of this particular application a thorough ethical analysis is required, for example  using 

the Four Principles Approach by Beauchamp and Childress (49) 
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