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Abstract: The current work presents a new structure based on Au/PVA/SiO2/p-Si/Al that has not
been studied before. An aqueous solution of polyvinyl alcohol (PVA) polymer gel was deposited on
the surface of SiO2/Si using the spin-coating technique. The silicon wafer was left to be oxidized
in a furnace at 1170 k for thirty minutes, creating an interdiffusion layer of SiO2. The variations in
the dielectric constant (�′), dielectric loss (�′′), and dielectric tangent (tanδ) with the change in the
frequency, voltage, and temperature were analyzed. The results showed an increase in the dielectric
constant (�′) and a decrease in the dielectric loss (�′′) and tangent (tanδ); thus, the Au/PVA/SiO2/p-
Si/Al heterostructure has opened up new frontiers for the semiconductor industry, especially for
capacitor manufacturing. The Cole–Cole diagrams of the �′′ and �′ have been investigated at
different temperatures and voltages. The ideality factor (n), barrier height (Φb), series resistance (Rs),
shunt resistance (Rsh), and rectification ratio (RR) were also measured at different temperatures.

Keywords: gel materials; heterojunction diode; I–V and C–V characterization; polyvinyl alcohol
(PVA); polymer oxide semiconductor

1. Introduction

In recent years, there has been significant progress in developing materials and tech-
niques for sensor applications, particularly those involving thin films and nanostruc-
tures [1,2]. Polymer oxide semiconductor (POS) structures consist of a thin oxide film
between a polymer and a semiconductor [3]. The oxide layer prevents inter-diffusion be-
tween the polymer and semiconductor substrate and improves the electric field reduction
inside the structures [4–6]. It enhances the electrical and dielectric properties of devices
such as capacitors [7–9], which increases the electric charge’s storage capacity. The creation
of oxide thin films on Si substrates using traditional methods of oxidation or deposition can-
not passivate the active hanging bonds on the surface of semiconductors [10,11]. The carrier
lifetime remains more prolonged at high angular frequencies than the period (T = 1/x).
Thus, the charges at the border states cannot track an AC sign [12]. Contrarily, the charges
at minor frequencies could follow the AC signal, and thus, the effect of these charges on
the capacitance of devices increases with decreasing frequency [13].

Consequently, the electrical and dielectric characteristics depend on the frequency,
making accuracy and trust results very significant. The interface states at the Si/SiO2,
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PVA/SiO2 interfaces, and device contacts cause deviation from the perfect case [14,15].
These interfaces commonly cause a bias change and frequency dispersal of the C–V and G–V
curves [16]. Thus, it is noteworthy to incorporate the effect of the frequency and thoroughly
inspect the frequency dispersal of the dielectric properties. The frequency dependence of
the dielectric constant (�′), dielectric loss (�′′), and dielectric tangent (tanδ) is dominated
by a small frequency dispersal, whose physical origin has long been in question. The
innovation in this paper is that we have synthesized the Au/PVA/SiO2/p-Si/Al structure,
which has not been investigated before. We present a whole study of the dielectric constant
(�′), dielectric loss (�′′), and dielectric tangent (tanδ) with the variation of the frequency,
voltage, and temperature. We also succeeded in improving the dielectric constant (�′) and
reducing the dielectric loss (�′′) and the tangential component (tanδ); thus, the current
structure is considered a promising material for the development of capacitors. The Cole–
Cole diagrams of the �′′ and �′ at different voltages and temperatures have been examined.
In addition to that, the I–V measurements were performed to retrieve information about
its electrical properties, such as the ideality factor (n), barrier height (Φb), series resistance
(Rs), shunt resistance (Rsh), and rectification ratio (RR) over different temperatures.

2. Results and Discussion
2.1. Scanning Electron Microscope and X-ray Diffraction Pattern

SEM Analysis: Figure 1 shows the surface topography of the PVA layer on the SiO2/Si
substrate. The SEM micrograph reveals a uniform distribution across the surface, with
some cracks visible. These cracks are assumed to have originated from the drying process of
the PVA film as the solvent evaporated, causing shrinkage and resulting in stress-induced
cracks. The surface morphology of the PVA is relatively smooth, with minimal porosity,
indicating a dense film formation.
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ture, and (c) Au/PVA/SiO2/p-Si/Al structure. 

  
-2 -1 0 1 2

1.20x10-10

1.35x10-10

1.50x10-10

1.65x10-10

C
 (F

)

V (V)

 F = 20000000
 F = 13793100
 F = 10000000
 F = 6560340
 F = 4524370
 F = 3120250
 F = 2151900
 F = 1484070
 F = 1000000
 F = 705859
 F = 486799
 F = 335724
 F = 231534
 F = 159678
 F = 100000

T  =  303 Ka

-2 -1 0 1 2
0.00

3.90x10-5

7.80x10-5

1.17x10-4

1.56x10-4

1.95x10-4

G
 (S

)

V ( V )

 F = 20000000
 F = 13793100
 F = 10000000
 F = 6560340
 F = 4524370
 F = 3120250
 F = 2151900
 F = 1484070
 F = 1000000
 F = 705859
 F = 486799
 F = 335724
 F = 231534
 F = 159678
 F = 100000

T= 303 Kb

Figure 1. (a) SEM of the Au/PVA/SiO2/p-Si/Al structure, (b) XRD of the Au/PVA/SiO2/p-Si/Al
structure, and (c) Au/PVA/SiO2/p-Si/Al structure.

XRD Analysis: Figure 2 presents the XRD pattern of the PVA/SiO2/Si thin film. The
XRD spectrum exhibits a prominent peak at 2θ = 19.7◦, which is characteristic of the semi-
crystalline nature of the PVA film. The broadening of the halo and the absence of sharp
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diffraction peaks confirm the semi-crystalline structure of the PVA, suggesting that the
material has both amorphous and crystalline regions [17].
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Figure 2. (a–f) The experimental (a) C–V, (b) G–V, (c) C–T, (d) G–T, (e) Rs–V, and (f) Rs–T for the
Au/PVA/SiO2/p-Si/Al structure.
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Additionally, the I–V and C–V characteristics were measured using a Keysight model
B2901A and a Novocontrol high-resolution alpha analyzer. These measurements were
supported by a Quatro temperature controller, which maintained the temperature stability
to within 0.2 K using clean nitrogen as a heating agent.

2.2. Dielectric Characterization

Figure 2a,b display the variation of the capacitance (C) and conductance (G) with
the voltages and frequencies at a temperature of 303 K for the Au/PVA/SiO2/p-Si/Al
structure. As observed in Figure 2a, the capacitance decreases with the frequency, while
the conductance increases. C and G are still independent of the voltage changes. At the
same time, the conductance might be attributed to the spreading profile of the interface
density of states at the PVA/p-Si and PVA/SiO2 interface and series resistance (Rs) [18,19].
Figure 2c,d display the variation of C and G with the temperature at different frequencies
and a constant voltage V = 0 V; both rise with the temperature. The variation of the series
resistance (Rs) with the voltage at different frequencies at room temperature is seen in
Figure 2e; it decreases with the frequencies, while Rs shows peaks at room temperature, as
displayed in Figure 2f, and then decreases at high temperatures.

Figure 3a–b’ display the variation of the dielectric constant �′ and �′′ at different
frequencies and room temperature for Au/PVA/SiO2/p-Si/Al. It is seen that �′ decreases
with the frequencies, and its value ranges from 56 to 135, while the dielectric loss �′′

decreases with the frequency, taking values from 6 to 36. Here, we enhanced the values
of �′ and reduced the values of �′′, as shown in Figure 3b,b’. At a temperature of 363 K,
�′ increases from 75 to 480 while �′′ reduces from 13 to 380, as illustrated in Figure 4c,d.
On the other hand, working at a low temperature equal to 223 k, the values of �′ and
�′′ range from 41 to 60 and from 1 to 4.4, respectively, as illustrated in Figure 3e–f’. As
described above, we can increase the dielectric constant’s value and reduce the dielectric
loss’s value with varying temperatures and frequencies. Still, their values are independent
of the change in the voltage. It is stated that the values of �′ and �′′ depend on several
factors related to the interface state density, interfacial layer thickness, series resistance,
doping concentration, etc. [17,20].

Figure 4a–h illustrate the variation of �′ and �′′ with the voltages at different temper-
atures and constant different frequencies for Au/PVA/SiO2/p-Si/Al. At the frequency
2 × 107 Hz, �′ and �′′ increase with the temperatures and their values range from 40 to
80 and 3 to 15, respectively. The dielectric constant and dielectric loss dependence on
the voltage is almost low, as shown in Figure 4a,b. At the frequency 105 Hz, the values
of �′ and �′′ range from 45 to 120 and 2 to 24, respectively, as displayed in Figure 4c,d,
while at the frequencies 103 and 10 Hz, �′′ increases to large undesirable values, as shown
in Figure 4e–h. These variations in the conductance of �′ and �′′ can also be due to po-
larization mechanisms such as Maxwell–Wagner [21] and space charge [22,23]. Through
the above, it can be concluded that at high frequencies, the value of the dielectric loss
is minimal. The industry needs to reduce the value of the heat loss at medium and low
frequencies as the value of constant loss rises, which is undesirable.

Figure 5a–f illustrate the variation of �′, �′′, and tanδ with the frequency at different
voltages and fixed temperatures for Au/PVA/SiO2/p-Si/Al. At a low temperature of 223 k,
the behavior is the same for all the �′, �′′, and tanδ, and the difference is that �′′ and tanδ
have two peaks at low and high frequencies. The most significant finding here was the
enhancement of the value of �′ in the range of 40–70 and the decrease in the values of �′′ in
the range of 0.5–5 and 0.02–0.08, respectively, as seen in Figure 5a–c. At room temperature,
�′′ and tanδ exhibit the same standard behavior, while �′ decreases with all the frequencies.
However, the values of �′ increase compared to Figure 5a, while �′′ and tanδ decrease,
as shown in Figure 5d–f. The robust reduction in �′ and �′′ with the frequency can be
described by the Debye relaxation in terms of the polarity alignment and interface effect [8].
Though a great � is significant for high-capacity energy storage dielectrics, the balance
between a high dielectric constant and a low dielectric loss is more critical [24].
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Figure 3. (a–f’) �′, �′′ versus V at different frequencies and different constant temperatures for the
Au/PVA/SiO2/p-Si/Al structure.

Figure 6a–f illustrate the variation of �′, �′′, and tanδ with the temperature at different
voltages and frequencies for the Au/PVA/SiO2/p-Si/Al structure. �′,�′′, and tanδ increase
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with the temperature. All the curves overlap at low temperatures, while at room and high
temperatures, the �′, �′′, and tanδ curves split at each voltage. At the frequency 105 Hz,
the values of �′ increase from 40 to 140, while �′′ and tanδ reduce from 0 to 25 and 0.04 to
0.2, respectively, as displayed in Figure 6a–c. As the frequency increases to 2 × 107 Hz, the
values of �′, �′′ and tanδ range from 40 to 80, 0 to 16, and 0.04 to 0.2, respectively, as shown
in Figure 6e,f. The impurities, disorders, or additional phases might be clarified in the
construction. With an increase in temperature, the joint effect leads to a rise in the values of
�′ and�′′. This may be attributed to the ion jump and space charge effects induced by rising
concentrations of the charge carriers. Also, the rising temperature enhances the growth of
molecules. It can be supposed that this structure enhanced the dielectric properties �′, �′′,
and tanδ with annealing [25,26]. It is clear that with increasing frequency, �′ has shown
significant improvements, while �′′ and tanδ are decreased, increasing capacitors’ ability
to store energy and reduce heating loss.
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Figure 4. (a–h) �′, �′′ versus V at different temperatures and constant frequencies for the Au/PVA/
SiO2/p-Si/Al structure.

Figure 7 displays the variation of the dielectric loss (�′′) with a dielectric constant (�′)
of impedance at different voltages and constant temperatures for Au/PVA/SiO2/p-Si/Al.
Entirely, the figures display a reduction in the radius of the partly shaped semicircles and
shrinkage near the origin due to the rising ionic conductivity and declining resistance of
the films [27,28].
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Figure 5. (a–f) �′, �′′, tanδ versus lnf at different voltages and constant temperatures for the
Au/PVA/SiO2/p-Si/Al structure.
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Figure 6. (a–f) �′, �′′, tanδ versus Tk at different voltages and constant different frequencies (105,
2 × 107 Hz, respectively) for the Au/PVA/SiO2/p-Si/Al structure.
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Figure 7. (a–c) �′′-�′ at different voltages and constant temperatures for the Au/PVA/SiO2/p-Si/Al
structure.

2.3. The Current–Voltage (I–V) Characteristic

The current–voltage characteristics of the diode were explained according to the
thermionic emission model [29–31]:

I = I0

[
exp

q(V − IRs)

nkT

]
(1)

Figure 8a illustrates the I–V characteristic for the Au/PVA/SiO2/p-Si/Al heterostruc-
ture diode at different temperatures, while Figure 8b displays the diode’s lnI–V semiloga-
rithmic behavior.

The barrier height can be expressed by [32,33]:

φb =
kT
q

Ln

(
AA∗T2

I0

)
(2)

where I0 is the saturation current, V is the applied voltage, Rs is the series resistance, n
is the ideality factor, T is the temperature in Kelvin, q is the electronic charge, k is the
Boltzmann constant, φb is the Schottky barrier height, A* is the Richardson constant, and A
is the contact area of the diode. The intersection of the inserted straight lines of the linear
part with the current axis obtained the I0. The ideality factor (n) can be determined using
Equation (1) as [33,34]:
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n =
q

KT

(
dV
dlnI

)
(3)

From Equations (1) and (2), Fb increases with the temperature, while n decreases, as
illustrated in Figure 9, and their values are listed in Table 1. Based on Equation (3), the high
value of the ideality factor was attributed to the presence of a thin oxide layer and series
resistance [23]. Since the non-homogeneous barrier height contributes to the higher value
of the ideality factor [35,36], the higher value of n can be explained in terms of secondary
mechanisms such as border dips and interfacial imperfections, which are produced by an
organic interlayer or a specific border structure [37]. The variation of the barrier height
with the ideality factor is illustrated in Figure 10.
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Figure 9. n and Fb versus T for the Au/PVA/SiO2/p-Si/Al structure.

In addition to that, Rs and Rsh decrease with an increasing temperature. As illustrated
in Figure 11, Rs and Rsh have a significant value due to the thin SiO2 layer between the PVA
and Si layers. The variation of the junction resistance (Rj) with the applied voltage is shown
in Figure 12. In contrast, the rectification ratio with a voltage at different temperatures is
illustrated in Figure 13. The RR has good values at any temperature, confirming that the
diode has a reasonable rectification.
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Figure 10. Fb versus n for the Au/PVA/SiO2/p-Si/Al structure.
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Figure 12. Rj versus V at different temperatures for the Au/PVA/SiO2/p-Si/Al structure.
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Figure 13. RR versus V at different temperatures for the Au/PVA/SiO2/p-Si/Al structure.

Table 1. Calculated ideality factor, series resistance, shunt resistance, and Au/PVA/SiO2/p-Si/Al
barrier height at different temperatures.

T (k) FFFb eV Rsh Ω Rs Ω n

300 0.77 1.09 × 105 3.38 × 103 3.14
325 0.83 1.01 × 105 2.44 × 103 3.04
350 0.89 7.19 × 104 2.01 × 103 2.82
375 0.96 6.43 × 104 1.80 × 103 2.8
400 1.03 1.73 × 104 1.31 × 103 2.74
425 1.1 1.54 × 104 1.40 × 103 2.63

3. Conclusions

In this study, we successfully fabricated an Au/PVA/SiO2/p-Si/Al structure, which
was not previously reported. We investigated the variation of the dielectric constant (�′),
dielectric loss (�′′), and dielectric tangent (tanδ) across different frequencies, voltages, and
temperatures. Our findings demonstrate an increase in the dielectric constant (�′) and a
reduction in both the dielectric loss (�′′) and tangent (tanδ). These results suggest that
the Au/PVA/SiO2/p-Si/Al structure presents new opportunities for advancements in
the semiconductor industry, particularly in capacitor manufacturing. Additionally, we
systematically analyzed previous studies, examining the undesirable behaviors of �′ and
�′′. Cole–Cole diagrams of �′′ and �′ under various voltages and temperatures were
analyzed. We also performed I–V measurements and assessed electrical parameters such as
the ideality factor, series resistance, shunt resistance, rectification ratio, and barrier height
at different temperatures.

4. Materials and Methods

The Au/PVA/SiO2/p-Si/Al was synthesized by cleaning a single crystal wafer of
silicon to eliminate all the contamination that exists on the surface. The silicon wafer was
left to be oxidized in a furnace at 1170 k for thirty minutes, creating an oxide layer (SiO2).
An aqueous gel solution of PVA was deposited on the surface of the SiO2/Si using the
spin-coating technique. The Au/PVA/SiO2/p-Si/Al heterostructure was left to dry at a
temperature of 223 k, and then a gold electrode was deposited on the top and aluminum as
a lower electrode of the structure of the Au/PVA/SiO2/p-Si/Al using thermal evaporation.
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13. Dökme, İ.; Altındal, Ş.; Gökçen, M. Frequency and Gate Voltage Effects on the Dielectric Properties of Au/SiO2/n-Si Structures.

Microelectron. Eng. 2008, 85, 1910–1914. [CrossRef]
14. Kar, S.; Dahlke, W.E. Interface States in MOS Structures with 20–40 Å Thick SiO2 Films on Nondegenerate Si. Solid State Electron.

1972, 15, 221–237. [CrossRef]
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25. Fiat, S.; Polat, İ.; Bacaksiz, E.; Kompitsas, M.; Çankaya, G. The Influence of Annealing Temperature and Tellurium (Te) on
Electrical and Dielectrical Properties of Al/p-CIGSeTe/Mo Schottky Diodes. Curr. Appl. Phys. 2013, 13, 1112–1118. [CrossRef]

26. Ashery, A.; Elnasharty, M.M.M.; Farag, A.A.M.; Salem, M.A.; Nasralla, N. Electrical Performance and Photosensitive Properties of
Cu/SiO2/Si –MOS Based Junction Prepared by Liquid Phase Epitaxy. Superlattices Microstruct. 2017, 109, 662–674. [CrossRef]

27. Rhimi, T.; Leroy, G.; Duponchel, B.; Khirouni, K.; Guermazi, S.; Toumi, M. AC and DC Conductivity Study of LiH2PO4 Compound
Using Impedance Spectroscopy. Ionics 2018, 24, 1305–1312. [CrossRef]

28. Ashery, A.; Elnasharty, M.M.M.; Hameed, T.A. Investigation of Electrical and Dielectric Properties of Epitaxially Grown Au/n-
GaAs/p-Si/Al Heterojunction. Opt. Quantum Electron. 2020, 52, 490. [CrossRef]

29. Tuan, T.T.A.; Kuo, D.-H.; Li, C.-C.; Yen, W.-C. Schottky Barrier Characteristics of Pt Contacts to All Sputtering-Made n-Type GaN
and MOS Diodes. J. Mater. Sci. Mater. Electron. 2014, 25, 3264–3270. [CrossRef]

30. Anh Tuan, T.T.; Kuo, D.-H. Characteristics of RF Reactive Sputter-Deposited Pt/SiO2/n-InGaN MOS Schottky Diodes. Mater. Sci.
Semicond. Process. 2015, 30, 314–320. [CrossRef]

31. Ramesh, C.K.; Reddy, V.R.; Choi, C.-J. Electrical Characteristics of Molybdenum Schottky Contacts on N-Type GaN. Mater. Sci.
Eng. B 2004, 112, 30–33. [CrossRef]

32. Rajagopal Reddy, V.; Koteswara Rao, P. Annealing Temperature Effect on Electrical and Structural Properties of Cu/Au Schottky
Contacts to n-Type GaN. Microelectron. Eng. 2008, 85, 470–476. [CrossRef]

33. Tuan, T.T.A.; Kuo, D.-H.; Li, C.-C.; Li, G.-Z. Effect of Temperature Dependence on Electrical Characterization of P-n GaN Diode
Fabricated by RF Magnetron Sputtering. Mater. Sci. Appl. 2015, 06, 809–817. [CrossRef]
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