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Summary

In 2010, Sen et al. found an anomaly in the ’random’ movement [18]. They found
that in the presence of the reactant particles, a catalyst protein they were study-
ing called Urease moved faster by about 28%. The first theories that emerged
to explain this phenomenon were based on the exothermicity of the reactions [20,
11]. This explanation did not explain the anomalous movement of endothermic en-
zymes or movement toward reactant particels. In 2018 however, Canalejo et al. de-
veloped a model which could both explain enhanced diffusion and unify movement
towards or away from the reactants [1]. In this report, we have derived an agent-
based model for the diffusion of enzymes, their substrate and their product, which
bases itself on interactions described by Canalejo et al. [1]. However, the model
in this report is at the particle level, which means that the stochasticity is not
lost. The model showed a phase transition, dependent on the critical parameter β.
Using the model, the diffusion coefficient of urease enzymes undergoing repellent
interactions with urea was calculated using a mean square distance method. The
parameters used in the simulations to determine the diffusion coefficient were:
l = 7.43 · 10−3 cm, Cs = 1, Ce = 43.4, kcat = 5913s−1, γs = 1s−1, Km = 4.2mM.
This resulted in an enhanced diffusion coefficient of D′ = 4.36 · 10−7 cm2

s , a 37% in-
crease from the regular diffusion coefficient. The pattern formation provides an
experimental criterion to check the model against.

The continuum limit of this model was derived as well. The equilibrium so-
lutions of the continuum model were calculated and checked against the discrete
model. A linear stability analysis was also done to calculate the critical parameter
β for which pattern formation occurred.
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1
Introduction

The cells in our bodies work tirelessly day and night to provide us with the organic
compounds we need to function. During the day, chemicals are being broken down,
built up and stored all across our cells. The stars of these processes are the pro-
teins: macro-molecules who accommodate almost all the chemistry in our cells and
transport their subsequent products to useful locations. Proteins are therefore one
of the main interests in modern molecular biology. A particularly interesting ques-
tion is one regarding the movement of catalysing proteins: how are they moving?
The answer to this question would not only help us understand more of the molec-
ular biology around us, but it would also help in the engineering of nanomotors: a
nanoscale particle able to move on its own by converting available energy into mo-
tion [23]. Because the clear application of nanomotors is in delivery of medicine,
the straightforward blueprint is in our own cells. The first hurdle to overcome
was to explain the how of the movement. Since our cells are low-Reynolds number
environments, which means highly viscous conditions, it was necessary to study
what constraints this put on the possible movement. In his influential 1977 paper
Life at Low Reynolds Number, Edward Purcell derived two effects of the highly
viscous environment on the possibility of movement. First of all, he showed that
it was necessary for the movement to be non-reciprocal [19]. The example he gave
to illustrate this was the clam: opening up will move the clam forward, but clos-
ing up will take it right back to its initial location. Secondly, he showed that no
inertia was carried by movement in such an environment: the clam cannot sim-
ply continue drifting through the medium after opening up. This second criterion
implies that each time a protein is propelled forward, it is as if it takes a single
step. Combined with the fact the protein randomly rotates, Purcell could explain
the proteins’ random movement.

In 2010 however, Sen et al. found an anomaly in the ’random’ movement [18].
They found that in the presence of the reactant particles, a catalyst protein they
were studying called Urease moved faster by about 28%. Furthermore, they found
that the amount the movement was enhanced followed the rate of catalysis. The
first theories that emerged to explain this phenomenon were based on the exother-
micity of the reactions [20, 11]. These theories argued that the heat released by
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exothermic reactions propelled the enzymes further than usual. This of course
explained the dependence on the concentration of the reactants. After all, more
reactions cause more heat to be generated and thus cause more movement. How-
ever, the dependence on exothermicity was disproved in 2017 when Illien et al.
showed that an endothermic protein still showed enhanced movement on the or-
der of 30% [14].

The question now concerned the where of the movement, since the new competing
theories argued on whether the proteins move away from or towards the reactants.
In 2018 Canalejo et al. developed a model which could both explain enhanced dif-
fusion and unify movement towards or away from the reactants [1]. Their model
attributed themovement of the proteins to interactions that they undergo with the
reactants. This also met the criterion of non-reciprocity easily, since it is entirely
dependent on the protein’s interactions with its environment. In 2020 Giunta et
al. analysed the predicted distributions numerically in a 1d setting [10]. The pa-
per by Giunta et al. showed that pattern formation occurred for certain transport
models due to feedback from the reaction, which separated the proteins and reac-
tants. This raised the question if such pattern formation would also occur in 2D,
reminiscent of territorial models such as the one developed by Alsenafi et al. in
2018 [3].

In this report, cross-diffusion in enzymatic reactions will be analysed in 3 steps.
First of all, a theoretical background will be given in section 2 on the catalyst pro-
teins and the partial differential equation that is used to model random movement
through a medium. The parameter of interest, the diffusion coefficient, which
quantifies the movement speed will also be introduced. The partial differential
equation will then be extended by adding the terms suggested by Canalejo et al.
[1]. Next, a novel on-lattice particle model will be developed in section 3, based
on the work by Alsenafi et al [4]. This is a particle based model where, instead
of looking at the ensemble, the stochasticity of each molecule considered individ-
ually. After the model has been derived, simulations will be run with real-life
parameters and the results will be compared to the anomalous increase in diffu-
sion coefficient measured in experiments by Sen et al. and Ilien et al [11, 14] in
chapter 4. Ultimately, the continuum limit of the lattice model will be derived in
section 5. The continuum limit of the lattice model will be compared to the dif-
ferential equations derived by Canalejo et al. and a linear stability analysis will
be done to predict the threshold magnitude of the interactions at which pattern
formation begins to occur



2
Theoretical Basis

In this section we will introduce the theoretical basis for the rest of this report. We
will start off by introducing enzymes and explaining how they work. After that,
diffusion will be discussed. Consequently, the theory of diffusion will extended
using novel methods regarding interactions between diffusive particles.

2.1. Enzymes
As mentioned in the introduction, proteins are vital to all life on earth. Over
billions of years of evolution they have evolved into the most complex organic
molecules on earth, performing some of the most intricate processes in our bod-
ies. They transcribe our genetic code, transport organelles through our cells and
catalyse many chemical processes [2]. The vast subclass of protein catalysts are
called enzymes and are the most effective catalysts known today. The effective-
ness of enzymes, and proteins in general, can be attributed to the fact that they
are dynamic molecules. Their shape changes due to chemical events, which means
they both influence and are influenced by the chemistry around them. Therefore,
the enzyme’s interaction with other molecules around it establishes its properties.
The general idea of what enzymes do to molecules is pretty straightforward: they
bind to each other. In the case that a molecule is bound to an enzyme it is called
a ligand. Enzymes are extremely selective in which ligands are allowed. Which
molecules can and cannot bond depends on a unique combination of electrostatic
interactions, hydrogen bonds, Van Der Waals bonds and interactions based on
polarity. Once a suitable molecule is encountered by an enzyme, all the afore-
mentioned interactions cause the ligand to bond non-covalently to the enzyme in
a cavity called the binding site. As soon as one or more ligands are bonded, the
enzyme kick-starts chemical reactions that convert substrate into a product. The
reason for their high conversion rate is twofold. First of all, they simply increase
the concentration of the substrate near the binding site while also holding them in
the right place for the reaction to occur. But, more importantly, enzymes lower the
activation energy of the chemical reaction that the substrate undergoes. During
the reaction the substrate molecule’s shape and electron distribution changes un-
til it has reached an unstable state called the transition state. The enzyme binds
tighter to this transition state, which lowers the activation energy. Consequently,
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Figure 2.1: A graphic showing ligand engaging in bonds with an enzyme.
Microbiology of the Cell, Alberts [2].

this energy is more easily reached and the reaction is sped up. In total, the general
reaction path can be written as:

E + S → ES → EP → E + P. (2.1)

where E is the enzyme, S the substrate and P the product.

2.1.1. Michaelis-Menten kinetics
Since enzymes are very important inmany biochemical applications, such as industrial-
scale production of chemicals, it is valuable to know how enzymes react to differ-
ent chemical environments. In particular, it is useful to know what influences
the production rate, both qualitatively and quantatively. In this report we will be
considering single-step enzymatic reactions. That is, only one substrate is bound
to the enzyme and subsequently converted into product. This interaction can be
written as follows:

E + S
k1−−⇀↽−−
k−1

ES
kcat−−→ E + P (2.2)

where k1 and k−1 are the rates of binding and release. kcat is then the rate at which
the substrate is converted into the product and decoupled. The rate, V , of this
reaction is assumed to be linearly dependent on kcat and [ES] by the law of mass
action:

V = kcat[ES] (2.3)
where [ES] is the concentration of the enzyme-substrate complex. This assump-
tion holds since we assume that the medium allows free diffusion. Next, we would
like to write [ES] in terms of k1, k−1 and the concentrations of the enzyme and sub-
strate. To do this we will look at a steady state situation, in terms of [ES]. We may
analyse the system as steady state if we assume that the substrate concentration
is significantly higher than the enzyme concentration and that E + P rarely ever
reverts back to ES and subsequently E +S. Under the assumption of steady state
in [ES] it holds that:

[E] = [E0]− [ES] (2.4)
so, the free enzyme concentration is equal to difference in initial enzyme concentra-
tion and enzyme-substrate concentration. This means that the rate of ES break-
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Figure 2.2: An illustration of the enzyme’s effect on activation energy. Due to the fact that the
substrate is bound tight to the enzyme, ES is a lower energy state than S. The substrate therefore
readily engages with the enzyme. Furthermore, the transition state EST is also lower in energy
due to the reasons mentioned in the text. The energy released during the process uncouples the

product and the enzyme.
Microbiology of the Cell, Alberts [2].

down matches the rate of ES creation. This can be written as:

[ES] =
k1

k−1 + kcat
[E][S] =

k1
k−1 + kcat

([E0]− [ES])[S] (2.5)

If we write Km = k−1+kcat
k1

,then:

[ES] =
1

Km

[E][S] =
1

Km

([E0]− [ES])[S] (2.6)

Then this can be reduced to:

[ES] =
[E0][S]

Km + [S]
(2.7)

Hence, from equation 2.3 we get the Michaelis-Menten formula for V :

V =
kcat[E0][S]

Km + [S]

=
kcat[E0]

1 + Km

[S]

(2.8)

At first glance, we see that this equation predicts that if S increases, V approaches
a maximum: Vmax = kcat[E0]. Furthermore, if Km

[S]
is very small, 1

1+Km
[S]

≈ 1 and



2.2. Enhanced Diffusion 6

Figure 2.3: A diffusive process. We see that just by drifting away from the centre, the particles
move from a region of high concentration to low concentration. Eventually this produces an

equilibrium state of even distribution in the container.

V ≈ Vmax. If [S] is very big, the substrate supply is high and the reaction speed is
not limited by the substrate. Therefore, we expect the reaction to approach Vmax.
However V ≈ Vmax when Km is very small as well. This implies that Km tells us
something about how tight the substrate binds to the enzyme, since in section 2.1
it was explained that the tightness of binding is intrinsically linked to a decrease
in activation energy and thus an increase in reaction speed.

2.2. Enhanced Diffusion
When preparing a cup of tea, we usually start shaking the teabag as soon as it hits
the warm water. It just mixes better that way. However, you could just as well
keep the bag still. Somehow, the particles spread on their own from a region of
high concentration, the teabag, to a region of low concentration, the rest of the cup.
This phenomenon is what we call diffusion. The first step in deriving a mathemat-
ical description of this phenomenon is looking at the teabag just after it has been
immersed and the water has settled again. Inside the teabag the concentration of
particles is very high, whereas just outside the teabag it must be low. At this point
of time then, there is a significantly higher chance of a particle leaving the teabag
than one entering it. In other words, the flux through the teabag is proportional to
the difference in concentration between the outside and the inside, pointing down
the gradient. This observation yields us the following expression:

J = −D∇ϕ (2.9)

where J denotes the flux, ϕ the concentration and D a proportionality constant
called the diffusivity. Of course, the overall total concentration of tea particles
must stay the same throughout our system. Therefore, the change in concentration
at the teabag must equal the out or inflow through the teabag, which gives that:

∂ϕ

∂t
= −∇ · (D∇ϕ) . (2.10)
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Figure 2.4: A visualisation of a concentration difference driving the flux through a surface. The
fact that there are more particles to the left of the surface, means that there is a higher

probability of a particle moving from left to right. This creates a net flow towards the right. In
other words, the magnitude of the flux is dependent on the concentration difference and its

direction points towards low concentration.

In case the diffusivity is a constant, this relation may be written as:
∂ϕ

∂t
= −D∇2ϕ. (2.11)

Therefore, by considering the flux of the concentration and conservation of mass,
it is possible to derive an equation which can describe the motion of the tea par-
ticles. The same equation 2.11, called Fick’s second law, can be used to describe
the motion of enzymes in a medium [13]. However, as is mentioned in the in-
troduction, it was found that the diffusion coefficient of certain enzymes such as
Urease change in the presence of their substrate. This means that equation 2.11
does not describe all enzyme behaviour, since equation 2.9 does not take substrate
dependency into account. Furthermore, the substrate reacting into the product
should also be included into the equations. Consider the following: the enzyme is
not freely dissolved in the water on its own, which means it can interact with its
environment. First of all, it encounters various non-specific interactions, which in-
clude any attractive or repulsive forces that do not specifically play a role in ligand
binding. They include but are not restricted to van der Waals, steric and electro-
static interactions. Besides non-specific interactions, it also encounters specific
interactions, which are crucial in ligand binding at the binding site. These specific
interactions are usually hydrogen bonds, hydrophobic interactions and temporary
covalent bonds, which are able to change the shape of the enzyme [1].

2.2.1. Non-specific interactions
The effect of non-specific interactions on diffusion can be described by diffusio-
phoresis: the diffusive motion of a colloidal particle in response to the concentra-
tion gradient of molecular solute due to surface interactions [15], [7]. In our case,
the colloidal particle and the molecular solute are the enzyme and substrate re-
spectively. The substrate is several orders of magnitude smaller than the enzyme.
Near the enzyme’s surface the system can therefore be interpreted as a flat plate
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with the substrate molecules experiencing a potential ϕ(y), where y is the dis-
tance from the plate. The potential causes a force to be exerted on the substrate
molecules. This force causes the substrate molecules to either move towards the
surface in case of an attractive potential, or to move away from the surface in case
of a repellent potential. The migration of substrate molecules causes a pressure
gradient to appear near the enzymes surface. This in turn generates a drift veloc-
ity for the enzyme:

v =
kbT

η

[∫ ∞

0

y
(
e−ϕ(y)/kbT − 1

)
dy

]
∇ρs, (2.12)

where η is the viscosity of the medium, kb the Boltzmann constant, T the temper-
ature, ϕ(y) the potential of the non-specific interactions and ρs the concentration
of the substrate. The term inside the square brackets is often notated as λ2 and
called the Derjaguin length. The Derjaguin length characterises the distance at
which non-specific interactions play a role and is typically on the order of several
Angström. A more in-depth derivation of equation (2.12) is provided in appendix
E. If we now combine this new velocity term with equation 2.9 we get the new
modified flux term in equation 2.13.

J ′ = −D∇ρe +
kbT

η
λ2∇ρs (2.13)

2.2.2. Specific interactions
The effect of specific interactions comes from incorporating the different diffusion
coefficients of the bound and free enzyme, and Michaelis-Menten kinetics. If we
assume that the binding interactions occur at very short range and that the rate of
binding and unbinding are again k1 and k−1 respectively, then we get the coupled
equations 2.14, 2.15 for the free and bound enzyme populations ρef and ρeb :

∂ρef
∂t

= ∇ ·
[
−Df∇ρef +

kbT

η
λ2
f∇s

]
− k1ρefρs + k−1ρec , (2.14)

∂ρeb
∂t

= ∇ ·
[
−Db∇ρec +

kbT

η
λ2
b∇s

]
+ k1ρefρs − k−1ρec . (2.15)

Now, recall from section 2.1.1 that we may apply the Michaelis-Menten equations
only if the system is in a local steady state. Although the enzymes move due to
diffusion, its timescale is significantly longer than the rate of binding and unbind-
ing. Therefore, we assume that before the enzyme moves, its enzyme kinetics have
reached the Michaelis-Menten regime. Thus, we apply k1ρefρs ≈ k−1ρec to find the
typical relations between the total enzyme population, ρe, and the bound or free
enzyme populations:

ρef =
Km

Km + ρs
ρe and ρeb =

ρs
Km + ρs

ρe (2.16)

Using the Michaelis-Menten relations on 2.14 and 2.15, we find that:

ρe = ρef + ρeb = ∇ · [−D∇ρe + (Vph + Vbi)ρe] , (2.17)
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Where Vph is the diffusiophoresis term due to non-specific interactions:

Vph =

(
λ2
f + (λ2

b − λ2
f )

ρs
Km + ρs

)
kbT

η
∇ρs, (2.18)

and Vbi is the drift velocity due to the specific binding and unbinding interactions:

Vbi = (λ2
b − λ2

f )∇
[

s

Km + ρs

]
. (2.19)

In total, 2.17, 2.18 and 2.19 will describe our system. Of note is of course the de-
pendence of equation 2.17 on the gradient of the substrate. This means that when
taking into account more complex interactions, the resulting differential equation
describes a substrate gradient dependent movement of the enzyme. These equa-
tions and their implications are the foundation for the discrete model that will be
described in this report.



3
Discrete Model

Now that the theoretical basis has been discussed, the mathematical model will
be discussed. The system in equation (2.17) has so far only been evaluated in 1D
at the distribution scale. However, a 2D model at the particle scale will be derived
in this report. The model will be constructed in three steps, where the first two
steps are analogous to how the model is setup in [3]. That is, the initial conditions
of the enzymes, substrate and product will be discussed first. After the setting is
clear, the movement dynamics will be explained. Lastly, the novel reaction and
catalysis step from substrate to product will be addressed.

3.1. The Lattice and Initialisation
We start by defining the lattice where all movement and reactions will be tak-
ing place. To that end, let G be an L × L rectangular grid lattice with periodic
boundary conditions and spatial step l = 1

L
such that x, y ∈ {0, l, 2l, ..., 1−l2

l
}. Fur-

thermore, the simulations will start at t = 0 and time will increase in discrete
increments of δt. On the lattice, there are three types of particles present: sub-
strate, enzymes and product. They are denoted by S, E and P, respectively. Let
the amount of substrate, enzyme and product at a certain location and time (x, y, t)
then be designated by s(x, y, t), e(x, y, t) and p(x, y, t). Therefore, the total amount
of particles in the system at time t, which will be referred to as N(t), is N(t) =∑

(x,y) s(x, y, t) + e(x, y, t) + p(x, y, t). At each new instance of the simulation, the
substrate and enzyme will be randomly distributed over the lattice using a multi-
nomial distribution. Furthermore, the simulation will start with no product on
the lattice at time t = 0. For each location (x, y), there is no exclusion of parti-
cles. This means that multiple particles can be in the same spot together. This is
necessary, since reactions between substrate and enzyme to product are only only
defined for when they are at the same location, of course. Finally, let us introduce
the notation (x̃, ỹ) as all sites neighbouring (x, y)

3.2. Movement Dynamics
As discussed in the theory section, the particles diffuse on the lattice over time.
This will be modeled using a random walk. A random walk is the obvious choice,

10



3.2. Movement Dynamics 11

since it describes the dynamics of a particle randomlymoving over the lattice. A set
of random walks thus describes group of particles randomly displacing through a
medium which is how diffusion was characterised in section 2.2. During a random
walk, a particle must move each time step from (x, y) to one of its neighbours {(x+
l, y), (x − l, y), (x, y + l), (x, y − l)} or stay at its current position. Each of these
possibilities has their own respective probability of occurrence between t and t+δt.
The substrate and product undergo unbiased random walks. Therefore, for the
substrate and product the probability of movement to (x2, y2) ∈ (x̃, ỹ) ∼ (x1, y1) is
defined as:

Ps(x1 → x2, y1 → y2, t) = Cs/4

Pp(x1 → x2, y1 → y2, t) = Cp/4
(3.1)

where Cs, Cp ∈ [0, 1], such that:

Ps({Nomovement}) = 1− Cs

Pp({Nomovement}) = 1− Cp

(3.2)

The enzyme’s movement, on the other hand, is influenced by the amount of sub-

(a) Substrate molecules. (b) Product molecules.

Figure 3.1: An visual representation of the movement probabilities as defined in equation (3.1).
We see that the probability of moving towards a neighbouring site is not dependent on the

concentration of other compounds.

strate at the neighbouring sites. Indeed, as mentioned in section 2.2 both specific
and nonspecific interactions create diffusion terms dependent on s(x, y, t) There-
fore, this probability must be dependent on the substrate density. We would like
to keep the property of maximum entropy increase each time step from the unbi-
ased randomwalk, since entropy increase is what drives diffusion in the first place.
This leads us to define the following:

Pe(x1 → x2, y1 → y2, t) = Ce
e−

β

L2 s(x2,y2,t)∑
(x̃,ỹ)∼(x1,y1)

e−
β

L2 s((x̃,ỹ),t)
, (3.3)
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where we once again take Ce ∈ [0, 1], such that:

Pe({Nomovement}) = 1− Ce (3.4)

This is the Boltzmann distribution, well-known from statistical mechanics. Which
possesses exactly the property of maximum entropy we desire. In equation (3.3),
β is constant where β ∈ R. If β > 0, then the interaction between the enzyme and
the substrate causes the enzyme to drift away from an increasing substrate gra-
dient. If β < 0, the enzymes will move towards an increasing substrate gradient.
From these definitions, we also see that the probability of any of the possibilites

Figure 3.2: A visual representation of the enzyme’s movement probability. In this case, f(x, y, t)
corresponds to the fraction in equation (3.3) and β < 0. The arrows pointing towards the locations
with less substrate are bigger, indicating that the probability of moving depends on the substrate

concentration ath that particular site.

happening each time step is

Ps,e,p(x1 → x̃, y1 → ỹ, t) + Ps,e,p({Nomovement}) = Cs,e,p +
∑

(x̃,ỹ)∼(x,y)

Ps,e,p = 1 (3.5)

which makes Ps, Pe and Pe movement probabilities.

3.3. Reactions
In the theoretical toolbox we discussed in section 2.1.1, Michaelis-Menten kinetics
were explained. From this framework, the enzymatic reaction will be modeled.
Consider an arbitrary location, (x, y) at time t on G. For an adequate timestep,
kcatδt < 1, the bonding and subsequent reaction to the enzyme can be interpreted
as a Bernouilli random variable with reacting probability

Pr = δt · kcat
s(x, y)

Km + s(x, y)
(3.6)
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Indeed, for the aforementioned criterion the enzyme either converts a substrate
particle between t and t+ δt or not. Therefore, since the amount of enzymes at our
coordinate (x, y, t) is given by e(x, y, t) and each reaction is modeled as a Bernoulli
random variable.

Theorem 3.3.1. Let X1, X2, ..., XN be independent identically distributed Bernoulli
random variables, such that P({Xi = 1}) = p and P({Xi = 0}) = 1− p, then

∑N
i=1 Xi

is Binomially distributed with parameters N and p. We write:
∑N

i=1 Xi ∼ Bin(N, p)

Proof. We will prove the theorem by showing that the characteristic functions
match and applying the uniqueness theorem. Recall that the characteristic func-
tion of one of the Bernoulli variables is:

E(eitXr) = (1− p)eit·0 + peit·1 = (1− p) + peit. (3.7)

Next, we will use independence to derive the characteristic function of the sum:

E(eit
∑N

r=1 Xr) =
N∏
r=1

E(eitXr)

=
[
(1− p) + peit

]N
=

N∑
r=1

eitr
[(

N
r

)
(1− p)N−r(p)r

] (3.8)

Notice that the term in between the square brackets is the probability mass func-
tion of a Binomial random variable. By the expectation rule, we see that the en-
tire expression may thus be written as E(eitY ), where Y ∼ Bin(N, p) Therefore,
by the uniqueness of the characteristic function, we have shown that

∑N
i=1 Xi ∼

Bin(N, p).

We can now deduce that at each coordinate (x, y, t) the number of reactions R

is distributed as R ∼ Bin(e(x, y, t), kcatδt s(x,y)
Km+s(x,y)

). From the property that the
binomial distribution is a sum of independent identically distributed Bernoulli
random variables, we can determine its expected value quickly by noting that:

E(R) =

e(x,y,t)∏
i=1

kcatδt
s(x, y)

Km + s(x, y)

= δt · kcate(x, y, t)
s(x, y, t)

Km + s(x, y)

(3.9)

It follows that the expected value of the product at coordinate (x, y, t+ δt) is given
by

p(x, y, t+ δt) = p(x, y, t) + E(R)

= p(x, y, t) + δt · kcate(x, y, t)
s(x, y, t)

Km + s(x, y)

(3.10)
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and conversely the expected value of the substrate at time t+ δt then turns out to
be

s(x, y, t+ δt) = s(x, y, t)− E(R)

= s(x, y, t)− δt · kcate(x, y, t)
s(x, y, t)

Km + s(x, y, t)

(3.11)

3.4. Substrate and Product transport
Since we assumeMichaelis-Menten interactions, theremust be a significant inflow
of substrate. Otherwise it is not accurate to describe the system as steady-state.
After all, the substrate concentration is then depleted over time by the reaction.
In real-life experiments this is achieved by adding a substrate reservoir, which is
separated from the reaction chamber by a semi-permeable membrane and kept at
a constant substrate concentration. A semi-permeable is a membrane which only
permits transport of specific molecules by osmosis. In our case, that would mean
that the membrane would permit transport of substrate and product, but not of
the enzyme. In practice, this would be realised by making the holes in the mem-
brane too small for the enzyme to pass through. As mentioned in section 2.2.1,
the enzyme is a macro-molecule which is several orders of magnitude bigger than
both substrate and product. Consider a lattice site (x, y) at time t. In between
t and t + δt, two processes take place: substrate is transported from the reser-
voir into the reaction chamber and vice versa. Therefore, to model this behaviour
mathematically, for each arbitrary lattice location (x, y) at time t we would like
to have a random variable, which is dependent on the substrate concentration in
the reaction chamber s(x, y, t), the substrate concentration in the reservoir sR and
an osmosis rate per particle γs. Again, each transition per particle can be seen
as a Bernoulli event with probability δt · γs. Therefore, both the inflow and out-
flow are sums of Bernoulli random variables, comparable to how reactions were
treated in the previous section. Therefore, the inflow and outflow are distributed
as Is ∼ Bin(sR, δt · γs) and Os ∼ Bin(s(x, y, t), δt · γs) respectively.
The net flow of substrate out of (x, y, t) is then Fs = Os − Is. This allows us to
calculate the expected value of s due to Fs at time t+ δt, using the linearity of the
expectation operator and the same method as in equation 3.9, such that:

s(x, y, t+ δt) = s(x, y, t)− δt · γs (s(x, y, t)− sr) . (3.12)

Notice that the term inside the brackets can either be negative or positive. It is
positive when the concentration at (x, y) is higher than in the reservoir, which
causes substrate to flow into the reservoir. Conversely, a substrate concentration
at (x, y) which is lower than in the reservoir causes a net flow into the reaction
chamber. Thus, this new influx term keeps the substrate concentration in the re-
action chamber constant, which is the behaviour that we wanted to model.
The product is also transported away from the reaction chamber. Just like the
substrate, its molecular radius is several orders smaller than the enzyme, which
means it can pass through the semi-permeable membrane. This means that we
can analyse and model the situation in the same way as for the substrate. The
only difference is that we assume that near the membrane, the product density in
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Figure 3.3: A visual representation of the semi-permeable membrane and how a substrate
molecule can pass through it with probability P = δt · γs. The green part denotes the reservoir

and the blue part the reaction chamber. This illustration also shows the distinguishing property
of semi-permeable membranes. The holes are too small for the enzyme to pass through.

the reservoir is zero. In an experimental context, this is readily achieved, since
the mixture in the reservoir must be refreshed anyway to keep the substrate con-
centration constant. In other words, we now want to find a random variable that
is dependent on p(x, y, t) and a rate of osmosis γp.

Figure 3.4: A visual representation of the semi-permeable membrane after some product has
formed. A product molecule can pass through it with probability P = δt · γp. The green and the
blue parts denote the reservoir and reaction chamber respectively. Once again we see that the

enzymes cannot pass through the membrane. The reservoir is kept at zero product concentration,
such that there is no transport of product into the reaction chamber.

Therefore, the net product flow out of the reaction chamber is Fp = Op, where
Op ∼ Bin(p(x, y, t), δt · γp). The expected value of p due to Fp at t+ δt is thus:

p(x, y, t+ δt) = p(x, y, t)− δt · γpp(x, y, t). (3.13)



4
Simulations

The resulting model from section 3 will be tested using simulations. First, the
model will be explored by varying the β to see what effect it has on the simulations.
After this behaviour has been discussed, the model will be applied to the problem
of anomalous diffusion by enzymes in the presence of a substrate gradient.

4.1. Varying β
We will begin by showing how the model behaves under different values of β. This
parameter determines the amount of bias in the random walk steps, as explained
in section 3.2. If we look at equation (3.3), we expect that for small values of β,
there will be no pattern formation. In this case the probability of moving to a
neighbouring site will be approximately Ce

4
. Therefore, the random walk will be

almost unbiased. Indeed, in figure 4.1, we see that there is no indication of sepa-

Figure 4.1: The substrate and product lattice after 10000 time steps. In this simulation
etot = 104, stot = 107, δt = 1, kcat = 1, γs = 10−4, Cs = 1, Ce =

1
10 , L = 100 and β = 10−5. No

pattern has formed.

ration for β = 10−5. All the particles are still well-mixed after 10.000 time steps.
The result resembles a regular random walk. Next, we run the model for a value
β which is ten times higher, but keep the rest of the parameters the same as in
figure 4.1. We see that for β = 10−4 a patch has appeared in the bottom right cor-

16
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Figure 4.2: The substrate and product lattice after 10000 time steps. In this simulation
etot = 104, stot = 107, δt = 1, kcat = 1, γs = 10−4, Cs = 1, Ce =

1
10 and β = 10−5. A big patch has

formed in the right-hand corner. The substrate and enzyme thus segregate for these parameters.

ner. Increasing β thus has an effect on the amount of organisation in the system.
If we increase beta even further to 10−1, the enzymes and the substrate not only
separate from each other, but the amount of separation is increased as well. The
enzymes now order themselves into a rice grain like formation, as seen in figure
4.3.

(a) t = 250 · δt (b) t = 500 · δt

Figure 4.3: The substrate and product lattice after 10000 time steps. In this simulation
etot = 104, stot = 107, δt = 1, kcat = 1, γs = 10−4, Cs = 1, Ce =

1
10 and β = 10−1. First, the enzymes

accumulate into small patches. After this has happened successfully, the enzymes keep on trying
to form smaller patches until they have reached the rice grain stage.

Since β now heavily skews the probabilities, the enzymes only move to their
respective localminimum of substrate density. First, this causes the dots to appear
around t = 250. In the end the high value of β ensures that the enzymes oscillate
between two lattice sites, forming the rice grains.
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To talk more quantitatively about the amount of organisation in the system, we
introduce the order parameter from appendix F. Plotting the order parameter for
the simulation from figure 4.1 yields what we expect: the order parameter stays
zero.

Figure 4.4: The order parameter after 10000 time steps. In this simulation etot = 104, stot = 107,
δt = 1, kcat = 1, γs = 10−4, Cs = 1, Ce =

1
10 and β = 10−6. The system stays well mixed and thus

the order parameter stays around zero.

However, the system in figure 4.3 separates into the rice grains. This is a highly
ordered state. As expected, the order parameter almost goes to one.

Figure 4.5: The order parameter after 500 time steps. In this simulation etot = 104, stot = 107,
δt = 1, kcat = 1, γs = 10−4, Cs = 1, Ce =

1
10 and β = 10−1. The system approaches a completely

separated state, therefore the order parameter approaches one.

4.2. Enhanced Diffusion Coefficient
In this section, we will examine the effect of the biased random walk on the dif-
fusion coefficient of an enzyme. To do that, we must first choose an enzyme to
simulate. In this report we will look at the enzyme urease. This enzyme cataly-
ses the hydrolysis of urea into ammonia and carbon dioxide [2]. To determine the
diffusion coefficient of urease, an ensemble of 10 simulations were run using sim-
ulation parameters that reflect the real-life properties of urease. In this case, we
use the parameters for urease found in jack bean Canavalia ensiformis to compare
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to Riedel et al. [20]. The diffusion coefficient of urea is 1.38 · 10−5 cm2

s [22]. If we
take Cs = 1, the squared distance that is travelled each time step is l2. Following
appendix D:

l =
√

4Ds · 1 = 7.43 · 10−3 cm (4.1)
The diffusion coefficient of urease from jack bean is 3.18 ·10−7 cm2

s . This means that:

Ce =
Ds

De

= 43.4 (4.2)

Furthermore, we let kcat = 5913s−1, δt = 1
3500

s and Km = 4.2mM, following Kra-
jewska [16]. The ratio between substrate and product is taken to be the same as
in Riedel et al.: 106 [20]. We let γs = 1s−1 and take the Derjaguin length to be
λ2
c = λ2

f = −1Å, which is a typical size [7, 12]. This means that β = 1.76 · 10−4.
After running the ensemble simulations with the parameters that were men-

tioned earlier, we get the following results. If we look at the snapshots randomly

(a) t = 0.029s (b) t = 0.14s

(c) t = 0.36s

Figure 4.6: The time evolution of the substrate and enzyme lattice. The parameters are:
l = 7.43 · 10−3 cm, Cs = 1, Ce = 43.4, kcat = 5913s−1, γs = 1s−1, Km = 4.2mM and β = 1.76 · 10−4

picked from the ensemble simulations, we see that the enzymes start accumulat-
ing quickly into spots of low substrate density. After a short while, this means
that they start depleting areas on the lattice of substrate, causing them to be able
to spread out further. The effect on the mean squared difference is shown in figure
5.2.
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Figure 4.7: The mean squared difference plotted against the time shift. The blue line
corresponds to the ghost-particles who walk dependent on equation (3.3), while the yellow line

shows the ensemble average of independently random walking ghost-particles. The cross
diffusion slope is steeper compared to the slope of the regular diffusion. The magnitude of this

difference is in the order as predicted by Riedel et al. [20].

The slope of the mean squared difference as calculated from the ghost particles
undergoing regular diffusion returns the same value as chosen before the simula-
tion. The slope as returned by a least squares fit is:

D′ = 4.36 · 10−7 cm2

s (4.3)

This is an increase of 37%. This is in the same order as the increase that was
found by Riedel et al. in 2015. They found that the enzyme’s diffusion coefficient
had increased by 28%. Therefore, non-specific interactions could play a role in the
anomalous diffusion of urease. The behaviour of the model also implies that it can
be tested experimentally if non-specific interactions play a role in the enhanced
diffusion of enzymes, since this model demonstrates pattern formation.



5
Continuum model

The continuum limit of the discrete model constructed in section 3 will be dis-
cussed in this section. After the continuum limit has been derived, the equilib-
rium solutions will be calculated. A linear stability analysis will then be done on
the continuum equations to calculate a critical β for which a phase transition will
occur.

5.1. Limit derivation
We will start by deriving the expected values for particle densities at the site
v ∈ Rn. To convert to particle densities, we divide e, s and p by L2. We denote
the densities by ρs, ρe and ρp. Using the definition of expectation, the general
expression for the density of ρi ∈ {ρe, ρs, ρp} at time t+ δt is given by:

ρi(v, t+ δt) = ρi(v, t) +
∑
ṽ∼v

ρi(ṽ, t)Pi(ṽ→ v)− ρi(v, t)
∑
ṽ∼v

Pi(v→ ṽ)

+ E({j → i|j ̸= i})− E({i→ j|i ̸= j})
+ E({∅ ←→ i}).

(5.1)

∑
ṽ∼v ρi(ṽ, t)Pi(ṽ → v) corresponds to the expected density of particles moving

from ṽ into v. ρi(v, t)
∑

ṽ∼v Pi(v → ṽ) denotes the expected density of particles
moving away from v into ṽ. The term E({j → i|j ̸= i}) signifies the expected value
of possible reactions from ρj into ρi. Conversely, E({i → j|i ̸= j}) indicates the
reactions from ρi into ρj. The last term, E({∅ ←→ i}), denotes the inflow or outflow
of ρi in or out of the system. Each time step, the particles are forced to move to
a neighbouring point on the lattice or stay at the site with probabilities Ci and
1− Ci respectively. This means that

∑
ṽ∼v Pi(ṽ) = Ci. Therefore, equation 5.1 can

be simplified to:

ρi(v, t+ δt) = (1− Ci) ρi(ṽ, t) +
∑
ṽ∼v

ρi(ṽ, t)Pi(ṽ→ v) + E({j → i|j ̸= i})

− E({i→ j|i ̸= j}) + E({∅ → i})− E({i→ ∅}).
(5.2)

21
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5.1.1. Discrete Laplacian
We will derive an expression for the discrete Laplacian in Rn to replace the contri-
bution of neighbouring sites with information about the second partial derivatives.
For an arbitrary function f ∈ C2(Rn):

∆f(x) =
n∑

i=1

∂2f(x)
∂x2

i

(5.3)

Approximating any one of the first partial derivatives with a backward finite dif-
ference gives:

∂f(xi)

∂xi

≈ f(xi)− f(xi − h)

h
. (5.4)

The second derivative can then be approximated by a forward difference:

∂2f(xi)

∂x2
i

≈
∂f(xi+h)

∂xi
− ∂f(xi)

∂xi

h
. (5.5)

Substituting equation 5.4 into the approximation for the second derivative yields:

∂2f(xi)

∂x2
i

≈ f(xi + h) + f(xi − h)− 2f(xi)

h2
. (5.6)

Notice that (xi + h) and (xi − h) are the neighbouring points to (xi). If we switch
to the notation where

∑
x̃i∼xi

is the sum over the neighbouring points in the xi

direction it follows that:

∂2f(xi)

∂x2
i

≈
∑

x̃i∼xi
f(x̃i)− 2nf(xi)

h2
. (5.7)

To see what order error this term leaves, we will Taylor expand f(xi + h) and
f(xi − h) in xi:

f(xi + h) = f(xi) + h
∂f(xi)

∂xi

+
h2

2

∂2f(xi)

∂x2
i

+
h3

6

∂3f(xi)

∂x3
i

+O(h4) (5.8)

and
f(xi − h) = f(xi)− h

∂f(xi)

∂xi

+
h2

2

∂2f(xi)

∂x2
i

− h3

6

∂3f(xi)

∂x3
i

+O(h4). (5.9)

From these Taylor expansions we see that:

f(xi + h) + f(xi − h)− 2f(xi) = h2∂
2f(xi)

∂x2
i

+O(h4). (5.10)

Combining equation (5.10) and (5.6) therefore gives:

f(xi + h) + f(xi − h)− 2f(xi)

h2
− ∂2f(xi)

∂x2
i

∈ O(h2). (5.11)
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Thus, to derive the final approximation to equation 5.3, we substitute every second
derivative in the sum for its finite difference to obtain the discrete Laplacian:

∆f =

∑
x̃∼x f(x̃)− 2nf(x)

h2
+O(h2). (5.12)

Conversely, we now see that any time we encounter a sum over neighbouring sites
it can be substituted by:∑

x̃∼x
f(x̃) = h2∆f(x) + 2nf(x) +O(h4). (5.13)

5.1.2. The Substrate and Product Equation
We now derive the continuum limit for the substrate and product densities, ρs and
ρp. First note that the transition probability of moving to an arbitrary neighbour-
ing site inRn is Cs

2n
, since the substratemove one step at a time through themedium

without restriction. This is a generalisation to Rn of what was discussed in section
3.2 with regard to equation 3.1. Including the reactions and permeation through
the membrane, equation (5.1) reduces to

ρs(v, t+ δt)− ρs(v, t) =
(
Cs

2n

∑
ṽ∼v

ρs(ṽ, t)
)
− Csρs(v, t)

− E({s→ p}) + E({∅ ←→ s})
(5.14)

in case of the substrate and

ρp(v, t+ δt)− ρp(v, t) =
(
Cp

2n

∑
ṽ∼v

ρp(ṽ, t)
)
− Cpρp(v, t)

+ E({s→ p}) + E({∅ −→ p})
(5.15)

for the product. Using equation (5.12) to substitute the contribution of neighbour-
ing sites to obtain an expression only dependent on v:

ρs(v, t+ δt)− ρs(v, t) =
Cs

2n

[
l2∆ρs + 2nρs

]
− Csρs

− E({s→ p}) + E({∅ ←→ s}) +O(l4)
(5.16)

and

ρp(v, t+ δt)− ρp(v, t) =
Cp

2n

[
l2∆ρp + 2nρp

]
− Cpρp

+ E({s→ p}) + E({∅ ←→ p}) +O(l4).
(5.17)

The expected values are given by equations (3.10), (3.11) and 3.13 such that:

ρs(v, t+ δt)− ρs(v, t) =
l2Cs

2n
∆ρs − δt · ρekcat

ρs
Km + ρs

− δt · γs (ρs − sR) +O(l4)

(5.18)
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and

ρp(v, t+ δt)− ρp(v, t) =
l2Cp

2n
∆ρp + δt · ρekcat

ρs
Km + ρs

− δt · γpρp +O(l4). (5.19)

Dividing 5.18 and 5.19 by δt gives:

ρs(v, t+ δt)− ρs(v, t)
δt

=
l2Cs

2nδt
∆ρs − ρekcat

ρs
Km + ρs

− γs (ρs − sR) +O(l4) (5.20)

and

ρp(v, t+ δt)− ρp(v, t)
δt

=
l2Cp

2nδt
∆ρp + ρekcat

ρs
Km + ρs

− γpρp +O(l4). (5.21)

Now we take δt → 0 and l → 0 in such a way that l2Cs

δt
→ Ds and l2Cp

δt
→ Dp. Then

we obtain:
∂ρs(v, t)

∂t
=

Ds

2n
∆ρs − ρekcat

ρs
Km + ρs

− γs (ρs − sR) (5.22)

and
∂ρp(v, t)

∂t
=

Dp

2n
∆ρp + ρekcat

ρs
Km + ρs

− γpρp (5.23)

as the limiting equations.

5.1.3. Enzymatic Transition Probability
We have defined the transition probability for the enzyme in equation (3.3). This
probability is dependent on location, time and substrate density at the neighbour-
ing sites. Therefore, we cannot derive the continuum equations as easily as for
the substrate and product. We will proceed by simplifying (3.3) by substituting
the discrete Laplacian in the denominator of equation (3.3) for equation (5.13):

Pe(x→ y) = Ce
e−βρs(y,t)∑

x̃∼x e
−βρs(x,t)

= Ce
e−βρs(y,t)

2n e−βρs(x,t) + l2∆e−βρs(x,t)

= Cee
−βρs(y,t)

[
eβρs(x,t)

2n+ l2{(∇(βρs(x, t)))2 −∆(βρs(x, t))}

]
.

(5.24)

Next, we will Taylor expand the term in between the square brackets. For this we
will use that

1

a+ h
=

1

a
− h

a2
+O(h2). (5.25)

This expression is derived in Appendix B. If we apply equation (5.25) to equation
(5.24) it follows that:

Pe(x→ y) = Cee
−βρs(y,t)

[
eβρs(x,t)

2n

(
1− l2

2n
{∥∇(βρs(x, t))∥2 −∆(βρs(x, t))}

)]
.

(5.26)
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For shorthand notation we will refer to the term in square brackets as Te(x, t):

Te(x, t) =
eβρs(x,t)

2n

(
1− l2

2n
{∥∇(βρs(x, t))∥2 −∆(βρs(x, t))}

)
. (5.27)

It is useful to know what ∇Te(x, t) and ∆Te(x, t) are for the continuum derivation.
First, the gradient will be calculated:

∇Te = ∇
[
eβρs

2n

(
1− l2

2n
{∥∇(βρs)∥2 −∆(βρs)}

)]
=

eβρs

2n

(
∇(βρs)−

l2

2n

[
∇(βρs))3 −∇3(βρs)

+∇(βρs)∆(βρs)

])
=

eβρs

2n
∇(βρs) +O(l2).

(5.28)

The Laplacian of Te can now be calculated:
∆Te = ∇ · ∇Te

=
eβρs

2n

(
((∇(βρs))2 +∆(βρs))−

l2

2n
(4∥∇(βρs)∥2∆(βρs)

+ ∥∆(βρs)∥2 + (∇(βρs))4 −∇4(βρs)

)
+O(l4).

=
eβρs

2n

(
∥∇(βρs)∥2 +∆(βρs)

)
+O(l2)

(5.29)

5.1.4. The Enzyme Equation
The enzyme does not react or permeate through the membrane, so equation 5.1
reduces to:

ρe(v, t+ δt) = ρe(v, t) +
∑
ṽ∼v

ρe(ṽ, t)Pe(ṽ→ v)− Ceρe(v, t) +O(l4). (5.30)

Subtracting ρe(v, t) and dividing by δt yields:

ρe(v, t+ δt)− ρe(v, t)
δt

=
1

δt

[∑
ṽ∼v

ρe(ṽ, t)Pe(ṽ→ v)− Ceρe(v, t)
]
+O( l

4

δt
). (5.31)

Substituting Pe(ṽ→ v) by equation (5.24) gives:

ρe(v, t+ δt)− ρe(v, t)
δt

=
1

δt

[
Cee

−βρs(v,t)

(∑
ṽ∼v

ρe(ṽ, t)Te(ṽ, t)
)
− Ceρe(v, t)

]
+O( l

4

δt
).

(5.32)
Using the discrete Laplacian once more to replace the summation over neighbour-
ing sites we obtain a right-hand side only dependent on (v, t):

ρe(v, t+ δt)− ρe(v, t)
δt

=
1

δt

[
Ce − eβρs

(
2nρeTe + l2∆(ρeTe)

)
− Ceρe

]
+O( l

4

δt
).

(5.33)
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We can now substitute for Te(v, t) in the first term, giving:

ρe(v, t+ δt)− ρe(v, t)
δt

=
1

δt

[
Ceρe

(
1− l2

2n
{∥∇(βρs)∥2 −∆(βρs)}

)
+Cel

2e−βρs∆(ρeTe)− Ceρe

]
+O(l4)

=
l2Ce

δt

[
− ρe
2n

(
∥∇(βρs)∥2 −∆(βρs)

)
+ e−βρs∆(ρeTe)

]
+O( l

4

δt
).

(5.34)

Using the product rule on ∆(ρeTe) we see that:

∆(ρeTe) = Te∆ρe + 2∇Te∇ρe + ρe∆Te. (5.35)

Substituting equations (5.28) and (5.29) into (5.35) gives

∆(ρeTe) =
eβρs

2n
∆ρe +

2eβρs

2n
∇(βρs)∇ρe +

eβρs

2n
ρe

(
∆(βρs) + ∥∇(βρs)∥2

)
+O(l2),

(5.36)

which can be rearranged to

∆(ρeTe) =
eβρs

2n

[
∆ρe + ρe

(
∆(βρs) + ∥∇(βρs)∥2

)
+∇(βρs)∇ρe

]
+O(l2). (5.37)

Plugging this into equation 5.34 produces:

ρe(v, t+ δt)− ρe
δt

=
l2Ce

2nδt

[
− ρe

(
∥∇(βρs)∥2 −∆(βρs)

)
+∆ρe

+ ρe

(
∥∇(βρs)∥2 +∆(βρs)

)
+ 2∇(βρs)∇ρe] +O(

l4

δt
)

(5.38)

Rearranging the terms and taking the gradient out of the square brackets gives:

ρe(v, t+ δt)− ρe(v, t)
δt

=
l2Ce

2nδt
∇ ·
[
∇ρe + 2ρe∇(βρs)

]
+O( l

4

δt
). (5.39)

Once again taking δt→ 0 and l → 0 so that l2Ce

δt
→ De leads us to the final expres-

sion, which is:
∂ρe(v, t)

∂t
=

De

2n
∇ ·
[
∇ρe + 2ρe∇(βρs)

]
. (5.40)

5.2. Total System
If we combine equations (5.22), (5.23) and (5.40) into one system we get the follow-
ing: 

∂ρs
∂t

= Ds

2n
∆ρs − ρekcat

ρs
Km+ρs

− γs (ρs − sR) ,
∂ρe
∂t

= De

2n
∇ ·
[
∇ρe + 2ρe∇(βρs)

]
,

∂ρp
∂t

= Dp

2n
∆ρp + ρekcat

ρs
Km+ρs

− γpρp.

(5.41)
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In the equations for the substrate and the product, we recognise the first term as
Fick’s law like in equation 2.11. Furthermore, we see that the second term sub-
tracts substrate from the substrate equation at the same rate as it adds product
to the product equation. The rate at which this occurs is of course the Michaelis-
Menten term as discussed in section 2.1.1. We can also recognise the last term
in the substrate and the product equations as the permeation of each compound
through the semi-permeable membrane with rate γs and γp respectively. The per-
meation term in the substrate equation retains the possibility of being either pos-
itive or negative, while the product is only transported away from the reaction
chamber. Finally, we see that the enzyme’s differential equation resembles equa-
tion (2.17). There is a subtle difference, however. Instead of the drift velocity
terms there is a β in the gradient term with the enzyme concentration. For β a
constant, we see that this corresponds to the situationwhere theDerjaguin lengths
for the bound and free enzyme have the same value, that is λ2

b = λ2
f . We then see

that Vph = λ2
f
kbT
η

in equation (2.18) and Vbi = 0 in equation (2.19). In this case,
equation (2.17) corresponds to the enzyme’s evolution equation in system (5.41)
above, where β = λ2

f
kbT
η
. If the Derjaguin lengths are not the same however, an

ODE can be solved for β(v, t) such that it corresponds to the drift velocity terms
when the gradient is further expanded using the product rule. This will be elab-
orated on in the discussion section of this report. For the nect sections, we will
assume that λb = λf in the next sections. Furthermore, to compare to the discrete
2-dimensional model from section 3, we let n = 2.

5.2.1. Equilibrium solution
To derive an equilibrium solution to the system of equations 5.41, we solve the
equations under the condition that ∂ρi

∂t
= 0 [13]. Thus we need to solve for ρ̄s, ρ̄e

and ρ̄p such that: 
0 = Ds

4
∆ρ̄s − ρ̄ekcat

ρ̄s
Km+ρ̄s

− γs (ρ̄s − sR) ,

0 = De

4
∇ ·
[
∇ρ̄e + 2ρ̄eβ∇ρ̄s

]
,

0 = Dp

4
∆ρ̄p + ρ̄ekcat

ρ̄s
Km+ρ̄s

− γpρ̄p.

(5.42)

We start by looking at the enzyme’s equation. If we assume that ρ̄e ̸= 0 is a con-
stant, then it follows that

∇ · (2ρ̄eβ∇ρ̄s) = 0, (5.43)

since, ∇ρ̄e = 0 if ρe is constant. Taking the divergence operator into the brackets
gives:

2β∇ρ̄e · ∇ρ̄s + 2ρ̄eβ∆ρ̄s = 0, (5.44)

which similarly simplifies to:

2ρ̄eβ∆ρ̄s = 0. (5.45)
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We assumed a non-trivial homogeneous solution for ρ̄e, which together with the
fact that β > 0 results in the conclusion that ∆ρ̄s = 0. Thus, the substrate’s
equation reduces to:

ρ̄ekcat
ρ̄s

Km + ρ̄s
+ γs (ρ̄s − sR) = 0 (5.46)

Multiplying through by Km + ρ̄s gives that:

ρ̄ekcatρ̄s + γs
(
ρ̄s

2 + (Km − sR)ρ̄s − sRKm

)
= 0 (5.47)

Dividing by γs and completing the square yields:(
ρ̄s +

1

2

[
ρ̄e
kcat
γs

+ (Km − sR)

])2

= sRKm +
1

4

[
ρ̄e
kcat
γs

+ (Km − sR)

]2
(5.48)

From this, the final expression for the substrate’s equilibrium solution ρ̄s is de-
duced from the fact that we require the answer to be non-negative to be physically
accurate:

ρ̄s =
1

2

sR −Km −
kcat
γs

ρ̄e +

√
4sRKm +

[
kcat
γs

ρ̄e + (Km − sR)

]2 (5.49)

If we move on to the evolution equation for the product, we can easily derive an
equilibrium solution if we assume that it is constant aswell. The PDE then reduces
to:

0 = ρ̄ekcat
ρ̄s

Km + ρ̄s
− γpρ̄p. (5.50)

Using the fact that ρ̄ekcat ρ̄s
Km+ρ̄s

+ γs (ρ̄s − sR) = 0 from equation (5.46), we can add
γs (ρ̄s − sR) to both sides of equation (5.50) to get:

γpρ̄p = −γs (ρ̄s − sR) (5.51)

We can now substitute this expression for ρ̄s into equation (5.49) and divide by γp,
such that:

ρ̄p =
γs
2γp

sR +Km +
kcat
γs

ρ̄e −

√
4sRKm +

[
kcat
γs

ρ̄e + (Km − sR)

]2 (5.52)

The continuum derivation can be checked using the equilibrium solution that
was derived by starting a simulation with constant distributions of ρ̄e, ρ̄p and ρ̄p
related to each other by equations (5.49) and (5.52). After 4000 timesteps, pattern
formation would have usually occurred already. However, as seen in figure 5.1,
the distributions of both enzyme and substrate remain almost constant. The max-
imum deviation from the original constant distribution is 0.7% for the ρs and 1.0%
for ρe. This indicates that the steady state behaviour of the particle model is akin
to the equilibrium situation of the continuum model.
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(a) t = 0 (b) t = 4000

Figure 5.1: A simulation of the equilibrium solution of the enzyme and the substrate. In this
simulation etot = 106, stot = 11 ∗ 106, δt = 1, kcat = 1, γs = 10−4, Cs = 1, Ce =

1
10 and β = 10−1.

5.2.2. Linear stability analysis
Now that we have derived and verified the equilibrium solution to the continuum
model, we can perform a linear stability analysis to calculate when the phase tran-
sition occurs. The perturbations that will be applied to the system have the form:

ρs = ρ̄s + δse
αteik·v,

ρe = ρ̄e + δee
αteik·v,

ρp = ρ̄p + δpe
αteik·v,

(5.53)

where δi ≪ 1, ρ̄i ∈ {ρ̄e, ρ̄s, ρ̄p} correspond to the equilibrium solutions derived in
section 5.2.1 and v = [x, y]T . This method is equivalent to the approach taken in
[3, 10, 21]. Substituting the equations in (5.53) into the evolution equation for ρs
from equation (5.41) gives:

∂

∂t
(ρ̄s + δse

αteik·v) =
Ds

4
∆(ρ̄s + δse

αteik·v)

− kcat(ρ̄e + δee
αteik·v)

ρ̄s + δse
αteik·v

Km + ρ̄s + δseαteik·v

− γs
(
ρ̄s + δse

αteik·v − sR
)
.

(5.54)

To linearise this equation, we substitute 1
Km+ρ̄s+δseαteik·v for its Taylor expansion,

derived in appendix B: 1
Km+ρ̄s+δseαteik·v = 1

Km+ρ̄s
− δseαteik·v

(Km+ρ̄s)2
+ O(δ2s). This results in
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the following expression:

∂

∂t
(ρ̄s + δse

αteik·v) =
Ds

4
∆(ρ̄s + δse

αteik·v)

− kcat(ρ̄e + δee
αteik·v)(ρ̄s + δse

αteik·v)

(
1

Km + ρ̄s
− δse

αteik·v

(Km + ρ̄s)2
+O(δ2s)

)
− γs

(
ρ̄s + δse

αteik·v − sR
)
.

(5.55)

Using the fact that ρ̄s
∂t

= Ds

2n
∆ρ̄s − ρ̄ekcat

ρ̄s
Km+ρ̄s

− γs (ρ̄s − sR) = 0, since (ρ̄e, ρ̄s, ρ̄p) is
an equilibrium solution, and neglecting the higher order δi terms, we find:

αδse
αteik·v =

(
−Ds

4
|k|2δs − kcat

ρ̄eδs + ρ̄sδe
Km + ρ̄s

+ kcatρ̄eρ̄sδs
1

(Km + ρ̄s)2
− γsδs

)
eαteik·v.

(5.56)

For clarity, we will write F (x) = x
Km+x

and F ′(x) = d
dx

x
Km+x

= Km

(Km+x)2
, such that:

αδs =

(
−Ds

4
|k|2 − kcat

ρ̄e
Km + ρ̄s

+
kcat
Km

ρ̄eρ̄sF
′(ρ̄s)− γs

)
δs − kcatδeF (ρ̄s). (5.57)

This is the furthest that we can simplify this expression. Next, we will consider
the evolution equation for ρp. Again, substituting for the perturbed solutions gives:

∂

∂t
(ρ̄p + δpe

αteik·v) =
Dp

4
∆(ρ̄p + δpe

αteik·v)

+ kcat(ρ̄e + δee
αteik·v)

ρ̄s + δse
αteik·v

Km + ρ̄s + δseαteik·v

− γp(ρ̄p + δpe
αteik·v).

(5.58)

Using the Taylor expansion, as we did for equation (5.55), yields:

∂

∂t
(ρ̄p + δpe

αteik·v) =
Dp

4
∆(ρ̄p + δpe

αteik·v)

+ kcat(ρ̄e + δee
αteik·v)(ρ̄s + δse

αteik·v)

(
1

Km + ρ̄s
− δse

αteik·v

(Km + ρ̄s)2
+O(δ2s)

)
− γp

(
ρ̄p + δpe

αteik·v
)
.

(5.59)

Using the properties of the equilibrium solution and once again neglecting higher
order terms of δi results in the final equation:

αδp = −
(
Dp

4
|k|2 + γp

)
δp +

(
kcat

ρ̄e
Km + ρ̄s

− kcat
Km

ρ̄eρ̄sF
′(ρ̄s)

)
δs + kcatδeF (ρ̄s).

(5.60)

Lastly, we will examine the evolution equation for ρe. If we substitute the equi-
librium solutions into equation (5.40), under the assumption of constant β, we
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obtain:
∂

∂t
(ρ̄e + δee

αteik·v) =
De

4
∇ ·
[
∇(ρ̄e + δee

αteik·v) + 2β(ρ̄e + δee
αteik·v)∇(ρ̄s + δse

αteik·v)
]

=
De

4
∇ ·
[
∇(ρ̄e) + δeikeαteikx + 2β(ρ̄e + δee

αteik·v)∇(ρ̄s + δse
αteik·v).

]
(5.61)

Due to the fact that ∂ρ̄e
∂t

= De

2n
∇ ·
[
∇ρ̄e + 2ρ̄eβ∇ρ̄s

]
= 0, the expression reduces to:

αδee
αteik·v =

De

4

(
−|k|2δe − 2|k|2βρ̄eδs

)
eαteik·v. (5.62)

Therefore:

αδe =
De

4

(
−|k|2δe − 2|k|2βρ̄eδs

)
. (5.63)

We can combine equations (5.57), (5.60) and (5.63) into an eigenvalue equation
Mδ⃗ = αδ⃗:

α

δeδs
δp

 =


−De

4
|k|2 −De

2
βρ̄e|k|2 0

−kcatδeF (ρ̄s)
(
−Ds

4
|k|2 − kcat

ρ̄e
Km+ρ̄s

+ kcat
Km

ρ̄eρ̄sF
′(ρ̄s)− γs

)
0

kcatF (ρ̄s)
(
kcat

ρ̄e
Km+ρ̄s

− kcat
Km

ρ̄eρ̄sF
′(ρ̄s)

)
−Dp

4
|k|2 − γp


δeδs
δp

 .

(5.64)
To find the possible instability of the system, we need to solve this eigenvalue
equation and thus find its normal modes. If there exists an eigenvalue α such that
Re(α) > 0, then the perturbations will not decay over time and we will have found
an instability. Furthermore, we can make the following observation: the product
does not play any role in the pattern formation. This means that the instability
must occur in the (δe, δs) subspace. We can then find the relevant eigenvalues by
demanding non-trivial solutions, such that |M − Iα| ̸= 0. In the (δe, δs) subspace
this yields:∣∣∣∣∣−

De

4
|k|2 − α −De

2
βρ̄e|k|2

−kcatF (ρ̄s)
(
−Ds

4
|k|2 − kcat

(
ρ̄e

Km+ρ̄s
+ ρ̄eρ̄s

Km
F ′(ρ̄s)

)
− γs − α

)∣∣∣∣∣ = 0. (5.65)

We use the well-known formula for the determinant of a 2×2 matrix to find that:
DsDe

16
|k|4 + kcat

De

4
|k|2

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
+ γs

De

4
|k|2 + De

4
|k|2α +

Ds

4
|k|2α

+ αkcat

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
+ αγs + α2 − kcatF (ρ̄s)

De

2
|k|2βρ̄e = 0.

(5.66)

Next, we group terms in powers of α:

α2 + α

(
Ds +De

4
|k|2 + kcat

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
+ γs

)
− kcatF (ρ̄s)

De

2
|k|2βρ̄e +

DsDe

16
|k|4 + kcat

De

4
|k|2

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
+ γs

De

4
|k|2 = 0.

(5.67)
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We can then complete the square to get:(
α +

1

2

[
Ds +De

4
|k|2 + kcat

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
+ γs

])2

=

kcatF (ρ̄s)
De

2
|k|2βρ̄e −

DsDe

16
|k|4 − kcat

De

4
|k|2

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
− γs

De

4
|k|2

+

(
1

2

[
Ds +De

4
|k|2 + kcat

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
− γs

])2

.

(5.68)

Taking the square root of both sides gives the eigenvalues:

α1,2 =−
1

2

[
Ds +De

4
|k|2 + kcat

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
+ γs

]
±[

kcatF (ρ̄s)
De

2
|k|2βρ̄e −

DsDe

16
|k|4 − kcat

De

4
|k|2

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)

−γs
De

4
|k|2 +

(
1

2

[
Ds +De

4
|k|2 + kcat

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
+ γs

])2
] 1

2

.

(5.69)

As mentioned earlier, we want to find the critical conditions, such that at least
one of the eigenvalues is positive and a phase transition appears. Looking at the
expressions for α1 and α2, we see that only α1 can become positive. This happens
if:

kcatF (ρ̄s)
De

2
|k|2βρ̄e −

DsDe

16
|k|4 − kcat

De

4
|k|2

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
− γs

De

4
|k|2 > 0.

(5.70)

If we rewrite this in terms of the frequency of the perturbation, we get the following
inequality:

|k|2 < 8kcatρ̄e
Ds

F (ρ̄s)β −
4kcat
Ds

(
ρ̄e

Km + ρ̄s
− ρ̄eρ̄s

Km

F ′(ρ̄s)

)
− 4γs

Ds

. (5.71)

Taking everything together into the same fraction gives:

|k|2 < 8kcatρ̄eρ̄sβ(Km + ρ̄s)− 4kcatρ̄e(Km + ρ̄s) + kcatρ̄eρ̄s − 4γs(Km + ρ̄s)
2

Ds(Km + ρ̄s)2
, (5.72)

where both |k|2 > 0 and Ds(Km + ρ̄s)
2 > 0. This means that it must hold that:

8kcatρ̄eρ̄sβ(Km + ρ̄s) > 4kcatρ̄e(Km + ρ̄s)− 4kcatρ̄eρ̄s + 4γs(Km + ρ̄s)
2. (5.73)

Or to write the condition in terms of beta:

β >
1

2ρ̄s
− 1

2

1

Km + ρ̄s
+

γs(Km + ρ̄s)

2kcatρ̄sρ̄e
. (5.74)
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We can now show that we expect the urease molecule to undergo a phase tran-
sition.

Figure 5.2: A plot of α1 against |k|, for the values: l = 7.43 · 10−3 cm, Cs = 1, Ce = 43.4,
kcat = 5913s−1, γs = 1s−1, Km = 4.2mM. α1 is positive for any value lower than |k| ≈ 5. Thus a

phase transition is expected

The eigenvalue permits positive values, which means that for a perturbation of
the allowed frequency, a phase transition will occur. This can be seen in figure 4.6.
From (5.74), we can calculate that we expect the critical value for β is β = 8.4 ·10−5.
This corresponds to a Derjaguin length of lambda2c = λ2

f ≈ −0.5Å.



6
Discussion

6.1. Critical β
There was no time to check the critical value for β against the order parameter in
the discrete model. This is an especially interesting point, since it would validate
the derivation of the continuum limit further than the equilibrium limit. This is a
very computationally heavy task though, since checking the phase transition near
the critical point takes a long time. Due to the fact that the code was slow already,
it was decided to leave it as further research.

6.2. Porting Code to C
As mentioned in the last section, the code that the discrete model ran on was slow.
This is due to how Python works. The code in python in interpreted before it
is executed. Therefore, some programs might turn out to be very slow. Despite
the fact that the code was optimised during this project, it still took 2 seconds per
iteration or more to run very intensive simulations. This obviously restricted some
of the simulation parts. Therefore, it is recommended to port the code into C or
something else as quick. This could open up the door to very extensive ensemble
simulations, which would be good to extend the section on the determination of
the critical β of a system.

6.3. Substrate dependent β
As mentioned in section 5.2, β can become dependent on location and time when
the Derjaguin lengths of the free and bound enzyme are no longer the same. This
occurs generally if the binding or unbinding of a ligand changes the surface chem-
istry of the enzyme [15]. If λ2

f and λ2
b are distinct values, we see from equations

2.18 and 2.19 that the cross diffusion term will be:([
λ2
f + (λ2

b − λ2
f )

ρs
Km + ρs

]
kbT

η
+ (λ2

b − λ2
f )

Km

(Km + ρs)2

)
ρe∇ρs. (6.1)

Therefore, for equation 5.40 to agree with 6.1, it must hold that:

2ρe∇(βρs) =
([

λ2
f + (λ2

b − λ2
f )

ρs
Km + ρs

]
kbT

η
+ (λ2

b − λ2
f )

Km

(Km + ρs)2

)
ρe∇ρs. (6.2)

34
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Assuming β to be a function of ρs, we can use the product rule on the left side to
see that:

2

(
β + ρs

dβ

dρs

)
ρe∇ρs =

([
λ2
f + (λ2

b − λ2
f )

ρs
Km + ρs

]
kbT

η
+ (λ2

b − λ2
f )

Km

(Km + ρs)2

)
ρe∇ρs.

(6.3)
There are two options for the two sides to be equal. First, it could be that

ρe∇ρs = 0. From section 5.2.1, we see that this corresponds to an equilibrium
situation, of system 5.41. This means that the uniformly distributed equilibrium
solutions discussed in section 5.2.1 are also equilibrium solutions when β is a func-
tion of ρs Another non-trivial solution occurs when:

2

(
β + ρs

dβ

dρs

)
=

[
λ2
f + (λ2

b − λ2
f )

ρs
Km + ρs

]
kbT

η
+ (λ2

b − λ2
f )

Km

(Km + ρs)2
. (6.4)

Now notice that
(
β + ρs

dβ
dρs

)
= d

dρs
(βρs). Substituting this into equation 6.4 yields

the following differential equation:

2
d

dρs
(βρs) =

[
λ2
f + (λ2

b − λ2
f )

ρs
Km + ρs

]
kbT

η
+ (λ2

b − λ2
f )

Km

(Km + ρs)2
. (6.5)

Taking the integral gives us the solution:

2βρs =

∫ [
λ2
f + (λ2

b − λ2
f )

ρs
Km + ρs

]
kbT

η
+ (λ2

b − λ2
f )

Km

(Km + ρs)2
dρs. (6.6)

This integral can be solved analytically. Long division gives the antiderivative of
ρs

Km+ρs
: ∫

ρs
Km + ρs

dρs =
∫

1− Km

Km + ρs
dρs

= ρs −Km ln(Km + ρs).

(6.7)

Using this, we solve for 2βρs:

2βρs =
[
λ2
bρs + (λ2

f − λ2
b) ln(Km + ρs)

]
+ (λ2

f − λ2
b)

Km

(Km + ρs)2
+ C. (6.8)

This implies that our model will agree with the model from 2.17 if β satisfies the
following:

β =
1

2

[
λ2
b + (λ2

f − λ2
b)
ln(Km + ρs)

2

]
+

1

2
(λ2

f − λ2
b)

Km

(Km + ρs)2
+

C

ρs
. (6.9)

There are infinitely many solutions for β in the form of equation 6.9, since the
constant is arbitrary. It is a linear and constant term in each of the exponents in
equation 3.3 that means that the contribution of C occurs in both the numerator
and the denominator. Therefore, it is cancels and is thus arbitrary. Implementing
this β into themodel can be used to study enzymes for which the interaction length
of the non-specific interaction is different for the bound and free enzyme.
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6.4. 3D-Extension
The model that was programmed in this report was restricted to 2D. Real life
interactions in cell of course happen in a 3D space. It would be interesting to see
what a 3D-extension to the model would mean for the phase transition. Multiple
questions arise immediately. Do the rice-grains appear again? How does themodel
react to the membrane being on the outside of the system? Does the system show
instabilities at all? The 3D behaviour of the system would certainly help expand
the realism.



7
Conclusion

In this report, we have derived an agent-based model for the diffusion of enzymes,
their substrate and their product. The basis of this work were the interactions
described by Canalejo et al. [1]. The segregating behaviour of the model was
shown by looking at simulations. The dependence of the order in the system on β
was explained and an order parameter was introduced to quantify the amount of
pattern formation in the system.

The diffusion coefficient of urease enzymes undergoing repellent interactions
with urea was calculated using a mean square distance method. The parame-
ters used in the simulations to determine the diffusion coefficient were: l = 7.43 ·
10−3 cm, Cs = 1, Ce = 43.4, kcat = 5913s−1, γs = 1s−1,Km = 4.2mMand β = 1.76·10−4.
This resulted in an enhanced diffusion coefficient of D′ = 4.36 · 10−7 cm2

s , a 37% in-
crease from the regular diffusion coefficient. The behaviour of the discrete model
also implied an experimentally testable prerequisite to test the role of non-specific
interactions, pattern formation.

A continuum version of the model was derived after the simulations. The
derivation and match of equilibrium solutions showed an agreement with the dis-
crete model. A linear stability analysis provided a critical point for which a larger
β causes the system to show pattern formation. The critical value for the urease
system was determined to be: β = 8.4 · 10−5. Future work includes checking the
critical β against the discrete model, an extension into 3D and a complication of β
to include a dependence on the substrate to include specific interactions into the
discrete model as well.
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A
Dimensional Analysis

In this appendix we will analyse the dimensional homogeneity of the system de-
rived in the continuum limit sections of this report. A dimensional analysis is a
crucial first step in validating the equations that were derived in this report. We
will begin by looking at the main system of partial differential equations for ρs, ρe
and ρp, system (5.41). The following physical quantities appear in the PDEs: De,
Dp, Ds, ρe, ρp, ρs, kcat, Km, β, γp, γs and sR. The units of these quantities are shown
in the table below.

Symbol Definition Unit

De Enzyme diffusion coefficient [m2

s ]
Dp Product diffusion coefficient [m2

s ]
Ds Substrate diffusion coefficient [m2

s ]
kcat Enzyme turnover number [1s ]
Km Enzyme turnover number [mol

L ]
sR Reservoir substrate density [mol

L ]
β Dependence/separation constant [ L

mol ]
γp Product permeation rate [1s ]
γs Substrate permeation rate [1s ]
ρe Enzyme density [mol

L ]
ρp Product density [mol

L ]
ρs Substrate density [mol

L ]

The units for β were derived by looking at the enzyme’s probability to move to
a neighbouring site:

Pe(x1 → x2, y1 → y2, t) = Ce
e−βs(x2,y2,t)∑

(x̃,ỹ)∼(x1,y1)
e−βs((x̃,ỹ),t)

. (A.1)

This is a probability, so the total expression should be dimensionless. Therefore it
must hold that βs(x, y, t) is dimensionless:[

βs(x, y, t)

]
=

[
β

] [
mol
L

]
=

[
·
]
. (A.2)
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From equation (A.2) it follows that:[
β

]
=

[
L

mol

]
(A.3)

Now, we can check the dimensions of the PDEs themselves. We begin by looking
at equation (5.22):

∂ρs(v, t)
∂t

=
Ds

2n
∆ρs − ρekcat

ρs
Km + ρs

− γs (ρs − sR) . (A.4)

The units here are:[
mol
Ls

]
=

[
m2

s

] [
mol
Lm2

]
−
[
mol
L

] [
1
s

] [mol
L
][mol

L
]
+
[mol

L
]−[1s

]([
mol
L

]
−
[
mol
L

])
. (A.5)

Indeed we see that the units on both the lefthand side and righthand side reduce
to
[mol

Ls
]
, which means equation 5.22 is dimensionally correct. Equation 5.23 can

be treated similarly:

∂ρs(v, t)
∂t

=
Ds

2n
∆ρs − ρekcat

ρs
Km + ρs

− γs (ρs − sR) . (A.6)

Writing down the units, we obtain:[
mol
Ls

]
=

[
m2

s

] [
mol
Lm2

]
+

[
mol
L

] [
1
s

] [mol
L
][mol

L
]
+
[mol

L
] − [1s

] [
mol
L

]
. (A.7)

Again, all the units reduce to
[mol

Ls
]
, as expected. Lastly, the equation 5.40 will be

examined:
∂ρe(v, t)

∂t
=

De

2n
∇ ·
(
∇ρe + 2ρe∇(βρs)

)
. (A.8)

Analysing the units in this equation yields:[
mol
Ls

]
=

[
m2

s

] [
1

m

]
·
([

mol
Lm

]
+

[
mol
L

] [
1

m

] [
L

mol

] [
mol
L

])
. (A.9)

Once more, we see that all the terms’ units correspond to
[mol

Ls
]
. Therefore, the

system of PDEs is dimensionally correct.

We can also look at the expressions derived for the homogeneous solutions (ρ̄e,
ρ̄p, ρ̄s) and check to see if their units match. First, note that ρ̄e, ρ̄p and ρ̄s are
concentrations and thus have

[mol
L
]
as their units. Equation 5.49 is:

ρ̄s =
1

2

sR −Km −
kcat
γs

ρ̄e +

√
4sRKm +

[
kcat
γs

ρ̄e + (Km − sR)

]2 . (A.10)
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Its terms units are:

[
mol
L

]
=

[
mol
L

]
−
[
mol
L

]
−
[
1
s
][

1
s
] [mol

L

]
+

√√√√[mol
L

] [
mol
L

]
+

([
1
s
][

1
s
] [mol

L

]
+

[
mol
L

]
−
[
mol
L

])2

.

(A.11)
It is easily verified that everything before the square root is in units of

[mol
L
]
. Both

terms inside the square root simplify to
[
mol2
L2

]
and therefore, all the units match.

Similarly, equation 5.52 is:

ρ̄p =
γs
2γp

(
sR +Km + kcat

γs
ρ̄e −

√
4sRKm +

[
kcat
γs

ρ̄e + (Km − sR)
]2)

.
(A.12)

If we look at the units in this equation, we find that:

[
mol
L

]
=

[
mol
L

]
+

[
mol
L

]
+

[
1
s
][

1
s
] [mol

L

]
−

√√√√[mol
L

] [
mol
L

]
+

([
1
s
][

1
s
] [mol

L

]
+

[
mol
L

]
−
[
mol
L

])2

.

(A.13)
It is in the same form as equation (5.49) and thus all the units on the right side of
the equation again reduce to

[mol
L
]

Lastly, we look at if the units in the inequality for the critical β match each
other. Recall that equation (5.74) is:

β >
1

2ρ̄s
+

1

2

1

Km + ρ̄s
+

γs(Km + ρ̄s)

2kcatρ̄sρ̄e
. (A.14)

Using equation (A.3), equation (5.74) gives the following result:[
L

mol

]
>

[
L

mol

]
+

[
L

mol

]
+

1[mol
L
]
+
[mol

L
] + [

1
s
] ([mol

l
])[

1
s
] [mol

l
] [mol

l
] . (A.15)

Everything on the right side of the inequality reduces to
[ L
mol
]
, which is what was

expected.

Thus we have checked the dimensionality of all of the equations derived in
section 5, and we have found them to be dimensionally correct.



B
Taylor expansion

In this appendix it will be shown that:

1

a+ h
=

1

a
− h

a2
+O(h2) (B.1)

using Taylor’s theorem [5]. Recall that from Taylor’s theorem, it holds that for
small values of h,

f(a+ h) = f(xi) + h
∂f(a)

∂a
+O(h2), (B.2)

Now let f(x) = 1
x
. Then, ∂f(a)

∂a
= − 1

a2
. Consequently, equation (B.2) gives

1

a+ h
=

1

a
− h

a2
+O(h2). (B.3)
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C
Code

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import random
4 from tqdm import tqdm
5 from scipy.stats import poisson, binom, bernoulli
6 from scipy import signal
7 from scipy.optimize import curve_fit
8

9 #defining the partition function that will be used for stepping
10 def partfunc(beta, lat, loc, size):
11 u = np.exp(-(beta)*lat[(loc[0] + 1)%size, loc[1]])
12 d = np.exp(-(beta)*lat[(loc[0] - 1)%size, loc[1]])
13 l = np.exp(-(beta)*lat[loc[0], (loc[1] - 1)%size])
14 r = np.exp(-(beta)*lat[loc[0], (loc[1] + 1)%size])
15 z = u + d + l + r
16 return(np.array([d/z, (d+r)/z, (d+r+u)/z, (d+r+u+l)/z]))
17

18 def order(lat, dep):
19 diflat = lat #- dep
20 sumlat = lat #+ dep
21 filt = np.array([[0, 1, 0],
22 [1,0,1],
23 [0,1,0]])
24 convlat = diflat*signal.convolve2d(diflat, filt, mode = 'same',

boundary = 'wrap')
25 return(np.sum(convlat, axis = None)/(4*np.sum(sumlat, axis = None)**2)

)
26

27 def autocorrFFT(x):
28 N=len(x)
29 F = np.fft.fft(x, n=2*N) #2*N because of zero-padding
30 PSD = F * F.conjugate()
31 res = np.fft.ifft(PSD)
32 res= (res[:N]).real #now we have the autocorrelation in convention B
33 n=N*np.ones(N)-np.arange(0,N) #divide res(m) by (N-m)
34 return(res/n) #this is the autocorrelation in convention A
35

36 def msd_fft(r):
37 N=len(r)
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38 D=np.square(r).sum(axis=1)
39 D=np.append(D,0)
40 S2=sum([autocorrFFT(r[:, i]) for i in range(r.shape[1])])
41 Q=2*D.sum()
42 S1=np.zeros(N)
43 for m in range(N):
44 Q=Q-D[m-1]-D[N-m]
45 S1[m]=Q/(N-m)
46 return(S1-2*S2)
47

48 #the particle class containing all properties we need
49 class particle:
50 #setup functions
51 def __init__(self, pop, size):
52 self.reset(pop, size)
53 self.size = size
54 self.pop = pop
55

56 def reset(self, pop, n):
57 self.lattice = np.random.multinomial(int(pop/n), [1/n]*n, size = n

)
58

59 def latupdate(self, newlat):
60 self.lattice = np.copy(newlat)
61

62 def plot(self):
63 plt.imshow(self.lattice)
64

65 #walking functions
66 def depwalk(self, beta, dep, prop):
67 parts = np.dstack(np.nonzero(self.lattice))
68 newlat = np.zeros((self.size, self.size))
69 for part in parts[0]:
70 chance = prop*partfunc(beta, dep, part, self.size)
71 for i in range(0,int(self.lattice[part[0], part[1]])):
72 dice = np.random.uniform()
73 if dice < chance[0]:
74 newlat[(part[0] - 1)%self.size, part[1]] += 1
75 elif dice < chance[1]:
76 newlat[part[0], (part[1] + 1)%self.size] += 1
77 elif dice < chance[2]:
78 newlat[(part[0] + 1)%self.size, part[1]] += 1
79 elif dice <= chance[3]:
80 newlat[part[0], (part[1] - 1)%self.size] += 1
81 else:
82 newlat[part[0], part[1]] += 1
83 self.latupdate(newlat)
84 return(newlat)
85

86 def depwalk2(self, beta, dep, prop):
87 parts = np.dstack(np.nonzero(self.lattice))
88 newlat = np.zeros((self.size, self.size))
89 for loc in parts[0]:
90 chance = prop*partfunc(beta, dep, loc, self.size)
91 dices = np.random.uniform(size = int(self.lattice[loc[0], loc

[1]]))
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92 additions = np.histogram(dices, bins=[0, chance[0], chance[1],
chance[2], chance[3]])

93 newlat[(loc[0] - 1)%self.size, loc[1]] += additions[0][0]
94 newlat[loc[0], (loc[1] + 1)%self.size] += additions[0][1]
95 newlat[(loc[0] + 1)%self.size, loc[1]] += additions[0][2]
96 newlat[loc[0], (loc[1] - 1)%self.size] += additions[0][3]
97 newlat[loc[0], loc[1]] += self.lattice[loc[0], loc[1]] - np.

sum(additions[0])
98 self.latupdate(newlat)
99 return(newlat)

100

101 def depwalk3(self, beta, dep, prop):
102 newlat = np.zeros((self.size, self.size))
103 for iy, ix in np.ndindex(self.lattice.shape):
104 if self.lattice[iy, ix] <= 0:
105 pass
106 else:
107 chance = prop*partfunc(beta, dep, [iy, ix], self.size)
108 dices = np.random.uniform(size = int(self.lattice[iy, ix])

)
109 additions = np.histogram(dices, bins=[0, chance[0], chance

[1], chance[2], chance[3]])
110 newlat[(iy - 1)%self.size, ix] += additions[0][0]
111 newlat[iy, (ix + 1)%self.size] += additions[0][1]
112 newlat[(iy + 1)%self.size, ix] += additions[0][2]
113 newlat[iy, (ix - 1)%self.size] += additions[0][3]
114 newlat[iy, ix] += self.lattice[iy, ix] - np.sum(additions

[0])
115 self.latupdate(newlat)
116 return(newlat)
117

118 def walk3(self):
119 newlat = np.zeros((self.size, self.size))
120 for iy, ix in np.ndindex(self.lattice.shape):
121 if self.lattice[iy, ix] <= 0:
122 pass
123 else:
124 dices = np.random.uniform(size = int(self.lattice[iy, ix])

)
125 additions = np.histogram(dices, bins=[0, 0.25, 0.5, 0.75,

1])
126 newlat[(iy - 1)%self.size, ix] += additions[0][0]
127 newlat[iy, (ix + 1)%self.size] += additions[0][1]
128 newlat[(iy + 1)%self.size, ix] += additions[0][2]
129 newlat[iy, (ix - 1)%self.size] += additions[0][3]
130 #newlat[iy, ix] += self.lattice[iy, ix] - np.sum(additions

[0])
131 self.latupdate(newlat)
132 return(newlat)
133

134 def walk2(self):
135 parts = np.dstack(np.nonzero(self.lattice))
136 newlat = np.zeros((self.size, self.size))
137 for loc in parts[0]:
138 dices = np.random.uniform(size = int(self.lattice[loc[0], loc

[1]]))
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139 additions = np.histogram(dices, bins=[0, 0.25, 0.5, 0.75, 1])
140 newlat[(loc[0] - 1)%self.size, loc[1]] += additions[0][0]
141 newlat[loc[0], (loc[1] + 1)%self.size] += additions[0][1]
142 newlat[(loc[0] + 1)%self.size, loc[1]] += additions[0][2]
143 newlat[loc[0], (loc[1] - 1)%self.size] += additions[0][3]
144 #newlat[loc[0], loc[1]] += self.lattice[loc[0], loc[1]] - np.

sum(additions[0])
145 self.latupdate(newlat)
146 return(newlat)
147

148 def walk(self):
149 parts = np.dstack(np.nonzero(self.lattice))
150 newlat = np.zeros((self.size, self.size))
151 for part in parts[0]:
152 for i in range(0,int(self.lattice[part[0], part[1]])):
153 dice = np.random.uniform()
154 if dice < 0.25:
155 newlat[(part[0] - 1)%self.size, part[1]] += 1
156 elif dice < 0.5:
157 newlat[part[0], (part[1] + 1)%self.size] += 1
158 elif dice < 0.75:
159 newlat[(part[0] + 1)%self.size, part[1]] += 1
160 else:
161 newlat[part[0], (part[1] - 1)%self.size] += 1
162 self.latupdate(newlat)
163 return(newlat)
164

165 #reacting and influx
166 def react(self, kcat, dep, prod):
167 enz = np.dstack(np.nonzero(dep.lattice))
168 for locs in enz[0]:
169 reacts = min(poisson.rvs(dep.lattice[locs[0], locs[1]] * kcat)

, self.lattice[locs[0], locs[1]])
170 #reacts = binom.rvs(int(dep.lattice[locs[0], locs[1]]), kcat*(

self.lattice[locs[0], locs[1]]/(1+self.lattice[locs[0],
locs[1]])))

171 self.lattice[locs[0], locs[1]] -= reacts
172 prod.lattice[locs[0], locs[1]] += reacts
173 return(self.lattice)
174

175 def react2(self, kcat, dep, prod):
176 enz = np.dstack(np.nonzero(dep.lattice))
177 reacts = np.zeros((self.size, self.size))
178 for locs in enz[0]:
179 reacts[locs[0], locs[1]] = min(poisson.rvs(dep.lattice[locs

[0], locs[1]] * kcat), self.lattice[locs[0], locs[1]])
180 #reacts = binom.rvs(int(dep.lattice[locs[0], locs[1]]), kcat*(

self.lattice[locs[0], locs[1]]/(1+self.lattice[locs[0],
locs[1]])))

181 self.lattice = self.lattice - reacts
182 prod.lattice = prod.lattice + reacts
183 return(self.lattice)
184

185 def react3(self, kcat, km, dep, prod):
186 depflat = np.ndarray.flatten(dep.lattice)
187 selfflat = np.ndarray.flatten(self.lattice)
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188 reacts = np.array([binom.rvs(int(depflat[i]), kcat*(selfflat[i]/(
km+selfflat[i]))) for i in range(self.size**2)]).reshape((self.
size, self.size))

189 self.lattice = self.lattice - reacts
190 prod.lattice = prod.lattice + reacts
191 return(self.lattice)
192

193 def influx(self, gamma, s_r):
194 for iy, ix in np.ndindex(self.lattice.shape):
195 self.lattice[iy, ix] += poisson.rvs(s_r*gamma) - poisson.rvs(

self.lattice[iy, ix]*gamma)
196 return(self.lattice)
197

198 def influx2(self, gamma, s_r):
199 inflow = np.array([poisson.rvs(s_r*gamma) - poisson.rvs(rho_s*

gamma) for rho_s in np.ndarray.flatten(self.lattice)]).reshape
((self.size, self.size))

200 self.lattice = self.lattice + inflow
201 return(self.lattice)
202

203 class s_particle:
204 def __init__(self, dim, pop):
205 self.dim = dim
206 self.pop = pop
207 self.reset(pop)
208

209 def reset(self, i):
210 self.coords = np.empty(i, dtype=np.ndarray)
211 for j in range(i):
212 self.coords[j] = np.array([np.random.randint(self.dim, size=2)

])
213 self.histry = np.copy(self.coords)
214

215 def histupdate(self, i):
216 for j in range(i):
217 self.histry[j] = np.append(self.histry[j], self.coords[j],

axis=0)
218

219 def depwalk(self, beta, dep, prop):
220 for j in range(self.pop):
221 chance = prop*partfunc(beta, dep, self.coords[j][0], self.dim)
222 dice = np.random.uniform()
223 if dice < chance[0]:
224 self.coords[j][0][0] = (self.coords[j][0][0] - 1)%self.dim

#-y
225 elif dice < chance[1]:
226 self.coords[j][0][1] = (self.coords[j][0][1] + 1)%self.dim

#+x
227 elif dice < chance[2]:
228 self.coords[j][0][0] = (self.coords[j][0][0] + 1)%self.dim

#+y
229 elif dice <= chance[3]:
230 self.coords[j][0][1] = (self.coords[j][0][1] - 1)%self.dim

#-x
231 else:
232 pass
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233 self.histupdate(self.pop)
234 return()
235

236 def walk(self, prop):
237 for j in range(self.pop):
238 dice = np.random.uniform()
239 if dice < prop*0.25:
240 self.coords[j][0][0] = (self.coords[j][0][0] - 1)%self.dim

#-y
241 elif dice < prop*0.5:
242 self.coords[j][0][1] = (self.coords[j][0][1] + 1)%self.dim

#+x
243 elif dice < prop*0.75:
244 self.coords[j][0][0] = (self.coords[j][0][0] + 1)%self.dim

#+y
245 elif dice <= prop:
246 self.coords[j][0][1] = (self.coords[j][0][1] - 1)%self.dim

#-x
247 else:
248 pass
249 self.histupdate(self.pop)
250 return()
251

252 def MSD(self):
253 MSDi = np.zeros((self.pop, len(self.histry[0])))
254 for k in range(self.pop):
255 MSDi[k] = msd_fft(self.histry[k])
256 MSD = np.mean(MSDi, axis=0)
257 return(MSD)



D
Determining the Diffusion Coefficient

In the discrete model derived in section 3, we let particles randomly walk across a
lattice. In the continuous case, this corresponds to diffusion, as mentioned earlier.
Following Einstein, it can be determined that if N particles starting from the origin
at time t = 0 randomly diffuse in 1D, the solution to the diffusion equation yields
[8]:

ρ(x, t) =
N√
4πDt

e−
x2

4Dt . (D.1)

This corresponds to a normal distribution with mean zero and variance σ2 = 2Dt.
This means that the second moment can be determined as:

x2 = 2Dt. (D.2)

In 2D this relation turns out to be:

x2 = 4Dt. (D.3)

This means that on our lattice, we can estimate the diffusion coefficient by tracking
particles and calculating an ensemble average of theirmean squared displacement:
⟨|x(t + τ)− x(t)|2⟩, where x(t) is the position (x(t), y(t)) of a particle on the lattice
at time t [9]. The mean squared displacement of particles on the lattice can be
calculated using the ensemble average:

⟨|x(t+ τ)− x(t)|2⟩ = 1

N

N∑
i=1

|xi(t+ τ)− xi(t)|2 + |yi(t+ τ)− yi(t)|2. (D.4)

We can then fit for the diffusion coefficient using the following expression:

⟨|x(t+ τ)− x(t)|2⟩ = 4Dτ. (D.5)

The enzymes in the model were tracked using a ghost particle method. These par-
ticles use the same movement dynamics as the other enzymes in the model, but
they do not participate in the reactions between the substrate and the enzyme. In
this way, an big ensemble could be tested without having to increase the substrate
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population, which would slow down computations significantly. The ghost parti-
cles’ initial locations were not randomised across the lattice. They all started at
random locations which were at most 5 lattice points away from the origin. This
was done to make sure that the ghost particles would not reach the edge in the
simulations as this would skew the mean squared difference measurements due
to the periodic boundary conditions.



E
Drift-Velocity of Non-Specific

interactions

Non-specific interactions cause a drift velocity in response to the concentration
gradient of a molecular solute. This drift velocity is derived by analysing the con-
servation equation of a molecular solute under the influence of a potential ϕ(y),
where y is the distance from the plate[12]. Let us then analyse a stationary, in-
compressible medium under constant pressure, in which there is a non-zero sub-
strate gradient, ∇ρs ̸= 0. The enzyme’s surface thus exerts a force on a substrate

Figure E.1: A zoom-in of an enzyme’s surface in a medium with a substrate gradient. The
substrate molecule experiences a force F due to ϕ.

molecule, which is:
F = −∇ϕ(r). (E.1)

This means that a group of particles undergo a body force f. Therefore, at distance
x from the molecule:

f = ρsF = ρs (−∇ϕ(r)) , (E.2)
where ρs is the concentration of the substrate. Following this, we can write down
a general conservation equation in the same sense as equation (2.10). The cause
of movement is now not only free diffusion, but also the body force. There is no
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advection term, since we consider situations where the fluid is stationary. There-
fore:

∂ρs
∂t

+∇ · J = 0, (E.3)

where J is now written as:

J = −D∇ρs +
D

kBT
f. (E.4)

This implies that the divergence of the flux term is:

∇ · J = −D∆ρs +
D

kBT
∇ · f, (E.5)

assuming that the diffusion coefficient of the substrate is constant. This is a rea-
sonable assumption, since the substrate’s diffusive properties only change when it
is converted into the product.

The new body force term in equation (E.5) contains a complication. Since the
f occurs due to the non-specific interactions that were mentioned earlier, it has
singular behaviour. The potential used to model the Van Der Waals interaction,
for example, has a dependence on 1

r6
. This means that the substrate particle only

suddenly experiences the potential when it comes close enough to the surface of
the enzyme. Furthermore, it means that there is a discontinuity in the flux in
the neighbourhood of the surface. This is of course a problem if we want to take
the gradient. We will try to solve this by using the Stokes flow equation: a lin-
earisation of the Navier-Stokes equations for fluid flow in low Reynolds numbers
environments like cells. The equation of motion near the enzyme wall is:

− η∆v = −∇p + f, (E.6)

where η is the viscosity of the fluid, p the pressure and v the velocity of the fluid
[12]. As mentioned earlier, the medium in the systems that we are considering is
incompressible, which means that ∇ · v = 0. Therefore, in our situation equation
(E.6) reduces to:

−∇p + f = 0. (E.7)
Taking the divergence of equation (E.7), we obtain:

−∆p +∇ · f = 0, (E.8)

such that:

∇J = −D∆ρs +
D

kBT
∆p

= DkBT∆(p− kBTρs) .

(E.9)

Very close to the boundary, Jy = 0, since the boundary is solid and thus ∂(ρs)y
∂t

= 0.
In other words, there is no transport from the boundary into the medium. This
means that in the y-direction, the substrate density near the enzyme’s surface, ρSs ,
is:

−D
∂ρSs
∂y

+
D

kBT
ρSs

(
−∂ϕ

∂y

)
= 0. (E.10)
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This can be rewritten as:
∂ρSs
∂y

=
D

kBT
ρSs

(
−∂ϕ

∂y

)
, (E.11)

which is a separable equation with the solution:

ρSs = Ce
− ϕ

kBT . (E.12)
It was mentioned earlier that potential of the non-specific interactions is depen-
dent on 1

rα
, where α ≥ 1. The potential then goes to zero very quickly once we

are some distance removed from the surface of the enzyme. We can thus separate
figure E.1 into two distinct regions: the surface region and the outer region. This
is illustrated in figure E.2.

Figure E.2: The region where a substrate molecule undergoes an interaction with the potential
ϕ is called the surface region. This region is several Angström high.

From this distinction we can determine the boundary conditions that equation
(E.13) is subject to. Namely, at the boundary there is no substrate and in the outer
regions, where ϕ ≈ 0, the substrate density is simply ρs. So, it is clear that C = ρs
and:

ρSs = ρse
− ϕ

kBT . (E.13)
We can now use equation (E.13) to solve the continuity equation for when the den-
sity has reached steady state near the enzyme’s surface:

∆(p− kBTρs) = 0. (E.14)
The steady state assumption is permitted, since the surface region is only several
Angström wide, while the diffusion coefficient of the substrate is in the order of
micrometers. We then make the approximation that p − kBTρs = K, where K is
an arbitrary constant. We do this, because this approximation implies that on a
small strip of fluid, the pressure smoothly increases towards the enzyme. In other
words, there is a pressure balance. This implies that the pressure near the enzyme
surface, pS, is:

pS = pout + kBT (ρ
S
s − ρs)

= pout + kBTρs

(
e
− ϕ

kBT − 1
)
.

(E.15)



55

In the outer layer, the pressure generated by ϕ plays no role. Thus, p = pout in
this region. However, directly near the surface of the enzyme, there is no substrate
gradient. Either there is no substrate at all in the case of repulsive forces, or
there is a constant concentration through accumulation from attractive forces. We
assumed that p− kBTρs = K, which then implies that there is a parallel pressure
gradient at the enzyme surface [11]. An overview of the system is shown in figure
E.3.

Figure E.3: The effect of the potential on the substrate gradient near the surface is a constant
accumulation, or no substrate at all. This causes a pressure gradient near the surface.

We can now write down Stokes’ equation in the direction parallel to the enzyme:

η∆vx =
∂p
∂x

, (E.16)

where the body force is now zero, since the interaction of the substrate with the
enzyme is perpendicular to the enzyme’s surface. Since the surface layer is only
several Angströms thick, there is a big difference in scale between the parallel and
the perpendicular surface layer. An approximation like in lubrication theory can
thus be applied to equation (E.17) [17]:

∂vx
∂y

= −kBT

η

(
1− e

− ϕ
kBT

) ∂ρs
∂x

. (E.17)

From this, the asymptotic average value of the velocity can be determined to be:

vx|y=∞ =
kbT

η

[∫ ∞

0

y
(
e−ϕ(y)/kbT − 1

)
dy

]
∂ρs
∂x

, (E.18)

where we take the integral to y =∞ due to the fact that the surface region is very
thin. This integral is subject to a no-slip condition or something more lenient at
r = 0 depending on the medium and a no stress condition at r =∞ [6].



F
Order Parameter

The order parameter is defined in a similar way to how it is introduced by Alsenafi
et al. [4, 3]. In this model it is only dependent on the enzymemolecules. Therefore:

O(t) =

(
1

2N

) ∑
(x,y)∈G

∑
(x̃,ỹ)∼(x,y)

e(x, y)e((x̃, ỹ)), (F.1)

where G is the lattice that it is defined on. For the calculation of its upper and
lowe limit we once again refer to Alsenafi et al. [4, 3].
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