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Executive Summary

To protect the Netherlands against flooding, approximately 3800 kilometres of primary flood protection struc-
tures, including dikes, dams and dunes, are built. There are multiple causes for these flood protections to fail,
one of them being macro instability. High water levels or excessive rainfall can cause for the dikes to be un-
stable. Therefore different methods have been developed to assess the stability of dikes.

Two main approaches which have been applied to analyse slope stability are the Limit Equilibrium Method
(LEM) and the Finite Element Method (FEM). The LEM uses a set of predefined slip surfaces to compare the
available shear strength with the required shear strength, this ratio gives the factor of safety against sliding.
The slip surface which gives the lowest safety factor is then chosen as the most critical one. There are various
limit equilibrium, which all require the dike to be divided into slices, but have different assumptions on the
forces between the slices. A finite element analysis can be used to model the soil behaviour of the dike and
also assess its safety. This method gives a good representation of the stress distribution in the profile and
does not assume a predefined failure surface. These are great advantages compared to the LEM. However,
the method uses the shear strength reduction method (SSRM) to determine the safety factor. The SSRM sim-
ply decreases the strength parameters of the soil until failure occurs. Furthermore, the SSRM only gives the
critical slip surface, the strength of other slip surfaces cannot be examined. Due to these drawbacks of the
FEM a new method is introduced which combines concepts of both the LEM and FEM, namely the Enhanced
Limit Method (ELM).

In this report a method is proposed to evaluate slope stability using the stress analysis from a finite element
program and a safety factor definition based on the concepts of the limit equilibrium methods. The finite
element program PLAXIS is used to obtain the stress distribution of the slope of interest. The genetic algo-
rithm is implemented to search for the critical slip surface. This algorithm starts with creating a number of
initial slip surfaces. Bounds should be given on the entry and exit point of the slip surface and the algorithm
ensures that the created slip surfaces are kinematically accepted. The safety factor is defined as the ratio of
the total maximum available shear strength along the slip surface to the total mobilised shear stress. With this
definition the genetic algorithm is able to score the slip surfaces. Slip surfaces with a low safety factor are of
interest for the optimisation process and will therefore get a high score. The algorithm uses a select number
of the initial slip surfaces to produce new slip surfaces, called the offspring. With the crossover and mutation
process, the proposed method is able to find slip surfaces which are more critical compared to the initial solu-
tions. This optimisation process is performed a number of times and the final result is the critical slip surface.

The proposed method has proven to give reliable results compared to other analysis methods: LEM, FEM
and other optimisation methods proposed in literature. Multiple case studies are performed in this research
and the genetic algorithm is able to find a reasonable critical slip surface and safety factor in every example.
However, the safety factor found by the algorithm is very dependent on the number of iterations in the opti-
misation process (the creation of an offspring population). Allowing the algorithm to run for an excessively
long time (allowing for many iterations in the generation of new populations) ensures that the algorithm is
able to find safety factors which are similar to the values obtained from the LEM and FEM analysis as well as
the the methods proposed in literature.

The computation time of the genetic algorithm is heavily influenced by the genetic algorithm parameters: ini-
tial population size, selection size and the number of generations. The long computation time is the biggest
drawback of the method. The advantages of the proposed method are its straightforwardness and adapt-
ability. No use is made of doubtful methods such as the shear strength reduction technique, moreover, the
method uses a well found stress distribution from the finite element analysis and the definition of the safety
factor is very clear. Furthermore, the method requires bounds for the entry- and exit point of the slip sur-
face, which ensures that only the slip surfaces of interest are considered. Different stress strain relationships
can be used in the finite element analysis and different definitions of the maximum shear strength can be
implemented, allowing for the method to investigate every soil type in all conditions.
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1
Introduction

1.1. Introduction to Flood Protection in the Netherlands
Two-thirds of the surface area of the Netherlands is at risk of flooding. These flood threats are due to the
combination of the its low elevation and the large discharges in rivers. Needless to say that flood protection is
an important issue for this country. It should not come as a surprise that the Dutch have become specialists
in the development of water defences. Beaches and sand dunes absorb the forces of the rising sea water level,
whilst dikes and levees keep the land dry that we are currently living on and so on.

Flood prone areas are protected by approximately 3800 kilometres of primary flood protection structures
such as dikes, dams and dunes. The majority of these structures are managed by regional water authorities
whilst the remainder is managed by the national water authority, Rijkswaterstaat. The protection against
flooding is regulated by law in the Dutch Water Act, a law which specifies the standards for the safety of pri-
mary flood defences. Since the beginning of 2017, a new approach is used to determine the safety standards.
Before 2017, the safety standards for primary flood defences were set as the probability of exceedance of a cer-
tain hydraulic load, which could be a high water level or wave. These standards are thus focused on overflow
and overtopping of the flood defences. A maximum tolerated probability is still given in the new standards,
however, this probability is not solely the probability of occurrence of overtopping or overflow, but is now
defined as the probability of failure. The use of a failure probability allows for the inclusion of different failure
mechanisms of a flood defence, not only overtopping or overflow. To determine the failure probability of the
flood defences, guidelines have been developed by the government (Rijkswaterstaat [58]).

1.2. Introduction to Macro Stability of Dikes
As stated in the previous section, all flood defences have a maximum tolerated failure probability. There are
multiple failure mechanisms which can cause dike failure. An overview of the most common failure mech-
anisms of dikes is given in Figure 1.1. The failure probability assessment should consider all relevant failure
mechanisms.

Figure 1.1: Important Failure Modes of Dikes (Schiereck [66])

1
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In this research the failure mechanism ‘sliding inner slope’, also referred to as macrostability or slope stability,
of flood defences will be investigated. However, the method is also applicable for other stability problems,
such as the raising and levelling of structures or areas. An impression of an inner slope instability is shown in
Figure 1.2. Sliding of the outer slope can also occur, although, this occurs due to a different mechanism and
failure of the outer slope is less critical than inner slope instability. Sliding of the inner slope is also the most
common failure mechanism that leads to breaching of dikes besides wave overtopping (Jonkman et al. [30]).

Figure 1.2: Macro-Instability (Rijkswaterstaat [58])

A brief description of this mechanism is given as follows: due to rainfall or water level rise on the outside of
the dike, water infiltrates in the dike body, resulting in a saturated dike body and increasing pore pressures.
The effective stresses reduce and therefore the shear strength of the soil reduces as well. During long-lasting
floods, this can cause sliding planes in the slope. Sliding of the slope is generally an issue for river dikes,
lake dikes and polder dikes, since the flood durations are long and the high water levels can reach the crest
level. Nevertheless, sea dikes also have to meet safety standards against instability. There are mainly two
approaches used to assess the stability of dikes, these approaches will discussed shortly in the next section
and in more detail in the next chapter.

1.3. Problem Statement
Traditionally, slope stability is analysed with the Limit Equilibrium Method (LEM) in which a predefined slip
circle is used to compare the available shear strength with the required shear strength. This gives a factor of
safety for the slope against sliding. This analysis is performed on a bunch of predefined slip surfaces and the
slip surface which gives the lowest safety factor is then chosen as the most critical solution. In general these
type of methods require the soil mass to be divided into slices. For every slice the driving moment as well as
the resisting moment is calculated. There are various limit equilibrium methods. Differences between these
methods include the assumption on the forces between slices. These methods are widely used due to its sim-
plicity, but have quite some drawbacks. One of those drawbacks are the strong simplifications of material
behaviour, therefore the computed stress distributions are often unrealistic.

Alternatively, the Finite Element Method (FEM) can be used to model material behaviour and to determine
the factor of safety. This method gives a good representation of the stresses in the soil and does not assume a
predefined failure surface. These are great advantages compared to the limit equilibrium method. Nonethe-
less, the finite element method has one great disadvantage. This is the calculation of the safety factor with
the Shear Strength Reduction Method (SSRM), also named the φ− c reduction method. This method does
not make use of the advanced soil models, which can be present in the finite element program, to model
the strength, but the shear strength strength parameters φ and c are simply reduced until the soil collapses.
Another disadvantage of the SSRM is that only one critical slip surface is given, other slip surfaces cannot be
examined with this method.

Both models, with their advantages and limitations, will be discussed in more detail in Sections 2.1 and 2.2.
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1.4. Research Motivation
In the previous section two methods have shortly been described which can be used to analyse slope sta-
bility. Both the LEM and FEM have been applied in many case studies, which have shown the advantages
and limitations. The finite element method has great advantages compared to traditional limit equilibrium
methods. No assumptions are made on the shape or location of the failure surface and the computed stresses
are closer to reality compared to the LEM. However, the shear strength reduction method is used to deter-
mine the safety factor and this method has quite some drawbacks. Soil models are highly nonlinear and the
SSRM adjusts these soil parameters. The reduction of the strength parameters does not represent the real
behaviour of the soil characteristics, since these do not have to decrease in an actual situation. Furthermore,
even though the stress analysis has been performed using an advanced soil model, the SSRM does not take
this model into account, but will reduce the strength of the soil by only adjusting the φ and c parameters of
the material. Especially in an undrained analysis, the SSRM does not represent the undrained behaviour of
the soil appropriately. Another disadvantage of the SSRM is that an irrelevant failure surface can be given,
since only the slip surface is given with the lowest safety factor and other potential slip surfaces are not con-
sidered. In that case manual adjustments have to be made to the soil properties to acquire a relevant slip
surface. However, these adjustments can influence the generation of the next slip surface again, which is un-
desirable.

Due to this limitation of the FEM, Deltares has initiated a new study that will develop a new approach which
combines both methods; From the FEM the initial stress conditions are calculated and the safety factor is
based on limit equilibrium concepts. The advantage of this new approach is that it makes use of the realistic
initial stress conditions obtained from a finite element analysis and will therefore be more accurate than
LEM. A safety factor definition based on limit equilibrium concepts is implemented, such that no use has to
be made of the shear strength reduction method. This definition can be applied on any particular given slip
surface. This approach is similar to the the Enhanced Limit Method (ELM), which will be discussed in the
next chapter. The advantages of the proposed method will be elaborated on in the next chapter as well.

1.5. Research Goal
The goal of this research is to further develop the new approach to analyse slope stability as suggested by
Deltares, such that a better understanding is gained on the process of slope (in)stability in soil dikes. The
research objective is given as:

Improve the analysis of slope stability by developing a new method which combines concepts of both the Limit
Equilibrium Method and Finite Element Method.

The following hypotheses are formulated which can be used to measure the objective:

The new approach is able to give a reasonable factor of safety in accordance with classical methods.

The new approach gives a better representation of the soil mechanics and is able to use non-linear assumptions
to determine the (critical) soil strength and slip surface.

The new approach can be applied to different (complex) geometries to capture different loading conditions of
embankments.

1.6. Research Framework and Supporting Research Questions
In this section the research framework is stated, which shows the steps to undertake to achieve the research
goal. The steps for this research are based on the main research question, which is formulated as:

How can a new approach use both LEM and FEM concepts to analyse the stability of slopes?
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The main research question is split up in sub-questions that should be answered to reach the research goal.
These sub-questions also give a guide on the different processes which should be undertaken to answer the
main research question. The sub-research questions are formulated as follows:

1. How should a stress analysis be performed by a finite element approach in PLAXIS?

(a) Which soil models should be used in drained or undrained situations?

2. How can the critical slip surface be determined using the stress analysis obtained from the FEM?

(a) What optimisation problems can be used to acquire the critical slip surface?

(b) How is the critical soil strength determined?

(c) Is it possible to determine the critical slip surface by implementing the stress analysis obtained
with a FEM in a LEM program, such as D-Stability?

3. How is the performance of the new method compared to other, more classical, methods in analysing
the slope stability?

(a) On which grounds are differences found?

1.7. Research Strategy
The initial phase of the project can be seen as a qualitative study. In this phase information is gathered
from experts at the Geo-engineering department of Deltares and from the literature study. This gives insight
into the characteristics of both slope stability analysis methods that have been applied in research. This
information is used in the second phase to develop the new approach which uses the stress distribution
from a finite element method programme to calculate the critical slip surface. This new approach should be
made independent of the used finite element program. To verify the new model, multiple case studies will be
performed in which the results of the new approach will be compared to traditional methods.

1.8. Thesis Roadmap
The remainder of this thesis is as follows: Firstly, in Chapter 2 some theoretical background is given on the
currently applied methods to assess slope stability, as well as on constitutive models to represent the be-
haviour of soil. Secondly, Chapter 3 elaborates on the new method which is implemented to answer the
research question. This new method will be used to investigate different dike profiles and will be compared
the more traditional methods, these results are given in Chapter 4. In Chapter 5 a sensitivity analysis is per-
formed and the discussion is given in Chapter 6. Lastly, this research is wrapped up with a conclusion and
recommendations, stated in Chapter 7.



2
Theoretical Background

In the introduction the motivation for this study has been explained. This motivation is based on the lim-
itations of both the limit equilibrium and finite element method. Both methods will be discussed in more
detail in this chapter, such that their limitations will also be featured. Furthermore, to apply a new method to
determine the safety factor, the maximum available shear strength of the soil has to be defined. Different soil
models are therefore discussed in this chapter as well, which can be used to determine the maximum shear
strength of the soil in the slope.

2.1. Limit Equilibrium Methods
There are several methods to analyse slope stability published in literature. The stability of a slope is deter-
mined by the safety factor, which essentially is the ratio between the maximum available shear strength and
the acting mobilised shear stress. Duncan [14] has given a detailed overview on equilibrium methods which
are able to analyse slope stability. These methods in general compare the driving moments of a potential slip
plane with the resisting moment. This gives the factor of safety. These methods require the soil mass to be
divided into slices and the directions of the forces acting on each slice in the slope are assumed (Rabie [57]).
Very importantly, the factor of safety is assumed to be constant along the complete slip surface. Failure is
defined as the loads exceeding the maximum resistance for either vertical force, horizontal force or moment
equilibrium for any potential sliding plane (Jonkman et al. [30]).

A limit equilibrium method can be used to determine the factor of safety of a predefined slip surface, this is
only one part in the stability analysis. The second part consists of finding the slip surface which is the most
critical. Search algorithms can be used to find the slip surface with the least safety (lowest factor of safety).
One (very basic search) method is to calculate the safety factor for many (tens of thousands) slip surfaces to
find the most critical one. Though with some ingenuity the search for the critical slip surface can be done
much more efficient.

Fellenius [18] introduced the first limit equilibrium method, which is the Ordinary method, for a circular slip
surface. Bishop [5] followed up on this version by introducing a new relationship for the base normal force.
Therefore the equation for the factor of safety became non-linear. Janbu [28] developed a method for non-
circular failure surfaces where the potential slip surface is divided into several vertical slices. The generalised
procedure of slices is hereafter developed as an extension of the simplified method (Janbu [29]). Morgenstern
and Price [50], Spencer [69] and Sarma [63] further developed the limit equilibrium methods by using differ-
ent assumptions on the interslice forces. The General Limit Equilibrium method was developed by Chugh
[12] as an extension on the Spencer and Morgenstern-Price methods, such that both moment and force equi-
librium is satisfied. These are just some of the developed limit equilibrium methods.

There are quite some differences between the methods as mentioned above. These differences arise due to
the assumptions made for the interslice normal (E) and shear (T ) forces as well as the shape of the assumed
slip surface. A summary of these assumptions is given in the following table.
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Table 2.1: Summary of Different LEM (Aryal [1])

Methods Circular Non-cir.
∑

M = 0
∑

F = 0 Assumptions

Ordinary ? − ? − Neglects both E and T
Bishop ? − ? − Considers E, neglects T
Janbu simplified ? ? − ? Considers E, neglects T
Sarma ? ? ? ? Interslice shear
Spencer ? ? ? ? Constant inclination of slope of T
Morgenstern-Price ? ? ? ? Slope of T is defined by f (x)

Some of the methods with their basic principles will be briefly described. The most applied method to anal-
yse the slope stability is the Bishop method. Bishop [5] uses an assumed slip circle to check its moment
equilibrium. The driving moment Ms is determined by the soil weight on the active side of the centre point.
The resisting moment Mr consists of the soil weight on the land-side of the centre point as well as the shear
capacity of the soil along the bottom of the sliding surface. The factor of safety is determined as the ratio of
the two: FoS = Mr

Ms
. Bishop’s method also ensures that vertical equilibrium is met, meaning that the vertical

forces between the slices are balanced.

In case the critical sliding surface is not circular shaped, Bishop’s method fails to analyse this slip plane. This
is typically the case in uplift conditions. This method is also unsuitable for non-horizontal soil layers or the
inner toe of drainage ditches. In case of a long-lasting flood situation, the phreatic surface in the dike body
rises. Water can infiltrate into the aquifer which results in increasing pore pressures, creating uplift pressure
under the dike. This can result in a significant decrease of the effective stresses under the blanket, where a
decrease to zero is also possible. This is called uplift, which results in zero shear stress capacity at the bottom
of the blanket. These uplift conditions are shown in Figure 2.1. In this case the critical sliding surface is
typically an elongated one, which covers the uplifted area.

Figure 2.1: Uplift Conditions (Jonkman et al. [30])

For these conditions, the Uplift-Van model, as shown in Figure 2.2 was developed. Instead of a circular slip
plane, the sliding surface consists of a horizontal plane with two circular parts on the active and passive side.
The method becomes equal to Bishop’s method if there is no horizontal part present and the radius of the
active and passive circle are equal. To determine the stability of the slip plane, the Uplift-Van method deter-
mines the horizontal forces acting on the horizontal area between the active and passive circles. It divides
the compressed area into slices and checks the horizontal forces transferred from the active to passive side.
Since this method takes care of the horizontal force balance, also horizontal sliding planes can be analysed.
For more detailed information on this method the reader is referred to Van [71].
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Figure 2.2: Uplift-Van Model (Rijkswaterstaat [58])

The last method which will be elaborated on is the method proposed by Spencer [69]. Spencer’s method is not
constrained to a circular plane and therefore any shape type can be analysed. Figure 2.3 shows a schematic
representation of the model with piece-wise linear elements. Like Uplift-Van, Spencer’s method also satisfies
moment, horizontal and vertical equilibrium (Jonkman et al. [30]). Until recently, the use of this model was
limited, because the search for the critical slip plane was difficult to work with. Both Bishop and Uplift-Van
have the advantage that the critical slip plane could be found automated within pre-defined search grids.
However, recently genetic algorithms have been able to find the critical slip plane within pre-defined bounds
in Spencer’s method.

Figure 2.3: Spencer Model (Jonkman et al. [30])

In this section various limit equilibrium methods have been discussed. The limitations of the LEM have been
demonstrated by Krahn [33] and are also discussed by Fredlund et al. [19]. The advantages and limitations of
LEM are both summarised in Table 2.2.

Table 2.2: Summary LEM

Advantages Limitations

Quick analysis Assumption on location of critical slip surface
Most common method Assumption that slip surface can be divided into

slices
Relatively simple formulation Assumption that FoS is the same for each slice
Can calculate the safety factor for every slip surface
which is given

Works with static pore pressure field, deformation
and groundwater flow are therefore not coupled

Minimal material input parameters required Does not use the stress versus strain characteristics
of the soils and therefore does not provide informa-
tion on strains and deformations

Useful for evaluating sensitivity of failure to input
parameters

Does not satisfy displacement compatibility. Com-
puted stress distributions are often unrealistic
Does not take slope history into account, nor initial
state of stress before excavation or fill placement
Finding lowest factor of safety can be challenging
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2.2. Finite Element Methods
In the previous section various limit equilibrium methods have been discussed, including the limitations. If
a stability analysis has to be performed, but these limitations pose a problem for the application of a LEM,
numerical models such as a finite element method can provide an alternative. The most common reason for
a LEM to be insufficient is when a correct display of the initial stresses is needed or if the stability of a slope
in combination with a construction (such as a sheet pile) is examined.

There are multiple advantages to using the finite element method. FEM requires fewer a priori assumptions
regarding the failure mechanism. Failure occurs at the zones in which the shear strength of the soil is insuffi-
cient to resist the shear stress, instead of at predefined slip planes. Therefore no assumption is needed on the
shape or location of the critical failure surface. Secondly, since the soil mass is not divided into slices, there
is no assumption on the direction of the forces in these slices. The method provides global equilibrium until
failure is reached. Furthermore, if sufficient soil data is available, the finite element method can also provide
information on deformations at working stress level. This method can easily be used to calculate stresses,
movements, pore pressures in embankments and seepage, which is especially of importance in the safety as-
sessment of a dike in combination with a construction. Lastly, the FEM is able to monitor progressive failure
up to and including overall shear failure (Griffiths and Lane [24]).

To determine the slope stability using the finite element method, two approaches can be applied: the gravity
increasing approach or the shear strength reduction method. The shear strength reduction method has been
used as early as 1975 to analyse slope stability by Zienkiewicz et al. [78] and is applied in multiple case studies
(Griffiths and Lane [24], Lane and Griffiths [42], Hammouri et al. [25], Rabie [57], Moni and Sazzad [49]).
The SSRM reduces the strength characteristics of the soil mass until failure of the slope occurs. The critical
slip surface will follow naturally from the analysis. The safety factor is defined as the number by which the
original shear strength parameters are divided by in order to cause failure. When the standard Mohr-Coulomb
criterion is used, the safety factor can be formalised as follows:

FoS = c −σn tanφ

cr −σn tanφr
(2.1)

where c and φ are the actual input parameters and σn is the actual normal stress component. cr and φr are
the reduced strength parameters which just satisfy the strength equilibrium.

An advantage of the SSRM compared to the classical LEM is that the calculation of the safety factor is linear,
since the stresses at the base of the slip surface are known from the stress analysis. In the LEM, starting with
Bishop, an estimated factor of safety is used to compute the forces at the slices. The final safety factor of the
critical slip surface is found through an iterative process. A disadvantage of the SSRM is that it does not make
use of the more advanced soil models. These models can be used to attain the stresses in the dike profile and
estimate the shear strength, but the safety factor is simply calculated by decreasing the strength parameters
φ and c of the soil.

As mentioned before, many researchers have applied the LEM and FEM to analyse slope stability. Griffiths
and Lane [24] have shown that FEM is a good alternative method to analyse slope stability, which is accurate
and requires fewer assumptions compared to LEM. The safety factor is obtained naturally from the analysis
without assuming a particular form of the failure mechanism a priori. Lane and Griffiths [42] assess the
stability of slopes under different drawdown conditions with the FEM. The FEM is used to analyse critical
cases of partial submergence and rapid drawdown, which traditional methods cannot produce. Hammouri
et al. [25] use both a LEM and FEM to analyse (in)homogeneous slopes. The effects of rapid drawdown,
undrained clay soils and crack locations were taken into consideration. The differences in the obtained safety
factors were found to be small, whereas the critical slip surfaces found by both methods coincide. Due to the
(small) differences in the safety factors obtained, the researchers recommend to use both methods to analyse
critical slopes. Rabie [57] presents a comparison study between the LEM and FEM which analyses the stability
of slopes under heavy rainfall. The main conclusion is that the classical methods are highly conservative
compared to the FEM. Moni and Sazzad [49] analyse the stability of slopes with surcharge with both LEM and
FEM. The effects of the mesh on the safety factor is investigated and they have stated that a finer mesh gives a
more conservative result than a coarser mesh. In this analysis the factor of safety given by the Mohr-Coulomb
model is lower than of Drucker-Prager, irrespective of the slope angle, type and position of the surcharge.
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In this section the finite element method has been explained and various applications of this method to
analyse slope stability have been presented. Overall can be said that the method is a promising alternative to
the classical methods for analysing slopes. A summary of the advantages and limitations of the finite element
method in combination with the shear strength reduction technique is given in Table 2.3.

Table 2.3: Summary FEM

Advantages Limitations

No concept of slices needed Deformation is limited to nodes in the mesh grid
No assumptions on shape or location of failure sur-
face

Difficult to obtain good result for soft band with
frictional soil input parameters

Displacement compatibility is satisfied Difficulty with finding convergence as system ap-
proaches failure when nonlinear constitutive rela-
tionships are used to model displacement

Able to monitor progressive failure up to and in-
cluding overall shear failure

Results SSRM sensitive to design of mesh and other
input parameters

Computed stresses are closer to reality compared
to LEM

SSRM calculates the safety factor by decreasing the
strength, no use is made of the more advanced soil
models in this calculation

If soil compressibility data is available, able to give
information about deformations at working stress
levels

SSRM only finds one critical solution, while other
local minima may differ only slightly from the criti-
cal solution. The critical slip solution does not have
to be the most dangerous one as well.

2.3. Enhanced Limit Method: Combination of LEM and FEM
As described in Sections 2.1 and 2.2 both the LEM and FEM have some limitations in their usage. Therefore a
different method is proposed by Fredlund et al. [19], based on the work of Kulhawy [34], called the enhanced
limit method. In Figure 2.4 the basic idea presented by Fredlund et al. [19] is shown. The first step in the
enhanced limit method is to obtain the stresses from a single finite element analyses. These stresses are then
used to calculate the safety factor of a predefined slip surface, as described by Kim and Lee [32] and Fredlund
et al. [19]. The factor of safety of a slip surface can be defined as the resisting shear strength of the soil divided
by the mobilised shear stresses. This way no use has to be made of the SSRM to acquire a safety factor. The
second step is to search for the most critical slip surface using a search algorithm.

Finite Element Analysis for Stresses

Limit Equilibrium Analysis

Mohr Circle

Figure 2.4: Enhanced Limit Method (Fredlund et al. [19])
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Fredlund et al. [19] has given three definitions for the factor of safety, namely the strength, stress and strength-
stress level approach. The safety factor in a strength analysis is given as:

FoS =
∑(

c +σn tanφ
)
∆L∑

τ∆L
, (2.2)

which can be rewritten into:

FoS =
∑n

i=1τ f i∆Li∑n
i=1τi∆Li

, (2.3)

where τ is the mobilised shear stress and∆L is the length of a section of the slip surface. A stress level analysis
as performed by Zienkiewicz et al. [78] uses the following factor of safety:

FoS =
∑

(∆L)∑[
(σ1−σ3)

(σ1−σ3) f

]
∆L

. (2.4)

The last definition described by Fredlund et al. [19] uses the strength-stress level approach and is defined as:

FoS =
∑

(S∆L)∑[
(σ1−σ3)

(σ1−σ3) f

]
S∆L

, (2.5)

where S is given as S = (
c +σn tan(φ)

)
. With this definition, the safety factor of any slip surface can be cal-

culated. A search algorithm is then needed to find the most critical slip surface. In Figure 2.5 an overview is
given of the different possibilities in a finite element slope stability analysis.

Finite Element Slope Stability Methods

Direct methods
(finite element analysis only)

Enhanced limit methods
(finite element analysis with
a limit equilibirum analysis) 

Load increase
to failure

Sterngth decrease
to failure

Strength
Kulhavy 1969

Stress Level
Zienkiewicz et al 1975

Sterngth & Stress Level
Adikari and Commins 1985

Definition of Factor of Safety

Figure 2.5: Finite Element Approaches for a Slope Stability Analysis (Fredlund et al. [19])

The enhanced limit method, in which the normal and shear stresses are obtained from a finite-element-based
stress analysis (Yamagami and Veta [76], Farias and Naylor [17], Fredlund et al. [19], Pham and Fredlund [53])
has drawn much more attention, because the assumption relating to the inter-slice forces is not needed and
the calculation of the safety factor is linear (Li et al. [43]). Both advantages also hold for the finite element
method, however, the ELM is able to overcome the problem of finding an irrelevant critical slip surface. The
normal and shear stresses along the slip surface can be calculated from the stress distribution which is found
using a linear or non-linear stress analysis. Furthermore, any definition for the maximum available shear
strength can be applied in Equation 2.3.

To summarise, the main idea of the enhanced limit method is that first, a finite element analysis, with a linear
elastic or elasto-plastic soil model, is performed once. Then, the state of stress of the slope is exported into a
limit equilibrium analysis. The primary task of the ELM is to locate the critical slip surface using mathematical
optimisation. Using a specified definition for the factor of safety, the optimisation module finds the slip circle
which gives the lowest safety factor.
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2.4. Optimisation Methods
Baker [2] is the first to investigate the use of optimisation methods in the analysis of slope stability. In his
paper he presents a dynamic programming minimisation procedure to find the minimal safety factor and the
corresponding slip surface. In this procedure the minimisation procedure is coupled to Spencer’s method.
After Baker’s findings, many more optimisation methods are proposed in literature to identify the critical slip
surface, these are: the simplex method (Nguyen [51]), Davidon-Fletcher-Powell method (Yamagami and Veta
[76]), Monte Carlo (Malkawi et al. [46]), dynamic programming (Pham and Fredlund [53]), genetic algorithm
(Sabhahit et al. [62], Zolfaghari et al. [79], Li et al. [43]) and (Adaptive) Particle Swarm Optimisation (Cheng
et al. [11], Liu et al. [45]), to name a few.

Finding the location of the critical slip surface with the minimum safety factor of a slope is a difficult NP-
hard optimisation problem, meaning that the problem is very complex. The main difficulties in finding the
location of the critical non-circular failure surface are described by Cheng et al. [11]:

1. The objective function of the safety factor is usually non-smooth, non-convex and may be non contin-
uous over the complete solution domain. This can result in non-convergence if gradient type optimi-
sation methods are applied.

2. Chen and Shao [8] have found that multiple minima can exist and that many solution methods will be
trapped in a local minimum. The initial trial has great consequence on which solution will be found.

3. A good initial trial is often necessary to find the global minimum in many methods. However, estimat-
ing a good initial trial can be very difficult.

Especially classical (calculus-based) optimisation methods are prone to identifying a false critical slip surface
due to the multiple minima over the solution domain (Li et al. [43]). According to Goh [23], the main short-
coming of these algorithms is that the robustness to find the global minimum instead of the local minimum
is rather uncertain. The classical optimisation methods need a proper preliminary solution to converge to
a valid slip surface. Metaheuristic optimisation algorithms do not face the limitation of getting trapped in a
local minima and are therefore widely used in slope stability problems (Gandomi et al. [20]).

One of these metaheuristic optimisation methods applied in slope stability analyses is the genetic algorithm
by Barricelli [4] and Holland [27]. Holland [27] has developed the genetic algorithm to investigate the adap-
tiveness in processes of natural systems. This algorithm is based on the biological evolutionary theory, where
in a population of solutions the ‘fittest’ solution is more likely to be chosen as the final solution. Due to the
use of this population, and mimicking biological mechanisms such as selection, crossover and mutation, it is
less likely to get stuck in a local minimum. However, the speed of GA can be low due to the random crossover
process. Genetic algorithms are suitable to solve complex optimisation problems, such as the minimisation
problem in localising the critical slip surface.

Various applications of optimisation methods in a slope stability analysis have been found in literature. Goh
[23] uses a genetic-based evolution algorithm to locate the critical slip surface whilst only circular slip sur-
faces are considered. The search strategy is used in accordance with Bishop’s method to determine the factor
of safety. Zolfaghari et al. [79] present a simple genetic algorithm for the search of a critical non-circular
failure surface, in which the safety factor is defined by the Morgenstern-Price method. Li et al. [43] has de-
veloped a search approach for locating a non-circular critical slip surface by employing a real-coded genetic
algorithm. In their research, different methods are used to determine the factor of safety, such as Spencer,
Morgenstern-Price and a finite-element-based method. Zhu and Chen [77] have incorporated a local im-
provement procedure based on tabu search into a basic genetic algorithm. This hybrid genetic algorithm is
used to search for both circular and non-circular slip surfaces associated with their minimum safety factors.
To find the safety factor, both the Bishop method as the improved Morgenstern-Price method are imple-
mented. Pasik and van der Meij [52] present a tailored genetic algorithm, which proves to be an efficient
method to find circular and unconstrained slip surfaces. For the circular slip surface, Bishop’s method is used
to determine the safety factor. For the unconstrained slip surface Spencer’s method is applied. Cheng et al.
[11] use a modified particle swarm optimisation method with a termination criterion to find the critical slip
surface. They have shown that the algorithm is effective and efficient in solving complicated slope problems.
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2.5. Shear Strength
One of the main interests in this research is the selection of soil models and its influence on the identification
of the critical slip surface. Most finite element analysis programs contain many constitutive models, though
every model has its own assumptions and limitations. A disadvantage of the more advanced soil models is
that they require more geotechnical parameters compared to simple models. As described in Section 2.2,
the FEM determines the safety factor against instability of a slope with the shear strength reduction tech-
nique. Consequently, even though many soil models are applicable, the program does not make use of the
expressions for the (undrained) shear strength from advanced soil models to determine the strength of the
slip surface. This limitation is the main motivation for this study.

To overcome the disadvantage of the shear strength reduction method, a different approach will be used to
find the safety factor of the slip surfaces. In accordance with the enhanced limit method, Fredlund et al. [19]
has given three definitions for the factor of safety as given in Section 2.3. In this research the safety factor will
be calculated by taking the ratio of the total maximum available shear strength to the total mobilised shear
stress along a slip surface, which is equivalent to the strength level approach as given by Equation 2.6:

FoS =
∑(

c +σn tanφ
)
∆L∑

τ∆L
, (2.6)

which can be rewritten into:

FoS =
∑n

i=1τ f i∆Li∑n
i=1τi∆Li

. (2.7)

Using this type of safety factor, the full potential of the finite element analysis is used. This definition of the
safety factor does not rely on extra assumptions or simplifications, but solely uses the current stresses in the
soil and an expression for the maximum available shear strength.

The advantage of using a finite element analysis program for the stress analysis is that the initial stress con-
ditions are realistically modelled. Therefore this approach has the potential to be more accurate than a LEM.
The finite element analysis is able to accurately represent the behaviour of the soil. The maximum available
shear strength will be defined using constitutive models. There are many models which can be used to define
the maximum available shear strength and extra attention should be paid to whether the soil is drained or
undrained. Especially for the undrained case it is not apparent how the shear strength should be defined.
This undrained case will be discussed in the next section.

To summarise, the method has an advantage compared to LEM since it uses a realistic representation of
the initial stresses. The advantage compared to FEM is that it makes no use of the shear strength reduction
method. The shear strength reduction method makes a prediction for the shear strength at failure, whilst
the proposed method makes a prediction for the maximum available shear strength. This way the ‘reserve’
strength in the soil is determined. Another difference is that the SSRM only reduces the shear strength param-
eters c and φ until failure occurs, consequently no use is made of the advanced constitutive models to search
for the shear strength at failure. In the proposed method these models are used to define the maximum avail-
able shear strength, hence expressions for this strength are properly theoretically derived. Another advantage
of the proposed method compared to the FEM is that the safety factor definition as given in Equation 2.6 can
be applied to any slip surface of interest. Therefore not only the safety factor of the most critical slip surface
is given by the method, the method is also able to give the safety factor of any intermediate result.

2.5.1. Undrained Analysis
A drained analysis can be performed if the excess pore pressures caused by loading or unloading have dis-
sipated completely due to a slow rate of construction or because the phase that is being analysed is at a
sufficient time after construction. Additionally, the shear induced pore pressures are also zero due to a slow
rate of shearing. Sand and gravel with high permeabilities are typically drained. In Figure 2.6 this type of anal-
ysis is indicated with the ESA (effective stress analysis) arrow. Due to the absence of excess pore pressures,
the effective normal stress σ′

vc is seen as the effective normal stress at failure σ′
ff. In other words, this type of

analysis assumes a slow failure with complete dissipation of the shear induced pore pressures.
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Contrarily, if considerable excess pore pressures are built up during the deformation process which cannot
drain away quickly, this soil type is viewed as undrained. Clay is typically undrained due to its low perme-
ability. Undrained shear of clay will develop positive shear induced pore pressures, which results in a lower
effective normal stress at failure (σff < σ′

vc), as indicated by the USA (undrained strength analysis) arrow in
Figure 2.6. An undrained analysis inherently assumes a rapid failure, in which the excess pore pressures do
not have the time to dissipate. If an impermeable soil, thus showing undrained behaviour, is analysed in a
drained approach, the soil strength of the soil will be overpredicted. It is therefore very important to include
these shear induced pore pressures, which reduce the effective normal stress, in an undrained analysis.

Figure 2.6 will be discussed in a bit more detail. In this figure the stresses are shown which act on an element
of a horizontal failure surface as found by Ladd [36]. The vertical consolidation stress σ′

vc is determined from
the total vertical stress and from measurements of the pore pressure. A conventional effective stress analysis
computes the available shear strength sd = τff using the effective strength parameters c ′ and φ′ as defined in
the Coulomb criterion τff = c ′+σ′

ff tanφ′. This conventional analysis assumes no excess pore pressure during
loading. Therefore, the effective normal stress is treated as the effective normal stress at failure, thusσ′

vc =σ′
ff.

Figure 2.6: Comparison of Effective Stress and Undrained Strength Analysis (Ladd [36])

In an undrained stress analysis, a rapid failure corresponding to the consolidated-undrained case is assumed.
In this case the undrained shearing of clay will develop positive shear induced pore pressures, which results
in a lower effective normal stress at failure. The undrained shear strength will therefore be smaller than sd

at point cu , as shown in Figure 2.6. The definition of cu is given as cu = τff = q f cos(φ)′ by Ladd [36], where
q f = 1

2 (σ1 −σ3). If the assumption cu = q f cos(φ′) is incorrect, the error will be on the safe side by 10-15% for
typical values of cos(φ′) according to Ladd [36].

To summarise, Ladd [36] presents two options to represent the undrained shear strength of clay: (1) Using the
effective stress strength parameters c ′ and φ′, where extra care has to be taken to the pore pressure develop-
ment and its influence on the normal effective stress and (2) Using the undrained shear strength parameters
where the cohesion is set equal to the undrained shear strength: c ′ → q f and φ= 0. In the latter of this report,
the undrained shear strength will be denoted with su instead of cu .

Critical State Soil Mechanics (CSSM)
The shear strength of soil can in general terms be described by the concept of critical state. The Critical State
Soil Mechanics (CSSM) model is introduced by Schofield and Wroth [67]. The critical state concept is an ide-
alised description of the behaviour of saturated remoulded clays in triaxial compression test and is assumed
to apply in undisturbed soils. It states that in case a soil sample is sheared, it will eventually lead to a state in
which further shearing will not result in changes in the effective or yield stress as well as the specific volume,
this is called the critical state. This is equivalent to the soil reaching constant plastic volumetric strains, whilst
the deviatoric plastic strains increase steadily.

There are three distinguishes made in this method, between normally and over-consolidated behaviour of
the soil, drained or undrained behaviour and between peak strength and critical state strength. The critical
state strength of the soil can be used as a measure for the resistance against sliding. In the formulation of the
critical state, cohesion does not play a role. In this framework cohesion is a result of overconsolidation. In
case overconsolidation increases, the cohesion will increase as well.
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Pore Pressure Development

Figure 2.7 gives a representation of a saturated specimen of clay that has been isotropically normally consol-
idated to the stress point A. In an undrained triaxial compression test, the effective stress path will be given
as the curve AB, where B represents the critical state. The total stress path is the line AD. The excess pore
pressure is given as the difference between the mean total and effective pressure, line BD. This excess pore
pressure is split into two components: (1) due to the response of the clay to the shearing BC and (2) due to
the change in mean total stress applied to the specimen, line CD.

This figure also shows that the magnitude of the excess pore pressure is not only dependent on the soil be-
haviour, but also on the mean total stress (∆p) which is applied. In case a different test had been conducted
such as AE, the effective stress path would not have changed. However, BE is greater than BD. This is due to
the difference in mean total stress (∆p) which is applied. Only BC is a unique property of the soil and can be
correlated with other properties of the soil such as the overconsolidation ratio. The line CD/CE does not give
information about the soil.

Figure 2.7: Interpretation of the Excess Pore Pressure in Triaxial Compression Tests (Wroth [75])

To express the pore-pressure change ∆u in an undrained analysis, Skempton [68] has given the equation:

∆u = B [∆σ3 + A (∆σ1 −∆σ3)] , (2.8)

where A and B are pore-pressure coefficients. These coefficients are measured experimentally in the undrained
triaxial test. Skempton [68] found that the parameter B is dependent on the degree of saturation of the soil. A
saturated soil gives the value 1, whereas for a dry soil B equals 0. Ladd [36] has shown that the pore-pressure
coefficient A can be correlated to the overconsolidation ratio (OCR).

2.6. Soil Mechanics
Constitutive models describe the material responses to various loading conditions, which provide the stress-
strain relations to formulate governing equations. There exist numerous constitutive models to represent the
stress-strain and failure behaviour of soils. In this research some constitutive models are used to find defini-
tions for the shear strength in the drained and undrained case.

If soil would be an isotropic linear elastic material, then its behaviour could be fully determined by two pa-
rameters, Young’s modulus E and Poisson’s ratio ν. However, the response to loading of soil is much more
complicated. Most soil models are therefore elastic-plastic. In this research the undrained behaviour of
clays, with its shear induced pore pressures, is of importance. Brinkgreve [6] has discussed different aspects
of soil behaviour, including factors influencing the soil. A selection of the elasto-plastic models will be dis-
cussed briefly in the following sections. Lade [38] has given an overview of constitutive models including the
principles and main characteristic functions. In Table 2.4 some very basic components of soil models are
summarised, with examples of corresponding parameters for three different soil models.



2.6. Soil Mechanics 15

Table 2.4: Elasto-Plastic Models obtained from Lade [38]

Component Function

Parameters for
Simple

Elastic-Perfectly
Plastic Approach

(Mohr-
Coulomb)

Parameters for
Modified

Cam-Clay Model

Parameters for
Single

Hardening
Model

Elastic
Behaviour

Hooke’s Law
Produces elastic strains whenever the

stresses change
ν,E κ,G ν, M ,λ

Plastic
Behaviour

Failure Criterion
Imposes limits on stress states that can

be reached
c,φ M η1,m, a

Plastic
Behaviour

Plastic Potential
Function

Produces relative magnitudes of plastic
strain increments (similar function as

Poisson’s ratio for elastic strains
- µ,Ψ2

Plastic
Behaviour

Yield Criterion

Determines when plastic strain
increments occur: Only when yield

surface is pushed out/in
(hardening/softening)

- h,α

Plastic
Behaviour

Hardening/Softening
Relation

Determines magnitudes of plastic strain
increments (similar function as Young’s

modulus for elastic strains)
Λ,λ C , p

2.6.1. Mohr-Coulomb Model
The Mohr-Coulomb model is an elastic-perfectly plastic model as shown in Figure 2.8. The linear elastic part
is based on Hooke’s law of isotropic elasticity, whilst the perfectly plastic part is based on the Mohr-Coulomb
failure criterion. When implementing the Mohr-Coulomb model, attention has to be given to the transition
between the yield surfaces as shown in Figure 2.10. The yield surface is shaped as a hexagon which consists
of six contours. In the finite element analysis program PLAXIS the exact form of the model is implemented,
using a sharp transition between the sections of the yield surfaces. The parameters required by the Mohr-
Coulomb model are listed in Table 2.5.

Figure 2.8: Elastic-Perfectly Plastic Assumption of Mohr-Coulomb Model (Prasad and Sai [56])

Table 2.5: Model Parameters Mohr-Coulomb Model

c ′ (effective) cohesion [kN/m2]
φ′ (effective) internal friction angle [°]
Ψ Dilatancy angle [°]
E Elasticity modulus [kN/m2]
ν Poisson’s ratio [-]
γ Volumetric weight of the soil [kN/m2]
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Charles-Augustin de Coulomb used the analogy of a sliding block to propose a relationship of the maximum
possible shear stress in a soil body, according to Heyman and Coulomb [26]. This criterion can be written as

τ f = c ′+σ′ tanφ′, (2.9)

where c ′ is the cohesion, σ′ the effective stress and φ the angle of shearing resistance. The Coulomb criterion
thus relates the shear strength of the material to the cohesion, normal stress and angle of internal friction of
the material. This definition for the shear strength will be used in this research in the drained analysis.

For a certain plane in Mohr’s circle, the criterion in Equation 2.9 can be met. In Figure 2.9 these critical planes
are indicated by C and D. On all other planes the shear stress remains below the critical value. The ratio
between τ/σ is maximal when Mohr’s circle touches the Coulomb envelope, this is where failure will start to
occur. This is called the Mohr-Coulomb failure criterion. For this criterion the mathematical formulation is
given as:

f = 1

2

∣∣σ′
1 −σ′

3

∣∣+ 1

2

(
σ′

1 +σ′
3

)
sin(φ)− c cos(φ) (2.10)

Figure 2.9: Mohr-Coulomb Failure Criterion (Verruijt [73])

A summary of the main characteristics of the Mohr-Coulomb model are given in Table 2.6. For a more detailed
description of the Mohr-Coulomb model the reader is referred to Section A.1 in the Appendix.

Table 2.6: Advantages and Limitations Mohr-Coulomb Model

Advantages Limitations

Simple and clear Isotropic and homogeneous behaviour
Limited number and well defined parameters Until failure linear elastic behaviour
Dilatancy can be included No stress-dependent stiffness
Good representation of drained failure behaviour Dilatancy continues forever (no critical state)

No distinction between primary loading, unload-
ing or reloading
Undrained behaviour not always realistic
Not able to model shear induced pore pressure
No time-dependency (creep)
No anisotropy
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2.6.2. Matsuoka-Nakai Failure Criterion
In the previous section the Mohr-Coulomb model has shortly been introduced. The Mohr-Coulomb failure
criterion as given in Equation 2.10 has been criticised according to Griffiths and Lane [24], considering that
this failure criterion does not take account of the intermediate principal stress σ2. One way to express the
influence of the intermediate principal stress σ′

2 relative to the major σ′
1 and minor σ′

3 principal stresses is in
terms of the parameter b:

b = σ′
2 −σ′

3

σ′
1 −σ′

3

(2.11)

For values of b other than 0, it has been found that the peak strength is generally greater than that given by the
Mohr-Coulomb failure criterion. Georgiadis et al. [22] also confirm that the magnitude of the intermediate
principal stress σ′

2 influences the shear strength of soil. Therefore in this research, the criterion of Matsuoka
and Nakai [47] will be implemented, besides Coulomb, which considers the intermediate principal.

The Coulomb criterion assumes a constant value of φ′, which is independent of b. This criterion is the
hexagon in the deviatoric plane as shown in Figure 2.10. Matsuoka and Nakai [47] and Lade and Duncan
[39] imply varying values of the friction angle with Lode’s angle. Lode’s angle is a different expression for the
relative magnitude of the intermediate principal stress, given as:

θ = tan−1
[

1p
3

(
2
σ′

2 −σ′
3

σ′
1 −σ′

3

−1

)]
(2.12)

Both fail surfaces have been drawn in such a way that they pass through the vertices of the Mohr-Coulomb
hexagon which lie on the positive stress axes. For the shape of both failure surfaces it also holds that it varies
with the friction angle; the shape becomes more circular with a decreasing φ.

Figure 2.10: Failure Surfaces in the Deviatoric Plane (Georgiadis et al. [22])

Wroth [75] has attempted to relate different failure conditions to the friction angle φ, based on the work of
Satake [64]. He adopted Matsuoka-Nakai’s failure criterion to take proper account of the effect of the interme-
diate principal stressσ2. Satake [64] has shown that if an associated flow rule is applied and Matsuoka-Nakai’s
failure criterion is used as the yield criterion, then plane strain conditions will give the maximum value that
φ can have. Lagioia and Panteghini [41] also propose a method to find the equivalent Mohr-Coulomb friction
angle φ∗ using other failure criteria. In their derivation they use the failure criterion as proposed by Lagioia
and Panteghini [40]. Their proposed formulation offers the possibility of rounding the corners of the Tresca
and Mohr-Coulomb criteria in the deviatoric plane. Their failure criterion is given as:

f (p, q,θ) =−Mc p + gLΓ(θ) = 0, (2.13)

where

Γ(θ) = 1

gL(θ)
=αcos

[
arccos(βsin(3θ))

3
−γπ

6

]
(2.14)
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The parameters α, β and γ are different for the classical criteria, and expressions can be found in Lagioia
and Panteghini [41]. Equation 2.13 can be used to find (q/p) at any failure criteria and for any θ. Figure 2.11
shows that an equivalent Mohr-Coulomb criterion can be constructed which has the same value for q/p as
Matsuoka-Nakai’s criterion, if θ is between 0 and θ f . The angle of shearing resistance φ∗ is then given for
Matsuoka-Nakai by:

φ∗ = arcsin

 p
3sin(φ)cos(θ f )

cos
(

1
3 arccos

[(
8+cos2(φ)

)
sin(φ)sin(θ f )/

(
4−cos2(φ)

)2
])√

4−cos2(φ)− sin(θ f )sin(φ)

 (2.15)

Based on the work of Satake [64], Wroth [75] and Lagioia and Panteghini [40], Lode’s angle will be set at plane
strain failure. The derivation of this value for θ f will be given below, but first an important remark should
be made. Both Lagioia and Panteghini [40] and Lagioia and Panteghini [41] assume an associated flow rule,
such that the yield surface is coincident with the plastic potential (Ψ = φ). Substituting the value obtained
from Equation 2.15 in Coulomb’s criterion will therefore give an estimation of the maximum available shear
strength. However, in reality it is not expected that this maximum shear strength will occur at the same time
along the complete surface.

Figure 2.11: Expanded Mohr-Coulomb Hexagon (Dotted Line) having the same q/p of the Matsuoka-Nakai Criterion (Full Line) for θ =
0 - θ f (Lagioia and Panteghini [41])

The importance of the shape of the plastic potential in the deviatoric plane in plane strain conditions was
already recognised by Potts and Gens [54]. Plane strain is defined to be a state of strain in which the strain
normal to the x-y plane εz and the shear strain γxz and γy z are assumed to be zero. In plane strain, a situation
occurs in which the dimension of the structure in one direction, say the z-coordinate direction, is very large
in comparison with the dimensions of the structure in the other two directions. The applied forces act in the
x-y plane and do not vary in the z direction.

When investigating the plane strain failure of soils, the kinematic constraint controls the failure of the soil
element and therefore the plastic potential plays an important role in investigating the failure condition. The
derivation of the kinematic constraint will be elaborated on right now. The incremental strain component εi

at failure can be expressed in an elastic and plastic part:

ε̇i = ε̇i
e + ε̇i

p = ε̇i
p i = 1,2,3 (2.16)

The elastic incremental strain component is not considered, since only plastic flow takes place at failure. If
failure occurs in plane strain conditions, then the out of plane incremental strain is equal to zero. The plastic
strain tensor is evaluated by means of the plastic potential function g (σ) = 0, leading to:

˙εi j
p = λ̇

δg

δσi j
(2.17)

where λ̇ is the plastic multiplier. Since the incremental out of plane strain is equal to zero in plane strain
conditions, the following kinematic constraint is found:

δg

δσi∗
= 0 (2.18)
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The failure criterion of the Mohr-Coulomb model can be expressed in terms of invariants as

f = g =
√

J2D − (c cotφ+p)Γ(θ) = 0 (2.19)

where

Γ(θ) = sin(φ)

cos(θ)+ sin(θ)sin(φ)p
3

(2.20)

In Equation 2.19 the plastic potential function is set equal to the yield function, therefore assuming an associ-
ated flow rule. This assumption will result in an expression that gives the maximum available shear strength
along the complete slip surface. Deriving Equation 2.19 with respect to σi yields

δg

δσ1
= 1− sin(φ)

δg

δσ2
= 0

δg

δσ3
= 1− sin(φ)

(2.21)

From Equation 2.21 it is clear that plane strain failure requires the out-of-plane direction to coincide with the
intermediate one, assuming that φ < 90°. Furthermore, since the derivative is independent on θ, the plane
strain failure condition as given by Equation 2.18 is satisfied when the yield surface is attained, indicating that
failure will always coincide with yield.

Instead of considering the Mohr-Coulomb model, another failure criterion could be implemented which
derivative does not become zero for one of the principal directions, such as the Matsuoka-Nakai criterion.
The elastic-perfectly plastic model uses the following criterion for both the yield and plastic potential sur-
faces, since an associated flow rule is assumed.

f = g = I1I2 −kI3 = 0 (2.22)

where I1, I2, I3 are the first, second and third stress invariant. In case a non-associated flow rule is applied, φ
is replaced byΨ in Equation 2.24 in the plastic potential surface. This failure criterion can be rewritten using
Lode’s angle θ and the generalised stress obliquity M(θ) to:

f = 2p
27

k sin(3θ)M(θ)3 + (k −3)M(θ)2 − (k −9) = 0 (2.23)

where

k = 9− sin2(φ)

1− sin2(φ)
(2.24)

Taking the derivative of the plastic potential of the Matsuoka-Nakai function (Equation 2.22) with respect to
the principal stresses gives:

δg

δσi
= k

I1
− I1

σ2
i

(2.25)

Equation 2.18 can only be satisfied when the principal out-of-plane direction is i = 2:

δg

δσ2
= k

I1
− I1

σ2
2

= kσ2
2 − I 2

1

σ2
2I1

= 0 (2.26)

which is satisfied by

σ2 = I1p
k

(2.27)
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The principal stresses can also be expressed as a function of the mean pressure p, second invariant of the
deviatoric stress J2D :

J2D = 1

6

[
(σ1 −σ2)2 + (σ2 −σ3)2 + (σ3 −σ1)2] , (2.28)

and Lode’s angle θ as:

σ1 = p + 2p
3

√
J2D sin

(
θ+ 2

3
π

)
σ2 = p + 2p

3

√
J2D sin(θ)

σ3 = p + 2p
3

√
J2D sin

(
θ− 2

3
π

) (2.29)

Using Equations 2.23, 2.27 and 2.29, the following expression is found for Lode’s angle at plane strain collapse:

θ f =−arcsin

√√√√√√√
3k + (k −3) 3

p
k

3−pk

4

[
k−9
27

(
3
p

k
3−pk

)3 +k

] (2.30)

2.6.3. Modified Cam-Clay (MCC) Model
As discussed in Section 2.5.1, special attention has to be paid when determining the shear strength of undrained
soil. The Mohr-Coulomb model which has been briefly described is not very suitable to analyse undrained
behaviour, since it does not capture the shear induced pore pressures. Therefore other constitutive models
should be considered for this research as well.

Before the maximum strength of a soil has been reached, some irreversible straining can have occurred in
the soil. Thus, plastic deformations already occur in the early stages of loading. To capture this behaviour
in a constitutive model, the typical elastic-perfectly plastic model such as Mohr-Coulomb does not suffice
anymore. To represent this hardening behaviour of soil, a constitutive model which utilises a hardening law
after initial yielding is needed. Therefore researches have looked into the possibility of modelling soil as a
strain hardening material. Roscoe et al. [60] use the strain hardening theory of plasticity to formulate a com-
plete stress-strain model for normally or lightly over-consolidated clay, which will later be used by Schofield
and Wroth [67] to formulate the Cam-Clay model. A modified version of the Cam-Clay model is suggested
by Roscoe and Burland [59] and this Modified Cam-Clay model is extended to a general three-dimensional
stress state. In this section the Modified Cam-Clay model will be described, where from now on this model
will be referred to as just the Cam-Clay model. The description of this model is based on the work of Wood
[74]. This model is an elastic-plastic strain hardening model that is based on the critical state theory and the
assumption that there is a logarithmic relationship between the mean effective stress p ′ and specific volume
v , where v = 1+e in which e is the void ratio.

The Cam-Clay model is of interest for this research because it gives the possibility to determine the undrained
shear strength of the soil. Therefore, the response of soil in an conventional drained analysis is not elaborated
in this section. In this section only the parts of the model are discussed which are relevant to the undrained
analysis. For the complete description of the model the reader is referred to Appendix A.2 and the book of
Wood [74] (in particular Section 5.3 of the book for the conventional drained analysis).

The Cam-Clay model assumes that recoverable changes in volume are accompanied by a change in the mean
effective stress p ′. It implies that in the compression plane a linear relation can be found between the specific
volume v and logarithm of p ′ for elastic un- and reloading of the soil. Figure 2.12 shows the yield locus of the
Cam-Clay model in the p ′ : q plane and the compression plane p ′ : v . This yield locus is given as:

p ′

p ′
0

= M 2

M 2 +η2 (2.31)

where η= q/p ′, which is the stress ratio.
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Figure 2.12: Elliptical Yield Locus for Cam-Clay Model (Wood [74])

In case the soil starts to yield in an undrained test, the volume change of the soil will be equal to zero. This
means that the elastic and plastic contributions are exactly equal and opposite such that the total volumetric
strain is zero. In an undrained test the mean effective stress reduces due to the build up of pore pressure,
hence elastic volumetric expansion occurs. It is necessary for the yield curve to expand and produce plastic
volumetric compression to balance the elastic expansion. The condition that the summation of the expan-
sion and summation are equal to zero is given as:

p ′
i

p ′ =
(

M 2 +η2

M 2 +η2
i

)Λ
(2.32)

where Λ = (λ−κ)/λ. Equation 2.32 gives the shape of the undrained effective stress path in the p ′ : q plane,
as shown in Figure 2.13, which is of interest in this research.

Figure 2.13: Equation 2.32 (Wood [74])

In Figure 2.14 three different tests are shown: an initially normally compressed, lightly overconsolidated and
highly consolidated sample. The different stress states in the tests are indicated with points and each point
lies on a new yield locus. For both the normally consolidated and lightly overconsolidated case holds that
η < M . Yielding takes place with a strain increment vector directed to the right, which implies that plastic
volumetric compression is occurring. The soil wants to harden plastically, and therefore the current yield
locus has to expand. To balance the plastic compression, the mean effective stress must decrease (positive
pore pressures occur) such that elastic expansion occurs. This is called the wet side. The difference between
these two cases is that the lightly overconsolidated case begins with an elastic phase AB until the stress state
reaches the initial yield locus.
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For the heavily overconsolidated sample, η> M , yielding takes place with the plastic strain increment vector
directed to the left, which implies that plastic volumetric expansion is occurring. The soil wants to soften
plastically, thus the yield locus has to shrink. To balance the plastic expansion, the mean effective stress must
increase (negative pore pressures occur) such that elastic compression occurs. This is called the dry side.

Figure 2.14: Stress Increments in Undrained Analysis (Wood [74])

Critical States
In the normally consolidated case in Figure 2.14, the direction of the plastic strain increment is plotted. The
ratio plastic shear strain increment to plastic volumetric strain increment can thus be determined. This ratio
increases when the normal to the yield locus becomes more parallel to the q axis. At point F this ratio be-
comes infinite, where unlimited plastic shear strains can develop without any extra plastic volumetric strain
or effective stresses. Since no plastic volumetric strain occurs, the yield locus remains the same size. This
condition of perfect plasticity is the critical state. In Figure 2.14 a line is drawn which joins the tops of the
yield loci at η= M , this is called the critical state line (csl).

Undrained Shear Strength in Cam-Clay Framework
In the framework of critical state, a distinction is made between the shear strength of normally consolidated
and overconsolidated soils. The ultimate shear strength is defined at the critical state. Literature has shown
that using the shear strength at critical state is suitable for the calculation of slope stability (Van Duinen [72].)

A soil with a specific volume v (as shown in Figure 2.15), tested in undrained triaxial compression, will end
up on the critical state line at the mean effective stress p ′

f . The expression for this mean effective stress is:

p ′
f = exp

(
Γ− v

λ

)
(2.33)

where, Γ= N − (λ−κ) ln2, which is the location of the critical state line in the compression plane as shown in
Figure 2.16. With the following expressions for the ultimate value of deviator stress q f and su :

q f = M p ′
f su = q f

2
, (2.34)

the undrained shear strength can be given as:

su = q f

2
=

M p ′
f

2
= M

2
exp

(
Γ− v

λ

)
. (2.35)

Figure 2.15: Effective Stress Plane and Compression Plane (Wood [74])
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The undrained shear strength can be linked with consolidation history. Figure 2.16 shows that the normal
compression line and critical state line are parallel in the compression plane. The critical state line can be
formalised as:

v = Γ−λ ln p ′ (2.36)

Figure 2.16: Normal Compression Line, Unloading-Reloading Line and Critical State Line (Wood [74])

The volume separation between the normal compression and critical state lines is vλ−Γ. This separation can
also be expressed in terms of pressures. The pressure ratio r is an extra soil parameter and defined as:

r = exp

(
vλ−Γ
λ−κ

)
(2.37)

Again, having a look at Figure 2.15, the specific volume of the sample at point I is given by:

vi = vλ−λp ′
0 +κ lnnp , (2.38)

where np is the isotropic overconsolidation ratio. Using Equation 2.35, the undrained shear strength at point
F is on the critical state line is:

su = M

2
exp

[
Γ− vλ
λ

+ ln p ′
0 −

(κ
λ

)
lnnp

]
, (2.39)

which can be rewritten to:

su

pi
= M

2

(np

r

)Λ
, (2.40)

where

Λ= λ−κ
λ

. (2.41)

This definition for the shear strength will be used in this research in the undrained analysis. In terms of
vertical effective stress, the undrained shear strength can be expressed as:

su/σ′
vi

(su/σ′
vi )nc

= n

np
nΛp (2.42)

In Table 2.7 all symbols are given for the Modified Cam-Clay model. The model however only uses three
parameters λ,κ and M .
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Table 2.7: Parameters Modified Cam-Clay Model

λ isotropic logarithmic compression index [-]
κ swelling index [-]

M friction constant M = 6sin(φ′)
3−sin(φ′) [-]

η stress ratio [-]
e initial void ratio η= q/p ′ [-]

p ′ mean stress p ′ = σ′
xx+σ′

y y+σ′
zz

3 [kN/m2]
p ′

f mean effective stress at critical state line [kN/m2]

p ′
0 mean effective stress during isotropic normal compression [kN/m2]

p ′
i initial mean effective stress [kN/m2]

q deviator stress q =
(

(σ′
y y−σ′

zz )2+(σ′
zz−σ′

xx )2+(σ′
xx−σ′

y y )2

2 +3
(
τ2

y z +τ2
zx +τ2

x y

))
[kN/m2]

q f ultimate value of deviator stress [kN/m2]

n overconsolidation ratio n = σ′
vmax
σ′

v
[-]

np isotropic overconsolidation ratio np = p ′
max
p ′ or

p ′
0

p ′
i

[-]

σ′
0 pre-consolidation pressure/initial vertical stress [kN/m2]

N location of isotropic normal compression line in v : ln p ′ plane [-]

r pressure ratio r = p ′
0

p ′
cs
= exp

(
vλ−Λ
λ−κ

)
[-]

The main advantages and limitations of the Modified Cam-Clay model are summarised in Table 2.8. For a
more detailed description of the Modified Cam-Clay model the reader is referred to Section A.2 in the Ap-
pendix and the work of Schofield and Wroth [67], Roscoe and Burland [59] and Wood [74].

Table 2.8: Advantages and Limitations Modified Cam-Clay Model

Advantages Limitations

Takes loading history and stress(path)-dependent
stiffness differences into account

Less suitable for overconsolidated clay and in cer-
tain unloading stress paths; not suitable for sand

Reasonable model for primary loading of normally
consolidated clays and soft soils, which means it is

Critical state failure contour is ‘only’ Drucker-
Prager (but can easily be adapted)

capable of modelling shear induced pore pressures Inaccurate horizontal/vertical stress ratio in 1D
compression
No secondary compression (creep)
No anisotropy

2.6.4. SHANSEP Approach
The SHANSHEP (Stress History and Normalised Soil Engineering Properties) framework is introduced by
Ladd and Foott [37] and is also described in the work of Ladd [36]. This approach can be used to deter-
mine the undrained shear strength of a soil. Rijkswaterstaat [58] currently advises to use this approach to
analyse the strengths of impermeable clays. The derivation of this approach is in accordance with the Critical
State Soil Mechanics model as introduced by Schofield and Wroth [67]. The concepts of the critical state are
already explained in Section 2.5.1 and 2.6.3.

There has been important recognition that there is a close correlation between the normally consolidated

undrained shear strength ratio S =
(
su/σ′

y

)
nc

and the overconsolidation ratio OC R
(
=σ′

y /σ′
v

)
of cohesive

soils, according to Ladd [35], Ladd and Foott [37] and Ladd [36]. The shear strength of undrained layers can
therefore be determined using the following formulation as described in Ladd [36]:

su =σ′
v ·S ·OC Rm , (2.43)

In case the a material is in a normal consolidation state, OCR is equal to 1 and the maximum stress level
previously experienced is not larger than the current stress level. An OCR value higher than 1 describes an
overconsolidated state.
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In Table 2.9 the parameters are given for the SHANSEP approach. The parameters S and m are soil dependent
and testing is required to acquire these parameters. Information is required on the undrained shear strength
at an overconsolidation ratio equal to 1 to determine the parameter S. σy in the overconsolidation ratio is
the yield stress, which is the maximum experienced effective stress in the cohesive soil. Therefore the pre-
consolidation pressure must be known very well; the user has to asses the in situ stress history for all stages
construction stages, or these pressures have to be estimated. In the work of Ladd and Foott [37] the necessary
steps to obtain the SHANSEP parameters are also presented. The interested reader is therefore referred to
their work.

Table 2.9: Model Parameters SHANSEP

su undrained shear strength [kN/m2]
σ′

y yield stres [kN/m2]
σ′

v in-situ effective vertical stress [kN/m2]

S normally consolidated undrained shear strength ratio
(

su
σ′

y

)
nc

[-]

OC R overconsolidation ratio
σ′

y

σ′
v

[-]

m strength increase component [-]

2.6.5. Hardening Soil Model
Another constitutive model which is capable of representing the hardening behaviour of soil, is the model in-
troduced by Schanz et al. [65]: the Hardening Soil Model (HSM). This model is formulated in the framework
of classical theory of plasticity. It is an advanced model for simulating the behaviour of different soil types,
both for soft and stiff soils. The formulation of the HSM is based on the assumption of a hyperbolic relation
between the vertical strain ε1 and the deviatoric stress q . This relationship is shown in Figure 2.17. The soil is
described much more accurately by using three different stiffness moduli, also shown in Figure 2.17.

Duncan and Chang [16] already introduced a nonlinear elastic criterion model to model the behaviour of soil
as it approaches failure. Their nonlinear stress-strain relationship is also defined as a hyperbolic function.
Nonetheless, the Hardening Soil Model has quite some advantages compared to the purely elastic Duncan-
Chang model and the elastic-perfectly plastic model Mohr Coulomb. These advantages, but also the limita-
tions of the model, are summarised in Table 2.10. This model will only be used to compare the results of the
slope stability analysis based on a linear or nonlinear stress analysis. It will not be implemented in the max-
imum available shear strength determination, therefore the reader is referred to A.2.1 for the full description
of this model. And for the complete derivation of the Hardening Soil model, the reader is referred to Schanz
et al. [65].

Figure 2.17: Hyperbolic Stress-Strain Relation in Primary Loading for a Standard Drained Triaxial Test (Schanz et al. [65])
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Table 2.10: Advantages and Limitations Hardening Soil Model

Advantages Limitations

Better non-linear formulation of soil behaviour in
general

No peak strength and softening (immediate resid-
ual strength)

Distinction between primary loading and unload-
ing/reloading

No accumulation of strain or pore pressure in cyclic
loading

Memory of preconsolidation stress No secondary compression (creep)
Different stiffnesses for different stress paths No anisotropy
Well suited for unloading situations with simulta-
neous deviatoric loading

E50/Eoed > 2 difficult to input

Takes into account soil dilatancy
Yield surface can expand due to plastic straining

2.7. Chapter Summary
In this chapter first an overview of the LEM and FEM are given. The main limitation of the limit equilibrium
methods is that the analysis works with a static pore pressure field, in which the deformations in the soil
are not coupled with the groundwater flow. Therefore no information on strains and deformations is given.
Furthermore, the methods requires a predefined slip surface which has to be divided into slices. The most
common reason for a LEM to be insufficient is when a correct display of the stresses is needed or if the slope
stability in combination with a construction is examined. In contrary, the FEM is able to perform an ade-
quate stress analysis. However, this methods uses the shear strength reduction method to find the critical
slip surface. One limitation of the SSRM is that it can only give one critical slip surface. Another limitation is
that the SSRM only reduces the shear strength parameters φ and c and no use is made of the shear strength
expressions given by advanced constitutive models. The reason why LEM are applied more often than FEM
is because FEM is more time-consuming. Another advantage of the LEM is that it gives the safety factor of
every given slip surface, such that the stability of all relevant slip surfaces can be calculated.

Due to these limitations, a new type of method is proposed, namely the enhanced limit method. In this
method a single finite element analysis is performed to obtain the occurring stresses in the soil. The method
requires a safety factor definition, which can be of a strength, stress or strength-stress level approach. In this
research a strength level approach will be implemented. The safety factor is defined as the sum of maximum
available shear strength divided by the sum of mobilised shear stress along a slip surface. The ELM requires
an optimisation method, such as dynamic programming, simplex or the genetic algorithm, to search for the
most critical slip surface.

The second part of this chapter is focused on the soil mechanics. The differences between a drained and
undrained analysis are highlighted. Special attention is given to the occurrence of the shear induced pore
pressures, which are of interest in a stability analysis. These excess pore pressures reduce the effective stress
of the soil, resulting in a strength decrease. An appropriate soil model should therefore be used to model these
pore pressures. Multiple soil models and approaches are discussed, namely Mohr-Coulomb, Matsuoka-Nakai
criterion, Modified Cam-Clay model, SHANSEP and the Hardening Soil model. The Coulomb criterion will
be used to determine the shear strength of drained soils. The criterion of Matsuoka-Nakai will be included
to examine the influence of the intermediate principal stress on the shear strength. The Modified Cam-Clay
is considered, since this model is able to capture the shear induced pore pressures in an undrained analysis.
The SHANSEP approach will be applied in the LEM program D-Stability and the Hardening Soil Model will
be used to model a nonlinear stress-strain relationship in the finite element program PLAXIS. Both these
programs will be introduced in the next chapters.
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Methodology

In this chapter the methods are outlined which are used to reach the research goal.

3.1. Stress Analysis
The first step in the proposed method is the stress analysis. This stress analysis is performed in the program
PLAXIS, Brinkgreve et al. [7]. PLAXIS can be used to perform finite element analyses within geotechnical en-
gineering problems. The program is able to execute advanced finite element analysis of soil and rock defor-
mation and is able to capture the groundwater and heat flow as well. Many advanced constitutive models for
simulation of the (non)linear and time-dependent behaviour of soils are present in the programme. PLAXIS
is also capable of performing a slope stability analysis, in which the factor of safety is determined using the
shear strength reduction technique.

For this research PLAXIS will mainly be used for the stress analysis. The shear strength reduction method
will also be used to compare the results with the proposed method. The dike profile of interest is used as
input for the program. Soil characteristics, waterlevels, and possible loading stages have to be defined in
the program as well. The soil model which is used to determine the maximum available shear strength does
not have to coincide with the soil model used in PLAXIS to find the stresses. In the drained analysis in this
research, the stress-strain relationship is assumed to be linear elastic. The SSRM uses the parameters of the
Mohr-Coulomb model to obtain a safety factor.

3.1.1. Interpolation
PLAXIS divides the slope into triangular elements to calculate the displacements and stresses in the slope.
The basic finite element in PLAXIS is a triangle, consisting of 6 or 15 nodes and 12 Gaussian integration points
(stress points), as shown in Figure 3.1. The finite element calculation gives the values for the displacements
at every node and the stresses at every stress point.

The output of the stress analysis has to be edited for further usage, such that the stresses can be used more
conveniently in the slope stability analysis. In this research the x and y coordinates of the mesh obtained
from PLAXIS are interpolated to a regularly-spaced grid of data on an interval which is chosen by the user.
The values on the points of the new grid are interpolated values, or the point has to be present as a node or
stress point in PLAXIS already. The used method to generate the grid with regularly-spaced points from the
irregularly-spaced data obtained from PLAXIS is linear interpolation.

Figure 3.1: Location of Nodes and Stress Points in a Basic Finite Element in PLAXIS (Barneveld [3])

27
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3.2. Strength Analysis
As discussed in Section 2.5, in this research the safety factor will be calculated by comparing the mobilised
shear stress with the maximum available shear strength, using the following expression:

FoS =
∑n

i=1τ f i∆Li∑n
i=1τi∆Li

. (3.1)

The advantages of using this definition are already discussed in Section 2.5 as well. To determine the maxi-
mum available shear strength, two definitions are used. Namely the Coulomb criterion and the shear strength
expression of the Modified Cam-Clay model. The expressions are given as:

τi = c ′+σ′ tanφ′, drained, (3.2)

τi = su = M

2

(np

r

)Λ
pi , undrained. (3.3)

For the full description of the parameters the reader can go back to Sections 2.6.1 and 2.6.3.

3.3. Genetic Algorithm
As previously described in Section 2.3, there are multiple optimisation problems which can be used to find
the critical slip surface. In this research the genetic algorithm, as already introduced in Section 2.3, is used
to find the critical slip surface. Equation 3.1 is used to determine the safety factor and the genetic algorithm
will search for the slip surface which gives the lowest safety factor. Li et al. [43] presents a real coded genetic
algorithm to locate the critical slip surface and has used different methods to calculate the factor of safety,
namely: Spencer, Morgenstern-Price and a finite-element based definition. They have investigated six differ-
ent slope examples and it is found that the algorithm in combination with finite-element based definition as
given in Equation 3.1 gives the lowest safety factor compared to the safety factors given by Morgenstern-Price
or Spencer.

The genetic algorithm uses a pool of solutions in an iterative procedure to find the optimal solution. Each
chromosome (solution) has a fitness value, which is found by evaluating the chromosome with the objective
function. In this optimisation problem the fitness value is defined by the factor of safety. The aim of the op-
timisation tool is to find the chromosome (slip surface) which results in the lowest safety factor. The genetic
algorithm works in two main stages: generating the initial population followed by reproducing a new (and
better) population.

First the initial population is generated, in which every individual (or chromosome) is a slip surface. A slip
surface is defined by the x- and y-coordinates of a number of nodes as illustrated in Figure 3.2. For every
slip surface the safety factor is determined using the definition given by Equation 3.1. The population is then
sorted based on the fitness value of the individuals. To ensure that the best solution (the slip surface with the
lowest safety factor) is never lost, the individuals which give the lowest safety factor are always selected for
the next population.

This selection of individuals is then used to generate the next population. From this initial population pairs
are made randomly which will represent the parents. From all pairs of parents offspring will be generated in
the crossover process. Hereafter, all the offspring will be modified in the mutation process. Both the crossover
and mutation process will be described in more detail later in this section. After the completion of the mu-
tation process, the generation of the new population is finalised. This new population is then combined
with the ‘parent’ population. Based on the fitness ranking of these individuals a new selection will be made
and used as the next ‘parent’ population. The process of reproduction, crossover, mutation and selection is
repeated a couple of times or until convergence of the safety factor occurs. The processes of the genetic algo-
rithm to optimise the safety factor are also shown in the flowchart in Figure 3.5.

All processes of the genetic algorithm which are described briefly above will be elaborated on separately in
the following sections. The functions are based on the work of Cheng et al. [10] and Jurado-Piña and Jimenez
[31].
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3.3.1. Generation of Trial Slip Surfaces
The first step in the genetic algorithm is to create a population of initial slip surfaces. Cheng [9] presents an
algorithm to find a trial slip surface which is admissible, which means that the slip surface is concave upward.
In Figure 3.2 such an admissible slip surface is shown, generated by the proposed algorithm.

The ground surface is given by the function y = y1(x) and the lower bound surface is represented by y = R(x).
This lower bound can be given by the presence of a bed rock surface, or any other material or construction
that is not expected to slide due to instability, or the engineer can give a good estimate of this lower bound.

The slip surface is represented by N + 1 vertices [V1,V2, ...,VN+1], where N is the number of vertical sec-
tions. These vertices are defined by the coordinates (x1, y1), (x2, y2), ..., (xN+1, yN+1), and each section can
be identified by two adjacent vertices. Every slip surface can be identified by the control variable vector
X = [x1, y1, x2, y2, ..., xn , yn , xN+1, yN+1]. To find a realistic slip surface, the slip surface should be concave up-
ward.

The variables x1, y1, xN+1 and yN+1 can be determined from the ground profile, therefore these are not inde-
pendent control variables. For a slope with N sections, there will be 2N independent control variables. If the
slip surface is divided equally in the horizontal directions, then the x-coordinates of the vertices can be found
easily with the following equation:

xi = x1 + xN+1 −x1

N
· (i −1) i = 2, ..., N (3.4)

The following step is to determine the y-coordinates for the vertices i = 2, ..., N . After defining the values x1

to xN+1, the range [y2min, y2max] can be determined from the geometry. The point y2 can then be randomly
generated within the range [y2min, y2max]. For the remaining i = 3, ..., N points the y-coordinates can be de-
termined using the following steps:

1. Draw a line between Vi−1 and Vi+1, this line is called LG .
2. Draw a vertical line at x = xi .
3. The point of intersection of LG and the line at xi is called point yG .
4. Draw a line between Vi−2 and Vi−1 and extend this line until xi , this line is called LH .
5. The point of intersection of line LH and the line at xi is called point yH .
6. The bounds for point yi can then be determined as:

yi ,mi n = max{yH ,R(xi )} yi ,max = min{yG , y1(xi )}. (3.5)

With this procedure the remaining y-coordinates are found for the slip surface.

With these steps Minit trial slip surfaces are created for the initial population. The recommended value for
Minit will be discussed later on, when the algorithm is applied to some examples. The slope profile is already
specified in Python in the interpolation phase. The user only has to define the bounds in which the extreme
nodes should be located. The extreme nodes V1 and VN+1 are randomly generated within these allowable
intervals.

Figure 3.2: Procedure in Generating Admissible Slip Surface (Cheng [9])
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3.3.2. Crossover
In the previous step a population of slip surfaces is created and within this population pairs are made ran-
domly. There will be M/2 number of pairs. Each pair of individuals is seen as the parents of which two
offspring will be created. A pair contains two slip surfaces Si and S j of which Si gives the lowest safety factor.
The heuristic crossover operator produces one new slip surface as offspring, defined as:

S′′ = Si +ζ(Si −S j ), (3.6)

where ζ is a random number uniformly distributed between [0,1]. For every pair of corresponding nodes (the
first node of the first parent and the first node of the second parent, and so on,) the difference is computed
between the y-coordinates and x-coordinates of the nodes. These differences are multiplied with ζ and then
added to slip surface Si , such that the nodes of Si will be shifted. This gives the resulting offspring. For every
pair of parents the heuristic crossover is performed twice, such that every pair of parents creates two children.
The x-coordinates of the extreme nodes of the newly created offspring should be in the predefined bounds
and the y-coordinates should lie in the ground profile. To ensure that S′′ fulfils these geometrical constraints
some additional steps are required:

1. Check whether the extreme nodes V ′′
1 and V ′′

N+1 are within the allowable extreme intervals
e = 1, N +1

(a) If V ′′
e lies within the extreme allowable interval, this will be taken as the extreme node of the off-

spring’s slip surface
(b) If V ′′

e lies outside the extreme allowable interval, two cases can occur:

i. If V ′′
e lies on the left (more negative) side of the allowable interval, the minimum of the allow-

able interval is used as the coordinate for the extreme node
ii. If V ′′

e lies on the right (more positive) side of the allowable interval, the maximum of the al-
lowable interval is used as the coordinate for the extreme node

2. Having obtained the new extreme vertices V ′′
1 and V ′′

N+1, the new slip surface is ‘recoded’ as will be
described in Section 3.3.3. If the new slip surface is admissible, i.e. upwards-concave, it is taken as the
offspring of the pair of parents. Otherwise it is rejected and the crossover procedure is carried out again
to create a new offspring. If no valid offspring is found after a certain number of crossover trials, then
the parent Si is returned as the offspring.

3.3.3. Recoding of Individuals
When one or both of the extreme nodes are modified, the slip surface has to be recoded, such that the spac-
ings between the x-coordinates of the nodes are still evenly divided. It is not strictly necessary for the algo-
rithm to keep the nodes evenly spaced. However, by keeping the x-coordinates of the nodes evenly divided,
only the first and last x-coordinate of the slip surface have to be saved to reconstruct the x-coordinates of all
nodes. The new extreme nodes are used to produce equally-spaced lines L′

i (i = 2, ..., N +1), in which N +1
is the number of nodes. The recoded interior nodes V ′

2, ...,V ′
N are found at the intersection of the lines L′

i
with the original slip surface as shown in Figure 3.3. This figure shows the example of the right extreme node
(VN+1) being modified in the negative x-direction (V ′

N+1). This ensures that the rest of the nodes V2, ...,VN are
moved in the negative x-direction as well (V ′

2, ...,V ′
N ). Since the new locations of the recoded nodes are still on

the same slip surface as before the extreme node was modified, the recoded slip surface is still admissible.

Figure 3.3: Recoding of Nodes
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3.3.4. Mutation
The crossover process generates a new population ‘the offspring’. All individuals in this generation will go
through the process of mutation, however, it is possible that not every node, or not even a single node, will
be mutated. A random variable r1 is a uniformly distributed number between [0,1]. For every node in an
individual this random variable is generated. If r1 for a particular node is smaller than a predefined mutation
rate ρm , then that node will be subjected to mutation, otherwise that node will not be mutated and remain at
its location.

In this research uniform a mutation is applied, thus the random variable r1 is uniformly distributed. The
procedure is slightly different when the node is ‘extreme’ (i = 1 or i = N + 1) or ‘interior’ (i = 2, ...N ). Both
procedures will be described below.

• ‘Interior’ nodes. For every node Vi (i = 2, ..., N ) a feasible interval [P0,P1] is computed. This interval
can be seen in Figure 3.4. P0 is found as the intersection between Li , which is the x-coordinate of node
Vi , and the line that connects the nodes Vi−1 and Vi+1. To find P1 two lines are created. First, the line
between nodes Vi−2 and Vi−1 is extended until it intersects with the x-coordinate of node Vi (line Li ),
this gives point P11. Secondly, the line between nodes Vi+1 and Vi+2 is also extended until it intersects
with Li , this gives point P12. P1 is the point which is closer to Vi among P11 and P12. Note that for
node V2 only point P12 exists and for node VN only point P11 exists and automatically will be point P1.
Using P0 and P1, two lines are defined: l0 is the vertical distance between point P0 and Vi and l1 the
vertical distance between point P1 and Vi . To choose the direction in which the node will be mutated
to: in the positive y-direction (in the direction of P0) or in the negative y-direction (in the direction of
P1), a probability of selection is defined proportional to the lengths of line l0 and l1. After a direction
is chosen, the mutated node is computed as V ′

i = Vi + (P j −Vi )ζ, where ζ is a uniformly distributed
random number between [0,1]. Note that the mutation only changes the y-coordinate of the node.
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Figure 3.4: Uniform Mutation of Single Nodes based on Jurado-Piña and Jimenez [31]
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• ‘Extreme’ nodes. For the extreme nodes also an interval [P0,P1] is computed, but in a different manner
than for the interior nodes. The procedure for the left extreme node V1 will be discussed here, but
the procedure is analogous for VN+1. To find P0 the line between nodes V2 and V3 is extended until it
intersects with the ground surface, this gives P0. P1 is given by the intersection of the x-coordinate of
node V2 and the ground surface. Both are shown in Figure 3.4. If P0 lies outside the allowable extreme
interval, P0 is moved to the minimum of the allowable interval. If P1 lies outside the allowable extreme
interval, P1 is moved to the maximum of the allowable interval. Using the [P0,P1] interval, lines l0 and
l1 are defined again. A direction is chosen in the same matter as for the interior nodes and the extreme
node is mutated as V ′

i = Vi + (P j −Vi )ζ. If one or both of the extreme nodes have been mutated, the
slip surface needs to be recoded again, as described in Section 3.3.3, such that the spacing between
the nodes remains equal. This recoding is performed after both extreme nodes possibly have been
mutated.

After the mutation procedure of one individual (where zero to all nodes might have been mutated), it is
checked whether the mutated nodes lie inside the allowable search domain. This check ensures that the y-
coordinates do not surpass the ground surface or pass below the lower bound (line y = R(x) in Figure 3.2). A
check is also performed to see if the new mutated slip surface is admissible, i.e. upwards-concave. In case the
mutation process has made the slip surface inadmissible, then the original individual, before the mutation
process, will be used as the final slip surface.

3.3.5. Fitness Computation and Selection
After the mutation process, the selection of the initial population (the parents) is combined with the gener-
ated population (the offspring). For every individual in this new population the safety factor is determined
using the method as described in Section 2.5. The individuals are hereafter ranked based on their scores for
the factor of safety. Based on this ranking, a selection of M individuals is made from this combined pop-
ulation. This selection is then used again as a parent generation in the next iteration of the optimisation
problem. The complete process is shown in Figure 3.5. The optimisation process is stopped after a stopping
criterion is met. In this study a stopping criterion is used which includes a maximum number of iterations
(every iteration creates a new population) and convergence of the safety factor. If the maximum number of
iterations is reached, but the safety factor is still decreasing more than a specified value ε (about 0.001), then
the optimisation will not stop, but create a new generation again. Thus even when the maximum number of
iterations is achieved, the optimisation will only stop when the safety factor is no longer optimised.

3.4. Comparison LEM and FEM
To examine the performance of the new approach, multiple case studies will be performed with the new ap-
proach, as well as with a LEM and FEM. The parameter of interest will be the safety factor. The safety factor
of the finite element method is obtained with the φ− c reduction method, which is available in PLAXIS. The
program D-Stability (Deltares [13]) will be used to acquire the safety factor with a limit equilibrium approach.
The application D-Stability contains multiple limit equilibrium methods which can analyse slope stability,
namely the method of slices, driving and resisting moments, Bishop, Uplift-Van and Spencer. The optimisa-
tion procedures to determine the slip surface contained in the application are grid search, genetic algorithm
and Adaptive Particle Swarm Optimisation.

3.5. Chapter Summary
In this chapter the various methods are described, which are implemented in this research. It is explained that
the finite element analysis program PLAXIS is used to perform the stress analysis. The stresses of interest are
then exported into Python. The safety factor is calculated by comparing the mobilised shear stress with the
maximum available shear strength along a slip surface. To calculate the maximum available shear strength,
both the Coulomb criterion as Modified Cam-Clay model are applied. To find the most critical slip surface,
the genetic algorithm is implemented. This algorithm contains multiple steps. The first step is to create
an initial population of trial slip surfaces. From this initial population a new generation of slip surfaces is
created in the crossover process. The new generation is hereafter mutated, such that enough diversity is
present between the slip surfaces. Then the safety factor is calculated of all the slip surfaces and a selection
of the best solutions is used in the next iteration. This process is performed a number of iterations, until the
safety factor is converged. These steps are discussed elaborately in this chapter.
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Initialise the algorithm parameters: Minit, M ,ρc ,ρm , Niter, Miter

Generate initial population of Minit slip surfaces

The current generation V ′
1, ...,V ′

M is taken as parent gen-
eration. From this generation individuals are coupled to-

gether as a pair of parents. Offspring generations are
obtained through crossover and mutation operators.

i = 1, j = 0

Generate random number r0 from [0,1]

r0 ≤ ρci = i + 1

The ith pair of parents is used to create two off-
springs V ′

0 j+1,V ′
0 j+2. j = j + 2, i = i + 1

i ≤ M/2

k = 0

For each component of the offspring V ′
0k generate a random

number r1 from [0,1]. If r1 is lower than ρm , that component
(node) is mutated, otherwise the value remains unchanged.

k = k + 1 k < j

Determine the best individual from parent and offspring
generation. Choose new M individuals from both the ini-

tial population V ′
1, ...,V ′

M and created population V ′
01, ...,V ′

0 j .

Niter = Niter + 1

Niter = Miter|FoSg −FoSc | ≤ ε

Terminate

no

yes

yes

no

no

yes

yes

no

yes

no

Figure 3.5: Genetic Algorithm to Determine the Optimal Slip Surface





4
Case Studies

In this chapter the results of a number of examples are reviewed, which demonstrate the proposed genetic
algorithm to be efficient in finding accurate solutions to various slope stability problems. These examples,
which are increasing in complexity, are obtained from literature, such that the results can be compared. For
all examples holds that the stresses and pore-water pressures are computed using the finite element program
PLAXIS. As mentioned before, the stress-strain relationship is assumed to be linear elastic in the stress analy-
sis. PLAXIS is also used to determine the safety factor using the shear strength reduction method.

Some of the input parameters for the genetic algorithm have a big influence on the performance, and there-
fore also on the computation time of the algorithm. The sensitivity of these parameters will be discussed in
the next chapter. To obtain the results presented in this chapter, the initial population size Minit is set at 100,
the selection size M is 20 and the number of sections N is set at 7. These values are chosen based on the sen-
sitivity analysis. Note that often a lower safety can be found than the ones shown in this chapter. However,
finding these lower safety factors require a much longer computation time.

4.1. Example 1: Unbraced Vertical Cut in clay
In Duncan et al. [15] the failure of a vertical excavated slope is described. This slope is shown in Figure 4.1.
The average confined compressive strength of the clay is reported to be 100.55 kPa (1.05 tsf) and the unit
weight of the clay is given as 18.85 kN/m3 (120 pcf). An analytical solution for a vertical slope in cohesive soil
is given by Duncan et al. [15] as:

F = 4c

γH
(4.1)

For an undrained shear strength of su = 50.27 kPA (1050 psf) and a height of 9.61 meter the safety factor is
calculated as 1.11. The critical slip surface found by the genetic algorithm has a safety factor of 1.099 and is
shown in Figure 4.1. The resulting critical slip surface, with its corresponding safety factor indicates that the
genetic algorithm is working properly. Hence, the following examples will be increasing in complexity.

Figure 4.1: Critical Slip Surfaces obtained for Vertical Cut Slope
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4.2. Example 2: Simple Homogeneous Wet Slope
In this section the results of the analysis of a simple homogeneous slope at 2:1 are presented. This example
is retrieved from the paper of Pham and Fredlund [53]. In their research they have used a dynamic program-
ming technique as the search algorithm and the calculation of the safety factor is similar to the definition
used in this research, as described in Section 2.5. Differences with Pham and Fredlund [53] are expected,
since their method to create slip surfaces is quite different compared to the method applied in this research.
Optimisation is performed on segments of the slip surface, instead of on the complete slip surface as pro-
posed in this report. This example is referred to as being in the wet condition, where the groundwater table
passes through the toe of the slope. The results obtained with the genetic algorithm are compared to the
safety factors found with the shear strength reduction method in the FEM, with the values produced by limit
equilibrium methods Bishop and Spencer and with the safety factors found in literature. The resulting critical
slip surface is shown in Figure 4.2 and all results of the safety factors are given in Table 4.1.

Figure 4.2: Critical Slip Surfaces obtained by Various Methods for Wet Condition

The critical slip surface determined by the GA tends to go slightly deeper than both critical slip surfaces found
by D-Stability. This result is in accordance with the findings by Pham and Fredlund [53]. With their optimisa-
tion program DYNPROG they also found slip surfaces which were slightly deeper than the slip surfaces found
by the limit equilibrium method.

The safety factor found with the genetic algorithm is a bit higher than the values found in literature, as shown
in Table 4.1. This can have two causes. Firstly, the genetic algorithm is only performed a limited number
of times using the parameters as described at the beginning of this chapter, due to the long computation
time. Allowing the algorithm to run more iterations will result in a lower safety factor. Secondly, Pham and
Fredlund [53] do not consider potential slip surfaces which contain negative shear stresses. In their research
they state that the resisting force must always act in the direction opposite to the mass movement. This is
used as the kinematical restriction applied to the shape of the slip surface in their study. Thus if the actuating
force of a segment along the slip surface is in the contrary direction of the mass movement, then this segment
is removed from the optimisation search. Consequently, the resulting critical slip surface will not hold any
segments with a negative shear stress. In this study however, these segments are kept in the search algorithm.
If a slip surface is created with many segments containing a negative shear stress, then the safety factor will
be very high. This follows naturally from the definition of the safety factor. Since the genetic algorithm only
uses a selection of the best solutions to generate the offspring, these slip surfaces will no longer be considered
in the next generation. However, it is possible that the given critical slip surface can contain negative shear
stresses, this is often at the beginning or end of the slip surface. This part will contribute as a resisting force,
which will lead to the increase in the safety factor. The result as shown in Figure 4.2 contains a small segment
at the top with resisting shear stresses. This can be the explanation for the slightly higher safety factor found
by the genetic algorithm.
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Table 4.1: Minimum Factors of Safety for the Examples Investigated

Search Approach Method Calculation FoS Minimum FoS Computing Time [s]

Example 1
Analytical (Duncan et al. [15]) Analytical 1.110 Unknown
PLAXIS (this research) SSRM 1.069 21
GA (this research) Finite-element-based 1.099 71
Example 2
DP (Pham and Fredlund [53] Finite-element-based 1.041 Unknown
SLOPE/W (Pham and Fredlund [53]) Bishop 1.167 Unknown
PLAXIS (this research) SSRM 1.078 85
D-Stability (this research) Bishop 1.138 Unknown
D-Stability (this research) Spencer 1.130 Unknown
GA (this research) Finite-element-based 1.106 1295
Example 3
DP (Pham and Fredlund [53]) Finite-element-based 1.413 Unknown
SLOPE/W (Pham and Fredlund [53]) Morgenstern-Price 1.485 Unknown
SLOPE/W (Pham and Fredlund [53]) Janbu 1.293 Unknown
Real-coded GA (Li et al. [43]) Finite-element-based 1.393 3.47
Real-coded GA (Li et al. [43]) Morgenstern-Price 1.408 5.97
PLAXIS (this research) SSRM 1.415 74
D-Stability (this research) Bishop 1.364 Unknown
D-Stability (this research) Spencer 1.372 Unknown
GA (this research) Finite-element-based 1.326 1284
GA (this research) Finite-element-based (M-N) 1.434 415
Example 4
DP (Pham and Fredlund [53]) Finite-element-based 1.000 Unknown
SLOPE/W (Pham and Fredlund [53]) Morgenstern-Price 1.140 Unknown
Real-coded GA (Li et al. [43]) Finite-element-based 0.977 4.74
Real-coded GA (Li et al. [43]) Morgenstern-Price 1.017 9.42
PLAXIS (this research) SSRM 1.007 54
D-Stability (this research) Bishop 1.183 Unknown
D-Stability (this research) Spencer 0.999 Unknown
GA (this research) Finite-element-based 0.995 843
Example 5
PLAXIS (this research) SSRM 1.081 24
GA (this research) Finite-element-based 1.067 1195
Example 6
D-Stability (POVM [55]) Uplift-Van 0.883 Unknown
PLAXIS (POVM [55]) SSRM 0.9 Unknown
GA (this research) Finite-element-based 0.675 1726

4.3. Example 3: Nonhomogeneous Slope
Examples 3 and 4 are presented by Pham and Fredlund [53] and are also analysed by Li et al. [43]. As men-
tioned before, Pham and Fredlund [53] use a dynamic programming technique as the search algorithm,
whereas Li et al. [43] use a genetic algorithm. Li et al. [43] use multiple methods to calculate the safety fac-
tor including a finite-element-based definition as applied in this research, as well as the Morgernstern-Price
method. Differences with Li et al. [43] are expected, since their genetic algorithm deviates from the genetic
algorithm proposed in this research. In the mutation process, a dynamic bounding technique is used to find
the new coordinates of the vertices. These bounds are different than the ones proposed in Section 3.3.4. Fur-
thermore, Li et al. [43] add vertices during the optimisation process, whilst in this research the number of
vertices is kept constant during the optimisation.

The first inhomogeneous slope which is analysed is shown in Figure 4.3. The two soil layers are slightly differ-
ent and their properties are shown in the figure. The safety factor found in this research is substantially lower
compared to the values found in literature, the FEM and LEM analysis, as shown in Table 4.1.
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The critical slip surface computed with the genetic algorithm shows a slip surface which is deeper near the
toe compared to the slip surface obtained from Bishop and Spencer. This is in accordance with the finding of
Pham and Fredlund [53], who also found slip surfaces with a deeper toe.

Figure 4.3: Critical Slip Surfaces obtained by Various Methods for Nonhomogeneous Slope 1

This example is also used to examine the effect of implementing a different failure criterion. In Section 2.6.2
the failure criterion of Matsuoka and Nakai is discussed. Figure 4.4 shows the results of the analysis using this
criterion. The algorithm finds a critical slip surface which has a very similar shape as the one presented in
Figure 4.3, but gives a higher safety factor of 1.434. If the safety factor of this critical slip surface is calculated
with Coulomb’s failure criterion, then the safety factor is only 1.323. This result is expected, since the formu-
lation as proposed in Section 2.6.2 simply finds a greater value for the friction angle φ. This friction angle
is directly used in Coulomb’s criterion, therefore the maximum available shear strength will increase corre-
spondingly. This figure also includes the slip surfaces obtained with Bishop and Spencer from D-Stability.
With the stresses from PLAXIS and the criterion of Matsuoka and Nakai, a safety factor of 1.455 is found for
Bishop’s slip surface and a safety factor of 1.445 for Spencer, which are also about 0.1 higher than the values
obtained from D-Stability.

Figure 4.4: Critical Slip Surface obtained with Matsuoka-Nakai’s Failure Criterion for Nonhomogeneous Slope 1
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4.4. Example 4: Nonhomogeneous Slope with very Weak Layer
The results of the next inhomogeneous slope examined are shown in Figure 4.5. This slope is expected to fail
since the safety factor is smaller than one. Li et al. [43] found a safety factor of 0.977, also indicating that the
slope is failing. Once again, the factor of safety found in this research is similar to those found in literature
and the safety factors obtained from PLAXIS and D-Stability. As can be expected, the Bishop method gives
a substantially higher safety factor. Due to the weak layer in the dike profile, a non-circular slip surface is
expected, which cannot be captured with Bishop. Contrarily, the analysis performed with Spencer’s method
is able to find a more critical non-circular slip surface, compared to the result of Bishop’s method.

Figure 4.5: Critical Slip Surfaces obtained by Various Methods for Nonhomogeneous Slope 2

To demonstrate the optimisation process of the genetic algorithm, the convergence of the slip surfaces for
Example 4 are shown in Figure 4.6 and 4.7. The x-coordinates for the extreme vertices range between V1,min

and V1,max and between VN+1,min and VN+1,max. These bounds are also indicated in the figure. In the first
figure 20 slip surfaces are shown, which were generated for the initial population. These slip surfaces are not
ranked yet, but merely the first 20 slip surfaces which were created are shown here. The second figure shows
the 20 best slip surfaces from the initial generation, these are the 20 slip surfaces which gave the lowest safety
factor. For this example 80 generations were produced. In the next figure only the best solution of every of
the first 20 generations is shown and in the last figure only the best solutions of the last 20 generations are
shown, therefore including the final critical slip surface.

Figure 4.6: Convergence Process of Example 4 Part 1
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Figure 4.7: Convergence Process of Example 4 Part 2

The convergence curve of the safety factor of Example 4 is shown in Figure 4.8. Inherently, the number of
generations is related to computation time, but both graphs are shown such that an impression is given on
the total computation time. In this analysis the selection size M is set as 20, which means that after a new
generation if produced, only 20 individuals will be chosen as parents to create the new generation. This figure
shows that the safety factor is not decreased in every generation, or even in multiple consecutive generations.
Therefore the stopping criterion is not based on the difference between the safety factors of two generations
before a certain number of iterations has been performed, since such a criterion will stop the algorithm pre-
maturely and prohibits finding the optimal safety factor. The safety factor drops dramatically in the first 35
generations and the minimum safety factor is almost reached after 80 generations.

Figure 4.8: Convergence Process of Minimum Factor of Safety Example 4

The influence of the genetic algorithm parameters Minit, M and number of sections N will be further dis-
cussed in the next chapter.

4.5. Example 5: Undrained Analysis

In Section 2.5.1 the importance of including the undrained effect of impermeable soils is already highlighted.
The proposed genetic algorithm is capable in performing the strength analysis for an undrained soil. A dif-
ferent definition should be applied in the genetic algorithm for the maximum available shear strength of
the undrained soil and extra care should be taken when performing the stress analysis in the FEM. For this
example the slope is constructed in different phases in PLAXIS. The soil is first consolidated, to obtain the
overconsolidation ratio, before a rapid water increase is initiated. The stress distribution is captured at the
moment the high water level is just reached, when the water has not been able to drain away quickly. The
result of this slope is shown in Figure 4.9. PLAXIS gave a critical slip surface with a safety factor of 1.081 which
is similar in shape to the result of the genetic algorithm. This result shows that the algorithm is able to find a
more critical value.
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Figure 4.9: Critical Slip Surfaces obtained for Undrained Slope

4.6. Example 6: Bergambacht
The last example which is analysed with the proposed method is the dike Bergambacht. A geotechnical cross
section of the dike is shown in Figure 4.10. The macrostability of this dike has been broadly analysed of which
results are reported in POVM [55]. In this report multiple loading conditions are investigated and various
measures have been presented to reinforce the failing dike. The calculations are based on the location of the
old Lekdijk near Bergambacht, where in 2001 an experiment is performed to analyse the instability of the
dike. For the complete description of the experiment the reader is referred to GeoDelft [21]. Extensive mea-
surements of field tests and soil properties are available for this case, of which an overview can be found in
the POVM [55] report.

Figure 4.10: Cross Section Dike Bergambacht

The dike consists of nine different soil layers, of which the properties of interest for this research are sum-
marised in Table 4.2. These soil properties are obtained from the POVM [55] report. The undrained behaviour
of the clay and peat layers are analysed using the SHANSEP NGI-ADP-model in the POVM [55] report, whereas
the Hardening Soil model is applied to the sand layers. In this research the strength of the sand layers are de-
termined using the Coulomb criterion, whilst the undrained analysis is performed using the expressions of
the Modified Cam-Clay model.
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Table 4.2: Soil Properties Bergambacht

Layer γunsat [kN/m3] γsat [kN/m3] ν c’ [kPa] φ′ E [kPa] λ∗[−] κ∗[−] S [-] m [-]

Dijksmateriaal 18.45 18.45 - 2.0 27.2 - 0.0654 0.0077 0.25 0.76
Klei van Tiel 14.23 14.23 - 1.0 18.9 - 0.1270 0.0204 0.18 0.76
Hollandveen 10.35 10.35 - 1.0 29.8 - 0.2467 0.0307 0.29 0.76
Klei van Gorkum licht (humeus) 11.86 11.86 - 1.0 31.2 - 0.1783 0.0378 0.25 0.76
Klei van Gorkum 13.88 13.88 - 1.0 35.6 - 0.2176 0.0216 0.20 0.76
Klei van Gorkum zwaar 15.44 15.44 - 1.0 28.1 - 0.1065 0.0053 0.23 0.76
Basisveen 10.86 10.86 - 1.0 29.8 - 0.2467 0.0307 0.29 0.76
Zand siltig 19.00 19.00 - 0.1 30.0 - - - - -
Pleistoceen zand 18.00 20.00 - 0.1 32.5 - - - - -

The result of this slope is shown in Figure 4.11. The slip surface only passes through the clay and peat layers.
A safety factor of 0.675 is found, indicating that the dike profile is very weak and expected to collapse.

Figure 4.11: Critical Slip Surface for Bergambacht

As previously mentioned, this slope has also been thoroughly examined by various specialists. These results
are presented in the POVM [55] report. For the same loading conditions as presented in Figure 4.11, they
found a safety factor of 0.88 using the Uplift-Van model in D-Stability and a value of 0.9 with the shear strength
reduction method in PLAXIS. The most critical slip surface obtained in D-Stability is shown in Figure 4.12.
In their analysis, in both PLAXIS and D-Stability, the SHANSEP approach is used to determine the undrained
shear strength. The obtained safety factors are very different compared to the result obtained with the genetic
algorithm, nevertheless, the shape of the slip surfaces coincide adequately. Therefore this case study will be
discussed in more detail in Chapter 6.

Figure 4.12: Critical Slip Surface Uplift-Van D-Stability
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4.7. Chapter Summary
In this chapter the results of six different examples have been presented, which have shown that the proposed
method is capable of finding adequate critical slip surfaces and safety factors. To determine the performance
of the proposed method, the results obtained with the genetic algorithm are compared with the critical slip
surfaces and safety factors acquired from D-Stability and PLAXIS. The proposed algorithm has proven to
find correct shapes of the critical slip surfaces, even in an undrained analysis. The influence of using Mat-
suoka and Nakai’s failure criterion is also examined in one example. This analysis has shown that applying
Matsuoka-Nakai’s criterion results in finding a higher safety factor. However, an associated flow rule is as-
sumed in the derivation of the application based on this failure criterion. This limitation will be discussed
in more detail in Chapter 6. As a final test the algorithm has been used to analyse a real dike profile, dike
Bergambacht. The proposed method found a critical slip surface very similar to the shape obtained using
Uplift-Van in D-Stability. However, the corresponding safety factor resulted to be much lower. This dike will
therefore be inspected in more detail in Chapter 6 as well.





5
Sensitivity Analysis

In the previous chapter the results are given of different slope profiles. These results found with the genetic
algorithm depend on several factors, such as the stress distribution, search grid density and input parameters
of the algorithm. These factors can also influence the computation time. In this chapter the sensitivity of
different factors are discussed. The ‘Simple Homogeneous Wet’ slope, as presented in Section 4.2 is used to
perform the sensitivity analysis.

5.1. Initial Population Size
The first step in the genetic algorithm is the generation of Minit individuals, which is the initial population. In
Figure 4.7 an example is shown of part of an initial population. This figure shows that the initial population
is very diverse, which also results in a wide variety of safety factors. Creating a big initial population has the
benefit that the chance of creating a slip surface which is similar to the critical slip surface increases. The
disadvantage of a big initial population is a longer computation time.

Figure 5.1 shows the computation time of different sizes of the initial population, followed by a few optimisa-
tion generations, whilst keeping the selection size M constant at ten. The big dots show the ending time of the
creation of an initial population, from which can be concluded that generating 100 individuals takes about
30 seconds. At the time that the initial population of size 500 is created (at around 160 seconds), the first pop-
ulation of size 100 has already created multiple generations resulting in a decrease in the safety factor. The
figure also shows that the lowest safety factor found in the initial population of size 500 is lower compared
to the best result in the population of size 100 (1.136 compared to 1.150). The algorithm fails to immediately
decrease this safety factor, but the cause of this poor performance can simply be ‘bad luck’. The algorithm
depends on a lot of randomisation, therefore it could occur that the crossover and mutation process are not
applied often enough because the crossover and/or mutation rate are not exceeded.

Figure 5.1: Sensitivity Initial Population Size
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The comparison between the initial population sizes should be made as unbiased as possible. Therefore
when creating the next population (e.g. of size 200), the previous population is copied and the remaining
number of individuals (100) is created and added to that previous population. Figure 5.1 shows that when
creating the population of size 200 and 300, no individual was found which gave a lower safety factor com-
pared to the best result of the first initial population. This can also be seen from the left side of Figure 5.2. In
this figure the most critical slip surface of the initial population is shown. It shows that the initial populations
of size 100, 200 and 300 give the same slip surface. The same holds for the initial population sizes of 400 and
500. The right figure gives the most critical slip surface after the generation of new populations, which were
created in 270 seconds. This figure shows that quickly after the generation of the initial population, the algo-
rithm is capable of converging the slip surfaces. It therefore indicates that the initial population size is rather
irrelevant when the algorithm is executed for enough iterations.

Figure 5.2: Slip Surfaces Comparing Sensitivity Initial Population Size

It is already mentioned that the final results of the genetic algorithm are very dependent on the randomisation
process. Therefore, this analysis in which the initial population size is varied, whilst keeping the selection
size constant, is performed multiple times. All results are shown Figure B.1 in Appendix B. These results are
in accordance with the statements given in this section. From these findings the optimal initial population
size Minit is set at 100. This ensures a short initial population computation time and allows for more time in
the actual optimisation process.

5.2. Selection Size
The next factor of interest in this sensitivity analysis is the selection size M . In Figure 4.7 the slip surfaces are
shown that got the best ranking in the initial population. The selection size is the amount of these slip sur-
faces which are used to create the offspring (the next population). Selecting very few slip surfaces can result
in a limited optimisation process, considering that not enough variation is present between the parents. The
genetic algorithm will then depend more on the mutation process instead of the crossover process to obtain
enough diversity in the offspring. On the other hand, selecting many slip surfaces increases the computation
time substantially.

From Figure 5.2 it was already concluded that after a couple of iterations, the solution of the genetic algo-
rithm tends to convergence. The selection size has a big influence on the time until the solution converges.
To consider the effect of the selection size on the computation time, multiple generations are created using
the exact same initial population, but with varying selection sizes. The results of these analyses are shown
in Figure 5.3. As expected, the safety factor decreases the fastest with the smallest selection size. However,
after the first couple of iterations it fails to find a better solution quickly, since not enough variation is present
anymore between the current solutions. The exact minimum number of sections which is required is not
explored. On the contrary, the results of the biggest selection size show that even in the latest iterations, the
algorithm is still able to improve.

This analysis is also performed multiple times and all results are shown in Figure B.2 in Appendix B. Pending
all these results, no clear conclusion can be given on the optimal selection size. Especially considering the
fact that all results tend to convergence after sufficient time. Only the smallest and biggest selection size are
excluded from being the optimal value. For this research selection size is set to 20.
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Figure 5.3: Sensitivity Selection Size

5.3. Number of Sections
The number of sections applied in the algorithm has no direct effect on the computation time, since the
number of sections is only relevant in the generation of the initial population. In the strength analysis of a
slip surface only the values of the nodes of the self-defined grid are considered which are close to the slip
surface, as discussed in Section 3.1.1. The number of sections does not influence the number of nodes which
are analysed per slip surface, only the total length of the slip surface affects this number. However, the density
of the self-defined grid has a big influence on the computation time, as will be discussed in Section 5.5.

The number of sections has an effect on the shape of the slip surface. This shape has some influence on the
performance of the algorithm, since it affects the mutation process. More sections will make the slip surface
smoother. However, an exaggerated amount of sections will also make the mutation process more restricted.
In Section 3.3.4 the mutation process is described, in which also the areas are shown in which a node can
be mutated. When the slip surface becomes smoother, the size of these areas will reduce, which makes the
mutation process less effective. In Figure 5.4 the safety factor is outlined against the number of generations
for four different values for the number of sections, namely: five, six, seven and eight. For every number of
sections the analysis is performed five times. These figures show that the slip surfaces with seven or eight
sections achieve a lower safety factor in the same number of generations.

Figure 5.4: Sensitivity Number of Section
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When increasing the number of sections to 12, the performance decreases again. This can be seen from
Figure 5.5, which is in accordance with the reasoning given in this section. For this research the number of
sections is set to seven.

Figure 5.5: Sensitivity Number of Section

5.4. Stress Analysis
The chosen stress-strain relationship can have an effect on the shape of the critical slip surface, as well as on
the critical safety factor. In this section the influence of the stress distribution as used in PLAXIS is analysed.
Results of the genetic algorithm are presented, obtained from a linear and nonlinear stress-strain relation-
ship. As stated before, for the linear stress analysis the linear elastic relationship is used in PLAXIS, whilst
for the nonlinear stress analysis the hardening soil model (Schanz et al. [65]) is adopted. Figure 5.6 shows the
critical slip surfaces determined from both analyses. The shape and location of the slip surfaces are quite sim-
ilar, moreover, the difference in the safety factors is also minimal. The nonlinear stress distribution creates a
critical slip surface which is only slightly wider. This indicates that there is little difference in the distribution
of stresses between both analyses, or that the differences are too small to have a significant influence in the
stability analysis. The analysis has been performed multiple times and the nonlinear analysis always gave a
higher safety factor, although the observed differences were approximately 3.3%. However, it should be noted
that in this example a very simple homogeneous slope is considered. To make a definite conclusion, the same
analysis should be performed on a more complex dike profile.

Figure 5.6: Sensitivity Stress Analysis
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5.5. Grid Density
In Section 3.1.1 the interpolation process is described which is performed in Python. The values obtained
from PLAXIS are interpolated to a regularly-spaced grid on a defined interval. Only the values on the nodes
of this self-defined regularly-spaced grid will be used in the algorithm and consequently the mesh settings
in PLAXIS have little influence on the outcome of the genetic algorithm. Instead, the interval size of the self-
defined regularly-spaced grid does have a great impact on the performance of the algorithm.

The results as presented in Chapter 4 and in this chapter are obtained with a grid interval of 0.5 meter. This
implies that the coordinates (vertices) of all the slip surfaces are rounded to half a meter. In this section
different values for the interval in the grid are examined: a course grid with an interval of one meter, a medium
grid with the interval of 0.5 meter and a fine grid with a 0.1 meter interval. The results are shown in Figure 5.7
and Table 5.1. The slip surfaces for all three densities are quite similar. The finest grid gives the lowest safety
factor after the same number of iterations, but the computation time increases significantly in case this finer
grid is applied. Overall, the interval of the grid does not heavily influence the results of the analysis in terms
of the critical safety factor, since these values do not differ too much.

Figure 5.7: Sensitivity Grid Interval

Table 5.1: Performance Sensitivity Grid Interval

Interval Safety Factor Difference [%] Computation Time [s]

1.0 1.165 5.43 138
0.5 1.159 4.88 246
0.1 1.105 2021

5.6. Chapter Summary
In this chapter a sensitivity analysis is performed on the stress distribution, search grid density and several
input parameters of the genetic algorithm. Firstly, the influence of the input parameters of the genetic algo-
rithm on the computation time are discussed. If the algorithm runs a great number of iterations, both the
initial population size and selection size have little influence on the resulting safety factor, since the solution
of the algorithm will convergence. Increasing the number of sections in the slip surface increases the smooth-
ness, but reduces the performance of the algorithm. The sensitivity of the chosen stress-strain relationship in
PLAXIS is also examined. For the example considered in this analysis, similar results were found with both the
linear and nonlinear stress-strain relationship. However, this result could be due to the simple slope profile.
Therefore a sensitivity study on the stress-strain relationship using a complex dike profile is recommended.
Lastly, it is found that a finer grid density gives a lower safety factor after the same number of iterations in
the genetic algorithm, compared to a coarser grid density. However, this lower safety factor is at a cost of an
enormous increase in the computation time.
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Discussion

In Chapter 4 the results of the different case studies are presented and the differences between the results of
various methods are already mentioned. Some striking results were found, which will be discussed in more
detail in this chapter. In the previous chapter the sensitivity of the proposed method is also already discussed,
but there are other uncertainties which have not been taken into account in that chapter. These uncertainties
will also be presented in this chapter.

6.1. Discussion Case Study Bergambacht
In Section 4.6 the results of dike Bergambacht have been presented. It is already pointed out that the safety
factor found with the proposed approach is much smaller than the values found in other reports (with other
methods). However, the shape of the slip surfaces coincide decently. In this section the results of this dike
will be examined further.

Figure 6.1: Critical Slip Surface GA Bergambacht

In Figure 6.1 the critical slip surface found with the genetic algorithm is shown as well as the slip surface ob-
tained from D-Stability. This figure shows that the search method performs well and finds a critical slip sur-
face with a shape that is expected. The slip surface found with D-Stability is also imported into the strength
analysis as presented in this report. Thus instead of searching for this shape, it is directly inspected. When-
ever the safety factor is calculated using the Modified Cam-Clay model expressions and the stresses from
PLAXIS, the safety factor of the slip surface imported from D-Stability is about 0.2 lower than the value given
by D-Stability using Uplift-Van (0.674 to 0.883).

To make a fair comparison between the results of the GA and D-Stability, the SHANSEP approach is imple-
mented in the genetic algorithm. The undrained shear strength can be determined with the SHANSEP pa-
rameters and the expression as given in Section 2.6.4. Using this definition for the undrained shear strength,
the safety factor is still defined as the ratio of the the total maximum available shear strength to the total
mobilised shear stress along a slip surface. The results of the analysis of dike Bergambacht with the genetic
algorithm using SHANSEP as well as the slip surface obtained from D-Stability are shown in Figure 6.2.
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Figure 6.2: Critical Slip Surface GA Bergambacht SHANSEP

Again, the safety factor is calculated for the slip surface of D-Stability using the safety factor definition of this
research, but this time using the expressions of the SHANSEP approach, which gives a value of 0.833. That is
only slightly smaller than 0.883 (from D-Stability). There are only two variables of the SHANSEP formulation
that can differ between the values from PLAXIS and D-Stability, which are the effective vertical stress σ′

y and
overconsolidation ratio OCR. In the following figures, the values of these two variables are shown for every
slice of the slip surface. The position of the slices can be seen in Figure 4.12.

Figure 6.3: Comparison Effective Vertical Stress

Figure 6.4: Comparison Overconsolidation Ratio
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These figures show that the differences in the effective vertical stress are quite small. For the first 12 slices,
PLAXIS finds a higher σ′

y whilst for the latter of the slip surface D-Stability gives a higher value. The over-
consolidation ratio only differs a lot at the last couple of slices, whilst on overall D-Stability gives a higher
OCR. Both the effective stress and OCR have a positive effect on the undrained shear strength. From these
figures it can therefore be expected that D-Stability gives a higher undrained shear strength when applying
SHANSEP, this is confirmed in Figure 6.5. This figure shows that for the greater part of the slip surface the val-
ues of D-Stability give a greater shear strength than PLAXIS, this demonstrates the higher safety factor found
in D-Stability.

Figure 6.5: Comparison SHANSEP Shear Strength

With these results it can be concluded that the proposed method performs very properly. The genetic algo-
rithm is able to locate the correct critical slip surface. If the same strength definition is used in both the GA
and D-Stability, then the safety factors only differ slightly. This small difference can be explained by the dif-
ferences between the stress analyses in PLAXIS and D-Stability. Form this analysis it can also be stated that
the Modified Cam-Clay model determines an undrained shear strength which is much lower compared to the
SHANSEP approach. This could be the effect of the inclusion of the shear induced pore pressures, which are
captured accurately in the Modified Cam-Clay model.

6.2. Modified Cam-Clay Model

For the undrained strength analysis, the Modified Cam-Clay model has been used to find an expression for
the undrained shear strength. The use of this model in a numerical analysis has some pitfalls. The most
relevant limitation of the MCC model, for this research, is the shape of the yield surface in the p − q plane.
The yield surface in this model has a form of an ellipse in the p −q plane, as shown in Figure 6.6. The size of
the yield surface is not fixed, but is characterised by the preconsolidation pressure. Thus for every particular
value of the consolidation pressure, a corresponding ellipse exists. The ‘dry side’ of the ellipse is associated
with soil softening, which is also discussed in Section 2.6.3. In this region the stress paths cross the critical
state line in the p −q plane before reaching the failure surface, thus before plastic yielding occurs. Note that
this crossing can only be observed when the yield surface is shown in a p −q plane. The critical state line is
actually a line in the q −p − v plane. If the yield surface is extended to the q −p − v plane, this crossing will
not be detected. For soils which experience softening behaviour, the Modified Cam-Clay model can allow for
unrealistically large shear stresses. Therefore this model should not be used to analyse heavily overconsoli-
dated clays.
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Figure 6.6: Yield Surface Modified Cam-Clay model (Brinkgreve et al. [7])

6.3. Matsuoka-Nakai Failure Criterion
One of the advantages of the proposed method is the possibility to change the definition of the maximum
shear strength in the safety factor. To make use of this potential, another failure criterion was implemented
besides Coulomb, namely Matsuoka-Nakai. The use of this failure criterion has to benefit that the influence
of the intermediate principal stress is taken into account when determining the shear strength. In Section
4.3 the nonhomogenous dike profile is also analysed using Matsuoka-Nakai’s failure criterion. This analysis
showed that using this criterion instead of Coulomb’s criterion results in finding a higher safety factor. This
result could be expected from the approach described in Section 2.6.2, since literature has found that includ-
ing the intermediate principal stress can result in a higher peak strength. However, one big remark should
be made on the application of this failure criterion as well as on the description given in Section 2.6.2. The
approach is derived under the assumption of an associated flow rule, meaning that the yield surface is equal
to the plastic potential (Ψ = φ). This can result in an overestimation of the shear strength and it is therefore
recommended to include the effect of dilatancy in a further study.

6.4. Computation Time
Table 4.1 has shown that the computing time of the genetic algorithm is quite long compared to both LEM
and FEM. However, the genetic algorithm is written in Python, which is an interpreted language. Computer
languages are classified as high or low level, referring to how close they are to directly speaking with the
computer in bits. A language which is closer to human communication and syntax is higher level. Python
is designed to be more accessible for usage than most languages, making it a higher level than for example
C or C++, which are compiled languages. The LEM and FEM programs which are used in this research are
written in such a compiled language. A compiled language is the the lowest level of interaction with the
computer such that it can directly be performed by the CPU. An interpreted code takes some extra steps of
interpretation before it can be used by the computer. Therefore naturally an interpreted code is slower than
a compiled code. Depending on the number of computations, a compiled language can outperform Python
enormously. The results as given in Table 4.1 show a long computing time for the genetic algorithm, however,
implementing this algorithm in a compiled language can decrease this computation time such that it can
compete with the other compiled programs.

6.5. Spatial Variability
The stress analysis and the search for the critical slip surface in the genetic algorithm are both performed in
a two-dimensional analysis. A two-dimensional analysis cannot take the variation of the soil characteristics
in the slope perpendicular to the slip surface into account. Lim et al. [44] have indicated that their proposed
three-dimension finite element analysis gave safety factors which were 10% lower compared to traditional
two-dimensional limit equilibrium methods, indicating that the two-dimensional analysis can give unsafe
results. The proposed method in this report can be extended to a three-dimensional analysis. PLAXIS is
already able to perform a 3D stress analysis and in the genetic algorithm an extra variable can be included.
But the determination of the safety factor should be done cautiously, extra attention should then be paid to
the direction of the shear stresses as well.
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The soil characteristics do not only have to vary perpendicular to the slip surface, but variation can also
already be present in the flat slope which is considered right now. Some of the examples in Chapter 4 contain
different soils, but within one soil layer, the parameters are assumed to be homogeneous for the complete
layer. The effect of spatial variability in the soils on a two-dimensional slope stability analysis should also be
considered.

6.6. Chapter Summary
In this chapter a closer look is taken on the case study Bergambacht. The result as given in Section 4.6
finds a lower safety factor than both D-Stability and PLAXIS, whilst the shape of the critical slip surface co-
incides quite well. Therefore, instead of using the Modified Cam-Clay model to determine the undrained
shear strength, SHANSEP has been implemented as well. If the SHANSEP approach is used to determine
the undrained shear strength, then the resulting safety factor is closer to the values obtained by other meth-
ods. The safety factor is slightly lower than the value found by D-Stability, this is a result of the differences
in the stress analyses of both methods. This discussion has shown that the genetic algorithm is performing
well, but that the Modified Cam-Clay model estimates a much lower undrained shear strength. The cause of
the lower shear strength is the inclusion of the shear induced pore pressures. In this chapter it is also high-
lighted that the Modified Cam-Clay model is unable to analyse (very) overconsolidated clays. Therefore, if
these types of soils are to be analysed, another soil model should be implemented. One advantage of the pro-
posed method is the flexibility of the safety factor, it allows for different definitions of the maximum available
shear strength. Example 3 is therefore also analysed with the failure criterion of Matsuoka and Nakai, which
shows to give a higher estimation for the maximum available shear strength. However, the derivation of the
application of this criterion in this report assumes an associated flow rule and it is therefore recommended
to further investigate this criterion with a non-associated flow rule. Moreover, an explanation is given for
the long computation time of the genetic algorithm compared to PLAXIS and D-Stability. The algorithm is
written in Python, which is an interpreted language, whilst the FEM and LEM programs are written in a com-
piled language, which are by definition faster. Lastly, it is recommended to also include spatial variability in a
further study.
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Conclusion and Recommendations

The conclusions of this research are presented in this chapter. Firstly, the main findings of this research are
stated. Secondly, some limitations of the models used in this research are mentioned. Thereafter, several
recommendations are given for further research on this topic. At last, the chapter is finalised by evaluating
the research objective which is stated in Section 1.5.

7.1. Conclusions
From the literature study it can be concluded that both the limit equilibrium methods and the finite element
method have limitations regarding the analysis of slope stability. The biggest drawback of the FEM is the use
of the shear strength reduction method to determine the safety factor. This method does not represent the
behaviour of the soil, but simply decreases the soil strength parameters φ and c until the dike reaches failure.
Consequently, the program does not make use of the expressions for the (undrained) shear strength from
advanced soil models to determine the strength of the slip surface. Another limitation of the SSRM is that
it only gives one critical slip surface, other slip surfaces of interest cannot be examined. Hence Deltares has
initiated a study which investigates the possibility of combining both methods. The main goal of this research
is to further investigate this method and verify its performance. Therefore the main research question for this
study is formulated as:

How can a new approach use both LEM and FEM concepts to analyse the stability of slopes?

The main research question is split up in sub-questions that should be answered to reach the research goal.
Answering these questions will be part of the conclusion.

How should a stress analysis be performed by a finite element approach in PLAXIS?
The finite element program PLAXIS is mainly used to obtain the stresses in the soil of the dike of interest. The
analysis is performed using a linear elastic stress-strain relationship. Therefore no use has to be made of the
available soil models. The shear strength reduction method present in PLAXIS is also used to obtain a refer-
ence safety factor. Since the optimisation method solely uses the obtained stresses from the finite element
method, other programs than PLAXIS should be suitable for the proposed analysis method as well. Depend-
ing on the available constitutive models in the finite element program, the proposed method is also able to
work with every other chosen stress-strain relationship.

How can the critical slip surface be determined using the stress analysis obtained from the FEM?
The proposed method consists of mainly three stages. First, the stress analysis is performed in a finite ele-
ment program. Secondly, the definition of the safety factor, including an expression for the maximum shear
strength, is formalised. At last, the optimisation method searches for the critical slip surface.

There are multiple optimisation methods which can be applied to find the most critical slip surface in the
stress field obtained from the finite element analysis. In this research a genetic algorithm is proposed. The
algorithm needs a definition for the safety factor to determine the score of a slip surface: a slip surface with
a low safety factor scores well. A strength type safety factor is applied, which compares the total resisting
strength along the slip surface with the total mobilised shear stress. This type of safety factor expression
allows for the user to use their preferred shear strength definition. In this research the Coulomb criterion
and Modified Cam-Clay model are used to express the maximum available shear strength in a drained and
undrained soil respectively.
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The possibility of importing the obtained stress field from the finite element analysis into a limit equilib-
rium method program is not explored. However, it is possible to apply safety factor definitions described by
Bishop, Morgenstern-Price and of other limit equilibrium methods, in the proposed method. The algorithm
will use this definition of the safety factor to score the slip surfaces and the optimisation will be carried out in
the same manner as described in Section 3.3. This again shows the possibilities of the proposed method. It is
capable of handling different safety factor definitions as preferred by the user.

How is the performance of the new method compared to other, more classical, methods in analysing the
slope stability?
From the different examples considered in Chapter 4 it can be concluded that the proposed method is capa-
ble of finding a reasonable critical slip surface and corresponding safety factor. The biggest drawback of the
method is the long computation time.

The safety factors found with the proposed method are very dependent on the number of generations created
in the optimisation process. When the genetic algorithm is allowed to run for many iterations, it is able to find
more critical safety factors than the FEM analysis as well as the methods proposed in literature. However, the
results shown Table 4.1 do not support this statement, since the algorithm is stopped prematurely. Another
reason for the slightly higher safety factors is also discussed in Section 4.2. The genetic algorithm allows for
a slip surface to contain sections with a negative shear stress. The safety factor will naturally be higher when
these negative sections are present, due to the definition of the safety factor.

The sensitivity analysis of the proposed method has also shown that the effect of the used stress distribution
in the finite element stress analysis has little influence on the final critical slip surface. It is shown that a non-
linear stress strain relationship gave a slightly higher safety factor. However, this result could be due to the
simple slope profile. The interval of the self-defined grid has shown to have a great effect on the computation
time, but little influence on the shape of the critical slip surface as well as the corresponding safety factor. The
finest grid (with the smallest interval) gave the most critical value for the safety factor, but its computation
time is about eight times longer than for the medium density.

The limitations of the shear strength reduction method is one of the greater motivations for the development
of the proposed research. This SSRM in PLAXIS is used to compute the reference safety factor. In Section
1.4 the drawbacks of this method are already discussed and the proposed method surpasses the SSRM in
multiple aspects. One disadvantage of the SSRM is that an irrelevant failure surface can be given. In the
proposed method the user is asked to give boundaries for the entry point and exit point of the slip surface,
therefore the algorithm will always give a relevant critical slip surface.

7.2. Limitations of the Method
The proposed method which has been presented in this research has some limitations, these are stated in
this section.

Limitations on soils and strength definitions. In this research only a select number of constitutive models
is used to determine the shear strength of the soil. The Modified Cam-Clay model is used to determine the
maximum undrained shear strength of an impermeable soil. In Chapter 6 it is already mentioned that this
is not a correct expression for the shear strength of heavily overconsolidated clays. To apply the proposed
method on these type of soils, a different constitutive model should be implemented, which is capable of
modelling the behaviour of these heavily overconsolidated clays.

Limitations on mechanisms in dike profile. The proposed method has only been applied to a few dike pro-
files. In only one case a profile is examined which consisted of many different soil layers. This example
showed that the proposed method is able to represent the strength of these different layers. However, other
mechanisms which could occur in dike profiles, such as uplift, have not been considered yet. Therefore no
conclusion can yet be given on the performance of the proposed method when the dike has sections where
the effective stresses are reduced to zero.
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7.3. Recommendations for Further Research
During this study some recommendations have been found for further research, these are addressed in this
section. The limitations as stated above can also be seen as recommendations to improve the study. In Chap-
ter 6 some uncertainties of the proposed method have been discussed, including some recommendations.
These will be restated in this section.

Genetic algorithm on sections. The genetic algorithm as proposed in this research optimises the slip sur-
face as a whole. The algorithm does not allow for increasing the number of sections during the optimisation
process. Literature has presented different optimisation processes which do not optimise the complete slip
surface, but score every section separately. Sections which get a low score are taken outside the search space
of the search algorithm, such that it will never be a part of a slip surface anymore. This can be a more efficient
way of employing the genetic algorithm, since the search space is reduced during the optimisation process.

Improve crossover and mutation process. The computation time of the proposed method is quite long. A
substantial part of this computation time is a result of the crossover and mutation process. These processes
can be improved in multiple manners. First of all, in the current implementation, the best solution is imme-
diately put into a pair to create offspring with the crossover process. This can result in a completely different
slip surface, which gives a higher safety factor and scores lower. This way the ‘best’ solution will be lost. An
alternative can be to always keep the best solution as it is in the next generation, or immediately apply mu-
tation on it, instead of using it as a parent in the crossover process. Secondly, in the proposed method only
uniform mutation is applied. There are plenty more mutation processes possible, but the performance of
these alternatives have not been examined.

Interpolation process. The results of the stress analysis obtained from PLAXIS are interpolated to a self-
defined grid in Python as described in Section 3.1.1. From that point on only the values present on these
interpolation points are considered in the algorithm. Another possibility is to allow the algorithm to use all
positions in the dike profile to create the slip surface and then interpolate the values from the finite element
analysis to find the stresses along the slip surface. This might result in a smaller accuracy loss.

Include non-associated flow rule. The failure criteria as used in this research should be extended to a non-
associated flow rule, in which dilatancy is accurately modelled.

Include spatial variability. The proposed method could be extended to a 3D analysis in which the variability
of the soil parameters inside one dike layer can be included as well.

7.4. Conclusion on the Research Objective
In Section 1.5 some hypotheses are formulated concerning the research which is carried out in this study. The
conclusions on these hypotheses are stated below.

The new approach is able to give a reasonable factor of safety in accordance with classical methods.
The different examples as presented in Chapter 4 have shown that the new approach is capable in finding
safety factors which are in accordance with the results of other slope stability analysis methods, including the
classical LEM and FEM.

The new approach gives a better representation of the soil mechanics and is able to use non-linear as-
sumptions to determine the (critical) soil strength and slip surface.
The stress analysis is performed in a finite element analysis, which gives a good representation of the be-
haviour of the soil. The expression of the safety factor is also straightforward, which only uses the occurring
mobilised shear stresses (obtained from the finite element analysis) and a definition for the maximum avail-
able shear strength from available constitutive models. The proposed method only applies one kinematical
constraint to produce the slip surfaces. It forces the slip surfaces to be upward concave. No other assump-
tions or restrictions are applied on the shape of the slip surface.
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The new approach can be applied to different (complex) geometries to capture different loading condi-
tions of embankments.
The results of the case studies as presented in Chapter 4 have shown that the proposed genetic algorithm
is able to handle different soil conditions and shear strength definitions. The results of Example 4 indicate
that the method is capable of locating an extremely weak layer and Example 5 shows the proper performance
of analysing an undrained soil. The result of the case study of dike Bergambacht shows that the proposed
method is capable of analysing a real and complex dike.

From these conclusions it can be determined that the research objective has been reached, which is stated as:

Improve the analysis of slope stability by developing a new method which combines concepts of both the
Limit Equilibrium Method and Finite Element Method.

The method shows promising results, but its performance in even more complicated cases, such as the oc-
currence of uplift or the presence of a sheet pile, should still be demonstrated. And more use could be made
of its potential to incorporate all constitutive models.
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A
Soil Models

A.1. Mohr-Coulomb Model
To model the drained shear strength of soils, the Mohr-Coulomb model can be used. Introduced by Otto
Mohr in 1882 (Mohr [48]), Mohr’s circle illustrates principal stresses and stress transformations via a graphi-
cal format as presented in Figure A.1.

The two principal stresses are σ1 and σ3. In case that the inspected plane is aligned with the principal direc-
tion, the normal stresses are equal to the principal stresses. Each point on Mohr’s circle represents the normal
and shear stress on a certain plane. All planes together form the circle, since as the inspected plane is rotated
away from the principal directions, the stress points traverse the circle. The ratio of shear stress to normal
stress varies along the circle, as this ratio is different for different planes. For the derivation of Mohr’s circle
the reader is referred to Verruijt [73].

Figure A.1: Mohr’s Circle (Verruijt [73])

Charles-Augustin de Coulomb used the analogy of a sliding block to propose a relationship of the maximum
possible shear stress in a soil body, according to Heyman and Coulomb [26]. This criterion can be written as

τ f = c ′+σ′ tanφ′, (A.1)

where c ′ is the cohesion, σ′ the effective stress and φ the angle of shearing resistance.

For a certain plane in Mohr’s circle, the criterion in Equation A.1 can be met. In Figure A.2 these critical planes
are indicated by C and D. On all other planes the shear stress remains below the critical value. The ratio
between τ/σ is maximal when Mohr’s circle touches the Coulomb envelope, this is where failure will start to
occur. This is called the Mohr-Coulomb failure criterion. For this criterion the mathematical formulation is
given as:

f = 1

2

∣∣σ′
1 −σ′

3

∣∣+ 1

2

(
σ′

1 +σ′
3

)
sin(φ)− c cos(φ) (A.2)

In case a third plasticity parameter, the dilatancy angle Ψ, is included, the plastic potential function is given
as:

g = 1

2

∣∣σ′
1 −σ′

3

∣∣+ 1

2

(
σ′

1 +σ′
3

)
sin(Ψ) (A.3)
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Figure A.2: Mohr Coulomb (Verruijt [73])

The Mohr-Coulomb model is an elastic-perfectly plastic model as shown in Figure A.3. The linear elastic part
is based on Hooke’s law of isotropic elasticity, whilst the perfectly plastic part is based on the Mohr-Coulomb
failure criterion. When implementing the Mohr-Coulomb model, attention has to be given to the transition
between the yield surfaces as shown in Figure A.4. The yield surface is shaped as a hexagon which consists
of six contours. In PLAXIS the exact form of the model is implemented, using a sharp transition between the
yield surfaces. The parameters required by the Mohr-Coulomb model are listed in Table A.1.

Figure A.3: Elastic-perfectly plastic assumption of Mohr-Coulomb model (Prasad and Sai [56])

Figure A.4: Failure Surfaces in the Deviatoric Plane (Georgiadis et al. [22])
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Table A.1: Model Parameters Mohr-Coulomb Model

c ′ (effective) cohesion [kN /m2]
φ′ (effective) internal friction angle [°]
Ψ Dilatancy angle [°]
E Elasticity modulus [kN /m2]
ν Poisson’s ratio [-]
γ Volumetric weight of the soil [kN /m2]

The dilation angle Ψ controls the amount of strain developed during shearing. If Ψ=φ, the plasticity flow is
called associated, in case Ψ 6=φ the plasticity flow is called non-associated. Ψ is maximal when reaching the
peak strength and decreases till the critical state strength.

A summary on the main characteristics of the Mohr-Coulomb model are given in A.2.

Table A.2: Advantages and Limitations Mohr-Coulomb Model

Advantages Limitations

Simple and clear Isotropic and homogeneous behaviour
Limited number and well defined parameters Until failure linear elastic behaviour
Dilatancy can be included No stress-dependent stiffness
Good representation of drained failure behaviour Dilatancy continues forever (no critical state)

No distinction between primary loading, unload-
ing or reloading
Undrained behaviour not always realistic
Not able to model shear induced pore pressure
No time-dependency (creep)
No anisotropy

A.2. Modified Cam-Clay (MCC) Model
Before the maximum stress of a soil has been reached, some irreversible straining has occurred in the soil.
Thus, plastic deformations already occr in the early stages of loading. To capture this behaviour in a con-
stitutive model, the typical elastic-perfectly plastic model such as Mohr-Coulomb does not suffice anymore.
To represent this hardening behaviour of soil, a constitutive model which utilizes a hardening law after ini-
tial yielding is needed. Therefore researches have looked into the possibility of modelling soil as a strain
hardening material. Roscoe et al. [60] use the strain hardening theory of plasticity to formulate a complete
stress-strain model for normally or lightly over-consolidated clay, known as the Cam-Clay model, which is
formulated by Schofield and Wroth [67]. A modified version of the Cam-Clay model is suggested by Roscoe
and Burland [59] and this modified Cam-Clay model is extended to a general three-dimensional stress state.
In this section the modified Cam-Clay model will be described, where from now on this model will be referred
to as just the Cam-Clay model. The description of this model is based on the work of Wood [74]. This model
is an elastic-plastic strain hardening model that is based on the critical state theory and the assumption that
there is a logarithmic relationship between the mean effective stress p ′ and specific volume v , where v = 1+e
in which e is the void ratio.

To specify an elastic-plastic model, the following properties have to be defined:

1. Elastic properties: the recoverable deformation
2. Yield surface: occurrence of plastic deformation
3. Plastic potential: the mechanism of plastic deformations
4. Hardening rule: the magnitudes of the plastic deformations and the change in size of the yield surface
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This model assumes that recoverable changes in volume are accompanied by a change in the mean effective
stress p ′ following the expression:

δεe
p = κ

δp ′

v p ′ . (A.4)

This expression implies that in the compression plane a linear relation can be found between the specific
volume v and logarithm of p ′ for elastic unloading-reloading of the soil. The recoverable shear strains are
assumed to follow the changes in deviator stress q :

δεe
q = δq

3G ′ , (A.5)

with a constant shear modulus G ′. Figure A.5 shows the yield locus of the Cam Clay model in the p ′ : q plane
and the compression plane p ′ : v . This yield locus is given by the following equation:

p ′

p ′
0

= M 2

M 2 +η2 (A.6)

where η= q/p ′. The yield locus can also be rewritten as:

f = q2 −M 2[p ′(p ′
0 −p ′)] = 0 (A.7)

In this model it is assumed that the soil conforms the normality condition, therefore the plastic potentials are
given in the same for as the yield function: g = f . The plastic strain increments are given as:

δεP
p

δε
p
q

= M 2 −η2

2η
(A.8)

It is assumed that the yield loci expand at constant shape, thus all have the form as given by Equation A.7,
where the size is controlled by the stress p ′

0. The expansion of the yield loci is linked with the normal compres-
sion of the soil: a linear relationship is assumed between the specific volume v and logarithm of p ′

0 during
isotropic normal compression of the soil as can be seen in Figure A.5,

v = N −λ ln p ′
0 (A.9)

where N is a soil constant which specifies the position of the normal compression line in the compression
plane as shown in Figure A.5. It is the specific volume obtained by unloading the current configuration (p, v)
to the initial pressure (p0). The plastic volumetric strains can be found with:

δεP
p = [(λ−κ)/v]

δp ′
0

p ′
0

(A.10)

and the hardening rule is given as:

δp ′
0

δεP
p
= v p ′

0

λ−κ
δp ′

0

δεP
q

= 0 (A.11)
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Figure A.5: Elliptical Yield Locus for Cam-Clay Model (Wood [74])

In case the soil starts to yield in an undrained test, the volume change of the soil will be equal to zero. This
means that the elastic and plastic contributions are exactly equal and opposite such that the total volumetric
strain is zero. In an undrained test the mean effective stress reduces due to the build up of pore pressure,
hence elastic volumetric expansion occurs. It is necessary for the yield curve to expand and produce plastic
volumetric compression to balance the elastic expansion. (It will be showed later on that the reverse situation
can also occur in an undrained situation where plastic volumetric expansion occurs, balanced by elastic vol-
umetric compression. This however, does not oppose the statement that the total volumetric strain is equal
to zero.) The condition that the summation of these are equal to zero is given as

δεe
p +δεP

p = 0 → κ
δp ′

v p ′ =−(λ−κ)
δp ′

0

v p ′
0

(A.12)

which forces a link between the mean effective stress p ′ and changes in the size of the yield locus, given by
p ′

0. The expression can be rewritten as:

p ′
i

p ′ =
(

M 2 +η2

M 2 +η2
i

)Λ
(A.13)

where Λ= (λ−κ)/λ. Equation A.13 gives the shape of the undrained effective stress path in the p ′ : q plane,
as shown in Figure A.6.

Figure A.6: Equation A.13 (Wood [74])

In Figure A.7 three different tests are shown: an initially normally compressed, lightly overconsolidated and
highly consolidated sample. Each point lies on a new yield locus.
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For both the normally consolidated and lighly overconsolidated case holds that η < M . Yielding takes place
with a strain increment vector directed to the right, which implies that plastic volumetric compression is oc-
curring. The soil wants to harden plastically, and therefore the current yield locus has to expand. To balance
the plastic compression, the mean effective stress must decrease (positive pore pressures) such that elastic
expansion occurs. This is called the wet side. The difference between these two cases is that the lightly over-
consolidated case begins with an elastic phase AB until the stress state reaches the initial yield locus.

For the heavily overconsolidated sample η > M , yielding takes place with plastic strain increment vector di-
rected to the left, which implies that plastic volumetric expansion is occurring. The soil wants to soften plas-
tically, and therefore the yield locus has to shrink. To balance the plastic expansion, the mean effective stress
must increase (negative pore pressures) such that elastic compression occurs. This is called the dry side.

Figure A.7: Stress Increments in Undrained Analysis (Wood [74])

Critical States
In the normally consolidated case in Figure A.7, the direction of the plastic strain increment is plotted. The
ratio plastic shear strain increment to plastic volumetric strain increment can thus be determined, this ratio
increases when the normal to the yield locus becomes more parallel to the q axis. At point F this ratio be-
comes infinite, where unlimited plastic shear strains can develop without any extra plastic volumetric strain
or effective stresses. Since no plastic volumetric strain occurs, the yield locus remains the same size. This
condition of perfect plasticity is the critical state. In Figure A.7 a line is drawn which joins the tops of the yield
loci at η= M , this is called the critical state line (csl). In the framework of critical state, a distinction is made
between the shear strength of normally consolidated and overconsolidated soils. The ultimate shear strength
is defined at the critical state. Literature has shown that using the shear strength at critical state is suitable for
the calculation of slope stability Van Duinen [72].

Undrained Shear Strength in Cam-Clay Framework
Figure A.8 shows Mohr’s circles. If a soil sample is undrained, then this circle of effective stress at failure (point
E) can be represented by infinite number of these total stress circles. The ultimate value of deviator stress q f

is the diameter of the Mohr circle of effective or total stress, as shown in this figure, and is twice the undrained
shear strength su .

Figure A.8: Mohr’s Circle of Total and Effective Stress (Wood [74])

A soil with a specific volume v (as shown in Figure A.9) will end up on the critical state line at the mean
effective stress p ′

f when tested in undrained triaxial compression. The expression for this mean effective
stress is:

p ′
f = exp

(
Γ− v

λ

)
(A.14)
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where, Γ= N − (λ−κ) ln2, which is the location of the critical state line in the compression plane as shown in
Figure A.10. With the following expressions for q f and cu :

q f = M p ′
f su = q f

2
(A.15)

the undrained shear strength is given as:

su = q f

2
=

M p ′
f

2
= M

2
exp

(
Γ− v

λ

)
. (A.16)

Figure A.9: Effective Stress Plane and Compression Plane (Wood [74])

This undrained shear strength can be linked with consolidation history. In Figure A.10 it is shown that the
normal compression line and critical state line are parallel in the compression plane. Expressions for the
normal compression line and unloading-reloading line are given by Equations ??, ?? respectively. The critical
state line can be written as:

v = Γ−λ ln p ′ (A.17)

Figure A.10: Normal compression line, unloading-reloading line and critical state line(Wood [74])

The volume separation between the normal compression and critical state lines is vλ−Γ. This separation can
also be expressed in terms of pressures. The pressure ratio r is an extra soil parameter and defined as:

r = exp

(
vλ−Γ
λ−κ

)
(A.18)

Again, having a look at Figure A.9, the specific volume of the sample at point I is given by:

vi = vλ−λp ′
0 +κ lnnp , (A.19)
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where np is the isotropic overconsolidation ratio. Using Equation A.16, the undrained shear strength at point
F is on the critical state line is:

su = M

2
exp

[
Γ− vλ
λ

+ ln p ′
0 −

(κ
λ

)
lnnp

]
, (A.20)

which can be rewritten to:

su

pi
= M

2

(np

r

)Λ
, (A.21)

where

Λ= λ−κ
λ

(A.22)

In terms of vertical effective stress, the undrained shear strength can be expressed as:

su/σ′
vi

(su/σ′
vi )nc

= n

np
nΛp (A.23)

In Table A.1 all symbols are given for the Cam-Clay Model. The model however only uses three parameters
λ,κ and M .

Table A.3: Parameters Modified Cam-Clay

λ isotropic logarithmic compression index [-]
κ swelling index [-]

M friction constant M = 6sinφ′
3−sinφ′ [-]

e initial void ratio [-]

p ′ mean stress p ′ = σ′
1+σ′

2+σ′
3

3 [kN /m2]
p ′

f mean effective stress at critical state line [kN /m2]

p ′
0 mean effective stress during isotropic normal compression [kN /m2]

p ′
i initial mean effective stress [kN /m2]

q deviator stress q =
(

(σ′
2−σ′

3)2+(σ′
3−σ′

1)2+(σ′
1−σ′

2)2

2

)
[kN /m2]

q f ultimate value of deviator stress [kN /m2]

n overconsolidation ratio n = σ′
vmax
σ′

v
[-]

np isotropic overconsolidation ratio np = p ′
max
p ′ or

p ′
0

p ′
i

[-]

σ′
0 pre-consolidation pressure/initial vertical stress [kN /m2]

N location of isotropic normal compression line in v : ln p ′ plane [-]

r pressure ratio r = p ′
0

p ′
cs
= exp

(
vλ−Λ
λ−κ

)
[-]

The main advantages and limitations of the modified Cam Clay model are summarised in Table A.4.

Table A.4: Advantages and Limitations Modified Cam-Clay Model

Advantages Limitations

Takes loading history and stress(path)-dependent
stiffness differences into account

Less suitable for overconsolidated clay and in cer-
tain unloading stress paths; not suitable for sand

Reasonable model for primary loading of normally
consolidated clays and soft soils, which means it is

Critical state failure contour is ‘only’ Drucker-
Prager (but can easily be adapted)

capable of modelling shear induced pore pressures Inaccurate horizontal/vertical stress ratio in 1D
compression
No secondary compression (creep)
No anisotropy
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A.2.1. Hardening Soil Model
Schanz et al. [65] have introduced a new constitutive model, the Hardening Soil Model, which is formulated
in the framework of classical theory of plasticity. It is an advanced model for simulating the behaviour of
different soil types, both for soft and stiff soils. The formulation of the Hardening Soil Model is based on the
assumption of a hyperbolic relation between the vertical strain ε1 and the deviatoric stress q . This relation-
ship is shown in Figure A.11.

Figure A.11: Hyperbolic Stress-Strain Relation in Primary Loading for a Standard Drained Triaxial Test (Schanz et al. [65])

Stiffness for Primary Loading
The stiffness of soil decreases when subjected to primary deviatoric loading. At the same time plastic strains
develop in the soil which are irreversible. In case of a drained triaxial test, the relationship between the axial
strain ε1 and the deviatoric stress q can be approximated by a hyperbola (Schanz et al. [65]). Standard drained
triaxial tests give yield curves given by the following equation:

ε1 = qa

2E50

(σ1 −σ3)

qa − (σ1 −σ3)
for q < q f , (A.24)

q f is the ultimate deviatoric stress and qa the asymptotic value of the shear strength. These are defined as:

q f =
6sinφp

3− sinφp
(p + c cotφp ) qa = q f

R f
. (A.25)

In case the observed deviatoric stress q equals q f , the failure criterion is met and perfectly plastic yielding
occurs.

From Figure A.11 it can be seen that three different stiffness moduli are plotted, these coincide with different
loading conditions. For primary loading the stress strain behaviour is highly nonlinear. The parameter E50 is
used which is the confining stress dependent stiffness modules for primary loading. The expression for E50 is
given as follows:

E50 = E r e f
50

(
σ3 + c cotφp

σr e f + c cotφp

)m

. (A.26)

where E r e f
50 is the reference stiffness modulus corresponding to the reference stress pr e f . It can be determined

from a triaxial stress-strain-curve for a mobilisation of 50% of the maximum shear strength q f .
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Stiffness for Un-/Reloadig
For the unloading and reloading case, the stiffness modulus is formulated as:

Eur = E r e f
ur

(
σ3 + c cotφp

σr e f + c cotφp

)m

. (A.27)

where E r e f
ur is the reference Young’s modulus for unloading and reloading, corresponding to the reference

pressureσr e f . The elastic components of the strain are calculated using this expression for the stiffness mod-
ulus:

εe
1 =

q

Eur
, εe

2 = εe
3 = νur

q

Eur
(A.28)

The expression for the elastic strains are the strains that develop during deviatoric loading, fully elastic vol-
ume changes are not included in this equation.

Yield Surface
The yield function in the Hardening Soil Model is given as:

f12 = qa

E50

(σ1 −σ2)

qa − (σ1 −σ2)
− 2(σ1 −σ2)

Eur
−γp (A.29)

f13 = qa

E50

(σ1 −σ3)

qa − (σ1 −σ3)
− 2(σ1 −σ3)

Eur
−γp (A.30)

where the plastic shear strain γp is given as:

γp = ε
p
1 −εp

2 −εp
3 = 2εp

1 −εp
v ≈ 2εp

1 . (A.31)

This plastic shear strain γp is used as the relevant parameter for frictional hardening. Equation A.31 shows
that the definition for the plastic shear strain is actually an approximation, since εp

v is not taken into account.
The plastic volumetric strains εp

v will never be exactly zero. However, for hard soils plastic volume changes
ten to be small when compared with the axial strain, making the approximation appropriate (Schanz et al.
[65]).

Flow Rule
Just like other plasticity models, the Hardening-Soil model involves a relationship between the rates of plastic
strain: between ε̇

p
v and γ̇p . This flow rule has the form:

ε̇
p
v = sinΨm γ̇p , (A.32)

where the mobilised dilatancy angle Ψm is given as:

sinΨm = sinφm − sinφcv

1− sinφm sinφcv
, (A.33)

where φcv is the critical state friction angle and φm the mobilised friction angle:

sinφm = σ1 −σ3

σ1 +σ3 −2c cotφp
(A.34)

These equations correspond to the stress-dilatancy theory as described by Rowe [61]. This theory states that
when the stress ratios is small (φm < φcv ), the material contracts. Whereas dilatancy occurs for high stress
ratios (φm >φcv ). When the soil fails, the mobilised friction angle equals the failure angle, such that Equation
A.33 can be rewritten to:

sinΨcv = sinφp − sinΨp

1− sinφp sinΨp
. (A.35)

Thus the critical state angle can be computed from the failure angels φp and Ψp . This flow rule is equivalent
to the definition of the plastic potential functions, given as:

g12 = (σ1 −σ2)/2− (σ1 +σ2)/2 · sinΨm (A.36)

g13 = (σ1 −σ3)/2− (σ1 +σ3)/2 · sinΨm (A.37)
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Cap Yield Surface

The stiffness moduli E r e f
50 and E r e f

ur are parameters that control the shear yield surfaces. These shear hard-
ening surfaces, as shown in Figure A.12 do not explain the plastic volume strain that is measured in isotropic
compression. A second type of yield surface is introduced, which is called the cap type yield surface. These
cap yield surfaces are also shown in Figure A.12 for soil with no cohesion. From this figure it can be seen that
the cap yield surface is needed to close of the region in the direction of the p-axis.

Earlier it has already been mentioned that E r e f
50 largely controls the magnitude of the plastic strains, which are

again associated with the shear yield surface. Likewise, the oedometer modulus E r e f
oed controls the magnitude

of the plastic strains that originate from the cap yield surface and is formulated as follows:

Eoed = E r e f
oed

(
σ3 + c cotφp

σr e f + c cotφp

)m

(A.38)

The cap yield surface is given as:

fc = q̃2

M 2 + (p +a)2 − (pc +a)2 (A.39)

where a = c cotφ, p =σ1 +σ2 +σ3 and

q̃ =σ1 + (α−1)σ2 −ασ3, with α= 3sinφ

3− sinφ
(A.40)

An associated flow rule is used for yielding on the cap surface, such that the plastic potential gc is found as
gc = fc . In addition to the parameters σr e f and m, an extra model parameter M is added. However, there
is a relationship between K NC

0 and M , such that it can be used as an input parameter that determines the
magnitude of M .

For further derivation of the Hardening Soil model, the reader is referred to Schanz et al. [65].

Figure A.12: Shear and cap yield surfaces in the Hardening Soil Model (Surarak et al. [70])

Undrained Shear Strength
The undrained shear strength can be found as su = q f /2, with

q f =
6sinφp

3− sinφp
(p + c cotφp ). (A.41)

In Table A.5 the model parameters are given used in the Hardening Soil Model.
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Table A.5: Model Parameters Hardening Soil Model

c ′ (effective) cohesion [kN /m2]
φ′

p (effective) internal friction angle [°]
Ψ Dilatancy angle [°]

E r e f
50 Secant stiffness in standard drained triaxial test [kN /m2]

E r e f
oed Tangent stiffness for primary oedometer loading [kN /m2]

E r e f
ur Stiffness for unloading and reloading [kN /m2]
m Power for stress-level dependency of stiffness [-]

pr e f Reference stress for stiffness [kN /m2]
νur Unloading/reloading Poisson’s ratio [kN /m2]
K nc

0 CK0 value for normal consolidation [kN /m2]
R f Failure ratio [-]

K NC
0 = 1− sinφp (A.42)

For soft clays m = 1.

The main advantages and limitations of the hardening soil model are summarised in Table A.6.

Table A.6: Advantages and Limitations Hardening Soil Model

Advantages Limitations

Better non-linear formulation of soil behaviour in
general

No peak strength and softening (immediate resid-
ual strength)

Distinction between primary loading and unload-
ing/reloading

No accumulation of strain or pore pressure in cyclic
loading

Memory of preconsolidation stress No secondary compression (creep)
Different stiffnesses for different stress paths No anisotropy
Well suited for unloading situations with simulta-
neous deviatoric loading

E50/Eoed > 2 difficult to input

Takes into account soil dilatancy
Yield surface can expand due to plastic straining



B
Sensitivity Analysis

B.1. Initial Population Size

Figure B.1: Sensitivity of Initial Population Size

77
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B.2. Selection Size

Figure B.2: Sensitivity of Selection Size
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