
A Study on the Impact of Common Code Structures on CodeParrot’s
Autocompletion Performance

Razvan-Mihai Popescu

Supervisors: Arie van Deursen, Maliheh Izadi, Jonathan Katzy

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Razvan-Mihai Popescu
Final project course: CSE3000 Research Project
Thesis committee: Arie van Deursen, Maliheh Izadi, Jonathan Katzy, Azqa Nadeem

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
In recent years, deep learning techniques, partic-
ularly transformer models, have demonstrated re-
markable advancements in the accuracy and effi-
ciency of language models. These models provide
the foundation for many natural language process-
ing tasks, including code completion. The effec-
tiveness of code completion models has been the
subject of a variety of empirical studies. How-
ever, none of the existing literature has explicitly
investigated the potential impact of common code
structures on the performance of large language
models during code completion. This paper eval-
uates the influence of common code structures on
the code completion performance of CodeParrot, a
state-of-the-art natural language processing model.
Using the tuned lens method, we show that typ-
ical code structures lead to a higher completion
accuracy compared to uncommon code structures,
due to their frequent occurrence, consistent syn-
tax, clear semantics, and contextual clues. Finally,
we perform an attention investigation to assess the
significance of the common code structures and re-
veal potential data patterns across low- and high-
resource languages.
Index Terms – code completion, attention

1 Introduction
Large language models (LLMs), particularly those based on
deep learning techniques such as transformer models, have
shown significant promise in improving the accuracy and ef-
fectiveness of code completion, alongside other natural lan-
guage processing (NLP) applications [1]. These models can
produce more relevant and contextually appropriate sugges-
tions than conventional rule-based techniques since they are
trained on enormous volumes of code data. Moreover, they
are useful for a range of tasks in addition to their capacity
for generative analysis, as demonstrated by previous NLP
research. Word embeddings that have already been trained
can be used in downstream tasks [2], while recurrent neural
networks (RNN) performance could be enhanced by LLM
pre-training [3].

Many state-of-the-art language models have been pro-
posed to improve the field of code completion, including
GPT-2 [4], CodeParrot [5], CodeBERT [6], InCoder [7],
RoBERTa [8], and others. These foundation models can be
adapted to solve many tasks, and they move away from the
paradigm of narrow experts within deep learning. However,
most models are only trained in one language or multiple
very common languages at the same time. Thus, many of
the plugins being developed, such as GitHub Copilot [9],
will function best with popular languages such as Python or
Java, but may struggle to operate on low-resource languages
such as Kotlin, Julia, or Go. State-of-the-art models, such as
CodeBERT or GPT-2, have been trained on a large corpus
of data that also includes low-resource languages. Neverthe-
less, their performance in these languages is generally lower
compared to high-resource languages due to limited training
data and the absence of specific tuning for such cases [10].
Additionally, one important aspect that has not been stud-
ied in isolation before is whether common code structures

(CCS) have an impact on the performance of LLMs during
code completion. The performance of code completion mod-
els depends on various factors, including the model architec-
ture, the quality of the training data, and fine-tuning meth-
ods. However, common code structures, such as conditional
statements, loops, functions, and sequential structures, can
also represent a significant factor.

This study aims to fill the existing knowledge gap by an-
alyzing the variation in the code completion performance of
CodeParrot across different programming languages. That
is, we describe the relationship between common code struc-
tures and the depth of the first correct completion (DoFCC)
of our model among low- and high-resource languages. To
achieve this, we are using a multi-language test bench, com-
prising six programming languages, namely Python, Java,
Kotlin, C++, Julia, and Go. We employ the CodeParrot
model together with the tuned lens method [11] for token
completion. This allows us to visualize the inner mechanism
of our model at each computation stage and identify potential
patterns in the data that highlight the influence of common
structures during code completion. Furthermore, we conduct
an attention investigation to evaluate the implications of the
CCS on the attention mechanism of our model, concerning
their impact on the outcome of code completion. This anal-
ysis provides insights into the performance of CodeParrot,
and supports us in answering the research question of this
study: How do common code structures relate to the depth
of the first correct completion?

Our findings demonstrate that CodeParrot achieves higher
accuracy in code completion for CCS when compared to less
common structures. The influence of these structures is ev-
ident across all programming languages. However, it be-
comes significantly more pronounced in high-resource lan-
guages due to a higher amount of training data. Finally, both
the common code structures and the uncommon code struc-
tures (UCS) have a similar impact on the attention mecha-
nism. The ratio of null attention heads (NAHs) to other head
types remains consistent across languages, with slight varia-
tions based on resource level, language complexity, and size
of training data. To summarize, this paper’s contributions
can be stated as follows:

• We show that frequent code structures yield higher
completion accuracy when compared to standard struc-
tures, across high- and low-resource languages;

• We illustrate that both common and uncommon struc-
tures demonstrate comparable and consistent implica-
tions on CodeParrot’s attention mechanism;

• We reveal that the completion accuracy of CCS strongly
correlates with the attention distribution within the
model’s initial layers;

• We map the performance variations between languages
and provide a foundation of knowledge for the develop-
ment of future models;

• We make our source code, datasets, and fine-tuned mod-
els public1.

1The GitHub Repository

2

https://github.com/AISE-TUDelft/CodeShop


2 Background
The process of code completion can be categorized into sev-
eral types based on the context in which it is applied.

• Token completion suggests single code tokens, repre-
senting the smallest meaningful units in a programming
language, such as variables, functions, keywords, or op-
erators. In this study, we utilize token completion to as-
sess the distribution and features of individual tokens.

• Statement completion offers code completions at the
level of a single line, aiding in the completion of par-
tially written statements by suggesting missing code
structures like function arguments, variable assign-
ments, or method invocations.

• Block completion handles larger code blocks, specifi-
cally methods or functions, and plays a vital role in gen-
erating boilerplate code snippets, such as method signa-
tures.

These different code completion types offer varying levels
of granularity and assistance, addressing different stages of
code writing.

2.1 CodeParrot Language Model
Understanding code completion involves a thorough inves-
tigation of the CodeParrot model, revealing its capability
for correctly predicting and producing relevant code sugges-
tions. CodeParrot is a multi-language code generation model
that was trained on the GitHub Code dataset2, which con-
sists of 115M code files in 32 programming languages, in-
cluding all the languages stated in the introduction except
Kotlin. CodeParrot is based on the GPT-2 model and uses
a Byte-Pair Encoding (BPE) tokenizer with a context length
of 1024 tokens. The multi-language version of this model
used in this study has 110M parameters and employs a trans-
former architecture that is specifically designed as a decoder-
only model. This deep neural network architecture is based
solely on the mechanics of attention, completely disregard-
ing recurrence and convolution. Transformers, as opposed to
sequential models, are far more expressive and more suited
to the parallel computing capabilities of current GPUs, en-
abling language model pre-training to be carried out with
larger models and more data [12].

Unlike traditional transformer models that consist of both
encoder and decoder components, CodeParrot exclusively
focuses on the decoder aspect. This architecture, depicted
in Figure 1, is specifically tailored for GPT models and sets
them apart from other transformer-based architectures. It in-
corporates a stack of 12 decoder layers, augmented with a
linear and softmax layer on top. Each layer in the stack con-
sists of a masked multi-head self-attention layer, followed
by a feed-forward neural network. Additionally, there are
residual connections and normalization layers [12]. The self-
attention layer is essential for incorporating contextual infor-
mation from relevant tokens into the current token being pro-
cessed [12]. Furthermore, the masking prevents the model
from constructing a token’s representation by looking for-
ward in the sequence, as typically done in the encoder.

This serves as a key justification for why the decoder-only
architecture is a suitable choice for tasks such as code com-
pletion. In the process of code completion, the anticipation

2The GitHub Code Dataset

Figure 1: The tuned lens technique and decoder architecture

of subsequent tokens should be avoided while predicting the
current one. The masked self-attention layer allows for an
auto-regressive architecture that can repeatedly predict the
next token in a sequence. In other words, the output of the
model at time t is utilized as the input at time t + 1 [12].
Moreover, through the use of multiple heads, the model can
jointly attend to data from various representation subspaces
at different positions [12]. The residual connection adds the
input to the output of the sub-layer to make the propagation
of the information through the layers more efficient and ef-
fective [13]. The normalization layer helps to balance the
activations of the model across various input sequence posi-
tions and layers. The feed-forward neural network layer is
meant to transform the input sequence’s representations and
identify complex, and non-linear patterns. After the input is
transformed into a sequence of embedding vectors, together
with their positional encoding, it flows through the decoder
stack and reaches the final two layers. The linear layer takes
the output of the top decoder layer and transforms it into a
logit vector of the same size as the vocabulary. This vector
captures the initial unnormalized scores assigned to each po-
tential token. Finally, the softmax layer takes this vector and
converts it into a probability distribution over the vocabulary,
resulting in the final prediction.

2.2 Tuned Lens Method
Despite a clear representation of the model’s structural
framework, a complete understanding of its mode of op-
eration, internal mechanism, and computing capabilities is
only partially attained. This inherent constraint results from
the model’s ”black box” design, which makes it challeng-
ing to understand its internal workings and intricate details.
Achieving transparency is of utmost importance while exam-
ining these common code structures. Such transparency is
obtained through the application of the tuned lens method-
ology, thereby facilitating a more comprehensive analy-
sis. This technique captures the iterative computations per-

3

https://huggingface.co/datasets/codeparrot/github-code


formed by a transformer to predict subsequent tokens, en-
abling us to analyze the model’s latent predictions during a
forward pass.

Moreover, the tuned lens approach possesses the property
of stimulus-response alignment, indicating that features that
exert the most influence on the output of the tuned lens also
hold significant influence on the model itself [11]. On top
of that, in a transformer with n layers, the tuned lens method
enables the replacement of the final m layers with an affine
translator. As it can be seen in Figure 1, the translator en-
ables us to directly map the output from the first decoder
layer (d1) to the linear layer, bypassing the remaining de-
coder layers. This pattern holds for the entire stack and helps
in obtaining the optimal prediction based on the model’s in-
termediate representations. Each translator is trained to min-
imize the Kullback-Leibler (KL) divergence between its pre-
diction and the final output distribution of the original model.
The necessity of these translators arises due to the possibility
of rotations, shifts, or stretches occurring in the representa-
tions across different layers [11]. Finally, the utilization of
affine translators serves the purpose of establishing a con-
sistent representation of the output at each layer, aligning it
with the final layer output. This alignment not only facili-
tates the acquisition of coherent predictions but also ensures
their relevance throughout the network.

2.3 Null Attention Heads
For the attention investigation, we are using the BertViz li-
brary3 to visualize the attention mechanism of CodeParrot.
To be more specific, our focus lies in examining the propor-
tion of null attention heads to other attention heads, as this
can expose how CCS are processed by our model. An at-
tention head attends to different parts of the input sequence,
enabling the model to focus on relevant information during
processing. Conversely, a null attention head focuses all the
attention on the first token in the sequence [14].

2.4 The Stack Dataset
A multi-language test bench was used for this research, con-
taining source code files for both low- and high-resource lan-
guages. We extracted six subsets from The Stack dataset,4
which includes over 6 TB of licensed source code files cov-
ering 358 programming languages. Each subset consists of
100,000 source code files per programming language. How-
ever, due to computational overhead, only 512 files were
used for each language.

2.5 DelftBlue Supercomputer
To enable the tuned lens and attention investigations on such
extensive datasets, the usage of DelftBlue5 was imperative.
We made use of one GPU, 4 CPUs per task, and up to 100
GB of memory to carry out this analysis. TU Delft’s super-
computer was purposefully designed to accommodate the in-
creasing computational demands and proved to be an ideal fit
for this research. It provided us with the extensive comput-
ing power necessary to successfully conduct and conclude
this study.

3The BertViz Library
4The Stack Dataset
5The DelftBlue Supercomputer

3 Related Work
The success of transformer models can be attributed to their
ability to leverage large amounts of code data during train-
ing, enabling them to capture intricate programming patterns
and enhance code generation. As a result, the application of
deep learning techniques, especially transformer models, in
code completion is an active and dynamic area of research
within the broader domain of NLP, holding great practical
promise. While a significant body of research exists in this
field, none of the papers have specifically examined the influ-
ence of CCS on the attention mechanism and the code com-
pletion performance of LLMs. Instead, the focus has pre-
dominantly been on the general performance across diverse
code structures and possible ways of improving the accuracy
of code completion tools.

Using CodeBERT and GraphCodeBERT [15], Wan et al.
[16] highlighted the importance of syntax structure in the
pre-training phase of language models for source code. In
this study, they explore probing word embeddings, conduct
syntax tree induction, and perform an attention analysis to
gain valuable insights into these models. Key findings in-
clude the strong alignment of attention with code syntax,
the preservation of syntax structure in intermediate repre-
sentations, and the model’s ability to induce syntax trees.
Throughout our analysis, we observed that the significance
of the syntax structure can be derived from the superior com-
pletion performance achieved by CCS as opposed to UCS.
This is due to their consistent syntax and high frequency
across all six languages.

Existing probing methods aim to uncover the inter-
nal workings and representations of pre-trained LLMs by
analyzing specific layers, neurons, or attention mecha-
nisms. However, when it comes to code pre-trained mod-
els (CodePTMs), these methods fail to consider the unique
characteristics of code. To address this, Chen et al.[17] in-
troduced a novel quantitative probing technique called CAT-
probing, which interprets how CodePTMs attend to code
structure. It involves denoising input code sequences based
on pre-defined token types and defining a metric called CAT-
score to measure the commonality between attention scores
and pair-wise distances of AST nodes. Furthermore, this
study examines the common token types that CodePTMs pri-
oritize across various programming languages such as Go,
Java, Python, and JavaScript. The findings indicate distinct
and frequent token types for each language. For instance,
Java includes ”public”, ”s literal”, and ”return”, as frequent
token types, while Python consists of ”for”, ”if ”, and ”)”.
CodePTMs prioritize token types differently from program-
mers, showing a greater emphasis on code tokens such as
brackets. Our investigation also revealed that spaces, brack-
ets, and punctuation signs have the highest completion ac-
curacy. This is due to their widespread utilization in con-
structing more complex components in most programming
languages. A limitation of this study is the exclusive focus on
encoder-only CodePTMs such as CodeBERT, GraphCode-
BERT, or RoBERTa in the adopted probing approaches. On
the other hand, we are using a decoder-based model and the
first layer where the completion was correct, as an evaluation
metric.

Recent advancements in LLMs for code completion and
code synthesis, such as Codex [9], have shown significant
potential, but the lack of publicly available models raises

4

https://github.com/jessevig/bertviz
https://huggingface.co/datasets/bigcode/the-stack
https://doc.dhpc.tudelft.nl/delftblue/


questions about their design choices. To address this, Xu
et al.[5] systematically evaluated existing models, including
Codex, GPT-J,6 GPT-Neo [18], GPT-NeoX-20B [19], and
CodeParrot, across different programming languages. The
study demonstrates that open-source models achieve similar
results to Codex in some languages, although they are pri-
marily designed for natural language modeling. Moreover,
the need for a large open-source multilingual code model is
emphasized [5]. Results from the HumanEval benchmark
and token analysis during training are used to compare differ-
ent models. Among the models studied, PolyCoder, trained
on a mixture of GitHub repositories in 12 languages, per-
forms worse than the similarly sized GPT-Neo and even the
smaller Codex 300M. Lastly, CodeParrot shows weak per-
formance in languages other than Python, attributed to its
exclusive training on Python data in this study, which differs
from the multi-language version used in our research.

To assess the significance of specific tokens during code
completion, conducting an attention analysis becomes essen-
tial. Utilizing the GPT-2 small pre-trained model, Jesse Vig
[14] explores attention-syntax relationships and reveals that
different layer depths target distinct parts of speech, with
middle layers emphasizing dependency relations. More-
over, deeper layers capture distant relationships, while ex-
emplar sentences illustrate attention patterns specific to cer-
tain heads. Furthermore, the study reveals that the perfor-
mance of the model is minimally affected by individual at-
tention heads. Hence, the analysis excludes NAHs as they
do not contribute any significant information. Additionally,
the analysis reveals that, on average, 57% of attention is al-
located to the initial token, and this pattern is particularly
found in the upper layers of the network. This analysis was
conducted using sentences from English Wikipedia, which
the model was not trained on, whereas our attention investi-
gation used source code files from six different languages.

Finally, using the BertViz visualization method and the
GPT-2 model, Jesse Vig [20] conducts an attention investi-
gation to identify possible recurring patterns. The findings
show that many attention heads in the initial layers often ex-
hibit position-based behavior, focusing on the same or previ-
ous tokens. Moreover, a consistent pattern is represented by
null attention heads, which concentrate solely on the first to-
ken. These attention heads signify the absence of a linguistic
property in the input text, providing valuable insights into the
model’s decision-making process. The attention heads used
in this investigation were extracted from a single sentence.
In contrast, our predictions involve a greater left context, re-
sulting in a modified structure of the NAHs, as explained in
Subsection 5.2.

4 Methodology
Based on their functionality, common structures can be cate-
gorized into multiple distinct groups, namely: control struc-
tures, functions, classes, objects, exceptions, data structures,
and input and output (I/O) structures. The control structures
comprise constructs used to control the flow of execution
in a program, such as ”if ” statements or loops, which in-
clude ”for” and ”while” statements. Data structures are rep-
resented by various types of containers for organizing and
storing data, such as arrays, stacks, queues, trees, and many

6The GPT-J Model

others. Lastly, the I/O structures facilitate interactions be-
tween the program and the external environment, including
user input and output, or reading and writing data to files.
To gain a more profound understanding of the implications
associated with these structures, our analysis is divided into
two parts: the tuned lens investigation and the attention in-
vestigation.

4.1 Tuned Lens Approach
For the tuned lens investigation, we start by creating a col-
lection of the most common code structures for each lan-
guage. Following this, the CodeParrot model is used to per-
form token completion on the pre-processed data. At the
same time, the tuned lens method is applied to acquire in-
sights into the internal representations of our model. Various
statistical techniques are utilized to evaluate the intermedi-
ate outcomes of the model. Ultimately, numerous visual-
ization methods are deployed to extract relevant information
and identify potential trends within the data.

4.2 Attention Approach
When it comes to the attention investigation, we initiate the
process by collecting attention heads for common and un-
common structures, using distinct datasets. Therefore, by
employing diverse statistical methodologies, our investiga-
tion revolves around the NAHs aspect across all aforemen-
tioned structures and languages. As a result, we aim to en-
hance our understanding of how the model directs its focus
toward particular contextual information. Finally, we ana-
lyze the correlation between the results of the two investiga-
tions, aiming to comprehend the overall impact and signifi-
cance of these CCS and to understand the decision-making
process of the model.

5 Experimental Setup
The quantity of training data constitutes an important factor
influencing the overall performance of CodeParrot in code
completion tasks. As illustrated in Table 1, high-resource

Table 1: Training data for the CodeParrot model

Language Data Size (GB)
Java 107.70
C++ 87.73

Python 52.03
Go 19.28

Julia 0.29
Kotlin 0

languages possess a greater volume of training data in con-
trast to low-resource languages. In addition, it is noteworthy
that Kotlin, unlike other languages, was excluded from the
model training process.

5.1 Tuned Lens Investigation
A distinct collection of the most prevalent tokens was cre-
ated for each language utilized in this research, to strengthen
the reliability of our findings. The process involved carefully
examining code samples and leveraging domain knowledge
and experience to identify the tokens that appeared most fre-
quently. To avoid potential result distortions, tokens that
represent standalone brackets or whitespaces were excluded

5

https://github.com/kingoflolz/mesh-transformer-jax


from the analysis. Given their substantial presence across
all languages, these tokens demonstrate the highest accu-
racy among all tokens, which can lead to biased results. The
soundness of these collections is supported by a comparative
analysis and the experimental results presented in Section 6.

To reduce the computational overhead, the data is initially
filtered by removing the comments from each file. The com-
ments are not pertinent to this study as they do not provide
insights into CCS. This is because they typically provide ad-
ditional information about the code logic, rather than repre-
senting the code structures themselves. Afterward, the files
with less than 500 tokens are removed, and for large files,
only a random slice of approximately 1750 tokens is re-
tained. This filtering enhances computational efficiency and
ensures sufficient context for accurate predictions. Hence,
we start with a minimum left-context of 512 tokens and pro-
gressively increase it up to a maximum of 1024, the upper
limit supported by CodeParrot. Following that, data under-
goes tokenization using the GPT-2 BPE tokenizer, which ef-
fectively captures a wide range of linguistic variations. Fur-
thermore, batching is applied to process multiple inputs si-
multaneously, reducing the prediction overhead and optimiz-
ing memory usage.

To maximize prediction accuracy, we apply the tuned lens
method to exclusively concentrate on the final token within
each layer. This is done to disregard any right-context in-
formation that may lead to biased completion outputs. This
process enables us to extract the intermediate results gener-
ated by CodeParrot at each specific layer of our prediction.
To ensure the consistency of the stored results, we create a
data structure that enhances accessibility for further compu-
tations. For every file, we store the input code, the tokenized
input, the intermediate layer predictions, the generated atten-
tion heads, and multiple metadata elements including the file
ID and the number of tokens.

As an evaluation method for our predictions, we are using
the depth of the first correct completion (DoFCC). This refers
to the layer at which the intermediate result aligns with the
expected token. We contrast the mean and standard devia-
tion of the DoFCC between common and uncommon code
structures across all six languages. Lastly, we perform a
comparative analysis of printing statements, a widely used
code structure, among all programming languages. To ac-
complish this, we isolate the specific context in which these
structures occur and retain only the print statements that con-
tain a maximum of 16 tokens within their scope. Therefore,
we can illustrate the impact of CCS from both a global and
local perspective.

5.2 Attention Investigation
The identical procedure of filtering, tokenizing, and batch-
ing is applied for the attention investigation. However, in
this case, only the attention heads are stored rather than the
predictions. By utilizing the pre-established prevalent collec-
tions, we create separate attention datasets for both common
and uncommon structures for each language. To mitigate any
potential biases in our data and ensure diversity, we limit the
token prediction to one per file and store only a randomly se-
lected attention head per layer. Hence, our analysis involves
a total of 18,000 attention heads, specifically 3,000 for each
language, equally distributed among the two token types.

As mentioned earlier, to enhance the precision of our out-
comes, we adopted a left-context of 1024 tokens. Conse-

quently, the structure of our attention heads is denoted by a
matrix of dimensions 1024× 1024, wherein each token car-
ries a cumulative attention weight of 1. The task of identify-
ing and visualizing null heads, where the first token receives
the entirety of the attention weight (specifically, 1024), be-
comes increasingly challenging in a broader context. This
difficulty arises due to a considerable number of tokens
spreading lower attention weights among several other to-
kens, particularly in the initial layers, as shown in Subsec-
tion 6.2. Therefore, we define the null attention head as the
head wherein a minimum of half of the attention (specifically
512), is directed toward the first token.

Subsequently, we conduct a comparative analysis of the
proportion of null attention heads to other types of heads
across common and standard structures for each language.
Furthermore, we examine the frequency of null attention
heads per layer. In addition, we contrast the standard devia-
tion and average attention score of each null head per layer
for both types of structures. This score represents the total
amount of attention weight that the first token receives. Fi-
nally, we explore the potential relationship between the out-
comes derived from both investigations, aiming to identify
any possible correlations. As a result, we can illustrate how
common code structures impact the completion process and
the attention mechanism of CodeParrot.

6 Experiment Results
CodeParrot was trained on large amounts of code, which in-
cludes numerous instances of these common code structures.
Therefore, the model has more exposure to the patterns and
contexts associated with these structures, enabling it to learn
their usage accurately.

6.1 Tuned Lens Results
The influence of the CCS on completion performance is ap-
parent across all six languages, particularly in high-resource
languages such as Java, Python, and C++. This effect is
more pronounced in these languages due to the availability
of a larger volume of training data. The analysis presented
in Figure 2 demonstrates a notable disparity in completion
accuracy between CCS and UCS in Java. Specifically, the
common structures lead to nearly twice the level of accu-
racy compared to the uncommon structures. The observed
DoFCC for common structures is 3.53, in contrast to 6.27 for
uncommon structures, while the standard deviations for both
cases are relatively similar. Comparable findings were ob-
served for Python, with a slightly increased average DoFCC
for common structures. Furthermore, the average DoFCC
for common code structures in C++ is just one layer lower
compared to the DoFCC for standard structures, which still
denotes a substantial performance improvement. A more de-
tailed view of these results can be found in the Appendix A.1.

In the context of low-resource languages, the significance
of typical code structures is less pronounced due to the
limited availability of training data. However, an excep-
tional case arises with Go, as it demonstrates remarkable
performance comparable to that of Java, as it can be seen
in Figure 3. Due to its focus on simplicity and ease of use,
Go features a more minimalistic syntax in comparison to
Java, thereby compensating for the scarcity of training data.
For example, the implicit absence of ”while” loops neces-
sitates the utilization of their desugared versions by using

6



Figure 2: The mean and standard deviation of the DoFCC for com-
mon and uncommon code structures in Java

Figure 3: The mean and standard deviation of the DoFCC for com-
mon and uncommon code structures in Go

”if” or ”for” statements. Therefore, this leads to a smaller
collection of commonly used structures in Go when com-
pared to other high-resource languages, which explains this
level of accuracy. Conversely, the influence of typical struc-
tures is most minimal in the context of Julia, as illustrated
in Figure 4.

The predictions exhibit a concentration within layers 4 to
7, with a mean value of approximately 6, further highlight-
ing the vital role of training data in shaping performance.
Surprisingly, Kotlin displays consistency in both the mean
and standard deviation across all structures, leading to sim-
ilar outcomes to Julia, despite our model not being trained
on it. These results can be attributed to the fact that Kotlin’s
syntax incorporates a substantial number of Java constructs,
thereby emphasizing the importance of syntax in the con-
text of code completion. As a result of the aforementioned
reason, our analysis outcomes for Kotlin do not demonstrate
any notable differences compared to the other languages for
which training data was accessible.

An interesting pattern is depicted in Figure 5, where com-
mon tokens such as ” return” or ” if” lead to outstanding
completion performance in Julia, with a DoFCC value of
just one. This reinforces the fact that maintaining a proper
indentation and adhering to whitespace conventions, leads
to a higher completion performance. However, this is not

Figure 4: The mean and standard deviation of the DoFCC for com-
mon code structures in Julia

Figure 5: Low outliers of common code structures in Julia

the case for Python, since it enforces correct indentation for
code execution. This trend was consistently observed in all
programming languages, with a more pronounced impact on
languages that adopt curly brackets to denote code blocks,
where the inclusion of whitespace within those brackets is
optional. Further elaboration on these results can be found
in the Appendix A.2, offering a more extensive perspective
on the findings.

A notable aspect presented in Figure 6 is the consistent av-
erage DoFCC observed across all tokens within the scope of
a print statement in Python. Our findings reveal that the ma-
jority of the predictions occur in layer 5, with a higher occur-
rence of outliers observed for later tokens due to their lower
frequency. This pattern of consistency is further supported
by the standard deviation, predominantly falling within the
range of 2 to 3. This demonstrates that CodeParrot, given
their frequent occurrence and consistent syntax, is capa-
ble of effectively learning these CCS. As a result, common
structures achieve a higher completion accuracy compared to
standard structures, which, on average, exhibit a DoFCC of
6 in Python. Conversely, this consistency is not observed in
the case of print statements in C++, primarily due to their
more intricate structure. As depicted in Figure 7, the average
DoFCC for print statements in C++ ranges between 6 and
7, with a few minor exceptions. The influence of common

7



Figure 6: The mean and standard deviation of the DoFCC for print
statements in Python

structures on completion accuracy is not as straightforward
as in Python, since the uncommon structures in C++ also
achieve an average DoFCC of approximately 6. However,
this outcome can be attributed to the lower frequency of to-
kens and the syntactic complexity associated with printing
operations.

The decision-making process of the model can be influ-
enced by the various forms in which a print statement can
be expressed in C++, either by using the ”std” and ”::” to-
kens or not. Moreover, the presence of nested print state-
ments, involving multiple occurrences of the ”<<” token,
can result in fluctuations in the average DoFCC values. This
arises due to the potential confusion faced by CodeParrot, as
it can interpret the usage of ”<<” as an application of the
bitwise operator, which uses the same token in C++. Addi-
tionally, the oscillations in DoFCC are also associated with
the pattern of consecutive common structures. This pattern
emerges when clusters of common tokens, forming specific
structures, appear successively. Once the model encounters
the initial token, subsequent common tokens tend to receive
significantly improved predictions due to the learned patterns
during training. This pattern becomes apparent at the start
of the print statement in Python, where the opening bracket
exhibits higher accuracy in completion compared to other to-
kens. In the context of C++, this trend is observable both at
the beginning and the end of the print statement, and poten-
tially within the body, particularly in nested cases. Moreover,
if there are any other common structures present within the
print statements, they can also introduce fluctuations in the
values of DoFCC. Finally, the pattern of consecutive com-
mon structures can also be observed in the print statements
of the other languages, as stated in the Appendix A.3.

6.2 Attention Results
The implications of the common structures on the attention
mechanism of CodeParrot appear to be less evident when
compared to their impact on the completion performance.
Our results show that the ratio of NAHs to other head types
remains consistent across all languages for both CCS and
UCS. This ratio varies between 0.04 and 0.14 indicating a
relatively small occurrence of null attention heads in each
language. As discussed in Subsection 5.2, this can be at-
tributed to the use of a high context value, making it chal-
lenging to identify null attention heads where the first token
receives all the attention. Therefore, we imposed a new at-
tention threshold, requiring at least half of the attention to be

Figure 7: The mean and standard deviation of the DoFCC for print
statements in C++, using the std namespace import

allocated to the first token. In this scenario, a noticeable pat-
tern can be observed among all structures and languages, par-
ticularly in the lower layers. Figure 8 visually demonstrates
a clear absence of null attention heads within the initial four
layers. This implies that the attention is predominantly dis-
tributed across a wide range of tokens, or among specific
tokens, with little to no weight assigned to the first token.

At the layer level, the findings also demonstrate consistent
results. The mean attention score varies from 533 to 714,
without reaching the maximum attention value of 1024. Ad-
ditionally, the standard deviation of the attention score for
each NAH remains stable across all languages, with a max-
imum value of 95. Nevertheless, regarding the frequency of
null attention heads per layer, a distinct pattern emerges in
upper layers, for both types of structures. Noticeable fre-
quency peaks can also be found in layers 5,6,8, and 12, al-
though the majority of null attention heads are concentrated
in layers 10 and 11, the latter one being more predominant.
Go achieves the highest number of NAHs for common code
structures, with a value of 67 heads in layer 11. In terms of
uncommon code structures, Python attains the highest count
of 64 NAHs in layer 11, closely followed by Java with 63,
and again Go with 62 null attention heads. Furthermore, Ju-
lia exhibits the lowest quantity of NAHs among both com-
mon and uncommon structures, while consistently maintain-
ing a minimal count across all layers. This observation can
be directly related to the limited availability of training data.
Finally, Kotlin attains a higher amount of NAHs in compar-
ison to Julia, and this can be attributed to its pronounced re-
semblance to Java, which possesses the highest volume of
training data.

The two investigations unveil a possible correlation be-
tween the obtained results. These findings provide valuable
insights into the connection between layers and code struc-
tures in the occurrence of NAHs. The results of the tuned
lens analysis showed that the correct predictions for the CCS
usually take place in the first half of the layers, across all lan-
guages. This happens predominantly in the first four layers
but with some exceptions in layers 5 and 6. The behavior
of CodeParrot potentially signifies a higher emphasis on the
processing of predictions in the lower layers. Instead of al-
locating a significant attention weight to the initial token, the
model distributes its attention across more contextually rele-
vant tokens. As demonstrated earlier, the number of NAHs
begins to rise in the latter half of the layers following the
prediction. This implies that model’s focus on the prediction

8



Figure 8: The frequency of null attention heads across each layer and within each language. The mean and standard deviation of the attention
score for each null attention head are also displayed. The left heatmap corresponds to common code structures, while the right heatmap
represents uncommon code structures.

diminishes in the upper layers. Additionally, the first token
in the sequence receives most of the attention, whereas the
other tokens are either neglected or assigned minimal atten-
tion weights.

According to Jesse Vig [20], the null attention heads fail
to reveal the presence of the linguistic property within the in-
put text, here represented by CCS. Moreover, it was observed
that the focus on the initial token appears in the absence of
relevant tokens elsewhere in the sequence [14]. Therefore, in
our scenario, these remarks suggest that focusing a substan-
tial amount of attention on the first token does not yield per-
tinent contextual information for the prediction. Hence, this
observation potentially sheds light on the disparity between
lower and upper layers, as well as the intricate relationship
connecting NAHs and the impact of common code structures
on the model’s behavior.

7 Discussion
The findings of our study indicate that common structures
exhibit a higher completion accuracy compared to uncom-
mon structures across all programming languages consid-
ered in this research. Furthermore, we observed variations
in performance level across both high and low-resource lan-
guages, primarily influenced by the availability of training
data. The relationship between the amount of training data
and the syntax structure plays a significant role in shaping
the performance of CodeParrot. This observation was noted
in the context of Kotlin, which demonstrated comparable re-
sults to the other languages, despite the limited availability
of training data. This outcome can be attributed to Kotlin’s
robust syntax similarity to Java.

The attention analysis revealed similar outcomes for CCS
and UCS. However, a closer examination of the frequency
of NAHs at the layer level unveils intriguing patterns. In
Jesse Vig’s investigation [14], it was demonstrated that cer-
tain attention heads exhibited an average attention concentra-
tion of over 97% on the first token. This finding emphasizes
that the upper layers of the model display the highest pro-
portion of attention directed toward the initial token. Our
findings provide further support for this observation, high-

lighting the consistent pattern where the majority of NAHs
are predominantly concentrated in the upper layers of the
model, rather than the lower layers. However, for our anal-
ysis, we used attention heads extracted from source code,
as opposed to those used in Vig’s study, which typically fo-
cused on Wikipedia sentences following a similar encyclo-
pedic format and style [14]. Additionally, we saw that these
attention trends exhibit a potential correlation with the com-
pletion accuracy of CCS. This provides valuable insights into
the decision-making process employed by our model and the
relationship between DoFCC and the distribution of atten-
tion throughout various stages of the prediction. Neverthe-
less, the primary limitation of our study lies in the scarcity
of data available to support this observation. At the same
time, this presents a promising avenue for future investiga-
tion. By isolating the common constructs according to spe-
cific contexts, a more comprehensive understanding of their
impact on the completion performance of CodeParrot can be
obtained. This would provide valuable information to rein-
force our observations and enhance the significance of our
findings.

8 Responsible Research
We prioritize reproducibility and transparency in all facets
of our study. These core values guide our efforts to main-
tain the integrity, trustworthiness, and accessibility of our re-
search findings. To achieve this, we publish all the necessary
resources for conducting the experiment, such as the source
code, fine-tuned model, and datasets. In addition, we place a
strong emphasis on thorough code documentation, ensuring
that it is well-structured and extensively commented. This
leads to highly-readable code, enabling easy understanding
and facilitating reproducibility.

Furthermore, we provide clear and concise explanations of
our research methodology, experimental setup, data collec-
tion processes, and analysis techniques. Additionally, we in-
corporate a comprehensive description of the tools employed
to carry out this research. Finally, to mitigate bias in the
data processing algorithm, we employ a range of techniques
detailed within this paper, such as the random selection of

9



NAHs per layer or the random selection of slices from large
input files. This extensive documentation of the research pro-
cess serves as a roadmap, enabling others to navigate and
understand the trajectory of our research.

9 Conclusion
In this work, we brought to light the impact of common code
structures on the attention mechanism and completion per-
formance of CodeParrot.

We showed that common structures yield higher comple-
tion accuracy compared to less common structures, with the
outcomes varying depending on the resource level, language
complexity, and quantity of training data. This can be at-
tributed to their frequent occurrence, consistent syntax, clear
semantics, and contextual clues. These factors significantly
enhance the model’s ability to learn and assimilate the pat-
terns associated with these structures more effectively.

We also discovered that the implications of the common
structures on the attention mechanism are less pronounced
compared to their influence on the completion performance.
Both CCS and UCS achieved consistent and similar atten-
tion outcomes across all six languages studied. We estab-
lished a strong correlation between the DoFCC of CCS and
the scarcity of NAHs in the initial four layers of the net-
work. Moreover, our observations indicated that the majority
of NAHs originating from the upper layers do not contribute
relevant contextual information to the predictions. Neverthe-
less, our findings present opportunities for further research
and exploration in this domain.

References
[1] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, et al.

CodeXGLUE: A machine learning benchmark dataset
for code understanding and generation. In Thirty-fifth
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021.

[2] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. Supervised learning
of universal sentence representations from natural lan-
guage inference data. In ”Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing”, pages 670–680, 2017.

[3] Jeremy Howard and Sebastian Ruder. Universal lan-
guage model fine-tuning for text classification. In ”Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers)”, pages 328–339, 2018.

[4] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. 2019.

[5] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent J.
Hellendoorn. A systematic evaluation of large language
models of code. Proceedings of the 6th ACM SIG-
PLAN International Symposium on Machine Program-
ming, 2022.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In

Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume
1 (Long and Short Papers), pages 4171–4186, 2019.

[7] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida
Wang, et al. Incoder: A generative model for code
infilling and synthesis. In The Eleventh International
Conference on Learning Representations, 2023.

[8] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, et al. Roberta: A robustly optimized bert
pretraining approach. ArXiv, abs/1907.11692, 2019.

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde, et al. Evaluating large language mod-
els trained on code. ArXiv, abs/2107.03374, 2021.

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, et al. Codebert: A pre-trained
model for programming and natural languages. ArXiv,
abs/2002.08155, 2020.

[11] Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor Ostrovsky, et al. Eliciting latent predic-
tions from transformers with the tuned lens. ArXiv,
abs/2303.08112, 2023.

[12] Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
et al. Attention is all you need. In Advances in Neural
Information Processing Systems 30, pages 5998–6008,
2017.

[13] He et al. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 770–778, 2016.

[14] Jesse Vig and Yonatan Belinkov. Analyzing the struc-
ture of attention in a transformer language model. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics: Student Research
Workshop, pages 158–165, 2020.

[15] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, et al. Graphcodebert: Pre-training
code representations with data flow. In 9th Interna-
tional Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021, 2021.

[16] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guan-
dong Xu, and Hairong Jin. What do they capture? - a
structural analysis of pre-trained language models for
source code. 2022 IEEE/ACM 44th International Con-
ference on Software Engineering (ICSE), pages 2377–
2388, 2022.

[17] Nuo Chen, Qiushi Sun, Renyu Zhu, Xiang Li, Xuesong
Lu, and Ming Gao. CAT-probing: A metric-based
approach to interpret how pre-trained models for pro-
gramming language attend code structure”,. In ”Find-
ings of the Association for Computational Linguistics:
EMNLP 2022”, pages 4000–4008, 2022.

[18] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Rose Biderman. GPT-Neo: Large-scale au-
toregressive language modeling with mesh-tensorflow.
2021.

[19] Sid Black, Stella Biderman, Eric Hallahan, Connor
Leahy, Kyle McDonell, et al. GPT-NeoX-20B: An

10



open-source autoregressive language model. In ”Pro-
ceedings of BigScience Episode #5 – Workshop on
Challenges & Perspectives in Creating Large Lan-
guage Models”, pages 95–136, 2022.

[20] Jesse Vig. Visualizing attention in transformer-
based language representation models. ArXiv,
abs/1904.02679, 2019.

11



A Extended Tuned Lens Results
A.1 General Structure Results
This subsection showcases the remaining results of the tuned lens analysis, which were used to evaluate the completion
accuracy of both common and uncommon structures. These results comprise the mean and standard deviation of the DoFCC
across the languages used in this study. The violin plots are utilized to gain a comprehensive and detailed perspective of the
data distribution.

Figure 9: The mean and standard deviation of the DoFCC for com-
mon and uncommon code structures in Python

Figure 10: The mean and standard deviation of the DoFCC for com-
mon and uncommon code structures in C++

Figure 11: The mean and standard deviation of the DoFCC for com-
mon and uncommon code structures in Kotlin

Figure 12: The mean and standard deviation of the DoFCC for com-
mon and uncommon code structures in Julia

12



Figure 13: The mean and standard deviation of the DoFCC for com-
mon code structures in Java

Figure 14: The mean and standard deviation of the DoFCC for un-
common code structures in Java

Figure 15: The mean and standard deviation of the DoFCC for com-
mon code structures in C++

Figure 16: The mean and standard deviation of the DoFCC for un-
common code structures in C++

Figure 17: The mean and standard deviation of the DoFCC for com-
mon code structures in Python

Figure 18: The mean and standard deviation of the DoFCC for un-
common code structures in Python

13



Figure 19: The mean and standard deviation of the DoFCC for com-
mon code structures in Go

Figure 20: The mean and standard deviation of the DoFCC for un-
common code structures in Go

Figure 21: The mean and standard deviation of the DoFCC for com-
mon code structures in Kotlin

Figure 22: The mean and standard deviation of the DoFCC for un-
common code structures in Kotlin

Figure 23: The mean and standard deviation of the DoFCC for uncommon code structures in Julia

14



A.2 Indentation Results
This subsection presents the results derived from the indentation analysis conducted for common code structures. These results
are particularly applicable to languages such as Java, Kotlin, and Go, where the usage of curly brackets to define code blocks
eliminates the need for proper indentation. For this investigation, we examined two highly prevalent constructs found in all of
these languages, specifically ”if-else” statements and ”for” loops. We evaluate the completion accuracy of these structures
by comparing their performance with and without proper indentation. Precisely, we examine the mean and standard deviation
of the DoFCC per token. The findings of our study indicate that, in nearly all instances, the utilization of common tokens
with proper indentation yielded higher accuracy in code completion. However, the excessive usage of white spaces should be
avoided, as evident in the case of the ”int” and ”i” tokens in Java and Kotlin. These tokens frequently appear within the body
of ”for” loops, representing a common pattern across these languages. It is noteworthy that introducing unnecessary white
spaces before these tokens results in a higher mean value of the DoFCC.

Figure 24: The mean and standard deviation of the DoFCC for com-
mon code structures with and without proper indentation in Java

Figure 25: The mean and standard deviation of the DoFCC for com-
mon code structures with and without proper indentation in Kotlin

Figure 26: The mean and standard deviation of the DoFCC for common code structures with and without proper indentation in Go

15



A.3 Print Statement Results
This subsection illustrates the additional results utilized in the comparative analysis of print statements across the languages
investigated in this research. Since there are multiple approaches for implementing a print statement in certain languages,
we also included the results of these different cases. Moreover, the results for Kotlin exhibit limited granularity, primarily
attributed to the infrequent occurrence of print statements in the code. The presence of these syntax variations can influence
the decision-making process of our model and reveal potentially meaningful patterns.

Figure 27: The mean and standard deviation of the DoFCC for print statements in Java

Figure 28: The mean and standard deviation of the DoFCC for print statements in C++, without using the std namespace import

16



Figure 29: The mean and standard deviation of the DoFCC for print statements in Go, using the log package

Figure 30: The mean and standard deviation of the DoFCC for print statements in Go, using the fmt package

17



Figure 31: The mean and standard deviation of the DoFCC for print statements in Kotlin

Figure 32: The mean and standard deviation of the DoFCC for print statements in Julia

18


	Introduction
	Background
	CodeParrot Language Model
	Tuned Lens Method
	Null Attention Heads
	The Stack Dataset
	DelftBlue Supercomputer

	Related Work
	Methodology
	Tuned Lens Approach
	Attention Approach

	Experimental Setup
	Tuned Lens Investigation
	Attention Investigation

	Experiment Results
	Tuned Lens Results
	Attention Results

	Discussion
	Responsible Research
	Conclusion
	Extended Tuned Lens Results
	General Structure Results
	Indentation Results
	Print Statement Results


