
FeTGAN: Federated Time-Series Generative
Adversarial Network

1st Marcus Plesner, 2nd Lydia Y. Chen, 3rd Zilong Zhao, 3rd Aditya Kunar
1st Author, 2nd Responsible Professor, 3rd Supervisor

dept. Electrical Engineering, Mathematics and Computer Science
Technical University of Delft

Delft, Netherlands
{M.K.Plesner, A.Kunar}@student.tudelft.nl, {Y.Chen-10, Z.Zhao-8}@tudelft.nl

Abstract—The key to producing high-fidelity time-series data
is to preserve temporal dynamics. This means that generated
sequences respect the relationship between variables across time
as in the original data. While new types of GANs have been
used to generate time-series data, they, like previous GAN
implementations, are time consuming to train. A novel federated
framework is proposed, which generates realistic time-series
data, by combining supervised and unsupervised training. The
framework is based on the work in TimeGAN and Federated
GAN (FeGAN). Using an embedded learning space, TimeGAN
encourages the network to mimic the structure of the training
data. FeGAN allows the results of TimeGAN to be combined
at a central server, which has benefits for both throughput,
and potential to improve data privacy. This also introduces
the possibility of using cross domain data. The challenge with
creating applying federated learning to TimeGAN, and time-
series data in general is whether the learned temporal dynamics
can be combined. This is accomplished by the combination of the
weighting and sampling scheme used. This paper demonstrates,
by qualitative and quantitative analysis, the ability novel frame-
work proposed, to produce equivalent quality synthetic time-
series data compared to the original TimeGAN, without sharing
local data between nodes in the network. This is based on the
predictive and discriminative scores described, as well as PCA
and t-SNE analysis. Additionally, there is an approximate eleven
percent increase in Floating Point Operations per second when
using one machine, and up to a thirty percent increase when
using multiple.

I. INTRODUCTION

Generative adversarial networks (GAN)s are used to create
high fidelity synthetic data for the purposes of training high
dimensionality machine learning models and preserving differ-
ential privacy [1]. GANs have also been shown to perform well
at tasks, such as text to image synthesis, drug discovery, and
privacy maintenance. Drug discovery has become increasingly
important in the recent past, and GANs show the ability to
quickly generate new hypothesis and simultaneously test them.
Privacy is another important field of study because GANs
allow synthetic data to be shared with third-parties without
compromising sensitive information.

A generative adversarial networks (GANs) is composed, in
its most simple form, of two neural networks, a generator
and discriminator. The generator produces fake data, and the
discriminator tries to distinguish fake data from real data.

The two then compete. This training strategy is interesting
because it allows for quicker training with less human input
and feedback.

Time-series data is particularly challenging, because the
generator must preserve the temporal dynamics of the data.
This is where TimeGAN’s [2] latent feature space becomes
important. This is because the temporal dynamics of the data
are often driven by a few features. Therefore, an embedding
network is used to both promote parameter efficiency, but also
to facilitate the generator’s learning of the temporal dynamics
of the original data sample. This is the feature that makes
TimeGAN uniquely suited to time series data.

TimeGAN introduced a latent feature space with lower di-
mensionality than the original data, in which data is generated.
The data is embedded into, and recovered from this feature
space using another set of components. This makes it easier for
the generator to learn the structure of the data, due to the lower
dimensionality. The federated learning paradigm has been used
in conjunction with GANs as in the research behind Federated
GAN (FeGAN) [3], which combined models from individually
trained GANs on a central server. This turned out to be an
improvement over the multi-discriminator GAN (MDGAN)
[4], which had a central generator and multiple discriminators
on different machines. The limitation of FeGAN is that it
would not perform well on time-series data because the nodes
were using Least Squares GAN (LSGAN) [5], which is not
intended for time-series data.

The research question for this paper is: how can the
federated learning paradigm be applied to GANs such that
they can generate high fidelity time-series data, and accelerate
training in a privacy preserving way . There are also questions
about how GAN’s should be trained, such as: which distance
measurement produces the highest fidelity data, and is it the
same for different types of data.

This paper will apply the federated learning paradigm to the
generation of time-series data, as in TimeGAN [2], to generate
synthetic time-series data, such as financial, web traffic, and
weather data. It is tested whether individually trained models
can be combined. The code for this paper uses loss based
weighting to aggregate the data generating components of
TimeGAN. The server implements a loss based weighting
scheme. Each trainer in the system uses TimeGAN, and sends

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



the weights of the data generating components of TimeGAN to
the server. Since TimeGAN is trained in three phases, there are
three different losses used, the embedding loss, the supervised
loss, and the unsupervised loss.

The process of federating TimeGAN to create Federated
TimeGAN (FeTGAN) started with reproducing the original
results of the TimeGAN paper. Because of some changes to
the repository, reproducing the results required some com-
munication with the original authors of TimeGAN. While no
code from FeGAN was used in the final version of FeTGAN,
reproducing the results did show how federated learning could
be done.

To enable comparison between TimeGAN and FeTGAN,
several experiments were performed. The first experiments
were performed on the stock market and energy consump-
tion datasets used in the original TimeGAN paper. These
experiments compared TimeGAN to FeTGAN. TimeGAN and
FeTGAN were also tested on a new dataset, which weather
data from New York City over a period of eight years. The
last experiment tested whether FeTGAN could combine the
models from the workers, when the models were trained on
completely separate data. The aim of this experiment was to
show the utility of FeTGAN when training with cross-domain
data.

II. PRELIMINARY

Since this paper is based on combining the results of
two previously written papers, this section discusses the two,
namely TimeGAN and Federated GAN (FeGAN). The last
experiment is conducted to study the effect off cross-domain
data. [6]

A. TimeGAN

TimeGAN is chosen for this research because it is com-
posed of five distinct components, which can be shared with
the server. It is also one of the first GANs, which produces high
fidelity synthetic time-series data. Lastly, the TimeGAN code
was well documented, and had already isolated the trainable
variables for each component. This made integrating the model
sharing functionality easier.

TimeGAN consists of two sets of components. The first
set is the standard GAN generator and discriminator network.
The second set is what makes TimeGAN unique, and it is
the embedding component and recovery component. When
combined, these two sets are the components of TimeGAN
which make it uniquely suited to time-series data. The last
component is the supervisor, which predicts the next sequence
in the data given a sequence of data.

The generator in TimeGAN does not produce results directly
in the feature space of the original data. The two produce and
handle data in the latent space provided by the embedding
function. This is crucial to improving parameter efficiency. A
model of TimeGAN from the original paper is shown below.
The model shows how components share their outputs, and
the function of each loss.

Fig. 1. TimeGAN architecture

B. FeGAN

FeGAN is a federated GAN which takes LSGAN and runs
it on separate nodes. The distinctive characteristics of FeGAN
are its balancing and sampling methods. The balancing of the
distributions on the separate nodes is done using the Kullback-
Leibler divergence metric, which shows the divergence be-
tween two distributions. In FeGAN, this is calculated on the
data distributions on each node, compared to the global data
distribution. The second defining characteristic of FeGAN is
the sampling method. Balanced sampling is used which means
nodes with a more evenly distributed data distribution are
sampled more often

FeGAN also demonstrates the performance benefits of
federated learning, including being able to effectively sam-
ple models from up to 176 different devices. FeGAN also
demonstrated an increase in throughput, which in their paper
is measured as epochs per second, of up to five times over
MDGAN. However, this increase in throughput only happens
when there are more devices. With fewer devices, MDGAN
has better throughput.

C. Cross Domain Experimentation

GANs have been used to create synthetic data in places
where there is not enough real data available. This is the
subject of image-to-image translation for rare-classes. This has
been done for generating image data for rare species living in a
given location. Previous research has demonstrated that using
data from a different domain can improve the performance
of the generator of a GAN. In the research, using images of
common species of animals, enhanced the performance of the
GAN, even when the goal was not to produce that species.
For example, assume hogs and deer lived in the same forest.
Furthermore, assume hogs are rare, but deer are common. If
the goal is to generate synthetic images of hogs, one could
include images of deer in the training data, and it would
increase the performance when generating pictures of hogs.

The two main problems this paper addresses are the genera-
tion of synthetic time-series data, and increasing throughput in
GAN training. The problem of synthesising time-series data is
challenging because of the inherent temporal dynamics of the
data. For example, a common form of time series data is stock



data. A stock may have a real data point at 10 euros, and one
at 20 euros, however, those are unlike to come immediately
after one another. Therefore the model must learn to generate
the next data point based on the previous data point.

TimeGAN attempts to solve the temporal dynamics point
by having an embedding and a recovery model. The em-
bedding model transforms the data into a latent space with
fewer dimensions. This makes it easier for the generator and
discriminator to learn the structure of the data. The recovery
function converts data from the latent lower dimension feature
space into the original feature space.

Federated learning is proposed in the situation when
throughput should be increase by using multiple machines.
Federated learning is a learning technique where multiple
nodes train machine learning models and aggregating them
at a centralised server. The challenge is how to aggregate and
how to sample. aggregation should be done in such a way
that one bad node does not ruin the model, the model should
not get stuck in mode collapse, and it should integrate the
complexities of every node’s model.

FeGAN solves the aggregation problem and the sampling
problem using Kullback-Leibler weighting for the aggregation
and balanced sampling for the sampling. Kullback-Leibler
weighting is a type of weighting which prioritises updates from
nodes based on their their local data’s divergence from the
global data distribution. Since this is not practical for time-
series data, the divergence is calculated based on the diver-
gence of the node’s model from the server model. Balanced
sampling samples nodes based on how balanced their data
sample is. The more balanced the data sample is on the node,
the more often it is sampled.

The way to combine these two is to have every node in a
federated learning system running TimeGAN, and aggregating
the results using FeGAN. Using Kullback-Leibler weighting
does not make sense in this case because the local data
distributions are intentionally very different. Therefore, loss
based weighting is used. Since the dataset TimeGAN is on
every node, balanced sampling is not relevant, since every
node trains on the same dataset.

III. FEDERATED TIMEGAN (FETGAN)

The architecture of FeTGAN is inspired by FeGAN. FeT-
GAN runs a server which aggregates the models and broad-
casts the server model after each aggregation. FeTGAN runs
a standalone GAN on each node, to keep private data off the
server. Each node sends its model weights to the server after
a user defined number of iterations, and receives the results of
the server’s aggregation after the server is done combining the
models. Each node in FeTGAN is running TimeGAN, and the
weights of each component of TimeGAN, can be aggregated
separately.

There are three of the five components of TimeGAN that
have to be shared with the server, in order to generate
the synthetic data. The first is the generator. The generator
generates data in the latent space, which is then recovered.

The second component that is shared with the server is the
supervisor. The supervisor takes as input the data from the
generator, and creates the next sequence of data. The last
component used for generating synthetic data is the recovery
The data from the generator and supervisor are then fed into
the recovery function. In the implementation, every component
of TimeGAN is shared with the server, but this is not necessary
to generate synthetic data. To generate Synthetic data, only the
generator, supervisor, and recovery are needed.

All the weights are sent to the server to be aggregated. In
addition to the weights, the losses are also sent to the server
for the server to apply weighting to the different models. In the
first phase of training, which is the embedding and recovery
training, the embedding loss is shared. This is the loss when
data in the original space is converted to the latent space and
back again.

During the supervised phase of training the supervised
loss is shared. The supervised loss is derived by giving
the supervisor data that has been embedded into the latent
space, and comparing the sequence returned by the supervisor
to the actual data in the latent space. The the loss sent
when aggregating the generator models is the unsupervised
generator loss, which is given by the trained discriminator.
When aggregating the models of the different components,
the weight they are given is inversely proportional to the loss
they report. Therefore, the lower the error a model has, the
more weight it has. This ensures the best model has the most
influence, but the less able models still count.

A primary issue with GANs is they take long to train. The
solution to this is to use more computation resources. One
way to do this is to scale horizontally using federated learning.
This paper aims to integrate the federated paradigm with the
research on TimeGAN. The idea is to increase the iterations
performed per second, while creating high fidelity data.

The implementationof FeTGAN is a parameter server ar-
chitecture where the workers run TimeGAN and the server
aggregates the result. The results are aggregated on the server
using loss based weighting. While FeGAN used Kullback-
Leibler (KL) weighting, which is based on the divergence
between two distributions, this is not as suitable as loss based
weighting. The KL weighting in FeGAN is calculated based
on the divergence of the data distributions on the nodes from
the global distribution. This does not make sense in the context
of time-series data.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Setup

The setup is based on the batch update parameter server
example provided by torch. There is a single server which
aggregates the results, and each worker runs TimeGAN.
FeTGAN can be run with a single node on one machine,
which is exactly the same as the original TimeGAN, it can
be used with multiple workers on one machine, or multiple
workers on separate machines, as long as the server IP address



Fig. 2. Server broadcast model.

is known. The implementation is based on the parameter
server architecture demonstrated by pytorch, using the Remote
Procedure Call (RPC) framework.

B. Data

The experiment was conducted on five datasets. One dataset
containing Google’s historical stock data on a one day time
frame. The features of the data are the volume, high, low,
opening, closing, and adjusted closing prices. Stock prices are
continuous-valued, but aperiodic. Features of stock data are
also correlated with each other. This makes stock data ideal
for testing a model’s ability to generate time-series data.

Time-series data cannot be split randomly, since data points
are dependent on previous data. This means there must be
a continuous sample of data on each node. If this is not the
case, there is no connection between the data sequences, which
makes it impossible to learn the temporal dynamics. Therefore,
each node must have a complete sequence. In the case where
there are two nodes, one node will have the first half of the
data, and the second node will have the second half. This
means there is no overlap between the dataset on each node
in these experiments.

The second dataset is shows energy usage statistics. This is
a much larger dataset, and it has a lot more features.

There are three weather datasets, which include features
such as temperature, humidity, wind speed, and wind direction.
The three locations for these datasets are New York City NY,
Charlotte SC, and Jacksonville FL. The first dataset is used
in a way similar to the stock and energy dataset. The second
two are used for the last experiment, which combines models
from two nodes, one with the Charlotte dataset and one with
the Jacksonville dataset.

All the data is cut by a sequence length of 24 and per-
muted, to make it as similar to independent and identically
distributed data. This sequence length is a hyper-parameter
can be changed, and the effects of changing it can affect the
results.

The experiment setup is shown in figure 1. The server
broadcasts its own model to the clients to initialize all the
models. The clients then run TimeGAN, and send the inter-
mediate results to the server every 100 iterations. The server
computes the average model using loss based weighting, as
described earlier.

C. One Node (Centralized)

This experiment is a reproduction of the original TimeGAN
paper, to verify the results and enable comparisons. In this
test, the single node running TimeGAN has access to the
entire dataset. This test is still conducted with the federated
architecture described previously, except there is only one
node sending weights to the server.

Reproducing results from the original TimeGAN paper, and
associated code turned out to be a challenge. The original au-
thors of TimeGAN had modified their implementation to make
use of Tensorflow 2. However, this had not been completed
successfully. After contacting the authors, the changes were
eventually reverted. This immediately fixed the problem. Jan-
Mark Dannenberg, who was also working with TimeGAN at
the time has made efforts to update the code to Tensorflow 2
successfully.

D. Two Nodes

This is the first test of the aggregation system used. In this
experiment there are two nodes, each running TimeGAN, and
a server averaging the models sent in by the two nodes. As
mentioned earlier, the data cannot be randomly split, because
of the nature of time-series data, so in this experiment the first
node has the first half of the data and the second node has the
second half of the data.

E. Eight Nodes

This is the test of whether FeTGAN can truly perform as
a federated learning system. The server has to aggregate the
models from eight different nodes, and capture the unique
properties in each dataset. Furthermore, each node only has a
sliver of the data, an eighth of the data exactly. This creates a
huge challenge because of the short time frame of each dataset,
and learning patterns across larger time frames. This is not
an issue for the weather data sets, since they are very large.
However, when using the stock dataset, which is a fraction of
the size, it can become a problem.

F. Location Based Data Partition

This is a test of how well FeTGAN can learn the temporal
dynamics of two distinct datasets. The previous tests have
involved splitting a dataset into time chunks, and training one
node per chunk. This experiment is different. It takes two
datasets on the same time frame, one weather data set from
Charlotte SC, and one from Jacksonville FL. One worker has
the Charlotte data, one has the Jacksonville data. FeTGAN is
then run as normal and the models are combined. The test is
to see whether the aggregated model can generate synthetic
data for both Charlotte and Jacksonville.

G. Evaluation

The three analysis tools used to analyse the results are as
follows: t-SNE and PCA analyses, a discriminative score, and
a predictive score. The t-SNE and PCA analyses are done on
both the synthetic and original datasets, which shows how the



generated samples resemble the original in a two dimensional
space.

The discriminative score is a time-series classification
model, which distinguishes between sequences from the orig-
inal and generated datasets. First the original and synthetic
data are labeled real or fake respectively, then an off-the-
shelf classifier is trained to distinguish the two as a supervised
task. The discriminative score is the classification error. The
predictive score uses a sequence prediction model used to
predict the next-step temporal vectors over an input sequence.
The trained model is then evaluated on the original dataset.
The performance is measure by mean absolute error.

H. Results

As can be seen in Figure 3, the PCA and t-SNE analysis
shows that the synthetic data is spreads out more and more
as more workers are added. This is seen most clearly in
the PCA analysis, where the left side of the graph in the
central experiment is in a thin line, but with eight workers, it
resembles a cluster, which is more similar to the original data.
The t-SNE analysis reveals the same, since in the centralised
case there is very little deviation from the pattern. In the eight
worker case, the synthetic data is more noisy, which arguably
better represents the data.

Fig. 3. PCA and t-SNE analysis of synthetic and original stock data

Fig. 4. Discriminative and Predictive scores on the stock data set

The synthetic energy data has the most deviation from the
original data. It is clear to see both by the visual analysis and
the quantitative analysis that the two worker case performed
the best. The eight worker case achieved similar predictive and
discriminative scores compared to the centralised case, but the
visual analysis shows lower quality data. The this was the case
in which both FeTGAN and TimeGAN performed the worst,
but the improvement made by having two nodes is curious.

The energy dataset is the only dataset for which the hyper
parameters had to be changed to achieve good results. In this
model, all components use five layer recurrent network. In
every other model, three layers were used. The number of
layers was found to be the one which affected the performance
the most.

Fig. 5. PCA and t-SNE analysis of synthetic and original energy data



Fig. 6. Discriminative and Predictive scores on the energy data set

The New York City weather data set is marred by an outlier
both for the centralised and two node case, which makes
the visual analysis more difficult. However, all of the PCA
analysis, and the eight worker t-SNE analysis shows the ability
of FeTGAN to produce high fidelity data.

Fig. 7. PCA and t-SNE analysis of synthetic and original New York weather
data

Fig. 8. Discriminative and Predictive scores on the weather data set

The discriminative and predictive scores of the different
experiments can be seen in the tables. It shows that the

discriminative and predictive scores vary only slightly. For the
stock dataset, since it is rather small, it is understandable that
as more nodes are added, the lower the amount of data on each
node, the less able the node is to learn the distribution of the
data. The energy dataset yielded the most interesting scores
because of the divergence of the two node experiment. So far,
there has not been a plausible explanation for this. The weather
dataset is by far the largest dataset, which seems to create
better scores with more workers. One possible explanation
for this is that each worker can learn the nuances in its own
dataset.

I. Location Based Data Partition

This is the most interesting experiment because it demon-
strates the flexibility of FeTGAN, and its ability to integrate
meta data. The dataset includes the longitude and latitude,
which could be aiding the model in generating data for the
different locations. It should be noted, that the two areas have
similar climates, since they are both coastal cities on the east
coast. The tables below show that for both Charlotte and Jack-
sonville the model, which is composed of individual models
can produce high fidelity synthetic data. In the ”aggregated”
columns in the tables below, they are clearly very close to
models trained just for that individual location

Fig. 9. Discriminative and Predictive scores for Charlotte for central &
aggregated models

Fig. 10. Discriminative and Predictive scores for Jacksonville for central &
aggregated models

Notice the improvement in the aggregation scores on the
Charlotte SC dataset. There could be several reasons for this.
One is simply that a model that is trained for 10,000 iterations
on two machines is trained for a total of 20,000 iterations.
This could make it perform better when compared to a model
trained for 10,000 iterations on one machine. This counter the
expected results that since there is data for another location,
which does not have exactly the same climate, the model
should perform worse when aggregated.



The second, and more interesting, explanation is that the
mixing of data from another location actually harmed the
model slightly. However, the benefit gained could be a result of
the aggregated model learning general weather patterns better,
because it has been exposed to more of them. By combining
the two models it is possible that the aggregated model was far
better at generating data which conforms to regular patterns.
An important component of this hypothesis is that Charlotte
and Jacksonville experience similar climates. In the future, it
should be tested whether this could be true when combining
data from more dissimilar locations.

Below are the PCA and t-SNE analyses comparing the data
generated by the aggregated model to real Charlotte data,
and real Jacksonville data. The analysis shows that the model
manages to produce high fidelity data for both locations. The
first row of both figures is generated by TimeGAN, with the
data for a single location. The second row is data generated
by FeTGAN, with data for both Charlotte and Jacksonville.

Fig. 11. PCA and t-SNE analysis of Charlotte weather Data

Fig. 12. PCA and t-SNE analysis of Jacksonville weather Data

Federated TimeGAN also increases throughput, when com-
pared to the centralized version of TimeGAN. Throughput is
defined as the number of times a pass of all the data is done per
second. TimeGAN has three stages of training, the embedding
stage, the supervised loss stage, and the joint training stage.
The only time the components used to generate data are trained
is during the joint training, so that is when the models begin
to be shared.

V. RESPONSIBLE RESEARCH

Ethics are extremely important in the field of GAN research.
One of the foremost ethical questions is that of deepfakes. A
deepfake is a form of synthetic media in which a person in
an existing image or video is replaced with someone else’s
likeness. This can be used nefariously in the form of blackmail,
pornography, and politics. Therefore, GANs must be used
responsibly.

This is especially important in the age of social media, in
which a piece of content produced using a GAN could easily
be spread fast enough to ruin someone’s future career in a
matter of hours. Furthermore, content produced by GANs can

The second important part of GAN research is data privacy.
Federated learning is a step forward in data privacy because
each node, which could be an individual user, can share a
trained GAN model, without sending the data to a centralised
server. Since some information could be extracted from the
model, a further improvement could be to use Differential
Privacy GAN on each node.

VI. DISCUSSION

To see if Federated TimeGAN offers any improvements, it
should be compared with the original version of TimeGAN
in its ability to generate data, and it can be compared with
FeGAN to determine if there is a comparable and significant
increase in throughput. As seen in Figures 3 to 11, the original
TimeGAN performs similarly to FeTGAN. It should be noted
that this is dependent on the dataset.

To compare FeTGAN to FeGAN, it is necessary to calculate
throughput. Throughput in this case, is measured in FLOPS per
second. This is measured by computing the FLOPS required
by each pass of the TimeGAN training, multiplying that
number by the number of nodes, and the number of iterations,
and then dividing the whole result by the time taken. It can
be seen by the figures below, that there is a greater marginal
increase per node when the nodes are on different computers.
It should be noted that in figure 15, there are three machines
used for the two worker and three worker experiment, since
this was the maximum available at the time. The two worker
case features the server on one machine, and a worker on
each of the other two. The eight worker experiment features
the server on one machine, and four workers on each of the
other two.

With regard to FeGAN, the most important comparison is
throughput. FeTGAN shows an increase in throughput when
compared to the original TimeGAN. This can be for a couple
of reasons. The most compelling reason for this is the splitting



Fig. 13. Change in throughput with FeTGAN on a single machine

Fig. 14. Change in throughput with FeTGAN on multiple machines

of the dataset, which makes calculations faster since each node
is handling a smaller dataset.

As expected, when running FeTGAN across more machines,
the increase in throughput is greater than when running
FeTGAN with more workers on one machine. The increase
in throughput between two and eight workers in the multiple
machines case is thirty two percent. In the single machine
case, there is an increase of only twelve percent. This is
encouraging, and suggests that running even more machines
would have a large effect on the throughput.

These experiments are conducted on stock data to enable
comparisons between FeTGAN and TimeGAN. Stock data
is available publicly, so it does not make sense to use this
implementation because of privacy concerns in practice. On
the stock dataset, it also does not appear to offer any benefits
in terms of performance. Using FeTGAN does, however, make
sense with other datasets in which data privacy is of greater
concern. This includes, but is not limited to: energy consump-
tion, typing patterns, and internet traffic. FeTGAN can also be
used to increase the amount of data available because data that
is not directly related may still offer performance increases as
seen with the Charlotte experiment.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, FeTGAN is introduced as an extension of the
original TimeGAN implementation, but adapted for federated
learning using parts of FeGAN. This combination leverages

the embedding and recovery network developed in TimeGAN
to create high fidelity time-series data, while using part
of the aggregation process described in FeGAN. Federated
TimeGAN demonstrates significant throughput improvements
in generating high fidelity time-series data. The splitting of
data by location also demonstrates the robustness of FeTGAN,
and show it can be used in more real life federated learning
situations.

Further work should seek to integrate differential privacy,
and improve the currently naive sampling used in FeTGAN.
Furthermore, a weighting scheme that is more appropriate
for time-series data should be found. Future research should
also be directed at finding a sampling method for Federated
TimeGAN.

Further work should also be done to identify in which
situations a GAN can be aided by data that is not necessarily
related. For example, the question of generating data for rare
classes of data is one that could particularly benefit from other
data.

REFERENCES

[1] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou.
Differentially private generative adversarial network. Technical report,
Computer Science and Engineering, Michigan State University and De-
partment of Computer Science, Rutgers University and Department of
Healthcare Policy and Research, Weill Cornell Medical School, 2018.

[2] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-
series generative adversarial networks. Technical report, University of
Cambridge and University of California Los Angeles, 2019.

[3] Rachid Guerraoui, Arsany Guirguis, Anne-Marie Kermarrec, and Er-
wan Le Merrer. Fegan: Scaling distributed gans. Technical report, EPFL
and Univ Rennes, Inria CNRS Irisa, 2021.

[4] Yotam Intrator, Gilad Katz, and Asaf Shabtai. Mdgan: Boosting anomaly
detection using multi-discriminator generative adversarial networks. Tech-
nical report, Department of Software and Information Systems Engineer-
ing Ben-Gurion University of the Negev, 2018.

[5] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and
Stephen Paul Smolley. Least squares generative adversarial networks.
Technical report, Department of Computer Science, City University of
Hong Kong, and Department of Mathematics and Information Tech-
nology, The Education University of Hong Kong, and Department of
Information Systems, City University of Hong Kong, and Center for
Optical Imagery Analysis and Learning, Northwestern Polytechnical
University, and CodeHatch Corp., 2017.

[6] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon
Kim. Learning to discover cross-domain relations with generative adver-
sarial networks. Technical report, International Conference on Machine
Learning, pages 1857–1865, 2017.


