
 
 

Delft University of Technology

Opportunities for multivariate analysis of open spatial datasets to characterize urban
flooding risks

Gaitan Sabogal, S; ten Veldhuis, JAE

DOI
10.5194/piahs-370-9-2015
Publication date
2015
Document Version
Final published version
Published in
Symposium on changes in flood risk and perception in catchments and cities

Citation (APA)
Gaitan Sabogal, S., & ten Veldhuis, JAE. (2015). Opportunities for multivariate analysis of open spatial
datasets to characterize urban flooding risks. In M. Rogger, H. Aksoy, & M. Kooy (Eds.), Symposium on
changes in flood risk and perception in catchments and cities: Proceedings of the IAHS (Vol. 370, pp. 9-14).
(Proceedings of the International Association of Hydrological Sciences; Vol. 370). IAHS.
https://doi.org/10.5194/piahs-370-9-2015
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.5194/piahs-370-9-2015
https://doi.org/10.5194/piahs-370-9-2015


Proc. IAHS, 370, 9–14, 2015

proc-iahs.net/370/9/2015/

doi:10.5194/piahs-370-9-2015

© Author(s) 2015. CC Attribution 3.0 License.

Open Access

C
h
a
n
g
e
s

in
F

lo
o
d

R
is

k
a
n
d

P
e
rc

e
p
tio

n
in

C
a
tc

h
m

e
n
ts

a
n
d

C
itie

s
(H

S
0
1

–
IU

G
G

2
0
1
5
)

Opportunities for multivariate analysis of open spatial

datasets to characterize urban flooding risks

S. Gaitan and J. A. E. ten Veldhuis

Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of

Technology, Stevinweg 1 room 4.75, 2628CN, Delft, the Netherlands

Correspondence to: S. Gaitan (s.gaitan@tudelft.nl)

Received: 11 March 2015 – Accepted: 11 March 2015 – Published: 11 June 2015

Abstract. Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are

required to reduce flooding impacts. However, currently implemented sewer and topographic models do not

provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such

as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability

and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands,

including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed

socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence

of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and

environmental patterns have been previously developed and used in the field of study of ecology. The objective

of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned

datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts

is higher in areas characterized by older infrastructure and higher population density.

1 Introduction

Cities are vulnerable to rainfall flooding risks; rainfall can af-

fect electrical installations, household contents, road traffic,

private and public assets, and business activities (ten Veld-

huis et al., 2011; Ashley et al., 2005). Therefore, adaptation

measures to better cope with those risks are required. Smart

instrumentation and drainage maintenance (e.g. Gaitan et al.,

2014; ten Veldhuis and Clemens, 2011), and emergency pro-

tocols (e.g. Melo et al., 2015), as well as retrofitting of ex-

isting infrastructure and urban redevelopment (e.g. Jacobs,

2012), are examples of such measures. However, their effec-

tiveness depends on the available knowledge of the mecha-

nisms leading to damage after heavy rains, which are still not

completely understood (Gaitan et al., 2015; Spekkers et al.,

2013, 2014; ten Veldhuis et al., 2011).

Previous studies indicated that currently implemented

drainage models do not provide realistic predictions of local

flooding occurrence during heavy rain events (Fontanazza et

al., 2011; Ochoa-Rodriguez et al., 2014; Gaitan et al., 2015).

Studying the spatial distribution of possible explanatory vari-

ables may help to explain how a heavy rainfall event triggers

occurrence of flooding impacts in a city. Recent works have

analyzed whether occurrence of citizens’ complaints and in-

surance claim reports on rainfall-related incidents could be

explained by variability in urban topography (Gaitan et al.,

2015) and rainfall intensity (Spekkers et al., 2013). Response

and explaining variables in those studies were selected a-

priori. Their results show that for the considered cases of

delta city conditions, pluvial flooding impacts cannot be ex-

plained solely by rainfall intensity or urban topography. The

flat geography of delta areas may be part of the reason of

the low explaining power of meteorological and topographic

variables; this emphasizes the importance of exploring addi-

tional factors to further model urban flooding risks.

Spekkers et al. (2014) used a decision tree analysis for

exploring the extent in which different environmental and

socio-economic characteristics explain variances in insur-

ance claim data due to rainfall-related damage. Due mostly

to privacy issues, accessing them required explicit agreement

with government and private parties. The decision tree ex-
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10 S. Gaitan and J. A. E. ten Veldhuis: Opportunities for multivariate analysis of open spatial datasets

plained around 25 % of variance in claim occurrence, im-

proving beyond the 10 to 20 % of explaining power obtained

via multiple regression models. Remaining unexplained vari-

ance was suggested to be related to a coarse level of spatial

aggregation during the analysis and to the possible lack of

key explanatory variables, which were not included in the

study.

Multiple information sources describing urban character-

istics have recently become publicly available under an Open

Data policy in the Netherlands (Dutch Ministry of Interior

and Kingdom Relations, 2014). This offers the opportunity

to explore the potential of such data to provide insights about

pluvial flood risks. Due to privacy issues, socioeconomic data

in these sources has been aggregated, but their open availabil-

ity enables flexible use of combinations of datasets, models,

and different spatial aggregations, without the need of special

permits of private or public parties.

These multivariate spatial datasets can be used to investi-

gate whether certain urban characteristics trigger reports on

rainfall-related incidents, which serve as a proxy to measur-

ing flood impacts.

Multivariate spatial data analysis is widely applied in the

field of ecology. In the field of community and landscape

ecology, for instance, the main matrix of analysis is com-

posed by sampled objects in the rows, and frequency or abun-

dance of different species, or measurement of environmental

variables, in the columns. Clustering, ordinations, and mul-

tiple regressions are part of the techniques used to analyze

such matrices. Cluster analysis is used to classify associa-

tions between sampling sites, or between the composition

of species inhabiting such sites. Ordination techniques, such

as principal coordinates analysis (PCoA), are used to inter-

pret community changes along environmental gradients in

complex multivariate datasets. Regression analysis on sin-

gles species is also used to quantify possible relationships be-

tween species and environmental variables (Jongman et al.,

1995).

While those methods are used by ecologists to character-

ize and model the environmental conditions in which species

flourish, these techniques can be applied to open spatial data

to explain occurrence of urban flooding impacts. A set of

those methods is presented in this paper and their potential

for flood risk analysis is discussed. Methods include spatial

indexing, classification dendrograms, ordination via multidi-

mensional scaling, and fitting of multiple regressions on the

complaints.

This article is organized as follows: Sect. 2 explains the

goals and procedures of the exploratory methods, results of

the application of one of those methods are discussed in

Sect. 3, and Sect. 4 draws conclusions and provides an out-

look for the use of the described methods.

2 Information sources and multivariate analysis of

spatial datasets

In order to explain how the methods presented in this pa-

per can operate in big sets of open spatial data for the pur-

pose of flood risk analysis, a number of publicly available

datasets are considered. Datasets are collected for the case of

a heavy rain event that hit Amsterdam on 28 July 2014, caus-

ing considerable flood damage. The data available includes

socioeconomic, cadastral, and meteorological data. Reports

about rainfall related incidents are also available, and can be

used as indicators of urban flooding incidence. Data-sources

and methods are described in the following subsections. An

overview of data characteristics is shown in Table 1.

2.1 Maximum rainfall intensity data

Rainfall intensity measurements are based on a system of

two C-band Doppler weather radars operated by the Royal

Netherlands Meteorological Institute (KNMI, 2013). Rain-

fall depths, observed at 1.5 km above the ground, are pro-

vided with a temporal resolution of 5 min, on a grid of

1 km2 spatial resolution with a custom geographic projection

(Overeem et al., 2009). Information is available through a

FTP server. Rainfall intensity was calculated at 15 min time-

step. The highest intensity per radar cell during the rainfall

event was used in Sect. 2.5.

2.2 Socioeconomic and cadastral data

Available socio-economic statistics include information

about population density, age, and income. These datasets are

updated every year. They also include housing characteristics

and market-prices for the period 2012–2013. Statistics are

provided on a geospatial vector data format: they are aggre-

gated into hectare and 0.25 km2 grids to avoid privacy issues

(Centraal Bureau voor de Statistiek, 2013). Available cadas-

tral information describes the floor area, geographic location,

address and postal code, purpose, and age of construction of

buildings in The Netherlands. Each building is identified by

a unique number, and its building boundaries are provided

on a geospatial vector data format. This cadastral database is

updated monthly (Kadaster Nederland, 2013). Some areas in

these datasets are masked so that general or no information

is available, due to security or privacy reasons. Both datasets

have been made available as part of the open data policy men-

tioned in Sect. 1.

2.3 Reports about rainfall-related incidents

The municipality of Amsterdam provides platforms for reg-

istering citizen complaints about incidents in the city, in-

cluding those related to urban flooding impacts. Reports are

recorded by personnel from the municipality, and include a

unique identifier, a timestamp, address of reported incidents,

Proc. IAHS, 370, 9–14, 2015 proc-iahs.net/370/9/2015/
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Table 1. Data sources used in this study. Total number of data points and mean refer only to case study area. Points with secret or not

available data have been excluded from this table. Only buildings in use have been considered.

Variable Spatial and temporal resolution Data points Metric and unit Mean

Max. rainfall intensity 1 km2, every 5 min 292 mm h−1
× km−2 40.1 ± 20.5

Inhabitants 1 Ha, static – 2013 6127 Individuals/Ha 131.2 ± 82.7

House market prices 0.25 km2, static – 2012 6127 Average price (thousands

of EUR) 0.25 km−2
275.9 ± 155.9

Proportion of high income 0.25 km2, static – 2012 453 % of homeowners earning at

least EUR 46 950 yr−1
45.2 ± 14.8

Proportion of low income 0.25 km2, static – 2012 453 % of homeowners earning less

than EUR 25 070 yr−1
20.6 ± 12.9

Age of construction Single building polygon, static – 2012 234 736 Years since built 105.6 ± 217.6

Rainfall-related incidents Single address points, time-stamped 340 Register of a telephonic call

including address

NA

an initial classification into general types of rainfall-related

incidents (e.g. blocked gully, flooded basement, overloaded

sewer) and a short description of the reported incident. Mu-

nicipalities can be requested to provide these reports for sci-

entific research.

2.4 Defining sample size and indexing spatial units

Data pre-processing starts with the definition of the spatial

units of analysis or “sample sites”. The selection of the shape

and extent of each site was done according to three purposes:

having a comparable area in every unit, facilitating geometric

calculations and data re-arrangement, and keeping a balance

between fine spatial resolution and availability of data. Using

the grid of the radar data satisfies the stated purposes. Grid

cells are simple geometries that do not demand too complex

computations during spatial queries. As the Amsterdam area

is around 200 km2, the cell size in this grid (1 km2) is big

enough for ensuring that the number of resulting sampling

sites is sufficient for performing statistical analysis. Higher

resolution grids, on the other hand, result in finer units that

can suffer from data scarcity: areas with masked socioeco-

nomic and cadastral data can cover entire cells if they are

too small. Also, if sampling cells are too small, the chances

of having cells with none or very low occurrence of rainfall-

related incidents become higher. The convenience of setting

the 1 km2-cell grid to sample the area of study can be fur-

ther evaluated with a cluster analysis: if the aggregation is

excessive, differences between samples become blurred, re-

sulting in groupings with extremely high measures of simi-

larity. Cluster analysis is described in the following section.

A second step in the pre-processing is to perform spatial

queries and averages in each of the variables listed in Table 1

to determine their mean status in each sampling unit. The

queries are used to intersect realizations of the variables with

their underlying cells. The average value of the intersected

realizations is assigned to each cell. Given the size of han-

dled data, the implementation of a spatial index is required

to reduce computational demands. As it greatly reduces the

number of intersections that need to be made during the sam-

pling of variables realizations at different sites, R-Tree index-

ing (Guttman, 1984) was applied to the sample sites in this

study. Finally, the resulting realization averages per cell are

stored in a matrix in which rows represent sampling sites and

columns each of the variables.

Before describing the rest of the techniques presented by

this paper, it is worthy to make some considerations about

the usage of the variables described in Sects. 2.1 to 2.3. Re-

ports of rainfall-related incidents are taken as a proxy to ur-

ban flooding impacts. For this reason the occurrence of those

reports are considered the response variable in this study. The

rest of the variables are assessed as explanatory variables.

2.5 Cluster analysis: grouping sites according to

available data

Sampled sites can be grouped in terms of their similarities us-

ing a cluster analysis. Groups produced by this type of analy-

sis are characterized by the similarity of values of the differ-

ent variables. The goal of this classification is to discretize ar-

eas that share urban conditions, and to explore whether some

of the obtained groups are more prone to rainfall-related im-

pacts. The grouping is done in the matrix obtained according

to Sect. 2.4, excluding the column of reports from the ma-

trix, and considering only the sites with observed reports of

incidents.

Cluster analysis can be done via a hierarchical grouping

that maximizes similarities within groups, and differences

between groups. The result of a hierarchical grouping applied

to the sites is a tree-like structure, or dendrogram, displaying

how close sites are to each other in terms of the values of

the multiple variables under analysis (Jongman et al., 1995;

Legendre and Legendre, 2012).

Clustering requires the computation of a square similarity

matrix indicating how close are sites to each other in terms

of all the considered variables. Selecting a distance metric

proc-iahs.net/370/9/2015/ Proc. IAHS, 370, 9–14, 2015
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depends on the nature of data. For instance, non-parametric

Spearman’s r can be used in ranked variables with mono-

tonic relationships, Jaccard or Sorensen for presence-absence

data, Hamming distance for categorical data coded as inte-

gers, Euclidean or Bray-Curtis for measured or counted data,

and Gower’s coefficient for mixed data types (Legendre and

Legendre, 2012; Gower, 1971). As the assessed variables in

this study (see Table 1) have been measured, Spearman’s r

can be used to assess a distance based on simple correlations.

The clustering process can be made by setting weights

on the objects being classified, and by establishing a pri-

ori similarity thresholds to define groups. Without previous

knowledge about differences on the importance of sampling

units or variables, the unweighted pair group method with

arithmetic average (UPGMA) is preferred over the weighted

pair group (WPGMA) or K-means methods. In UPGMA,

the distance between groups is the average of distances be-

tween subgroups. The UPGMA clustering is built bottom-up,

from the tips. The first group includes the two objects with

the smallest distance. After this, the average distance from

the two grouped objects to all the remaining ones is calcu-

lated. Then, a new group is made including the two objects

or groups having the smallest updated distance. These tasks

are iterated until all objects are grouped. Branching in the re-

sulting dendrogram indicates the distance shared by pairs of

objects or groups (Legendre and Legendre, 2012).

For the case of flood risk analysis, a likely outcome of a

cluster analysis applied to different urban conditions would

group similar sites into branches sharing urban characteris-

tics such as population density, income, or infrastructure age.

If such grouping also happens to differentiate groups of sites

with remarkably different report incidence, which is not in-

cluded in the clustering computation, then the environmental

configurations with higher urban flooding risks can be dis-

criminated. An expected result is that groups characterized

by sites with higher urban densities, and thus bigger number

of inhabitants, display higher incidence of reports (Gaitan et

al., 2015). Even though the focus of this paper is to present an

overview of methods to explore multivariate spatial datasets,

results of the clustering test are discussed in Sect. 3.

2.6 Principal coordinate analysis: inspecting

dimensionality reductions

Apart from the clustering of sample sites, patterns in the dis-

tribution of contextual variables can be projected on a Carte-

sian space of reduced dimensionality using Principal Coordi-

nates Analysis (PCoA). This allows us to observe which vari-

ables explain most of the data variation and which ones are

redundant. The representation produced by a PCoA is simi-

lar to the more well-known Principal Components Analysis

(PCA).

The two methods differ in the way in which synthetic axes

are calculated. In PCA, the computation of eigenvectors (i.e.

the Components) is done assuming that Euclidean distances

can be calculated directly from input data, and that analyzed

variables correlate linearly. In a set of data having types dif-

ferent than quantitative (e.g., ranked or frequency data), PCA

cannot be directly applied. PCoA, on the other hand, can be

computed using different distance indexes (see indices de-

scribed in previous section). Those distances are projected

in Cartesian planes, and the resulting distance between all

pairs of projected points is used to compute eigenvalues and

eigenvectors (Legendre and Legendre, 2012; Jongman et al.,

1995).

PCoA can visualize whether the incidence of rainfall-

related impacts follows one of the theoretical environmental

gradients proposed by the Coordinates. If so, the next step

is to look if any of the analyzed variables is mostly aligned

along that gradient. For example, one could expect that rain-

fall intensity aligns with one of the Principal Coordinates.

One might also expect that points of average population den-

sity and building market prices gradients are displayed close

to each other, suggesting some collinearity and redundancy.

The distance index used to calculate the PCoA must always

be considered when interpreting the resulting eigenvectors:

the relationship between two variables of mixed data type

might imply that the relations are not as simple as a correla-

tion between two quantitative variables.

2.7 Multiple regression: identifying explaining factors

Multiple regression explores relations between a response

variable and several explanatory variables. Among the meth-

ods presented in this paper, it is probably the most widely

known. Multiple regression aims at describing possible links

between explanatory and response variables, with a certain

margin of error: the method can be used for estimating pa-

rameters ranks in which a response variable is more likely to

occur. It also indicates the contribution of different explana-

tory variables to the variance of the response variable.

Special attention must be given to the type of data being

analyzed as the method varies depending on it. Quantitative

data can be modeled with straight lines, parabolas and Gaus-

sian curves, using least-squares regressions and analysis of

variance (ANOVA). Regressions on presence-absence data

are modelled with logit models, using chi-tests, maximum-

likelihood principle, and Gaussian logit (Jongman et al.,

1995).

Results of multiple regression analysis should present

some agreement with ordination analysis: the variables ex-

plaining most of the response variability in multiple regres-

sion (e.g. rainfall intensity) should be the ones most closely

aligned to the main eigenvectors. Disagreements can arise,

though, depending on the distance indexes used in the PCoA.

The total variance explained by the significant parameters

modeled in the regression determines how much variability it

is explaining, indicating whether additional parameters need

to be explored. In other words, multiple regression checks

Proc. IAHS, 370, 9–14, 2015 proc-iahs.net/370/9/2015/
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Figure 1. Cluster analysis of sampled sites. Groping is made via UPGMA.

for useful variables, and prompts for further exploration of

variables if not enough response variance is explained.

3 Results and discussion of cluster analysis

After performing the aggregations described in Sect. 2.4,

rainfall-related incidents were observed in a total of 81 sam-

pling units. The cluster analysis was applied to these 81 sites.

A first view of the resulting dendrogram (see Fig. 1) reveals

the structure of similarities between analyzed sites. Being

above 95 % of similarity, groupings at the leaves indicate that

values of variables do not change drastically from one km2

sampling unit to another at that branching level. However,

branching at the root starts at only 5 % similarity. Two small

groups, made of 8 sites each, were classified with a similar-

ity of just 30 %. One of those groups is made of sites located

in the Amsterdam city center. The remaining group is only

branched at 70 % similarity, which means that the 65 sites

in this group are closely related to each other. This suggests

that the selected level of spatial aggregation is able to de-

scribe main differences between sites. To better differentiate

groups made above 85 % similarity, either higher granularity

on the spatial aggregation or additional variables are required

though.

If the dendrogram is cut at 85 % of similarities (see red,

dashed horizontal line in Fig. 1), seven groups are differen-

tiable. Viewing them from left to right, third and fourth group

(enclosed in black boxes) present a particularly high inci-

dence of rainfall-related reports. The group in the right box is

the one including eight sites from the city center. On the other

hand, the group in the left box includes 24 sites from diverse

city locations. The city center group is highly differentiated

from the rest, and accounts for 80 incident reports: with 10 %

of the sites it accounts for 24 % of the rainfall-related inci-

dents. The left group box includes 127 reports which equal

37 % of incidents. The incidence of rainfall-related impacts

is aprox. 5 km−2 for this group, and 10 km−2 for the city cen-

ter group. Apart from these two groups the biggest remaining

one includes 38 sites and 96 reported incidents; incidence of

rainfall-related impacts is thus aprox. 3 km−2. These results

indicate that the configuration of environmental conditions

in the city center group is accompanied by a relatively high

incidence of incident reports.

When the average conditions in the three mentioned

groups are compared, it is clear that the building age in the

city center group (x: 682.7 years, s: 174.4 years) is much

higher than in the other two mentioned groups (x: 62.9 and

52.0 years, s: 27.6 and 24.7 years, for the group in the left

box and the mentioned biggest group respectively). The lat-

ter groups are mostly differentiated by their population den-

sity (x: 154.5 and 78.7 Ha−1, s: 47.5, 33.3 Ha−1). Other vari-

ables do not differ greatly. These results indicate that ur-

ban environments characterized by older infrastructure and

higher population density are more prone to rainfall-related

incidents.

proc-iahs.net/370/9/2015/ Proc. IAHS, 370, 9–14, 2015
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4 Conclusion

This paper presented open spatial data sources and multi-

variate exploratory methods that are available for research

on urban flooding risks. These methods consisted of spatial

indexing, clusters analysis, PCoA, and multiple regression.

Spatial aggregation and indexing of data allow us to com-

pile a matrix of sites and variables, in which the heteroge-

neous original information, which has references about ge-

ographic locations, can be rearranged for analysis. Cluster

analysis using UPGMA provides a characterization of ur-

ban areas under study. PCoA reduces the dimensionality of

multiple, heterogeneous datasets, suggesting the presence of

environmental gradients. It also indicates which of the vari-

ables from the available explanatory variables, explains most

of data variability. Multiple regression fits models to the ex-

planatory variables to explain response variables, providing

measures of the amount of explained power. The application

of a cluster analysis to the available data indicated that the in-

cidence of rainfall-related incidents is higher in areas charac-

terized by older infrastructure and higher population density.

Such information is useful for designing and implementing

proper adaptation measures against urban flooding. Results

from cluster analysis can be complemented by applying a

PCoA and a multivariate analysis to the data, which will be

the matter of future research.
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