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Summary 
 
The current situation with green gas emission requires the development of low carbon energy solutions. 
However, a significant part of the modern energy industry still relies on fossil fuels. To combine these two 
contradictory targets, we investigate a strategy based on a combination of CO2 sequestration with Enhanced Oil 
Recovery (EOR) in the hydrocarbon reservoirs. In such technology, the development of miscibility is the most 
attractive strategy from both technological and economic aspects. Modeling of this process involves solving 
complex nonlinear problem describing compositional flow and transport in highly heterogeneous porous media. 
An accurate capture of the miscibility development usually requires an extensive number of components to be 
present in the compositional problem which makes simulation run-time prohibitive for optimization. Here, we 
apply a multi-scale reconstructing of compositional transport to the optimization of CO2 injection. In this 
approach, a prolongation operator, based on the parametrization of injection and production tie-lines, is 
constructed following the fractional flow theory. This operator is tabulated as a function of pressure and pseudo-
composition which then is used in the Operator-Based Linearization (OBL) framework for simulation. As a 
result, a pseudo two-component solution of the multidimensional problem will match the position of trailing and 
leading shocks of the original problem which helps to accurately predict phase distribution. The reconstructed 
multicomponent solution can be used then as an effective proxy-model mimicking the behavior of the original 
multicomponent system. Next, we use this proxy-model in the optimization procedure which helps to improve 
the performance of the process in several folds. An additional benefit of the proposed methodology is based on 
the fact that important technological features of CO2 injection process can be captured with lower degrees of 
freedom which makes the optimization solution more feasible. 
 
 



Introduction

Greenhouse gas emission together with a high demand of energy has long been a concern of contempo-
rary society. Near-miscible CO2 injection is among the most efficient strategies for a tertiary recovery
of oil (Lake, 1989); it can also reduce the carbon emission. The produced hydrocarbons can be seen as
a low-carbon fuel due to the significant amount of CO2 left in the subsurface as the result of the EOR
application. Nevertheless, the heterogeneity of subsurface with complex multi-scale characteristics re-
quires a suitable and highly resolved model to comprehend the details of flow and interactions with the
subsurface.

The current economic situation, especially low oil price and formidable cost of CO2, introduces extra
challenges on applying a miscible gas injection. However, in combined objective of enhanced oil recov-
ery and CO2 sequestration, the development of miscibility may become the most attractive strategy from
both technological and economic points of view. In addition, effective miscible injection can increase
the storage capacity for CO2 sequestration in virgin or depleted hydrocarbon fields. It is strongly recom-
mended to develop a plausible techno-economic model to meet the combined goals of oil recovery and
carbon dioxide sequestration. This serves as a primary motivation for this study.

To simulate the miscible gas injection process, compositional modeling is inevitably employed. Compo-
sitional models require numerical solution of nonlinear equations that involve mass conservation of dif-
ferent components and thermodynamic equilibrium. The phase behavior of multiphase multi-component
mixtures is usually resolved by applying an Equation of State (EoS) (Coats, 1980). Near-miscible gas
injection process usually involves a large number of species in solution, which significantly degrades
simulation performance. In addition, in nonlinear iterations, thermodynamic equilibrium should be en-
forced in every grid block to check the phase behavior of the mixture; this adds to the performance
penalty (Iranshahr et al., 2013).

Thermodynamic equilibrium usually consists of two stages: a phase stability test (Michelsen, 1982a)
and flash calculation (Michelsen, 1982b). Various EoS were proposed to represent thermodynamic equi-
librium in a hydrocarbon mixture, starting with the classic cubic EOS (Peng and Robinson, 1976; Soave,
1972). However, the growing accuracy of reservoir fluid characterization and better recognition of com-
plex physical processes involving component interactions requires an application of a more compli-
cated EOS, such as Statistical Association Fluid Theory (SAFT) (Chapman et al., 1989) or Cubic-Plus-
Association (CPA) (Kontogeorgis et al., 1996). In addition, coupling with chemical reactions requires a
combination of thermodynamic and chemical equilibria (Lucia et al., 2015; Paterson et al., 2018). This
can significantly increase the cost of phase-behavior computations in compositional simulation (Voskov
et al., 2017).

Several efforts have been made to improve the performance of the compositional reservoir simulators by
improving phase-behavior computations (Voskov, 2009; Pan and Tchelepi, 2011; Iranshahr et al., 2010),
spatial coarsening of compositional models (Iranshahr et al., 2014; Salehi, 2016) or reformulation of
compositional nonlinear problem (Zaydullin et al., 2012). In this work, a newly proposed Multi-Scale
Compositional Transport (MSCT) approach by Ganapathy (2017) is utilized for production optimization.
The Algebraic Multi-Scale (AMS) approach was initially proposed to solve an elliptic flow problem by
Jenny et al. (2003). Several extensions of this method have been successfully developed. However,
most of the AMS methods were focused exclusively on the flow solver and did not address the transport
problem, except Zhou et al. (2012), where an adaptive Multiscale Finite Volume Method was proposed
to accelerate the transport solver. On the basis of these ideas, an MSCT method for reconstruction of the
compositional transport problem with an arbitrary number of components was developed in Ganapathy
(2017).

This approach suggests a two-stage reconstruction, where, at the first stage, the boundary of a two-
phase region is recovered, and the detailed solution in the two-phase region is reconstructed in the
second stage. This approach utilized an Operator-Based Linearization (OBL) technique proposed by
Voskov (2017). In the OBL method, the terms of the discretized governing equations are factorized into
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space- and state-dependent operators. The state-dependent operators are adaptively discretized in the
parameter space of the problem, and multi-linear interpolation is applied for continuous representation
(Khait and Voskov, 2017). This formulation helps to avoid the performance issues associated with an
accurate phase-split evaluation and reduces the nonlinearity of the problem. Recently, this approach
was extended for adaptive parametrization of thermal-compositional problems with buoyancy (Khait
and Voskov, 2018).

The original study of the MSCT method was limited to isothermal two-phase flow condition with fixed
phase-equilibrium ratios (K-values) (Ganapathy et al., 2018). In this work, we introduce an applica-
tion of MSCT using the PR-EOS (Peng and Robinson, 1976). Due to the strong nonlinearity of the
CO2 injection system, constrained nonlinear optimization strategy is utilized to determine the optimal
production scenario. For production optimization, we used only the first-stage MSCT reconstruction as
a physics-based proxy model and compare its result with optimization of the full compositional solu-
tion. Both approaches were compared using an idealized conceptual model with growing optimization
complexity.

Model description

In this section, a concise simulation framework based on Voskov and Tchelepi (2012) is presented.

Compositional framework

For simplicity, the thermal changes, capillarity, gravity, and diffusion are neglected in the following
description. The general mass-conservation equation for component i in the two-phase compositional
problem is defined as follows:

∂

∂ t

(
φ

2

∑
j=1

xi, jρ jS j

)
+∇ ·

2

∑
j=1

xi, jρ juj +
2

∑
j=1

xi, jρ jq j = 0, i = 1, ...,Nc (1)

In eq. (1), t is time, φ is the porosity of the reservoir, ρ j is molar phase density, S j is phase saturation,xi, j
is the mole fraction of component i in phase j, q j is the source or sink term of phase j, and Nc is number
of the components. The Darcy velocity uj is defined as

uj =−K
kr j

µ j
·∇p, j = 1,2, (2)

where K is absolute permeability, kr j is the relative permeability of phase j, µ j is viscosity of phase j
and p is pressure. The equilibrium relations between oil and gas phase are required to close the system

ˆfi,o (p,T,xo) = ˆfi,g (p,T,xg) , i = 1, ...,Nc, (3)

where ˆfi,o and ˆfi,g are the fugacities for the component i in oil phase and gas phase, respectively. Fugac-
ity is a function of pressure (p), temperature (T ) and phase compositions (xi, j), which are determined
by EoS-based flash computations. Additional equations are given as follows to close the system of
governing equations:

Nc

∑
i=1

(xi,1− xi,2) = 0, i = 1, ...,Nc, (4)

so + sg = 1. (5)

The overall composition of i component can be expressed as:

zi =
2

∑
j=1

v jxi, j, i = 1, ...,Nc, (6)
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where, v j is the molar fraction of the phase j(o,g). Solving the eqs. (3) to (6) is a procedure called
multiphase flash (Michelsen, 1982b), which will provides phase composition xi, j and phase fraction v j.

Finally, the phase saturation s j can be found from

sg =
vg

ρg
/(

vg

ρg
+

vo

ρo
) (7)

Applying two-point finite-volume in space and backward Euler in time discretizations, the general mass-
conservation equation is written as:

V

(φ

2

∑
j=1

xi, jρ jS j

)n+1

−

(
φ

2

∑
j=1

xi, jρ jS j

)n
−∆t ∑

l∈L

(
2

∑
j=1

xl
i, jρ

l
jT

l
j ∆Ψ

l

)
+V ∆t

2

∑
j=1

xi, jρ jq j = 0, (8)

where V is total control volume and L represents the interface which connects the control volume with
another grid blocks. In the simplified assumptions, mentioned above, ∆Ψl becomes a pressure difference
between two connected grid blocks. Finally, T l

j is the transmissibility of phase j.

Operator-Based Linearization

The multi-scale technique is implemented on the basis of an Operator-based Linearization (OBL) ap-
proach proposed by Voskov (2017). To apply OBL, the discretized mass conservation equation (eq. (8))
is written in the following residual form:

Ri (ξ ,ω,u) = a(ξ )(αi (ω)−αi (ωn))−∑
ν

β
ν
i (ω)bν(ξ ,ω)+θi(ξ ,ω,u) = 0. (9)

The operators in eq. (9) are defined as follows:

αi (ω) = (1+ cr (p− pre f ))
2

∑
j=1

xi, jρ jS j, (10)

a(ξ ) = V (ξ )φ0(ξ ), (11)

βi(ω) =
2

∑
j

xi, j
kr j

µ j
ρ j, (12)

b(ξ ,ω) = ∆tTab(ξ )(pb− pa), (13)

θi(ξ ,ω,u) = ∆t
2

∑
j=1

xi, jρ jq j(ξ ,ω,u). (14)

In eq.(10) to eq.(14), cr is rock compressibility and T ab is the transmissibility between grid-blocks. The
vector u contains well-control variables, ω is the set of state variables and ξ are the set of spatial co-
ordinates. In addition, αi is the accumulation operator, βi is the flux operator and θi is the source/sink
operator. The OBL approach is based on a simplified representation of the nonlinear operators in the
parameter space of the simulation problem. For an isothermal reservoir simulation, the parameter space
is defined by the range of pressure (p) between injection and production conditions and overall compo-
sitional (zi) range from 0 to 1. The fully implicit method (FIM) is utilized to resolve the given governing
equation eq. (9) based on the unknowns set. The eq. (9) to eq.(14) represent a full conventional compo-
sitional model.

Multi-Scale Compositional Transport

A solution of a compositional transport problem can be shown in a phase diagram by the solution path
in compositional space, which defines the compositional changes between the initial and injection mix-
tures. Conservation principles and fractional-flow theory form the foundation for the general solution
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method (Orr, 2007). The compositional path of the conventional compositional problem for gas injec-
tion process always results in two shocks (leading and trailing shocks) between single- and two-phase
regions. In a ternary diagram (Fig. 1a), it is presented as yellow lines connecting the initial oil and
injected gas composition.

(a) (b)

Figure 1 Gas-injection solution in ternary system: (a) ternary diagram with displacement path and two 
key tie-lines and (b) fractional-flow curves for component CO2 with solution path.

The shocks between single- and two-phase regions are always aligned along two key tie-lines (black 
dashed lines) defined by liquid x i and vapor y i fractions of each component. For a fixed pressure, xi  and 
yi remain constant and it is possible to construct the fractional-flow curve corresponding with composi-
tional transport, see eq. (15). Fig. 1b gives the injection and initial fractional-flow curves for C O2 in a 
ternary system corresponding to the injection and initial tie lines in Fig. 1a.

Fi = xi (1− fg)+ yi fg, i = 1, ...,Nc−1 (15)

The proposed Multi-Scale Compositional Transport approach consists of two stages (Ganapathy et al.,
2018). The first stage utilizes the set of restriction-prolongation operators for reconstructing two-phase
boundaries (the trailing and leading shocks). The restriction here reduces the nc−1 transport equations
to a single equation with a special flux operator based on the pseudo-fractional-flow curve. In the second
stage, the set of restriction-prolongation operators is applied in the two-phase region to reconstruct the
solution structure of the two-phase displacement. This stage is based on the invariance of two-phase
solutions in tie-line space reported in Voskov and Entov (2001) and adapted for practice in Voskov and
Tchelepi (2009).

The proxy model for compositional simulation, utilized in this work, uses the first-stage multi-scale
reconstruction from Ganapathy et al. (2018). A restriction operator combines two fractional-flow curves
for injection and production tie-lines, defined as:

F ini
I = xini

I (1− fg)+ yini
I fg, F in j

I = xin j
I (1− fg)+ yin j

I fg. (16)

The equivalent fractional-flow curve, serving as the restriction operator, is constructed by taking a convex
hull on the union of both curves:

FR = conv(F in j
I ∪F ini

I ) (17)

In Fig. 2, this curve is shown in green. Next, the equivalent values of Fi and zi from the green curve
are tabulated into the restriction operator and the reduced system is solved. The reduced system of
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equations includes the convenient pressure equation and the restricted transport equation based on the
constructed pseudo-fractional-flow curve. In structure, this system is very close to the conventional
binary compositional problem. Fig. 3 gives an example of the operators which are tabulated from the

Figure 2 Analytical fractional flow for CO2.

analytical fractional flow curve. Those operators are utilized in the OBL framework (Khait and Voskov, 
2017) to solve the first-stage restricted system.
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Figure 3 Operators for a restricted compositional system parameterized at N=64.

Once the solution of the restricted system is found, the full system is reconstructed based on the prolon-
gation operator. This operator applies interpolation between initial and injection compositions using the 
solution of the restricted system κκκ(zR) as an indicator:

κκκ(zR)
[
R1 =⇒ Rnc−1] : z = I{zini,zin j}(zR). (18)

Here, κκκ is the interpolation-prolongation operator, zR is the restricted solution and I is the piecewise
linear interpolation function. Referring to this linear interpolation, the transport solution of other com-
ponents in the multicomponent system is reconstructed and used as a proxy model in place of the full
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compositional model. Notice that this system can accurately predict only the boundaries of the two-
phase region and their dynamic propagation in space; for a really accurate solution, the second-stage
multi-scale reconstruction should be applied (Ganapathy et al., 2018).

Economic model

The techno-economic model is applied to evaluate the economics of a combined CO2 EOR and seques-
tration application. Several economic studies of CO2 injection processes have been performed by Tayari
et al. (2018); Kwak and Kim (2017); Ettehadtavakkol et al. (2014); Rubin et al. (2007). McCoy and
Rubin (2009) proposed several regression equations for assessment of the capital cost of CO2 injec-
tion projects, which are validated by Wei et al. (2015) and Ettehadtavakkol et al. (2014). Referring to
Tayari et al. (2018), this techno-economic model uses simulation input data and oil production rate, gas
injection rate and Bottom-Hole Pressure (BHP) to define different costs and revenues of the project.

On the basis of reservoir-simulation data, an economic model is developed to estimate the profitability
of CO2 injection for Enhanced Oil Recovery (EOR) and CO2 sequestration, which will reflect on the Net
Present Value (NPV). The general economic parameters of a CO2 injection process are listed in Fig. 4.
This figure shows that the cost of a CO2 injection project can be divided into two parts, which are capital

Cost

CAPEX

OPEX

Drilling & Completion

Injectors & producers equipment

Processing equipment

Wells work-over

CO2 purchase

CO2 transportation

CO2 processing

Lift Facility maintenance

Revenues

Oil sales

CO2 storage

NPV

Depreciation & Tax

Figure 4 General economic parameters for CO2 injection project.

cost and operational cost. Dominant revenues from the gas-injection project mainly originate from oil 
sales and carbon sequestration incentives. A previous economic study of CO2-injection projects (Kwak 
and Kim, 2017) indicates that CO2 purchasing cost is one of the most sensitive parameters when NPV is 
evaluated. In this work, according to the general parameters and equations provided in Kwak and Kim 
(2017), a spider plot is constructed in Fig. 5, which shows that CO2 processing cost has a similar impact 
on NPV as CO2 purchasing cost. The CO2 processing-cost model in this work is based on Tayari et al.
(2018), and is expressed in terms of the pump capital cost as follows:

Cpump =
(
1.35×103×Wp

)
+0.085×106, (19)

where Wp is pumping power requirement, which is expressed in kW, which in turn varies with CO2
injection pressure. Other parameters in the economic model are listed in Table 1. Some of them are
obtained by introducing the regression equations listed in McCoy and Rubin (2009), such as those for
well engineering cost and CO2 processing equipment cost.
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Table 1 The values for economic parameters.

Parameters Units Remarks

CO2 storage incentives 12 $/t Kwak and Kim (2017)
Well engineering cost 501644 $ McCoy and Rubin (2009)

CO2 processing equipment 10637265 $ McCoy and Rubin (2009)
Wells work-over 241429 $ McCoy and Rubin (2009)

CO2 purchase cost 24 $/t Kwak and Kim (2017)
CO2 transportation 0 $/t CO2 source in-situ

CO2 processing cost 10 $/t Rubin et al. (2007)
Lift facility maintenance 0.6 $/t Rubin et al. (2007)

CO2 net cost 12 $/t Purchasing cost-Incentives
Tax rate(royalty, severance tax) 0.4 [-] McCoy and Rubin (2009)

Depreciation Linear over ten years $
Discount rate 12 [-] Wei et al. (2015)

Numerical results

In this section, we demonstrate the comparison between solutions of the proxy model and the full com-
positional model. Here, we limit our investigation to a conceptual 1D reservoir model for simplicity.
In this model, the injection well on the left operates at a constant gas rate when the production well is
controlled by Bottom-Hole Pressure (BHP) which serves as a control variable for optimization.

Restricted solution

Fig. 6 shows the restricted solution zR, which yields the shock reconstruction curves for simulation
results for the growing BHP at the production well. All simulation results are shown for the model
with parameters specified in Appendix A after 1000 days of simulation. The K-value table in this
work is obtained from the embedded Constant Composition Expansion (CCE) experiments in Geoquest
(2008) based on the PR EoS, which is shown in Tab 7. It is clear that the K-value system does not
develop miscibility even when BHP provides the pressure at the displacement front close to the First-
Contact Minimal Miscibility Pressure (FC MMP) for this system (around 126 bars at T = 373K). This
happens due to the inability of the K-value model to predict miscibility accurately, since compositional
dependency is not captured in this model.
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It can be overcome by either extension of the K-value parameterization with additional degrees of free-
dom (e.g. Rannou et al., 2013) or incorporation of EoS-based phase behavior (Voskov and Tchelepi,
2009). However, it is clear that the two-phase boundaries can be accurately represented by the restricted
model for K-value based physics. In addition, the complexity and structure of the restricted solution are
invariant with respect to the number of components present and only depends on initial and injection
tie-lines in the multi-component system (see Ganapathy et al., 2018, for details).
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Figure 6 Shock reconstruction of the four-component system for two different BHP controls at 
production well (K-values).

Next, the results of the restricted solution for the compositional problem based on the EOS is shown. 
The structure of the compositional transport solution depends on key tie-lines (Orr, 2007). For the 
restricted solution, we follow the same strategy as before and construct the restriction operator based on 
combined fractional flow (eq. (16)) according to the first stage of MSCT approach (Ganapathy et al., 
2018). The solution of the restricted transport equation reconstructs the boundaries of the two-phase 
region using one transport equation instead of nc − 1 equations in the conventional compositional 
model.

The results of quaternary system reconstruction are shown in Fig. 7. Here you can see that for a high 
BHP value, the structure of the solution is much closer to miscibility (leading and trailing shocks stays 
closer to each other) than in the K-value approximation. This happens because the EOS-based phase 
behavior correctly represents the compositional dependency of the solution. Similar to the K-value 
model, the restriction stage requires the solution of only one equation instead of nc − 1, where nc is the 
number of components.
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Figure 7 Shock reconstruction of the four-component system for two different BHP controls at 
production well (EoS model).
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Prolongation of proxy model

Here, we illustrate the construction of the proxy model using an interpolation-based prolongation oper-
ator (eq. (18)) for both cases. It can be seen in Fig. 8 and Fig. 9 that the prolongation operator does not
reconstruct the full structure of the solution, but only one indicator component. For the full solution, the
second stage of the reconstruction should be applied; see Ganapathy et al. (2018) for details. However,
the prolongation yields a full compositional solution in every control volume, which then can be used in
a multiphase flash procedure to predict phase behavior. This phase behavior provides the boundary of
the two-phase region in space. In our proxy model, we are using this prediction to compute phase rates
at wells and evaluate NPV for the proxy model.
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Figure 8: Proxy model for a four-component system (K-value based)
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(a) Full solution for BHP = 85 bars
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(b) Full solution for BHP = 120 bars

Figure 9 Proxy model for a four-component system (EoS based).

Conceptual optimization problem

Fig. 10 shows the transport solution for both fully compositional and proxy models for different BHP 
controls at the production well and a fixed rate at the gas-injection w ell. It is clear that with increasing 
pressure, both models capture the development of miscibility, with the leading and trailing shocks getting 
closer to each other and the displacement efficiency g rowing. Next, we investigate optimal production 
strategies for this model.

In the optimization stage, the full four-component system together with the proxy two-component system 
is used to determine oil production. Net Present Value (NPV) is used as an indicator to estimate the 
economic profitability of the project. The simulation time is divided into several periods where changes
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(a) Four-component system (T = 1000days) (b) Two-component system(T = 1000days)

Figure 10 Transport solution and pressure profile for five different BHP controls at the producer.

in BHP at production well are applied. Here we make sure that the time period for simulation covers 
the breakthrough of the trailing shock at the lower limit of pressure. Next, we estimate the optimal 
production strategy with a different numbers of control variables.

NPV with a limited number of control parameters

The NPV distribution as a function of a single BHP control is evaluated here. We compare the NPV 
curve vs. BHP control for both the proxy and the full compositional model. The simulation time is 
defined to be long enough for the breakthrough of both leading and trailing shocks of the solution. NPV 
plot as a function of control BHP is shown in Fig. 11. Here, the green solid curve is the NPV results
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Figure 11: NPV with one control parameter

from the full four-component model, and red dashed curve is the NPV results from the proxy model.
While there are some discrepancies in the proxy solution due to the limited application of the MSCT
(only first stage of reconstruction), the model captures the correct boundaries of the two-phase region
and yields the correct maximum of the NPV function. To reduce the differences in NPV evaluation, the
second stage of the MSCT reconstruction can always be performed.

Next, we introduce two simulation time periods and two control variables (BHP1 and BHP2) for NPV
evaluation. Performing an exhaustive search in the space of control variables, we evaluate the NPV
function, shown in Fig. 12. While the NPV function is different for the proxy and the full model, the
maximum NPV is reached at the same control values, i.e. around BHP1 = 95 bars and BHP2 = 118
bars. These values are conditioned by the obvious strategy for production controls when in the first time
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interval, the lower BHP at the production well provides the near-miscible pressure at the displacement
front. In the second time interval, the higher pressure at the production well provides near-miscible
pressure until the breakthrough to the production well. The near-miscible strategy is optimal since it
maximizes the oil recovery and sequestration of CO2.

(a) Full model (b) Proxy model

Figure 12 NPV with two control parameters.

Optimization with multiple controls

Next, we apply production optimization based on five control variables (BHP’s) corresponding to five 
time periods in the simulation. In this study, we use the ’fmincon’ function from the Matlab optimization 
toolbox (MathWorks, 2018). In ’fmincon’, the ’sqp’ algorithm has been chosen. The optimizer is utilized 
to provide BHP controls at each time period and obtain an optimal NPV result during the CO2-injection 
process. All BHP controls were bounded by BHPmin = 60 bars and BHPmax = 140 bars. Note, that the 
expected optimal strategy should include a gradual increase of BHP at each consecutive control interval 
to provide near-miscible conditions at the displacement front.

We test several initial guesses for the optimization with five control parameters. For this number of con-
trols, several local minima can exist and the optimizer struggles with finding a single global extremum. 
However, based on the structure of solution in Fig. 10, we can predict a near-optimal BHP strategy where 
BHP should monotonically increase with time to provide the near-miscible pressure at the displacement 
front. Using this strategy with BHP = [63;77;83;102;121] at five controls intervals as the initial guess, 
we perform the optimization. The results of optimization based on the full and proxy models are present 
in Table 2. You can see that the proxy model performed fewer iterations and obtained a similar NPV.

In addition, we perform two more optimization runs with different initial guesses when all BHP controls 
have been set to 70 bars and 100 bars respectively. The results can also be seen in Table 2. In these 
optimization runs, both models cannot converge to the same optimal strategy, but getting close to it. 
The proxy model performs quite robustly and proves to be applicable for optimization of gas injection 
process in the idealistic reservoir.

Conclusion

In this work, we extend the Multi-Scale Compositional Transport (MSCT) approach for the EoS-based 
gas-injection problems. In particular, we parametrize the restriction operator of the first stage MSCT 
reconstruction in the pressure interval and obtain the restricted solution using the Operator-Based Lin-
earization framework. The restricted solution was prolongated to the full compositional solution using 
interpolation operator. The obtained proxy model can accurately predict the boundaries of the two-phase 
region and has been utilized in this work for production optimization.

Referring to previous economic assessments of CO2-injection projects, a techno-economic model has
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Table 2 Optimization results for constant initial BHP.

Initial guess Model # of NPV($) Controls for time periods
iter. 1 2 3 4 5

Near optimal Full model 6 261,100 60.00 76.18 79.21 88.21 117.65
Proxy model 3 261,064 60.00 76.08 80.07 85.00 117.99

BHP = 70 bars Full model 11 261,007 60.00 79.33 90.76 63.02 126.11
Proxy model 12 260,247 60.97 60.05 89.62 117.41 127.74

BHP = 100 bars Full model 9 260,093 60.00 87.86 107.42 82.86 121.16
Proxy model 7 260,817 60.00 95.05 105.73 61.97 118.87

been developed to analyze the revenues of CO2 injection for the combined objective of EOR and seques-
tration. We demonstrate that the objective function of full compositional model and the proposed proxy
model share the same extrema for a limited number of control parameters. In addition, a constrained
nonlinear optimization is applied to determine an optimal production strategy for the gas injection oper-
ation. Both models converge to a similar optimal strategy when the initial guess is close to the optimal
solution. For arbitrary initial guesses, the converged optimal strategy may differ for proxy and full com-
positional models. In our future work, we will extend the proposed methodology to more realistic 3D
simulation problems.
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Appendix A: Fluid and rock interactions

The simulation model in this study is a 1D homogeneous model (K = 20 mD), 200 m long with one in-
jection well on the left and one production well on the right boundaries. The finite volume discretization
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is applied based on the standard Cartesian grid with the block sizes: ∆x = 1m, ∆y = 10m, ∆z = 1m. For 
the well model, the Peaceman formula (Peaceman, 1978) is utilized with rw = 0.15 m. The injection 
well is controlled by a constant gas rate qg = 2m3/day. The rest of parameters are specified in tables 
below.

Table 3 Hydrodynamic parameters.

Phase Oil Gas

Rock compressibility, 1/bar 10−5

Porosity 0.3
Residual saturation (S jr) 0.0 0.0
End point relative permeability (Kr je) 1.0 1.0
Saturation exponent (n j) 2.0 2.0
Viscosity, cP (µ j) 0.5 0.1

Table 4: Thermodynamic properties.

Components CO2 C1 C4 C10

Critical pressure, bars 73.87 43.04 37.47 24.20
Critical temperature, K 304.7 190.60 419.5 626.0
Critical volume, m3 / kg-mole 0.094 0.098 0.258 0.534
Acentric factor 0.225 0.013 0.1956 0.385
Molar weight, g/mol 44.01 16.04 58.12 134.0
Binary interaction, CO2 - 0.1 0.1 0.1
Binary interaction, C1 0.1 - - 0.041

Table 5: Binary system.

Binary system

Compositions CO2 C10
Initial Oil Compositions 0.33 0.67
Injection gas Compositions 1.00 0.00

Table 6: Quaternary system.

Quaternary system

Compositions CO2 C1 NC4 C10
Initial Oil Compositions 0.33 0.03 0.24 0.40
Injection gas Compositions 1.00 0.00 0.00 0.00

For the K-value model, we perform the Constant Composition Expansion (CCE) using PVTi module 
(Geoquest, 2008) where we generate K-value table corresponding to given initial compositions in Tab. 6. 
The K-value table is present as a function of pressure with three pressure values employed, see Tab. 7 
for details.

Table 7 K-value table for quaternary system.

Pressure Compositions

CO2 C1 NC4 C10
40 bars 6.70 8.60 1.20 0.00085
80 bars 2.05 4.70 0.54 0.005

120 bars 1.33 2.51 0.31 0.09
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