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Abstract: The goal of this study was to investigate the effect of the structure of Mn-Al layered double
hydroxide (LDH) on the adhesion behavior of composite adhesives on two Al alloys (L3005 and
L8079). The composite adhesives were made out of the UV-curing Bisphenol A glycidylmethacry-
late/triethylene glycol dimethacrylate (BT) as polymer matrix and the addition of 1, 3, and 5 wt. % of
Mn-Al LDH as adhesion enhancers. Adhesion was evaluated by using the micro Vickers hardness
testing procedure. The wetting angle of composite adhesives to the Al substrates was measured and
compared to the adhesion parameter b obtained from the microhardness tests. The highest increase
in adhesion was observed for BT with 5 wt. % of Mn-Al LDH on L3005 substrate, which was more
than 15 times higher than the adhesion for the neat BT. The morphological segregation of composite
adhesives after the contact with Al substrates was examined by optical microscopy and a higher
compatibility of Mn-Al LDH particles with L3005 substrate was found. The methods used for the
adhesion properties assessment suggested that the Mn-Al LDH was the best adhesion enhancer of
the BT matrix for L3005 substrate containing a higher content of Mn and surface hydroxyl groups.

Keywords: layer double hydroxide; composite adhesive; adhesion; interface; aluminum

1. Introduction

Resin-based composites are commonly used in dental restorative materials due to
their light weight, esthetic quality, and biocompatibility [1,2]. Most of the dental composite
resins are based on Bis-GMA (bisphenol A-glycidylmethacrylate) [3]. Besides Bis-GMA,
other organic monomers which are applied to resin-based dental composites include
UDMA (urethane dimethacrylate), TEGDMA (triethylene glycol dimethacrylate), and Bis-
GMA (ethoxylatedbisphenol A dimethacrylate). Bis-GMA has a high viscosity, and is
frequently combined with low viscosity resin monomers like TEGDMA and EGDMA
(ethylene glycol dimethylacrylate) [4]. The mixtures of dimethacrylates are considerably
applied to the preparation of composite resins, where TEGDMA is generally used as the
diluent to alter the viscosity of the Bis-GMAor UDMA and make their treatment easier [5].
By incorporating TEGDMA and reducing the resin viscosity, a higher filler loading is
enabled [6]. The Bis-GMA/TEGDMA composites are characterized by their mechanical
properties, which are similar to those of the tooth tissue. These composites are found to
have good biocompatibility [4,7]. The polymerization in this system can be initiated by
blue light or chemically [8,9]. Light-induced polymerization is important in dentistry as it
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provides short exposure times and fast curing of the polymer (less than a minute), to ensure
that the produced polymer is safe for the patient [10,11].

Traditional composite resins and polyacrylates which contain heavily filled inorganic
particle fillers consist of only one continuous phase, the polymer matrix phase [5]. Nanopar-
ticles are generally used as nano reinforcements for the polymer matrix, and they improve
the mechanical properties of polymer composites such as hardness, toughness, and modu-
lus of elasticity. Their content can also modify the wear resistance of the composite surface;
it can even alter the adhesion of the composite to any surface and the contact angle as
well [12–15]. The filler phase is integrated into the organic matrix of dental composites
to tailor various properties to better mimic the properties of the dental tissue that they
substitute [16,17]. The stress transfer at the filler–matrix interface, which is influenced by
the interfacial properties and surface area of the filler phase, determines the modulus of
dental composites [18]. Reduction in size of spherical silica fillers at the same volume con-
tent results in better stress distribution and reduction of stress at the filler–matrix interface,
leading to improved mechanical properties [18].

Layered double hydroxide (LDH) fillers present a large family of lamellar hydroxides,
known as anionic clays [19]. LDHs are a group of inorganic lamellar compounds in
which metal hydroxide layers lie on top of each other, and anions and water molecules
are located in the interlayer space [20,21]. The general chemical composition of LDH
is [M2+

1−xM3+
x(OH)2]− (An−)x/n·mH2O, where M2+ and M3+ are divalent and trivalent

cations, x is the molar ratio of the trivalent cation, and An− is a charge balancing inter-layer
anion [22,23]. The M2+ and M3+ cations coordinated by OH− units occupy the centers of
octahedra. These octahedra are connected by edge-sharing to form an infinite sheet of
double hydroxide layer [24,25]. The cationic charge created by partial substitution of M2+

by M3+ cations in the layers is compensated by the presence of hydrated anions between
the stacked sheets [26]. The LDH system consists of sheets bonded by covalent forces,
where the polymer matrix segments fill up the interlayer gap [27].

Adhesive bonding is an important joining technology in the packaging industry,
biomedical applications, dentistry, and microelectronics. Neverthless, polymer composites
applied in the industry are characterized by their poor adhesion properties since they
have low surface energy and they suffer from the absence of polar functional groups on
their surface [28]. Dental composite resins are often modified to improve their adhesive
properties [29]. On the contrary, the packaging industry lags behind, especially when it
comes to the adhesion properties of the foils’ coatings. Possible ways to characterize the
adhesion of thin films and adhesives include: The microhardness test, the scratch test,
the impact test, the bending test [30], and the cavitation test [31]. The Vickers hardness
technique is commonly used for the examination of composite resins and dentures [32].
Models, through which the assessment of material adhesion via Vickers microhardness can
be examined, have been developed [33]. In the characterization of UV-curing adhesives,
such as Bis-GMA/TEGDMA-based ones, there is a lack of standard test methods in testing
of adhesion properties. A standard test method such as the Bell Peel Test (BPT) considers
using two metal adherents, rigid and flexible. Such a joint prevents the UV-curing process
of the joint which hinders the use of such a characterization technique. A recent study of
bio-based epoxy adhesives, though, managed to validate the potential use of the adhesion
parameter b by comparing it against results from the BPT [34].

Thus, the objective of this study was to use Mn-Al LDH particles as adhesion en-
hancers of UV-curing acrylate Bis-GMA/TEGDMA-based adhesives on two aluminum (Al)
substrates with different chemical compositions in order to represent an example of the
combination of UV-curing acrylate-modified adhesive as a coating for typical packaging
foil material. In addition, the compatibility effect of the inorganic adhesion enhancer
(Mn-Al LDH) and Al substrate was investigated. Adhesive properties were evaluated
by the adhesion parameter b, wetting angle, and the Al surface characterization after the
removal of the composite adhesive, which was applied as a coating.
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2. Materials and Methods
2.1. Materials

The chemicals MnCl2·4H2O (Merck-Alkaloid, Skoplje, North Macedonia) and
Al2(OH)5Cl·2.5·H2O (Locron L; Clariant company, Muttenz, Switzerland) were used to
synthesize the Mn-Al LDH. An appropriate volume of 1.0 mol/L NaOH solutions was
used to adjust the pH of the solution. The composite matrix components, Bisphenol
A glycidylmethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), cam-
phorquinone (CQ), and ethyl-4-dimethylaminobenzoate (4EDMAB), were all supplied by
Sigma—Aldrich. The chemical composition of Al substrates L8079 and L3005 are given in
Tables 1 and 2, respectively. The substrates represent packaging Al foils (100 µm thick) and
thus were used as received, without any surface treatment.

Table 1. Chemical composition and mechanical properties of Al substrate L8079.

Si (%) Fe (%) Mg (%) Al (%)

0.11 1.0 0.001 98.8

Table 2. Chemical composition of Al substrate L3005.

Si (%) Fe (%) Cu (%) Mn (%) Mg (%) Cr (%) Zn (%) Ti (%) Pb (%) Al (%)

0.19 0.6 0.11 1.2 0.55 0.01 0.02 0.03 0.002 97.288

2.2. Synthesis of Mn-Al LDH

The Mn-Al layered double hydroxide (Mn-Al LDH) was synthesized by a co-precipitation
method, wherein 2.75 g of MnCl2 4H2O and 1.25 g of Al2(OH)5Cl 2,5·H2O (molar ratio of
3:1) was dissolved one after the other in 100 mL deionized water with continuous stirring.
The pH of the resulting turbid solution was increased to 10 by adding 1 mol/L NaOH.
The resulting slurry was aged for 24 h, centrifuged at 6000 r/min for 10 min, and washed
with de-ionized water repeatedly until the solution pH was neutral. The wet solid was
dried at 80 ◦C for 24 h to obtain Mn-Al-LDH.

2.3. Preparation of Composite Adhesives

Bis-GMA 49.5%, TEGDMA 49.5%, CQ 0.2%, and 4EDMAB 0.8%, were mixed and
polymerized under UV light for 3 min in order to obtain the acrylic polymer matrix (BT).
Composite adhesives were made with 1 wt. %, 3 wt. % and 5 wt. % content of Mn-Al LDH
filler. The adhesives were applied by the drop coating method on Al foils [35]. The method
considers the application of a thin cap after applying one drop of monomer solution to an
Al surface. The final thickness of the applied adhesive was controlled by the weight of the
glass cover placed over the drop.

A decision on the share of particles for the preparation of composite adhesives was
made based on the previous experience [29], because already at 5 wt. % of particles the
agglomerates appear. Higher percentages are causing also a difficult sample preparation.
Thus, the optimum dispersion in BT composites was only found in the range of 1–5 wt. %
of fillers addition. Besides, the literature about LDH in dental composites used only 3 and
5 wt. % of LDH fillers [36].

2.4. Material Characterization
2.4.1. Structural Characterization

Structural characterization of LDH particles was performed by analyzing the crystal
phases of Mn-Al LDH by an Ital Structure APD2000 X-ray diffractometer in a Bragg–
Brentano geometry using CuKα radiation (λ = 1.5418 Å) and step-scan mode (range:
20◦−80◦ 2θ, step-time: 0.50 s, step-width: 0.02◦). Besides, the Fourier-transform infrared
spectroscopy (FTIR) was used for the characterization of the chemical composition of the
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interface surfaces of both the Al substrate and polymer adhesives with and without Mn-Al
LDH fillers. Tests were performed using a Nicolet 6700 spectrometer (Thermo Scientific,
Waltham, MA, USA) in the attenuated total reflectance (ATR) mode with a single bounce
45 ◦F Golden Gate ATR accessory with a diamond crystal, and an electronically cooled
DTGS detector. FTIR spectra were obtained at 4 cm−1 resolution with ATR correction.
The Nicolet 6700 FTIR spectrometer was equipped with OMNIC software and the spectra
were recorded in the wavelength range from 2.5 µm to 20 µm (i.e., 4000–500 cm−1) [37].

2.4.2. Characterization of Morphology

The morphologies of the Mn-Al LDH fillers and adhesives were examined using a field
emission scanning electron microscope (FE-SEM), MIRA3 TESCAN, Brno–Kohoutovice,
Czech Republic, operated at 3 kV. SEM images of the Mn-Al LDH fillers were used to
determine the size distribution of particles. The tools of the software package Image-Pro
Plus 4.0 (Media Cybernetics, Rockville, MD, USA) were used. Elemental analysis on
interfaces was done by using electronic dispersive spectroscopy (EDS) by JEOL 5800 JSM
(JEOL, Akishima, Japan).

2.4.3. Adhesion Assessment

The adhesion strength was estimated by the adhesion parameter b, which is obtained
by the microhardness test method [38]. The parameter b represents the ratio of the radius of
the indented plastic region to the indented depth, b = r/h, which varies depending on the
combination of the film (in our case it is an adhesive) and the substrate. This technique was
recently proved to be useful as a fast and reliable testing method in the adhesive selection
process when compared to standard BPT [34]. The essence of this technique lies in the
differences captured in the indent geometry. A strong adhesion at the interface results in
distortion of the plastic zone, while a weak adhesion is characterized by strain discontinuity
across the interface.

The method was done using micro Vickers hardness (HV) tester Leitz, Kleinharteprufer
DURIMETI. The equation used to calculate the Vickers number is:

VHN = 2 cos
22◦P

d2 =
1.8544P

d2 (1)

where P (kgf) is the applied load, and d (mm) is the length of the indentation diagonal [33].
The hardness of the samples was measured with different loads (50, 100, 200, 300,

and 500 gf) with a 25 s duration, whereby for each loading three indents were performed.
Images of indentation marks were captured by the optical microscope (Carl Zeiss-Jena,
Jena, Germany, NU2) and were used to obtain the diagonal lengths using the Image-Pro
Plus program.

In the model [39], the mean length of the diagonals D is used as an input parameter
to match the composite hardness relation by the model indicated by the equation on the
depth indentation:

Hc = A + B
1
D

+ C
1

Dm + 1 (2)

where the fitting parameters are A, B, C, the composite hardness is Hc and the parameter m
(power index) has values in the range of 1–2 (m = 1.8 is for the case of a soft adhesive on a
hard surface) [40]. The equation used to measure the hardness of the adhesive is given by:

H f = A±

√
[m|B|/(m + 1)]m + 1

m|C| (3)
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Equation (3) is used for the measurement of the critical reduction in depth b [41]:

∆H =

7·(m + 1)·
(

Hs − H f

)
m·b

· t
d

(4)

The indentation depth is expected to be D/7, and the adhesive thickness is t. Values:
Hs, Hc, and d are measured by direct experimental measurement. Hf is calculated as a
function of h/t by fitting the experimental results for Hc. Finally, the value of parameter b,
considered as adhesion indicator, is determined by the slope of the linear fit of dH = f (t/d)
from Equation (4).

The evaluation of the adhesion of the BT and composite adhesives on the aluminum
foil was followed by determining the wetting angle. A drop of the composite mixture was
placed on an aluminum substrate and polymerized using a UV lamp. Optical microscope
(Delta Smart 5MP Pro digital material inspection microscope) images of the samples were
taken and the angles of contact of the adhesives with the metal surface were measured
using image analysis software.

3. Results
3.1. The Microstructure of Mn-Al LDH Fillers

The morphology of Mn-Al LDH samples was examined using FE-SEM, Figure 1a.
The diameter distribution analysis was carried out with image analysis tools, and the
obtained results are shown in Figure 1b and summarized in Table 3.
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Table 3. The grain size distribution of Mn-Al LDH particles.

Mean (nm) Minimum (nm) Maximum (nm) Standard Deviation (nm) Variance (nm)

28.39 12.51 74.32 13.25 175.53

Based on the Mn-Al LDH diameter distribution, it can be seen that most particles
have a diameter between 20 and 30 nm. The FE-SEM images show that the Mn-Al LDH
samples have ellipsoidal, spherical, and rod-shaped particles. The particle size was found
to be in the range of 10–50 nm, and the morphology was similar to the morphology of
Mn3O4 following XRD patterns [42]. It can be also seen that the particles were bound to
each other forming an agglomerate, suggesting strong hydrogen bonding, which can be
very beneficial for establishing good adhesion.

3.2. The XRD Analysis of Mn-Al LDH Crystal Structure

Figure 2 shows the XRD patterns of Mn-Al LDH in the range of 5◦–80◦. XRD analysis
indicated that two main compounds—Mn-Al LDH and Mn3O4. The diffraction peaks at
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11.3◦, 22.8◦, 38.6◦, and 63.4◦ correspond to the planes (003), (006), (015), (113) of a typical
layered structure. The XRD results show that MnCl2 and Al2(OH)5Cl were successfully
transformed into the LDH phase [43]. The d003 value of Mn-Al LDH was 7.76 Å. The cell
parameter “c” calculated from c = 3·d003 is 2.328 nm.
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3.3. Adhesion Assessment

The wetting angle measurements of adhesive droplets on L3005 and L8079 substrates
are presented in Figure 3a. They show the opposite behavior over the two substrates.
The wetting of BT adhesive was similar for both substrates (13.04◦ for L3005 and 14.02◦ for
L8079), but the addition of Mn-Al LDH changed the trends. The presence of 1 wt. % of
particles decreased the wetting on L8079 suggesting the favorable interactions between
the substrate and the composite adhesive. Further addition showed the increase of the
wetting angle indicating possible adverse effects caused by the addition of Mn-Al LDH in
BT for L8079. On the contrary, the addition of 1 wt. % of Mn-Al LDH caused the increase of
the wetting angle, which can suggest a higher amount of interaction within the composite
adhesive itself in the contact with L3005. The value of the wetting angle was still low,
which is desirable for good adhesion. Further increase of Mn-Al LDH amount lowered
the value of the wetting angle indicating favorable interactions with L3005 substrate.
The wetting angle is a sum of effects of different parameters, and its low values are a
good precondition to establishing strong adhesion but which is not necessarily the case.
Thus, the adhesion properties were further assessed by the adhesion parameter b.

A Chen-Gao mathematical model was used to quantify the factor b, which describes
the degree of adhesion between the substrate and the film, through the use of microhardness
measurements [42]. In Figure 3b, the dependency of the adhesion parameter b on the
amount of Mn-Al LDH in the composite adhesives is shown. It was observed that the
composition of Al alloy had a significant effect on the adhesion of composite adhesives.
L3005 substrate with a higher amount of alloying elements showed higher improvement
of adhesion than L8079. Nevertheless, the introduction of Mn-Al LDH particles into BT
showed a positive effect on the improvement of the adhesion to both substrates. The highest
increase in adhesion was observed for BT+5 wt. % of Mn-Al LDH on L3005 substrate,
which was more than 15 times higher than the adhesion for the neat BT. Such an enormous
increase in adhesion can be prescribed to better compatibility between the L3005 and the
Mn-Al LDH in the composite adhesive than for the L8079. The reason for that was that
the main alloying element in L3005 is Mn, which forms a stable form of manganese oxide
in the contact with air, called hausmannite (Mn3O4). Mn3O4 exhibits strong adsorption
properties [44] and as such establishes strong interactions with organic and inorganic
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molecules and ions. So, the presence of Mn3O4 in LDH only was not enough for good
adhesion but the matched compatibility with the substrate.

Figure 3c shows the linear fit of adhesion parameter b vs. wetting angle scatter diagram
for the two substrates L3005 and L8079. Very good and reliable data fitting indicates a
significant and positive impact of Al-Mn LDH fillers for L3005 substrates and negligible
effect for L8079 substrate. Besides, when the statistical error was considered for the L8079
substrate, there is almost no further improvement of the adhesion with the addition of
more particles. Only the wetting angle increased which indicated the adverse effect on the
wetting and potential defect formation at the interface.
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Figure 3. (a) Wetting angles of BT with different amount of Mn-Al LDH for the two substrates L3005 and L8079, (b) the
adhesion parameter b, and (c) linear fit of adhesion parameter b vs. wetting angle scatter diagram for the two substrates
L3005 and L8079 (Note: In Figure 3c the data for neat BT were omitted due to the different adhesion mechanism with Al
substrates as compared to composite adhesives.).

3.4. Microstructural Analysis

An interesting phenomenon can be observed on optical micrographs of composites ad-
hesives BT+ Mn-Al LDH removed from the two substrates L3005 and L8079, in Figure 4a–f.
The same composite adhesive applied to different surfaces exhibited different intermolecu-
lar interactions within the adhesive itself. More precisely, the arrangement of Mn-Al LDH
fillers in a polymer matrix was affected by the interactions with the substrate. Figure 4a
shows composite adhesive with the addition of 1 wt. % of particles to BT removed from
L3005 having a uniform distribution of the smallest aggregates when compared to higher
percentages. The application of the same composite to the L8079 substrate caused the
formation of large aggregates due to the lower compatibility with the substrate. The size
of the aggregates for L3005 substrate with 3 wt. % (Figure 4c) and 5 wt. % (Figure 4e)
of Mn-Al LDH is slightly increasing due to the increased amount of particles leading to
a higher extent of interactions. Aggregates from L8079 substrates in all composites, i.e.,
BT + 1 wt. % (Figure 4b), 3 wt. % (Figure 4d) and 5 wt. % (Figure 4f), are significantly
larger than the ones from the L3005 substrate. Besides, there is no indication that any of the
composites showed good compatibility with L3005. Thus, the compatibility of L3005 and
Mn-Al LDH contributed to the formation of smaller aggregates than in the case of L8079.
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Figure 4. Optical micrographs of composite adhesives: (a) 1 wt.% Mn-Al LDH removed from L3005
and (b) from L8079 surfaces; (c) 3 wt.% Mn-Al LDH removed from L3005, and (d) from L8079
surfaces; (e) 5 wt.% Mn-Al LDH removed from L3005, and (f) from L8079 surfaces.

Table 4 presents the size distribution of the Mn-Al LDH aggregates observed in
Figure 4. The size of aggregates in the case of L3005 with 5 wt. % of Mn-Al LDH was 60%
lower according to a Dmean. The lower standard deviation and range of the aggregate size
(Dmax − Dmin) confirmed the improved L3005/Mn-Al LDH system compatibility.

Table 4. The size distribution of Mn-Al LDH aggregates after the contact with Al substrate.

Sample Dmax
(µm)

Dmin
(µm)

Dmean
(µm)

Standard Deviation
(µm)

L3005/BT+1 wt.% Mn-Al LDH 14.18 1.86 5.34 2.58
L3005/BT+3 wt.% Mn-Al LDH 26.94 2.79 9.71 5.83
L3005/BT+5 wt.% Mn-Al LDH 38.80 4.24 10.41 6.90
L8079/BT+1 wt.% Mn-Al LDH 48.94 4.52 16.87 11.83
L8079/BT+3 wt.% Mn-Al LDH 96.99 5.12 18.08 18.88
L8079/BT+5 wt.% Mn-Al LDH 56.42 5.73 26.13 10.93

Detailed analysis of debonded surfaces was studied by FE-SEM, which is presented
in Figures 5 and 6. Morphology of BT interface (Figure 5a) matched the L3005 inter-
face (Figure 5b) showing complete adhesive failure with no remained adhesive on Al
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substrate. The adhesion of BT was slightly improved with the addition of Mn-Al LDH,
which was observed by traces of remained composite adhesive indicating partial cohesive
failure (Figure 5d). Figure 5c showed Mn-Al LDH aggregates in the size range previously
measured from optical micrographs (Table 4).
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The morphology of the BT interface (Figure 6a) again matched the L7089 interface
(Figure 6b) with no observed remained adhesive. The improvement of BT adhesion with
the addition of Mn-Al LDH could not be noticed since the morphology of L8079 remained
the same as in the case of neat BT (Figure 6d). Figure 6c showed Mn-Al LDH aggregates in
the same size range measured from optical micrographs (Table 4).
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3.5. FTIR Characterization of Al Alloys, Composite Adhesives, and Interfaces

FTIR analysis of composite adhesives with and without Mn-Al LDH, aluminum
alloys, and their interfaces was performed to investigate the presence of composition
and chemical species on materials surfaces, Figure 7. Comparison of FTIR spectra of
neat substrates showed that L3005 possessed a significant amount of available surface
hydroxyl groups, observed at 3500 cm−1, Figure 7a. As opposed to this, L8079 did not
show the presence of any hydroxyl group, Figure 7c. Both substrates showed the presence
of C-H vibrations noticed around 2850 cm−1 suggesting the presence of oily impurities.
Their content decreased after BT and BT+5 wt. % Mn-Al LDH were applied since they can
be absorbed by LDH and react in cross-linking reactions of BT matrix. BT, its composite,
and their interfaces on L3005 and L8079 are shown in Figure 7b,7d, respectively.

At ~3490 cm−1, the characteristic peaks for O–H stretching vibration were observed.
The peaks observed in the 2956–2875 cm−1 range were due to the Bis-GMA/TEGDMA
matrix aliphatic C–H stretch [29]. The peak at 1734 cm−1 can be assigned to the polymer
matrix’s carbonyl C=O group vibration. The peak at 1638 cm−1 (assigned to the aliphatic
unsaturated chains) and the peak at 1609 cm−1 (assigned to the aromatic structure) [45]
were confirmed by the unsaturated C=C double bonds in the composites. Methyl (iso-
propylidene moiety in Bisphenol A) and methylene group deformation vibrations are
observed at 1511 and 1453 cm−1, respectively. Valence C–O bond vibration modes were
shown as alternating bands at 1252, 1181, and 1038 cm−1 in ester, ether, and phenolic
pairs, both asymmetric and symmetric. The absorption peaks below 1000 cm−1 were due
to unsaturated C–H bonds from out-of-plane bending vibration modes [45]. The spectra
showed that with the addition of Mn-Al LDH to BT, the amount of hydroxyl group’s
content increased, which was observed by the increased intensity of the peak found at
3500 cm−1. Other peaks characteristic for BT remained the same for both of the substrates.
The higher amount of the surface hydroxyl groups are favorable for establishing hydrogen
bonding interaction with an adhesive containing Mn-Al LDH. The lower amount noticed
for L8079 can cause an adverse effect with the addition of LDH particles.
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3.6. EDS Analysis

Detailed analysis of the substrate interfaces was performed to determine the presence
of cohesive failure by EDS elemental analysis, Table 5. The L3005 interface with BT with a
magnification of 200× showed an amount of Mn similar to the producer’s specification
(Table 2). The content of O was observed due to the surface hydroxyl groups or the formed
oxides, which was almost two times higher for the L3005 interface with BT than for L8079.
In the case of L3005 interface with BT+5 wt. % Mn-Al LDH with a magnification of 200×,
no significant changes were observed. With an increased magnification of 50 k× on the
observed remains, the elemental composition significantly changed. The appearance of C
indicated the presence of BT on the surface, while the high amount of Mn (10.5%) showed
their affinity with the L3005. L8079 interface with BT with a magnification of 200× showed
the same amount of Fe as per the producer’s specification (Table 1). The L8079 interface
with BT+5 wt. % Mn-Al LDH with a magnification of 200× did not show any notable
changes when compared to the neat BT. With an increased magnification of 50 k× on the
observed remains, L8079 showed a higher amount of C and a much lower amount of Mn.
This observation coincides well with all the previous results suggesting better compatibility
of Mn-Al LDH particles with L3005 substrate.
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Table 5. EDS analysis of Al interfaces.

Sample/Elements C (%) O (%) Al (%) Mn (%) Fe (%)

L3005 interface with BT, 200× - 3.17 95.36 1.01 0.45
L3005 interface with BT+5 wt. % Mn-Al LDH, 200× - 3.28 95.23 1.04 0.46
L3005 interface with BT+5 wt. % Mn-Al LDH, 50 k× 10.4 16.4 61.82 10.5 0.78

L8079 interface with BT, 200× - 1.83 97.12 - 1.02
L8079 interface with BT+5 wt. % Mn-Al LDH, 200× - 1.76 97.26 - 0.99
L8079 interface with BT+5 wt. % Mn-Al LDH, 50 k× 14.8 14.6 64.02 5.75 0.82

4. Conclusions

The Mn-Al layered double hydroxide (Mn-Al LDH) was synthesized by a co-precipitation
method with a particle size in the range of 10–50 nm and morphology similar to the
morphology of Mn3O4. They were used as adhesion enhancers of adhesives based on
acrylate BT matrix on two different Al alloys, L3005 and L8079. Two techniques were
used to assess the adhesion between the composite adhesives and the metal surfaces:
Microhardness combined with theoretical simulations and measurements of the wetting
angle. With an increase in particle content, the adhesion improved. The morphological
segregation of Mn-Al LDH particles in composite adhesives after the contact with Al
substrates was examined by optical microscopy. Particle distribution and aggregate size
indicate higher compatibility of Mn-Al LDH particles with L3005 substrate. The methods
used for the adhesion strength assessment suggested that the Mn-Al LDH was the best
adhesion enhancer of the BT matrix for L3005 substrate containing a higher content of Mn
and surface hydroxyl groups. The results of this study indicate that LDH particles, obtained
simply and inexpensively, can be used as adhesion enhancers of acrylate adhesives, films,
or coatings. Nevertheless, their power of adhesion enhancement can be tailored by a proper
selection of LDH cations to improve their compatibility with the substrate.
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