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Abstract

The Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA)
is a state-of-the-art algorithm for single-objective, real-valued optimization. As many
practical applications are inherently constrained, evolutionary algorithms are equipped
with constraint handling techniques to allow optimizing constrained problems. The
approach currently in use with RV-GOMEA prioritizes solution feasibility over the
objective value in all cases, pressuring the algorithm to find feasible solutions. How-
ever, this can be inefficient if the constrained optimum is located at the constraint
boundary, as search is discouraged from exploring the search space close to infeasi-
ble solutions.

In this thesis, several well-known constraint handling techniques from literature
are adapted for use with RV-GOMEA and evaluated on different benchmark problems,
identifying the strengths and limitations of the various techniques. Furthermore, the
inefficiency of the current technique is investigated in detail. Based on the insights
gained, modifications to the existing techniques are proposed, leading to promising
preliminary results.
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Chapter 1

Introduction

Optimization is an indispensable tool that underpins numerous aspects of our daily lives
and enables the technologies we rely on. From scheduling public transport [12], designing
computer chips [77] and finding neural network architectures [39] to cancer treatment
planning [4], optimization algorithms serve as the workhorses that enable finding good
solutions for complex problems. Naturally, many of these problems are inherently accom-
panied by constraints. For instance, solution candidates violating the laws of physics or
not adhering to regulations are not useful in practice. Moreover, these constraints are of-
ten at odds with the goal, causing the best solutions to be found at the limit of what is
feasible, the constraint boundaries. Due to the ubiquity of real-world problems involving
constraints, constraint handling techniques are an active field of research [45, 35, 43, 50],
where algorithmic advances enable downstream improvements for the practical use cases.

Many problems are complex and not fully understood, creating a need for optimization
techniques that are able to perform well in scenarios where the problem at hand is a black
box and there exists no problem specific approach. Evolutionary Algorithms (EAs) are
a class of algorithms well suited for tackling these complex problems as they make few
assumptions about the underlying problem, leading to a broad applicability [59]. One well-
known example of EAs being applied to a real-world problem is [30], where antennas for
aerospace applications are evolved that were used in NASA missions.

One such EA that is amongst the current state-of-the-art for large-scale optimization
with limited problem knowledge is the Real-Valued Gene-pool Optimal Mixing Evolution-
ary Algorithm (RV-GOMEA)[8]. The multi-objective version of this algorithm is used in
for real-world medical use cases [4, 8, 1]. These problems include constraints, however,
constraint handling for RV-GOMEA has not been explicitly studied yet. This thesis aims
to take a step towards closing the gap between state-of-the-art optimization and constraint
handling techniques. Improvements in constraint handling of RV-GOMEA represent a step
towards downstream improvements for the practical use cases the algorithm is used for.

When optimizing constrained problems, it is desirable to end up with solutions adher-
ing to all constraints. Therefore, RV-GOMEA currently prioritizes such feasible solutions
over solutions that do violate constraints. During optimization, a step of selecting the
best solutions found so far is performed to identify a promising region for future search.
Even when knowing very little about the problem at hand, it often holds true that making

1



1. Introduction

small changes to a solution tends to result in solutions of similar quality, making search
in the vicinity of good solutions effective. However, for constrained problems, this can
lead to ineffective search near constraint boundaries. By selecting and thus searching
only near solutions adhering to the constraints, search is discouraged from approaching
the constraint boundaries. Theoretical results show that making use of infeasible solu-
tions throughout the optimization process can be the deciding factor between exponential
or polynomial algorithm complexity [78]. As the best solutions are often located at the
constraint boundary, efficient search near constraint boundaries is desirable [43, 25, 31].

This thesis aims to adapt and evaluate existing well-known constraint handling tech-
niques within the context of RV-GOMEA. Additionally, the shortcomings of the constraint
domination principle[17], the currently used approach, and other established methods[54,
64, 20, 25, 58, 22] will be analyzed. Building upon this analysis, novel approaches will
be proposed, designed specifically for RV-GOMEA in order to facilitate efficient search
near constraint boundaries. Finally, the effectiveness of the proposed approaches will be
evaluated on various benchmark suites[38, 29] and problems, providing insights into their
strengths and limitations in different optimization scenarios. By doing so, this thesis aims
to improve the effectiveness of RV-GOMEA for constrained optimization problems and to
pave the way towards possible downstream improvements for real-world use cases such
as cancer treatment planning [4].

This is split up into the following main research questions:

1. How do existing constraint handling techniques perform when combined with RV-
GOMEA?

2. Does the constraint domination principle, the currently used approach, perform ef-
ficient search near constraint boundaries, and if not, why?

3. How can existing approaches be improved upon to allow RV-GOMEA to search near
constraint boundaries more effectively?

The structure of the thesis is as follows. First, the necessary background and terminol-
ogy is introduced in Chapter 2. In Chapter 3, well-known constraint handling techniques
from literature are adapted to RV-GOMEA, followed by experiments in Chapter 4. The
experiments evaluate the different techniques on various benchmark problems, and the
effectiveness of search near constraint boundaries is analyzed. Chapter 5 presents modifi-
cations to existing approaches designed to facilitate more efficient search near constraint
boundaries. These new approaches and existing techniques are then empirically validated
on several benchmark suites and problems. The work performed as well as the limitations
are discussed in Chapter 6, before Chapter 7 concludes this thesis.

2



Chapter 2

Background

This chapter first presents the general problem formulation for single-objective constraint
optimization problems (COPs), properties of such problems, and the notion of black-box
optimization this thesis focuses on. Furthermore, the general working principles and ter-
minology of evolutionary algorithms (EAs) are introduced, with special attention on the
real-valued gene-pool optimal mixing evolutionary algorithm (RV-GOMEA). Finally, an
overview of well-known constraint handling techniques for EAs is provided.

2.1 Constrained Optimization Problems

A constrained optimization problem (COP) consists of an objective function, a search
space, and the constraints. Without loss of generality, this can be formulated as

minimize 𝑓 (𝑥 )
subject to

𝑔𝑖 (𝑥 ) ≤ 0 for 𝑖 = 1,2, . . . ,𝑝
ℎ 𝑗 (𝑥 ) = 0 for 𝑗 = 1,2, . . . ,𝑞

where 𝑥 ∈ Ω

(2.1)

where 𝑓 : Ω→ R is the objective function and Ω is the set of all possible solutions,
i.e. the search space. If both 𝑝 = 𝑞 = 0, the problem is unconstrained. The two types of
constraint are inequality constraints 𝑔𝑖 (𝑥 ) and equality constraints ℎ 𝑗 (𝑥 ). A solution 𝑥 ∈ Ω
is called feasible if it satisfies all constraints, otherwise, it is infeasible. Furthermore, let
M ⊆ Ω be the subset containing all feasible solutions, the feasible set. Then the goal is to
find or approximate the best feasible solution 𝑥∗ ∈M, such that 𝑓 (𝑥∗) ≤ 𝑓 (𝑥 ) for all 𝑥 ∈M.
If 𝑔𝑖 (𝑥∗) = 0 holds, the constraint is called active. By extension, inequality constraints are
always active, as ℎ 𝑗 (𝑥∗) = 0 must hold at the constrained optimum 𝑥∗.

For real-valued problems, a solution 𝒙 ∈ Ω is a vector of length 𝑙 , and each value is
called a decision variable or problem variable. Furthermore, the feasible set M is often
subdivided into possibly multiple feasible regions, where a feasible region is a subset of
M where all solutions are connected in the search space.

3
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Domain The domain of the search space Ω can have many forms, often classified as
either discrete, continuous, or mixed. Discrete search spaces consist of distinct values,
whereas continuous search spaces are dense, i.e. no matter how close together two differ-
ent values are, there is always another value in between them. Continuous search spaces
are always infinite, while discrete search spaces can be finite. An example would be the
set of possible next moves in a chess game for the discrete case, and all possible weights
for a neural network in the continuous case. Mixed search spaces are a combination of
discrete and continuous search spaces, for example, symbolic regression involves finding
a mathematical expression consisting of a discrete term structure and continuous coeffi-
cients [67]. In this thesis, the focus lies on real-valued optimization, i.e. the search space
can be stated as Ω ⊆ R𝑙 .

2.1.1 Properties of Optimization Problems

Optimization problems have different properties, that in turn greatly impact the difficulty
of finding good solutions and which algorithmic approaches are well-suited.

Convexity The objective function, as well as the feasible regions, can be convex or non-
convex. If a feasible region is convex, any solution directly in between two different solu-
tions within the feasible region must also be part of that feasible region. Similarly, convex-
ity in the objective function states that the objective value of solutions on the line segment
between any two distinct solutions in the search space must be less or equal to the objec-
tive value of those two solutions. How this property can be exploited for optimization is
studied by the field of convex optimization [11].

Linearity A constraint or an objective function is called linear if it can be formulated
as a summation of terms that only contain up to one decision variable raised to the power
of 1. Non-linear problems on the other hand place no restriction on the structure of the
objective function and constraints. If both the objective function and the constraints are
linear, then convexity is implied, and the problem can be solved optimally in polynomial
time for continuous decision variables [33].

Smoothness If the objective function or a constraint is continuously differentiable at
least once in the search space, it is called smooth. This allows utilizing gradient-based
techniques for efficiently finding at least local minima of the objective function or infea-
sibility. On the other hand, if a problem is non-smooth, then the objective or constraint
function may contain irregularities such as discontinuities or sharp corners where the gra-
dient is undefined.

Multi-Modality The objective function and constraints of a problem may have multi-
ple possible local minima, where surrounding solutions have the same or worse objective
value. Problems with a unique minimum are called uni-modal, and problems with multi-
ple minima are called multi-modal. Since the global optimum is usually desired, this in-
troduces an inherent tradeoff between exploring the whole search space and finding good
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local solutions. Without any further knowledge about the problem, an exhaustive search
needs to be performed to guarantee finding the global optimum. However, this is often
intractable and expensive compared to finding the nearest local optimum given an initial
solution. Because of this, a distinction is made between local and global optimization,
where global approaches such as evolutionary algorithms are more robust w.r.t. escaping
local optima and finding the global optima.

2.1.2 Types of Optimization

In practice, not only the best solution but also the most efficient way of finding that opti-
mum is desired. Depending on the type of problem at hand and how much is known about
the relevant instances, different optimization approaches are needed and often classified
as white-box, grey-box, and black-box optimization.

White Box Optimization The white-box optimization (WBO) approach assumes ev-
erything about the problem is known, often making it possible to solve the problem an-
alytically or to provide optimality or complexity guarantees. Furthermore, by exploiting
problem properties, efficient problem specific optimization approaches can be constructed.

Black Box Optimization Contrary to WBO, in a black box optimization (BBO) noth-
ing about the problem is known other than an evaluation function, returning the objective
value and feasibility for a given solution. Naturally, no optimality or complexity guaran-
tees can be provided. Furthermore, the optimizers used are subject to the no free lunch the-
orems, stating that there cannot be an optimization algorithm that outperforms other algo-
rithms on all problems [73]. Nonetheless, most practical problems satisfy the assumption
that solutions close together in the search space tend to have similar objective values.For
this type of problem, metaheuristics such as evolutionary algorithms are well-suited.

Grey Box Optimization Many real-world problems do not fully belong to either BBO
or WBO, since there is some knowledge or a heuristic available but too limited for WBO
approaches. In the case of this thesis, the relevant grey box optimization (GBO) scenario
is that the evaluation function can be decomposed. This allows performing more efficient
partial evaluations, where only a fraction of a full evaluation needs to be performed when
only a few decision variables are changed.

Only the BBO and GBO scenarios are considered in this thesis, as the focus lies on RV-
GOMEA, a state-of-the-art EA excelling at large-scale GBO optimization[8]. This algo-
rithm is designed to learn and exploit the underlying structure often present in optimiza-
tion problems, even though none of the previously introduced properties can be assumed.
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2.2 Evolutionary Algorithms

This section provides an overview of the general working principles and terminology of
Evolutionary Algorithms (EAs) for real-valued optimization. In addition, the model-based
EA this thesis focuses on, RV-GOMEA, is introduced in detail.

2.2.1 General Working Principles of EAs

EAs are a class of algorithms that simulate and draw inspiration from the principles of
natural evolution. Naturally, the terminology used in EA literature often reflects their
biological origin. For instance, solutions are referred to as individuals, and the objective
function is known as thefitness function. The main idea behind EAs is to improve the fitness
of a population of individuals through repeated application of selection and variation. Note
that improving fitness w.r.t. to the introduced COPs translates to decreasing the objective
value.

Selection A key concept of evolutionary biology is natural selection, famously known
as “Survival of the fittest”. In EAs, selection generally chooses a limited number of indi-
viduals with above average fitness, allowing them to contribute to the next generation.
Selection introduces an implicit pressure towards finding better solutions and encourages
the propagation of promising combinations of genes linked to better fitness, often referred
to as building blocks.

Variation While selection steers the optimization process towards better solutions, vari-
ation is responsible for generating new individuals by modifying the existing population.
This process mimics the concept of reproduction and genetic diversity in natural evolu-
tion. EAs typically employ two main operators for variation: recombination and mutation.
Recombination typically combines the parameters of multiple parent solutions into new
offspring solutions. Mutation, on the other hand, introduces small random changes to indi-
vidual variables, mimicking genetic mutations in nature and maintaining diversity within
the population.

Generations The optimization process typically progresses through a series of genera-
tions. Starting from an initial population, each generation involves performing selection
and variation, thereby forming the next population. Figure 2.1 depicts this principle. After
variation, the individuals need to be evaluated using the fitness function before selec-
tion can be performed. This is repeated until a termination condition is met. Common
termination conditions include achieving a certain fitness threshold, convergence of the
population towards a single solution or fitness value, and reaching a predefined computa-
tional budget. The computational budget is often defined in the number of evaluations or
computation time.
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Initialization Selection Variation

Generation

Figure 2.1: The optimization process of an EA.

2.2.2 The Real-Valued Gene-pool Optimal Mixing Evolutionary
Algorithm

EAs are suitable for a wide range of optimization problems due to their simplicity and ro-
bustness. However, while the recombination of “fit” parents likely leads to improvements,
inefficient mixing of building blocks can lead to exponential increases in the population
size or time needed to solve a problem [65]. Hence, identifying and effectively mixing
linked building blocks is crucial for achieving efficient and scalable EAs. Various so-called
Model-based Evolutionary Algorithms (MBEAs) aim to do precisely this by modeling and
exploiting linkage information [21]. One class of MBEAs that explicitly models problem
dependencies are Gene-pool Optimal Mixing Evolutionary Algorithms (GOMEAs) [8, 21].
These algorithms have shown impressive performance on benchmarks [66, 8] and sev-
eral practical use cases, such as optimizing radiotherapy treatment plans [8], symbolic
regression [66] and radiotherapy dose reconstruction [68]. In this thesis, the focus lies on
constrained real-valued optimization, hence the real-valued GOMEA variant, RV-GOMEA,
is introduced. First, the main components are described before the full algorithm is pre-
sented.

Modeling Linkage A core component of RV-GOMEA is the modeling of linkage in-
formation. To model building blocks, or linkage, a structure capable of capturing which
variables belong together is needed. For this, RV-GOMEA uses a structure called fam-
ily of subsets (FOS), denoted F . The FOS F is a set that contains all the modeled link-
age information. Each subset F𝑖 ∈ F represents one presumed building block as the set
of the corresponding decision variable indices in the solution vector 𝒙 ∈ R𝑙 . Formally,
F := {F𝑖 | F𝑖 ⊆ I ∧F𝑖 ≠ ∅ for 𝑖 = 0,1, . . . } ⊂ ℘(I), where I := {0,1, . . . , 𝑙 − 1} is the set of
decision variable indices and ℘(I) is the power set of all indices. Generally, every de-
cision variable is assumed to be of importance and thus part of at least one linkage set,
i.e. ∀𝑖 ∈ I there exists a subset F𝑗 ∈ F such that 𝑖 ∈ F𝑗 . The linkage model can either be
learned during optimization or supplied by the user, potentially constructed using avail-
able knowledge about the problem [8].

During evolution, variation is applied to the decision variables represented by each
FOS subset separately. By doing so, the effect of a single building block on the fitness
of an individual can be isolated. This eliminates cases where during variation improve-
ments in some building blocks can mask disruption of other building blocks. The full FOS,
i.e. FFull := {I}, varies all decision variables together. On the other end, the univariate
structure FUnivariate := {{𝑖} | 𝑖 ∈ I} treats all variables independently. Such a FOS structure
where the problem is fully decomposed into disjoint FOS subsets is called marginal and
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referred to as marginal product FOS.
If the FOS is learned, this is done by performing hierarchical clustering using the esti-

mated correlation matrix of the previously selected solutions as an indication of similarity.
This results in a dendrogram, which is then directly used as the FOS structure for the next
generation. This FOS structure is referred to as linkage tree (LT) [8].

Distribution Estimation Apart from the linkage modeling, the recombination oper-
ators of another EA, AMaLGaM [7], are used in RV-GOMEA [9]. AMaLGaM works by
combining the information of all selected solutions into a multivariate normal distribu-
tion. New offspring solutions are then sampled from this distribution. Since the distribu-
tion is estimated from solutions with high fitness, sampling from the distribution likely
corresponds to performing search in regions with high fitness.

In RV-GOMEA, variation is applied per linkage set, and thus a separate distribution
N (𝝁𝑖 , �̂�𝑖 ) is maintained for each FOS subset F𝑖 ∈ F . Let S be the set of selected solutions.
Each distribution is then obtained using the maximum likelihood estimate of the selection
S, where 𝝁𝑖 ∈ R | F𝑖 | is the selection mean and �̂�𝑖 ∈ R | F𝑖 |× | F𝑖 | the selection covariance. Let
𝑗,𝑘 ∈ F𝑖 , then the |F𝑖 |-dimensional multivariate normal distribution is estimated using:

(
𝝁𝑖
)
𝑗
=

1
|S|
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(
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𝑘

)
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During variation, the corresponding distribution is used to sample new values for each
decision variable in the FOS subset.

AnticipatedMean Shift The selectionS consists of the best solutions in the population,
and hence tends to approximate the contours of the objective function. Subsequently, the
estimated distributions will focus the search along the contours as well. Over multiple
generations, this results in rapidly shrinking distributions. This is desired and efficient if
the best solutions are located near the distribution mean. However, if the best solutions
are located perpendicular to the contours, e.g. for slope-like fitness landscapes, then this
effectively halts the optimization progress. To prevent this and to allow the distribution
to reorient itself perpendicular to the contours, AMS was introduced by [6]. Let `𝑆ℎ𝑖 𝑓 𝑡F𝑖
be the difference of the current and previous selection means, representing the direction
the mean has shifted. After sampling new solutions for subset F𝑖 , a fraction 1

2𝜏 of the
individuals are shifted by 𝛿𝐴𝑀𝑆`

𝑆ℎ𝑖 𝑓 𝑡

F𝑖 with 𝛿𝐴𝑀𝑆 = 2. Furthermore, after all FOS subsets
have been subject to variation, the same 1

2𝜏 solutions are shifted by 𝛿𝐴𝑀𝑆`𝑆ℎ𝑖 𝑓 𝑡 to allow a
shift in all decision variables.

Note that both AMaLGaM and RV-GOMEA do employ other mechanisms, such as
periodical re-evaluations to mitigate accumulating numerical errors due to hardware lim-
itations, Adaptive Variance Scaling (AVS), Standard Deviation Ratio (SDR), or Forced Im-
provements (FI) [9, 8, 7]. For instance, AVS and SDR together prevent premature shrinking
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of the distribution by adaptively scaling the covariance when improvements are found far
from the estimated distribution mean, as explained in [5] and [6]. Compared with AMS,
AVS and SDR prevent the center bias of the normal distribution when it is counterproduc-
tive, while AMS allows the distribution to reorient itself.

Gene-pool Optimal Mixing In RV-GOMEA, variation is applied per FOS subset for
all solutions, as shown in Algorithm 1. Improvements are accepted, otherwise, there is a
probability of 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = 0.05 of keeping non-improvements. This procedure of varying one
building block at a time and only accepting improving changes is called gene-pool optimal
mixing (GOM) [21].

Compared to more traditional EAs, GOM has two key differences. First, the purpose of
selection is effectively split into two steps. Selection in RV-GOMEA guides the optimiza-
tion and determines where search is performed, but the decision of whether a change sur-
vives is made during GOM, per individual.Furthermore, if all decision variables are varied
at once, this is generally noisy. It is not possible to know which change of which decision
variable led to an improvement. In addition, an improvement in one building block may be
hidden by other variables simultaneously deteriorating, leading to a good building block
potentially not surviving selection, or bad ones surviving. RV-GOMEA mitigates this by
varying and accepting changes per FOS subset, denoising this effect to an extent at the ex-
pense of additional evaluations. Instead of one evaluation per offspring, an evaluation is
needed per modified subset to see the effect of the partial change. This makes RV-GOMEA
especially suited for GBO settings permitting partial evaluations, where there is minimal
computational overhead over doing one full evaluation [8].

Algorithm 1: The gene-pool optimal mixing procedure.
1 procedure GOM:

Input: Solution 𝒙 , FOS subset F𝑖
2 𝒚← 𝒙

3 𝒚[F𝑖]←N
Ä
𝝁F𝑖 , �̂�F𝑖

ä
4 if 𝒙 ∈ AMS solutions then
5 𝒚[F𝑖]←𝒚[F𝑖]+𝛿𝐴𝑀𝑆𝝁𝑆ℎ𝑖 𝑓 𝑡

F𝑖
6 evaluate 𝒚
7 if 𝒚 is better than 𝒙 orU(0,1) < 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 then
8 𝒙←𝒚

The Full Algorithm Together, these concepts make up the main building blocks of RV-
GOMEA as shown in Algorithm 2. The algorithm operates on a population P of size 𝑛.
The set of selected solutions S ⊂ P is obtained using truncation selection, i.e., the best
⌊𝜏𝑛⌋ individuals in P are chosen, with 𝜏 = 0.35. These selected solutions are then used
for learning the linkage structure of the problem and to estimate Gaussian distributions to
sample new building blocks from. Furthermore, the best 𝑛𝑒𝑙𝑖𝑡𝑖𝑠𝑡 = 1 solutions are preserved
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and not varied throughout the generation. All other solutions are subject to variation.
First, GOM is performed followed by the Anticipated Mean Shift (AMS), which is applied
to a subset of the population.

Algorithm 2: The general structure of RV-GOMEA as per [9].
1 procedure RVGOMEA:
2 P ← evaluated initial population
3 𝑡 ← 0
4 while not terminated do
5 S ← ⌊𝜏𝑛⌋ best individuals in P
6 F ← learn FOS from S // (only if the FOS is learned)
7 for F𝑖 ∈ F do // estimate FOS distributions

8 𝝁F𝑖 (𝑡 ), �̂�F𝑖 (𝑡 )← maximum-likelihood estimate of S
9 𝝁𝑆ℎ𝑖 𝑓 𝑡

F𝑖 (𝑡 )← 𝝁F𝑖 (𝑡 )−𝝁F𝑖 (𝑡 −1)
10 for F𝑖 ∈ F do // perform GOM
11 for 𝒙 ∈ P \𝑛𝑒𝑙𝑖𝑡𝑖𝑠𝑡 best solutions do
12 GOM(𝒙 , F𝑖 )
13 for 𝒙 ∈ AMS solutions do // perform full AMS

14 𝒚← 𝒙 +𝛿𝐴𝑀𝑆𝝁𝑆ℎ𝑖 𝑓 𝑡

15 evaluate 𝒚
16 if 𝒚 is better than 𝒙 orU(0,1) < 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 then
17 𝒙←𝒚

18 𝑡 ← 𝑡 +1

Population Sizing The size of the population is an important parameter. Too small pop-
ulation sizes are more likely to get stuck in local optima since the solutions do not represent
the fitness landscape well enough. Large population sizes represent the problem well and
are less subject to the stochasticity of an EA but at the cost of efficiency. Naturally, the
right population size depends on multiple factors such as the problem, the dimensionality,
and the linkage model used. There has been extensive testing of the relation between these
different aspects, leading to population size recommendations for the different FOS types
[5, 6, 7]. These recommended sizes are used in this thesis.

2.3 Constraint Handling Techniques

This section will first introduce the topic of constraint handling techniques (CHTs) for
EAs and provide an overview of the general types of techniques used. Then, common
approaches of dealing with multiple constraints and equality constraints are discussed.
Finally, well-known constraint handling techniques from literature as well as current areas
of research are presented.
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2.3.1 Taxonomy and Properties

EAs are generally unconstrained optimizers, however, many real-world problems involve
constraints. Thus, how to best handle constraints with EAs has been subject to consider-
able research over the years and is an active field [45, 13, 55, 43, 14, 50, 35]. The approaches
that have emerged can roughly be classified into the following categories based on their
operating principles:

• Penalty functions[20]. These methods aim to turn COPs into unconstrained opti-
mization problems by adding a penalty term to the fitness of infeasible solutions.

• Separation of objective and constraints[17, 61, 22, 54]. These approaches generally
prioritize feasible over infeasible solutions and are also referred to as feasibility ori-
ented.

• Repair operators[57, 55, 58]. These approaches attempt to turn infeasible solutions
into feasible ones, often using similar feasible solutions.

• Segregational methods[25, 46]. This category involves approaches that handle fea-
sible and infeasible solutions differently, often inspired by multi-objective and co-
evolutionary optimization concepts.

• Other methods[41]. Ensemble methods and other hybrid techniques making use of
multiple CHT concepts fall into this category, as well as problem specific methods.

In [20], the different CHTs are divided into two groups, penalty functions that handle
the constraints at the fitness level and approaches that handle the constraints in the search
space by biasing towards feasible solutions.

For practical problems, there is often at least some available knowledge about the prob-
lem at hand, in turn allowing problem specific constraint handling approaches or at least
making assumptions about properties of the problem which can subsequently be exploited.
This thesis does not focus on a particular problem, hence these types of approaches and
necessary assumptions are not further considered. Furthermore, in [13] the following de-
sired properties of CHTs are identified:

• Generality. In a BBO setting, the properties of the problem are generally not known,
hence CHTs should ideally work with any kind of problem.

• Parameter robustness. Many CHTs introduce new parameters that need to be tuned
for each problem in order to achieve good performance. Ideally, the method should
work out of the box, without the need for fine-tuning parameters.

• Well-known limitations. There likely is no CHT that is superior on all problems.
Hence, an understanding of the limitations as well as when a CHT is applicable is
important for achieving excellent performance on a specific problem.
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• Efficiency. In order to make solving large-scale problems and settings where fitness
evaluations are expensive tractable, effective use of the obtained information is cru-
cial.

These properties are conflicting, for instance, an approach making specific assumptions
about a problem may be very efficient but not generally applicable.

2.3.2 Handling of Multiple and Equality Constraints

Real-world problems often involve several constraints, however, most CHTs considered
work on a notion of overall feasibility rather than individual constraints. Hence, a way
of aggregating the different constraint violations into a single constraint value 𝜐(𝒙) repre-
senting the feasibility of a solution 𝒙 is needed. In general, this aggregation is done in a
way that the constraint value is > 0 if a solution is infeasible and ≤ 0 otherwise.

Commonly, equality constraints are rewritten as inequalities using the absolute dif-
ference to a tolerance threshold 𝛿 , i.e. ℎ 𝑗 (𝒙) = 0 becomes

��ℎ 𝑗 (𝒙)
�� − 𝛿 ≤ 0. This turns a

problem with 𝑝 inequality and 𝑞 equality constraints into a problem with 𝑝 +𝑞 inequality
constraints. Formally, let Ψ : Ω→ R be defined as the function indicating the constraint
violation for each of the 𝑝 +𝑞 constraints:

Ψ𝑖 (𝒙) =
®
𝑔𝑖 (𝒙) if 𝑖 ≤ 𝑝��ℎ𝑖−𝑝+1(𝒙)

��−𝛿 otherwise
(2.4)

Then one common way to aggregate the constraints is to simply sum the individual
constraint violations as follows:

𝜐(𝒙) =
𝑝+𝑞∑︁
𝑖=1

max {0,Ψ𝑖 (𝒙)} (2.5)

Note that negative constraint values, i.e. satisfied conditions with leeway, are masked
using max {0, . . . } to ensure that such constraints do not compensate for actual constraint
violations. This approach is also used in this thesis. However, to satisfy the assumptions of
the Augmented Lagrangian approach introduced later in this chapter, the constraint value
for feasible individuals is allowed to be negative:

𝜐𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑 (𝒙) =
®
𝜐(𝒙) if 𝜐(𝒙) > 0∑𝑝+𝑞

𝑖=1 Ψ𝑖 (𝒙) otherwise
(2.6)

Other methods include using the mean of the constraint violations, considering only the
value of the most violated constraint or a combination. As the numerical value of the indi-
vidual constraints is potentially scaled unequally, ranking based approaches have also been
used [41, 32, 15, 16]. In [24], an entirely different approach is used, where the feasibility
is defined relative to another solution instead of an absolute approach. Approaches con-
sidering individual constraints also exist, e.g. [19], but are not further considered in this
thesis. Furthermore, all these aggregation methods assume well-conditioned constraint
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violation values, which may not be the case in a BBO setting. In [37] the influence of us-
ing Equation (2.6) compared to a binary constraint value is explored, and no significant
difference is found. However, they note that the feasible region of the used benchmark
problems may just have been too large to observe significant differences.

For equality constraints, both a dynamic and adaptive setting for the parameter 𝛿 have
been proposed in [27]. Starting from a permissive initial threshold, usually based on the
constraint violation of the initial population, the value of 𝛿 is decreased during optimiza-
tion to the target threshold. The dynamic approach decreases the threshold based on the
remaining computational budget, and [81] shows that by using such an approach, thresh-
olds as low as 10−15 can be reached while static settings for 𝛿 fail around 10−7 for the
considered problems. While [32] also reports performance gains using a scheme with ex-
ponential decrease, the fragility of the parameter setting is stressed, and a static value is
used. While these are relevant considerations for constrained optimization with equality
constraints in general, the focus of this thesis lies on search near constraint boundaries
and therefore a static 𝛿 set to the target threshold of the respective benchmark problem is
used.

2.3.3 Penalty Functions

Penalty functions are some of the earliest CHTs used for EAs based on mathematical pro-
gramming approaches [13, 43], where a penalty term is added to the fitness function and
this new fitness function is optimized. Since this turns the constrained problem into an
unconstrained problem, this technique allows the use of an unconstrained optimization al-
gorithm for constrained problems. However, it is important that this new fitness landscape
mirrors the constrained problem and that the optima stay the same. Otherwise, the solu-
tions obtained from optimizing this new problem may not correspond to good solutions
in the original constrained problem. In literature, various types of penalty functions have
been introduced, ranging from static penalty functions, and death penalty, to dynamic and
adaptive penalty functions [50, 14]. In the case of a static penalty function, a commonly
used form is

𝑃𝛼,𝛽 (𝒙) = 𝑓 (𝒙)+𝛼
𝑝+𝑞∑︁
𝑖=1

max {0,Ψ𝑖 (𝒙)}𝛽 (2.7)

where 𝛼 and 𝛽 are parameters controlling the strength of the applied penalty. Natu-
rally, these parameters are problem dependent and need to be set correctly. If the penalty
is set too low, then there may be an infeasible point with better fitness than the constrained
optimum according to the penalized objective function. On the other hand, if the penalty
is too high such that infeasible solutions are effectively always discarded, this is called the
death penalty and has been found ineffective [13, 43].

Dynamic penalties increase the penalty as evolution progresses, but this also needs
the setting of problem specific parameters. Furthermore, increasing the penalty factor too
slowly may lead to the optimization converging in the infeasible region [14, 50].
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Adaptive penalty functions adjust the penalty term based on the constraint values of
the current population. These generally also need parameters that control the adaptation,
which again are problem dependent [50].

In [43] it is reported that most uses of penalty functions in recent literature are of the
adaptive type, as the other types require time-consuming parameter tuning as the optimal
parameter values cannot be known before optimization in a BBO setting.

Augmented Lagrangian One recent adaptive penalty function is applying the Aug-
mented Lagrangian method[26] to EAs [20, 19].The Lagrangian method works by incorpo-
rating the constraints into the objective function through the use of so-called Lagrangian
multipliers. However, the convergence speed of this approach can be slow. To avoid this,
additional penalty terms are added that allow for penalizing constraint violations more
aggressively. This allows for a back-and-forth process where infeasible solutions first get
overly penalized through the penalty term to pressure search towards the feasible region.
The penalty term for feasible solutions is decreased and over time, the Lagrangian multi-
pliers are adapted towards the value of the penalty weights. With suitable update rules, the
Lagrangian multipliers converge towards the “correct” penalty to make the unconstrained
optimum of the modified fitness function feasible, while the penalty term vanishes [26].For
a single constraint, this penalty function is defined as follows

𝐻𝛾,𝜔 (𝒙) = 𝑓 (𝒙)+
{
𝛾𝜐(𝒙)+ 𝜔

2 (𝜐(𝒙))2 if 𝜐(𝒙) ≥ −𝛾
𝜔

− 𝛾2

2𝜔 otherwise
(2.8)

where 𝛾 ∈ R+ corresponds to the Lagrangian multiplier and 𝜔 ∈ R+ to the penalty weight,
both generally positive and initialized as 𝛾 = 0 and 𝜔 = 1 [20]. After every generation, the
parameters are updated as per Algorithm 3. Using the first setting proposed in [19], the
update is controlled by the parameters 𝑑𝛾 = 5, 𝜒 = 21/5𝑙 , 𝑘1 = 3 and 𝑘2 = 5.

Algorithm 3: The update rule for the Augmented Lagrangian method, where 𝝁
corresponds to the selection mean and 𝑡 to the current generation.
1 procedure UpdateAL:
2 if 𝑡 > 0 and 𝜐(𝝁𝑡 ) > −

𝛾

𝜔
then

3 𝛾 ←max
î
0,𝛾 + 𝜔

𝑑𝛾
𝜐(𝝁𝑡 )

ó
4 𝜔←


𝜔𝜒1/4

if 𝜔
(
𝜐(𝝁𝑡 )

)2
< 𝑘1

��𝐻𝛾,𝜔 (𝝁𝑡 )−𝐻𝛾,𝜔 (𝝁𝑡−1)
��

𝑙

or
𝑘2
��𝜐(𝝁𝑡 )−𝜐(𝝁𝑡−1)

�� < ��𝜐(𝝁𝑡−1)
��

𝜔𝜒−1 otherwise
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2.3.4 Separation of Objective and Constraints

When doing constrained optimization, the goal is to find high-quality feasible solutions.
This means that given a feasible solution and an infeasible solution with a better objec-
tive value, the feasible solution is preferred. This preference can be directly used to steer
the search towards feasible solutions. To do so, selection is modified to incorporate this
preference of feasibility over the objective. Generally, this is done by changing the com-
parison operator used to determine the “fittest” individuals during selection, such that fea-
sible and infeasible individuals are compared separately. This is the underlying idea of the
Constraint Domination Principle (CDP) [17], the 𝜖-constrained method[64] and Stochastic
Ranking[54].

Constraint Domination Principle This method introduced by Deb [17] directly en-
codes the desired preference into the following comparison operator used to sort the in-
dividuals during selection as follows:

1. Between two feasible individuals, the one with better objective value is preferred.
2. Between a feasible and an infeasible individual, the feasible one is preferred.
3. Between two infeasible individuals, the one with lower constraint value is preferred.

Formally, this is stated in Equation (2.9). Note that this relation is irreflexive (𝒙1 ⊀ 𝒙1),
asymmetric (𝒙1 ≺ 𝒙2 =⇒ 𝒙2 ⊀ 𝒙1) and transitive (𝒙1 ≺ 𝒙2 ∧𝒙2 ≺ 𝒙3 =⇒ 𝒙1 ≺ 𝒙3), i.e. a
strict total order. Hence, any comparison based sorting algorithm can be used.

𝒙1 ≺ 𝒙2 ⇐⇒
®
𝑓 (𝒙1) < 𝑓 (𝒙2) 𝜐(𝒙1),𝜐(𝒙1) ≤ 0
𝜐(𝒙1) < 𝜐(𝒙1) otherwise

(2.9)

This method is a direct encoding of the optimization goal, parameter free, not making
assumptions about a particular problem, and hence generally applicable.

𝜖-Constrained Method While desired at the end of the optimization, throughout the
evolution it may not be ideal to always prefer feasible solutions. For instance, recombina-
tion between feasible and slightly infeasible solutions with good objective fitness may lead
to better feasible solutions faster [78]. To this end, the 𝜖-constrained method loosens the
notion of what is considered to be feasible when compared to CDP. Solutions that violate
the constraints by up to a threshold 𝜖 are still considered feasible. Initially this 𝜖 is set to
a large value, often based on the constraint violations found in the initial population, and
then shrinks during the optimization, either dynamically or adaptively. As introduced by
[64], the comparison operator used is as follows:

𝒙1 ≺𝜖 𝒙2 ⇐⇒


𝑓 (𝒙1) < 𝑓 (𝒙2) 𝜐(𝒙1),𝜐(𝒙2) ≤ 𝜖
𝑓 (𝒙1) < 𝑓 (𝒙2) 𝜐(𝒙1) = 𝜐(𝒙2)
𝜐(𝒙1) < 𝜐(𝒙1) otherwise

(2.10)

For setting the 𝜖 value throughout the optimization, various different update rules were
proposed in literature [64, 62, 61, 79, 60, 22]. Often these are dependent on the remaining
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computational budget, where either a maximum number of evaluations or a time limit is
assumed. The percentage of the budget used can then be defined as

𝑏𝑢𝑠𝑒𝑑 = max
ß#evaluations performed

evaluation budget ,
time elapsed
time budget

™
(2.11)

The update rule for 𝜖 introduced in [61] uses

𝜖0 = 𝜐(𝒙\ )

𝜖𝑡 =

{
𝜖0 ·
Ä

1− 𝑏𝑢𝑠𝑒𝑑
𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙

ä𝑐𝑝
𝑏𝑢𝑠𝑒𝑑 < 𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙

0 otherwise
(2.12)

where 𝜐(𝒙\ ) corresponds to the constraint violation of the \ -th individual when sorted by
constraint violation.

Recommended settings for the parameters are \ = 0.2𝑛, 𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∈ [0.1,0.8] and 𝑐𝑝 ∈
[2,10] [61, 62]. The 𝜖-constrained method is frequently used in literature [43, 50, 14] and
various dynamic and adaptive update rules have been proposed [60, 79, 10, 22]. In [22]
modifications are proposed to increase performance. When starting in the feasible region
without a single infeasible solution, the original update rule would set 𝜖0 = 0 and effectively
becomes CDP. In addition to deferring the initialization of 𝜖0 until an infeasible solution
is found, the proposed update rule allows increasing the 𝜖 threshold if the population is
above a user-defined feasibility threshold to improve search close to constraint boundaries:

𝜖0 =

®
𝜐(𝒙\𝑖 ) 𝜐(𝒙\𝑖 ) > 0
∞ otherwise

𝜖𝑡 =


𝜖0 ·
Ä

1− 𝑏𝑢𝑠𝑒𝑑
𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙

ä𝑐𝑝
𝑏𝑢𝑠𝑒𝑑 < 𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and 𝑟 𝑓 < 𝛼

(1+ 𝛽) ·𝜐𝑚𝑎𝑥 𝑏𝑢𝑠𝑒𝑑 < 𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and 𝑟 𝑓 ≥ 𝛼
0 otherwise

(2.13)

where \𝑖 corresponds to the \ -th infeasible individual when sorted by constraint viola-
tion, 𝑟 𝑓 to the ratio of feasible solutions and 𝜐𝑚𝑎𝑥 to the biggest constraint value in the
current population. If there are no infeasible solutions at the start of the optimization,
the comparison ≺𝜖 effectively ignores constraints and 𝜖0 is set during the first generation
where infeasible solutions are encountered. The authors recommend 𝛼 = 0.8 ∈ [0,1] and
𝛽 = 0.1 ∈ [0,1] for the additional parameters[22]. With the original formulation in [61],
however, 𝜖0 would be set to 0 if the initial population is fully feasible and the CHT effec-
tively becomes CDP.

Stochastic Ranking Another way of loosening the strict CDP was introduced in [54].
The proposed method uses randomness for the trade-off between feasibility and objective
fitness. To allow high quality infeasible solutions to be selected, the introduced comparison
stochastically compares either using CDP or using the objective value:

𝒙1 ≺𝑃𝑓
𝒙2 ⇐⇒

®
𝑓 (𝒙1) < 𝑓 (𝒙2) 𝜐(𝒙1),𝜐(𝒙1) ≤ 0 orU(0,1) ≤ 𝑃𝑓
𝜐(𝒙1) < 𝜐(𝒙1) otherwise

(2.14)
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where 𝑃𝑓 is a parameter corresponding to the probability of considering the solutions
as feasible. The recommended setting is 𝑃𝑓 ∈ [0.4,0.5], such that search is biased towards
feasibility. Since the comparison operator is stochastic, efficient sorting algorithms that
rely on transitive comparison operators cannot be used. Thus, starting from a random
order, bubble-sort is used in order to determine the best individuals during selection. While
this CHT only requires one additional parameter, one known weakness of the method is
that due to the stochastic nature of selection, it is sometimes possible that the feasible
region is not found [50].

2.3.5 Repair Operators

Repair methods perform unconstrained optimization while modifying infeasible solutions
to make them feasible. This approach to CHTs is predominantly found in combinatorial
optimization [55, 45]. For example, if the search space consists of permutations, invalid
genomes can be repaired to ensure that the solution is within the search space. Nonethe-
less, there have been several adaptions to real-valued settings [58, 57, 36]. These ap-
proaches generally need feasible solutions, and the repair is performed by performing a
line search between the infeasible solution and the closest feasible solution [36]. It also is
possible to simply resample infeasible solutions, however, that does not guarantee a suc-
cessful repair [58]. In [57], the performance between linear and binary search between
the infeasible solution and feasible donor have been investigated, leading to the mixed
conclusion that the performance of the different strategies was problem dependent and no
strategy outperformed other strategies significantly.

2.3.6 Segregational Methods

When optimizing COPs, balancing feasibility and the objective value is necessary. Hence,
a COP can be viewed as a multi-objective problem where the two objectives feasibility
and objective fitness should be optimized at the same time. These two objectives can be
conflicting, motivating the use of approaches that handle feasible and infeasible solutions
separately. In contrast to the feasibility oriented approaches that separate objective and
constraints, the approaches in this category typically consider and evolve the feasible and
infeasible solutions separately.

Methods handling constraints in this manner were researched two decades ago [44, 51,
27] and have recently found new attention in literature [25, 46, 70, 47, 76, 31]. These meth-
ods often employ either multi-objective concepts to keep promising infeasible solutions
in the population or co-evolution, where feasible and infeasible individuals constitute two
populations that evolve in parallel and exchange information.

The authors of [27] propose using an approach that first selects a user defined fraction
of the population using feasible solutions only. The remaining slots are filled by ranking
based on a penalized fitness value.

In [44], there is a low chance for promising individuals to survive to the next genera-
tion.
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A multi-objective inspired approach is presented in [51]. The next population is se-
lected separately from the feasible and infeasible solutions, where the overall target fea-
sibility of the population is a user defined parameter. Infeasible solutions are ranked by
both objective fitness and constraint violation using non-dominated sorting. The authors
show better performance when compared to the multi-objective algorithm NSGA-II.

Recently, dual-population approaches have received increased attention. The common-
ality of these approaches is that one population is oriented towards prioritizing feasible
individuals, while the second population is more permissive w.r.t. the constraints and there
is some form of information exchange.

In [25], the individuals are split into populations based on the number of feasible indi-
viduals. If there are enough feasible and infeasible individuals, those are treated as separate
populations. The feasible solutions optimize towards better objective values ignoring the
constraints, while the infeasible solutions prioritize feasibility. Otherwise, one joint pop-
ulation optimizes towards feasibility if there are too many infeasible solutions or better
objective values in case of too many feasible individuals.

Another approach proposed in [46], where only selection is performed with two pop-
ulations. One population is geared towards feasible solutions, and the other one uses an
adaptive penalty function to allow keeping infeasible solutions with a good objective value.
Variation is performed jointly, recombining solutions from both populations.

A different strategy for constrained evolutionary optimization is presented in [31]
where two populations serve as archive of the best feasible and least constrained infea-
sible solutions respectively. Recombination then is performed only for the feasible solu-
tions, where nearby solutions from both archives are used for recombination, and offspring
solutions can replace solutions in both archives.

In [47], [70] and [76], two populations evolve separately, but selection includes the off-
spring of the other population. Furthermore, both [47] and [70] make use of a two-stage
scheme. The first phase of [47] is exploration, where one population is feasibility oriented
while the second population only considers the objective value. Then, the following ex-
ploitation stage aims to guide the infeasible population back to the feasible population in
order to obtain high quality feasible solutions. In [70] on the other hand, only the feasibil-
ity oriented population is used once it starts to converge.

2.3.7 Other Methods

The research on evolutionary constraint handling is active and very diverse approaches
have been proposed that do not fit into the aforementioned types of approaches.

EnsembleMethods For different problems, different CHTs and parameter settings may
be required. In [52], an approach for constraint handling using a segregated selection
is introduced. To avoid fragile parameter settings, the same CHT is used with different
parameters, such that each method is used to select half of the offspring. Similarly, to
avoid the problem of finding a suitable CHT, [41] proposes an ensemble method utilizing
multiple CHTs at once. Four populations with different constraint handling techniques
are used, such that all populations select from the shared offspring.
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Hybrid Approaches One common theme in recent literature on CHTs is that aspects
of different CHTs are combined. For instance, equality constraints are often handled using
an 𝜖-constrained approach while a different CHT such as a dual-population scheme is used
for the overall constraint violation [25, 27].

Multi-Stage Methods Another approach that combines different CHTs are multi-stage
approaches. Often the focus is on the tradeoff between exploring the infeasible regions
and exploiting slightly infeasible solutions to find better feasible solutions [47, 70]. An
approach that first spends evaluations to determine the feasible regions for each constraint
is used in [24], followed by a CHT that prioritizes constraints with small feasible regions. In
[72], the first stage aims to learn the correlation between constraints and objective value to
then exploit this information to guide the trade-off between feasibility and objective value.
Other strategies perform optimization using different selection strategies and objectives
depending on the number of feasible individuals in the population [71, 25].

Multi-Objective Approaches In addition to the introduced approaches that use multi-
objective and co-evolutionary concepts, handling constraints in a multi-objective manner
is subject to research [56, 74]. In addition, many recent proposed CHTs are designed for
multi-objective settings [51, 46, 70, 76, 47, 31].

Surrogate Models For problems where fitness evaluations are expensive, recent ap-
proaches make use of learned surrogate models of the objective and constraint landscape.
This can greatly reduce the number of fitness evaluations needed at the computation ex-
pense of learning a model. For COPs, this is often combined with other CHTs, and thus
primarily an approach to tackle expensive real-world problems rather than an approach
to constraint handling on its own [63, 80, 53].
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Chapter 3

Existing Constraint Handling in
RV-GOMEA

In this chapter, several well-known CHTs from literature are implemented to be used with
RV-GOMEA. First, the chosen techniques are introduced. However, some approaches can-
not be applied directly to RV-GOMEA as these methods were proposed using different EAs.
Where necessary, the CHTs are adapted, and the modifications made are documented.
Experiments are performed on the CEC2006[38] and bbob-constrained[29] to determine
and compare the performance of the different CHTs when used with RV-GOMEA. Fur-
thermore, as a measure of evolution efficiency, the likelihood of sampling the constrained
optimum throughout evolution is analyzed for both constrained and unconstrained prob-
lems.

There are numerous literature surveys on constraint handling for EAs [43, 14, 50] doc-
umenting the different ideas explored, but they do not provide concrete recommendations
regarding which approach to use for a given problem and how to set the parameters [3].
In literature, benchmark problem suites such as CEC2006[38] are commonly used to de-
termine the effectiveness and compare different methods. However, new techniques are
often proposed together with minor tweaks of the underlying optimizer, or using different
EAs altogether. These changes add noise, making it hard to tell if good benchmark results
are due to well-performing CHTs or due to changes in the underlying EA. In addition, for
CHTs that are not transforming the fitness function, e.g. through penalty functions, it is
often not clear if they can be applied to other EAs and what performance can be expected.

Because of this, in this thesis, CHTs of each type introduced in Section 2.3 are adapted
to RV-GOMEA in order to allow more straightforward comparison of the different types
of approaches, their advantages, and limitations. The following techniques are used:

• CDP[17]. This is the currently used default CHT in RV-GOMEA and thus presents
a natural baseline to compare other techniques against.

• 𝜖-ConstrainedMethod[22, 61]. This approach is well-known and often used in literature[14,
43]. As several versions have been proposed, the original method[61] and a more
recent formulation [22] are used.

• Stochastic Ranking[54]. This is another well-known technique with competitive per-
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formance and has only one additional parameter[14].
• Augmented Lagrangian Penalty[19]. This technique is included as representation for

the penalty function approaches and has shown promising results when used with
CMA-ES[19].

• RepairMethods[58, 57]. Repair methods are often combined with EAs using Gaussian
distributions[58, 35, 57]. In this thesis, repair using binary search between a feasible
parent and an infeasible sample was implemented. This always leads to feasible
solutions if enough iterations of binary search are performed. Furthermore, repair
by resampling infeasible solutions has been implemented.

• Dual-Population Method. These approaches have shown promising performance in
recent literature [25, 31, 46, 70, 76]. However, in literature different EAs are used and
due to the information exchange between populations, the constraint handling is
often tightly coupled to with the optimizer used. Thus, two different dual-population
approaches have been adapted for RV-GOMEA, resulting in approaches similar to
[25] and [46].

Note that this does not include techniques from Section 2.3.7 as those are either combi-
nations of individual CHTs or designed for more specific optimization settings. Moreover,
the field is very active and an exhaustive comparison of all established and recent methods
would go beyond the scope of this thesis.

3.1 Adapting Existing Techniques and Parameter Settings

Many techniques such as penalty functions do not depend on the optimization algorithm
used and can be implemented by changing the comparison operator used throughout opti-
mization. However, other techniques such as dual-population schemes are tightly coupled
to the optimizer used and thus need to be adapted for RV-GOMEA. In this section, the
necessary changes for the selected CHTs are described. The parameter tuning performed,
and the best parameter settings found are reported in Appendix A.

3.1.1 Constraint Domination Principle

As the CDP method is currently used in RV-GOMEA for constrained problems, no mod-
ification is necessary. The current implementation uses this parameter free comparison
operator instead of preferring better objective fitness only as per Algorithm 2.

3.1.2 Stochastic Ranking

Similar to CDP, stochastic ranking can be implemented by changing the comparison op-
erator in Algorithm 2. However, as described in Section 2.3.4, due to the stochastic com-
parison operator bubble sort is used for selection. Additionally, commonly selection both
steers where search is performed and which solutions survive, whereas in RV-GOMEA se-
lection is only for where search is performed and GOM decides if a particular GOM sample
is accepted. Because of this difference, two versions of stochastic ranking are tested, one
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where only selection uses the stochastic operator and one where it also is used for GOM
acceptance.
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Figure 3.1: The effect of stochastic
acceptance during GOM on problem
g07 from the CEC2006[38] bench-
mark problems over 25 runs.

Not using the stochastic operator leads to a de-
cline in the number of infeasible solutions in the
population, as every feasible GOM sample consti-
tutes an improvement according to CDP, no mat-
ter the objective value. Once there are no more in-
feasible solutions in the population, the method ef-
fectively becomes CDP. On the other hand, making
GOM stochastic has a higher chance of high qual-
ity infeasible solutions surviving, but there also is a
chance that good feasible solutions are lost by ac-
cepting infeasible changes. This goes against the
working principles of GOM, as it is possible for a
new infeasible solution to replace a feasible solution
that has accumulated several improvements already.

The clear performance difference, visible in Fig-
ure 3.1, indicates that also making the GOM accep-
tance stochastic does not work well with RV-GOMEA. The light gray bar and number at
the top of each column indicate the percentage of runs where at least one feasible solu-
tion was found. The darker gray bar and number at the bottom correspond to the rate of
successfully reaching the approximation target. Clearly, the stochastic acceptance does
not perform well. Hence, only the version without will be considered in the upcoming
experiments.

3.1.3 𝜖-Constrained Method

For the 𝜖-constrained method two variants were implemented, the original version sug-
gested in [62] and an improved method proposed in [22]. The changes necessary to RV-
GOMEA are straightforward and as described in literature, instead of CDP as solution
comparison operator, the 𝜖 comparison operator is used. The only additions needed are
the initialization and update rules for the CHT. The update is performed after the first
generation and before selection is performed.

3.1.4 Augmented Lagrangian Penalty Function

To implement this method, new parameters need to be added and initialized to the de-
scribed values before the first generation. Then the comparison operator used in RV-
GOMEA is adjusted to use Equation (2.8). Furthermore, starting with the second genera-
tion, the comparison operator is updated as per Algorithm 3. For the parameter settings,
the first setting proposed in [19] is used. Note that the CHT is implemented using the
previously introduced constraint violation measure and not individual constraints as per
AL-single in [20].
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3.1.5 Repair Operators

For the repair of infeasible solutions, two methods from literature are adjusted to RV-
GOMEA using binary search and resampling. Both methods are implemented in addition
to using CDP. Due to how RV-GOMEA works, this is done during the GOM procedure,
between sampling new candidate solutions and accepting improvements.

Binary Search For repairing infeasible solutions, generally an infeasible offspring solu-
tion is paired with the closest feasible solution in parameter space. Then linear or binary
search is performed in-between the two solutions, always leading to feasible solutions if
enough steps are performed [58]. In RV-GOMEA however, the offspring corresponds to
a GOM sample tied to a specific parent solution. Hence, the parent solution is used for
repair and thus repair is only possible for infeasible GOM samples with feasible parents.

Typically, the closest feasible solution is used [36]. However, as RV-GOMEA can per-
form partial modifications depending on the used FOS, doing so is not possible. If the
violated constraint depends on decision variables that are not in the currently consid-
ered FOS subset, different values in two feasible solutions can lead to different constraint
boundaries. Consider the example where the violated constraint is 𝑥0 +𝑥1 ≤ 42, there are
two parents 𝑝1 = [40,1, . . . ] and 𝑝1 = [35,3, . . . ], the current FOS subset is F𝑖 = {1} and a
sample 𝑠𝑝1,F𝑖 = 3.5 for parent 𝑝1. The sample with value 3.5 is infeasible, as only values less
than 2 (= 42−𝑥0𝑝1 ) are feasible w.r.t. the constraint. Then it is entirely possible that 𝑝2 is
the closest feasible solution to 𝑠𝑝1,F𝑖 due to the values of the remaining decision variables.
In this case, 𝑝2 cannot be used for repair using binary search, as that would search for 𝑥1
in the range between 3 and 3.5 which contains no feasible solution when combined with
𝑝1. Hence, to ensure that repair is possible, not the closest feasible solution but the feasible
parent solution is used to repair infeasible samples.

Furthermore, since GOM generally only accepts improvements, only promising infea-
sible solutions are repaired to save evaluations. A solution is promising, if it is likely to
be selected and thus has a chance of influencing where search is performed in subsequent
generations. Feasible solutions with better objective fitness than the best solution before
the generation have a high chance of being selected in the following generation. Thus,
the objective value of the current elite is used as a threshold infeasible samples need to
exceed in order to be repaired. This repair method is described in Algorithm 4 and has a
single parameter, the number of binary search steps performed. There is a tradeoff for this
parameter, as fewer steps save evaluations, while more steps lead to solutions closer to the
constraint boundary.

Resampling A simple way to repair infeasible solutions is to simply resample when a
GOM sample turns out to be infeasible. In this case, it is not necessary for the parent to
be feasible or the sample to be promising, but the distribution used for sampling needs to
have at least some probability density in the feasible region. To ensure this is the case in
RV-GOMEA, a new parameter is introduced, setting a minimum threshold of the selection
that has to be feasible. A feasible selection generally leads to the estimated distributions
having probability density in the feasible region as well. The chance of a successful repair,
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Algorithm 4: GOM sample repair using binary search.
1 procedure RepairUsingBinarySearch:

Input: Parent solution 𝒙 , GOM sample solution 𝒚, FOS subset F𝑖 , comparison
operator ≺ and number of repair steps 𝑘

2 if 𝑓 (𝒚) < 𝑓 (𝒙𝑒𝑙𝑖𝑡𝑒 ) and 𝜐(𝒚) > 0 and 𝜐(𝒙) = 0 then
3 𝑙𝑜𝑤,ℎ𝑖𝑔ℎ← 0,1
4 ®𝒅←𝒚[F𝑖]−𝒙[F𝑖]
5 for 𝑠𝑡𝑒𝑝 ∈ {1, . . . ,𝑘} do
6 𝑚𝑖𝑑← 𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ−𝑙𝑜𝑤

2
7 𝒛← 𝒙[F𝑖]+𝑚𝑖𝑑 · ®𝒅
8 evaluate 𝒛

9 𝑙𝑜𝑤,ℎ𝑖𝑔ℎ←
®
𝑚𝑖𝑑,ℎ𝑖𝑔ℎ if𝜐(𝒛) = 0
𝑙𝑜𝑤,𝑚𝑖𝑑 otherwise

10 if 𝒛 ≺ 𝒚 then
11 𝒚← 𝒛
12 if 𝒚 ≺ 𝒙𝑒𝑙𝑖𝑡𝑒 then break

i.e. resampling feasible values, then corresponds to the number of retries and the likelihood
of sampling a feasible partial solution. Furthermore, infeasible solutions that would be
accepted even without repair are not repaired.

3.1.6 Dual-Population Approaches

For the dual population approach, also two versions are adapted to RV-GOMEA. These
need to be adapted, as the previously introduced approaches are specific to the used EA.

“Oscillating” Dual-Population Approach This version corresponds to the method
proposed in [47], where the population is split into a feasible and infeasible subpopula-
tion if possible. The feasible population aims to reach better objective fitness, while the
infeasible population aims to find feasible solutions. Since both subpopulations aim to
cross the constraint boundary, the individuals in this approach “oscillate” between being
feasible and infeasible.

However, a few modifications are necessary, since the proposed implementation spe-
cific to differential evolution is not compatible with RV-GOMEA. In differential evolution,
generally, three solutions other than the parent solution are needed to generate an off-
spring solution. Because of this, the approach presented in [25] makes it possible to split
the population into two subpopulations once at least three feasible and infeasible solutions
are in the population. For a given parent, two of the three donor solutions are picked from
the same subpopulation, and the last one from the other subpopulation.

However, for RV-GOMEA more solutions are required. Two versions of managing the
split into subpopulations are explored. Either, the selection size is kept constant and at
least 𝜏𝑛 feasible and infeasible solutions are needed, or the selection size is adapted such
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Figure 3.2: The framework used for adapting the DPDE[25] approach to RV-GOMEA where
𝑟 𝑓 denotes the fraction of feasible solutions in the population. If both the percentage of
feasible and infeasible solutions meet the threshold \ , the population is split into subpop-
ulations. The feasible subpopulation optimizes the unconstrained objective value, while
the infeasible population utilizes CDP.

that selection is performed proportional to the size of each subpopulation. In the first
case, the selection pressure decreases as fewer individuals compete for selection slots. The
second case leads to fewer selected solutions, leading to a more focused search due to
fewer solutions being used for distribution estimation. However, this potentially leads to
an inaccurate estimated distribution if the size of the subpopulation is too small. This is the
case in Figure 3.3, where the number of evaluations clearly increases if the proportional
scheme is used.

100

100

100

100

No Yes
Proportional

0

5×104

1×105

1.5×105

Ev
al

ua
tio

ns

g07

Figure 3.3: The effect of propor-
tional selection on problem g07
from the CEC2006[38] benchmark
problems over 25 runs.

A new parameter \ ∈ [𝜏, 1
2 ] is introduced as the

threshold of feasible and infeasible solutions needed
to split the population. If the number of feasible
solutions is below \𝑛, then evolution is performed
using CDP only to prioritize finding more feasible
solutions. Likewise, if there are less than \𝑛 infea-
sible solutions, the constraints are ignored to find
more infeasible solutions. Only when both thresh-
olds are satisfied, the population is split into two
populations. This is shown in Figure 3.2.

Another core aspect of the method proposed in
[47] is the information sharing strategy, recombin-
ing solutions from both populations when generat-
ing the offspring. In RV-GOMEA, the GOM sam-
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3.1. Adapting Existing Techniques and Parameter Settings

ples come from the estimated distributions. Hence,
a possible information sharing strategy is including
individuals from the other subpopulation when estimating the distribution. This is deter-
mined by a new parameter \𝑠 ∈ [0,1], controlling the number of solutions added from the
other subpopulation in addition to the selection. The value of this parameter is expressed
as a percentage of the selection size, i.e. at most half of the solutions used for distribu-
tion estimation are drawn from the other population. Additionally, these solutions are not
chosen randomly but are drawn from the selection of the other subpopulation.

Dual-Population Approach with Traction Strategy The second dual population ap-
proach follows the ideas outlined in the second stage of [46] where the feasible population
respects the constraints instead. With the first dual population approach, feasible solutions
only consider the objective value and accept infeasible GOM samples that lead to better
objective value. This cannot happen with the second dual population approach. Another
difference is that two full populations are used. This is the general scheme also followed
by [70, 48, 76, 47], however, as the focus of this thesis lies on approximating the bound-
ary from within the feasible region, there are differences in the objectives used for the
two populations. These approaches use a penalty function for the less feasible population
and a feasibility oriented CHT for the main population, while the implemented version
uses CDP for both populations and the solutions in the infeasible population are the so-
lutions that correspond to optimizing the unconstrained problem1. Infeasible solutions

1This is the case if the Full FOS is used or if the subsets can be optimized fully disjoint, otherwise the infea-
sible solutions correspond to each improving infeasible GOM sample, not the accumulation of all improving
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Infeasible Samples Feasible Solutions

Figure 3.4: The framework used for the second dual-population approach, based on [46].
If the main population has feasible solutions and there are enough infeasible solutions,
the infeasible population is used. Using the traction strategy, the infeasible population
explores the search space between the itself and the feasible population.
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3. Existing Constraint Handling in RV-GOMEA

found throughout evolution are added to the infeasible population, which tries to become
feasible. The second population only is used if the main population has feasible solutions,
as otherwise, both populations would optimize towards the same goal. Because the sec-
ond population aims to become feasible, there is no need to migrate the GOM samples, and
it suffices to migrate the feasible individuals from the infeasible to the main population.
Figure 3.4 depicts how the approach works.

Additionally, several traction strategies are explored to tether the two populations to-
gether. Since the infeasible population optimizes using CDP, effectively only the constraint
violation factor is improved. Individuals that have been in the infeasible population over
multiple generations are likely closer to the constraint boundary than newly added solu-
tions, as these have been subject to GOM towards the feasible region already. In selection,
this gives an advantage to older solutions. However, the main population is searching
close to the newly added infeasible solutions. If the main population is traversing the
search space, the focus of the search in the second population will thus lag behind the
main population. This decreases the effectiveness of the second population and the infor-
mation sharing strategy. To prevent this, the selection of the second, infeasible population
is adjusted in one of the following ways:

• Rather than selecting based on the constraint violation, the selection is based on the
distance to the feasible selection. Individuals close to feasible individuals also tend
to have lower constraint violation values.

• A second strategy is to add a few feasible solutions to the selection of the second
population, with the idea of increasing the likelihood of exploring between the con-
straint boundary and the feasible population. In [47], a similar strategy is used.
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Figure 3.5: The effect of different trac-
tion strategies on problem g07 from the
CEC2006[38] benchmark problems over
25 runs.

Figure 3.5 shows the effectiveness of the
two traction strategies. The FSI column corre-
sponds to injecting feasible solutions into the
infeasible population and shows that there is a
clear advantage to ensuring that the infeasible
population performs search close to the feasible
main population.

infeasible samples into one solution as normally done by RV-GOMEA.
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Chapter 4

Experiments and Results

In the previous chapter, different approaches for constraint handling have been introduced
and adapted to RV-GOMEA. In this chapter, experiments are performed in order to find
out how these approaches perform and compare. Additionally, the experiments should
give an indication of the strengths and weaknesses of the different approaches. First, the
experimental setup is explained, followed by the results for the different benchmark suites
and problems.

4.1 Benchmark Problems and Setup

In this subsection, the benchmark suites and problems used in the experiments are in-
troduced. First, the CEC2006[38] suite is introduced, followed by the bbob-constrained
suite[29]. Furthermore, a new problem constructed to test aspects not covered by these
benchmark suites is introduced.

For the sake of brevity, the different CHTs are henceforth abbreviated in the following
results as follows: Augmented Lagrangian (AL), Constraint Domination Principle (CDP), 𝜖-
Constrained (EPS), improved 𝜖-Constrained (IEPS), Stochastic Ranking (SR), the two dual-
population adaptions using “oscillating” subpopulations and a traction strategy as DP-O
and DP-T respectively and the repair methods using binary search and resampling as R-BS
and R-R.

4.1.1 CEC2006

This benchmark suite introduced in [38] consists of 24 COPs and provides clear setup in-
structions to allow comparing results across literature using the benchmark suite. The
problems have between 2 and 24 dimensions and a wide range of objective functions,
equality, and inequality constraints as well as differently sized feasible regions. These
properties are displayed in Table 4.1. The recommended experiment setup allocates an
evaluation budget of 500 000 evaluations, with 25 runs per problem. For the equality con-
straints, constraint violations lower than the threshold 𝜖 = 10−4 are considered feasible.
For all problems, the objective value of the constrained optimum 𝒙𝑜𝑝𝑡 is known and feasi-
ble except for problem 20 which will not be considered in this thesis for this reason. A run
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4. Experiments and Results

Problem 𝑙 Type of function % Feasible LI NI LE NE A
g01 13 quadratic 0.0111% 9 0 0 0 6
g02 20 nonlinear 99.9971% 0 2 0 0 1
g03 10 polynomial 0.0000% 0 0 0 1 1
g04 5 quadratic 52.1230% 0 6 0 0 2
g05 4 cubic 0.0000% 2 0 0 3 3
g06 2 cubic 0.0066% 0 2 0 0 2
g07 10 quadratic 0.0003% 3 5 0 0 6
g08 2 nonlinear 0.8560% 0 2 0 0 0
g09 7 polynomial 0.5121% 0 4 0 0 2
g10 8 linear 0.0010% 3 3 0 0 6
g11 2 quadratic 0.0000% 0 0 0 1 1
g12 3 quadratic 4.7713% 0 1 0 0 0
g13 5 nonlinear 0.0000% 0 0 0 3 3
g14 10 nonlinear 0.0000% 0 0 3 0 3
g15 3 quadratic 0.0000% 0 0 1 1 2
g16 5 nonlinear 0.0204% 4 34 0 0 4
g17 6 nonlinear 0.0000% 0 0 0 4 4
g18 9 quadratic 0.0000% 0 13 0 0 6
g19 15 nonlinear 33.4761% 0 5 0 0 0
g20 24 linear 0.0000% 0 6 2 12 16
g21 7 linear 0.0000% 0 1 0 5 6
g22 22 linear 0.0000% 0 1 8 11 19
g23 9 linear 0.0000% 0 2 3 1 6
g24 2 linear 79.6556% 0 2 0 0 2

Table 4.1: The properties of the 24 problems in the CEC benchmark suite. 𝑙 corresponds
to the problem dimensionality, % Feasible denotes the estimated ratio of feasible solu-
tions in the search space (|M|/|Ω |), LI/LE corresponds to the number of linear inequal-
ities/equalities, NI/NE to the number of non-linear inequalities/equalities and A to the
number of constraints active at the constrained optimum.

is considered feasible if a feasible solution is found, and successful if a feasible solution 𝒙
with 𝑓 (𝒙)− 𝑓 (𝒙𝑜𝑝𝑡 ) ≤ 10−4 is found. Reported are the best, median, and worst result and
the mean objective value and the standard deviation over the 25 repetitions. Additionally,
the feasible rate, success rate, and success performance are reported for each problem. The
feasible and success rates correspond to the number of feasible or successful runs divided
by the number of repetitions (25). The success performance is defined in [38] as

Success Performance := mean # of evaluations until success×# of total runs
# of successful runs (4.1)

By following these instructions outlined in [38], the results obtained by RV-GOMEA can
be used to compare with results from literature and hopefully give an indication of how
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well the different CHTs work on different optimizers. Notably, CEC2006 is the only bench-
mark suite used in this thesis where the initialization is performed fully randomly and a
substantial aspect of solving the problems is finding the feasible region in the first place.
For the other benchmark suites, the focus lies on approximating the constraint boundary
when starting in the feasible region.

4.1.2 bbob-constrained

This benchmark suite is part of the COCO platform[29] and contains 54 problems in di-
mensions 𝑙 ∈ {2,3,5,10,20,40} constructed using originally unconstrained functions with
added inequality constraints. This suite varies the number of constraints, also propor-
tional to the dimensionality. Additionally, non-linear transformations and rotations are
applied. In Table 4.2, the number of constraints, objective function, and transformation of
the 54 problems are described, and the unconstrained base functions are listed in Table 4.3.
For these problems, an initial solution in the feasible region is provided. The problem de-
scription includes an instruction on generating a feasible initial population by repeatedly
sampling from a Gaussian distribution with the first feasible solution as mean. Hence, this
benchmark suite tests the capability of an algorithm to traverse a single feasible region
with the constrained optimum located at the constraint boundary. By construction, there
is always an active constraint. To assess algorithm performance, the COCO platform can
be used[29]. The number of function evaluations is recorded for multiple target values
on 15 instances of the same problem with different problem parameters. This data is then
used to compute the average runtimes and the empirical distribution function of runtimes
(ECDF), aggregated over target values, subclasses of problems, or all problems[28]. In this
thesis, the dimensions 𝑙 ∈ {2,5,10,20} are used. The computational budget was set to 106𝑙

Number of constraints 1 3 9 9+ ⌊3𝑙/4⌋ 9+ ⌊3𝑙/2⌋ 9+ ⌊9𝑙/2⌋
Number of active constraints 1 2 6 6+ ⌊𝑙/2⌋ 6+ 𝑙 6+3𝑙
Objective 𝑇 𝑐scal Function IDs
𝑓sphere - 10 1 2 3 4 5 6
𝑓ellipsoid 𝑇osz 10−4 7 8 9 10 11 12
𝑓linear - 10 13 14 15 16 17 18
𝑓elli rot 𝑇osz 10−4 19 20 21 22 23 24
𝑓discus 𝑇osz 10−4 25 26 27 28 29 30
𝑓bent cigar 𝑇 0.5

asy 10−4 31 32 33 34 35 36
𝑓diff powers - 10−2 37 38 39 40 41 42
𝑓rastrigin 𝑇 0.2

asy ◦𝑇osz 10 43 44 45 46 47 48
𝑓rast rot 𝑇 0.2

asy ◦𝑇osz 10 49 50 51 52 53 54

Table 4.2: The identifiers, objective functions, number of constraints and transformations
for the 54 problems in the bbob-constrained suite. T corresponds to a non-linear trans-
formation of the search space and “-” means no transformation. Again, 𝑙 is the number of
decision variables.
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Function Formulation Transformations
Sphere 𝑓sphere(𝑥 ) = 𝑧⊤𝑧 + 𝑓uopt 𝑧 = 𝑥 −𝑥uopt

Separable
ellipsoid 𝑓ellipsoid(𝑥 ) =

𝑙∑︁
𝑖=1

106 𝑖−1
𝑙−1 𝑧2

𝑖 + 𝑓uopt 𝑧 = 𝑥 −𝑥uopt

Linear
slope 𝑓linear(𝑥 ) =

𝑙∑︁
𝑖=1

5 |𝑠𝑖 | −𝑠𝑖𝑧𝑖 + 𝑓uopt

𝑠𝑖 = sign
Ä
𝑥

uopt
𝑖

ä
10 𝑖−1

𝑙−1

𝑧𝑖 =

®
𝑥𝑖 if 𝑥uopt

𝑖
𝑥𝑖 < 52

𝑥
uopt
𝑖

otherwise
for 𝑖 = 1, . . . , 𝑙

Rotated
ellipsoid 𝑓elli rot(𝑥 ) =

𝑙∑︁
𝑖=1

106 𝑖−1
𝑙−1 𝑧2

𝑖 + 𝑓uopt 𝑧 = 𝑅
(
𝑥 −𝑥uopt )

Discus 𝑓discus(𝑥 ) = 106𝑧2
1 +

𝑙∑︁
𝑖=2

𝑧2
𝑖 + 𝑓uopt 𝑧 = 𝑅

(
𝑥 −𝑥uopt)

Bent cigar 𝑓bent cigar (𝑥 ) = 𝑧2
1 +106

𝑙∑︁
𝑖=2

𝑧2
𝑖 + 𝑓uopt 𝑧 = 𝑅

(
𝑥 −𝑥uopt)

Different
powers 𝑓diff powers (𝑥 ) =

Ã
106

𝑙∑︁
𝑖=1
|𝑧𝑖 |2+4

𝑖−1
𝑛−1 + 𝑓uopt 𝑧 = 𝑅

(
𝑥 −𝑥uopt )

Rastrigin 𝑓rastrigin (𝑥 ) = 10
(
𝑛−

𝑙∑︁
𝑖=1

cos(2𝜋𝑧𝑖 )
)
+𝑧⊤𝑧 + 𝑓uopt 𝑧 = 𝑥 −𝑥uopt

Rotated
Rastrigin 𝑓rast rot(𝑥 ) = 10

(
𝑛−

𝑙∑︁
𝑖=1

cos(2𝜋𝑧𝑖 )
)
+𝑧⊤𝑧 + 𝑓uopt 𝑧 = 𝑅

(
𝑥 −𝑥uopt)

Table 4.3: The objective functions from the COCO platform[29] used by bbob-constrained.
The vector 𝒙uopt ∈ R𝑙 is randomly sampled and determines the unconstrained optimum of
the function with 𝑓uopt) := 𝑓 (𝒙uopt). The rotations 𝑅 ∈ R𝑙×𝑙 were randomly sampled and are
fixed for each instance. The non-linear transformations mentioned in Table 4.2 are applied
after rotation.

evaluations with a time limit of 60 seconds. This time limit is restrictive for the larger
dimensions, however, it was necessary to ensure timely completion of individual runs.

4.1.3 Cone Problem

There are existing constrained benchmark suites using both constructed and real-world
problems, but none of these benchmark suites allow changing the size of the feasible region
or decomposing constrained problems in line with the previously introduced GBO setting.
Even though the contribution of a single variable to the objective value may be separable,
constraints can create linkage and prevent decomposition. To mitigate these shortcomings,
a new problem based on existing benchmark problems and a new constraint formulation
is introduced, hereafter called the Cone problem. In Figure 4.1, the fitness landscape of
different instances is shown. In 2D, the problem corresponds to a single linear constraint
or a constrained optimum located at the intersection of two linear constraints, depending
on \ .
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Figure 4.1: Different instances of the Cone problem with feasibility parameter \ = 90° and
\ = 45° in 2D.

The sphere function 𝑓 (𝒙) := 𝑥𝑇𝑥 =
∑𝑙

𝑖=1𝑥
2
𝑖 is used for the objective value. The optimum

of the unconstrained problem is shifted to −1𝑙 and the constrained optimum is placed at 0
and set to 0 instead:

𝑓𝐶𝑜𝑛𝑒 (𝒙) :=
𝑙∑︁

𝑖=1
𝑥2
𝑖 +2𝑥𝑖 (4.2)

The constraint is a 𝑙-dimensional extension of a 2D cone parameterized by an angle \ ∈
(0°,180°], corresponding to how large the feasible region should be. The tip of the cone
is located at the feasible optimum, i.e. 0𝑙 , and the feasible region grows away from the
direction of the unconstrained optimum1. The constraint value is defined as a single linear
inequality and computes the distance from the feasible region in parameter space:

𝑔𝐶𝑜𝑛𝑒 (𝒙) :=


−𝒙 𝑙 = 1
−𝑙𝑒𝑛𝑔𝑡ℎ \ = 180°
𝒙−1̂∗𝑙𝑒𝑛𝑔𝑡ℎ
∥𝒙−1̂∗𝑙𝑒𝑛𝑔𝑡ℎ∥ − 𝑙𝑒𝑛𝑔𝑡ℎ · tan\ otherwise

(4.3)

where 𝑙𝑒𝑛𝑔𝑡ℎ := 𝒙𝑇 1̂ corresponds to the distance away from the tip of the cone and 1̂ :=
{1}𝑙
∥ {1}𝑙 ∥ . The first case allows having 1-dimensional problems, the second case is necessary
because tan180° is not defined, and the third case effectively computes the signed distance
from the boundary of the cone at the given length from the tip. Within the feasible re-
gion, the constraint value will be negative and outside there is a positive constraint value

1This construction works using the Sphere function but not necessarily for other functions. The transfor-
mation 𝑓 (𝒙) =𝑚𝑎𝑥

{
𝑓 (𝒙𝑜𝑝𝑡 ), 𝑓 (𝒙)

}
+𝜐(𝒙) would work for any function to ensure that at least one constrained

optimum is at 𝒙𝑜𝑝𝑡 regardless of where the unconstrained optimum and the local optima are placed. However,
this potentially leads to loss of precision due to the limitations of floating point numbers if the scales of the
objective and constraint value near the optimum differ substantially.
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indicating the shortest distance to the feasible region. If \ = 180°, then this amounts to a
single linear constraint. With increased dimensionality and smaller angles, however, this
is a non-linear constraint. Note that through the constraint function, all decision variables
are linked, although the objective function is separable. In order to construct a decompos-
able problem, the Cone problem can be repeated, creating a problem consisting of linked
blocks, where each block corresponds to a Cone problem instance. Furthermore, while the
angle \ determines the size of the feasible region, the relationship between the angle and
the ratio of feasible to infeasible solutions is not constant w.r.t. increasing problem size. As
the problem dimension grows larger, the ratio of feasible solutions shrinks with constant
\ where \ < 180°.

As for the experimental setting, the effect of decreasing the size of the feasible region,
increasing the problem dimensionality, and decomposition using a marginal product FOS
are explored to identify the strengths and weaknesses of the CHTs in settings not covered
by the other experiments used. For 𝑙 ∈ {2,10,20,40,80}, \ ∈ {180°,135°,90°,45°,5°} and block
sizes in {𝑙,5,10}, an evaluation budget of 25000𝑙 and a value to reach of 10−10 are used. For
block size 𝑙 , the full FOS is use,d and the marginal product FOS that matches the block
size is used for block sizes 5 and 10. Reported is the median number of evaluations and
interdecile range of 31 runs, as well as the success rate. The initialization is performed in
the feasible region to eliminate differences in the time to reach the feasible region. Thus,
resulting differences in evaluations between CHTs are due to differences in behavior when
approximating constraint boundaries.

4.2 CEC2006

The detailed results for each CHT on this benchmark suite are included in Appendix B.
The feasible rate for the CEC2006 problems, i.e. the percentage of the 25 runs that pro-

duced feasible solutions during optimization, is shown in Table 4.4. Note that for problem
g22, no approach managed to find the feasible region. On the other problems, the tested
CHTs are able to find the feasible region reliably, except for the Augmented Lagrangian
method (AL) and the two 𝜖-Constrained methods. These methods trade off optimizing
towards better objective values and feasibility, whereas the other methods prefer feasibil-
ity until the population is at least partially feasible. Note that Stochastic Ranking (SR) is
an exception as the method stochastically selects based on the objective before reaching
the feasible region. However, due to accepting using CDP during variation, the popu-
lation only moves towards the feasible region. For the Augmented Lagrangian method,
ill-conditioned problems for the chosen parameter values can cause the optimization to
get stuck in the infeasible region. Additionally, in [20] the implementation based on the
constraint violation measure has been shown to clearly perform worse on problem g10
compared to handling constraints individually.For the 𝜖-Constrained approaches, the rea-
son for not reliably reaching the feasible region generally is that the 𝜖 threshold does
not decrease quickly enough and the search converges in the infeasible region before the
search is pressured towards feasibility. Notably, the 𝜖-Constrained approaches struggle
with different problems than the Augmented Lagrangian method.
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CDP AL DP-O DP-T EPS IEPS R-BS R-R SR

g01 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g02 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g03 100.0% 0.0%− 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g04 100.0% 40.0%− 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g05 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g06 100.0% 96.0%≈ 100.0%≈ 100.0%≈ 72.0%− 88.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g07 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g08 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 88.0%≈ 92.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g09 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g10 100.0% 0.0%− 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g11 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g12 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g13 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g14 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g15 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 68.0%− 60.0%− 100.0%≈ 100.0%≈ 96.0%≈
g16 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 92.0%≈ 88.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g17 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 44.0%− 40.0%− 100.0%≈ 100.0%≈ 100.0%≈
g18 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g19 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g21 100.0% 44.0%− 100.0%≈ 100.0%≈ 0.0%− 0.0%− 100.0%≈ 100.0%≈ 100.0%≈
g22 0.0% 0.0%≈ 0.0%≈ 0.0%≈ 0.0%≈ 0.0%≈ 0.0%≈ 0.0%≈ 0.0%≈
g23 100.0% 0.0%− 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g24 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈

+/≈/− - 0/18/5 0/23/0 0/23/0 0/19/4 0/20/3 0/23/0 0/23/0 0/23/0

Table 4.4: The Feasible Rate metric for the CEC2006 problems. The best values achieved for
each problem are highlighted in bold. The +/≈/− symbols indicate significantly better/not
different/worse performance when compared to CDP using Fisher’s exact test [23] with
𝑝 < 0.05. The bottom row displays the total number of times the CHT was better/not
different/worse compared to CDP.

The success rate, i.e. the percentage of the 25 runs that approximated the constrained
optimum up to an error of 10−4 is shown in Table 4.5. In line with the feasible rate, the
same reasons explain the decreased success rate for the AL, EPS, and IEPS approaches.
For problem g06 the AL method reliably reaches feasible solutions but never reaches the
approximation target. Similarly, the 𝜖-Constrained method struggles with reaching the
success criterion on problem g17. However, the increased bias towards better objective
value leads to significantly better results on problems g12 and g13 compared to CDP. Other
than that, the same problems tend to be hard to reliably solve, with no success on problem
g22. With respect to the feasibility oriented approaches, the different methods perform
similarly. Only SR and DP-O achieve significantly better results on some problems. Note
that the recommended population size has been used for the CHTs. As the success rate for
some problems and CHT combinations is high, but not 100%, this indicates that a larger
population size could lead to an increased success rate.

35



4. Experiments and Results

CDP AL DP-O DP-T EPS IEPS R-BS R-R SR

g01 76.0% 88.0%≈ 92.0%≈ 64.0%≈ 72.0%≈ 60.0%≈ 68.0%≈ 84.0%≈ 80.0%≈
g02 0.0% 0.0%≈ 20.0%+ 0.0%≈ 0.0%≈ 4.0%≈ 8.0%≈ 4.0%≈ 4.0%≈
g03 100.0% 0.0%− 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g04 100.0% 0.0%− 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g05 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g06 100.0% 0.0%− 100.0%≈ 100.0%≈ 60.0%− 88.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g07 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g08 100.0% 84.0%≈ 92.0%≈ 96.0%≈ 48.0%− 56.0%− 92.0%≈ 88.0%≈ 96.0%≈
g09 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g10 100.0% 0.0%− 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g11 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g12 44.0% 92.0%+ 72.0%+ 56.0%≈ 80.0%+ 88.0%+ 48.0%≈ 68.0%≈ 84.0%+
g13 32.0% 36.0%≈ 32.0%≈ 56.0%≈ 72.0%+ 64.0%+ 36.0%≈ 28.0%≈ 52.0%≈
g14 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g15 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 68.0%− 60.0%− 100.0%≈ 100.0%≈ 96.0%≈
g16 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 92.0%≈ 88.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g17 16.0% 24.0%≈ 24.0%≈ 36.0%≈ 0.0%≈ 0.0%≈ 28.0%≈ 24.0%≈ 48.0%+
g18 84.0% 92.0%≈ 84.0%≈ 68.0%≈ 100.0%≈ 100.0%≈ 76.0%≈ 92.0%≈ 84.0%≈
g19 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈
g21 100.0% 44.0%− 76.0%− 96.0%≈ 0.0%− 0.0%− 88.0%≈ 96.0%≈ 96.0%≈
g22 0.0% 0.0%≈ 0.0%≈ 0.0%≈ 0.0%≈ 0.0%≈ 0.0%≈ 0.0%≈ 0.0%≈
g23 100.0% 0.0%− 96.0%≈ 100.0%≈ 76.0%− 76.0%− 100.0%≈ 96.0%≈ 100.0%≈
g24 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 100.0%≈ 96.0%≈ 100.0%≈ 100.0%≈

+/≈/− - 1/16/6 2/20/1 0/23/0 2/16/5 2/17/4 0/23/0 0/23/0 2/21/0

Table 4.5: The Success Rate metric for the CEC2006 problems. The best values achieved for
each problem are highlighted in bold. The +/≈/− symbols indicate significantly better/not
different/worse performance when compared to CDP using Fisher’s exact test [23] with
𝑝 < 0.05. The bottom row displays the total number of times the CHT was better/not
different/worse compared to CDP.

The mean number of evaluations needed divided by the success rate is shown in Ta-
ble 4.6. Lower values are better and indicate reaching the target quicker. Unreliable success
increases the value of the metric. Because both the evaluations and the success rate are
contained, this table should be considered together with Table 4.5. For instance, the AL
method achieves the best success performance on problems g17 and g21, but it is not the
most reliable method on either problem. Notably, the AL method achieves the best success
performance most often, on 12 different problems.Repair using binary search (R-BS) gen-
erally outperforms repair by resampling (R-R) and outperforms CDP on 12 problems, while
the method using resampling does so only twice. Both Stochastic Ranking and repair using
binary search tend to take fewer evaluations than CDP, while the dual-population meth-
ods need more evaluations. The 𝜖-Constrained methods generally take more evaluations
than the other methods, except for problems g12 and g13.
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CEC2006

CDP AL DP-O DP-T EPS IEPS R-BS R-R SR

g01 32534.5 28845.6 69020.7 48083.0 69261.8 81869.4 35442.7 33550.9 32305.1
g02 - - 557860.0 - - 1247600.0 565356.2 1155600.0 1122350.0
g03 48991.6 - 62014.8 76399.6 42305.9 42230.6 48844.8 57152.8 20043.7
g04 5423.7 - 11176.2 5886.8 15208.4 46091.2 5108.5 6059.8 5039.8
g05 35441.0 4342.5 50261.9 53809.5 47685.2 47402.7 31839.2 47221.4 10908.9
g06 2300.1 - 2938.3 3420.3 81187.8 55273.1 2615.2 2815.1 1839.1
g07 20423.8 18835.8 36153.3 34849.0 54946.4 55357.8 17652.1 27016.0 20200.4
g08 232.6 15996.4 701.9 299.5 76251.0 63779.1 260.5 290.4 274.5
g09 7422.0 5582.9 12865.4 9711.4 46183.8 45823.2 6976.6 9284.3 7160.1
g10 24388.0 - 41161.4 43585.7 67341.2 67014.8 22266.8 27568.0 21621.0
g11 4083.8 836.3 4654.7 5992.2 36948.8 35805.1 5017.7 5168.0 1148.2
g12 1633.1 277.0 1207.3 1758.0 417.5 387.0 1726.9 1294.4 839.7
g13 280714.8 157735.5 318559.8 202039.3 58816.0 65765.9 312176.2 441991.8 70190.5
g14 12976.7 11155.2 21133.4 13939.4 47591.5 48605.2 12225.8 14590.1 15784.0
g15 23149.6 3667.3 28744.8 26324.1 66322.1 76320.0 21947.8 32188.8 7200.4
g16 4490.0 4194.8 5725.7 5817.2 50373.3 53165.8 4349.1 5360.6 4449.8
g17 473603.1 105107.6 533517.4 393863.9 - - 380642.9 603310.4 128697.6
g18 11794.3 11133.4 19425.9 21518.6 56121.9 67053.1 12809.0 13908.1 12342.7
g19 42077.3 37341.5 104095.6 63982.0 41715.4 55055.8 39519.7 51850.5 42052.8
g21 35539.8 26563.4 76180.1 47120.8 - - 41402.5 49774.4 28786.4
g23 39846.2 - 75848.0 59739.2 74124.1 69606.2 43020.8 49666.3 37625.1
g24 836.2 857.2 1305.4 1033.6 881.0 44604.2 852.6 991.7 787.0

</> - 14/7 2/20 2/19 4/17 4/18 12/10 2/20 19/3

Table 4.6: The Success Performance metric for the CEC2006 problems. The best values for each problem are highlighted in bold, and
the total number of times a CHT achieved a better (<) or worse (>) Success Performance than CDP is listed in the last row.37



4. Experiments and Results

Overall, the results show a clear distinction between the AL penalty function, the 𝜖-
Constrained techniques, and the remaining feasibility oriented methods. The AL penalty
performs well in terms of evaluations, however, the method struggles with finding the
feasible approximations of the constrained optimum. The 𝜖-Constrained methods per-
form well on problems g12 and g13, but have a low success rate on the other problems
and do not reliably find the feasible region. The remaining methods have similar success
rates, with differences in the number of evaluations. Stochastic Ranking and DP-O achieve
the highest success rates, followed by the current method, CDP. In terms of evaluations,
Stochastic Ranking performs best compared to the other feasibility oriented methods. This
is likely due to the initial focus on both objective and constraint violation. CDP, the dual-
population and repair methods only begin to focus on the objective value after reaching
the feasible region. Because of this, these approaches likely need to traverse a larger part
of the feasible region compared to Stochastic Ranking.

4.3 bbob-constrained

The result overview from the experiments performed using the bbob-constrained bench-
mark functions are shown in figures 4.2,4.3,4.4 and 4.5. The results are obtained using
the COCO[29] platform and follow the assessment method explained in [28]. The figures
show the Empirical Cumulative Distribution Functions (ECDFs) of the number of targets
solved over the runtime, expressed as the logarithm of the evaluations divided by the di-
mension. Note that the number of evaluations shown is the sum of the number of objective
function and the constraint function evaluations. The number of targets corresponds to
41 different approximation levels, ranging from 𝑓 (𝒙𝑜𝑝𝑡 )+ 100 to 𝑓 (𝒙𝑜𝑝𝑡 )+ 10−6. If there is
a cross on a line, the method was able to solve all approximation targets up to this point
in all runs. Additional approximation targets were not reached by at least one run. Fur-
thermore, the fraction of function target pairs reached after exhausting the computational
budget is marked with a small dot2.

For the 2D instances, the results are shown in Figure 4.2. In this dimensionality, the re-
sults of most techniques are similar. After around 1000𝑙 evaluations, there is a big increase
in the number of targets reached, and towards the final targets the number of evaluations
needed increases drastically. However, there are some notable outliers. For a single con-
straint, the DP-O method shows a clear advantage in terms of the number of evaluations
needed to reach the approximation targets. For the problems with more constraints, SR
consistently needs fewer evaluations and reaches a higher fraction of the approximation
targets before progress slows down. In line with the CEC2006 results, the 𝜖-Constrained
methods and the Augmented Lagrangian method reach fewer targets due to less pressure
towards feasibility.

The results for the 5D instances, shown in Figure 4.3, display similar results. DP-O
again has a clear advantage on problems with a single constraint and performs well on
problems with more constraints. There is a clear gap between the performance of the other

2Note that due to the time limit, there can be differences in the total number of evaluations performed
between CHTs.
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Figure 4.2: The results for the existing methods on the 2D instances of the bbob-constrained
suite, grouped by the number of constraints, as described in Table 4.2. The number of total
constraints is displayed above the figures.
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Figure 4.3: The results for the existing methods on the 5D instances of the bbob-constrained
suite. The 54 functions are grouped by the number of constraints and active constraints,
as described in Table 4.2. The number of total constraints is displayed above the figures.
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Figure 4.4: The results for the existing methods on the 10D instances of the bbob-
constrained suite. The 54 functions are grouped by the number of constraints and active
constraints, as described in Table 4.2. The number of total constraints is displayed above
the figures.

1 3 9

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

IEPS

DP-O

AL

DP-T

R-BS

EPS

CDP

SR

R-Rbbob-constrained f1, f7, f13, f19, f25, f31, f37, f43, f49, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

IEPS

AL

DP-T

EPS

R-BS

R-R

SR

CDP

DP-Obbob-constrained f2, f8, f14, f20, f26, f32, f38, f44, f50, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

EPS

IEPS

DP-T

AL

R-BS

CDP

SR

R-R

DP-Obbob-constrained f3, f9, f15, f21, f27, f33, f39, f45, f51, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

9+ ⌊ 3𝑙
4 ⌋ 9+ ⌊ 3𝑙

2 ⌋ 9+ ⌊ 9𝑙
2 ⌋

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

IEPS

EPS

CDP

DP-T

SR

R-BS

R-R

AL

DP-Obbob-constrained f4, f10, f16, f22, f28, f34, f40, f46, f52, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CDP

SR

R-BS

R-R

AL

EPS

IEPS

DP-T

DP-Obbob-constrained f5, f11, f17, f23, f29, f35, f41, f47, f53, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SR

R-R

R-BS

IEPS

EPS

DP-T

CDP

AL

DP-Obbob-constrained f6, f12, f18, f24, f30, f36, f42, f48, f54, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

Figure 4.5: The results for the existing methods on the 20D instances of the bbob-
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the figures.
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4.4. Cone Problem

methods and the AL method, which reaches fewer targets compared to the other methods.
Notably, the performance of the AL method is similar up to a point where reaching further
targets needs significantly more evaluations. The EPS method is able to perform similarly
to the other methods on problems with up to 3 constraints, then there is a big drop in
the number of targets reached. The IEPS method shows similar behavior, though it clearly
reaches fewer targets on the problems with up to 3 constraints already.

A clear difference between the remaining methods begins to show in the 10D problems.
In Figure 4.4, most approaches display a drop in the number of targets reached with an
increased number of constraints. On the problems with more than 9 constraints, the DP-O
method clearly reaches more approximation targets in fewer evaluations compared to the
other methods. Compared to CDP, the SR and DP-T methods also reach more approxi-
mation targets on these problems. This holds true also for the repair methods, albeit with
a smaller difference. While the AL method reaches fewer targets for up to 3 constraints,
the method shows performance similar to CDP on problems with more constraints. For
problems with a fixed number of constraints, success rates decrease as the number of con-
straints increases. Interestingly, this contrasts with the problems where the number of
constraints is determined by the number of dimensions, where success rates seem to rise
as more constraints are added. This anomaly is observed not only for the evaluated CHTs
but also in other results presented in literature [19]. One plausible explanation is that this
phenomenon is likely due to the problem construction.

In 20D, the overall success rate drastically decreases. Only for the problems with less
than 9 constraints in Figure 4.5, more than half of the targets are reached by any method.
However, this could be due to the exhaustion of the computational budget. For example,
the slope of the line for the DP-O method with 9+ ⌊ 3𝑙

4 ⌋ constraints still indicates progress
up to the point where the dot signifies reaching the time limit. Hence, the overall number
of approximation targets hit would likely increase with a larger computational budget.

Nonetheless, assuming the observed trends continue, the DP-O method clearly outper-
forms the other methods both in terms of the proportion of targets reached as well as the
number of evaluations needed for problems with more dimensions. Other methods show
competitive performance only on the problems with a single constraint. In 2D, SR shows
the best overall results. Considering the two dual-population methods, the DP-O method
clearly outperforms DP-T. Nonetheless, given enough evaluations, the DP-T method per-
forms well in terms of the proportion of targets reached up to 10D. The two repair methods
perform similarly, and both tend to reach more targets compared to CDP.

4.4 Cone Problem

The results for the Cone problem are shown in figures 4.6 and 4.7. The different approaches
are shown in two groups in order to increase the legibility of the plots. CDP, the currently
used CHT is included as a reference in both figures. Note that the number of evaluations
used is divided by dimension, making the horizontal grid lines correspond to linear growth
in evaluations with increased dimensionality. The line style of the results indicates how
reliably the approaches reach the approximation target of 10−10. Solid lines correspond to
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≥ 90% successful runs, dashed lines to ≥ 50% and dotted lines to ≥ 10%. Less successful
runs are not shown. A run can be unsuccessful by converging away from the constrained
optimum or by exceeding the evaluation budget. The rows correspond to the block size
and FOS used. The instances in the first row use a single problem of size 𝑙 with the full FOS,
while the other rows correspond to concatenated blocks of size 5 and 10 respectively. For
the concatenated problems, the marginal product FOS with is used, such that each subset
matches one block.

The results suggest a clear difference between a feasibility parameter of 180° and < 180°.
This corresponds to a single active constraint and a constrained optimum located at the
intersection of multiple constraints. An increase in evaluations needed with decreasing
feasibility parameter is visible, however, small compared to the clear jump in resources
needed between 180° and < 180°.

In Figure 4.6, AL performs clearly differently from the remaining CHTs. For the 180°
problems, the target value is only reached reliably for the problems using the Full FOS and
𝑙 ≥ 20. For the Full FOS, the data spanning from 20 to 80 dimensions shows an increase
in evaluations needed in line with the other methods. For the < 180° problems and Full
FOS, the performance and success rate decreases with decreasing feasibility parameter of
the problem. No reliable success is achieved for the 5° and 45° instances. However, the
method shows the best performance with increased dimensions and reliable success on
the instances with 90° and 135°. Similar to the 180° problem, the number of evaluations
needed on low dimensional problems is comparatively high. The visibly linear increase in
evaluations starting from 𝑙 = 10 indicates quadratic growth in terms of evaluations needed
in the observed dimensionality range. Considering the behavior of the AL method on the
concatenated problems with the Marginal Product FOS, the success rate decreases, and
the number of evaluations needed increases. This can be explained by the construction of
the problem. The repeated blocks of the 5D instances lead to less success compared to the
repeated blocks of size 10. This is in line with the performance using the Full FOS with
problems, where the performance is more stable with increased dimensionality. Overall,
the AL method shows competitive performance on the Full FOS instances where reliable
success is observed. The reliability on the concatenated problems decreases compared to
the instances with the same number of decision variables and a single block.This could be
due to the block size being too small, as the performance on the 90° and 135° problems
with block size 10 is better than the other methods for 𝑙 = 40.

The remaining CHTs in Figure 4.6 all perform similarly to the CDP method for all FOS
types. This is because of the initialization in the feasible region. As the methods differ
in search behavior when the population is infeasible, these differences are not shown as
the search in the feasible region effectively becomes CDP. IEPS deviates more, due to the
additional rule that allows increasing the 𝜖 threshold when the population is feasible. The
number of evaluations divided by dimensions needed for these methods grows linearly
with increased dimensions for the dimensions tested. The transparent regression line in
the color of CDP corresponds to quadratic scaling in evaluations w.r.t. dimensions for
CDP. The fit of this regression line indicates quadratic growth. Considering the Marginal
Product problems with repeated blocks of smaller instances, the increase in number of
evaluations needed for twice the number of instances is less than double.
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In Figure 4.7, all methods show differences to CDP. Again, the differences between 180°
and < 180° are large.

For 180°, repair using binary search shows the best performance and scales better than
CDP. Repair using resampling performs similarly to CDP with the Full FOS, but scales
worse when considering the concatenated problems using the Marginal Product FOS. The
first dual population scheme, DP-O, fails to reliably reach the target value for the lower
dimensions. With the Full FOS, the method clearly needs more evaluations compared to
CDP. Nonetheless, the increases in evaluations from 10 to 80 dimensions suggest that the
scaling behavior may be better than quadratic growth. In the observed dimension range,
the method does not achieve better performance than CDP. For the concatenated problem
instances, the minimum size needed for reliable results increases further. The second dual-
population approach does not lead to reliable success with the Full FOS and no decompo-
sition and scales worse than CDP on the problems with decomposition and the Marginal
Product FOS. DP-T uses a second population, at times evolving more solutions compared
to the other methods. Nevertheless, for most problems, the number of evaluations needed
is less than double compared to CDP. While not more efficient w.r.t. evaluations needed,
this indicates that the dual population scheme does benefit from the second, infeasible
population.

On problems with < 180°, repair using binary search scales in line with CDP with
no decomposition and worse with decomposition. The performance of the other Repair
method using resampling also decreases when compared to CDP. Both dual population
approaches scale worse than the other methods. DP-O fails to solve the problems with
decreasing feasibility parameter reliably for higher dimensions. The median of the suc-
cessful runs is close to the evaluation budget of 25000𝑙 , indicating that the failed runs are
possibly due to exhausting the computational budget rather than the method converging
away from the constrained optimum. The decrease in reliable success for the DP-T method
on the problems with decomposition also hints towards an exhausted evaluation budget.
For the Full FOS, the number of evaluations needed for the DP-T method is close to double
the evaluations needed when using CDP. This indicates that the second population is not
effective for these problems.

Overall, there is a clearly visible difference in both the number of evaluations needed
and the reliability of the different approaches between the problems with 180° and those
with < 180°. For most approaches, further differences in the size of the feasible region
have little effect. However, for the AL approach, there is a clear drop in performance for
problems with ≤ 45°.

4.5 Effectiveness

In the previous section, experiments were performed to compare the performance of dif-
ferent CHTs and to find their strengths and weaknesses. However, in general, these are
results that can only be considered in relation to other approaches. This is sufficient for
the practical purpose of determining the best available optimization method for a given
problem. Nonetheless, it is not possible to conclude that a particular CHT is performing
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effective search. This information is relevant for better understanding the strengths and
weaknesses of an algorithm and potentially leads to algorithmic improvements by miti-
gating inefficiencies. Therefore, in this section, experiments are performed to gauge the
effectiveness of the different CHTs when combined with RV-GOMEA. The main focus lies
on CDP, the currently used technique, more detailed results for the other methods are in
Appendix C.

Considering RV-GOMEA in particular, efficient search requires that the probability
density of the estimated distributions matches the search space, i.e. solutions with better
fitness should have a higher likelihood of being sampled. Ideally, over multiple genera-
tional steps this should increasingly be the case, i.e. the mean of the multivariate normal
distributions should approximate the constrained optimum and the variance of the distri-
bution should decrease.

To test if this is the case, the trace of the covariance matrix and the Mahalanobis
distance[40] between the distribution and the constrained optimum are analyzed for differ-
ent problems. The trace of the covariance matrix gives an indication of how concentrated
the probability density of the Gaussian distribution is and is defined as follows:

𝑡𝑟 (Σ) :=
𝑙∑︁

𝑖=1
(Σ)𝑖,𝑖 (4.4)

Over time, this value should shrink as search is performed on an increasingly smaller scale.
The Mahalanobis distance on the other hand is a distance metric that expresses the distance
between a point and a distribution in standard deviations when taking the covariance into
account. The definition is as follows:

𝑑𝑀
(
𝒙, ˆ̀, Σ̂

)
=

»
(𝒙 − ˆ̀)⊤Σ̂−1(𝒙 − ˆ̀) (4.5)

Given a distribution that models the fitness landscape well, this distance metric should be
close to zero for the distance between the estimated distribution used by RV-GOMEA and
the constrained optimum.
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Figure 4.8: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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Figures 4.8a,4.8b and 4.10a display these indicators for the fit of the estimated distri-
bution and the corresponding objective value for multiple problems. In addition to differ-
ent configurations of the previously introduced Cone problem, the unconstrained Sphere
problem is shown as well. It can be seen that the achieved fitness is proportional to the
Mahalanobis distance and directly proportional to the trace of the covariance matrix. Note
that this follows from the unimodal construction of the used problems. If there are local
optima the optimizer can get stuck in, the objective value and covariance can shrink while
the Mahalanobis distance to the constrained optimum will increase. The difference in eval-
uations needed to reach the target value of 10−10 can be explained by the differences in the
indicators of the distribution fit. A small Mahalanobis distance to the optimum together
with a small covariance matrix trace indicates that the optimum is both in distribution and
the probability density is concentrated, leading to efficient search. This can be observed for
the unconstrained Sphere problem, where the steepest descent of the objective value w.r.t.
evaluations can be observed. For the Cone problem with 180° feasibility, the constraint
boundary is a single linear constraint. As CDP prioritizes feasible solutions, only solutions
on the feasible side of the constraint boundary will be selected for distribution estimation.
Because of this bias towards feasibility, the Mahalanobis distance stays larger and the per-
formance decreases. For the Cone problems with 90° and 5° feasibility, the Mahalanobis
distance increases with the dimensionality to the extent that sampling the constrained op-
timum is very unlikely. For these problems, the covariance shrinks, while the Mahalanobis
distance stays relatively constant after the initial generations. This indicates that the distri-
bution mean keeps getting closer to the constrained optimum. However, the Mahalanobis
distance does not improve because the distribution shrinks, maintaining a similar likeli-
hood of sampling the constrained optimum. Compared to the Sphere problem, the target
is not reached because a distribution with a good fit shrinks over generations, but rather
because each generation the distribution moves towards the optimum and shrinks until
the target value is reached.

This can be interpreted as a trade-off between exploitation and exploration. The center
bias of the multivariate normal distribution used in RV-GOMEA leads to a higher search
resolution closer to the mean. Thus, for the Sphere problem, with a good fit of the dis-
tribution, more sampled GOM solutions will be improving in fitness, leading to increased
selection pressure. On the other hand, for problems where the improvements are out-of-
distribution, i.e. away from the distribution mean, fewer samples will be improvements in
fitness, and selection pressure is lower. Consequently, this explains the difference in eval-
uations needed between the different problems, as the exploitation phase is never reached
for the Cone problems with 90° and 5° feasibility.

Compared to the objective value and the trace of the covariance matrix, the variance of
the Mahalanobis distance w.r.t. evaluations used is clearly larger. Figure 4.10b shows that
this is due to the population size used. The recommended population size generally cor-
responds to a population size that is large enough to solve the problem, but small enough
such that there is little redundancy and evaluations are thus used effectively. Using larger
multiples of the recommended size, both variance and value of the Mahalanobis distance
clearly shrink. This corresponds to better estimated distributions with an increased likeli-
hood of sampling close to the constrained optimum. However, the number of evaluations
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needed increases as well. Put differently, considering the population size, there is a trade-
off between increasing certainty and introducing redundancy. In this case, the increased
certainty that comes with larger population sizes is not worthwhile when considering the
number of evaluations needed.

Another observation is that the fit of the distribution depends on the nature of the
constraints. The Cone problem with a single linear constraint (180°) leads to better distri-
butions than the same problem with smaller feasible angles. Furthermore, the angle does
matter as well.

Considering this, it is clear that search close to the constraint boundaries is not as
effective as RV-GOMEA unconstrained optimization using the same objective function.
This can be explained by the fit of the estimated distribution, which indicates that for the
constrained problems the exploitation scenario is never reached. To answer the second re-
search question, the presence of active constraints leads to decreased search effectiveness.
This drop in efficiency is significantly larger for Cone problems with a feasibility parameter
< 180°, corresponding to problems with multiple active constraints. A possible explanation
for this lies with the estimated distribution, as sampling closer to the constrained optimum
becomes increasingly unlikely.

4.5.1 Other CHTs

The results for the other tested CHTs are largely in line with those of CDP and included in
Appendix C. For the SR, EPS, and IEPS methods, this is explained by the initialization in
the feasible region. By doing so, the 𝜖 comparison used in EPS and IEPS effectively behaves
identically to CDP. Similarly, the feasible population together with using CDP to accept
improvements leads to a selection in line with CDP for SR. The repair methods R-BS and
R-R do influence the number of evaluations needed and the distribution indicators, but the
changes are small.

Notable differences can be observed for the dual population approaches and the AL
method. The DP-O method is seemingly limited in the scaling of the step size performed.
For the Cone problem with 180°, optimization gets stuck. While the Mahalanobis distance
is small, the covariance is large and does not shrink. This likely is explained by the ac-
ceptance criteria used for the subpopulations and the linear constraint boundary. In each
generation, the feasible subpopulation crosses into the infeasible region and vice versa.
This leads to the two subpopulations replacing each other, with no net gains towards clos-
ing in on the constraint boundary. The extent of this decreases with the dimensionality,
and the problem gets solved reliably for the 8D and 16D instances. For the DP-T version,
the second population naturally has an effect on the number of evaluations needed. The
AL method highlights the difficulty of configuring penalty methods correctly. The Cone
problem with 90° clearly is solved more efficiently than when using CDP, with both a small
Mahalanobis distance and decreasing covariance. However, the AL method is not able to
reliably solve the other Cone problems. After some initial progress, the covariance stops
decreasing and the optimization stops progressing towards the constrained optimum.
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Figure 4.10: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
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4.6 Summary

Overall, the performance of the various CHTs clearly shows that the approaches have
different strengths and weaknesses. Looking at the previously introduced desired qualities
of a CHT, the experiments performed suggest the following answer to the first research
question:

• AL shows the best results in terms of efficiency on some problems, but clearly
does not perform reliably on all problems. The limited applicability and parame-
ter fragility demonstrate that it is hard to define a penalty function that performs
well on all problems.

• Both the EPS and IEPS methods demonstrate that the tested 𝜖-constrained tech-
niques do not work well with RV-GOMEA. This likely is primarily due to the de-
crease of the threshold being tied to the computational budget and not the ≺ 𝜖 com-
parison. The budget needed varies for different problems, which prevents a robust
setting of the parameters across a wide range of problems.

• The repair methods pose a trade-off between spending more evaluations for in-
creased selection pressure. On most problems, the performance is similar to CDP
at the expense of additional parameters. An exception is the Cone problem with
180° feasibility, where repair using binary search shows a clear advantage.

• CDP is a robust baseline method that works on all problems tested without the need
for parameter tuning. However, in terms of efficiency, the method is outperformed
in both the feasible and infeasible region. In the infeasible region, the objective
value is not considered, the technique is often outperformed by SR. In the feasible
region, the selection of primarily feasible solutions leads to estimated distributions
that prevent effective approximation of constraint boundaries.

• The dual-population approach DP-O shows robust performance on the CEC2006 and
bbob-constrained problems, albeit more evaluations are needed compared to other
methods. The second dual-population approach DP-T is competitive with CDP on
the bbob-constrained problems, however, it generally takes more evaluations and is
less reliable compared to the DP-O method.

• Especially on the CEC2006 problems where the optimization often starts in the in-
feasible region, the SR method shows robust results with impressive performance.
On the other problems, the method is competitive with CDP. When combined with
RV-GOMEA and using CDP for acceptance during variation, the 𝑃𝑓 parameter is
robust across the different problems tested.

The different methods tested either have limited general applicability or perform ineffi-
cient search in the feasible region when the optimum is located near a constraint boundary.
This issue caused by the distributions estimated solely from feasible solutions. To mitigate
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4.6. Summary

this and to allow more effective search near constraint boundaries while also achieving re-
liable results, new approaches making use of the infeasible solutions encountered during
optimization are needed.
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Chapter 5

Proposed Improvements

There was no fully satisfactory CHT among the approaches evaluated in Chapter 3. The
experiments show that either the effectiveness of the CHT is not as desired, the parameter
settings are fragile or there are clear limitations. To this end, two adaptations to existing
techniques are presented to mitigate some of the drawbacks and to facilitate more effec-
tive search close to constraint boundaries. The first presented method aims to mitigate
the search bias induced by selecting only feasible solutions when using CDP. The second
proposed method is designed to make the dual-population idea of approaching from both
sides of the boundary work better with RV-GOMEA.

For both methods, parameter tuning is performed in Appendix A. Using the best per-
forming configurations, the experiments from Chapter 4 are repeated, showcasing how
the proposed changes compare to the other CHTs from Chapter 3.

5.1 Partially Infeasible Selection

CDP is parameter free and directly biases search towards the desired result, i.e. high quality
feasible solutions. There is no need to perform parameter tuning, and there are no limits to
the applicability of the technique. However, as the previous experiments have shown, the
effectiveness of the search near constraint boundaries shows potential for improvement
when used with RV-GOMEA. The changes proposed in the following paragraphs aim to
mitigate this issue.

5.1.1 Motivation

Using CDP, the selection favors feasible solutions, and thus the subsequent search dis-
tributions will also favor exploring the feasible region instead of searching close to the
constraint boundary. Due to the center bias of the Gaussian distribution, most samples
drawn will be close to the distribution mean. For search close to a constraint boundary,
this means that the search space between the constraint boundary and the feasible selec-
tion is likely out-of-distribution and not the focus of the search. If better solutions are
located closer to the constraint boundary, this leads to ineffective search.
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Figure 5.1: The estimated distributions and AMS vectors of the CDP method using the Full
FOS on the Cone 90° problem. The ellipses correspond to a Mahalanobis distance of 1,
and the color gradient from white to green indicates the increasing generation, the first 24
generations are shown.

Note that RV-GOMEA employs AVS and SDR [7, 9] to adapt to improvements being
away from the distribution mean, however, as the experiments in Section 4.5 have shown
these mechanisms are not sufficient in this case. For unconstrained problems, AMS solves
a similar problem of the distribution naturally aligning with the contour lines rather than
with the direction of steepest fitness increase[6]. However, applying AMS does not mit-
igate the inefficiency in this situation, as solutions shifted into the infeasible region are
rejected by CDP.

Overall, these three mechanisms lead to the distribution shrinking at the boundary,
such that the search is effectively performed only in the feasible region. Additionally, the
distribution orients itself along contour lines of the objective function as AMS leads to
infeasible and thus rejected solutions. Once the distribution has reoriented and shrunk
enough, AMS does not reach beyond the constraint boundary anymore and reorients the
search towards the constraint boundary as desired. This closes the gap between the search
distribution and the constraint boundary. Once the distribution is close enough to the
boundary again, this cycle repeats. This is illustrated in Figure 5.1. Nonetheless, as the dis-
tributions shrink, the achieved fitness continues to improve. The proposed method aims to
avoid these generations spent on scaling down and reorienting the distribution by keeping
the search at the constraint boundary.

5.1.2 Proposed Changes

To alleviate this bias towards feasibility and to facilitate search at constraint boundaries, it
is necessary to also consider infeasible solutions during selection to place the distribution
mean at the constraint boundary. With CDP as the main CHT, infeasible solutions will
not be selected as long as there are enough feasible solutions in the population. Hence,
the selection of infeasible solutions needs to be performed separately from the selection of
feasible solutions. However, with CDP being used also for GOM acceptance, over time the
number of infeasible solutions in the population will decline. Infeasible solutions will be
replaced by feasible solutions, and new infeasible solutions will not be accepted. Nonethe-
less, during search, infeasible solutions are encountered. These can be used for this second
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Figure 5.2: The outline of the proposed modification to RV-GOMEA. If the population is
feasible, infeasible solutions encountered during the previous variation step are subject to
a second selection in order to mitigate the bias towards feasibility induced by CDP.

selection of infeasible solutions in order to mitigate the bias towards feasibility induced
by CDP. Contrary to other EAs, however, RV-GOMEA does not have an offspring popu-
lation. Where other EAs first produce an offspring population in the variation step and
then select the subsequent population from the available solutions, RV-GOMEA performs
both during GOM for the individual solutions in the population. To have a candidate pool
of infeasible solutions, all encountered but rejected infeasible solutions are collected, both
during GOM and the full AMS steps, i.e. during variation.

Figure 5.2 depicts this modification to RV-GOMEA. Note that the infeasible selection
is only performed if the population is in the feasible region. The criterion used for when
the population is in the feasible region is when [% of the individuals in the population
are feasible, where [ ∈ [0,1] is a new parameter. In the infeasible region, using stochastic
ranking instead of CDP is also considered. To implement this, several design choices have
to be made:

1. Howmany infeasible solutions should be used? Using an equal split of feasible and in-
feasible solutions would concentrate the search at the boundary. However, as more
GOM samples would be infeasible, the acceptance rate and thus the quality of fea-
sible solutions would decrease, slowing down optimization progress. On the other
hand, using no infeasible solutions does not mitigate the observed search bias that
slows down exploration near constraint boundaries.

2. Which infeasible solutions should be used? This choice resembles the choice of a CHT
in itself, as the aim is to select the infeasible solutions that best guide evolution
toward the constrained optimum. Additionally, selecting infeasible solutions may
not always be desired, i.e. when feasible solutions of better fitness are not closer to
the constraint boundary than the current population.
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Figure 5.3: The effect of different parameters on problem g07 from the CEC2006 problems.
The remaining parameters are set to the best performing version in Table A.9. The values
at the top/bottom of the bar correspond to the feasible rate and success rate respectively.

3. How should the infeasible solutions influence the next distribution? One way of esti-
mating the distributions is to replace a few of the feasible selected individuals. How-
ever, this changes the selection pressure for the feasible solutions as fewer solutions
are selected. Another approach could be to simply add the infeasible solutions to the
feasible selection, increasing the overall amount of information used to estimate the
distribution. However, this possibly increases the variance and spreads the proba-
bility density.

How many infeasible solutions should be used? This is implemented as an addi-
tional parameter denoting the fraction of the population size \𝑖 which is the desired num-
ber of infeasible solutions used. A value of \𝑖 = 0 corresponds to using no infeasible solu-
tions, i.e. the result is CDP. At most half of the combined selection should be compromised
of infeasible solutions to ensure that there is search on the feasible side of the constraint
boundary. Furthermore, high values for \𝑖 lead to more probability density in the infea-
sible region and thus fewer feasible solutions are sampled in total. This decreases the
selection pressure for the feasible selection. Hence, this introduces a trade-off where the
lower number of feasible solutions sampled need to be of higher quality in order to make
the decreased chance of searching in the feasible region worthwhile. This can be seen in
Figure 5.3.

Which infeasible solutions should be used? To find a good choice, multiple selection
strategies are tested. The following methods of selecting the infeasible solutions were
considered:

1. CDP, leading to selecting solely based on the constraint value.
2. Non-dominated sorting (NDS), with the objective and the constraint value. This

method is often used to find the best trade-offs available between multiple objectives
in multi-objective optimization [18].

3. Selection based on distance to the feasible region (D2F), preferring infeasible solu-
tions closer to the feasible solutions selected.

4. Stochastic Ranking
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In addition to the selection, the infeasible solutions were further restricted such that
only infeasible solutions with better objective value than the best feasible solution are
considered. This is to make sure that finding solutions similar to the infeasible solutions
is desirable. The reasoning behind this is that there is no need to get closer to a constraint
boundary if the fitness near the boundary is not better. The performance with the different
selection methods is shown in Figure 5.3, where each selection method is included com-
bined with pruning. Furthermore, pruning has a big impact on the number of evaluations
needed on problem g07. Overall, CDP with pruning performed best in Table A.9.

How should the infeasible solutions influence the next distribution? The way in
which the infeasible solutions influence the estimated distribution needs to be determined.
One approach is to maintain the number of solutions influencing the subsequent distri-
bution, thus infeasible solutions replace otherwise feasible solutions. The second option
considered is adding the infeasible selection to the feasible selection, increasing the total
number of selected individuals. This option was included since the size of the selection
pool increases because the infeasible solutions are not selected from the population but
from previously encountered infeasible solutions. Note that when using learned linkage
models, the model is learned from the correlation matrix of the selected solutions. The
effect of including or omitting the infeasible solutions in this step has not been considered
in this thesis. The parameter tuning results, included in Table A.9, suggest that replacing
feasible solutions performs better.

5.2 Evolving Infeasible Solutions with a Partially Infeasible
Population

The changes proposed in Section 5.1 aim to facilitate more efficient search close to con-
straint boundaries. However, the infeasible solutions used are not subject to further evolu-
tion compared to the feasible individuals in the population. Similar to the previously intro-
duced approach, the method described in this section also handles feasible and infeasible
solutions separately. However, infeasible solutions are subject to evolution as well and
the overall scheme follows the dual population idea of actively approaching the constraint
boundary from both sides. As the DP-O dual-population approach showed promising re-
sults on the bbob-constrained problems in Chapter 4, the proposed changes are based on
this method in an attempt to adapt the method to work better with RV-GOMEA.

Merging the Distributions The first change considered is performing the distribution
estimation and linkage learning jointly, not in separate per subpopulation. Where DP-
O estimates two distributions with means on both side of the constraint boundary, this
method should have the mean and thus most probability density close to the constraint
boundary. The contribution to the selection of feasible/infeasible solutions is done pro-
portionally to the number of feasible/infeasible solutions in the population. This avoids
the need of either doing evolution on a smaller scale with a proportional approach or de-
creasing the selection pressure by keeping the selection size constant but decreasing the
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candidate pool, as done previously when adapting the DP-O version. In terms of previous
work, this corresponds to the dual population scheme from [25] with handling of infeasi-
ble solutions similar to [51] and [27]. In other words, segregational selection is performed
to avoid the bias induced by CDP and depending on the feasibility of the population, the
constraint boundary is either approached from one side or both sides at once. A flowchart
displaying the changes made to DP-O is shown in Figure 5.4.

Initialization

Terminate?

End

𝑟 𝑓

Unconstrained
Feasible

Stochastic Ranking
Infeasible

Separate Selection
+

Joint Distribution Estimation
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Separate Variation
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Selection
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𝑟 𝑓 > 1−\

\ ≤𝑟 𝑓 ≤ 1−\
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Figure 5.4: The outline of the proposed approach based on DP-O, where a partially feasible
population is used instead of two subpopulations. In this mixed population, selection and
variation is split by feasibility and model building is done jointly. Additionally, previously
seen feasible solutions that were replaced by infeasible solutions, indicated by the dotted
lines, are reconsidered during the added offspring selection step.

Search in Infeasible Subpopulations In addition to the previous change, the objec-
tive used for the infeasible solutions is modified. In DP-O, the infeasible solutions aim to
become feasible. However, feasibility alone does not consider the objective value or the
proximity to the feasible solutions. The experiments performed in Chapter 4 suggest that
considering feasibility alone does not lead to the best performance. When considering
optimization in the infeasible region, Stochastic Ranking showed promising results, lead-
ing to a trade-off between objective value and feasibility. Thus, the goal of the infeasible
solutions is modified to use Stochastic Ranking for both the infeasible population and in-
feasible subpopulation. The implementation of this is in line with the Stochastic Ranking
method adapted to RV-GOMEA in Chapter 3, i.e. the stochastic operator is only used for
selection and 𝑃𝑓 = 0.45 is used.

Preventing Information Loss In DP-O, the feasible solutions aim to improve in ob-
jective value and the infeasible ones aim to become feasible. This leads to loosing feasible
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solutions that are in the population in favor of infeasible solutions with better fitness. This
is conflicting with the overarching goal of finding high quality feasible solutions, as fea-
sibility should be prioritized over objective value. To prevent this loss of information, the
solutions are collected similarly to the PIS approach. However, in this case, the feasible
solutions are collected before they are replaced with infeasible solutions. At the end of the
generation, the collected solutions are used in an additional offspring selection step to-
gether with the individuals in the population. The selection is performed using truncation
separated by feasibility, similar to the selection for the distribution. The selection is based
on the objective of each population, i.e. CDP for the infeasible solutions and the objective
value for feasible solutions.

5.3 Experiments

In this section, the experiments previously performed using existing CHTs from literature
are repeated with the proposed methods to allow a straightforward comparison. In order
to avoid confusing plots containing the data of all CHTs, the methods are mainly compared
to the currently employed CDP method.

The method names are abbreviated, such that PIS corresponds to the first proposed
method using a partially infeasible selection. For the second proposed method, two ver-
sions are included. PI uses a single distribution, while DP-PI uses two populations like
DP-O but reconsiders feasible solutions that would be lost when feasible solutions cross
into the infeasible region. Both variants utilize stochastic ranking for infeasible subpopu-
lations. Detailed results for determining the best parameter configuration can be found in
Appendix A.

5.3.1 CEC2006

An overview of the results of the proposed methods and CDP for the CEC2006 problems
is presented in Table 5.1, while detailed outcomes can be referenced in Appendix B. CDP
is used as a reference, as it is the CHT currently used in RV-GOMEA. The feasible rate
is not shown, since all methods were able to reliably reach a feasible region except for
problem g22 where the feasible region was never reached. Overall, the success rate is
consistent with the previous results for the feasibility oriented methods. Compared to
CDP, all methods are never significantly worse and significantly better at reaching the
approximation target on at least one problem. This difference can be observed for problems
g12 and g17.

In terms of the success performance, PIS performs better than CDP on 19 problems
and worse only on 3 problems. PI and DP-PI perform similarly to CDP when considering
the number of times one method was better. Compared to DP-O, this is a notable improve-
ment, as DP-O performed worse than CDP on 20 problems. This indicates that by utilizing
infeasible solutions, constraint handling performance can be improved.

Considering the other existing CHTs, the proposed methods are competitive in terms
of success rate and achieve significantly better results on some of the problems. In terms
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Success Rate Success Performance

CDP DP-PI PI PIS CDP DP-PI PI PIS

g01 76.0% 84.0%≈ 80.0%≈ 84.0%≈ 32534.5 52165.9 70895.8 31127.6
g02 0.0% 24.0%+ 16.0%≈ 4.0%≈ - 425000.0 293550.0 722775.0
g03 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 48991.6 20217.0 20271.7 19398.3
g04 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 5423.7 6571.7 6694.3 4622.8
g05 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 35441.0 19371.8 13086.0 8028.4
g06 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 2300.1 1793.6 1743.2 2151.1
g07 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 20423.8 18706.2 22414.2 16047.0
g08 100.0% 96.0%≈ 92.0%≈ 88.0%≈ 232.6 792.8 645.6 321.5
g09 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 7422.0 6544.2 7080.9 5677.4
g10 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 24388.0 37638.4 128690.0 30181.4
g11 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 4083.8 1859.5 2031.8 2389.4
g12 44.0% 84.0%+ 84.0%+ 76.0%+ 1633.1 731.8 625.2 774.8
g13 32.0% 40.0%≈ 48.0%≈ 60.0%+ 280714.8 146339.8 146451.9 95605.2
g14 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 12976.7 24463.9 22727.6 14287.4
g15 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 23149.6 10954.9 9256.2 11969.8
g16 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 4490.0 4968.8 5077.7 3885.2
g17 16.0% 60.0%+ 40.0%≈ 56.0%+ 473603.1 167183.0 193848.2 124345.3
g18 84.0% 84.0%≈ 96.0%≈ 88.0%≈ 11794.3 13886.2 10699.7 10214.6
g19 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 42077.3 61539.2 66860.7 39431.6
g21 100.0% 96.0%≈ 100.0%≈ 92.0%≈ 35539.8 37228.0 52343.8 34987.1
g22 0.0% 0.0%≈ 0.0%≈ 0.0%≈ - - - -
g23 100.0% 88.0%≈ 96.0%≈ 96.0%≈ 39846.2 68676.5 43860.1 39718.3
g24 100.0% 100.0%≈ 100.0%≈ 100.0%≈ 836.2 851.9 932.4 670.5

+/≈/− - 3/20/0 1/22/0 3/20/0 - - - -
</> - - - - - 11/11 11/11 19/3

Table 5.1: The Success Rate and Success Performance metrics for the CEC2006 problems.
The best values for each problem are highlighted in bold. The +/≈/− symbols indicate sig-
nificantly better/not different/worse performance when compared to CDP using Fisher’s
exact test [23] with 𝑝 < 0.05. The bottom rows display the total number of times the CHT
was better/not different/worse compared to CDP for the Success Rate, and the total num-
ber of times a CHT achieved a better (<) or worse (>) Success Performance than CDP.

of success performance, PIS shows results similar to SR while the PI and DP-PI methods
improve compared to the other dual population methods.

5.3.2 bbob-constrained

The summary results of the proposed methods for the bbob-constrained suite are shown
in figures 5.5-5.8. As a reference, CDP and DP-O are included as the current default and
the overall best performing approach on bbob-constrained from Chapter 4. Similar to the
results for the existing feasibility oriented CHTs, for the 2D and 5D problems, there is
little distinction between the different methods with the exception of CDP. Compared to
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Figure 5.5: The results for the bbob-constrained suite, grouped by the number of con-
straints, as described in Table 4.2. The number of total constraints is displayed above the
figures.
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Figure 5.6: The results for the bbob-constrained suite. The 54 functions are grouped by
the number of constraints and active constraints, as described in Table 4.2. The number of
total constraints is displayed above the figures.
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Figure 5.7: The results for the bbob-constrained suite. The 54 functions are grouped by
the number of constraints and active constraints, as described in Table 4.2. The number of
total constraints is displayed above the figures.

1 3 9

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DP-O

CDP

PIS

PI

DP-PIbbob-constrained f1, f7, f13, f19, f25, f31, f37, f43, f49, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CDP

DP-O

DP-PI

PI

PISbbob-constrained f2, f8, f14, f20, f26, f32, f38, f44, f50, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CDP

PIS

DP-O

PI

DP-PIbbob-constrained f3, f9, f15, f21, f27, f33, f39, f45, f51, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

9+ ⌊ 3𝑙
4 ⌋ 9+ ⌊ 3𝑙

2 ⌋ 9+ ⌊ 9𝑙
2 ⌋

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CDP

PIS

DP-O

DP-PI

PIbbob-constrained f4, f10, f16, f22, f28, f34, f40, f46, f52, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CDP

PIS

DP-O

DP-PI

PIbbob-constrained f5, f11, f17, f23, f29, f35, f41, f47, f53, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

0 2 4 6
log10(evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

PIS

CDP

DP-PI

DP-O

PIbbob-constrained f6, f12, f18, f24, f30, f36, f42, f48, f54, 20-D
41 targets: 100..1e-06
evals = f-evals + g-evals
15 instances

v2.6

Figure 5.8: The results for the bbob-constrained suite. The 54 functions are grouped by
the number of constraints and active constraints, as described in Table 4.2. The number of
total constraints is displayed above the figures.
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the other methods, CDP tends to take more evaluations and reaches fewer approxima-
tion targets. This difference is especially visible for the problems with a single constraint.
The crosses in the plots denote that additional approximation targets were not reached
by all runs, suggesting that the other approaches reliably get closer to the unconstrained
optimum than CDP.

Interestingly, on the 5D problems, the advantage of methods utilizing infeasible so-
lutions is less pronounced. CDP reaches a similar number of approximation targets, as
indicated by the crosses being grouped together tightly. Nonetheless, the CDP baseline
takes more evaluations to reach the same proportion of approximation targets for multi-
ple problems. This is particularly evident for problems with a high number of constraints,
where the line for CDP is visibly offset from the other CHTs until around 80% of the ap-
proximation targets are reached.

For the 10D problems, clear differences between the approaches start to surface. Es-
pecially for the problems with a dynamic number of constraints, i.e. the lower row in
Figure 5.7, CDP needs more evaluations and achieves fewer function-target pairs over-
all. Compared to the dual-population based approaches, the PIS variant performs worse
on problems with more than 9 constraints. This can be seen by both the crosses indicat-
ing that PIS reaches fewer approximation targets reliably, as well as the offset of the line
that corresponds to an increase in the number of evaluations needed to reach the same
approximation targets.

For the results on the 20D problems, the same trends seemingly continue, however, the
computational budget is exhausted before optimization converges, leading to incomplete
results. CDP reaches fewer approximation targets reliably and takes more evaluations.
However, up to the point where the computational budget is exhausted, PIS reaches fewer
approximation targets than the other methods on problems with 9 or more constraints.
Furthermore, the incomplete results indicate possible performance differences between
DP-O and the proposed modifications. PI in particular reaches more approximation targets
on all problem groups.

Overall, the proposed methods exhibit similar or noticeably improved performance to
the CDP method on the bbob-constrained problems. This shows that the use of infeasible
solutions for adjusting the estimated distribution can be effective.

5.3.3 Cone problem

The results on the Cone problem instances are shown in Figure 5.9. Again, CDP and DP-O
are included as a reference to the performance of the approaches tested in Chapter 4. In
line with the previous results, there is a clear difference in performance between prob-
lems with < 180° and 180°. Furthermore, the proposed methods show clear performance
improvement on the problems using concatenated blocks and the Marginal Product FOS.

On the problems where the Full FOS is used, the PIS method tends to perform similarly
or better than CDP and shows a visible improvement in performance for some of the < 180°
instances. The DP-PI method performs similar to CDP on the < 180° instances, showing
a clear improvement over the DP-O method it is based on. However, on the 180° instance
the method performs worse than DP-O for dimensions larger than 5, with the unsuccessful
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runs likely being due to exhausting the evaluation budget. Lastly, PI outperforms DP-O
on all problems, both in terms of reliably reaching the approximation target and number
of evaluations used.

Note that for the problems with decomposition, i.e. where the Marginal Product FOS
and repeated blocks of the problem were used, the difference in evaluations compared to
not using infeasible solutions indicates a possible change in the convergence behavior.
Both PI and DP-PI outperform DP-O, and even CDP for the problems with block size 5 and
more than 20 dimensions. PIS shows similar results, outperforming CDP on all problem in-
stances with concatenated blocks. On many problems, PIS reliably solves larger instances
than CDP before the computational budget becomes a limiting factor. For instance, on
the instances with blocks of size 10, CDP fails to reach the approximation target for the
40D instances within the evaluation budget, while the PIS variants do. Notably, to reach
the approximation target of a problem with double the number of decision variables, PIS
needs less than double the evaluations per dimension. The transparent regression line in
the color of CDP corresponds to quadratic scaling in evaluations w.r.t. dimensions for
CDP. The available data for the PIS behavior indicates that the use of infeasible solutions
improves this, however, the growth is still larger than linear in the observed range.
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5.3.4 Effectiveness

The aim of the proposed methods is to increase the efficiency of search near constraint
boundaries by improving the fit of the estimated distributions. To do so, infeasible solu-
tions are selected and thus influence the estimated distribution. In this section, the exper-
iment to determine the search effectiveness is repeated for the proposed methods in order
to determine if the performed modifications are effective in this regard.

The results for the PIS approach compared to CDP in 16D are shown in Figure 5.10.
Compared to the CDP method, there is a clear difference for the Cone problems with 90°
and 5°. The PIS method achieves a lower Mahalanobis distance between the distribution
mean and the optimum, and reaches the target value with fewer evaluations. Compared
to CDP, the Mahalanobis distance is nearly halved whereas, the effect on the number of
evaluations needed is a ≈ 15% decrease. This indicates that the proposed changes are effec-
tive. However, the Mahalanobis distance is still large compared to the value for the Sphere
problem or Cone problem with 180° feasibility and grows with increased dimensionality.
Thus, the problem of never reaching the exploitation phase still persists, albeit to a lesser
extent.

For the DP-O, PI and DP-PI methods, the results are shown in Figures 5.11 to 5.13.
Where DP-O struggles with the 180° problem, the proposed modifications lead to reliable
success in 2 dimensions. The Mahalanobis distance does not increase, but the trace of
the covariance shrinks, explaining this increase in reliability. Both methods also show
increased performance on the other constrained problems. However, the effectiveness
on the Cone problem with 180° still decreases with increasing dimensionality. In 16D,
PI shows a small improvement in the number of evaluations needed over DP-O for the
constrained problems. Again, the decrease in the trace of the covariance matrix explains
this improvement. On the other hand, the DP-PI method shows worse performance than
DP-O on the 180° problem in 16D, as the trace of the covariance matrix decreases slower. It
is clear that the spread of the distribution, measured by the trace of the covariance matrix,
does not adapt fast enough for the DP-O method and the proposed changes. Nonetheless,
both the performance and the Mahalanobis distance improve for the other constrained
problems in 16D.
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Figure 5.10: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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Figure 5.11: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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Figure 5.13: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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5.3.5 Summary

Overall, the results show that the proposed methods can be effective for problems where
the optimum is located at constraint boundaries, in particular the problems found in the
bbob-constrained test suite. By using infeasible solutions, the search bias of feasibility
oriented methods can be reduced, answering the third research question. This benchmark
suite consists of problems where the optimization starts in the feasible region, removing
the need to first find the feasible region. Furthermore, the proposed changes lead to clear
gains in effectiveness on the Cone problems with decomposition.
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Chapter 6

Discussion

In the previous chapters, various CHTs have been implemented and tested with RV-GOMEA.
With respect to the different desired properties of a CHT, the results are mixed. The differ-
ent approaches either do not generalize well and require parameter tuning or lack in per-
formance compared to the best methods on a given problem. However, when considering
the available trade-offs and the currently used technique CDP, the results are promising.
In this chapter, the limitations of the work performed in this thesis are discussed.

Importance of Boundary Search The focus of the proposed methods was on improv-
ing the search close to constraint boundaries. This is reasonable, considering that this
holds true for many real world problems [31]. However, taking the search for the feasi-
ble region and the desired approximation level into account, the importance of boundary
search varies. With increased precision requirements, the importance of boundary search
increases, since the proportion of evaluations spent approximating the constraint bound-
ary grows. This can be observed for the benchmark suites used, where the main factor
of differentiation between the various CHTs is the search in the infeasible region for the
CEC2006 problems and search in the feasible region for bbob-constrained.

Lack of Representation The field of constraint handling for evolutionary algorithms
is very active[50]. Therefore, the existing techniques used in this thesis are by necessity
not an accurate and complete representation of the current state-of-the-art. In particular,
there is recent work on novel ranking [15, 16] and dual-population schemes [76, 2, 34].
Additionally, no hybrid or ensemble methods were included.

Hyperparameter Settings Currently the parameters of the various approaches were
chosen based on the CEC2006 benchmark suite, or the recommended parameter settings
were used. This was done since the cost of performing hyperparameter tuning and de-
termining the best population size on all problems used was intractable during this thesis.
Because of this, the results obtained may not be the best possible results across all problems
for some of the CHTs used.
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6. Discussion

Implementation and Adaption The existing techniques first proposed for different
EAs needed some adaption to work with RV-GOMEA. By doing so, there is the risk of not
representing the prior work wrongly and making choices that negatively affect the ob-
tained performance. To mitigate this, multiple ways of adapting the techniques were con-
sidered and the best performing method was chosen. Another limitation is that all CHTs
were implemented based on a single constraint violation value, while some approaches
such as the Augmented Lagrangian or 𝜖-Constrained methods can be extended to handle
individual constraints.

Limited Testing of FOS Structure andGBOScenarios RV-GOMEA is an EA designed
for large-scale GBO optimization. Such a scenario has not been tested in this thesis due
to a lack of benchmark problems that allow for a GBO approach with partial evaluations
or decomposition. While the Marginal Product FOS was used for the Cone problem, all
experiments were performed in a BBO setting.

Incomplete bbob-constrainedResults The bbob-constrained benchmark suite includes
the 54 problems in 2,5,10,20 and 40 dimensions. The computational budget used included
a 60 second time limit per problem to make running the experiment for all CHTs and the
different dimensions tractable. However, for the 20 and 40 dimensional problems, this
turned out to be too little, as the optimization progress towards the approximation targets
did not stop before the budget was exhausted. Therefore, the results obtained can not be
considered conclusive, as a larger budget could change the results.

Lack of testing on real-world problems Recent literature indicates that the perfor-
mance CHTs show on synthetic benchmarks does not necessarily translate to real-world
problems [49]. Therefore, it is recommended to also use practical problems to compare the
different CHTs. However, this is not common in the existing literature yet. To be able to
compare with other constraint optimization algorithms, this thesis uses problems typically
found in literature.
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Chapter 7

Conclusion and Future Work

In this thesis, various existing CHTs have been adapted to RV-GOMEA and evaluated
on several benchmark problems. Using the insights gained, modifications and a novel
approach have been introduced and evaluated, showing promising performance in some
aspects. In this chapter, conclusions are drawn from the work performed and potential
directions for future work are identified.

7.1 Conclusion

The performance of an approach tends to differ greatly between problems where the con-
strained optimum is located at the intersection of multiple constraints and problems with
a single active constraint. Furthermore, testing on the synthetic Cone problem has shown
that some approaches such as AL perform clearly worse, when the feasible region con-
nected to the constrained optimum is small, while other methods such as CDP are less
affected. This loss in effectiveness is explained by the estimated distributions, where the
solutions at the constraint boundary tend to be increasingly out-of-distribution with in-
creasing problem dimension.

Furthermore, no CHT showed competitive performance across the different problems
and scenarios used to evaluate the approaches, corroborating the assumption that a single
CHT cannot possibly be suited for all possible problems. Nonetheless, some approaches
showed good performance across a range of problems. While manual selection of a CHT
is still required, the range of problems that can be solved with RV-GOMEA has increased
through the addition of new techniques. CDP, the currently used technique, shows broad
applicability, but for all problems there is an approach performing equal or better. On the
bbob-constrained problems, DP-O and the proposed methods perform well and reach con-
siderably more approximation targets than the CDP baseline. Other approaches such as AL
perform well on individual problems but do not generalize. Overall, SR and PIS show in-
creased performance and reliability across the different problems tested, performing better
or equal to CDP on almost all problems.

The proposed modifications show promising initial results for improving the effective-
ness of search in the feasible region near constraint boundaries. PIS shows competitive
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results with CDP, while performing better on the bbob-benchmark suite and the Cone
problems, especially in combination with decomposition and the Marginal Product FOS.
PI and DP-PI, the proposed modifications to DP-O show increased performance on some
problems, however, they introduce new trade-offs. For example, using a single distribu-
tion is more effective for problems with a single active constraint, but less reliable overall.
Overall, the results are promising and confirm that making use of infeasible solutions dur-
ing search can improve the optimization efficiency.

Finally, as no constrained benchmark problems supporting a GBO approach exist in
literature, a new problem was introduced supporting this setting. When considering the
initial results obtained with the Marginal Product FOS, it is clear that it is possible for
CHTs to exploit this setting. However, only the proposed methods show this behavior,
with some CHTs such as the repair methods also performing worse. However, what makes
an approach work better or worse in this setting is not analyzed in this thesis.

7.2 Future Work

In this section, several possible directions for future work are outlined.

Constraint Aggregation and Equality Constraints In this thesis, the constraint val-
ues were aggregated into a single constraint value, a common way of handling multi-
ple constraints when using EAs. However, this is not ideal for problems where the con-
straint value differs in scale between multiple constraints or when equality constraints
are present. Future work in this direction could incorporate techniques to better handle
equality constraints and constraints values of different scales into RV-GOMEA.

Other Techniques While this thesis aims to provide an overview of how different CHTs
perform when combined with RV-GOMEA, the research field is active, and exploring all
approaches is not feasible. Future work could look at approaches not considered in this
thesis. In particular, one focus of current research is a new form of dual-population ap-
proach, where two CHTs are combined. Instead of approaching the constraint boundary
from both sides, these methods aim to combine the advantages of fast but unreliable CHTs
with feasibility oriented techniques [2, 34, 75]. Another research area could be portfolio
and ensemble methods, possibly making use of the CHTs described in this thesis.

Decomposition and GBO In this thesis, initial results suggest that scenarios with par-
tial modifications can be effectively exploited with respect to constraint handling. As RV-
GOMEA excels at large-scale GBO optimization, further work could be performed towards
better understanding and improving performance in this setting. The methods examined
in this thesis could serve as a starting point. Approaches tailored towards this scenario
likely would need to examine how problems with constraints can be decomposed and per-
form constraint handling per FOS subset. In addition, more realistic problems supporting
a GBO approach are needed.
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7.2. Future Work

Multi-Objective Optimization In this thesis, the focus was on single-objective opti-
mization. However, many real-world problems have multiple conflicting objectives. Hence,
further work could investigate constraint handling for the multi-objective variant of RV-
GOMEA, possibly leading to performance improvements for real-world use cases.
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Appendix A

Parameter Configuration

The existing CHTs used in this thesis come with additional parameters, which need to be
set correctly in order to achieve the best performance possible. While the need for param-
eter tuning is not desirable, a fair comparison should ensure that the different approaches
use recommended parameter settings or tune the parameters.

In the following sections, the method used to determine the best parameter configu-
ration is described, then the parameters that need to be adjusted are described and exper-
iments are performed to determine the best parameter settings.

A.1 Method

If available and applicable, the recommended parameter settings are used. For the methods
with parameters to test, the performance of 25 repetitions on the problems in the CEC2006
benchmark suite[38] is compared. Note that g20 and g22 are excluded as either no feasible
solution is known or none of the methods were able to reach the feasible region. The
computational budget used is 5𝑒5 evaluations. A single run is considered feasible if at least
one feasible solution is found and successful if the approximation target (𝑓 (𝒙𝑜𝑝𝑡 )+10−4) is
reached as per [38].

To compare two parameter configurations, statistical significance tests are performed
in the following order1:

1. Fisher’s exact test[23] for categorical data is used to determine if one method reaches
the feasible region significantly more reliably.

2. If there is no significant difference in reaching the feasible region, Fisher’s exact test
is again used to determine if one of the configurations leads to significantly more
successful runs.

3. If there are no significant differences in feasibility or success rate, then the number
of evaluations of the feasible runs is compared. As the number of evaluations is con-
tinuous, the non-parametric Mann-Whitney-U test[42] is used for this comparison.

1The tests were performed using the implementation provided in [69].
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A. Parameter Configuration

This order of comparisons determines if one configuration performs significantly bet-
ter on a single problem. As significance level, 𝑝 = 0.01 is used. This is done for all problems,
accumulating the total number of times a configuration of the CHT is performing signif-
icantly better/not different/worse than the other configurations for the same CHT across
all problems. Finally, the configuration that is worse least often is used. If there are ties,
the configuration that is significantly better more often is used. If there still are ties, the
method used is picked randomly from the best-performing methods. The p-values are
not compared as different statistical tests are used to determine performance differences
between configurations.

A.2 Parameters

Constraint Domination Principle CDP has no parameters and hence no need for pa-
rameter configuration.

𝜖-Constrained Method The original method has three parameters \ , 𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , and 𝑐𝑝

for determining the start, end, and rate of decline of the 𝜖 threshold respectively [61]. The
values tested are 𝑐𝑝 ∈ {1,3,5,7} and 𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∈ {0.1,0.2,0.5,0.8}. For \ , the recommended
value of \ = 0.2[61] is used.

For the improved 𝜖-constrained method proposed in [22], two additional parameters
𝛼 = 0.8 ∈ [0,1] and 𝛽 = 0.1 ∈ [0,1] are introduced to control the feasibility of the population
and the increase of the 𝜖 threshold respectively. In addition to the other parameters, the
values 𝛼 ∈ {0.7,0.8,0.9} and 𝛽 ∈ {0.01,0.1,0.25} are considered.

Stochastic Ranking This method originally has a single parameter 𝑃𝑓 determining the
chance of ignoring the constraint violation. In [54], values in the range 𝑃𝑓 ∈ [0.4,0.5] are
recommended, hence the values 𝑃𝑓 ∈ {0.4,0.45,0.5} are considered. In addition, the adap-
tion to RV-GOMEA introduces a second parameter determining if the stochastic operator
is used for acceptance during variation in addition to selection. Both options are tested.

Augmented Lagrangian This penalty function adds four parameters, determining the
update of the Lagrangian multiplier and the penalty weight. In [19], extensive parameter
tuning has been performed for this method and thus the first proposed setting is used.

Repair Operators Both introduced repair operators build on CDP and have an addi-
tional parameter 𝑘 ∈ N determining the number of repair steps performed. The values
considered are 𝑘 ∈ {1,2,3,4}. The resampling method has a second parameter 𝑠𝑓 ∈ [0,1],
determining the minimum feasibility of the selection. For this parameter, the values 𝑠𝑓 ∈
{0.1,0.5,0.9} are considered.

Dual-Population Methods The first, “oscillating” dual population approach has a pa-
rameter \ ∈ [𝜏, 1

2 ] determining when to split the population into two subpopulations. An-
other parameter \𝑠 ∈ [0, 1

2 ] controls how much information is shared between the two
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subpopulations. The values considered are \ ∈ {𝜏 = 0.35,0.45} and \𝑠 ∈ {0,0.2,0.4}. In ad-
dition, both the proportional and full subpopulation schemes introduced in Chapter 3 are
tested.

The second dual-population approach, DP-T, has parameters determining the traction
strategy used to tether the infeasible population to the feasible population. Tested is no
traction strategy (CDP), optimizing the distance to the feasible solutions (D2F), or using
feasible solutions to influence the infeasible distribution estimation (FSI). For adding fea-
sible solutions, \𝑠 ∈ [0, 1

2 ] determines how many infeasible solutions are used. The val-
ues tested for this traction strategy are \𝑠 ∈ {0.1,0.3,0.5}. The last parameter tested is
𝜏𝑚𝑖𝑛 ∈ [0,1], controlling how big the infeasible population needs to be for it to be used.
Here the values 𝜏𝑚𝑖𝑛 ∈ {0.5,0.7,0.9} are tested.

Furthermore, as the dual-population approaches change the structure of RV-GOMEA,
the optimal population size is found as the recommendations in ?? do not necessarily apply
to these approaches. A population size is considered optimal if the problem is solved reli-
ably, i.e. 95% of the time, and with the least number of function evaluations. According to
[5], finding the smallest population size where the problem is solved reliably is insufficient.
This is due to a tradeoff between information and cost. Large population sizes provide a lot
of information and reduce the uncertainty at the cost of an increased number of function
evaluations. On the other hand, small sizes may have too little information, and thus the
variance and number of function evaluations needed increases due to the stochastic nature
of the algorithm. To correctly determine the optimal size, first, the smallest reliable size is
found by exponentially increasing the population size and then performing binary search
on the success rate. Then an upper bound is found similarly, before grid search is used
in-between. The grid search step is then repeated using increased resolutions between
updated bounds until finally the best population size for the problem is found.

Partially Infeasible Selection For this approach, several new parameters were added.
The parameter [ ∈ [0,1] controls when a population is considered to be feasible. In this
thesis, [ was set to 0.7, indicating that at least 70% of the individuals in the population need
to be feasible before infeasible solutions are used. For search in the infeasible region, CDP
or stochastic ranking (SR) is used during selection. Furthermore, \𝑖 ∈ [0,1] controls how
many infeasible solutions are used during selection, where the values {0.1,0.3,0.5,0.7,0.9}
are considered. Before the infeasible solutions are selected, however, the option to prune
infeasible solutions with insufficient objective values is tested. The selection of infeasible
solutions can be made using CDP, stochastic ranking (SR), based on the distance to the
feasible selection (D2F), or using non-dominated sorting (NDS). Finally, the last parameter
determines whether the selected infeasible solutions are added to the feasible selection or
used to replace feasible solutions during distribution estimation.

Partially Infeasible This method consists of several proposed modifications to the DP-
O approach and hence the parameter enabling proportional subpopulations is reevaluated.
In addition, the distribution estimation can either be done jointly, or separately for each
subpopulation. Selection for both infeasible populations and the infeasible subpopulation
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is done using either CDP or stochastic ranking (SR). The last parameter determines how
many feasible solutions can be carried over to the next generation, given that they are
still competitive with the current population. For this parameter, the values

{
0, 𝜏2 ,𝜏

}
are

considered.

A.3 Results

First, the results for determining appropriate population sizes are shown. In addition to the
results of the statistical significance tests considering all combinations of the parameters,
additional plots are included showcasing the effect of each individual parameter across
all configurations tested. The configurations used in the main chapters are highlighted in
bold in the comparison tables.

A.3.1 Population Size

The results for determining the best sizes are shown in Figure A.1. Only results are shown
where reliable success was observed, other problems are not shown. The recommended
population size for the Full FOS as per [7] is shown as a vertical line. The results for
CDP indicate that the recommended size does indeed apply to the majority of problems.
Only problems g01, g12, and g18 are exceptions. The same holds for the dual-population
approaches, hence all methods are used with the recommended population size.

A.3.2 Best Configurations

𝜖-Constrained Method

Table A.1: The significance testing results (𝑝 < 0.01) over all used CEC2006 problems for
the EPS method. Values indicate the number of times the configuration was significantly
better/not significantly different/significantly worse compared to the other configurations.
The colors correspond to the ranks of the configurations after non-dominated sorting,
darker colors correspond to worse performance.

𝑐
𝑝

𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙
0.1 0.2 0.5 0.8

1 155 / 128 / 47 100 / 138 / 92 55 / 135 / 140 10 / 135 / 185
3 178 / 126 / 26 105 / 137 / 88 56 / 137 / 137 11 / 144 / 175
5 203 / 109 / 18 134 / 122 / 74 69 / 139 / 122 22 / 142 / 166
7 232 / 95 / 3 147 / 126 / 57 77 / 142 / 111 36 / 145 / 149
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Figure A.1: The effect of the population size on the number of evaluations needed, for
population sizes reaching the approximation target in at least 95% of 25 runs.
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Improved 𝜖-Constrained Method

Table A.2: The significance testing results (𝑝 < 0.01) over all used CEC2006 problems for
the IEPS method. Values indicate the number of times the configuration was significantly
better/not significantly different/significantly worse compared to the other configurations.
The colors correspond to the ranks of the configurations after non-dominated sorting,
darker colors correspond to worse performance.

𝑐
𝑝 𝛼 𝛽

𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙
0.1 0.2 0.5 0.8

1

0.7
0.01 1732 / 929 / 485 1114 / 996 / 1036 613 / 980 / 1553 90 / 986 / 2070
0.1 1730 / 924 / 492 1114 / 999 / 1033 603 / 986 / 1557 88 / 982 / 2076
0.25 1739 / 926 / 481 1129 / 978 / 1039 605 / 998 / 1543 93 / 964 / 2089

0.8
0.01 1735 / 926 / 485 1115 / 1002 / 1029 608 / 971 / 1567 104 / 981 / 2061
0.1 1741 / 920 / 485 1097 / 1005 / 1044 613 / 985 / 1548 91 / 988 / 2067
0.25 1718 / 911 / 517 1117 / 1003 / 1026 608 / 990 / 1548 104 / 972 / 2070

0.9
0.01 1749 / 938 / 459 1114 / 1004 / 1028 602 / 990 / 1554 98 / 991 / 2057
0.1 1725 / 932 / 489 1115 / 1004 / 1027 604 / 986 / 1556 100 / 988 / 2058
0.25 1718 / 937 / 491 1147 / 956 / 1043 603 / 989 / 1554 88 / 993 / 2065

3

0.7
0.01 1983 / 841 / 322 1198 / 996 / 952 652 / 1027 / 1467 141 / 1029 / 1976
0.1 2002 / 775 / 369 1208 / 976 / 962 640 / 1027 / 1479 148 / 1053 / 1945
0.25 2049 / 781 / 316 1180 / 1009 / 957 688 / 951 / 1507 124 / 1066 / 1956

0.8
0.01 2094 / 733 / 319 1265 / 931 / 950 651 / 1021 / 1474 149 / 1061 / 1936
0.1 1985 / 843 / 318 1273 / 922 / 951 644 / 1033 / 1469 145 / 1032 / 1969
0.25 1989 / 844 / 313 1238 / 963 / 945 643 / 1041 / 1462 146 / 1000 / 2000

0.9
0.01 1984 / 844 / 318 1225 / 967 / 954 628 / 1069 / 1449 178 / 976 / 1992
0.1 1982 / 851 / 313 1186 / 1008 / 952 649 / 1026 / 1471 140 / 1017 / 1989
0.25 1985 / 855 / 306 1208 / 981 / 957 653 / 1021 / 1472 140 / 1025 / 1981

5

0.7
0.01 2203 / 755 / 188 1511 / 844 / 791 766 / 1044 / 1336 259 / 1049 / 1838
0.1 2240 / 762 / 144 1431 / 930 / 785 799 / 1012 / 1335 260 / 1059 / 1827
0.25 2230 / 750 / 166 1386 / 971 / 789 763 / 1039 / 1344 255 / 1094 / 1797

0.8
0.01 2248 / 764 / 134 1516 / 839 / 791 803 / 1009 / 1334 259 / 1043 / 1844
0.1 2202 / 794 / 150 1464 / 896 / 786 795 / 1007 / 1344 262 / 1048 / 1836
0.25 2233 / 772 / 141 1493 / 874 / 779 781 / 1023 / 1342 258 / 1044 / 1844

0.9
0.01 2233 / 776 / 137 1508 / 845 / 793 784 / 1039 / 1323 242 / 1072 / 1832
0.1 2181 / 813 / 152 1453 / 905 / 788 811 / 1001 / 1334 286 / 1026 / 1834
0.25 2238 / 779 / 129 1469 / 898 / 779 778 / 1031 / 1337 262 / 1052 / 1832

7

0.7
0.01 2477 / 635 / 34 1650 / 862 / 634 843 / 1031 / 1272 332 / 1012 / 1802
0.1 2513 / 630 / 3 1653 / 850 / 643 884 / 1012 / 1250 370 / 982 / 1794
0.25 2508 / 614 / 24 1628 / 871 / 647 848 / 1029 / 1269 337 / 1044 / 1765

0.8
0.01 2505 / 618 / 23 1620 / 867 / 659 835 / 1035 / 1276 321 / 1070 / 1755
0.1 2500 / 643 / 3 1649 / 855 / 642 854 / 1028 / 1264 320 / 1067 / 1759
0.25 2518 / 626 / 2 1643 / 847 / 656 894 / 995 / 1257 330 / 1075 / 1741

0.9
0.01 2509 / 605 / 32 1622 / 868 / 656 872 / 996 / 1278 334 / 1032 / 1780
0.1 2538 / 607 / 1 1618 / 873 / 655 872 / 1021 / 1253 324 / 1097 / 1725
0.25 2542 / 602 / 2 1657 / 850 / 639 869 / 1010 / 1267 334 / 1017 / 1795
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A.3. Results

Stochastic Ranking

Table A.3: The significance testing results (𝑝 < 0.01) over all used CEC2006 problems for
the SR method. Values indicate the number of times the configuration was significantly
better/not significantly different/significantly worse compared to the other configurations.
The colors correspond to the ranks of the configurations after non-dominated sorting,
darker colors correspond to worse performance.

Ac
ce

pt
an

ce

𝑃𝑓
0.4 0.45 0.5

CDP 57 / 40 / 13 60 / 43 / 7 63 / 39 / 8
SR 30 / 24 / 56 23 / 27 / 60 4 / 13 / 93

Repair using Binary Search

Table A.4: The significance testing results (𝑝 < 0.01) over all used CEC2006 problems for
the R-BS method. Values indicate the number of times the configuration was significantly
better/not significantly different/significantly worse compared to the other configurations.
The colors correspond to the ranks of the configurations after non-dominated sorting,
darker colors correspond to worse performance.

𝑘

1 2 3 4
18 / 48 / 0 15 / 49 / 2 7 / 47 / 12 0 / 40 / 26

Repair using Resampling

Table A.5: The significance testing results (𝑝 < 0.01) over all used CEC2006 problems for
the R-R method. Values indicate the number of times the configuration was significantly
better/not significantly different/significantly worse compared to the other configurations.
The colors correspond to the ranks of the configurations after non-dominated sorting,
darker colors correspond to worse performance.

\
𝑠

𝑘

1 2 3 4
0.1 84 / 154 / 4 28 / 189 / 25 7 / 192 / 43 0 / 178 / 64
0.5 89 / 153 / 0 31 / 193 / 18 9 / 194 / 39 2 / 169 / 71
0.9 75 / 166 / 1 39 / 186 / 17 8 / 197 / 37 2 / 185 / 55
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A. Parameter Configuration

Oscillating Dual-Population Method

Table A.6: The significance testing results (𝑝 < 0.01) over all used CEC2006 problems for
the DP-O method. Values indicate the number of times the configuration was signifi-
cantly better/not significantly different/significantly worse compared to the other config-
urations. The colors correspond to the ranks of the configurations after non-dominated
sorting, darker colors correspond to worse performance.

\ Pr
op

or
tio

na
l

\𝑠
0 0.2 0.4

0.35 No 67 / 165 / 10 72 / 161 / 9 52 / 173 / 17
Yes 29 / 146 / 67 32 / 160 / 50 41 / 152 / 49

0.45 No 33 / 173 / 36 33 / 178 / 31 23 / 172 / 47
Yes 19 / 174 / 49 21 / 179 / 42 19 / 189 / 34

Dual-Population Method with Traction Strategy

Table A.7: The significance testing results (𝑝 < 0.01) over all used CEC2006 problems for
the DP-T method. Values indicate the number of times the configuration was significantly
better/not significantly different/significantly worse compared to the other configurations.
The colors correspond to the ranks of the configurations after non-dominated sorting,
darker colors correspond to worse performance.

Tr
ac

tio
n

St
ra

te
gy

𝜏 𝑚
𝑖𝑛 FSI Percentile

- 0.1 0.3 0.5

CDP
0.5 0 / 175 / 133 - - -
0.7 1 / 173 / 134 - - -
0.9 0 / 180 / 128 - - -

D2F
0.5 0 / 172 / 136 - - -
0.7 0 / 177 / 131 - - -
0.9 0 / 177 / 131 - - -

FSI
0.5 - 80 / 189 / 39 101 / 206 / 1 121 / 187 / 0
0.7 - 87 / 196 / 25 108 / 196 / 4 104 / 203 / 1
0.9 - 87 / 191 / 30 99 / 209 / 0 105 / 203 / 0
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A.3. Results

Partially Infeasible

For the partially infeasible approach, an exception was made, as there are two configura-
tions that perform well but differ substantially. One configuration uses a joint distribution,
while the other one does not and makes use of feasible solutions that would otherwise be
discarded when accepting infeasible solutions. Hence, both configurations are evaluated
on the other problems.

Table A.8: The significance testing results (𝑝 < 0.01) over all used CEC2006 problems for the
PI method. Values indicate the number of times the configuration was significantly bet-
ter/not significantly different/significantly worse compared to the other configurations.
The colors correspond to the ranks of the configurations after non-dominated sorting,
darker colors correspond to worse performance.

Pr
op

or
tio

na
l

Jo
in

tD
ist

rib
ut

io
n

In
fe

as
ib

le
Su

bp
op

ul
at

io
n

Feasible Solutions Reconsidered
- 𝜏

2 𝜏

No
No CDP - 32 / 195 / 125 41 / 186 / 125

SR 130 / 179 / 43 139 / 202 / 11 149 / 186 / 17

Yes CDP 31 / 171 / 150 9 / 179 / 164 13 / 176 / 163
SR 126 / 216 / 10 122 / 202 / 28 111 / 227 / 14

Yes Yes CDP 38 / 170 / 144 7 / 193 / 152 14 / 188 / 150
SR 134 / 209 / 9 118 / 208 / 26 131 / 207 / 14
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A. Parameter Configuration

Partially Infeasible Selection

Table A.9: The significance testing results (𝑝 < 0.01) over all used CEC2006 problems for
the PIS method. Values indicate the number of times the configuration was significantly
better/not significantly different/significantly worse compared to the other configurations.
The colors correspond to the ranks of the configurations after non-dominated sorting,
darker colors correspond to worse performance.

In
fe

as
ib

le
Re

gi
on

In
fe

as
ib

le
Se

le
ct

io
n

Pr
un

in
g

D
ist

rib
ut

io
n

𝑃
𝑓

\𝑖
0.1 0.3 0.5 0.7 0.9

CDP

CDP
No A - 1309/3277/1112 1178/3288/1232 845/3093/1760 683/2645/2370 510/2088/3100

R - 1274/3217/1207 1175/3194/1329 930/3257/1511 554/2539/2605 461/2566/2671

Yes A - 1826/2942/930 1960/3030/708 1863/3112/723 1435/3190/1073 992/2771/1935
R - 1379/3109/1210 1986/3102/610 1987/3003/708 2011/3051/636 1817/3081/800

D2F
No A - 1198/3155/1345 1048/3115/1535 815/2945/1938 648/2495/2555 493/1940/3265

R - 1206/3335/1157 996/3008/1694 801/2996/1901 684/2691/2323 578/2321/2799

Yes A - 1530/3266/902 1582/3177/939 1001/3042/1655 832/2829/2037 560/2572/2566
R - 1465/3098/1135 1331/3273/1094 963/3137/1598 969/2946/1783 909/2895/1894

NDS
No A - 1617/3173/908 1543/2524/1631 997/2312/2389 716/2019/2963 509/1427/3762

R - 1393/3316/989 1388/2637/1673 579/2333/2786 321/1374/4003 215/1290/4193

Yes A - 1666/3159/873 1067/2535/2096 513/1768/3417 314/1470/3914 171/1441/4086
R - 1409/3396/893 1052/2570/2076 392/1742/3564 210/1494/3994 113/1263/4322

SR

No
A 0.4 1270/3260/1168 1509/3470/719 1447/2965/1286 1239/3053/1406 842/2889/1967

0.45 1504/3170/1024 1758/3283/657 1697/3050/951 1539/2941/1218 1250/2878/1570

R 0.4 1217/3142/1339 1410/3428/860 1407/3334/957 1323/3225/1150 1278/3223/1197
0.45 1187/3221/1290 1677/3239/782 1568/3376/754 1516/3166/1016 1465/3306/927

Yes
A 0.4 1697/3020/981 1843/2998/857 1560/3106/1032 1116/2971/1611 796/2560/2342

0.45 1864/2994/840 1874/2873/951 1295/3020/1383 912/2582/2204 619/2400/2679

R 0.4 1478/3139/1081 1874/3115/709 1716/3084/898 1625/3050/1023 1427/3149/1122
0.45 1435/3268/995 1708/2998/992 1504/3168/1026 1035/2804/1859 1272/2872/1554

SR

CDP

No
A 0.4 1607/3414/677 1451/3424/823 1405/3061/1232 1065/2643/1990 806/2406/2486

0.45 1975/3203/520 1903/3035/760 1545/2974/1179 1356/2504/1838 1069/2394/2235

R 0.4 1530/3493/675 1543/3401/754 1265/3186/1247 940/2880/1878 814/2395/2489
0.45 1848/3228/622 1835/3069/794 1574/3026/1098 1337/2635/1726 1103/2288/2307

Yes
A 0.4 2046/3182/470 2624/2939/135 2222/3134/342 1878/3123/697 1314/2983/1401

0.45 2434/3054/210 2673/2817/208 2583/2777/338 1910/3050/738 1664/2760/1274

R 0.4 1639/3511/548 2224/3238/236 2531/3022/145 2277/3242/179 2273/3143/282
0.45 2033/3240/425 2789/2819/90 2709/2874/115 2656/2758/284 2625/2788/285

D2F

No
A 0.4 1537/3597/564 1381/3303/1014 1150/3166/1382 916/2657/2125 808/2255/2635

0.45 1818/3200/680 1688/2997/1013 1317/2817/1564 1143/2504/2051 1032/2301/2365

R 0.4 1508/3553/637 1363/3208/1127 1179/2948/1571 1020/2787/1891 780/2744/2174
0.45 1680/3244/774 1607/3023/1068 1433/2813/1452 1306/2668/1724 1145/2560/1993

Yes
A 0.4 1724/3620/354 1795/3490/413 1342/3403/953 1105/2993/1600 816/2584/2298

Continued on next page
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A.3. Results

Table A.9: The significance testing results (𝑝 < 0.01) over all used CEC2006 problems for
the PIS method. Values indicate the number of times the configuration was significantly
better/not significantly different/significantly worse compared to the other configurations.
The colors correspond to the ranks of the configurations after non-dominated sorting,
darker colors correspond to worse performance.
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In
fe

as
ib
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Se

le
ct

io
n

Pr
un

in
g

D
ist

rib
ut

io
n

𝑃
𝑓

\𝑖
0.1 0.3 0.5 0.7 0.9

0.45 2177/3198/323 2050/3183/465 1538/3111/1049 1276/2902/1520 1228/2498/1972

R 0.4 1614/3476/608 1699/3415/584 1357/3372/969 1234/3107/1357 1194/3097/1407
0.45 1851/3355/492 2104/3159/435 1520/3202/976 1461/3005/1232 1364/2910/1424

NDS

No
A 0.4 1950/3420/328 1623/3103/972 1244/2511/1943 781/2620/2297 695/2136/2867

0.45 2061/3316/321 2049/3159/490 1203/3194/1301 904/2924/1870 700/2147/2851

R 0.4 1757/3405/536 1516/3231/951 597/2713/2388 283/1755/3660 184/1610/3904
0.45 1945/3369/384 1867/3321/510 864/2850/1984 408/1930/3360 370/1652/3676

Yes
A 0.4 1813/3479/406 1167/2931/1600 466/2271/2961 270/2051/3377 191/1909/3598

0.45 2063/3369/266 1403/3211/1084 706/2547/2445 495/2165/3038 421/1934/3343

R 0.4 1760/3465/473 1261/2878/1559 321/2071/3306 148/1599/3951 86/1678/3934
0.45 2084/3237/377 1372/3065/1261 590/2345/2763 227/1732/3739 328/1499/3871

SR

No
A 0.4 1550/3621/527 1962/3273/463 1918/3090/690 1728/3103/867 1266/2897/1535

0.45 1903/3291/504 2415/3025/258 2260/2972/466 2025/3082/591 1800/2872/1026

R 0.4 1442/3493/763 1611/3593/494 1814/3193/691 1885/3163/650 1634/3347/717
0.45 1838/3319/541 2398/3106/194 2460/2809/429 2253/2957/488 2262/2890/546

Yes
A 0.4 1915/3401/382 2122/3324/252 1907/3262/529 1360/3284/1054 1016/2819/1863

0.45 2227/3217/254 2432/3042/224 1798/3220/680 1277/3087/1334 1087/2595/2016

R 0.4 1706/3495/497 2159/3360/179 2011/3271/416 1775/3505/418 1769/3323/606
0.45 2021/3287/390 2347/3115/236 2118/3124/456 1716/3252/730 1590/3223/885

A.3.3 Effect of Individual Parameters

Here the results for the CEC2006 problems are presented where the effect of individual pa-
rameters is shown across all configurations used to determine the best parameter settings.
Some parameters show clear differences in performance, for instance the 𝑐𝑝 parameter for
the 𝜖-Constrained methods or the number of repair steps 𝑘 for the repair methods. Other
parameters have a different effect when combined with other parameter values. One ex-
ample is the 𝑃𝑓 parameter of stochastic ranking, where the effect on the performance and
reliability is overshadowed by the choice of whether the stochastic comparison is used for
accepting offspring solutions during variation. Lastly, some parameters, such as the 𝛼 and
𝛽 values for the IEPS method, have little to no effect on the performance when considering
all possible configurations for the remaining parameters.

In the figures, the light gray bars and the percentage at the top of each column corre-
spond to the feasible rate, and the darker bar and percentage at the bottom to the success
rate.
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A. Parameter Configuration
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Figure A.2: The effect of the 𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 parameter of the EPS method over all runs performed.
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A.3. Results
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Figure A.3: The effect of the 𝑐𝑝 parameter of the EPS method over all runs performed.
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A. Parameter Configuration
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Figure A.4: The effect of the𝑏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 parameter of the IEPS method over all runs performed.

104



A.3. Results

1 3 5 7
cp

g22

78.9

100

70

100

70.1

100

69.6

100

6.8

100

5.8

100

5.4

100

5.8

100

100

100

100

100

100

100

100

100

0

20

40

60

80

100

%

100

100

100

100

100

100

96.1

100

99.1

99.1

99.8

99.8

99.9

99.9

100

100

16.1

32.4

29.8

43.8

39.4

49

44

54.9

0

98.7

23.4

99.9

35.7

99.8

49.8

100

0

20

40

60

80

100

%

2.9

89.8

6.4

90.8

11.8

89.8

20.6

93.1

100

100

100

100

100

100

100

100

79

79.7

86.2

86.7

89.7

89.8

91

91

100

100

100

100

100

100

100

100

0

20

40

60

80

100

%

94.6

100

92.9

100

93

100

93.4

100

67.4

100

68.9

100

65.7

100

69.9

100

100

100

100

100

100

100

100

100

57.9

57.9

52.3

52.3

56.2

56.2

57.9

57.9

0

20

40

60

80

100

%

38.6

39.9

43.6

45

46.9

48

54

55

0.1

0.6

0

0.2

0

1.8

0.3

13.7

97.7

100

99.6

100

99.6

99.9

99.9

99.9

100

100

100

100

100

100

100

100

0

20

40

60

80

100

%

0.6

0.6

0.8

0.9

0.6

0.6

0.8

0.9

96.8

98.4

43.7

100

38

100

38

100

0

20

40

60

80

100

%

97.1

100

97.4

100

95.3

100

77.4

100

0

1×105

2×105

3×105

4×105

5×105

Ev
al

ua
tio

ns

g01

0

1×105

2×105

3×105

4×105

g02

0

1×105

2×105

3×105

4×105

5×105
g03

0

1×105

2×105

3×105

4×105

g04

0

1×105

2×105

3×105

4×105

5×105

Ev
al

ua
tio

ns

g05

0

1×105

2×105

3×105

4×105

g06

4×104

6×104

8×104

1×105

1.2×105

1.4×105

g07

0

1×105

2×105

3×105

4×105

g08

0

1×105

2×105

3×105

4×105

Ev
al

ua
tio

ns

g09

0

1×105

2×105

3×105

4×105

5×105

g10

0

1×105

2×105

3×105

4×105

g11

0

1×103

2×103

3×103

g12

0

1×105

2×105

3×105

4×105

5×105

Ev
al

ua
tio

ns

g13

0

1×105

2×105

3×105

4×105

g14

0

1×105

2×105

3×105

4×105

g15

0

1×105

2×105

3×105

4×105

5×105

g16

2.5×104

5×104

7.5×104

1×105

1.2×105

1.5×105

1.8×105

Ev
al

ua
tio

ns

g17

0

1×105

2×105

3×105

4×105

5×105

g18

0

1×105

2×105

3×105

4×105

5×105

g19 g20

1 3 5 7
cp

5×104

1×105

1.5×105

2×105

2.5×105

3×105

Ev
al

ua
tio

ns

g21

1 3 5 7
cp

0

1×105

2×105

3×105

4×105

5×105

g23

1 3 5 7
cp

0

1×105

2×105

3×105

4×105

g24

Figure A.5: The effect of the 𝑐𝑝 parameter of the IEPS method over all runs performed.
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A. Parameter Configuration
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Figure A.6: The effect of the 𝛼 parameter of the IEPS method over all runs performed.
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Figure A.7: The effect of the 𝛽 parameter of the IEPS method over all runs performed.
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A. Parameter Configuration
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Figure A.8: The effect of the acceptance strategy of the SR method over all runs performed.
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A.3. Results
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Figure A.9: The effect of the 𝑃𝑓 parameter of the SR method over all runs performed.
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A. Parameter Configuration

1 2 3 4
k

g22

76

100

72

100

84

100

72

100

0

100

0

100

0

100

8

100

100

100

100

100

100

100

100

100

0

20

40

60

80

100

%

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

0

20

40

60

80

100

%

92

100

92

100

88

100

92

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

0

20

40

60

80

100

%

36

100

36

100

44

100

40

100

20

100

44

100

32

100

52

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

0

20

40

60

80

100

%
100

100

100

100

100

100

100

100

40

100

12

100

16

100

24

100

88

100

76

100

88

100

88

100

100

100

100

100

100

100

100

100

0

20

40

60

80

100

%

96

100

88

100

100

100

100

100

92

100

100

100

100

100

100

100

0

20

40

60

80

100

%

96

100

100

100

100

100

100

100

2×104

2.2×104

2.4×104

2.6×104

2.8×104

3×104

Ev
al

ua
tio

ns

g01

4×104

4.5×104

5×104

5.5×104

6×104

6.5×104

g02

3×104

4×104

5×104

6×104

7×104

8×104

9×104
g03

3×103

4×103

5×103

6×103

7×103

8×103

g04

0

2.5×104

5×104

7.5×104

1×105

1.2×105

1.5×105

Ev
al

ua
tio

ns

g05

1×103

2×103

3×103

4×103

5×103

g06

1.2×104

1.5×104

1.8×104

2×104

2.2×104

2.5×104

2.8×104

g07

2×102

3×102

4×102

5×102

g08

5×103

6×103

7×103

8×103

9×103

1×104

Ev
al

ua
tio

ns

g09

1.5×104

2×104

2.5×104

3×104

3.5×104

4×104

4.5×104

g10

0

2×103

4×103

6×103

8×103

g11

0

2.5×102

5×102

7.5×102

1×103

1.2×103

1.5×103

g12

2.5×104

5×104

7.5×104

1×105

1.2×105

1.5×105

1.8×105

Ev
al

ua
tio

ns

g13

1×104

1.2×104

1.4×104

1.6×104

g14

0

2×104

4×104

6×104

8×104

g15

2×103

3×103

4×103

5×103

6×103

7×103

8×103

9×103

g16

0

5×104

1×105

1.5×105

2×105

2.5×105

Ev
al

ua
tio

ns

g17

7.5×103

1×104

1.2×104

1.5×104

1.8×104

2×104

2.2×104

g18

3×104

3.5×104

4×104

4.5×104

5×104

g19 g20

1 2 3 4
k

0

2×104

4×104

6×104

8×104

1×105

Ev
al

ua
tio

ns

g21

1 2 3 4
k

2×104

4×104

6×104

8×104

g23

1 2 3 4
k

6×102

8×102

1×103

1.2×103

1.4×103

1.6×103
g24

Figure A.10: The effect of the 𝑘 parameter of the R-BS method over all runs performed.
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Figure A.11: The effect of the 𝑘 parameter of the R-R method over all runs performed.
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Figure A.12: The effect of the \𝑠 parameter of the R-R method over all runs performed.
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Figure A.13: The effect of the \ 𝑓 parameter of the DP-O method over all runs performed.
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Figure A.14: The effect of the proportional or full scheme for the subpopulations of the
DP-O method over all runs performed.
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Figure A.15: The effect of the \𝑠 parameter of the DP-O method over all runs performed.
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Figure A.16: The effect of the different traction strategies for the DP-T method over all runs
performed. CDP is no traction strategy, D2F corresponds to the distance to the feasible
population and FSI to the injection of the feasible selection.
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Figure A.17: The effect of the 𝜏𝑚𝑖𝑛 parameter of the DP-T method over all runs performed.
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Figure A.18: The effect of the “feasible selection injection percentile”-parameter of the DP-
T method over all runs performed.
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Figure A.19: The effect of the proportional and full subpopulation schemes of the PI method
over all runs performed.
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Figure A.20: The effect of the search strategy used in the infeasible (sub)populations of the
PI method over all runs performed.
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Figure A.21: The effect of using a single joint distribution vs. a distribution per subpopu-
lation for the PI method over all runs performed.
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Figure A.22: The effect of reconsidering feasible solutions lost during variation for the PI
method over all runs performed.
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Figure A.23: The effect of the \𝑖 parameter of the PIS method over all runs performed.
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Figure A.24: The effect of the 𝑃𝑓 parameter of the PIS method over all runs using SR for
either searching in the infeasible region or selecting the infeasible solutions used.
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Figure A.25: The effect of replacing feasible solutions or adding the infeasible solutions for
PIS method over all runs performed.
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A. Parameter Configuration
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Figure A.26: The effect of pruning for the PIS method over all runs performed.
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A.3. Results
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Figure A.27: The effect of the strategy used to select the infeasible solutions for the PIS
method over all runs performed. D2F corresponds to selection based on the proximity to
the feasible solutions and NDS to non-dominated-sorting.

127



A. Parameter Configuration
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Figure A.28: The effect of using SR in the infeasible region for the PIS method over all runs
performed.
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Appendix B

CEC2006 Results
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B.
CEC2006

Results
Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 88.0% -14.9999 -14.9999 -13.0000 -14.7930 0.5882 28845.6
g02 100.0% 0.0% -0.7862 -0.7409 -0.4896 -0.6992 0.1025 -
g03 0.0% 0.0% -100.0340 -9.9875 -0.0014 -24.0469 27.8272 -
g04 40.0% 0.0% -30169.1074 -29386.0451 -28584.9035 -29387.7576 383.3031 -
g05 100.0% 100.0% 5126.4967 5126.4968 5126.4968 5126.4968 0.0000 4342.5
g06 96.0% 0.0% -6823.3214 -6405.2261 -4423.4972 -5951.5698 792.4876 -
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 18835.8
g08 100.0% 84.0% -0.0958 -0.0958 -0.0258 -0.0889 0.0182 15996.4
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 5582.9
g10 0.0% 0.0% 2100.0000 2100.0000 17744.7398 6003.0405 5205.8310 -
g11 100.0% 100.0% 0.7499 0.7500 0.7500 0.7499 0.0000 836.3
g12 100.0% 92.0% -1.0000 -0.9999 -0.9944 -0.9995 0.0015 277.0
g13 100.0% 36.0% 0.0540 0.4388 1.0000 0.3227 0.2337 157735.5
g14 100.0% 100.0% -47.7648 -47.7648 -47.7648 -47.7648 0.0000 11155.2
g15 100.0% 100.0% 961.7150 961.7151 961.7151 961.7151 0.0000 3667.3
g16 100.0% 100.0% -1.9051 -1.9051 -1.9051 -1.9051 0.0000 4194.8
g17 100.0% 24.0% 8853.5372 8927.5917 8927.5917 8909.8189 32.2792 105107.6
g18 100.0% 92.0% -0.8660 -0.8659 -0.1275 -0.8076 0.2020 11133.4
g19 100.0% 100.0% 32.6556 32.6557 32.6557 32.6557 0.0000 37341.5
g21 44.0% 44.0% 100.9286 193.7246 382.6867 213.3046 68.9909 26563.4
g22 0.0% 0.0% 874.6729 9316.9878 19999.8274 10128.2893 6337.7855 -
g23 0.0% 0.0% -1628.1900 -784.3309 2.8079 -765.0414 370.0766 -
g24 100.0% 100.0% -5.5080 -5.5080 -5.5079 -5.5080 0.0000 857.2

Table B.1: The CEC2006 results for the AL method.
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Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 76.0% -14.9999 -14.9999 -13.0000 -14.6524 0.6606 32534.5
g02 100.0% 0.0% -0.7947 -0.7649 -0.5888 -0.7403 0.0523 -
g03 100.0% 100.0% -1.0005 -1.0004 -1.0004 -1.0004 0.0000 48991.6
g04 100.0% 100.0% -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.0000 5423.7
g05 100.0% 100.0% 5126.4967 5126.4968 5126.4968 5126.4968 0.0000 35441.0
g06 100.0% 100.0% -6961.8139 -6961.8138 -6961.8138 -6961.8138 0.0000 2300.1
g07 100.0% 100.0% 24.3062 24.3063 24.3063 24.3063 0.0000 20423.8
g08 100.0% 100.0% -0.0958 -0.0958 -0.0957 -0.0958 0.0000 232.6
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 7422.0
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 24388.0
g11 100.0% 100.0% 0.7499 0.7500 0.7500 0.7500 0.0000 4083.8
g12 100.0% 44.0% -1.0000 -0.9944 -0.9694 -0.9942 0.0077 1633.1
g13 100.0% 32.0% 0.0540 0.4388 0.4388 0.3157 0.1832 280714.8
g14 100.0% 100.0% -47.7648 -47.7648 -47.7648 -47.7648 0.0000 12976.7
g15 100.0% 100.0% 961.7150 961.7151 961.7151 961.7151 0.0000 23149.6
g16 100.0% 100.0% -1.9051 -1.9051 -1.9051 -1.9051 0.0000 4490.0
g17 100.0% 16.0% 8853.5389 8927.5917 8927.5917 8915.7434 27.7079 473603.1
g18 100.0% 84.0% -0.8660 -0.8659 -0.5000 -0.8284 0.0931 11794.3
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 42077.3
g21 100.0% 100.0% 193.7246 193.7246 193.7246 193.7246 0.0000 35539.8
g22 0.0% 0.0% 1160.2579 7974.7061 19996.2146 9408.5501 6954.9993 -
g23 100.0% 100.0% -400.0550 -400.0550 -400.0550 -400.0550 0.0000 39846.2
g24 100.0% 100.0% -5.5080 -5.5080 -5.5079 -5.5080 0.0000 836.2

Table B.2: The CEC2006 results for the CDP method.131



B.
CEC2006

Results
Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 92.0% -14.9999 -14.9999 -12.4531 -14.8043 0.6777 69020.7
g02 100.0% 20.0% -0.8035 -0.7781 -0.4156 -0.7530 0.0786 557860.0
g03 100.0% 100.0% -1.0005 -1.0004 -1.0004 -1.0004 0.0000 62014.8
g04 100.0% 100.0% -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.0000 11176.2
g05 100.0% 100.0% 5126.4967 5126.4968 5126.4968 5126.4968 0.0000 50261.9
g06 100.0% 100.0% -6961.8139 -6961.8138 -6961.8138 -6961.8138 0.0000 2938.3
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 36153.3
g08 100.0% 92.0% -0.0958 -0.0958 -0.0291 -0.0904 0.0185 701.9
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 12865.4
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 41161.4
g11 100.0% 100.0% 0.7499 0.7500 0.7500 0.7500 0.0000 4654.7
g12 100.0% 72.0% -1.0000 -0.9999 -0.9694 -0.9974 0.0063 1207.3
g13 100.0% 32.0% 0.0540 0.4388 1.0000 0.3381 0.2278 318559.8
g14 100.0% 100.0% -47.7648 -47.7648 -47.7648 -47.7648 0.0000 21133.4
g15 100.0% 100.0% 961.7150 961.7151 961.7151 961.7151 0.0000 28744.8
g16 100.0% 100.0% -1.9051 -1.9051 -1.9051 -1.9051 0.0000 5725.7
g17 100.0% 24.0% 8853.5378 8927.5917 8927.5917 8909.8190 32.2790 533517.4
g18 100.0% 84.0% -0.8660 -0.8659 -0.6742 -0.8353 0.0715 19425.9
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 104095.6
g21 100.0% 76.0% 193.7246 193.7246 324.7028 198.9761 26.1931 76180.1
g22 0.0% 0.0% 773.3236 8239.2398 19999.8798 9914.5573 8204.8080 -
g23 100.0% 96.0% -400.0550 -400.0550 -372.7851 -398.9642 5.4540 75848.0
g24 100.0% 100.0% -5.5080 -5.5079 -5.5079 -5.5079 0.0000 1305.4

Table B.3: The CEC2006 results for the DP-O method.
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Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 64.0% -14.9999 -14.9999 -12.6562 -14.3712 0.9149 48083.0
g02 100.0% 0.0% -0.7857 -0.7202 -0.4492 -0.6852 0.0992 -
g03 100.0% 100.0% -1.0004 -1.0004 -1.0004 -1.0004 0.0000 76399.6
g04 100.0% 100.0% -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.0000 5886.8
g05 100.0% 100.0% 5126.4968 5126.4968 5126.4968 5126.4968 0.0000 53809.5
g06 100.0% 100.0% -6961.8139 -6961.8138 -6961.8138 -6961.8138 0.0000 3420.3
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 34849.0
g08 100.0% 96.0% -0.0958 -0.0958 -0.0291 -0.0931 0.0133 299.5
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 9711.4
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 43585.7
g11 100.0% 100.0% 0.7499 0.7500 0.7500 0.7500 0.0000 5992.2
g12 100.0% 56.0% -1.0000 -0.9999 -0.9694 -0.9949 0.0079 1758.0
g13 100.0% 56.0% 0.0540 0.0540 0.4388 0.2233 0.1949 202039.3
g14 100.0% 100.0% -47.7648 -47.7648 -47.7648 -47.7648 0.0000 13939.4
g15 100.0% 100.0% 961.7150 961.7151 961.7151 961.7151 0.0000 26324.1
g16 100.0% 100.0% -1.9051 -1.9051 -1.9051 -1.9051 0.0000 5817.2
g17 100.0% 36.0% 8853.5374 8927.5917 8927.5917 8900.9326 36.2785 393863.9
g18 100.0% 68.0% -0.8660 -0.8659 -0.2075 -0.7861 0.1485 21518.6
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 63982.0
g21 100.0% 96.0% 193.7246 193.7246 324.7028 198.9637 26.1956 47120.8
g22 0.0% 0.0% 742.3349 7001.3598 19999.5450 9079.5611 7605.3167 -
g23 100.0% 100.0% -400.0550 -400.0550 -400.0550 -400.0550 0.0000 59739.2
g24 100.0% 100.0% -5.5080 -5.5079 -5.5079 -5.5080 0.0000 1033.6

Table B.4: The CEC2006 results for the DP-T method.133



B.
CEC2006

Results
Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 72.0% -14.9999 -14.9999 -12.4531 -14.4843 0.8800 69261.8
g02 100.0% 0.0% -0.7926 -0.7390 -0.5327 -0.7132 0.0766 -
g03 100.0% 100.0% -1.0005 -1.0004 -1.0004 -1.0004 0.0000 42305.9
g04 100.0% 100.0% -30665.5387 -30665.5386 -30665.5386 -30665.5386 0.0000 15208.4
g05 100.0% 100.0% 5126.4967 5126.4968 5126.4968 5126.4968 0.0000 47685.2
g06 72.0% 60.0% -7950.9618 -6961.8139 -1502.1177 -6782.7563 1497.9954 81187.8
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 54946.4
g08 88.0% 48.0% -0.0958 -0.0929 0.0055 -0.0644 0.0407 76251.0
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 46183.8
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 67341.2
g11 100.0% 100.0% 0.7499 0.7499 0.7500 0.7499 0.0000 36948.8
g12 100.0% 80.0% -1.0000 -1.0000 -0.9944 -0.9988 0.0023 417.5
g13 100.0% 72.0% 0.0539 0.0540 0.4388 0.1617 0.1764 58816.0
g14 100.0% 100.0% -47.7649 -47.7648 -47.7648 -47.7648 0.0000 47591.5
g15 68.0% 68.0% 961.7150 961.7150 967.9999 963.5532 2.8568 66322.1
g16 92.0% 92.0% -1.9052 -1.9051 -1.4849 -1.8816 0.0892 50373.3
g17 44.0% 0.0% 4261.3242 8927.5917 10830.9799 8659.4456 1579.9275 -
g18 100.0% 100.0% -0.8660 -0.8660 -0.8659 -0.8660 0.0000 56121.9
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 41715.4
g21 0.0% 0.0% 0.0000 0.0000 0.0000 0.0000 0.0000 -
g22 0.0% 0.0% 0.0000 2306.3093 19995.7715 5557.2647 7133.0110 -
g23 100.0% 76.0% -400.0550 -400.0550 -100.0466 -328.0530 130.7706 74124.1
g24 100.0% 100.0% -5.5080 -5.5079 -5.5079 -5.5080 0.0000 881.0

Table B.5: The CEC2006 results for the EPS method.
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Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 60.0% -14.9999 -14.9999 -12.6562 -14.3049 0.9220 81869.4
g02 100.0% 4.0% -0.8035 -0.7357 -0.4441 -0.7229 0.0897 1247600.0
g03 100.0% 100.0% -1.0005 -1.0004 -1.0004 -1.0004 0.0000 42230.6
g04 100.0% 100.0% -30665.5387 -30665.5387 -30665.5386 -30665.5386 0.0000 46091.2
g05 100.0% 100.0% 5126.4967 5126.4967 5126.4968 5126.4968 0.0000 47402.7
g06 88.0% 88.0% -7889.1022 -6961.8138 -805.2953 -6747.9738 1252.2152 55273.1
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 55357.8
g08 92.0% 56.0% -0.0958 -0.0958 0.0547 -0.0658 0.0426 63779.1
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 45823.2
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 67014.8
g11 100.0% 100.0% 0.7499 0.7499 0.7500 0.7499 0.0000 35805.1
g12 100.0% 88.0% -1.0000 -1.0000 -0.9864 -0.9990 0.0030 387.0
g13 100.0% 64.0% 0.0539 0.0540 0.4388 0.1925 0.1885 65765.9
g14 100.0% 100.0% -47.7649 -47.7648 -47.7648 -47.7648 0.0000 48605.2
g15 60.0% 60.0% 958.9629 961.7150 971.1010 963.5488 3.0949 76320.0
g16 88.0% 88.0% -1.9052 -1.9051 -0.8536 -1.8215 0.2503 53165.8
g17 40.0% 0.0% 5886.4351 8927.5917 11260.0404 8729.9659 1275.8442 -
g18 100.0% 100.0% -0.8660 -0.8660 -0.8659 -0.8660 0.0000 67053.1
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 55055.8
g21 0.0% 0.0% 0.0000 0.0000 0.0000 0.0000 0.0000 -
g22 0.0% 0.0% 0.0000 195.1632 11967.5605 1882.7024 3061.8720 -
g23 100.0% 76.0% -400.0550 -400.0550 -100.0466 -328.0530 130.7706 69606.2
g24 100.0% 100.0% -5.5080 -5.5080 -5.5080 -5.5080 0.0000 44604.2

Table B.6: The CEC2006 results for the IEPS method.135



B.
CEC2006

Results
Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 68.0% -14.9999 -14.9999 -11.8281 -14.4649 0.8959 35442.7
g02 100.0% 8.0% -0.8035 -0.7363 -0.5385 -0.7279 0.0640 565356.2
g03 100.0% 100.0% -1.0005 -1.0004 -1.0004 -1.0004 0.0000 48844.8
g04 100.0% 100.0% -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.0000 5108.5
g05 100.0% 100.0% 5126.4968 5126.4968 5126.4968 5126.4968 0.0000 31839.2
g06 100.0% 100.0% -6961.8139 -6961.8138 -6961.8138 -6961.8138 0.0000 2615.2
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 17652.1
g08 100.0% 92.0% -0.0958 -0.0958 -0.0291 -0.0905 0.0185 260.5
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 6976.6
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 22266.8
g11 100.0% 100.0% 0.7499 0.7500 0.7500 0.7500 0.0000 5017.7
g12 100.0% 48.0% -1.0000 -0.9944 -0.9694 -0.9954 0.0068 1726.9
g13 100.0% 36.0% 0.0540 0.4388 0.4388 0.3003 0.1885 312176.2
g14 100.0% 100.0% -47.7649 -47.7648 -47.7648 -47.7648 0.0000 12225.8
g15 100.0% 100.0% 961.7150 961.7151 961.7151 961.7151 0.0000 21947.8
g16 100.0% 100.0% -1.9051 -1.9051 -1.9051 -1.9051 0.0000 4349.1
g17 100.0% 28.0% 8853.5357 8927.5917 8927.5917 8906.8566 33.9358 380642.9
g18 100.0% 76.0% -0.8660 -0.8659 -0.6750 -0.8201 0.0832 12809.0
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 39519.7
g21 100.0% 88.0% 193.7246 193.7246 324.7028 209.4420 43.4406 41402.5
g22 0.0% 0.0% 725.7620 11589.0201 19999.9993 10580.0386 6452.2904 -
g23 100.0% 100.0% -400.0550 -400.0550 -400.0550 -400.0550 0.0000 43020.8
g24 100.0% 96.0% -5.5080 -5.5079 -4.4200 -5.4644 0.2176 852.6

Table B.7: The CEC2006 results for the R-BS method.
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Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 84.0% -14.9999 -14.9999 -11.2813 -14.6555 0.9151 33550.9
g02 100.0% 4.0% -0.8035 -0.7649 -0.4416 -0.7203 0.1014 1155600.0
g03 100.0% 100.0% -1.0004 -1.0004 -1.0004 -1.0004 0.0000 57152.8
g04 100.0% 100.0% -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.0000 6059.8
g05 100.0% 100.0% 5126.4968 5126.4968 5126.4968 5126.4968 0.0000 47221.4
g06 100.0% 100.0% -6961.8139 -6961.8138 -6961.8138 -6961.8138 0.0000 2815.1
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 27016.0
g08 100.0% 88.0% -0.0958 -0.0958 -0.0258 -0.0875 0.0228 290.4
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 9284.3
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 27568.0
g11 100.0% 100.0% 0.7499 0.7499 0.7500 0.7499 0.0000 5168.0
g12 100.0% 68.0% -1.0000 -0.9999 -0.9694 -0.9962 0.0084 1294.4
g13 100.0% 28.0% 0.0540 0.4388 0.4388 0.3311 0.1763 441991.8
g14 100.0% 100.0% -47.7649 -47.7648 -47.7648 -47.7648 0.0000 14590.1
g15 100.0% 100.0% 961.7150 961.7151 961.7151 961.7151 0.0000 32188.8
g16 100.0% 100.0% -1.9051 -1.9051 -1.9051 -1.9051 0.0000 5360.6
g17 100.0% 24.0% 8853.5386 8927.5917 8927.5917 8909.8191 32.2788 603310.4
g18 100.0% 92.0% -0.8660 -0.8659 -0.6750 -0.8507 0.0529 13908.1
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 51850.5
g21 100.0% 96.0% 193.7246 193.7246 324.7028 198.9637 26.1956 49774.4
g22 0.0% 0.0% 712.6385 9475.3043 19988.3437 10342.7557 7523.7896 -
g23 100.0% 96.0% -400.0550 -400.0550 -100.0466 -388.0547 60.0017 49666.3
g24 100.0% 100.0% -5.5080 -5.5079 -5.5079 -5.5079 0.0000 991.7

Table B.8: The CEC2006 results for the R-R method.137



B.
CEC2006

Results
Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 80.0% -14.9999 -14.9999 -13.8281 -14.7656 0.4784 32305.1
g02 100.0% 4.0% -0.8035 -0.7422 -0.4511 -0.7037 0.1020 1122350.0
g03 100.0% 100.0% -1.0004 -1.0004 -1.0004 -1.0004 0.0000 20043.7
g04 100.0% 100.0% -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.0000 5039.8
g05 100.0% 100.0% 5126.4968 5126.4968 5126.4968 5126.4968 0.0000 10908.9
g06 100.0% 100.0% -6961.8139 -6961.8138 -6961.8138 -6961.8138 0.0000 1839.1
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 20200.4
g08 100.0% 96.0% -0.0958 -0.0958 -0.0291 -0.0931 0.0133 274.5
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 7160.1
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 21621.0
g11 100.0% 100.0% 0.7499 0.7500 0.7500 0.7500 0.0000 1148.2
g12 100.0% 84.0% -1.0000 -0.9999 -0.9864 -0.9987 0.0032 839.7
g13 100.0% 52.0% 0.0540 0.0540 0.4388 0.2387 0.1962 70190.5
g14 100.0% 100.0% -47.7648 -47.7648 -47.7648 -47.7648 0.0000 15784.0
g15 96.0% 96.0% 961.7151 961.7151 967.9999 961.9665 1.2570 7200.4
g16 100.0% 100.0% -1.9051 -1.9051 -1.9051 -1.9051 0.0000 4449.8
g17 100.0% 48.0% 8853.5374 8927.5917 8927.5917 8892.0463 37.7598 128697.6
g18 100.0% 84.0% -0.8660 -0.8659 -0.6750 -0.8354 0.0714 12342.7
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 42052.8
g21 100.0% 96.0% 193.7246 193.7246 324.7028 198.9637 26.1956 28786.4
g22 0.0% 0.0% 0.0000 0.0000 0.0000 0.0000 0.0000 -
g23 100.0% 100.0% -400.0550 -400.0550 -400.0550 -400.0550 0.0000 37625.1
g24 100.0% 100.0% -5.5080 -5.5079 -5.5079 -5.5079 0.0000 787.0

Table B.9: The CEC2006 results for the SR method.
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Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 84.0% -14.9999 -14.9999 -12.6562 -14.7655 0.5859 31127.6
g02 100.0% 4.0% -0.8035 -0.7502 -0.4619 -0.6964 0.1156 722775.0
g03 100.0% 100.0% -1.0005 -1.0004 -1.0004 -1.0004 0.0000 19398.3
g04 100.0% 100.0% -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.0000 4622.8
g05 100.0% 100.0% 5126.4968 5126.4968 5126.4968 5126.4968 0.0000 8028.4
g06 100.0% 100.0% -6961.8139 -6961.8138 -6961.8138 -6961.8138 0.0000 2151.1
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 16047.0
g08 100.0% 88.0% -0.0958 -0.0958 -0.0258 -0.0877 0.0225 321.5
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 5677.4
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 30181.4
g11 100.0% 100.0% 0.7499 0.7500 0.7500 0.7499 0.0000 2389.4
g12 100.0% 76.0% -1.0000 -0.9999 -0.9944 -0.9986 0.0024 774.8
g13 100.0% 60.0% 0.0540 0.0540 0.4388 0.2079 0.1924 95605.2
g14 100.0% 100.0% -47.7648 -47.7648 -47.7648 -47.7648 0.0000 14287.4
g15 100.0% 100.0% 961.7151 961.7151 961.7151 961.7151 0.0000 11969.8
g16 100.0% 100.0% -1.9051 -1.9051 -1.9051 -1.9051 0.0000 3885.2
g17 100.0% 56.0% 8853.5371 8853.5397 8927.5917 8886.1221 37.5169 124345.3
g18 100.0% 88.0% -0.8660 -0.8659 -0.5000 -0.8360 0.0877 10214.6
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 39431.6
g21 100.0% 92.0% 193.7246 193.7246 324.7028 204.2029 36.2662 34987.1
g22 0.0% 0.0% 0.0000 0.0000 0.0000 0.0000 0.0000 -
g23 100.0% 96.0% -400.0550 -400.0550 -100.0466 -388.0547 60.0017 39718.3
g24 100.0% 100.0% -5.5080 -5.5080 -5.5079 -5.5079 0.0000 670.5

Table B.10: The CEC2006 results for the PIS method.139



B.
CEC2006

Results
Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 80.0% -15.0000 -14.9999 -12.4531 -14.7106 0.6418 70895.8
g02 100.0% 16.0% -0.8036 -0.7704 -0.4307 -0.7336 0.1076 293550.0
g03 100.0% 100.0% -1.0005 -1.0004 -1.0004 -1.0004 0.0000 20271.7
g04 100.0% 100.0% -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.0000 6694.3
g05 100.0% 100.0% 5126.4967 5126.4968 5126.4968 5126.4968 0.0000 13086.0
g06 100.0% 100.0% -6961.8139 -6961.8138 -6961.8138 -6961.8138 0.0000 1743.2
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 22414.2
g08 100.0% 92.0% -0.0958 -0.0958 -0.0258 -0.0903 0.0189 645.6
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 7080.9
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 128690.0
g11 100.0% 100.0% 0.7499 0.7500 0.7500 0.7500 0.0000 2031.8
g12 100.0% 84.0% -1.0000 -0.9999 -0.9944 -0.9991 0.0021 625.2
g13 100.0% 48.0% 0.0540 0.4388 0.4388 0.2541 0.1962 146451.9
g14 100.0% 100.0% -47.7648 -47.7648 -47.7648 -47.7648 0.0000 22727.6
g15 100.0% 100.0% 961.7151 961.7151 961.7151 961.7151 0.0000 9256.2
g16 100.0% 100.0% -1.9051 -1.9051 -1.9051 -1.9051 0.0000 5077.7
g17 100.0% 40.0% 8853.5369 8927.5917 8927.5917 8897.9706 37.0265 193848.2
g18 100.0% 96.0% -0.8660 -0.8659 -0.6750 -0.8583 0.0382 10699.7
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 66860.7
g21 100.0% 100.0% 193.7246 193.7246 193.7246 193.7246 0.0000 52343.8
g22 0.0% 0.0% 0.0000 0.0000 0.0000 0.0000 0.0000 -
g23 100.0% 96.0% -400.0550 -400.0550 -100.0466 -388.0547 60.0017 43860.1
g24 100.0% 100.0% -5.5080 -5.5079 -5.5079 -5.5079 0.0000 932.4

Table B.11: The CEC2006 results for the PI method.
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Feasible
Rate

Success
Rate Min Median Max Mean Std Success

Performance

g01 100.0% 84.0% -14.9999 -14.9999 -13.8281 -14.8124 0.4384 52165.9
g02 100.0% 24.0% -0.8035 -0.7862 -0.4701 -0.7500 0.0927 425000.0
g03 100.0% 100.0% -1.0004 -1.0004 -1.0004 -1.0004 0.0000 20217.0
g04 100.0% 100.0% -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.0000 6571.7
g05 100.0% 100.0% 5126.4968 5126.4968 5126.4968 5126.4968 0.0000 19371.8
g06 100.0% 100.0% -6961.8139 -6961.8138 -6961.8138 -6961.8138 0.0000 1793.6
g07 100.0% 100.0% 24.3063 24.3063 24.3063 24.3063 0.0000 18706.2
g08 100.0% 96.0% -0.0958 -0.0958 -0.0956 -0.0958 0.0000 792.8
g09 100.0% 100.0% 680.6301 680.6301 680.6302 680.6301 0.0000 6544.2
g10 100.0% 100.0% 7049.2481 7049.2481 7049.2481 7049.2481 0.0000 37638.4
g11 100.0% 100.0% 0.7499 0.7500 0.7500 0.7500 0.0000 1859.5
g12 100.0% 84.0% -1.0000 -0.9999 -0.9944 -0.9991 0.0021 731.8
g13 100.0% 40.0% 0.0540 0.4388 0.4388 0.2849 0.1924 146339.8
g14 100.0% 100.0% -47.7648 -47.7648 -47.7648 -47.7648 0.0000 24463.9
g15 100.0% 100.0% 961.7150 961.7151 961.7151 961.7151 0.0000 10954.9
g16 100.0% 100.0% -1.9051 -1.9051 -1.9051 -1.9051 0.0000 4968.8
g17 100.0% 60.0% 8853.5361 8853.5390 8927.5917 8883.1597 37.0267 167183.0
g18 100.0% 84.0% -0.8660 -0.8659 -0.6750 -0.8354 0.0714 13886.2
g19 100.0% 100.0% 32.6557 32.6557 32.6557 32.6557 0.0000 61539.2
g21 100.0% 96.0% 193.7246 193.7246 324.7028 198.9637 26.1957 37228.0
g22 0.0% 0.0% 0.0000 0.0000 0.0000 0.0000 0.0000 -
g23 100.0% 88.0% -400.0550 -400.0550 -100.0466 -364.0540 99.5015 68676.5
g24 100.0% 100.0% -5.5080 -5.5079 -5.5079 -5.5080 0.0000 851.9

Table B.12: The CEC2006 results for the DP-PI method.141
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Figure C.1: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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(b) 8D Cone 90° problem using AL

Figure C.2: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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Figure C.3: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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Figure C.4: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.147
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Figure C.5: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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Figure C.6: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.149
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Figure C.7: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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Figure C.8: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.151
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Figure C.9: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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Figure C.10: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.153
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Figure C.11: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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(b) 8D Cone 90° problem using IEPS

Figure C.12: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.155
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Figure C.13: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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(b) 8D Cone 90° problem using PI

Figure C.14: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.157
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Figure C.15: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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(b) 8D Cone 90° problem using PIS

Figure C.16: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.159
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Figure C.17: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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(a) All 16D problems using R-BS
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(b) 8D Cone 90° problem using R-BS

Figure C.18: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.161
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Figure C.19: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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(b) 8D Cone 90° problem using R-R

Figure C.20: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.163
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Figure C.21: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.
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Figure C.22: The median and interdecile range of the objective value, the Mahalanobis distance between the constrained optimum and
the estimated distribution, as well as the trace of the covariance matrix per evaluation over 31 runs.165
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