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Abstract
In this thesis we consider orbital stability of certain patterns in stochastic partial differential equa-
tions. We study two examples: a rotating wave in a two-dimensional reaction-diffusion equation and
a soliton in a parametrically forced nonlinear Schrödinger equation. In both cases, we show that,
for small noise, solutions to the stochastic equations remain close to a version of the pattern which
is shifted according to some stochastic phase. We give explicit expressions for this phase, and show
that it is optimal to first order in the strength of the noise.

To show stability, we construct a multiscale expansion of the solution around an arbitrarily shifted
version of the pattern, and show that this expansion is accurate to second order. From this expansion
an obvious candidate for the correct phase shift arises. For technical reasons we then construct a
sequence of approximations to this phase shift, which is necessary to show the multiscale expansion
around the correctly shifted pattern. We then combine this expansion with a deterministic stability
result to get stochastic stability.

Finally, we take first steps towards formulating and proving the same results in a more general
setting, where the pattern shift is represented by the action of a Lie group. We obtain some es-
timates necessary for the multiscale expansion, find the correct phase, and formulate necessary
assumptions for the stability to hold.
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Chapter 1

Introduction

In 1842, engineer John Scott Russell observed a large, solitary wave in a canal and followed it on
horseback for two miles [46]. His observation was explained in 1895 by Korteweg and De Vries [30],
who found solitary wave (soliton) solutions to the now celebrated KdV equation, a nonlinear PDE
which models surface waves on shallow water. Since then, many more patterns in nonlinear PDE
have been found. Notable examples are travelling pulses and wave trains in neural field equations
[4, 9, 10, 13] and optics equations [2, 28, 40], rotating waves in reaction-diffusion equations [12, 22]
and superconductivity equations [7], and surface waves on shallow water [3, 30]. Patterns have also
been observed in chemical and biological systems [27].

Figure 1.1: Phase plot of a spinning soliton in the quintic Ginzburg-Landau equation [5].

In physical, chemical or biological systems it is almost always impossible to measure or control the
exact state of the system. Thus, to study these patterns it is important to ask:

How do the patterns occurring in PDE change when the system is slightly perturbed?

Much work has been done in a deterministic setting, where a small perturbation of the initial con-
dition is introduced. Many of the aforementioned patterns exhibit orbital stability in this setting [6,
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9, 11, 18, 28, 41, 47, 48], meaning the pattern persists but is shifted according to some phase.f

However, perturbing only the initial conditions of a PDE is not sufficient for modelling real noise,
which is typically ever-present in any physical system due to random thermal fluctuations. Thus it is
natural to introduce noise by turning the PDE into an SPDE and to consider orbital stability in the
stochastic setting. This subject has received more attention in the last decade, and three distinct
methods [23, 26, 50] have been developed to lift deterministic stability to the stochastic setting.

1.1 Stochastic stability of patterns
We consider a semilinear PDE taking the form

du(t) = [Au(t) + f(u(t))]dt, (1.1)

where u takes values in some Hilbert space H, and A is a linear operator generating a C0-semigroup
on H. We also assume (1.1) admits a pattern solution u∗(t). This pattern can be any of the
aforementioned ones, such as a travelling wave, wave train, rotating wave, or soliton. We now
introduce noise to (1.1) to get the SPDE

du(t) = [Au(t) + f(u(t))]dt+ σB(u(t))dW (t) (1.2)
u(0) = u∗(0) + σv0,

where W (t) is a Brownian motion taking values in H and σ is a parameter controlling the strength
of the noise, which we assume to be small. Assuming equation (1.2) is well-posed, we aim to answer
the following question:

Does the stochastic solution u(t) remain close to (a shifted version of) u∗(t) over long
timescales?

Because the study of patterns originated with one-dimensional waves, the shift in u∗ is typically
called the phase. Keeping with the literature we will use the word phase even when more complicated
patterns and transformations (such as rotations) are involved. The necessity of tracking the phase
stochastically is illustrated by figure 1.2.

Figure 1.2: Three wave profiles of a reaction-diffusion equation. (a). Wave profile without phase
correction. (b). Wave profile with corrected wave speed. (c). Wave profile with stochastic phase
correction [25].

In order define the phase, it is intuitive to look at the function

E : ϕ→ ∥u(t)− Tϕu∗(t)∥2H , (1.3)
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where Tϕ is the shift corresponding to some phase ϕ. Because E measures the difference between
the stochastic solution and the shifted deterministic solution, the value of ϕ which minimizes E is
an obvious candidate for defining the phase. However, the dynamics of the global minimizer of (1.3)
are highly irregular, since this minimizer may jump around between local minima. To remedy this,
Stannat [50] considers a phase-lag method, where the phase is defined via the ODE

ϕ̇m(t) = −m d

dϕm
∥u(t)− Tϕm(t)u

∗(t)∥2H , (1.4)

where m > 0 is some relaxation parameter. Equation (1.4) guarantees that ϕm continually changes
to decrease E at a speed determined by m. As m goes to infinity, this ϕm converges to some ϕ∞
which no longer lags behind the real phase. The advantage of this method is that explicit solutions
for ϕm and ϕ∞ are often available, giving insight into the phase dynamics. The method has primarily
been used in stochastic neural field applications [15, 31, 32, 37].

Inglis and MacLaurin [26] took a more direct approach, deriving an SDE for ϕ which forces the
equation

d

dϕ
∥u∗ − Tϕmu

∗∥2 = 0

to hold. This enables tracking of a local minimum until the time where it becomes a saddle point.
This method was later extended [38] and applied to more general patterns [39].

Finally, there is the most recent method by Hamster and Hupkes [23, 24, 25] which is less straight-
forward, defining the phase via a stochastic freezing condition, which guarantees that the shifted
pattern only feels stochastic forcing. This method results in a significantly more complicated SDE
for ϕ, but has been used to establish stability on a timescale of order O(exp(Cσ−1)) [25]. For more
information on these techniques, we refer to the recent review by Kuehn [33].

In this thesis, we consider stochastic orbital stability of two particular patterns: rotating waves
in two-dimensional reaction-diffusion equations two-dimensions, and a soliton in the parametrically
forced nonlinear Schrödinger (PFNLS) equation. In both cases, we use an approach based on the
phase-lag method introduced by Stannat [50] to obtain a first-order (in the noise strength) multi-
scale expansion of the stochastic solution around the shifted pattern. However, our approach differs
in a significant way. Instead of defining the lagging phase ϕm by equation (1.4) and linearizing
(1.2) around Tϕm

u∗, we compute a linearization around Tϕu∗ for an arbitrary (but small) ϕ. This
linear approximation is then split up using a Riesz spectral projection, which leads to a natural
candidate for the phase. This natural candidate turns out to be equal to the ϕ∞ obtained using the
phase-lag method. For technical reasons, this ϕ∞ then needs to be approximated by a sequence of
(progressively measurable) differentiable processes, which are defined via the ODE

ϕ̇m(t) = −m(ϕm(t)− ϕ∞(t)).

The resulting sequence also turns out to be equivalent (up to a difference in m) to the ϕm which
solves (1.4). Thus, our approach gives the same phase correction as the phase-lag method without
having to derive an SDE from (1.4). Although deriving this SDE is relatively straightforward for
one-dimensional travelling waves, it is significantly more complicated in the case of rotating waves
due to the noncommutativity of translations and rotations. More importantly, our approach still
works when the derivative in equation (1.4) does not exist, which is generally the case in Banach
spaces. Therefore, we believe this approach can be extended to work in general Banach spaces, since
it does not utilize any tools specific to the Hilbert space setting.
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1.2 Overview
This thesis contains three main chapters, in each of which a different pattern in an SPDE is exam-
ined. In each case, we show stochastic orbital stability by first constructing a multiscale expansion,
using this to find the right phase correction, and subsequently combining this with a deterministic
stability result.

Chapter 2 contains the mathematical preliminaries used throughout the thesis. In particular, we
need theory concerning functional analysis, Sobolev spaces and elliptic PDE, (non)autonomous evo-
lution equations, stochastic integration, and Lie groups and Lie algebras.

In Chapter 3, we treat rotating waves in a two-dimensional reaction-diffusion equation. Here, the
main difficulty lies with the noncommutativity of the symmetry group SE(2). In Chapter 4, the
situation is slightly different. Here we treat solitons in a parametrically forced nonlinear Schrödinger
equation, for which the symmetry is translational. However, in this case we have to deal with multi-
plicative noise, which presents an additional difficulty when constructing the multiscale expansion.
Finally, in Chapter 5 we take first steps towards showing stochastic orbital stability for patterns in
PDE with more general symmetries. We show some necessary estimates, formulate required assump-
tions assumptions and find an explicit expression for the (generalized) phase. Chapter 6 contains
some auxiliary results, which are used throughout chapters 3, 4 and 5.
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Chapter 2

Preliminary Theory

2.1 Functional analysis
We state some theorems and definitions from functional analysis for later use. For proofs of the
statements, see [42] or [21].

Throughout this section, let H, H1 and H2 be seperable real or complex Hilbert spaces, and let
X and Y be Banach spaces. We use the notation (u, v)H for the inner product of two elements
u, v ∈ H. In case the Hilbert space is complex, we use the convention that the inner product is
linear in the first variable and conjugate-linear in the second variable.

Definition 2.1.1. A function T : X → Y is Fréchet differentiable at x ∈ X if there exists a bounded
linear operator from X to Y denoted by f ′(x) which satisfies

lim
∥y∥X→0

∥f(x+ y)− f(x)− f ′(x)y∥Y
∥y∥X

= 0.

Theorem 2.1.2. Let T be a linear operator defined and bounded on a dense subspace of X with
values in Y . Then T extends uniquely to a bounded operator T : X → Y .

Definition 2.1.3. An operator T : H → H is positive if it satisfies

(Th, h)H ≥ 0

for every h ∈ H.

Definition 2.1.4. Let ei be an orthonormal basis of H. The trace of an operator T ∈ L(H) is
defined as

tr(T ) :=

∞∑
i=1

(Tei, ei)H .

Definition 2.1.5. Let ei be an orthonormal basis of H1. The Hilbert-Schmidt norm of an operator
T ∈ L(H1, H2) is defined as

∥T∥2L2(H1,H2)
:=

( ∞∑
i=1

∥Tei∥2H2

)
.
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We denote the subspace of L(H1, H2) consisting of operators with finite Hilbert-Schmidt norm by
L2(H1, H2).

The trace and Hilbert-Schmidt norm are both independent of the choice of basis.

Proposition 2.1.6. L2(H1, H2) is a Hilbert space with respect to the inner product

(T, S)L2(H1,H2) =

∞∑
i=1

(Tei, Sei)H2
.

Theorem 2.1.7. Let T : H → H be positive. Then there exists a unique operator T 1/2 ∈ L(H)
which satisfies

T 1/2T 1/2 = T.

Furthermore there exists an orthonormal basis ei of H consisting of eigenvectors of T . If T has
finite trace, the sum of the eigenvalues (repeated according to multiplicity) is finite.

Theorem 2.1.8. Let T : D(T ) → H be a closed linear operator. Suppose the spectrum of T is the
union of two disjoint compact sets K1 and K2. Define the linear operators Πi by

Πi :=

∮
γi

(zI − T )−1dz,

where γi is an admissible contour for Ki. Then each Πi is a projection which commutes with T , and
is called the spectral projection onto Ki.

2.2 Classical function spaces and derivatives
Throughout sections 2.2, 2.3, and 2.4, let U ⊂ Rn be open and let V be either R Rn, Rm×n or C
with the obvious inner product and norm. Proofs of the statements can be found in [16, 21, 42].

The space Ck(U, V ) is the set of all k-times continuously differentiable functions on U taking values
in V , where k may be infinity. By C∞

c (U, V ) we denote the subspace of functions f ∈ C∞(U, V )
which have their support compactly contained in U .

If f ∈ C1([a, b], V ), we denote the derivative of f either by f ′ or ḟ . If f ∈ C1(U, V ), we de-
note the partial derivative with respect to the i-th coordinate by ∂xi

f . For repeated differentiation,
we will sometimes write ∂xixj

f to mean ∂xi
∂xj

f . To denote higher order derivatives we also use the
concept of a multi-index, which is an element in Nn. Given some multi-index α = (α1, ..., αn), the
order of α is defined as

|α| :=
n∑
i=1

αi.

Given a function f ∈ Ck(Rn) and a multi-index α with order |α| ≤ k, we define

∂αf = ∂α1
x1
...∂αn

xn
f,

where ∂jxi
f denotes the j-th order partial derivative in the i-th coordinate.
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2.3 Sobolev spaces
In order to study elliptic PDE, we introduce the notion of weak differentiability and Sobolev spaces.
We mainly follow the conventions of [16]. For a comprehensive treatment of Sobolev spaces, see [1].

Definition 2.3.1. A measurable function f : U → V is locally integrable if it satisfies∫
K

|f |dx <∞,

for every compact set K ⊂ U .

Definition 2.3.2. A locally integrable function f : U → V is k-times weakly differentiable if for
every multi-index α with |α| ≤ k there exists a locally integrable function, denoted by ∂αf , which
satisfies ∫

U

f∂αϕdx = (−1)|α|
∫
U

ϕ∂αfdx

for every ϕ ∈ C∞
c (U) (here ∂αϕ is the classical derivative).

Weak derivatives are unique (up to a set of measure zero), and satisfy many familiar properties of
classical derivatives, such as linearity, the product rule, and the chain rule. If a function is weakly
and classically differentiable, then the two derivatives coincide almost everywhere.

In order to be able to use the powerful tools from functional analysis, it is necessary to have a
Banach space of weakly differentiable functions. The Sobolev spaces serve this purpose.

Definition 2.3.3. The Sobolev space W k,p(U, V ) consists of all k-times weakly differentiable func-
tions f : U → V for which the weak derivatives of order |α| ≤ k are in Lp(U).

Theorem 2.3.4. The Sobolev space W k,p(U, V ) is a Banach space when equipped with the norm

∥f∥Wk,p(U,V ) =
( ∑
|α|≤k

∥∂αf∥pLp(U,V )

)1/p

. (2.1)

Theorem 2.3.5. The Sobolev space Hk(U, V ) :=W k,2(U, V ) is a Hilbert space with inner product

(f, g)Hk(U,V ) =
∑
|α|≤k

(∂αf, ∂αg)L2(U,V ) (2.2)

It is easily verified that the norm induced by the inner product in equation (2.2) is consistent with
the norm in equation (2.1). It turns out that Lp integrability of f and ∂xi

f sometimes implies Lq
integrability of f for some q ≥ p, where the relation between p and q is determined by the dimension
n. Thus, it is possible to trade differentiability for integrability in some sense. This is made precise
by the Sobolev embedding theorem.

Theorem 2.3.6. (Gigliardo-Niremberg-Sobolev) Let p ∈ (1, n), and let p∗ = np
n−p . Then there exists

a constant Cn,p independent of f : U → V such that

∥f∥Lp∗ (U,V ) ≤ Cn,p∥f∥W 1,p(U,V ),

The exponent p∗ is called the Sobolev conjugate of p. From the computation

p∗

p
=

np
n−p

p
=

n

n− p
> 1

we can see that p∗ > p, which means we have gained integrability.
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2.4 Weak solutions to PDE
Using Sobolev spaces, we define the notion of a weak solution to an elliptic PDE. Our treatment is
similar to [16, Chapter 6], but similar statements are contained in [21, 42].

Definition 2.4.1. A function a : U → Rn×n is uniformly elliptic if there exists a constant c > 0
independent of x, ζ, such that

n∑
i,j=1

aij(x)ζiζj ≥ c|ζ|2

for every ζ ∈ Rn and almost every x ∈ U .

Consider the PDE

−
n∑

i,j=1

∂xi(aij∂xju) +

n∑
i=1

bi∂xiu+ cu = f, (2.3)

where u is real-valued, a : U → Rn×n, b : U → Rn and c : U → R are essentially bounded and
measurable, and f ∈ L2(U,R), and additionally a is uniformly elliptic. If u is sufficiently smooth,
we can multiply this PDE by a test function ϕ ∈ C∞

c (U,R), integrate over U and apply integration
by parts to obtain the following equation.

n∑
i,j=1

∫
U

aij(∂xi
ϕ)(∂xj

u)dx+

n∑
i=1

∫
bi(∂xi

u)ϕdx+

∫
U

cuϕdx =

∫
U

fϕdx. (2.4)

Notice all the terms in equation (2.4) are well-defined even if u is only in H1(U,R). This motivates
the notion of a weak solution.

Definition 2.4.2. A function u ∈ H1(U,R) is a weak solution of (2.3) if it satisfies (2.4) for every
ϕ ∈ C∞

c (U,R).

The notion of a weak solution is a robust one: it is often possible to show existence and uniqueness
of weak solutions using powerful tools from functional analysis, such as the Riesz-representation
theorem or the Lax-Milgram theorem. If a, b, c and f are sufficiently smooth, it is even possible to
show that this weak solution is also a classical solution to (2.3). This is usually done by showing that
u ∈ Hk for higher k and using Sobolev embeddings of W k,p into the Hölder spaces Cα. However,
for our purposes the following theorem suffices.

Theorem 2.4.3 (Elliptic interior regularity). Suppose that a is uniformly elliptic, a, b and c are
k + 1-times classically differentiable, f ∈ Hk(U,R), and u ∈ H1(U,R) is a weak solution to (2.3).
Then u is k + 2 times weakly differentiable.

The additional weak derivatives of u do not necessarily lie in L2(U).

2.5 Semigroups and evolution families
The theory of strongly continuous evolution families can be used to study nonautonomous PDE
in an abstract form. These definition and theorems, along with their proofs can be found in [44].
Throughout this section, let X be a banach space.
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Definition 2.5.1. A family of bounded linear operators Pt,t′ ∈ L(X), t, t′ ≥ 0 is a strongly contin-
uous evolution family if it satisfies

Pt,t = I, for all t ≥ 0

Pt,t′Pt′,t′′ = Pt,t′′ for all t, s ≥ 0,

and the map (t, t′) → Pt,t′x is continuous for every x ∈ X.

Note that, in general, (t, t′) → Pt,t′ is not continuous in the operator norm. If we can write
Pt,t′ = S(t − t′) for some set of operators S(t), we say that S(t) is a strongly continuous- or C0-
semigroup.

Definition 2.5.2. The generator of Pt,t′ is a family of (possibly unbounded) linear operators At :
D(At) → X, t ≥ 0, defined by

Atx = lim
s→t

Ps,tx− x

s− t
, (2.5)

where D(At) consists of all x ∈ X for which this limit exists.

Equation (2.5) is reminiscent of the definition of the derivative. The following theorem states that
At can indeed be interpreted as the derivative of Pt,t′ .

Theorem 2.5.3. Let Pt,t′ be a strongly continuous evolution family on X generated by At. If
x ∈ D(At), then

d

dt
Pt,t′x = AtPt,t′x

and
d

dt′
Pt,t′x = −Pt,t′At′x (2.6)

Theorem 2.5.3 shows that Pt,0u0 is the solution to the nonautonomous abstract Cauchy problem

du

dt
= Atu(t) (2.7)

u(0) = u0.

A typical example is when At is the Laplacian, in which case (2.7) is the heat equation and
Pt,t′ = S(t− t′) is the heat semigroup.

Evolution families can also be used to solve nonlinear equations. Consider the nonlinear abstract
Cauchy problem

du

dt
= Atu(t) + f(t, u(t)) (2.8)

u(0) = u0.

Motivated by the classical variation of parameters formula, we define the notion of a mild solution.

Definition 2.5.4. A function u : [0, T ] → X is a mild solution of (2.8) if u(t) is continuous and
satisfies

u(t) = Pt,0u0 +

∫ t

0

Pt,t′f(t
′, u(t′))dt′.

Existence of mild solutions can often be shown under certain conditions on f , such as Lipschitz
continuity.

9



2.6 Stochastic Integration in Infinite Dimensions
Fix some stochastic basis (Ω, F ,P), along with a normal filtration Ft, to be used throughout this
section. When we speak of adapted, predictable or progressively measurable processes it is with
respect to this filtration. We also fix some terminal time T > 0.

Throughout this section, let U and H be Hilbert spaces. First, we define the notion of a Wiener
process in infinite dimensions.

Definition 2.6.1. Let Q ∈ L(U) be a positive with finite trace. Let ei be an orthonormal basis of
eigenvectors of Q with eigenvalues λi, and let βi be a family of independent real-valued Brownian
motions. A Q-Wiener process W (t) is defined by

W (t) :=

∞∑
i=1

√
λiβi(t)ei

Theorem 2.1.7 guarantees that the sequence converges in L2(Ω, U).

We now fix some Q-Wiener process W (t) to be used throughout the rest of this section. For
technical reasons we define U0 := Q1/2U , which is a Hilbert space with respect to the inner product

(Q1/2u,Q1/2v)U0
= (u, v)U .

In order to define the notion of a stochastic partial differential equation, we will need a stochastic
integral to make sense of expressions such as∫ t

0

f(t)dW (t), (2.9)

where f is a predictable process. The reason why this is not straightforward is that we cannot
interpret equation (2.9) as a Stieltjes integral, since W (t) is not sufficiently regular. Instead, (2.9)
is defined for a class of simple processes, and extended by density to a larger space using the Itô
isometry. The class of simple proceses is defined as follows.

Definition 2.6.2. A stochastic process Φ(t) taking values in L(U,H) is called simple if it takes the
form

Φ(t) =

N−1∑
i=0

1(ti,ti+1](t)Φi,

with ti being an increasing sequence of real numbers with t0 = 0, tN = T , and Φi being a sequence
of Fti-measurable random L(U,H) variables with each Φi taking only finitely many values.

For a simple process Φ, the stochastic integral is naturally defined as∫ t

0

Φ(t′)dW (t′) =

N−1∑
i=0

Φi(Wti+1∧t −Wti∧t).

Using the basic properties of a Wiener-process, the following proposition can be shown.
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Proposition 2.6.3. For a simple process Φ(t), we have

E
[
∥
∫ T

0

Φ(t′)dW (t′)∥2H
]
=

∫ T

0

E
[
∥Φ(t′)Q1/2∥2L2(U,H)

]
dt′. (2.10)

Using this isometry, it is possible to extend the definition of the stochastic integral to a large class
of stochastic processes.

Definition 2.6.4. Define N 2
W (0, T,H) as the space of all predictable L(U,H)-valued processes Φ(t)

on [0, T ] for which the norm

∥Φ∥N 2
W (0,T,H) :=

∫ T

0

E
[
∥Φ(t′)Q1/2∥L2(U,H)

]2
dt′

is finite.

Proposition 2.6.5. The simple processes are dense in N 2
W (0, T,H).

By density and equation (2.10), the stochastic integral now extends to N 2
W (0, T,H). We will fre-

quently use the following two maximal estimate on the stochastic integral.

Theorem 2.6.6. There exists a constant C independent of f such that

E
[
sup
t∈[0,T ]

∥
∫ t

0

f(t′)dW (t′)∥2H
]
≤ C ·

∫ T

0

E
[
∥f(t′)Q1/2∥2H

]
dt′,

for all f ∈ N 2
W (0, T,H).

Theorem 2.6.7. Let S(t) be a C0-semigroup on H. Then there exists a constant C, independent
of f such that

E
[
sup
t∈[0,T ]

∥
∫ t

0

S(t− t′)f(t′)dW (t′)∥2H
]
≤ CM ·

∫ T

0

E
[
∥f(t′)Q1/2∥2H

]
dt′,

Now we formulate the notion of an SPDE and its solutions. Consider the SPDE

du(t) = [Atu(t) + f(t, u(t))]dt+B(t, u(t))dW (t) (2.11)
u(0) = ζ

where f : Ω× [0, T ]×H → H and B : Ω× [0, T ]×H → L2(U0, H) are measurable and At generates
a strongly continuous evolution family on H. Motivated by the variation of constants formula, the
notion of a mild solution to (2.11) is defined as follows.

Definition 2.6.8. An H-valued predictable process u(t) is a mild solution of (2.11) if it satisfies

P
[∫ T

0

∥u(t)∥2H <∞
]
= 1,

P
[∫ T

0

∥B(u(t))Q1/2∥2L2(U,H) <∞
]
= 1

and

u(t) = Pt,0ζ +

∫ t

0

Pt,t′f(t
′, u(t))dt′ +

∫ t

0

Pt,t′B(t, u(t))dt′, P− a.s.
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Now we formulate the following existence and uniqueness results. Theorems 2.6.9 and 2.6.10 both
follow from theorem 2.6.11.

Theorem 2.6.9. (Linear SPDE with additive noise) Suppose that f is independent of u, and B = B0

for some B0 ∈ L2(U0, H). Then there exists a unique mild solution of (2.11).

Theorem 2.6.10. (Linear SPDE with multiplicative noise) Suppose that f is independent of u, and
B(ω, t, u) = B0u for some B0 ∈ L(H,L2(U0, H)). Then there exists a unique mild solution of (2.11).

Theorem 2.6.11. (SPDE with Lipschitz nonlinearity) [49, Theorem 1.3] Suppose there exists a
constant C such that

∥f(ω, t, u)− f(ω, t, v)∥H + ∥B(ω, t, u)−B(ω, t, v)∥L2(U0,H) ≤ C∥u− v∥H ,

and

∥f(ω, t, u)∥2H + ∥B(ω, t, u)∥2L2(U0,H) ≤ C2(1 + ∥u∥H)2

hold uniformly in t, ω. Then there exists a unique mild solution to (2.11).

2.7 Lie groups and Lie algebras
To capture general continuous symmetries we will need the notion of a Lie group and a Lie algebra.
We only require some definitions and basic theorems, which can be found for example in [29].

Definition 2.7.1. A Lie group G is a group which is also a (finite-dimensional) smooth manifold,
for which group multiplication and inversion are continuous.

Definition 2.7.2. A Lie algebra g is a vector space which has an additional operation called the Lie
bracket

g× g → g

(X,Y ) → [X,Y ],

which is symmetric, bilinear and satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Definition 2.7.3. A Lie group representation is a vector space V along with a smooth map

Π : G→ GL(V ),

which satisfies

Π(g)Π(h) = Π(gh),

for all g, h ∈ G.

Definition 2.7.4. A Lie algebra representation is a vector space V along with a map

π : g → L(V ),

which satisfies

π(X)π(Y )− π(Y )π(X) = π([X,Y ]),

for all X,Y ∈ g.
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There is a rich correspondence between Lie groups and Lie algebras, as illustrated by the next few
theorems.

Theorem 2.7.5. Let g := TeG be the tangent space of G. There exists a unique function exp : g → G
called the exponential map, which is continous and satisfies

exp(0) = I,

exp((t+ s)X) = exp(tX) exp(sX),

d

dt
exp(tX)

∣∣∣
t=0

= X,

for all t, s ∈ R, X ∈ g.

Furthermore, g is a Lie algebra when equipped with the bracket

[X,Y ] :=
d

dt
etXY e−tX

∣∣∣
t=0

.

Theorem 2.7.6. Let Π be a Lie group representation of G on V . Then the map

π : g → L(V )

π : X →
(
Y → d

dt
Π(exp(tX)Y

∣∣∣
t=0

)
is a Lie algebra representation of g on the TeV . Furthermore, we have the equality

Π(g)π(X)Π(g−1) = π(gXg−1) (2.12)

The tangent space TeG consists of equivalence classes of smooth curves γ which satisfy γ(0) = e.
If γ(t) is such a curve, then so is gγ(t)g−1, and this operation is well-defined on the equivalence
classes. This is the way in which we interpret gXg−1 ∈ TeG for g ∈ G, X ∈ TeG.

Theorem 2.7.7. The map

Ad : G→ GL(g)

g → (X → gXg−1) (2.13)

is a Lie group representation, and its corresponding Lie algebra representation is

ad : X → (Y → [X,Y ]]). (2.14)

We often write Adg := Ad(g) and adX := ad(X).
For X,Y ∈ TeG we have the equality

Adexp(X)(Y ) = eadX (Y ), (2.15)

where the exponential on the right-hand side is an operator exponential.
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Chapter 3

Rotating Waves

We consider a two-dimensional reaction-diffusion system, which satisfies the semilinear PDE

du(t, x) = D∆u(t, x)dt+ f(u(t, x))dt, (3.1)

where u(t, x) ∈ Rn and D is a diagonal matrix with strictly positive entries on the diagonal. Such
systems are widespread throughout physics, chemistry [52] and biology [22, 36], and exhibit many
interesting behaviours. A possible interpretation of (3.1) is as a chemical system. Here, u(t, x)
models the density at time t and position x of a compound made up of n different chemical species.
The term D∆u models the natural diffusion of chemicals, with D determining the diffusion speed
of each species. The term f(u) models a chemical reaction, turning some chemicals into others at a
rate dependent on their densities.

Multi-component reaction-diffusion equations are well known for their propensity for pattern forma-
tion [14]. Typical patterns such as spots, stripes, and mazes have been numerically observed [20].
Although numerical simulations were not available at the time, Alan Turing knew about these pat-
terns, and even postulated these reaction-diffusion equations to be the mechanism by which animals
form patterns on their skin [51, 54].

In this thesis, we will treat one particular type of pattern: a rotating wave. This is a pattern
having a fixed wave profile, which rotates along a fixed origin as time progresses. Rotating waves
have been studied in a deterministic setting, where exponential decay [43] and stability [6] have been
shown. Stability in a stochastic setting has previously been shown using the method of MacLaurin
[34]. However, their SDE for the phase is extremely unwieldy compared to ours. Furthermore, our
results about the multiscale expansion and approximate optimality of the phase are completely new.

3.1 Preliminaries
Throughout chapter 3 we will write

Hk := Hk(R2,Rn),
L2 := L2(R2,Rn),
L∞ := L∞(R2,Rn).

14



We also fix some stochastic basis (Ω,F ,P) along with a normal filtration Ft to be used throughout
these sections.

We will study a stochastic version of the reaction-diffusion equation (3.1). Let W (t) be a Q-Wiener
process. The stochastic version of (3.1) reads

du(t, x) = [D∆u(t, x) + f(u(t, x))]dt+ σdW (t), (3.2)

where u takes values in H2. We will assume f is such that the problem is well-posed.

Assumption 3.1.1. The nonlinearity f is such that it satisfies the hypotheses of theorem 2.6.11.
Thus, (3.2) has a unique mild solution.

We will also need a notion of a small phase-correction. The phase-correction γ(t) at time t will be
described by a translation and a rotation, parameterized by

γ(t) =

 θ(t)
b1(t)
b2(t)

 .

We identify γ(t) ∈ R3 with the isometry of R2 given by

x→ Rθx+

(
b1
b2

)
(3.3)

which we also call γ(t) in a slight abuse of notation. Here Rθ is a rotation matrix defined as

Rθ :=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (3.4)

We will also frequently write b :=
(
b1
b2

)
. The isometry γ(t) further induces an isometry Tγ on H,

defined by

Tγ : ϕ(x) → ϕ(γ−1x) = ϕ
(
R−θx− b

)
. (3.5)

The reason we define Tγ with the inverse is so that we have Tγ1Tγ2 = Tγ1γ2 .

Next we need some assumptions and preliminary results regarding the deterministic problem and
rotating waves.

Assumption 3.1.2. Equation (3.1) has a solution of the form

û(t, x) = TRωt
u∗(x) = u∗(R−ωtx) (3.6)

This solution û is called the rotating wave, and u∗ is called the rotating wave profile or wave profile.
If u∗ is sufficiently smooth, we can directly compute

∂tû(t, x) = ∂tu
∗(R−ωtx)

= (∇u∗)(R−ωtx)∂tR−ωtx

= −ω(∇u∗)(R−ωtx)Rπ/2R−ωtx
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Therefore if we change to co-rotating coordinates y = R−ωtx, equation (3.1) transforms into

−ω∇u∗(y)Rπ/2y = D∆u∗(y) + f(u∗(y)). (3.7)

Introducing the differential operator

∂ψϕ := x1∂x2ϕ− x2∂x1ϕ = ∇ϕ(x)Rπ/2x, (3.8)

equation (3.7) simplifies further to

D∆u∗ + ω∂ψu
∗ + f(u∗) = 0. (3.9)

In fact, any sufficiently smooth solution to (3.9) can be used as the wave profile for a rotating wave.
Thus, existence of rotating waves is equivalent to existence of solutions to (3.9).

In equation 3.8 we chose the notation ∂ψ because this operator is also the derivative in the ra-
dial direction in polar coordinates. This also means that ∂ψ obeys the product rule.

3.1.1 Commutation relations
Later we will need various identities involving ∇, ∂ψ and Tγ , so we derive them all now. Throughout
this section, let ϕ : R2 → Rn be a sufficiently smooth function.

We start by computing

∂tTγ(t)ϕ = ∂tϕ(γ
−1(t)x) = (∇ϕ)(γ−1(t)x)∂tγ

−1(t)x. (3.10)

Using the product rule and the chain rule, we derive

∂tγ
−1(t)x = ∂t

[
R−θ(t)

(
x− b(t)

)]
= −θ̇(t)Rπ/2R−θ(t)

(
x− b(t)

)
−R−θ(t)ḃ(t)

= −θ̇(t)Rπ/2γ−1(t)x−R−θ(t)ḃ(t).

Substitute this into equation (3.10), and use the definition of ∂ψ (3.8) to get

∂tTγ(t)ϕ(x) = −(∇ϕ)(γ−1(t)x)[(θ̇(t)Rπ/2γ
−1(t)x+R−θ(t)ḃ(t))]

= −Tγ(t)
(
[∇ϕ][(θ̇(t)Rπ/2x+R−θ(t)ḃ(t))]

)
= −Tγ(t)

(
θ̇(t)∂ψϕ+∇ϕR−θ(t)ḃ(t))

)
.

Now introduce the three-dimensional matrix

Rθ :=

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 . (3.11)

to get

∂tTγ(t)ϕ(x) = −Tγ(t)
(
∂ψϕ ∂xϕ ∂yϕ

)
R−θ(t)

 θ̇

ḃ1
ḃ2

 . (3.12)
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From now on, Rθ can either mean the two-dimensional matrix from (3.4) or the three-dimensional
matrix from (3.11). It should always be clear from the context which one is meant. Note that the
identity

RaRb = Ra+b = RbRa

holds in both cases. Next, we introduce the notational shorthand

∇cϕ :=
(
∂ψϕ ∂xϕ ∂yϕ

)
(3.13)

to rewrite (3.12) to

∂tTγ(t)ϕ(x) := −[Tγ(t)∇cϕ]R−θ(t)γ̇(t). (3.14)

Now we derive the commutation relation between ∂ψ and ∇. First let ξ ∈ C2(Rn,R). By the product
rule, we have

∂ψ∇ξ = (x1∂x2
− x2∂x1

)

(
∂x1

ξ
∂x2

ξ

)T
=

(
x1∂x1x2

ξ − x2∂x1x1
ξ

x1∂x2x2
ξ − x2∂x1x2

ξ

)T
∇∂ψξ =

(
∂x1

(x1∂x2
ξ − x2∂x1

ξ)
∂x2

(x1∂x2
ξ − x2∂x1

ξ)

)T
=

(
x1∂x1x2

ξ − x2∂x1x1
ξ

x1∂x2x2
ξ − x2∂x1x2

ξ

)T
+

(
∂x2

ξ
−∂x1

ξ

)T
which gives

∇∂ψξ = ∂ψ∇ξ + [∇ξ]Rπ/2,

which immediately extends to

∇∂ψϕ = ∂ψ∇ϕ+ [∇ϕ]Rπ/2, (3.15)

for vector-valued functions. Next is the relation between ∇ and Tγ . Using the multivariable chain
rule, we get

∇Tγϕ
(3.5)
= ∇ϕ(γ−1x) = [(∇ϕ)(γ−1x)]∇(γ−1x). (3.16)

Now observe that

∇γ−1x
(3.3)
= ∇R−θ(x− b) = R−θ. (3.17)

Thus, substituting (3.17) into (3.16) we get

∇Tγϕ = (∇ϕ)(γ−1x)Rθ
(3.5)
= Tγ∇ϕR−θ. (3.18)

Next we find

∂ψTγϕ
(3.8)
= [∇Tγϕ]Rπ/2x

(3.18)
= [Tγ∇ϕR−θ]Rπ/2x

= Tγ [∇ϕRπ/2R−θTγ−1x]. (3.19)
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To simplify further, we compute

R−θTγ−1x
(3.5)
= R−θ(Rθx+ b) = x+R−θb.

Substituting this back into (3.19) gives

∂ψTγϕ = Tγ [∇ϕRπ/2(x+R−θb)] (3.20)
(3.8)
= Tγ∂ψϕ+ Tγ [∇ϕ]Rπ/2R−θb).

Using the ∇c symbol introduced in (3.13), we may also combine (3.18) and (3.20) into

∇cTγϕ = [Tγ∇cϕ]R−θ + Tγ∇ϕRπ/2R−θbeψ, (3.21)

where eψ := (1, 0, 0).

3.1.2 Differentiability of Tγû

In this section we establish differentiability of Tγ û with respect to γ in various function spaces. We
introduce the following Hilbert spaces to be able to deal with rotational derivatives efficiently. Let
V be either R, Rn or Rn×n.

Definition 3.1.3. For l ≤ k, the space Hk,l(Rn, V ) is defined as

Hk,l
rot(Rn, V ) := {f ∈ Hk(Rn, V ) : ∂jψf ∈ Hk−j(Rn, V ) for all j ≤ l}

with the inner product

(f, g)Hk,l
rot(Rn,V ) :=

l∑
j=0

(∂jψf, ∂
i
ψg)Hk−j(Rn,V ). (3.22)

Again, we will writeHk,l
rot := Hk,l

rot(R2, V ). The parameter l measures how many rotational derivatives
we can ’safely’ take. Notice that Hk,l

rot ⊂ Hk′,l′

rot and ∥ϕ∥
Hk′,l′

rot
≤ ∥ϕ∥Hk,l

rot
if k′ ≥ k and l′ ≥ l. We also

recover the regular Sobolev spaces if l = 0.

Proposition 3.1.4. The space C∞
c is dense in Hk,l

rot for every k,l.

Proposition 3.1.5. The operator TRθ
is an isometry of Hk,l

rot for every θ, k, l.

Proof. We first observe that Tγ is an isometry of Hk for every γ ∈ SE(2). Next, by (3.20) we see
that ∂ψ commutes with TRθ

. Combining these facts we see that

∥∂jψTRθ
ϕ∥Hk−j = ∥TRθ

∂jψϕ∥Hk−j = ∥∂ψϕ∥Hk−j

holds for every k, j with j ≤ k. Thus, the norm induced by (3.22) is invariant under TRθ
.

Proposition 3.1.6. For each k, l there exists a constant C, independent of ϕ such that

∥Tγϕ∥Hk,l
rot

≤ Ck,l∥ϕ∥Hk,l
rot

l∑
j=0

|γ|j . (3.23)
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Proof. We use induction on l. The case l = 0 follows from the fact that Tγ is an isometry of Hk.
Now suppose equation (3.23) holds for some l = l′ ≥ 0. To show (3.23) for l = l′ + 1, we see from
(3.22) that we only need to estimate the additional term ∥∂l

′+1
ψ ϕ∥Hk−l′−1 . By equation (3.20) we

have

∥∂l
′+1
ψ Tγψ∥Hk−l′−1 ≤ ∥Tγ∂l

′+1
ψ ϕ∥Hk−l′−1 + ∥Tγ [∇∂l

′

ψϕ]Rπ/2R−θb)∥Hk−l′−1

= ∥∂l
′+1
ψ ϕ∥Hk−l′−1 + ∥[∇∂l

′

ψϕ]Rπ/2R−θb)∥Hk−l′−1

≤ ∥∂l
′+1
ψ ϕ∥Hk−l′−1 + |γ|∥∂l

′

ψϕ∥Hk−l′

≤ ∥ϕ∥
Hk,l′+1

rot
+ |γ|∥ϕ∥

Hk,l′
rot
.

The result follows from the induction hypothesis and the fact that ∥ϕ∥
Hk,l′

rot
≤ ∥ϕ∥

Hk,l′+1
rot

, which is
trivial.

Next we establish the following differentiability result.

Proposition 3.1.7. Suppose ϕ ∈ Hk+2,l+2
rot . Then the map

γ → Tγϕ

is differentiable as an Hk,l
rot-valued function, with Fréchet derivative

−Tγ [∇cϕ]R−θ. (3.24)

Furthermore, we have the estimates

∥Tγϕ− ϕ∥Hk,l
rot

≤ ∥ϕ∥Hk+1,l+1
rot

Ck,l

l∑
j=0

|γ|j+1, (3.25)

and

∥Tγϕ− ϕ+ [∇cϕ]γ∥Hk,l
rot

≤ ∥ϕ∥Hk+2,l+2
rot

Ck,l

l∑
j=0

|γ|j+2. (3.26)

Proof. First assume ϕ ∈ C∞
c . As a notational shorthand, we write

∇γ :=
(
∂ψ ∂b1 ∂b2

)
,

Hγ := ∇γ [∇γ ]
T =

 ∂ψθ ∂ψb1 ∂ψb2
∂ψb1 ∂b1b1 ∂b1b2
∂ψb2 ∂b1b2 ∂b2b2

 .

From equation (3.14) we see that

γ → Tγϕ(x)

is differentiable for each x, with derivative

∇γTγϕ(x) = −Tγ [∇cϕ(x)]R−θ.
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Differentiating again, we find the Hessian matrix.

HγTγϕ(x) = ∇γ [∇γTγϕ(x)]T

= −∇γTγ [∇cϕ(x)]R−θ]
T

= −Rθ∇γ [Tγ [∇cϕ(x)]
T

= RθTγ∇c[∇cϕ(x)]
TR−θ

Thus, applying Taylor’s theorem (in γ, with integral remainder) for a fixed x to Tγϕ(x), we find that

Tγϕ(x) = Tγϕ(x)
∣∣∣
γ=0

+∇γTγϕ(x)
∣∣∣
γ=0

γ + γT
∫ 1

0

(1− t)HγTtγϕ(x)dtγ

= ϕ(x)−∇cϕ(x)γ + γT
∫ 1

0

(1− t)RtθTtγ∇c[∇cϕ(x)]
TR−tθdtγ (3.27)

holds for each x. Now we estimate

∥RtθTtγ∇c[∇cϕ(x)]
TR−tθ∥Hk,l

rot
= ∥Ttγ∇c[∇cϕ(x)]

T ∥Hk,l
rot

(3.23)
≤ Ck,l∥∇c[∇cϕ(x)]

T ∥Hk,l
rot

l∑
j=0

|γ|j

≤ Ck,l∥ϕ∥Hk+2,l+2
rot

l∑
j=0

|γ|j

Thus we may interpret (3.27) as an Hk,l-valued equality (replacing the integral by a Bochner inte-
gral). Rearranging (3.27) and taking the Hk,l norm then also gives

∥Tγϕ− ϕ+ [∇cϕ]γ∥Hk,l ≤ Ck,l∥ϕ∥Hk+2,l+2

l∑
j=0

|γ|j+2,

which shows (3.26). Dividing by |γ| and letting γ → 0 shows differentiability by definition of the
Fréchet derivative.

Now let γ(t) = tγ. By the fundamental theorem of calculus (for Bochner integrals) we have

Tγϕ− ϕ =

∫ 1

0

(∇γTγ(t)ϕ)γ′(t)dt
(3.24)
= −

∫ 1

0

Ttγ [∇cϕ]R−tθdtγ.

Taking the Hk,l
rot-norm we find

∥Tγϕ− ϕ∥Hk,l
rot

≤ |γ|
∫ 1

0

∥Ttγ [∇cu]R−tθ∥Hk,l
rot
dt

= |γ|
∫ 1

0

∥Ttγ [∇cu]∥Hk,l
rot
dt

(3.23)
≤ Ck,l∥∇cu∥Hk,l

rot

l∑
j=0

|γ|j+1

≤ Ck,l∥u∥Hk+1,l+1
rot

l∑
j=0

|γ|j+1,
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which shows (3.25). For general ϕ, the results follow by density using proposition 3.1.4.

We would like to apply proposition 3.1.7 to û. To do so, the following assumption is needed.

Assumption 3.1.8. u∗ ∈ H6,3
rot.

In section 6.3 we show using standard elliptic regularity methods that a weak solution to equation
(3.9) automatically satisfies this assumption. Thus, assumption 3.1.8 is not restrictive. Hence we
can specify to the case ϕ = û(t), and formulate the estimates we will actually use.

Proposition 3.1.9. For every t, the map

Tγ û(t)

is differentiable with Fréchet derivative

−Tγ [∇cû]R−θ.

Furthermore, we have the estimates

∥Tγ û(t)− û(t)∥H2 ≤ ∥u∗∥H3,1
rot
C2,0|γ|, (3.28)

and

∥Tγ û(t)− û(t) + [∇cû(t)]γ∥H4,1
rot

≤ ∥u∗∥H6,3
rot
C4,1

3∑
i=0

|γ|i+2. (3.29)

Proof. Since û = TRωtu
∗, this follows directly from propositions 3.1.5 and 3.1.7, and assumption

3.1.8.

3.1.3 Linearization operator
Now we show that the derivatives of u∗ are eigenfunctions of some linearization operator. We first
observe that the laplacian is invariant under rotations, so it commutes with ∂ψ. Thus, assuming
sufficient smoothness of u∗ and f , we may apply ∂ψ to (3.9) to find

D∆∂ψu
∗ + ω∂ψ∂ψu

∗ + f ′(u∗)∂ψu
∗ = 0. (3.30)

Similarly, applying the gradient operator (which also commutes with the laplacian) to (3.9) and
using (3.15) gives

D∆∇u∗ + ω∂ψ∇u∗ + f ′(u∗)∇u∗ = −ω[∇u∗]Rπ/2. (3.31)

Introducing the "frozen-wave" operator

L#ϕ := D∆ϕ+ ω∂ψϕ+ f ′(u∗)ϕ, (3.32)

we may succinctly restate equations (3.30) and (3.31) as

L#∂ψu
∗ = 0, L#∂x1

u∗ = −ω∂x2
u∗, L#∂x2

u∗ = ω∂x1
u∗ (3.33)

or

L#∂ψu
∗ = 0 (3.34a)

L#(∂x1 + i∂x2)u
∗ = iω(∂x1 + i∂x2)u

∗ (3.34b)

L#(∂x1
− i∂x2

)u∗ = −iω(∂x1
− i∂x2

)u∗. (3.34c)

The following assumption on L# is critical for the deterministic stability of rotating waves.
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Assumption 3.1.10. L# generates a C0-semigroup P#
t on H.

Later we will need to compute the action of P#
t on linear combinations of ∂ψu∗, ∂x1u

∗ and ∂x2u
∗.

Let V be the subspace of H spanned by these derivatives of u∗. We use the basis ∂ψu∗, ∂x1u
∗ and

∂x2
u∗ for V . In this basis, (3.33) becomes

L#

ab
c

 =

 0
−c
b

 = S

ab
c

 ,

where

S :=

0 0 0
0 0 −ω
0 ω 0

 .

Computing the matrix exponential

exp(tS) = Rωt,

we find that

P#
t v = Rωtv,

for any v ∈ V . In particular, this means that

P#
t [∇cu

∗]γ = [∇cu
∗]Rωtγ (3.35)

for any γ ∈ R3. Note that equation (3.35) is just a different notation for taking linear combinations
of ∂ψu∗, ∂x1

u∗ and ∂x2
u∗.

Next we define a spectral projection onto some eigenvalues of L#. The following assumption guar-
antees that this is well-defined.

Assumption 3.1.11. The point spectrum σpt(L#) on H satisfies

σpt(L#) ⊂ {λ ∈ C : ℜ(λ) ≤ −b} ∪ {0, iω,−iω}.

Furthermore, the eigenvalues {0, iω,−iω} all have multiplicity one.

The second part of assumption 3.1.11 guarantees that L# has no eigenfunctions with eigenvalues
{0, iω,−iω} except for the ones found in equation (3.34c). From now on, we will call the span of
these eigenvalues the center space. Next we define a projection onto the center space.

Definition 3.1.12. Π#,c is the spectral projection of L# onto {0, iω,−iω} (see theorem 2.1.8). We
further define

Π# := I −Π#,c (3.36)

ΠcRωt
:= TRωt

Π#,cTR−ωt
(3.37)

ΠRωt
:= TRωt

Π#TR−ωt
(3.38)
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Later we will need a more explicit form of Π#,c. Using assumption 3.1.11 and equation (3.34c), we
find that Π#,c has the form

Π#,cϕ = a∂ψu
∗ + b∂x1

u∗ + c∂x2
u∗

(3.13)
= [∇cu

∗]

ab
c

 , (3.39)

where the coefficients a, b, c depend on ϕ. Taking inner products in L2 from the right with ∂ψu
∗,

∂x1u
∗ and ∂x2u

∗ results in the following system(Π#,cϕ, ∂ψu
∗)

(Π#,cϕ, ∂xu
∗)

(Π#,cϕ, ∂yu
∗)

 =

 (∂ψu
∗, ∂ψu

∗) (∂x1
u∗, ∂ψu

∗) (∂x2
u∗, ∂ψu

∗)
(∂ψu

∗, ∂x1
u∗) (∂x1

u∗, ∂x1
u∗) (∂x2

u∗, ∂x1
u∗)

(∂ψu
∗, ∂x2u

∗) (∂x1u
∗, ∂x2u

∗) (∂x2u
∗, ∂x2u

∗)

ab
c

 . (3.40)

where all inner products are taken in L2. For notational purposes, we abbreviate the matrix on the
left-hand side by defining

B :=

 (∂ψu
∗, ∂ψu

∗) (∂x1
u∗, ∂ψu

∗) (∂x2
u∗, ∂ψu

∗)
(∂ψu

∗, ∂x1
u∗) (∂x1

u∗, ∂x1
u∗) (∂x2

u∗, ∂x1
u∗)

(∂ψu
∗, ∂x2u

∗) (∂x1u
∗, ∂x2u

∗) (∂x2u
∗, ∂x2u

∗)

 .

Since u∗ and all its derivatives are real-valued, B is symmetric and strictly postive definite. Therefore
we may invert B to solve equation (3.40) and substitute back into (3.39) to find

Π#,cϕ = [∇cu
∗]B−1

(Π#,cϕ, ∂ψu
∗)

(Π#,cϕ, ∂xu
∗)

(Π#,cϕ, ∂yu
∗)

 . (3.41)

If we now introduce the bounded linear operator

P : H2(R2,Rn) → R3

ϕ→

(Π#,cϕ, ∂ψu
∗)

(Π#,cϕ, ∂xu
∗)

(Π#,cϕ, ∂yu
∗)

 ,

equation (3.41) further simplifies to

Π#,cϕ = [∇cu
∗]B−1P(ϕ). (3.42)

Now we formulate the final few assumptions required for deterministic stability.

Assumption 3.1.13. There is a vector u∞ ∈ Rn such that

sup
|x|≥R

|u∗(x)− u∞| → 0 as R→ ∞

Assumption 3.1.14. f ∈ C4(RN ;RN ). Furthermore, f and its first, second and third derivatives
are bounded.

Assumption 3.1.15. f ′(u∞) is a negative definite matrix.

Finally we can formulate the linear stability result, due to Beyn and Lorenz [6].

Theorem 3.1.16. Under assumptions 3.1.2, 3.1.8, 3.1.10, 3.1.11, 3.1.13, 3.1.14 and 3.1.15 we
have

∥P#
t Π#∥L(H2) ≤ Ce−at (3.43)

for some constants C, a > 0.
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3.1.4 Derivation of the SPDE
Let γ(t) ∈ R3 be a differentiable stochastic process which is adapted to Ft and satisfies γ(0) = 0.
Now introduce the following three ways to write u:

u(t, x) =: û(t, x) + v(t, x), (3.44)
u(t, x) =: Tσγ(t)û(t, x) + vγ(t, x), (3.45)
u(t, x) =: Tσγ(t)û(t, x) + σwγ(t, x) + zγ(t, x), (3.46)

where wγ will be specified later, after which the third equation serves as the definition for zγ .

Combining the SPDE (3.2) for u, the definition (3.45) of vγ , and (3.14) now gives the SPDE for vγ .

dvγ =du(t, x)− dTσγ(t)û(t, x)
=D∆u(t, x)dt+ f(u(t, x))dt+ σdW (t, x) (3.47)

+ σ[Tσγ(t)∇cû(t, x)]R−θ(t)γ̇(t)dt− Tσγ(t)dû(t, x).

We use (3.1) to find

Tσγ(t)dû(t, x) = Tσγ(t)[∆û(t, x) + f(û(t, x))]dt

= ∆Tσγ(t)û(t, x)dt+ Tσγ(t)f(û(t, x))dt.

Substituting this back into (3.47) gives

dvγ =D∆u(t, x)dt+ f(u(t, x))dt+ σdW (t, x)

+ σ[Tσγ(t)∇cû(t, x)]R−θ(t)γ̇(t)dt

−∆Tσγ(t)û(t, x)dt− Tσγ(t)f(û(t, x))dt,

after which we rearrange some terms and use (3.45) to recombine the terms affected by ∆ to find

dvγ =D∆vγ(t, x)dt

+ σ[Tσγ(t)∇cû(t, x)]R−θ(t)γ̇(t)dt+ σdW (t, x)

+ f(u(t, x))dt− Tσγ(t)f(û(t, x))dt.

Finally, add and subtract [Tσγ(t)f ′(û(t, x))]vγ(t, x)dt to get

dvγ =D∆vγ(t, x)dt+ [Tσγ(t)f ′(û(t, x))]vγ(t, x)dt (3.48)
+ σ[Tσγ(t)∇cû(t, x)]R−θ(t)γ̇(t)dt+ σdW (t, x)

+ f(u(t, x))dt− Tσγ(t)f(û(t, x))dt− [Tσγ(t)f ′(û(t, x))]vγ(t, x)dt.

Now define the linear operator

Lt,γϕ = D∆ϕ(x) + [Tγ(t)f ′(û(t, x))]ϕ(x) (3.49)

and the nonlinear term

Rγ = f(u(t, x))− Tσγ(t)f(û(t, x))− [Tσγf ′(û(t, x))]vγ(t, x). (3.50)

We also introduce

Ltϕ(x) := ∆ϕ(x) + f ′(û(t, x))ϕ(x), (3.51)
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and observe that Lt = Lt,0. By a direct computation, we find the following relation between Lt and
L#.

(∂t − Lt)
(3.32)
= TRωt

(∂t − L#)TR−ωt
.

Using assumption 3.1.10 and the identity ∂tP
#
t−t′ = L#P#

t−t′ , we also derive

(∂t − L#)P#
t−t′ = 0

TRωt
(∂t − L#)TR−ωt

TRωt
P#
t−t′TR−ωt′ = 0

(∂t − Lt)TRωtP
#
t−t′TR−ωt′ = 0.

Now define

Pt,t′ := TRωt
P#
t−t′TR−ωt′ , (3.52)

and observe that Pt,sPs,r = Pt,r to conclude that Pt,t′ is an evolution family on H generated by Lt.

With this notation (3.48) simplifies to

dvγ =Lt,σγ(t)vγ(t, x)dt
+ σ[Tσγ(t)∇cû(t, x)]R−θ(t)γ̇(t)]dt+ σdW (t, x) (3.53)
+Rγdt.

We now linearize (3.53), set γ (but not γ̇) to zero and scale out σ to obtain the SPDE for the
linearization wγ .

dwγ = Ltwγ(t, x)dt+ [∇cû(t, x)]γ̇(t)dt+ dW (t, x). (3.54)

In the next section we show that σwγ is a good approximation to vγ .

Finally we choose the following initial conditions for u and wγ :

u(0, x) = û(0, x) + σv0(x)

wγ(0, x) = v0(x)

where v0 is some fixed vector in H. The reason we choose these initial conditions is to make sure
that

1. wγ is independent of σ

2. the approximation u(t, x) ≈ Tσγ(t)û(t, x) + σwγ(t, x) is exact at time 0.

The second property is easily verified using (3.45), remembering that we initially assumed γ(0) = 0.

3.2 Multiscale expansion
Now we formulate the first main result.
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Theorem 3.2.1. (a) Let

γ(t) =

 θ(t)
b1(t)
b2(t)


be a progressively measurable stochastic process which is almost surely differentiable, satisfies γ(0) = 0
and

E
[
sup
t∈[0,T ]

|γ(t)|2
]
= Cγ <∞. (3.55)

Let u(t, x) be the solution to (3.2) with initial condition u(0) = u∗ + σv0. Then equation (3.54) with
initial condition wγ(0) = v0 has a unique mild solution in C([0, T ];H2), given by

wγ(t, x) = Pt,0v0 + TRωt
[∇cu

∗]Rωtγ(t) +

∫ t

0

Pt,t′dW (t′). (3.56)

(b) Let q ∈ (0, 12 ). Define the stopping times

τq,σ,γ := inf({t ∈ [0, T ] : |γ(t)| ≥ σ−q}) ∧ T (3.57)

τq,σ,v := inf({t ∈ [0, T ] : ∥v(t, x)∥H2 ≥ σ1−q}) ∧ T
Tq,σ,γ := τq,σ,γ ∧ τq,σ,v (3.58)

as well as

u(t, x) =: Tσγ(t)û(t, x) + σwγ(t, x) + zγ(t, x). (3.59)

Then we have the estimate

sup
t∈[0,Tq,σ,γ ]

∥zγ(t, x)∥H2 ≤ Cσ2−2q, (3.60)

for a constant C independent of γ, σ.

(c) For sufficiently small σ,

P
[
Tq,σ,γ = T

]
≥ 1− C(1 + Cγ)σ

2q, (3.61)

with Cγ as in part (a), for a constant C independent of σ, γ.

3.2.1 Mild solution
We begin with the proof of (a). By theorem 2.6.9 we straightforwardly have existence and uniqueness
of a mild solution to (3.54) given by

wγ(t, x) = Pt,0v0 +

∫ t

0

Pt,t′ [∇cû(t
′, x)]γ̇(t′)dt′ +

∫ t

0

Pt,t′dW (t′, x). (3.62)
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It is possible to simplify the middle term. To do this we evaluate

Pt,t′ [∇cû(t
′, x)]γ̇(t′)

(3.52)
= TRωtP

#
t−t′TR−ωt′ [∇cû(t

′, x)]γ̇(t′)

(3.21)
= TRωtP

#
t−t′ [∇cTR−ωt′ û(t

′, x)]Rωt′ γ̇(t
′)

(3.6)
= TRωt

P#
t−t′ [∇cu

∗]Rωt′ γ̇(t
′)

(3.35)
= TRωt

[∇cu
∗]Rω(t−t′)Rωt′ γ̇(t

′)

= TRωt
[∇cu

∗]Rωtγ̇(t
′).

Substituting this into (3.62) gives

wγ(t, x) = Pt,0v0 +

∫ t

0

TRωt
[∇cu

∗]Rωtγ̇(t
′)dt′ +

∫ t

0

Pt,t′dW (t′, x).

By linearity, we can now integrate the middle term (notice that only γ̇ depends on the integration
variable) and use γ(0) = 0 to find

wγ(t, x) = Pt,0v0 + TRωt [∇cu
∗]Rωtγ(t) +

∫ t

0

Pt,t′dW (t′, x),

which is equal to (3.56).

3.2.2 Estimate for zγ

We now prove part (b). Throughout the remainder of this section, the symbol A ≲ B will mean
A ≤ CB for some constant C depending only on f and u∗. By rewriting equations (3.45) and (3.46)
we find that zγ(t, x) = vγ(t, x) − σwγ(t, x). Therefore we can combine equations (3.53) and (3.54)
to find the SPDE (which turns out to be a PDE) satisfied by z:

dzγ = dvγ − σdwγ

= Lt,σγ(t)vγdt+ σTσγ(t)[∇cû(t, x)]R−σθ(t)γ̇(t)dt+ σdW (t, x) +Rγ(t, x)dt

− σLtwγ(t, x)dt− σ[∇cû(t, x)]γ̇(t)dt− σdW (t, x).

Using the identity Lt,γϕ = Ltϕ+[Tγf ′(û(t, x))− f ′(û(t, x))]ϕ (which follows from (3.49) and (3.51))
and rearranging the terms gives

dzγ(t, x) =Ltzγ(t, x)dt
+ [Tσγ(t)f ′(û(t, x))− f ′(û(t, x))]vγ(t, x)dt

+ σ
[
Tσγ(t)[∇cû(t, x)]R−σθ(t)γ̇(t)− [∇cû(t, x)]γ̇(t)

]
dt

+Rγdt

=:Ltzγ(t, x) + T1dt+ T2dt+ T3dt. (3.63)

We also establish the preliminary estimates

sup
t∈[0,Tq,σ,γ ]

∥
∫ t

0

S(t− t′)T (t′)dt′∥H2 ≤MT sup
t∈[0,Tq,σ,γ ]

∥T (t)∥H2 , (3.64)
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and

∥vγ(t, x)∥H2 ≤ ∥vγ(t, x)− v(t.x)∥H2 + ∥v(t.x)∥H2

(3.44)(3.45)
= ∥Tσγ(t)û(t, x)− û(t, x)∥H2 + ∥v(t.x)∥H2

(3.28)
≲ σ|γ(t)|+ ∥v(t, x)∥H2 ,

which further implies

sup
t∈[0,Tq,σ,γ ]

∥vγ(t, x)∥H2 ≲ σ1−q (3.65)

by definition (3.58). By the same definition, it holds trivially that

sup
t∈[0,Tq,σ,γ ]

|γ(t)| ≤ σ−q. (3.66)

Before we proceed, we remark that assumption 3.1.14 justifies all our uses of Taylor’s theorem and
Lipschitz continuity of f and its derivatives.

T1

First we estimate

T1 = [Tσγ(t)f ′(û(t, x))− f ′(û(t, x))]vγ(t, x).

Using lemma 6.2.4 we immediately get

∥T1∥H2 ≤ ∥Tσγ(t)f ′(û)− f ′(û)∥H2∥vγ∥H2 , (3.67)

where we have again suppressed the dependence on t and x. Thus it suffices to estimate

T1,1 := Tσγ(t)f ′(û)− f ′(û) = f ′(Tσγ(t)û)− f ′(û)

= f ′(ψ2)− f ′(ψ1), (3.68)

where we have abbreviated ψ1(t, x) = û and ψ2 = Tσγ(t)û(t, x) to ease the notation. The reasoning
behind equation (3.92) also result in

∥ψ1(t, x)∥H2 = ∥ψ2(t, x)∥H2 = ∥u∗(x)∥H2 . (3.69)

By Lipschitz continuity of f ′, we immediately get

|T1,1| ≲ |ψ2 − ψ1|

pointwise. Taking the L2 norm gives

∥T1,1∥L2 ≲ ∥ψ2 − ψ1∥L2 ≤ ∥ψ2 − ψ1∥H2 (3.70)

Next we estimate the first derivative. Let i ∈ {1, 2}. Taking the xi-derivative of (3.68) gives

∂xiT1,1 = f ′′(ψ2)∂xiψ2 − f ′′(ψ1)∂xiψ1. (3.71)
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Adding and subtracting f ′′(ψ2)∂xiψ1 and taking absolute values gives

|∂xi
T1,1| ≤|f ′′(ψ2)∂xi

ψ2 − f ′′(ψ2)∂xi
ψ1|

+ |f ′′(ψ2)∂xi
ψ1 − f ′′(ψ1)∂xi

ψ1|

pointwise. By boundedness and Lipschitz continuity of f ′′, we now have

|∂xi
T1,1| ≲ |∂xi

ψ2 − ∂xi
ψ1|+ |ψ2 − ψ1||∂xi

ψ1|.

Next we take the L2 norm and use lemma 6.2.2 to find

∥∂xi
T1,1∥L2 ≲∥∂xi

ψ2 − ∂xi
ψ1∥L2 + ∥ψ2 − ψ1∥L∞∥∂xi

ψ1∥L2

≲∥ψ2 − ψ1∥H2 + ∥ψ2 − ψ1∥H2∥ψ1∥H2

≲∥ψ2 − ψ1∥H2 , (3.72)

where we have additionally used (3.69) for the final step.

Now we estimate the second derivative. Let j ∈ {1, 2} and take the xj-derivative of (3.71) to
find

∂xixjT1,1 =f ′′′(ψ2)∂xiψ2∂xjψ2 + f ′′(ψ2)∂xixjψ2

− f ′′′(ψ1)∂xiψ1∂xjψ1 − f ′′(ψ1)∂xixjψ1.

Rearrange the terms, and add and subtract

f ′′′(ψ2)∂xi
ψ2∂xj

ψ1 + f ′′′(ψ2)∂xi
ψ1∂xj

ψ1 + f ′′(ψ2)∂xixj
ψ1

to get

∂xixj
T1,1 =f ′′′(ψ2)∂xi

ψ2∂xj
ψ2 − f ′′′(ψ2)∂xi

ψ2∂xj
ψ1

+ f ′′′(ψ2)∂xi
ψ2∂xj

ψ1 − f ′′′(ψ2)∂xi
ψ1∂xj

ψ1

+ f ′′′(ψ2)∂xi
ψ1∂xj

ψ1 − f ′′′(ψ1)∂xi
ψ1∂xj

ψ1

+ f ′′(ψ2)∂xixj
ψ2 − f ′′(ψ2)∂xixj

ψ1

+ f ′′(ψ2)∂xixj
ψ1 − f ′′(ψ1)∂xixj

ψ1.

Taking absolute values and using boundedness of f ′′′ and Lipschitz continuity of f ′′, we get

|∂xixj
T1,1| ≲|∂xi

ψ2||∂xj
ψ2 − ∂xj

ψ1|
+ |∂xi

ψ2 − ∂xi
ψ1||∂xj

ψ1|
+ |ψ2 − ψ1||∂xi

ψ1∂xj
ψ1|

+ |∂xixj
ψ2 − ∂xixj

ψ1|
+ |ψ2 − ψ1||∂xixj

ψ1|

pointwise. Take the L2 norm and use lemma 6.2.3 for the first and second line, and lemma 6.2.2 for
the third and fifth line to find

∥∂xixjT1,1∥L2 ≲∥ψ2∥H2∥ψ2 − ψ1∥H2

+ ∥ψ2 − ψ1∥H2∥ψ1∥H2

+ ∥ψ2 − ψ1∥H2∥ψ1∥2H2

+ ∥ψ2 − ψ1∥H2

+ ∥ψ2 − ψ1∥H2∥ψ1∥H2 .
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Using (3.69), this estimate immediately simplifies to

∥∂xixjT1,1∥L2 ≤ ∥ψ2 − ψ1∥H2 . (3.73)

Combining (3.70), (3.72) and (3.73) now gives

∥T1,1∥H2 ≲ ∥ψ2 − ψ1∥H2 .

Looking back at the definitions for ψ1 and ψ2, we see that ψ2 = Tσγψ1. Therefore we have

∥T1,1∥H2 ≲ ∥ψ2 − ψ1∥H2 = ∥Tσγψ1 − ψ1∥H2

(3.28)
≲ σ|γ|.

Finally, substituting this back into (3.67) gives

∥T1(t)∥H2 ≲ σ|γ(t)|∥vγ∥H2 .

Combining this with (3.64), (3.65) and (3.66), we immediately get

sup
t∈[0,Tq,σ,γ ]

∥
∫ t

0

Pt,t′T1(t
′, x)dt′∥H2 ≲ σ2−2q. (3.74)

T2

Now we estimate the convolution with

T2 := σ
(
Tσγ(t)[∇cû]R−σθ(t)γ̇(t)− [∇cû]γ̇(t)

)
.

The main difficulty with this term is that T2 depends linearly on γ̇, but our assumptions only gives
a bound on γ. To remedy this, we introduce the quantity

S2 := Tσγ(t)û(t, x)− û(t, x) + [∇cû]σγ(t). (3.75)

Looking back at (3.14), we see that (3.75) is analogous to a first-order Taylor expansion of Tσγ û in γ.

We now apply ∂t + ω∂ψ to S2. To keep things readable, we examine the terms separately. For
the middle term of (3.75), we immediately have

(∂t + ω∂ψ)û(t, x) = (∂t + ω∂ψ)u
∗(R−ωtx) = 0. (3.76)

For the third term of (3.75), we use the product rule and (3.15) to find

(∂t + ω∂ψ)[∇cû]σγ(t) =σγ(t)
[
∇c

(
(∂t + ω∂ψ)û

)]
(3.77)

+ [∇cû]σγ̇(t)

+ ω[∇û]Rπ/2σb(t)
(3.76)
= [∇cû]σγ̇(t)

− ω∇û ·Rπ/2σb(t).
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For the first term of (3.75), we use (3.14) and (3.20) to find

(∂t + ω∂ψ)Tσγ(t)û =Tσγ(t)[(∂t + ω∂ψ)û] (3.78)
− Tσγ(t)[∇cû]R−σθ(t)σγ̇(t)

+ ωTσγ(t)[∇û]Rπ/2R−σθ(t)σb(t)

(3.76)
= − Tσγ(t)[∇cû]R−σθ(t)σγ̇(t)

+ ωTσγ(t)[∇û]Rπ/2R−σθ(t)σb(t).

Combining (3.76), (3.78) and (3.77) we find

(∂t + ω∂ψ)S2 =− Tσγ(t)[∇cû]R−σθ(t)σγ̇(t)

+ [∇cû]σγ̇(t)

+ ωTσγ(t)[∇û]Rπ/2R−σθ(t)σb(t)

− ω[∇û]TRπ/2σb(t)
=− T2 + ωTσγ(t)[∇û]Rπ/2R−σθ(t)σb(t)− ω[∇û]Rπ/2σb(t)
=:− T2 + T2,1,

where the last line serves as the definition for T2,1. Thus, if we define T2,2 := (∂t + ω∂ψ)S2 we get

T2 = T2,1 − T2,2, (3.79)

and it suffices to estimate T2,1 and T2,2 separately. To estimate T2,1, we add and subtract ωTσγ(t)[∇û]Rπ/2σb(t)
to find

T2,1 =ωTσγ(t)[∇û]Rπ/2R−σθ(t)σb(t)− ω[∇û]Rπ/2σb(t)
=ωTσγ(t)[∇û]Rπ/2R−σθ(t)σb(t)− ωTσγ(t)[∇û]Rπ/2σb(t)
+ ωTσγ(t)[∇û]Rπ/2σb(t)− ω[∇û]Rπ/2σb(t).

Taking the H2-norm and using the triangle inequality we get

∥T2,1∥H2 ≤ ωσ∥Tσγ(t)∇û∥H2∥Rπ/2∥L(R2)∥R−σθ(t) − I∥L(R2)|b|
+ ωσ∥(Tσγ(t) − I)∇û∥H2∥Rπ/2∥L(R2)|b|
≲ σ2|γ|2,

because θ → Rθ is Lipschitz continuous and we have used equation (3.28). Combining this with
(3.64) and (3.66), we immediately get

sup
t∈[0,Tq,σ,γ ]

∥
∫ t

0

Pt,t′T2,1(t
′, x)dt′∥H ≲ σ2−2q. (3.80)

For T2,2, we apply the evolution family to get

−
∫ t

0

Pt,t′T2,2(t
′)dt′ =

∫ t

0

Pt,t′(∂t′ + ω∂ψ)S2(t
′)dt′

=Pt,tS2(t)− Pt,0S2(0) (3.81)

+

∫ t

0

Pt,t′(Lt′ + ω∂ψ)(S2(t
′))dt′,
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where we have used the identity

∂t′(Pt,t′f(t
′)) = Pt,t′∂t′f(t

′) + (∂t′Pt,t′)f(t
′)

(2.6)
= Pt,t′∂t′f(t

′)− (Pt,t′Lt′)f(t′)

to integrate by parts. From (3.75) we see that S2(0) = 0, since γ(0) = 0 by assumption. Furthermore,
Pt,t is the identity. Therefore, (3.81) simplifies to

−
∫ t

0

Pt,t′T2,2(t
′)dt′ = S2(t) +

∫ t

0

Pt,t′(Lt′ + ω∂ψ)(S2(t
′))dt′. (3.82)

From equation (3.51) we now see that Lt is bounded (uniformly in t) when considered as an operator
from the space H4,1 (recall definition 3.1.3) to H2. Therefore we may estimate

∥Lt′ + ω∂ψS2(t
′)∥H2 ≲ ∥S2(t

′)∥H4,1

(3.29)(3.75)
≲

3∑
j=0

|σγ|j+2. (3.83)

Trivially, we also have

∥S2(t)∥H2

(3.29)(3.75)
≲ ∥S2(t)∥H4,1 ≲

3∑
j=0

|σγ|j+2. (3.84)

Combining (3.82), (3.83) and (3.84) we find that

∥
∫ t

0

Pt,t′T2,2(t
′)dt′∥ ≲

3∑
j=0

|σγ|j+2.

Thus, by (3.66) we get

sup
t∈[0,Tq,σ,γ ]

∥
∫ t

0

Pt,t′T2,2(t
′)dt′∥ ≲ σ2−2q (3.85)

for σ ≤ 1.

T3

Recalling equation (3.50), we have

T3(t, x) = Rγ(t, x) = f(u(t, x))− Tσγ(t)f(û(t, x))− [Tσγ(t)f ′(û(t, x))]vγ(t, x)
= f(u(t, x))− f(Tσγ(t)û(t, x))− f ′(Tσγ(t)û(t, x))vγ(t, x).

Now we fix some t, and write ϕ(x) = vγ(t, x) and ψ(x) = Tσγ(t)û(t, x). Recalling (3.45) we see we
can write T3 as

T3 = f(ψ + ϕ)− f(ψ)− f ′(ψ)ϕ, (3.86)

where we have suppressed the x and t dependence of T3, ϕ and ψ. We will continue to do so whenever
possible. We can apply Taylor’s theorem so that

|T3(x)| ≲ |ϕ(x)|2.
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pointwise. Taking the L2 norm on both sides and using lemma 6.2.2 immediately gives

∥T3∥L2 ≲ ∥ϕ2∥L2 ≲ ∥ϕ2∥H2 ≲ ∥ϕ∥2H2 . (3.87)

Next find a bound on the first derivative. In the following derivation, let i ∈ {1, 2}. Taking the
xi-derivative of (3.86) and using the chain rule gives

∂xi
T3 = f ′(ψ + ϕ)(∂xi

ψ + ∂xi
ϕ)− f ′(ψ)(∂xi

ψ + ∂xi
ϕ)− f ′′(ψ)ϕ∂xi

ψ (3.88)
= (f ′(ψ + ϕ)− f ′(ψ)− f ′′(ψ)ϕ)∂xi

ψ + (f ′(ψ + ϕ)− f ′(ψ))∂xi
ϕ.

We use Taylor’s theorem on the first term, and Lipschitz continuity of f ′ on the second term to get

|∂xiT3| ≲ |ϕ|2∂xiψ + |ϕ||∂xiϕ|.

pointwise. Now take the L2 norm, and use lemma 6.2.2 on both terms to find

∥∂xiT3∥L2 ≲ ∥ϕ∥2L∞∥∂xi
ψ∥L2 + ∥ϕ∥L∞∥∂xi

ϕ∥L2

≲ ∥ϕ∥2H2(1 + ∥ψ∥H2). (3.89)

Next we estimate the second derivative. Let i, j ∈ {1, 2, 3}. Then taking the xj-derivative of (3.88)
gives

∂xixjT3 =f ′′(ψ + ϕ)(∂xiψ + ∂xiϕ)(∂xjψ + ∂xjϕ)

+ f ′(ψ + ϕ)(∂xixjϕ+ ∂xixjψ)

− f ′′(ψ)(∂xiψ + ∂xiϕ)∂xjψ − f ′(ψ)(∂xixjψ + ∂xixjϕ)

− f ′′′(ψ)ϕ∂xiψ∂xjψ − f ′′(ψ)∂xjϕ∂xiψ − f ′′(ψ)ϕ∂xixjψ.

Now rearrange these terms to get

∂xixj
T3 =(f ′′(ψ + ϕ)− f ′′(ψ)− f ′′′(ψ)ϕ)∂xi

ψ∂xj
ψ

+ (f ′(ψ + ϕ)− f ′(ψ))∂xixj
ϕ

+ (f ′′(ψ + ϕ)− f ′′(ψ))(∂xi
ϕ∂xj

ψ + ∂xj
ϕ∂xi

ψ)

+ f ′′(ψ + ϕ)∂xi
ϕ∂xj

ϕ

+ (f ′(ψ + ϕ)− f ′(ψ)− f ′′(ψ)ϕ)∂xixj
ψ.

We estimate ∂xixj
T3 by applying Taylor’s theorem to the first and fifth line, and Lipschitz continuity

of f ′ and f ′′ to the second and third line, and boundedness of f ′′ to the fourth line. This gives

|∂xixj
| ≲|ϕ|2|∂xi

ψ||∂xj
ψ|

+ |ϕ||∂xixj
ϕ|

+ |ϕ|(|∂xi
ϕ||∂xj

ψ|+ |∂xj
ϕ||∂xi

ψ|)
+ |∂xi

ϕ||∂xj
ϕ|

+ |ϕ|2|∂xixjψ|.

Taking the L2 norm, and using Hölder’s inequality we get

∥∂xixj
T3||L2 ≲∥ϕ∥2L∞∥∂xi

ψ∂xj
ψ∥L2

+ ∥ϕ∥L∞∥∂xixj
ϕ∥L2

+ ∥ϕ∥L∞(∥∂xi
ϕ∂xj

ψ∥L2 + ∥∂xj
ϕ∂xi

ψ∥L2)

+ ∥∂xi
ϕ∂xj

ϕ∥L2

+ ∥ϕ∥2L∞∥∂xixj
ψ||L2 .

33



Now applying lemmas 6.2.2 and 6.2.3 gives

∥∂xixj
T3||L2 ≲∥ϕ∥2H2(1 + ∥ψ∥H2 + ∥ψ∥2H2). (3.90)

Combining (3.87), (3.89) and (3.90), now gives

∥T3∥H2 ≲ ∥ϕ∥2H2(1 + ∥ψ∥H2 + ∥ψ∥2H2). (3.91)

Recalling our definition for ψ as well as equation (3.6), we find

∥ψ∥H2 = ∥Tσγ û(t, x)∥H2 = ∥T(σγ)Rωt
u∗∥H2 = ∥u∗∥H2 , (3.92)

because T(σγ)Rωt
is an isometry. Substituting back our original definition ϕ = vγ(t, x) into (3.91)

and using (3.92) gives

∥T3(t, x)∥H2 ≲ ∥vγ(t, x)∥2H2 .

Combining this with (3.64) and (3.65), we immediately get

sup
t∈[0,Tq,σ,γ ]

∥
∫ t

0

Pt,t′T3(t
′, x)dt′∥H ≲ σ2−2q. (3.93)

3.2.3 Combination of estimates
Now we combine all our estimates to estimate zγ . Combining equation (3.63) with (3.79) we see
that

dzγ(t, x) = Ltzγ(t, x) + T1dt+ T2,1dt+ T2,2dt+ T3dt.

Also note that by our choice of initial conditions for u and wγ , we have zγ(0) = 0. Thus zγ has a
mild solution given by

zγ(t, x) =

∫ t

0

Pt,t′T1(t
′)dt′ +

∫ t

0

Pt,t′T2,1(t
′)dt′

+

∫ t

0

Pt,t′T2,2(t
′)dt′ +

∫ t

0

Pt,t′T3(t
′)dt′.

Applying the triangle inequality, taking the supremum and using our estimates (3.74), (3.80), (3.85),
and (3.93), we find

sup
t∈[0,Tq,σ,γ ]

∥zγ(t)∥H2 ≲ σ2−2q.

3.2.4 Convergence of stopping time
Now we show part (c) of theorem 3.2.1. We first split up the probability using (3.58) to get

P
[
Tq,σ,γ < T

]
≤ P

[
τq,σ,γ < T

]
+ P

[
{τq,σ,γ = T} ∩ {τq,σ,v < T}

]
(3.94)

which is implied by the set-theoretic identity

(A ∩B)c = (Ac ∩B) ∪Bc
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combined with subadditivity of P and (3.58). To estimate the first probability we use Markov’s
inequality:

P
[
τq,σ,γ < T

]
≤ P

[
sup
t∈[0,T ]

|γ(t)| ≥ σ−q
]

≤ P
[
sup
t∈[0,T ]

|γ(t)|2 ≥ σ−2q
]

≤ σ2qE
[
sup
t∈[0,T ]

|γ(t)|2
]

(3.55)
≤ σ2qCγ , (3.95)

For the second probability we abbreviate {τq,σ,γ = T} ∩ {τq,σ,v < T} =: E. By combining equations
(3.44) and (3.46) and rearranging we get

v(s) = Tσγ(t)û(s)− û(s) + σwγ(s) + zγ(s).

Taking the H2-norm, using the triangle inequality and equation (3.28) then gives

∥v(s)∥H2 ≤ σC ′|γ(s)|+ σ∥wγ(s, x)∥H2 + ∥zγ(s)∥H2 (3.96)

for some C ′ depending only on u∗. Notice that on E we have τq,σ,v = Tq,σ,γ by (3.58), which implies

∥zγ(τq,σ,v)∥H2 ≤ sup
t∈[0,Tq,σ,γ ]

∥zγ(t)∥H2

(3.60)
≤ Cσ2−2q,

by part (b) of theorem 3.2.1. Since τq,σ,v < T , we also have ∥v(τq,σ,v)∥H2 = σ1−q. Substituting
τq,σ,v for s into (3.96) gives that

σ1−q ≤ σC ′|γ(τq,σ,v)|+ σ∥wγ(τq,σ,v, x)∥H2 + Cσ2−2q

holds on E. We rearrange this to

C ′|γ(τq,σ,v)|+ ∥wγ(τq,σ,v, x)∥H2 ≥ σ−q(1− Cσ1−q).

Then a fortiori, E implies

sup
t∈[0,T ]

(
C ′|γ(t)|+ ∥wγ(t, x)∥H2

)
≥ σ−q(1− Cσ1−q)

which means that

P[E] ≤ P
[
sup
t∈[0,T ]

C ′|γ(t)|+ ∥wγ(t, x)∥H2 ≥ σ−q(1− Cσ1−q)
]

= P
[
sup
t∈[0,T ]

(C ′|γ(t)|+ ∥wγ(t, x)∥H2)2 ≥ σ−2q(1− Cσ1−q)2
]

≤ σ2q

(1− Cσ1−q)2
E
[
sup
t∈[0,T ]

(C ′|γ(t)|+ ∥wγ(t, x)∥H2)2
]

≲
σ2q

(1− Cσ1−q)2

(
E
[
sup
t∈[0,T ]

|γ(t)|2
]
+ E

[
sup
t∈[0,T ]

∥wγ(t, x)∥2H2

])
.

(3.55)
=

σ2q

(1− Cσ1−q)2

(
Cγ + E

[
sup
t∈[0,T ]

∥wγ(t, x)∥2H2

])
, (3.97)
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where we have used Markov’s inequality and Young’s inequality for the intermediate steps. Applying
theorem 2.6.6 to equation (3.56), we see that

E
[
sup
t∈[0,T ]

∥wγ(t, x)∥2H2

]
<∞. (3.98)

Substituting back our definition for E into (3.97) and using (3.98) we get

P
[
{τq,σ,γ = T} ∩ {τq,σ,v < T}

]
≲ (1 + Cγ)σ

2q, (3.99)

for σ sufficiently small. Combining (3.94), (3.95) and (3.99) then gives

P
[
Tq,σ,γ < T

]
≲ (1 + Cγ)σ

2q

which is the desired estimate (3.61).

3.3 Immediate relaxation
We take a closer look at the mild solution for wγ . We repeat equation (3.56) here.

wγ(t, x) = Pt,0v0 + TRωt [∇cu
∗]Rωtγ(t) +

∫ t

0

Pt,t′dW (t′).

We will split wγ up into two parts: one part which lies in the center space, and one part comple-
mentary to the center space. The part complementary to the center space will be estimated using
theorem 3.1.16, and the part in the center space is minimized by choosing γ appropriately.

Using the identities

I
(3.36)
= Π#,c +Π#,

I
(3.36),(3.37),(3.38)

= ΠcRωt
+ΠRωt

,

we get

wγ = Pt,0Π
#v0 +

∫ t

0

Pt,t′ΠRωt′dW (t′, x)

+ Pt,0Π
#,cv0 +

∫ t

0

Pt,t′Π
c
Rωt′

dW (t′, x) (3.100)

+ TRωt
[∇cu

∗]Rωtγ(t).
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Now we rewrite the middle term of (3.100). We compute

Pt,0Π
#,cv0 +

∫ t

0

Pt,t′Π
c
Rωt′

dW (t′, x)

(3.37),(3.52)
= TRωt

P#
t Π#,cv0 +

∫ t

0

TRωt
P#
t−t′Π

#,cTR−ωt′dW (t′, x)

(3.42)
= TRωtP

#
t [∇cu

∗]B−1Pv0 +
∫ t

0

TRωtP
#
t−t′ [∇cu

∗]B−1PTR−ωt′dW (t′)

(3.35)
= TRωt [∇cu

∗]RωtB
−1Pv0 +

∫ t

0

TRωt [∇cu
∗]Rω(t−t′)B

−1PTR−ωt′dW (t′)

= TRωt
[∇cu

∗]Rωt

[
B−1Pv0 +

∫ t

0

R−ωt′B
−1PTR−ωt′dW (t′)

]
. (3.101)

We now define w∞ and γ∞ as follows:

w∞(t) := Pt,0Π
#v0 +

∫ t

0

Pt,t′ΠRωt′dW (t′), (3.102)

γ∞(t) := −B−1Pv0 −
∫ t

0

R−ωt′B
−1PTR−ωt′dW (t′). (3.103)

Notice that we have

ΠcRωt
w∞(t)

(3.102)
= ΠcRωt

Pt,0Π
#v0 +

∫ t

0

ΠcRωt
Pt,t′ΠRωt

dW (t′)

(3.37),(3.81)
= TRωt

Π#,cP#
t Π#v0 +

∫ t

0

TRωt
Π#,cP#

t−t′Π
#TR−ωt′dW (t′)

=
(3.37),(3.81)

= TRωt
P#
t Π#,cΠ#v0 +

∫ t

0

TRωt
P#
t−t′Π

#,cΠ#TR−ωt′dW (t′)

= 0, (3.104)

since Π#,c and Π# are projections which satisfy (3.36). Using the substitutions (3.101), (3.102) and
(3.103), we see (3.100) simplifies to

wγ(t) = w∞(t) + TRωt
[∇cu

∗]Rωt(γ(t)− γ∞(t)). (3.105)

If we can show that wγ is small, we obtain stability of the rotating wave using theorem 3.2.1.
With (3.104), we will be able to estimate w∞(t) using theorem 3.1.16. This leaves only the term
proportional to γ(t)−γ∞(t). This term disappears if we choose γ = γ∞, but unfortunately this is not
possible since γ∞ does not satisfy the hypotheses of theorem 3.2.1, so the multiscale expansion does
not apply. Hence we construct a sequence of approximations γm which do satisfy these hypotheses,
and transfer the multiscale expansion to w∞ using a limiting argument.

3.3.1 Phase-lag
We create the approximations to γ∞ using the phase-lag method. For m > 0, define γm(t) as the
solution to the following first-order RODE:

γ̇m(t) = −m(γm(t)− γ∞(t)) (3.106)
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with initial conditions γm(0) = 0. By theorem 6.1.1 we have existence, uniqueness and progressive
measurability of γm. Also γm is differentiable and starts at zero by definition. From equation (3.106),
it is clear that γm will always ’chase after’ γ∞, at a rate depending on the parameter m. By theorem
6.1.1, we also have the solution representation:

γm(t) = m

∫ t

0

e−m(t−t′)γ∞(t′)dt′

(3.103)
= −m

∫ t

0

e−m(t−t′)
[
B−1Pv0 +

∫ t′

0

R−ωt′′B
−1PTR−ωt′′dW (t′′)

]
dt′

=− (1− e−mt)B−1Pv0

−m

∫ t

0

∫ t′

0

e−m(t−t′)R−ωt′′B
−1PTR−ωt′′dW (t′′)dt′

=− (1− e−mt)B−1Pv0

−m

∫ t

0

∫ t

t′′
e−m(t−t′)dt′R−ωt′′B

−1PTR−ωt′′dW (t′′)

=− (1− e−mt)B−1Pv0 (3.107)

−
∫ t

0

(1− e−m(t−t′′))R−ωt′′B
−1PTR−ωt′′dW (t′′).

Using the sequence γm, we will prove the the multiscale expansion for w∞.

3.3.2 Multiscale expansion for w∞

Theorem 3.3.1. (a) Let γm be defined as in equation (3.107). Then γm(t) is progressively measur-
able, differentiable, γm(0) = 0 and

E
[
sup
t∈[0,T ]

|γm(t)|2
]
≤ C∞, (3.108)

for some constant C∞ independent of m.

(b) Let q ∈ (0, 12 ). Let w∞ and γ∞ be defined as in (3.102) (3.103). Let u and τq,σ,v be as in
theorem 3.2.1, and define the additional stopping times

τq,σ,∞ := inf{t ∈ [0, T ] : |γ∞(t)| ≥ σ−q} ∧ T, (3.109)
Tq,σ,∞ := τq,σ,∞ ∧ τq,σ,v. (3.110)

Then we have the following multiscale expansion for u(t, x):

u(t, x) =: Tσγ∞ û(t, x) + σw∞(t, x) + z∞(t, x), (3.111)

where z∞ satisfies

sup
t∈[0,Tq,σ,∞]

∥z∞(t, x)∥H2 ≤ Cσ2−2q, (3.112)

where C is the same constant as in (3.60) (which is independent of σ).
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(c) The stopping time Tq,σ.∞ satisfies

P
[
Tq,σ,∞ = T

]
≥ 1− Cσ2q,

for some constant C independent of σ.

Proof. We have already shown all of part (a) except (3.108). By theorem 6.1.1 we have

E[ sup
t∈[0,T ]

|γm(t)|2]
(6.2)
≤ E[ sup

t∈[0,T ]

|γ∞(t)|2] = C∞, (3.113)

where we know C∞ <∞ from equation (3.103) and theorem 2.6.6. To show part (b), we make three
observations. Firstly, by theorem 6.1.1 we have

lim
m→∞

sup
t∈[δ,T ]

|γm(t)− γ∞(t)| (6.3)
= 0, (3.114)

and also

sup
t∈[0,τq,σ,∞]

|γm(t)|
(6.2)
≤ sup

t∈[0,τq,σ,∞]

|γ∞(t)| ≤ σ−q.

By definition of τq,σ,γm and τq,σ,∞, this implies

τq,σ,∞
(3.57),(3.109)

≤ τq,σ,γm ,

which further leads to

Tq,σ,∞
(3.58),(3.110)

≤ Tq,σ,γm . (3.115)

Secondly, from equation (3.105) we see that

∥wγm(t)− w∞(t)∥ ≤ C ′|γm(t)− γ∞(t)|, (3.116)

where C ′ < ∞ depends only on u∗. Thus, using equations (3.59) and (3.111) equal and using the
triangle inequality we find

∥z∞(t)∥ ≤ ∥zγm(t)∥+ σ∥wγm(t)− w∞(t)∥+ ∥Tσγm(t)û(t)− Tσγ∞(t)û(t)∥
(3.28),(3.116)

≤ ∥zγm(t)∥+ σC ′′|γm(t)− γ∞(t)|,

where C ′′ <∞ depends only on u∗. Taking the supremum over t ∈ [δ, Tq,σ,∞] we get

sup
t∈[δ,Tq,σ,∞]

∥z∞(t)∥ ≤ sup
t∈[δ,Tq,σ,∞]

(
∥zγm(t)∥+ σC ′′|γm(t)− γ∞(t)|

)
(3.115)
≤ sup

t∈[δ,Tq,σ,γm ]

(
∥zγm(t)∥+ σC ′′|γm(t)− γ∞(t)|

)
(3.60)
≤ Cσ2−2q + σC ′′ sup

t∈[δ,T ]

|γm(t)− γ∞(t)|,
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where C is the constant from (3.60). Note that our application of theorem 3.2.1 is justified by part
(a) of theorem 3.3.1. Since neither C nor C ′′ depends on m, we can let m tend to infinity and use
(3.114) to get

sup
t∈[δ,Tq,σ,∞]

∥z∞(t)∥ ≤ Cσ2−2q.

Choosing δ arbitrarily small we find

sup
t∈(0,Tq,σ,∞]

∥z∞(t)∥ ≤ Cσ2−2q.

The estimate also holds at the left endpoint since z∞ is continuous, as can be seen from (3.111).

Now we prove part (c). Applying part (c) of theorem 3.2.1 with γ ≡ 0 already gives

P
[
τq,σ,v < T

]
≤ Cσ2q, (3.117)

for some C <∞ independent of σ. Using Markov’s inequality we also get

P
[
τq,σ,∞ < T

]
(3.109)
= P

[
sup
t∈[0,T ]

|γ∞(t)| ≥ σ−q
]

≤ σ2qE
[
sup
t∈[0,T ]

|γ∞(t)|2
]

(3.113)
= Cσ2q, (3.118)

for some C < ∞ independent of m. After combining (3.110) with (3.117) and (3.118), part (c)
follows.

3.3.3 Stability and approximate minimization
Finally, we can prove orbital stability of the rotating wave by straightforwardly combining theorem
3.1.16 and theorem 3.3.1.

Proposition 3.3.2. Let w∞ be as in theorem 3.3.1. Then

E
[
∥w∞(t, x)∥2H2

]
≤ 2C2e−2at∥v0∥2H2 +

C2

a
(1− e−2at)∥Q1/2∥2L2

, (3.119)

where C and a are the constants from theorem 3.1.16.

Proof. First we compute

∥w∞(t, x)∥H2

(3.102)
≤ ∥Pt,0Π#v0∥H2 + ∥

∫ t

0

Pt,t′ΠRωt′dW (t′, x)∥H2

(3.38),(3.52)
= ∥TRωt

P#
t Π#v0∥H2 + ∥

∫ t

0

TRωt
P#
t−t′Π

#TR−ωt′dW (t′, x)∥H2

= ∥P#
t Π#v0∥H2 + ∥

∫ t

0

P#
t−t′Π

#TR−ωt′dW (t′, x)∥H2 ,
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where the final step is justified since Tγ is an isometry of H2. Taking the square, using (a + b)2 ≤
2a2 + 2b2 and taking the expectation gives

E
[
∥w∞(t, x)∥2

]
≤ 2∥P#

t Π#v0∥2 + 2E
[
∥
∫ t

0

P#
t−t′Π

#TR−ωt′dW (t′, x)∥2
]
. (3.120)

From theorem 3.1.16 we already have

∥P#
t Π#v0∥2

(3.43)
≤ C2e−2at∥v0∥2. (3.121)

Furthermore, applying Itô’s isometry to the second term of (3.120) gives

E
[
∥
∫ t

0

P#
t−t′Π

#TR−ωt′dW (t′, x)∥2
]

(2.10)
=

∫ t

0

∥P#
t−t′Π

#TR−ωt′Q
1/2∥2L2

dt′

≤ ∥TR−ωt′∥L(H)∥2Q1/2∥2L2(H2)

∫ t

0

∥P#
t−t′Π

#∥2L(H)dt
′

(3.43)
≤ C2∥∥Q1/2∥2L2(H2)

∫ t

0

e−2a(t−t′)dt′

=
C2

2a
∥∥Q1/2∥2L2(H2)(1− e−2at). (3.122)

Substituting (3.121) and (3.122) into (3.122) gives the desired estimate (3.119).

The multiscale expansion (3.111) combined with proposition 3.3.2 shows that the difference between
u(t) and Tγ∞(t)û is O(σ), which shows orbital stability. Next we show that γ∞ is a locally approx-
imately optimal value for the phase, to first order in σ. This notion is made exact in the following
proposition.

Proposition 3.3.3. Define

E : R3 → R
γ → ∥ΠcRωt

[u(t)− Tγ û(t)]∥2H2 .

Then σγ∞(t) is an approximate local minimizer of E, in the sense that

∇γE(γ)
∣∣∣
γ=σγ∞(t)

= o(σ),

and the Hessian

∇γ [∇γE(γ)]T
∣∣∣
γ=σγ∞

is strictly positive to first order in σ.

Proof. We compute

∇γ∥ΠcRωt
[u− Tγ û(t)]∥2H =

(
ΠcRωt

[u− Tγ û(t)],∇γΠ
c
Rωt

[u− Tγ û(t)]
)

(3.24)
= −

(
ΠcRωt

[u− Tγ û(t)],ΠcRωt
Tγ [∇cû]R−θ]

)
. (3.123)
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Evaluating this expression at γ = σγ∞(t) and using theorem 3.3.1.

∇γE(γ)
∣∣∣
γ=σγ∞(t)

(3.59)
= −

(
ΠcRωt

[σw∞(t) + z∞(t)],ΠcRωt
Tσγ∞(t)[∇cû]R−σθ∞(t)]

)
(3.104)
= −

(
ΠcRωt

[z∞(t)],ΠcRωt
Tσγ∞(t)[∇cû]R−σθ∞(t)]

)
(3.112)
= O(σ2−2q).

For the Hessian matrix, we transpose and differentiate (3.123) to find

∇γ [∇γ∥ΠcRωt
[u− Tγ û(t)]∥2H ]T

(3.24)
=

(
ΠcRωt

Tγ [∇cû]R−θ, (Π
c
Rωt

Tγ [∇cû]R−θ)
T
)

(3.124)

+
(
ΠcRωt

[u− Tγ û(t)],ΠcRωt
TγRθ∇c[∇cû]

TR−θ]
)
.

Evaluating at γ = σγ∞(t) and using theorem 3.2.1 again we see that(
ΠcRωt

[u− Tσγ∞(t)û(t)],Π
c
Rωt

Tσγ∞(t)Rσθ∞(t)∇c[∇cû]
TR−σθ∞(t)]

)
(3.111)
=

(
ΠcRωt

[σw∞(t) + z∞(t)],ΠcRωt
Tσγ∞(t)Rσθ∞(t)∇c[∇cû]

TR−σθ∞(t)]
)

(3.104)
=

(
ΠcRωt

z∞(t),ΠcRωt
Tσγ∞(t)Rσθ∞(t)∇c[∇cû]

TR−σθ∞(t)]
)

(3.112)
= O(σ2−2q).

Substituting this into (3.124) then gives

∇γ [∇γE(γ)]T
∣∣∣
γ=σγ∞(t)

=
(
ΠcRωt

Tγ [∇cû]R−θ, (Π
c
Rωt

Tγ [∇cû]R−θ)
T
)
+O(σ2−2q),

which shows the claim, since any matrix of the form vvt is positive definite.
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Chapter 4

Solitons

The nonlinear schrodinger (NLS) equation (4.1) is a well-known PDE modelling propagation of
waves in a nonlinear dispersive medium which has no dissipation.

du(t, x) = i∆u(t, x)dt+ iκ|u(t, x)|2u(t, x)dt. (4.1)

Equation (4.1) has many interpretations. For example, it can describe a classical field theory [45], a
wave envelope in a fiber optics system [8] [17], or a wave profile of a (deep) water wave [53]. We will
interpret (4.1) as a fiber optics equation. In this case, z(t, x) describes the complex amplitude of a
wave envelope of a pulse in a nonlinear dispersive medium, such as an optical fiber. In this context,
x represents a temporal variable while t represents the position along the fiber. Even though this
may seem unintuitive, we use this convention since it is convenient from a mathematical point of
view to interpret (4.1) as an evolution equation. As such, when we refer to ’time’ we mean the
spatial variable t and not the physical time. For a derivation of the NLS equation for laser pulses in
an isotropic medium, see [17].

An interesting feature of the NLS equation is that it supports solitary standing waves. This means
there exists solution of (4.1), called solitons, which are independent of t. Since t models a spatial
variable, this means the soliton has the same amplitude everywhere. Therefore it is possible for
there to be an extremely bright pulse throughout the whole fiber, a fact which has interesting opti-
cal applications.

However, realistic physical models almost always have dissipative properties. To model this, a term
proportional to u (with positive proportionality constant) may be added to (4.1). Unsurprisingly
this term makes it impossible for solitons to exist. To compensate for the dissipation, a mechanism
to induce a phase-sensitive amplification has been proposed [35]. This result in the parametrically
forced nonlinear schrodinger (PFNLS) equation, which takes the form

du = [i∆u− iδu− ϵ(γu− µu)]dt+ iκ|u|2udt. (4.2)

Here, the constant γ > 0 models the strength of the dissipation, and v > 0 and µ > 0 model the
amplification. Due to the amplification, the PFNLS equation supports soliton solutions depending
on the parameters δ,γ and µ. In particular, the strength of the amplification µ must be greater than
the dissipation γ [28].
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4.1 Preliminaries
Throughout chapter 4, we will write

Hk := Hk(R,C),
L2 := L2(R,C),
L∞ := L∞(R,C).

We also fix some stochastic basis (Ω,F ,P) along with a normal filtration Ft to be used throughout
these sections.

Let WH be a cylindrical Wiener process in L2 which is adapted to Ft and let Φ ∈ L(L2, H1).
We define the linear operator

A : ϕ→ i∆ϕ− iδϕ− ϵ(γu− µϕ),

and consider the following stochastic version of the PFNLS equation.

du = Audt+ 4i|u|2udt− 1

2
uFΦdt− iuΦdWH , (4.3)

where u takes values inH1. The term 1
2uFΦ arises from the need to convert between the Stratonovich

formulation of the SPDE (which is the correct one for the physical problem) and the Itô formulation
which we use. Here FΦ is defined as

FΦ(x) :=

∞∑
i=1

(Φei(x))
2, (4.4)

where ei is an orthonormal basis of L2. This definition is independent of the choice of basis. We
additionally require the following assumption on Φ.

Assumption 4.1.1. Φ is Hilbert-Schmidt as an operator from L2 to H1. Furthermore, Φ is γ-
radonifying from L2 to W 1,2+δ for some δ > 0.

The property of being γ-radonifying is analogous to being Hilbert-Schmidt when the codomain is a
Banach space.

With this assumption, it has been shown that (4.3) has a unique mild solution in the sense of
definition 2.6.8 [19].

4.1.1 Solitons
By a direct computation it can be verified that the deterministic equation (4.2) supports soliton
solutions given by

ûi,a(x) := eiθi

√
ω + ϵµ sin(2θi)

2
sech(

√
ω + ϵµ sin(2θi)(x− a)),

where θi ∈ [0, 2π) is a solution to cos(2θi) =
γ
µ [28]. The solitons are parametrized by i ∈ {1, 2} and

a ∈ R. The parameter i determines which of the two (possibly non-distinct) solutions for θi is used,
while a simply translates the soliton, and is present because (4.2) is translation invariant.
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We now fix some soliton u∗ to be used throughout the remainder of this thesis. Since u∗ is time-
independent and solves (4.2), it satisfies

Au∗ = −4i|u∗|2u∗. (4.5)

We will show stability of this soliton in the stochastic equation (4.3). However, it is not reasonable
to expect stability if the noise is large. Therefore, we introduce a parameter σ which controls
the strength of the noise, and replace Φ by σΦ in (4.3). Notice from (4.4) that FΦ then needs
to be replaced by σ2FΦ. We also define the Q-Wiener process W (t) = ΦWH(t). Making these
modifications to (4.3) we get the SPDE

du = Audt+ 4i|u|2udt− 1

2
σ2uFΦdt+ uσdW. (4.6)

4.1.2 Derivation of the SPDE
To show stability of the soliton u∗ in the stochastic PFNLS equation (4.6), we take the same ap-
proach as in the case of the rotating wave. For an overview of the strategy, see section 1.1.

Let u be a solution to (4.6), and let a(t) be a progressively measurable differentiable process starting
at 0. Now introduce the following three ways to write u:

u(t, x) =: u∗(x) + v(t, x) (4.7)
u(t, x) =: u∗(x+ σa(t)) + va(t, x) (4.8)
u(t, x) =: u∗(x+ σa(t)) + σwa(t, x) + za(t, x) (4.9)

with wa(t, x) being specified later, and the third line serving as a definition of za(t, x).
We will determine the SPDE satisfied by va, linearize it and scale out σ to obtain an SPDE which
will define wa. Firstly, from equation (4.8) we have va(t, x) = u(t, x) − u∗(x + σa(t)). Therefore,
taking the differential and using (4.6) we get

dva(t, x) =du− du∗(x+ a(t))

(4.6)
= Audt− 1

2
σ2FΦudt+ 4i|u|2udt+ uσdW − σȧ(t)u∗x(x+ a(t))dt

(4.8)
= Avadt−

1

2
σ2FΦudt+ 4i|u|2udt+ uσdW − σȧ(t)u∗x(x+ a(t))dt

+Au∗(x+ σa(t))dt

(4.5)
= Avadt−

1

2
σ2FΦudt+ uσdW − σȧ(t)u∗x(x+ a(t))dt (4.10)

+ 4i|u|2udt− 4i|u∗(x+ σa(t))|2u∗(x+ σa(t)).

We want to linearize this equation around u∗, thus we compute (temporarily abbreviating u∗(x+σ(t))
by u∗)

|u|2u− |u∗|2u∗ =(u∗ + v)(u∗ + v)(u∗ + v)− |u∗|2u∗

=(2|u∗|2v + (u∗)2v) (4.11)

+ 2u∗|v|2 + u∗v2)

+ |v|2v,
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where we have seperated the terms which are, first, second or third order in v. Multiplying (4.11)
by 4i and substituting into (4.10) we get

dva(t, x) =Avadt−
1

2
σ2FΦudt+ uσdW − σȧ(t)u∗x(x+ a(t))dt (4.12)

+ 8i|u∗(x+ σa(t))|2va + 4iu∗(x+ σa(t))2va

+ 8iu∗(x+ σa(t))|va|2 + 4iu∗(x+ σa(t))v2a + 4i|va|2va.

To ease the notation, we now define the family of linear operators

Laϕ(t, x) := Aϕ(t, x) + 8i|u∗(x+ a)|2ϕ(t, x) + 4i|u∗(x+ a)ϕ(t, x) (4.13)

as well as the nonlinear term

Ra := 8iu∗(x+ σa(t))|va|2 + 4iu∗(x+ σa(t))v2a + 4i|va|2va. (4.14)

We also define

Lϕ(t, x) := L0ϕ(t, x).

With this notation, equation (4.12) becomes

dva(t, x) =Lσa(t)vadt−
1

2
σ2FΦudt+ uσdW − σȧ(t)u∗x(x+ σa(t))dt

+Radt.

We next substitute u = u∗ + v in the uσdW term and change the order of the terms to get

dva(t, x) =Lσa(t)vadt− σȧ(t)u∗x(x+ σa(t))dt+ u∗σdW (4.15)

− 1

2
σ2FΦudt+Radt+ vσdW.

Finally, we set a to zero in (4.15), approximate to first order in σ and scale out σ to get an SPDE
for the first-order linearization wa.

dwa(t, x) = Lwadt− ȧ(t)u∗xdt+ u∗dW. (4.16)

4.1.3 Initial conditions
It remains to discuss initial conditions for wa and u, which we have not specified until now. As we
noted when introducing (4.8) and (4.9), it is the aim that u∗(x+σa(t))+σwa is a good approximation
to u(t, x). It is also desirable for wa to be independent of σ, which means that the initial condition
must be independent of σ as well. Therefore we use the initial conditions

u(0, x) = u∗(x) + σv0

wa(0, x) = v0

for some fixed v0 ∈ H1(R). Substituting t = 0 in (4.7) and (4.9) and using a(0) = 0 shows that
our approximation u∗(x + σa(t)) + σwa exactly matches u at time zero. In the next chapters we
will show that this approximation is still accurate after some finite time. To do this we first need to
formulate some results about deterministic stability of the solitons.
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4.1.4 Deterministic stability of solitons
It has been shown by Kapitula and Sandstede that soliton solutions to (4.2) are orbitally stable [28].
However, for our purposes we only require stability of the linearized solution around u∗. In their
proof, Kapitula and Sandstede first establish the following facts, which we also need.

Theorem 4.1.2. [28] L generates a C0 semigroup S(t) on H1(R).

By differentiating (4.5) we can see that u∗x (the subscript x denotes a spatial derivative) is an
eigenvector of L with eigenvalue 0. This also means that

S(t)u∗x = u∗x (4.17)

Kapitual and Sandstede also show that this eigenvalue is isolated. Thus it makes sense to define the
following spectral projection.

Definition 4.1.3. Π0 is the spectral projection of L onto the eigenvalue 0. We also define Π = I−Π0.

With this definition, Π0 and Π are both bounded linear operators onH1(R). Kapitual and Sandstede
also show that u∗ is the only eigenvector with this eigenvalue (up to scalar multiplication). Therefore,
we have

Π0ϕ = a(ϕ)u∗ (4.18)

for some scalar function a. Taking inner products in L2 with u∗ from the right we get

a(ϕ)(u∗, u∗)L2(R) = (Π0ϕ, u∗)L2(R).

Rewriting this and substituting back into (4.18) gives

Π0ϕ =
(Π0ϕ, u∗x)L2(R)

(u∗x, u
∗
x)L2(R)

u∗x.

For convenience, we define the (bounded) linear operator

P : H1(R) → R

ϕ→
(Π0ϕ, u∗x)L2(R)

(u∗x, u
∗
x)L2(R)

,

to see that

Π0ϕ = u∗xPϕ. (4.19)

We can now formulate the linear stability result which we need.

Theorem 4.1.4. [28] There exist constants C, a (possibly depending on u∗), such that

∥S(t)Π∥H1(R) ≤ Ce−at. (4.20)

Finally we need some estimates involving translation of u∗.

Proposition 4.1.5. There exists a constant C <∞, depending only on u∗ such that

∥u∗(x+ a)− u∗(x)∥H1(R) ≤ Ca. (4.21)

Proposition 4.1.6. There exists a constant C <∞, depending only on u∗ such that

∥u∗(x+ a)− u∗(x)− au∗x(x)∥H3(R) ≤ Ca2.

Note that the norm in proposition 4.1.6 is not the H1 norm but the H3 norm.
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4.2 Multiscale expansion
As a first step towards stochastic stability, we formulate the following multiscale expansion of u
around u∗(x+ σa(t)), where a(t) is still arbitrary.

Theorem 4.2.1. (a) Let a(t) be a progressively measurable stochastic process which is almost surely
differentiable and satisfies a(0) = 0 and

E
[
sup
t∈[0,T ]

|a(t)|2
]
= Ca <∞. (4.22)

Let u(t, x) be the solution to (4.6) with initial condition u(0) = u∗+σv0 for some v0 ∈ H1(R). Then
equation (4.16) with initial condition wa(0) = v0 has a unique mild solution, given by

wa(t, x) = S(t)v0 − a(t)u∗x +

∫ t

0

S(t− t′)u∗dW (t′). (4.23)

(b) Let q ∈ (0, 12 ). Define the stopping times

τq,σ,a := inf({t ∈ [0, T ] : |a(t)| ≥ σ−q}) ∧ T
τq,σ,v := inf({t ∈ [0, T ] : ∥v(t, x)∥H1 ≥ σ1−q}) ∧ T

τq,σ,c; = inf({t ∈ [0, T ] : ∥
∫ t

0

S(t− t′)v(t′)dW (t′)∥H1 ≥ σ1−2q}) ∧ T (4.24)

Tq,σ,a := τq,σ,a ∧ τq,σ,v ∧ τq,σ,c (4.25)

as well as

u(t, x) =: u∗(x+ σa(t)) + σwa(t, x) + za(t, x). (4.26)

Then we have the estimate

sup
t∈[0,Tq,σ,a]

∥za(t, x)∥H1 ≤ Cσ2−2q (4.27)

for some C <∞, independent of a, σ.

(c) For sufficiently small σ,

P
[
Tq,σ,a = T

]
≥ 1− C(1 + Ca)σ

2q

with Ca as in part (a) for some C <∞, independent of a, σ.

4.2.1 Mild solution
We begin with the proof of part (a). Since (4.16) is a linear SPDE with additive noise, theorem
2.6.9 immediately gives existence and uniqueness of the following mild solution:

wa(t, x) = S(t)v0 −
∫ t

0

S(t− t′)ȧ(t′)u∗x(x)dt
′ +

∫ t

0

S(t− t′)u∗(t′)dW (t′).
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Using (4.17), we can simplify the middle term to get

wa(t, x) = S(t)v0 −
∫ t

0

ȧ(t′)u∗x(x)dt
′ +

∫ t

0

S(t− t′)u∗(t′)dW (t′)

= S(t)v0 − a(t)u∗x(x) +

∫ t

0

S(t− t′)u∗(t′)dW (t′),

since a(0) = 0 by assumption.

4.2.2 Estimate for za

Now we prove part (b). By rewriting equations (4.8) and (4.9) we find that za(t, x) = va(t, x) −
σwa(t, x). Taking the differential and using equations (4.15) and (4.16) we find that za satisfies

dza =dva − σdwa

=Lσa(t)vadt− σȧ(t)u∗x(x+ σa(t))dt+ u∗σdW − 1

2
σ2FΦudt+Radt+ vσdW

− Lσwadt+ σȧ(t)u∗xdt− u∗σdW

Next we add and subtract Lva, use va = σwa+za by (4.8) and (4.9) and rearrange the terms to find

dza =Lzadt
+ [Lσa(t)va − Lva]dt
− σȧ(t)(u∗x(x+ σa(t))− u∗x(x))dt

− 1

2
σ2FΦudt

+Radt

+ vσdW

=:Lzadt+ T1dt+ T2dt+ T3dt+ T4dt+ T5dW. (4.28)

We will estimate these five terms separately. Before we do so, we record the elementary estimate

sup
t∈[0,Tq,σ,a]

∥
∫ t

0

S(t− t′)T (t′)dt′∥H1 ≤MT sup
t∈[0,Tq,σ,a]

∥T (t)∥H1 , (4.29)

as well as

∥va(t, x)∥H1 ≤ ∥va(t, x)− v(t, x)∥H1 + ∥v(t, x)∥H1

(4.7)(4.8)
= ∥u∗(x+ σa(t))− u∗(x)∥H1 + ∥v(t, x)∥H1

(4.21)
≲ σ|a(t)|+ ∥v(t, x)∥H1 ,

which implies

sup
t∈[0,Tq,σ,a]

∥va(t, x)∥H1 ≲ σ1−q (4.30)

by definition (4.25). From this same definition, the following estimates are also trivial:

sup
t∈[0,Tq,σ,a]

∥v(t, x)∥H1 ≲ σ1−q, (4.31)

sup
t∈[0,Tq,σ,a]

|a(t)| ≲ σ−q (4.32)

49



T1

For the first term we estimate

T1 :=Lσa(t)va − Lva
(4.13)
= 8i|u∗(x+ σa(t))|2va(t, x)− 8i|u∗(x)|2va(t, x)

+ 4iu∗(x+ σa(t))2va(t, x)− 4iu∗(x)2va(t, x).

Using the triangle inequality and lemma 6.2.6 we first derive

∥(ab− a′b′)∥H1 ≤ ∥ab− ab′)∥H1 + ∥ab′ − a′b′∥H1

≲ ∥a∥H1∥b− b′∥H1 + ∥b′∥H1∥a− a′∥H1

for a, b, a′, b′ ∈ H1(R). Substituting a = u∗(x+ σa(t)), a′ = u∗(x), b = a and b′ = a′ we find

∥|u∗(x+ σa(t))|2 − |u∗(x)|2∥H1 ≲ σ|a(t)|

using proposition 4.1.5. Using lemma 6.2.6 again gives

∥|u∗(x+ σa(t))|2va(t, x)− |u∗(x)|2va(t, x)∥H1 ≲ σ|a(t)|∥va∥H1 . (4.33)

If we instead substitute b = u∗(x+ σa(t)) and b′ = u∗(x), we find that

∥u∗(x+ σa(t))2va(t, x)− u∗(x)2va(t, x)∥H1 ≲ σ|a(t)|∥va∥H1

= σ|a(t)|∥va∥H1 (4.34)

Combining (4.33) and (4.34) now gives

∥T1(t)∥H1 ≲ σ|a(t)|∥va∥H1 ,

which we further combine with (4.29), (4.30) and (4.32) to find

sup
t∈[0,Tq,σ,a]

∥
∫ t

0

S(t− t′)T1(t
′)dt′∥H1 ≲ σ2−2q. (4.35)

T2

Now we estimate the term involving

T2 := −σȧ(t)(u∗x(x+ σa(t))− u∗x(x)).

The main difficulty with this term is that we have no prior control over ȧ. Therefore, we introduce

J2(t, x) := u∗(x+ σa(t))− u∗(x)− σa(t)u∗x(x),

which is a first-order Taylor expansion of u∗(x+ σa(t)). By proposition 4.1.6, we see that

∥J2(t, x)∥H3 ≲ σ2a2(t). (4.36)

Differentiating S2 with respect to t, we find

∂tJ2(t, x) = σȧ(t)u∗x(x+ σa(t))− σȧ(t)u∗x(x) = −T2(t, x).
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Therefore, we can use integration by parts to compute∫ t

0

S(t− t′)T2(t
′)dt′ = −

∫ t

0

S(t− t′)∂t′J2(t
′)dt′

= −S(0)J2(t) + S(t)J2(0) +

∫ t

0

(∂t′S(t− t′))J2(t
′)dt′

= −J2(t)−
∫ t

0

S(t− t′)LJ2(t′)dt′.

From equation (4.13) it is clear that L = L0 is a bounded operator from H3(R) to H1(R). Thus we
can estimate

∥
∫ t

0

S(t− t′)T2(t
′)dt′∥H1 ≤ ∥S2(t)∥H1

+

∫ t

0

∥S(t− t′)∥L(H1)∥L∥L(H3,H1)∥J2(t)∥H3dt′

≲ sup
t′∈[0,t]

∥J2(t′)∥H1

(4.36)
≲ sup

t′∈[0,t]

σ2a2(t′).

Taking the supremum over t ∈ [0, Tq,σ,a] we find

sup
t∈[0,Tq,σ,a]

∥
∫ t

0

S(t− t′)T2(t
′)dt′∥H1 ≲ sup

t∈[0,Tq,σ,a]

σ2a2(t)
(4.25)
≲ σ2−2 (4.37)

T3

Now we estimate

T3(t) := −1

2
σ2FΦu(t)

We first derive

∥FΦ∥H1

(4.4)
= ∥

∞∑
i=1

(Φei)
2∥H1

≤
∞∑
i=1

∥(Φei)2∥H1

(6.17)
≲

∞∑
i=1

∥Φei∥2H1

= ∥Φ∥2L2(L2,H1)

which is finite, since Φ is a Hilbert-Schmidt operator from L2 to H1 by assumption. Thus, by lemma
6.2.6 we get

∥T3(t)∥H1 ≲ σ2∥u(t)∥
(4.7)
≤ σ2

(
∥u∗∥H1 + ∥v(t)∥H1

)
.
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Combining this with (4.29) and (4.31) gives

sup
t∈[0,Tq,σ,a]

∥
∫ t

0

S(t− t′)T3(t
′)dt′∥H1(R) ≲ σ2(1 + σ1−q) ≲ σ2−2q (4.38)

for σ ≤ 1.

T4

Now we estimate

T4(t) := Ra
(4.14)
= 8iu∗(x+ σa(t))|va|2 + 4iu∗(x+ σa(t))v2a + 4i|va|2va.

Applying the triangle inequality and repeatedly using lemma 6.2.6, we find

∥T4(t)∥ ≲ ∥va∥2H1(R) + ∥va∥3H1(R).

Combining this with (4.29) and (4.30) gives

sup
t∈[0,Tq,σ,a]

∥
∫ t

0

S(t− t′)T4(t
′)dt′∥H1(R) ≲ σ2−2q + σ3−3q ≲ σ2−2q (4.39)

for σ ≤ 1.

T5

For T5(t) := σv(t), it follows by definition of Tq,σ,a (4.25) and τq,σ,c (4.24) that

sup
t∈[0,Tq,σ,a]

∥
∫ t

0

S(t− t′)T5(t
′)dW (t′)∥H1(R)

=σ sup
t∈[0,Tq,σ,a]

∥
∫ t

0

S(t− t′)v(t′)dW (t′)∥H1(R)

≤σ sup
t∈[0,τq,σ,c]

∥
∫ t

0

S(t− t′)v(t′)dW (t′)∥H1(R) ≤ σ2−2q. (4.40)

4.2.3 Combination of estimates
Recalling equation (4.28) as well as the fact that za(0) = 0 by our choice of initial conditions, we
find that za takes the following form:

za(t) =

4∑
i=1

∫ t

0

S(t− t′)Ti(t
′)dt′ +

∫ t

0

S(t− t′)T5(t
′)dW (t′).

Thus, applying the triangle inequality, taking the supremum and using (4.35), (4.37), (4.38), (4.39)
and (4.40), we get

sup
t∈[0,Tq,σ,a]

∥za(t)∥H1(R) ≲ σ2−2q,

which concludes the proof of part (b).
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4.2.4 Convergence of stopping time
Next we show part (c). We first split up the probability to get

P[Tq,σ,a < T ]
(4.25)
≤ P[τq,σ,a < T ] + P[{τq,σ,a = T} ∩ {τq,σ,v ∧ τq,σ,c < T}]

which is implied by the set-theoretic identity

(A ∩B)c = (Ac ∩B) ∪Bc

combined with subadditivity of P. Next we split the event {τq,σ,v ∧ τq,σ,c < T} up into the events
{τq,σ,c < T}∩{τq,σ,c ≤ τq,σ,v} and {τq,σ,v < T}∩{τq,σ,v ≤ τq,σ,c}. By subadditivity and monotonicity
of P this gives the estimate

P[Tq,σ,a < T ] ≤P[τq,σ,a < T ]

+ P[{τq,σ,a = T} ∩ {τq,σ,c < T} ∩ {τq,σ,c ≤ τq,σ,v}]
+ P[{τq,σ,a = T} ∩ {τq,σ,v < T} ∩ {τq,σ,v ≤ τq,σ,c}]

≤P[τq,σ,a < T ] (4.41)
+ P[τq,σ,c ≤ τq,σ,v]

+ P[{τq,σ,a = T} ∩ {τq,σ,v < T} ∩ {τq,σ,v ≤ τq,σ,c}]

and we shall estimate these three probabilities individually. Firstly, by Markov’s inequality we have

P[τq,σ,a < T ] ≤ P[ sup
t∈[0,T ]

|a(t)| ≥ σ−q] = P[ sup
t∈[0,T ]

|a(t)|2 ≥ σ−2q]

≤ σ2qE
[
sup
t∈[0,T ]

|a(t)|2
]

(4.22)
= σ2qCa. (4.42)

For the second probability we first estimate

P[τq,σ,c ≤ τq,σ,v] ≤ P
[

sup
t∈[0,τq,σ,v ]

∥
∫ t

0

S(t− s)v(s)dW (s)∥H1 ≥ σ1−2q
]

= P
[

sup
t∈[0,τq,σ,v ]

∥
∫ t

0

S(t− s)v(s)dW (s)∥2H1 ≥ σ2−4q
]

≤ σ−2+4qE
[

sup
t∈[0,τq,σ,v ]

∥
∫ t

0

S(t− s)v(s)dW (s)∥2H1

]
, (4.43)

where we have used Markov’s inequality for the final step. Now for s ≤ t ≤ τq,σ,v, we have
v(s) = v(s)1s≤τq,σ,v

. Therefore, using theorem 2.6.7 with M = supt∈[0,T ]∥S(t)∥L(H1), and ∥g(s)∥ =

∥v(s)1s≤τq,σ,v∥H1 ≤ σ1−q we get

E
[

sup
t∈[0,τq,σ,v ]

∥
∫ t

0

S(t− s)v(s)dW (s)∥2H1

]
= E

[
sup

t∈[0,τq,σ,v ]

∥
∫ t

0

S(t− s)v(s)1s≤τq,σ,v
dW (s)∥2H1

]
≤ E

[
sup
t∈[0,T ]

∥
∫ t

0

S(t− s)v(s)1s≤τq,σ,v
dW (s)∥2H1

]
≲ σ2−2q (4.44)
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Thus, substituting (4.44) into (4.43) gives

P[τq,σ,c ≤ τq,σ,v] ≲ σ2q. (4.45)

Now we estimate the third probability, which we abbreviate be E3 := {τq,σ,a = T} ∩ {τq,σ,v <
T} ∩ {τq,σ,v ≤ τq,σ,c}. By rearranging (4.7) and (4.9) and using proposition 4.1.5, we get

∥v(s)∥H1 ≤ C ′σ|a(s)|+ σ∥wa(s, x)∥H1 + ∥za(s, x)∥H1 , (4.46)

where C ′ <∞ only depends on u∗. Now observe that on the event E3, we have τq,σ,v ≤ τq,σ,a∧τq,σ,c,
and therefore τq,σ,v = Tq,σ,a by (4.25) which implies

∥za(τq,σ,v)∥H1 ≤ sup
t∈[0,Tq,σ,a]

∥za(t, x)∥H1

(4.27)
≤ Cσ2−2q.

Since τq,σ,v < T we also have ∥v(τq,σ,v, x)∥H1 = σ1−q. Therefore, substituting s = τq,σ,v in (4.46)
gives that

σ1−q ≤ C ′σ|a(τq,σ,v)|+ σ∥wa(τq,σ,v, x)∥H1 + Cσ2−2q

holds on E3. We rearrange this to

C ′|a(τq,σ,v)|+ ∥wa(τq,σ,v, x)∥H1 ≥ σ−q(1− Cσ1−q).

Therefore, E3 implies

sup
t∈[0,T ]

C ′|a(t)|+ ∥wa(t, x)∥H1 ≥ σ−q(1− Cσ1−q),

meaning that

P[E3] ≤ P[ sup
t∈[0,T ]

C ′|a(t)|+ ∥wa(t, x)∥H1 ≥ σ−q(1− Cσ1−q)]

= P[( sup
t∈[0,T ]

C ′|a(t)|+ ∥wa(t, x)∥H1)2 ≥ σ−2q(1− Cσ1−q)2]

≤ σ2q

(1− Cσ1−q)2
E
[(

sup
t∈[0,T ]

C ′|a(t)|+ ∥wa(t, x)∥H1

)2
]

≲
σ2q

(1− Cσ1−q)2

(
E
[
sup
t∈[0,T ]

|a(t)|2
]
+ E

[
sup
t∈[0,T ]

∥wa(t, x)∥2H1

])
(4.47)

where we have used Markov’s and Young’s inequalities for the final two steps. Using (4.23) and
theorem 2.6.6, we find

E
[
sup
t∈[0,T ]

∥wa(t, x)∥2H1(R)

]
<∞. (4.48)

Substituting (4.22) and (4.48) into (4.47), and recalling the definition of E3 then gives

P[τq,σ,a = T, τq,σ,v ∧ τq,σ,c < T ] ≲ (1 + Ca)σ
2q. (4.49)

Combining (4.42), (4.45) and (4.49) with (4.41) shows part (c) of theorem 4.2.1.
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4.3 Immediate relaxation
We take a closer look at the solution for wa. We repeat equation (4.23) here:

wa(t) = S(t)v0 − a(t)u∗x +

∫ t

0

S(t− t′)u∗dW (t′).

We split up wa into two parts, just like in section 3.3. Using definition 4.1.3 we get

wa(t) = S(t)Πv0 +

∫ t

0

S(t− t′)Πu∗dW (t′)

+ S(t)Π0v0 +

∫ t

0

S(t− t′)Π0u∗dW (t′) (4.50)

− a(t)u∗x.

Now we rewrite the middle term of (4.50). We compute

S(t)Π0v0 +

∫ t

0

S(t− t′)Π0u∗dW (t′)

(4.19)
= S(t)u∗xPv0 +

∫ t

0

S(t− t′)u∗xPu∗dW (t′)

(4.17)
= u∗xPv0 +

∫ t

0

u∗xPu∗dW (t′)

=
[
Pv0 +

∫ t

0

Pu∗dW (t′)
]
u∗x. (4.51)

We now define w∞ and a∞ as follows:

w∞(t) = S(t)Πv0 +

∫ t

0

S(t− t′)Πu∗dW (t′) (4.52)

a∞(t) = Pv0 +
∫ t

0

Pu∗dW (t′). (4.53)

Notice by construction that we already have

Π0w∞(t) = 0, (4.54)

since Π0Π
(4.18)
= Π0(I −Π0) = Π0 −Π0 = 0. Using the substitutions (4.51), (4.52) and (4.53), we see

(4.50) simplifies to

wa(t) = w∞(t) + (a∞(t)− a(t))u∗x. (4.55)

Similarly to the rotating waves case, we will transfer the multiscale expansion from theorem 4.2.1
to w∞ by defining am to be the solution to the random ODE

ȧm(t) = −m(am(t)− a∞(t)),
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with the initial condition a(0) = 0. Again, by theorem 6.1.1 we have existence, uniqueness and
progressive measurability of am. By construction we have that am is differentiable and starts at
zero. Also, we have the explicit solution representation

am(t) = m

∫ t

0

e−m(t−t′)a∞(t′)dt′

(4.53)
= m

∫ t

0

e−m(t−t′)
(
Pv0 +

∫ t′

0

Pu∗dW (t′′)
)
dt′

= (1− e−mt)Pv0 +m

∫ t

0

∫ t′

0

e−m(t−t′)Pu∗dW (t′′)dt′

= (1− e−mt)Pv0 +m

∫ t

0

∫ t

t′′
e−m(t−t′)dt′Pu∗dW (t′′)

= (1− e−mt)Pv0 +
∫ t

0

(1− e−m(t−t′′))Pu∗dW (t′′). (4.56)

We now formulate the multiscale expansion for w∞.

4.3.1 Multiscale expansion for w∞

Theorem 4.3.1. (a) Let am be defined as in equation (4.56). Then am(t) is progressively measurable,
almost surely differentiable, am(0) = 0 and

E
[
sup
t∈[0,T ]

|am(t)|2
]
≤ C∞ (4.57)

for some constant C∞ <∞ independent of m.

(b) Let q ∈ (0, 12 ). Let w∞ and a∞ be as in (4.52) and (4.53), let u, τq,σ,v and τq,σ,c be as in
theorem 4.2.1, and define the new stopping times

τq,σ,∞ := inf{t ∈ [0, T ] : |a∞(t)| ≥ σ−q} ∧ T
Tq,σ,∞ := τq,σ,∞ ∧ τq,σ,v ∧ τq,σ,c.

Then we have the following multiscale expansion for u(t, x):

u(t, x) =: u∗(x+ σa∞(t)) + σw∞(t) + z∞(t), (4.58)

where z∞(t) satisfies

sup
t∈[0,Tq,σ,∞]

∥z∞(t)∥H1≤ Cσ2−2q, (4.59)

with C being the same constant as in (4.27) (which is independent of σ).

(c) The stopping time Tq,σ,∞ satisfies

P
[
Tq,σ,∞ = T

]
≥ 1− Cσ2q

for some constant C independent of σ.
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Proof. We have already shown part of part (a) except (4.57). By theorem 6.1.1 we have

E[ sup
t∈[0,T ]

|am(t)|2]
(6.2)
≤ E[ sup

t∈[0,T ]

|a∞(t)|2] = C∞, (4.60)

where we know C∞ < ∞ from equation (4.53) and theorem 2.6.6. To show part (b), we make the
following three observations. Firstly, by theorem 6.1.1 we have

lim
m→∞

sup
t∈[δ,T ]

|am(t)− a∞(t)| = 0. (4.61)

Secondly, by the same theorem we have

sup
t∈[0,τq,σ,∞]

|am(t)| ≤ sup
t∈[0,τq,σ,∞]

|a∞(t)| ≤ σ−q.

By definition of τq,σ,am this implies

τq,σ,∞ ≤ τq,σ,am ,

which further leads to

Tq,σ,∞ ≤ Tq,σ,am . (4.62)

Thirdly, from equation (4.55) we see that

∥wam(t)− w∞(t)∥H1 ≤ C ′|am(t)− a∞(t)|, (4.63)

where C ′ only depends on u∗.
Therefore, by combining equations (4.26) and (4.58) and using the triangle inequality, we find

∥z∞(t)∥H1 ≤∥zam(t)∥H1 + σ∥wam(t)− w∞(t)∥H1

+ ∥u∗(x+ σam(t))− u∗(x+ σa(t))∥H1

(4.21),(4.63)
≤ ∥zam(t)∥H1 + σC ′′|am(t)− a∞(t)|,

with C ′′ <∞ depending only on u∗.
Taking the supremum over t ∈ [δ, Tq,σ,∞] we get

sup
t∈[δ,Tq,σ,∞]

∥z∞(t)∥H1 ≤ sup
t∈[δ,Tq,σ,∞]

(
∥zam(t)∥H1 + σC ′′|am(t)− a∞(t)|

)
(4.62)
≤ sup

t∈[δ,Tq,σ,am ]

(
∥zam(t)∥H1 + σC ′′|am(t)− a∞(t)|

)
(4.27)
≤ Cσ2−2q + σC ′′ sup

t∈[δ,T ]

|am(t)− a∞(t)|,

where C is the constant from equation (4.27). Note that our use of theorem 4.2.1 is justified by part
(a). Since neither C nor C ′′ depends on m, we can let m tend to infinity and use (4.61) to find

sup
t∈[δ,Tq,σ,∞]

∥z∞(t)∥H1 ≤ Cσ2−2q.
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Now C is also independent of δ, so we can choose δ arbitrarily small to get

sup
t∈(0,Tq,σ,∞]

∥z∞(t)∥H1 ≤ Cσ2−2q.

The estimate also holds at the left endpoint since z∞ is continuous (as can be seen from (4.58)).

Now we prove part (c). Applying part (c) of theorem 4.2.1 with a ≡ 0 already gives

P
[
τq,σ,v ∧ τq,σ,c < T

]
≤ Cσ2q

for some C <∞ independent of σ. Using Markov’s inequality we also get

P
[
τq,σ,∞ < T

]
= P

[
sup
t∈[0,T ]

|a∞(t)| ≥ σ−q
]

≤ σ2qE
[
sup
t∈[0,T ]

|a∞(t)|
]

(4.60)
= Cσ2q,

for some C <∞ independent of σ. The result now follows from the definition of Tq,σ,∞.

4.3.2 Stability and approximate minimization
By combining theorems 4.1.4 and 4.3.1, we can now show stability of the soliton by the following
proposition.

Proposition 4.3.2. Let w∞ be as in theorem 4.3.1. Then

E
[
∥w∞(t)∥2H1

]
≤ 2C2e−at∥v0∥2H1

+
C2

a
(1− e−2at)∥u∗∥2L(H1)∥Q

1/2∥2L2(H1),

where C and a are the constants from theorem 4.1.4.

Proof. First we find

∥w∞(t)∥H1

(4.52)
≤ ∥S(t)Πv0∥H1 + ∥

∫ t

0

S(t− t′)Πu∗dW (t′)∥H1 .

Taking the square, using (a+ b)2 ≤ 2a2 + 2b2 and taking the expectation gives

E
[
∥w∞(t)∥2H1

]
≤ 2∥S(t)Πv0∥2H1 + 2E

[
∥
∫ t

0

S(t− t′)Πu∗dW (t′)∥2H1

]
. (4.64)

From theorem 4.1.4 we already have

∥S(t)Πv0∥2H1

(4.20)
≤ C2e−2at∥v0∥2H1 . (4.65)
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Furthermore, applying Itô’s isometry to the second term of (4.64) gives

E
[
∥
∫ t

0

S(t− t′)Πu∗dW (t′)∥2H1

]
(2.10)
=

∫ t

0

∥S(t− t′)Πu∗Q1/2∥2L2
dt′

≤ ∥u∗∥2L(H1)∥Q
1/2∥2L2(H1)

∫ t

0

∥S(t− t′)Π∥2L(H1)dt
′

(4.20)
≤ C2∥u∗∥2L(H1)∥Q

1/2∥2L2(H1)

∫ t

0

e−2a(t−t′)dt′

=
C2

2a
∥u∗∥2L(H1)∥Q

1/2∥2L2(H1)(1− e−2at). (4.66)

Substituting (4.65) and (4.66) into (4.64) gives the desired estimate.

Combining the multiscale expansion (4.58) with proposition 4.3.2 shows that u(t, x)−u∗(x+σa∞(t))
is O(σ), which shows the orbital stability. Next we show that a∞ is (to first order) the right phase
correction, in the sense that it approximately locally minimizes the fluctiations around u∗(x+σa(t)).
This is made precise in the following proposition.

Proposition 4.3.3. Define

E : R → R
a→ ∥Π0u(t, x)− u∗(x+ a)∥2H .

Then σa(t) is an approximate local minimizer of E, in the sense that

∂aE
∣∣∣
a=σa∞(t)

= o(σ),

and the second derivative

∂aaE
∣∣∣
a=σa∞(t)

is strictly positive to first order in σ.

Proof. We compute

∂a∥Π0u(t, x)− u∗(x+ a)∥2H = −2
(
Π0[u(t, x)− u∗(x+ a)],Π0u∗x(x+ a)

)
. (4.67)

Evaluating at a = σa∞(t) and using theorem 4.3.1 we get

∂aE
∣∣∣
a=σa∞(t)

(4.58)
= −2

(
Π0[σw∞(t) + z∞(t)],Π0u∗x(x+ σa∞(t))

)
(4.54)
= −2

(
Π0z∞(t),Π0u∗x(x+ σa∞(t))

)
(4.59)
= O(σ2−2q).

Differentiating (4.67) again gives

∂aaE(a) = 2
(
Π0u∗x(x+ a),Π0u∗x(x+ a)

)
− 2

(
Π0[u(t)− u∗(x+ a)],Π0u∗xx(x+ a)

)
. (4.68)
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Evaluating at a = σa∞(t) and using theorem 4.3.1 again we find(
Π0[u(t)− u∗(x+ σa∞(t))],Π0u∗xx(x+ σa∞(t))

)
(4.58)
=

(
Π0[σw∞(t) + z∞(t)],Π0u∗xx(x+ σa(t))

)
(4.54)
=

(
Π0z∞(t),Π0u∗xx(x+ σa(t))

)
(4.59)
= O(σ2−2q).

Substituting this into (4.68) then gives

∂aaE(a)
∣∣∣
a=σa∞(t)

= 2
(
Π0u∗x(x+ σa∞(t)),Π0u∗x(x+ σa∞(t))

)
+O(σ2−2q),

which shows the claim.
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Chapter 5

An investigation of general
symmetries

In this section, we take first steps towards showing stability of patterns which have more general
symmetries. Consider the PDE

du(t) = f(u(t))dt, (5.1)

as well as its corresponding stochastic counterpart

du(t) = f(u(t))dt+ σdW (t), (5.2)

where f is a possible unbounded linear operator which maps its domain D(f) into H, W (t) is a
Q-Wiener process taking values in H, and σ is a parameter controlling the strength of the noise.
We now assume that the PDE has certain symmetries, captured by a Lie group G. Let g be the
corresponding Lie algebra, which we assume to be finite-dimensional. We also choose some norm to
turn g into a normed vector space. By symmetry, we mean there exists a Lie group representation
Π of G on H such that

Π(g)f(h) = f(Π(g)h) g ∈ G, h ∈ H. (5.3)

In the case of rotating waves, the symmetry group was SE(2), while in the case of the PFNLS soliton
is was the group of translations. The symmetry group will determine which types of ’corrections’
(such are rotations or translations) we can make to the pattern solution. By a pattern solution, we
mean there exists a solution û to (5.1) and an element X ∈ g such that

û(t) = Π(etX)u∗ (5.4)

for some u∗ ∈ H. Comparing this to the rotating wave, we see that we had X = ω∂ψ and
Π(etX) = TRωt

there. In the remainder, X will always denote this particular element. We will
use the letters Y and Z to denote arbitrary elements of g.

To get a Lie algebra representation, we define the linear operator:

π(Y ) := D(π(Y )) → H

ϕ→ d

dt
Π(etY )ϕ

∣∣∣
t=0

, (5.5)
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where D(π(X)) consists of all ϕ ∈ H for which this limit exists.
The following assumptions are needed for the multiscale expansions.

Assumption 5.0.1. The linear operator Π(eY ) ∈ L(H) is an isometry.

Assumption 5.0.2. u∗ ∈ D(π(Y )) for every Y , and also π(Y )u∗ ∈ D(π(Z)) for every Z.

Assumption 5.0.3. f is Fréchet differentiable at Π(g)u∗ for every g ∈ G. We denote this derivative
by f ′. Furthermore, there exists a constant C independent of g, v such that

∥f(Π(g)u∗ + v)− f(Π(g)u∗)− f ′(Π(g)u∗)v∥H ≤ C∥v∥2H (5.6)

for every g ∈ G, v ∈ H.

Assumption 5.0.4. There exists a constant C, independent of Y such that

∥Π(exp(Y ))− I∥L(H) ≤ C|Y | (5.7)

for every Y ∈ g.

Assumption 5.0.5. There exists a Hilbert space H1 continuously embedded into H such that
Π(g)u∗ ∈ H1 for every g ∈ G, and furthermore

∥f ′(Π(g)u∗) + π(X)∥L(H1,H) ≤ C,

for some C <∞ which is independent of g.

Assumption 5.0.6. There exists a constant C independent of Y such that

∥π(Y )û(t)∥H ≤ C|Y |, (5.8)

for all Y ∈ g, t ≥ 0.

5.1 Linearized problem
To show stability of the stochastic pattern we will linearize the SPDE (5.2) around û. To do this
we first find some identities regarding u∗. Substituting (5.4) into (5.1) gives

d

dt
Π(etX)u∗ = f(Π(etX)u∗).

Evalutuating this equation at t = 0 and using assumption 5.0.2 gives our first identity:

π(X)u∗
(5.5)
= f(u∗). (5.9)

This equation is analogous to (3.9) and (4.5). Next apply Π(etY ) from the left and use 5.3 to get

Π(etY )π(X)u∗ = Π(etY )f(u∗)

= f(Π(etY )u∗).
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Differentiating this with respect to t (which is justified by assumptions 5.0.2 and 5.0.3) and evaluating
at t = 0 now gives

π(Y )π(X)u∗ = f ′(u∗)π(Y )u∗

π(Y )π(X)u∗ − π(X)π(Y )u∗ = f ′(u∗)π(Y )u∗ − π(X)π(Y )u∗

π([Y,X])u∗ = (f ′(u∗)− π(X))π(Y )u∗. (5.10)

We now introduce the linear operators

L∗ := f ′(u∗)− π(X), (5.11)

Lt,Y := f ′(Π(eY )û(t)), (5.12)
Lt := f ′(û(t)), (5.13)

as well as the linear map

L : g → g

Y → [Y,X]. (5.14)

Notice that equations (5.11), (5.12), and (5.13) are directly analogous to (3.32), (3.49) and (3.51).
We may also easily verify that

∂t − Lt = Π(etX)(∂t − L∗)Π(e−tX) (5.15)

The following assumption is crucial.

Assumption 5.1.1. L∗ generates a C0-semigroup P ∗
t on H.

From assumption 5.1.1 and equation (5.15) the following proposition immediately follows.

Proposition 5.1.2. Lt generates a strongly continuous evolution family Pt,t′ . We also have the
relation

Pt,t′ = Π(etX)P ∗
t−t′Π(e−t

′X) (5.16)

With equations (5.14) and (5.11), equation (5.10) can be restated as

L∗π(Y )u∗ = π(LY )u∗. (5.17)

Now we introduce the concept of the center space

Definition 5.1.3. Let Yi be the eigenvectors of L with corresponding eigenvalues λi. The center
space of L∗ consists of the span of π(Yi)u∗.

From equation (5.17) we see that the λi are then also eigenvalues of L∗.

By direct differentiation using equation (5.17) it can now be verified that

P ∗
t u

∗ = π(etLY )u∗. (5.18)
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This also results in

Pt,sπ(Y )û(s)
(5.16)
= Π(etX)P ∗

t−sΠ(e−sX)π(Y )û(s)

(5.4)
= Π(etX)P ∗

t−sΠ(e−sX)π(Y )Π(esX)u∗

(2.12)
= Π(etX)P ∗

t−sπ(e
−sXY esX)u∗

(2.13)
= Π(etX)P ∗

t−sπ(Ad−sX(Y ))u∗

(2.15)
= Π(etX)P ∗

t−sπ(e
−s·adX (Y ))u∗

(2.14),(5.14)
= Π(etX)P ∗

t−sπ(e
sLY )u∗

(5.18)
= Π(etX)π(e(t−s)LesLY )u∗

= Π(etX)π(etLY )u∗ (5.19)

The most important feature of this identity is that the final expression is independent of s.

As a further assumption, we require a linear deterministic stability result similar to theorem 3.1.16
and 4.1.4. We first introduce the following spectral projections, justified by the next assumption.

Assumption 5.1.4. The eigenvalues λi introduced in definition 5.1.3 are isolated eigenvalues of
L∗. Furthermore, the combined span of the eigenspaces of L∗ with eigenvalues λi is the same as the
center space.

Definition 5.1.5. Define P∗,c to be the spectral projection of L∗ onto the eigenvalues λi. Addition-
ally define

P∗ := I − P∗,c,

Pct := Π(etX)P∗,cΠ(e−tX), (5.20)

Pt := Π(etX)P∗Π(e−tX).

Now we can formulate the deterministic stability assumption.

Assumption 5.1.6. There exist constants C, a > 0 such that

∥P ∗
t P∗∥L(H) ≤ C−at.

5.2 Derivation of the SPDE
Now we obtain a multiscale expansion around a shifted version of û(t) for some arbitrary phase
correction γ. Let γ : [0, T ] → g be differentiable, adapted to Ft and satisfy γ(0) = 0. We also
introduce

g(t) := exp(σγ(t)), (5.21)

where exp is the exponential map from g to G. Let u be a solution to (5.2). Now we introduce the
following three ways to write u(t):

u(t) =: û(t) + v(t),

u(t) =: Π(g(t))û(t) + vγ(t), (5.22)
u(t) =: Π(g(t))û(t) + σwγ(t) + zγ(t), (5.23)
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where wγ will be introduced later, at which point the third line becomes the definition for zγ .
To linearize (5.2) around Π(g(t))û(t) we will find the SPDE satisfied by vγ(t). By rewriting (5.22)
and taking the differential we find

dvγ(t) = du(t)− dΠ(g(t))û(t)

(5.2)
= f(u(t))dt+ σdW (t)− [∂tΠ(g(t))]û(t)dt−Π(g(t))dû(t)

(5.1),(5.3)
= f(u(t))dt+ σdW (t)− [∂tΠ(g(t))]û(t)dt− f(Π(g(t))û(t))dt

Now we add and subtract f ′(Π(g(t))û(t))vγ(t)dt and rearrange the terms to get

dvγ(t) = f ′(Π(g(t))û(t))vγ(t)dt+ [∂tΠ(g(t))]û(t)dt+ σdW (t)

+ [f(u(t))− f(Π(g(t))û(t))− f ′(Π(g(t))û(t))vγ(t)]dt

Defining

Rγ(t) := f(Π(g(t))u(t))− f(Π(g(t))û(t))− f ′(Π(g(t)û(t)))vγ(t), (5.24)

and recalling equations (5.12) and (5.21) we get

dvγ(t) = Lt,σγ(t)vγ(t)dt+ [∂tΠ(g(t))]û(t)dt+ σdW (t) +Rγ(t)dt (5.25)

We now linearize this equation and scale out σ to get the definition of wγ .

dwγ(t) = Ltwγ(t)dt+ π(γ̇)û(t)dt+ dW (t) (5.26)

Initial conditions

So far we have only stated the SPDE satisfied by u and wγ without specifying initial conditions.
Similar to our treatment of the PFNLS equation and the rotating wave, we set

u(0) = û(0) + σv0

wγ(0) = v0

for some v0 ∈ H. By equation (3.44) and (3.46) this guarantees that σwγ exactly matches vγ at the
initial time. We will now show that this approximation is still good after a finite time.

5.3 Multiscale expansions
Now we compute some estimates which are necessary to formulate a multiscale expansion of the
form

u(t) = Π(exp(σγ(t)))û(t) + σwγ(t) + zγ(t),

where zγ(t) = O(σ2−2q).
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The SPDE satisfied by the difference vγ − σwγ =: zγ reads:

dzγ(t)
(5.22),(5.23)

= dvγ(t)− σdwγ(t)

(5.25),(5.26)
= [Lt,σγ(t)vγ(t)− Ltσwγ(t)]dt

+ [[∂tΠ(g(t))]û(t)− π(γ̇(t))û(t)]dt

+Rtdt

(5.12)
= Ltzγ(t)dt

+ [Lt,σγ(t) − Lt]vγ(t)dt
+ [[∂tΠ(g(t))]û(t)− π(γ̇(t))û(t)]dt

+Rtdt

=:Ltzγdt+ T1dt− T2dt+ T3dt.

We estimate the three terms separately.

5.3.1 T1
For the first term, we immediately see

T1(t) : = [Lt,σγ(t) − Lt]vγ
(5.12),(5.13)

= [f ′(exp(σγ(t))û(t))− f ′(û(t))]vγ
(5.3)
= [Π(exp(σγ(t)))f ′(û(t))− f ′(û(t))]vγ .

Therefore, we have

∥T1(t)∥H ≤ ∥Π(exp(σγ(t)))− I∥L(H)∥f ′(û)∥L(H)∥vγ∥H
(5.7)
≤ ∥f ′(û(t))∥|σ||γ(t)|∥vγ∥H ,

so we see this term is of second order.

5.3.2 T2
Now we estimate the convolution with T2.

T2(t) := (∂tΠ(g(t)))û(t)− π(σγ̇(t))û(t). (5.27)

To do this, we formulate the following expression, which is analogous to a first-order Taylor expan-
sion:

J(t) := Π(exp(σγ(t)))û(t)− û(t)− π(σγ(t))û(t)
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We apply ∂t − π(X) to J(t) to get

(∂t − π(X))J(t) =[∂tΠ(exp(σγ(t)))]û(t) + Π(exp(σγ(t)))∂tû(t)− π(X)Π(exp(σγ(t)))û(t)

− ∂tû(t) + π(X)û(t)

− π(σγ̇(t))û(t)− π(σγ(t))∂tû(t) + π(X)π(σγ(t))û(t)

(5.1)
= [∂tΠ(exp(σγ(t)))]û(t) + Π(exp(σγ(t)))π(X)û(t)− π(X)Π(exp(σγ(t)))û

− π(X)û(t) + π(X)û(t)

− π(σγ̇(t))û(t)− π(σγ(t))π(X)û(t) + π(X)π(σγ(t))û(t).

We now cancel the two terms on the second line and rearrange the other terms to get

(∂t − π(X))J(t) = [∂tΠ(exp(σγ(t))]û(t)− σπ(γ̇(t))û(t)

+ σπ([X, γ])û(t)

+ [Π(exp(σγ(t)))π(X)− π(X)Π(exp(σγ(t)))− π(σγ(t))π(X)]û(t).

After introducing

T2,1(t) := σπ([X, γ(t)])û(t),

T2,2(t) := [Π(exp(σγ(t)))π(X)− π(X)Π(exp(σγ(t)))− π(σγ(t))π(X)]û(t),

and using (5.27), we get

(∂t − π(X))J(t) = T2(t) + T2,1(t) + T2,2(t). (5.28)

Notice that we immediately have

∥T2,1(t)∥H
(5.9)
≲ σ|[X, γ(t)]| ≲ σ|γ(t)|, (5.29)

since the bracket is continuous. To estimate T2,2, we temporarily suppress the dependence on t and
compute

T2,2 = Π(exp(σγ))
(
π(X)−Π(exp(−σγ))π(X)Π(exp(σγ)) + π([X,σγ])

)
û (5.30)

+ (I −Π(exp(σγ))π([X,σγ])û

Using assumption 5.0.4 and 5.0.6 we see that

∥(I −Π(exp(σγ))π([X,σγ])û∥H
(5.7),(5.8)

≲ |σγ||[X,σγ]| ≲ σ2|γ|2. (5.31)

To estimate the remaining terms of (5.30) we first compute

K := π(X)−Π(exp(−σγ))π(X)Π(exp(σγ)) + π([X,σγ])

(2.12)
= π(X)− π(exp(−σγ)X exp(σγ)) + π([X,σγ])

(2.13)
= π(X)− π(Adexp(−σγ)X) + π([X,σγ])

(2.15)
= π(X)− π(e−adσγX) + π([X,σγ])

= π
(
X + [X,σγ]−

∞∑
i=0

1

i!
(−adσγ)iX

)
= π

( ∞∑
i=2

1

i!
(−adσγ)i

)
,
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where the first two terms of the sum cancel since adY (Z) = [Y,Z]. We now apply K to û and take
the norm to get

∥Kû∥H = ∥π
( ∞∑
i=2

1

i!
(−adσγ)iX

)
û∥

(5.8)
≲ |

∞∑
i=2

1

i!
(−adσγ)iX|

≲
∞∑
i=2

1

i!
|σγ|i

= |σγ|2
∞∑
i=0

|σγ|i

(i+ 2)!

≤ |σγ|2eσγ .

Combining this estimate with (5.31) and (5.30) we see that

∥T2,2∥ ≲ |σγ|2. (5.32)

for |σγ| ≤ 1. Finally we need an estimate for J(t). It is not possible to show this estimate without
knowing G and Π. Thus, for our purposes, we formulate this estimate as an assumption.

Assumption 5.3.1. There exists a constant C, independent of σ, γ such that

∥J(t)∥H1 ≤ C|σγ|2. (5.33)

Using (5.28) (5.29), (5.32) and (5.33) and assumption 5.0.5, it is now possible to show

∥
∫ t

0

Pt,t′T2(t
′)dt′∥ ≲ sup

t′∈[0,t]

|σγ(t′)|2,

by the same derivation as in the end of section 3.2.2.

5.3.3 T3
Now we estimate T3. Firstly we have

T3(t) := Rγ(t)
(5.24)
= f(u(t))− f(Π(g(t))û(t))− f ′(Π(g(t))û(t, x))vγ(t)

(5.22)
= f(Π(g(t))û(t) + vγ(t))f(Π(g(t))û(t))− f ′(Π(g(t))û(t, x))vγ(t).

Therefore, by assumption 5.0.3 we immediately have

∥T3(t)∥H
(5.6)
≤ C∥vγ∥2H ,

so this term is also of second order.
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5.4 Mild solution
By theorem 2.6.9 we immediately see that (5.26) has a unique mild solution given by

wγ(t) = Pt,0v0 −
∫ t

0

Pt,t′π(γ̇(t
′))û(t′)dt′ +

∫ t

0

Pt,t′dW (t′).

Using (5.19) we can simplify to

wγ(t)
(5.19)
= Pt,0v0 −

∫ t

0

Π(etX)π(etLγ̇(t′))u∗dt′ +

∫ t

0

Pt,t′dW (t′)

= Pt,0v0 −Π(etX)π(etL)γ(t)u∗ +

∫ t

0

Pt,t′dW (t′),

where the final step can be taken since the map Y → Π(etX)π(etLY )u∗ is linear and independent of t′.

We now split up wγ using I = Pct + Pt = P∗,c + P∗, and find

wγ(t) = Pt,0P∗v0 +

∫ t

0

Pt,t′Pt′dW (t′) (5.34)

+ Pt,0P∗,cv0 +

∫ t

0

Pt,t′Pct′dW (t′)

−Π(etX)π(etLγ(t))u∗

Before we proceed, it is convenient to obtain a more explicit representation of P∗,c. From assumption
5.1.4 we see that P∗,c projects onto the space π(Y )u∗, Y ∈ g. Since π is linear, there exists a
continuous map A : H → g such that

P∗,cv = π(Av)u∗. (5.35)

Thus we have

Pt,t′Pct′v
(5.16),(5.20)

= Π(exp(tX))Pt−t′P∗,cΠ(exp(−t′X))v

(5.35)
= Π(exp(tX))Pt−t′π(AΠ(exp(−t′X))v)u∗

(5.19)
= Π(exp(tX))π(e(t−t

′)LAΠ(exp(−t′X))v)u∗. (5.36)

In case t′ = 0 this reduces to

Pt,0P∗,c = Π(exp(tX))π(etLAv)u∗. (5.37)

Combining (5.36) and (5.37) we find that

Pt,0P∗,cv0 +

∫ t

0

Pt,t′Pct′dW (t′) = Π(exp(tX))π(etL
[
Av0 +

∫ t

0

e−t
′LAΠ(exp(−t′X))dW (t′)

]
u∗.

Substituting this into (5.34) gives

wγ(t) =Pt,0Π
∗v0 +

∫ t

0

Pt,sΠsdW (s) (5.38)

+Π(etX)π(etL
(
Av0 +

∫ t

0

e−sLAΠ(e−sX)dW (s)
)
)u∗

+Π(etX)π(etLγ(t))u∗
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Now finally we introduce w∞ and γ∞ as follows:

w∞ := Pt,0Π
∗v0 +

∫ t

0

Pt,sΠsdW (s),

γ∞ := Av0 +

∫ t

0

e−sLAΠ(e−sX)dW (s).

which simplifies (5.38) further to

wγ(t)− w∞(t) = Π(etX)π(etL(γ∞(t)− γ(t)))u∗. (5.39)

Just like in the case of the rotating wave and the PFNLS soliton, equation (5.39) suggests that γ∞
is the correct phase correction.
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Chapter 6

Auxiliary results

6.1 Phase tracking
Let y(t) be a continuous progressively measurable stochastic process taking values in some vector
space V . The aim of this section is to approximate y(t) by a sequence of progressively measurable
process xm(t) which are differentiable and start at zero.

Theorem 6.1.1. Let y(t) be a continuous progressively measurable stochastic process on [0, T ] taking
values in V . For any m, the random ODE

ẋm(t) = −m(xm(t)− y(t)),

with initial condition xm(0) = 0 has a unique solution, given by ’

xm(t) = m

∫ t

0

e−m(t−t′)y(t′)dt′. (6.1)

This solution is progressively measurable and satisfies

sup
t′∈[0,t]

∥xm(t′)∥V ≤ sup
t′∈[0,t]

∥y(t′)∥V (6.2)

for any t′ ∈ [0, T ]. Furthermore, if y(t) is α-Hölder continuous, then

lim
m→∞

sup
t∈[δ,T ]

∥xm(t)− y(t)∥V = 0 (6.3)

Proof. First, existence and uniqueness of a global solution is guaranteed by the Picard-Lindelöf
theorem since y(t) is continuous. By differentiating (6.1) we immediately see that it is indeed the
solution. Progressive measurability of xm(t) is obvious from equation (6.1).
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To show (6.2), we simply compute

∥x(t)∥ = ∥m
∫ t

0

e−m(t−t′)y(t′)dt′∥V

≤ sup
t′∈[0,t]

∥y(t′)∥V ·m
∫ t

0

e−m(t−t′)dt′

(6.4)
= sup

t′∈[0,t]

∥y(t′)∥V · (1− e−mt)

≤ sup
t′∈[0,t]

∥y(t′)∥V ,

which gives the estimate.

Finally we show (6.3). We first state the elementary integral

1 = m

∫ t

0

e−m(t−t′)dt′ + e−mt. (6.4)

With this expression, we can write

xm(t)− y(t)
(6.1),(6.4)

= m

∫ t

0

e−m(t−t′)y(t′)dt′ − y(t)m

∫ t

0

e−m(t−t′)dt′ − y(t)e−mt

=m

∫ t

0

e−m(t−t′)(y(t′)− y(t))dt′ − y(t)e−mt. (6.5)

By α-Hölder continuity of y(t), we have

∥m
∫ t

0

e−m(t−t′)(y(t′)− y(t))dt′∥V ≤ m

∫ t

0

e−m(t−t′)∥y(t′)− y(t)∥V dt′

≤ m

∫ t

0

e−m(t−t′)|t− t′|αdt′

= m

∫ t

0

e−mu|u|αdu

≤ m

∫ ∞

0

e−mu|u|αdu

= m−α
∫ ∞

0

e−z|z|αdz

= m−αΓ(1 + α). (6.6)

Now taking the supremum of the norm of (6.5) and substituting (6.6) we get

sup
t∈[δ,T ]

∥xm(t)− y(t)∥V ≤ m−αΓ(1 + α) + sup
t∈[δ,T ]

y(t)e−mt

≤ m−αΓ(1 + α) + e−mδ sup
t∈[0,T ]

∥y(t)∥V ,

which converges to zero as m→ ∞.
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6.2 Properties of H1 and H2

In this section we establish some properties of H1(R) and H2(R2) which we will frequently use in
the proofs of theorems 3.2.1 and 4.2.1. Throughout this section, A ≲ B mean that there exists a
constant C (possibly depending on q,γ, d in lemma 6.2.1) such that A ≤ CB. We begin with Sobolev
embeddings in the critical case where p = d.

Lemma 6.2.1. W 1,d(Rd) embeds continuously into Lq(Rd) for any q ∈ [d,∞).

Proof. Let u ∈ C∞
c (Rd). Let γ ∈ (1, d]. By manipulating exponents we get the estimate

∥|u|γ∥
L

d
γ
= ∥u∥γ

Ld ≤ ∥u∥γ
W 1,d . (6.7)

Next observe that |u|γ is weakly differentiable with derivative γ|u|γ−1|ux|. Using Hölder’s inequality
with γ

d = γ−1
d + 1

d we get

∥γ|u|γ−1|ux|∥
L

d
γ
≤ γ∥|u|γ−1∥

L
d

γ−1
∥ux∥Ld = γ∥u∥γ−1

Ld ∥ux∥Ld ≤ γ∥u∥γ
W 1,d . (6.8)

Combining (6.7) and (6.8) gives

∥|u|γ∥
W

1, d
γ
≲ ∥u∥γ

W 1,d . (6.9)

Next, note that the Sobolev conjugate of d
γ is equal to

d dγ

d− d
γ

=
d

γ − 1
.

Therefore by theorem 2.3.6 we have

∥|u|γ∥Lq ≲ ∥|u|γ∥
W

1, d
γ
, (6.10)

for any q ∈ [d, d
γ−1 ]. Taking (6.10) to the power γ−1 and combining with (6.9) we get

∥u∥Lγq = ∥|u|γ∥
1
γ

Lq ≲ ∥|u|γ∥
1
γ

W
1, d

γ
≲ ∥u∥W 1,d .

Since q ∈ [d, d
γ−1 ], we get γq ∈ [γd, γd

γ−1 ]. Thus by taking γ close enough to 1, we can get γq anywhere
in the interval (d,∞). Therefore, setting r = γq we get thatW 1,d(Rd) embeds continuously in Lr(Rd)
for any r ∈ [d,∞) (the case r = d is trivial).

We will use this lemma with p = d = 2, q = 4, which gives ∥u∥L4 ≲ ∥u∥H1 .

Lemma 6.2.2. If v ∈ H2(R2), then v ∈ L∞(R2) and

∥v∥L∞(R2) ≤ ∥v∥H2(R2). (6.11)

Proof. Let v ∈ C∞
c (R2). By the fundamental theorem of calculus:

v(x1, x2)
2 =

∫ x1

−∞
2v(x′1, x2)∂x1

v(x′1, x2)dx
′
1

= 2

∫ x2

−∞

∫ x1

−∞
∂x1

v(x′)∂x2
v(x′) + v(x′)∂x1x2

v(x′)dx′1dx
′
2

≤
∫
R2

(∂x1
v)2 + (∂x2

v)2 + v2 + (∂x1x2
v)2dx

≤ ∥v∥2H2(R2),
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where we have used Young’s inequality for the penultimate step. Taking the supremum over
(x1, x2) ∈ R2 gives

∥v∥L∞(R2) ≤ ∥v∥H2(R2).

The result follows by density of C∞
c in H2(R2).

Lemma 6.2.3. Let u, v ∈ H2(R2) and i, j ∈ {1, 2}. Then ∂xi
u∂xj

v ∈ L2(R2) and

∥∂iu∂jv∥L2(R2) ≲ ∥u∥H2(R2)∥v∥H2(R2). (6.12)

Proof. By Hölder’s inequality and lemma 6.2.1 we have

∥∂iu∂jv∥L2(R2) ≤ ∥∂iu∥L4(R2)∥∂jv∥L4(R2)

≲ ∥∂iu∥H1R2)∥∂jv∥H1(R2)

≤ ∥u∥H2(R2)∥v∥H2(R2).

Lemma 6.2.4. If u, v ∈ H2(R2), then uv ∈ H2(R2) and

∥uv∥H2(R2) ≲ ∥u∥H2(R2)∥v∥H2(R2).

Proof. First we estimate

∥uv∥L2(R2) ≤ ∥u∥L∞(R2)∥v∥L2(R2)

(6.11)
≤ ∥u∥H2(R2)∥v∥H2(R2). (6.13)

Next let i ∈ {1, 2}. Then by the product rule and Hölder’s inequality we have

∥∂xi
(uv)∥L2(R2) = ∥u∂xi

v + v∂xi
u∥L2(R2)

≤ ∥u∂xi
v∥L2(R2) + ∥v∂xi

u∥L2(R2)

≤ ∥u∥L∞(R2)∥∂xi
v∥L2(R2) + ∥v∥L∞(R2)∥∂xi

u∥L2(R2)

(6.11)
≤ 2∥u∥H2(R2)∥v∥H2(R2). (6.14)

Finally, let i, j ∈ {1, 2}. Then we have

∥∂xixj (uv)∥L2(R2) = ∥u∂xixjv + v∂xixju+ ∂xiu∂xjv + ∂xju∂xiv∥L2(R2)

(6.12)
≲ ∥u∥L∞(R2)∥v∥H2(R2) + ∥v∥L∞(R2)∥u∥H2(R2) + ∥u∥H2(R2)∥v∥H2(R2)

(6.11)
≤ 2∥u∥H2(R)∥v∥H2(R). (6.15)

The result follows by combining (6.13), (6.14) and (6.15).

Next we establish similar properties for H1(R1), for use the proof of theorem 4.2.1 and 4.3.1.

Lemma 6.2.5. If v ∈ H1(R), then v ∈ L∞(R) and

∥v∥L∞(R) ≤ ∥v∥H1(R). (6.16)
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Proof. Let v ∈ C∞
c (R). By the fundamental theorem of calculus,

v(x)2 =

∫ x

−∞

d

dx′
v(x′)2dx′

=

∫ x

−∞
2v(x′)v′(x′)dx′

≤
∫ x

−∞
v(x′)2 + v(x′)2dx′

≤
∫
R
v(x′)2 + v(x′)2dx′

= ∥v∥2H1(R),

where we have used Young’s inequality. Therefore,

∥v∥2L∞(R) ≤ ∥v∥2H1(R).

The general result follows by density of C∞
c (R) in H1(R).

Lemma 6.2.6. If u, v ∈ H1(R), then uv ∈ H1(R) and

∥uv∥H1(R) ≤ C∥u∥H1(R)∥v∥H1(R) (6.17)

for some C <∞ which is independent of u and v.

Proof. Firstly, by lemma 6.2.5 we have

∥uv∥L2(R) ≤ ∥u∥L∞(R)∥v∥H1(R) ≤ ∥u∥H1(R)∥v∥H1(R). (6.18)

Furthermore, by the product rule we have

∥(uv)′∥L2(R) = ∥uv′ + u′v∥L2(R)

≤ ∥uv′∥L2(R) + ∥u′v∥L2(R)

≤ ∥u∥L∞(R)∥v′∥L2(R) + ∥v∥L∞(R)∥u′∥L2(R)
(6.16)
≤ 2∥u∥H1(R)∥v∥H1(R). (6.19)

The result follows by combining (6.18) and (6.19).

6.3 Regularity of û
Throughout this section, the expression A ≲ B indicates that A ≤ CB for some constant C,
independent of R and u. C may depend on a, b and ω.

Proposition 6.3.1. Let f ∈ L2(R2), and let a, b, ω be real constants. If u ∈ H1(R2) is a weak
solution to

∆u+ ω∂ψu+ a∂x1
u+ b∂x2

u = f, (6.20)

then u ∈ H2(R2), and ∂ψu ∈ L2(R2)
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Proof. Since u is a weak solution to (6.20) on R2, it also solves (6.20) on any ball B(0, R) around
the origin. Applying theorem 2.4.3, we see that u is weakly differentiable on B(0, R) for any R,
and thus on R2. This also means u solves (6.20) pointwise. The only thing left to show is that the
(weak) second derivatives of u are square-integrable.

Let g ∈ Cc([0,∞) be a monotonically decreasing function such that the support of g(x) = 1 for
x ∈ [0, 1]. For any R ≥ 1, define gR(x) = g(|x|/R). Then gR ∈ Cc(R2) and by direct computation
we see that

|gR| ≤ 1,

|∇gR| ≲
1

R
,

|∂ψgR| = 0,

|∆gR| ≲
1

R2
.

By applying the product rule, this leads to the estimates

∥ugR∥L2 ≤ ∥u∥L2 , (6.21)
∥∇(ugR)∥L2 ≲ ∥u∥H1 , (6.22)
∥∂ψ(ugR)∥L2 ≤ ∥∂ψu∥H1 ,

∥∆(ugR)∥L2 ≲ ∥u∥H2 . (6.23)

Now multiply (6.20) by gR∆(ugR) and integrate over R2. The compact support of gR guarantees
all the integrals are well-defined. This gives∫

∆u∆(ugR)gRdx =− ω

∫
∂ψu∆(ugR)gRdx (6.24)

−
∫

(a∂xu+ b∂yu)∆(ugR)gRdx

+

∫
f∆(ugR)gRdx.

Using integration by parts, we find that

−
∫
∂ψu∆(ugR)gRdx =

∫
∇(gR∂ψu) · ∇(ugR)dx

=

∫
∇(∂ψ(ugR)) · ∇(ugR)dx

=

∫
(∂ψ∇(ugR)) · ∇(ugR)dx+

∫
∇(ugR)Rπ/2 · ∇(ugR)

=

∫
1

2
∂ψ|∇(ugR)|2dx+

∫
∇(ugR)Rπ/2 · ∇(ugR)

= 0.

Substituting this into (6.24), and using the Cauchy-Schwarz inquality on the remaining terms we
find ∫

∆u∆(ugR)gRdx ≤ (|a|∥gR∂x1
u∥L2 + |b|∥gR∂x2

u∥L2)∥gR∆u∥L2 + ∥fgR∥L2∥∆ugR∥L2 .(6.25)
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Using (6.21), (6.22), and (6.23), we simplify this to∫
∆u∆(ugR)gRdx ≲ (∥u∥H1∥f∥L2)∥gR∆u∥L2

Now we compute∫
gR∆u∆(ugR)dx =

∫
g2R(∆u)

2 + 2gR∆u(∇gR · ∇u) + ugR∆u∆gR)dx,

which we rearrange to∫
g2R(∆u)

2dx =

∫
gR∆u∆(ugR)dx− 2

∫
gR∆u(∇gR · ∇u)dx−

∫
ugR∆u∆gR)dx,

which gives the estimate

∥gR(∆u)∥2L2 ≲
∫
gR∆u∆(ugR)dx+ ∥gR∆u∥L2∥∇u∥L2 + ∥gR∆u∥L2∥u∆gR∥L2

≲
∫
gR∆u∆(ugR)dx+ ∥gR∆u∥L2∥u∥H1 (6.26)

by Cauchy-Schwarz. Substituting (6.25) into (6.26), and letting C be the proportionality constant
gives

∥gR(∆u)∥2L2 ≤ C∥gR∆u∥L2(∥u∥H1 + ∥f∥L2),

at which point we use Young’s inequality to find

∥gR(∆u)∥2L2 ≤ 1

2
∥gR∆u∥L2 +

C2

2
(∥u∥H1 + ∥f∥L2).

Rearranging this inequality gives

∥gR(∆u)∥2L2 ≤ C2(∥u∥H1 + ∥f∥L2).

Now let R→ ∞, note that C is independent of R and use monotone convergence to find

∥∆u∥2L2 ≤ C2(∥u∥H1 + ∥f∥L2) <∞,

which is sufficient to show u ∈ H2(R2). By rewriting (6.20), we now see that ∂ψu is a linear
combination of square integrable functions, so ∂ψu ∈ L2(R2).

If we apply ∂x1 , ∂x2 or ∂ψ to (6.20) and use (3.15), we see that the derivatives of u also solve (3.9)
(with different values of a, b). Thus, by assumption 3.1.14 we use extend proposition 6.3.2 to get
the regularity for u∗ we need.

Proposition 6.3.2. Suppose u∗ ∈ H1(R2,Rn) is a weak solution to (3.9). Then assumption 3.1.8
is satisfied.
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