
 
 

Delft University of Technology

Enhancing quality inspection efficiency and reliability of unscreened recycled coarse
aggregates (RCA) streams using innovative mobile sensor-based technology

Chang, Cheng; Di Maio, Francesco; Bheemireddy, Rajeev; Posthoorn, Perry; Gebremariam, Abraham T.;
Rem, Peter
DOI
10.1016/j.dibe.2025.100611
Publication date
2025
Document Version
Final published version
Published in
Developments in the Built Environment

Citation (APA)
Chang, C., Di Maio, F., Bheemireddy, R., Posthoorn, P., Gebremariam, A. T., & Rem, P. (2025). Enhancing
quality inspection efficiency and reliability of unscreened recycled coarse aggregates (RCA) streams using
innovative mobile sensor-based technology. Developments in the Built Environment, 21, Article 100611.
https://doi.org/10.1016/j.dibe.2025.100611
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.dibe.2025.100611
https://doi.org/10.1016/j.dibe.2025.100611


Enhancing quality inspection efficiency and reliability of unscreened 
recycled coarse aggregates (RCA) streams using innovative mobile 
sensor-based technology

Cheng Chang a,* , Francesco Di Maio a, Rajeev Bheemireddy b, Perry Posthoorn b,  
Abraham T. Gebremariam a, Peter Rem a

a Resource & Recycling, Department of Engineering Structures, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, 
the Netherlands
b DEMO, Delft University of Technology, Gebouw 36, Mekelweg 4, 2628 CD, Delft, the Netherlands

A R T I C L E  I N F O

Keywords:
Recycled coarse aggregates (RCA)
Quality inspection
Concrete recycling
Conveyor belt
3D scanner gocator
Laser-induced breakdown spectroscopy (LIBS)

A B S T R A C T

Recycled coarse aggregates (RCA) from End-of-Life (EoL) concrete face resistance due to inconsistent quality. To 
address this, a mobile, containerized sensor-based inspection system is developed, capable of processing over 100 
tons of RCA per hour. Using advanced 3D scanning and laser-induced breakdown spectroscopy (LIBS), the system 
ensures reliable real-time analysis of particle size distribution (PSD) (Root Mean Square Error: <5.5%) and 
contaminant detection (Accuracy: 0.94). Incremental learning techniques dynamically update chi-square dis
tribution parameters as new spectral data becomes available, refining models continuously without full 
retraining and sustaining high classification performance. Monitoring data are recorded on radio frequency 
identification (RFID) tags, enhancing traceability. This innovation improves efficiency compared to traditional 
methods, supporting sustainable practices in the construction industry. Its applications also extend to related 
fields such as mining, waste management, and resource recovery, contributing to the circular economy, reducing 
reliance on natural aggregates, and promoting environmentally friendly infrastructure development.

1. Introduction

The growing global population and rapid urbanization have signifi
cantly increased the generation of Construction and Demolition Wastes 
(CDWs), making their management a critical challenge for the con
struction industry (Aslam et al., 2020; Kabirifar et al., 2020). CDWs are 
among the largest waste streams globally, comprising diverse materials 
such as concrete, wood, metal, and plastics (Galán et al., 2019; Soto-Paz 
et al., 2023). Inefficient handling and improper disposal of these wastes 
not only accelerate environmental degradation but also deplete natural 
resources, emphasizing the urgent need for sustainable waste manage
ment solutions (Akhtar and Sarmah, 2018; Amesho et al., 2023; K. 
Zhang et al., 2023). In response to these challenges, many countries have 
implemented recycling and reuse strategies to reduce the environmental 
footprint of CDWs and conserve valuable resources (Lederer et al., 2020; 
Luciano et al., 2022; Su et al., 2024). One promising approach involves 
the recycling of concrete from End-of-Life (EoL) infrastructures to 

produce recycled coarse aggregates (RCA), which serve as substitutes for 
natural aggregates. The increasing demand for construction materials, 
alongside the urgency for sustainable waste management, has propelled 
this practice as a progressively feasible solution. This practice enables 
resource conservation, reduces environmental impact, and supports the 
circular economy (Gálvez-Martos et al., 2018; C. Zhang et al., 2022). 
This transition aligns with global circular economy initiatives and 
highlights the construction industry’s shift towards more sustainable 
practices.

Recognizing the potential environmental detriments and the asso
ciated carbon footprint of unfettered natural aggregate extraction, many 
countries are promoting sustainable practices in the construction 
domain (Al Martini et al., 2023; Aslam et al., 2020; Kabirifar et al., 2020; 
Sai Trivedi et al., 2023; Soto-Paz et al., 2023). The European Union (EU) 
has distinctly emerged as a frontrunner, adeptly incorporating sustain
able recycling methodologies into mainstream construction practices 
(Akhtar and Sarmah, 2018; Gálvez-Martos et al., 2018; Lederer et al., 
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2020; Marique and Rossi, 2018; C. Zhang et al., 2022). This shift is not 
merely a reaction to environmental urgency, it marks a strategic tran
sition towards resource conservation and a reduced carbon footprint for 
the entire construction sector.

However, the transition to RCA is fraught with challenges, chiefly 
concerning the assurance of their quality and purity (J. Kim, 2022; H. 
Wu et al., 2023). These challenges are accentuated when the RCA is 
sourced from a diverse range of dismantled infrastructures, bringing to 
the fore issues related to the presence and detection of contaminants 
(Alaejos et al., 2013). These contaminants, if not properly identified and 
managed, can significantly compromise the integrity and applicability of 
RCA in new construction projects (Poon and Chan, 2007; L. Wu et al., 
2024). Consequently, addressing these quality-related concerns is crit
ical to maintaining the performance, durability, and reliability of 
RCA-infused construction (Marín-Cortés et al., 2024; Vegas et al., 2015). 
It requires a focused approach towards standardizing the quality 
assessment methods and developing stringent guidelines to ensure that 
the recycled aggregates meet or surpass the performance metrics of their 
natural counterparts.

Historically, the assessment of RCA primarily relied on traditional 
methodologies, characterized by their labor-intensive nature, prolonged 
time frames, and manual procedures (Marie and Mujalli, 2019; Tuan 
et al., 2022). While these methods have served the industry for a 

significant period, their inherent limitations, such as potential impre
cisions and inefficiencies, have become increasingly evident as the 
construction sector has progressed. Specifically, traditional methods for 
RCA quality control, such as manual sieving and inspection, face several 
critical challenges: (1) low accuracy: manual methods are prone to 
human error, resulting in inconsistent assessments; (2) inefficiency: 
labor-intensive processes are time-consuming and unsuitable for 
high-throughput applications; (3) lack of real-time feedback: traditional 
methods do not provide immediate insights, delaying necessary ad
justments in production lines; and (4) limited adaptability: these 
methods struggle to operate effectively in dynamic environments such as 
demolition sites. As the industry’s aspirations continue to shift towards 
achieving enhanced operational efficiencies without compromising 
quality, the imperative for a more innovative, efficient, and precise 
quality inspection mechanism has grown more pronounced.

Amidst the prevailing challenges, the emergence of sensor technol
ogy provides a promising solution (Barri et al., 2020; Cabral et al., 2023; 
Chang, 2025; Chang et al., 2022, 2025; Lotfi et al., 2015; Trotta et al., 
2021; Xia and Bakker, 2014). The rising demand underscores the po
tential of recent advancements in sensor technology (Bonifazi et al., 
2018; Nalon et al., 2022; Vegas et al., 2015), which offer real-time, 
on-site characterization of RCA. Such state-of-the-art methodologies 
not only enable prompt feedback, expediting the decision-making 

Fig. 1. Concrete to Cement and Aggregate (C2CA) technology.
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process and any necessary recalibrations in production but also augment 
the overall efficiency of the RCA production and usage cycle. Further
more, the integration of real-time sensors into the RCA assessment 
process signifies more than just technological evolution, it represents a 
broader shift towards sustainable construction practices. By allowing for 
instant feedback and adjustments, these systems can reduce wastage, 
optimize resource use, and ensure that the resulting product meets the 
necessary quality benchmarks.

This research delves into the sensor-based quality inspection system 
integrated into the Concrete to Cement and Aggregate (C2CA) technol
ogy (Fig. 1). Fig. 2 presents a flowchart summarizing the methodological 
steps of the quality inspection. This quality inspection system employs a 
3D scanner Gocator and a laser-induced breakdown spectroscopy (LIBS) 
sensor to provide a comprehensive granulometric analysis of RCA and 
enable potential contaminants. The accuracy and validity of the particle 
size distribution (PSD) measurement method are verified using 3D 
modeling with X-ray tomography, comparable to traditional manual 
sieving. Additionally, incremental learning techniques update existing 
models as new spectral data becomes available, dynamically adjusting 
chi-square distribution parameters. This approach ensures continuous 
model refinement without the need for complete retraining, enhancing 
computational efficiency and sustaining high classification 
performance.

To overcome the challenges posed by traditional quality control 
methods, this mobile sensor-based system offers significant advantages: 

(1) Real-Time Precision: LIBS achieves consistent contaminant 
detection under dynamic and static conditions with an accuracy 
of 94%, and PSD estimation shows a Root Mean Square Error of 
less than 5.5%.

(2) High Throughput and Scalability: Capable of processing over 100 
tons of RCA per hour, the system supports industrial-scale oper
ations, meeting the demands of large-scale construction and de
molition projects.

(3) Dynamic Adaptability: Incremental learning ensures the model 
dynamically updates with new spectral data, eliminating the 
need for full retraining and maintaining robust performance.

(4) Mobility and Versatility: The containerized design enables on-site 
operation, reducing transportation costs, optimizing resource 
allocation, and enhancing efficiency in diverse demolition 
contexts.

The innovative use of advanced sensors enables real-time assess
ments on-site, which is particularly valuable in the dynamic context of 
demolition sites. By examining operational aspects and evaluating 
effectiveness in real-world scenarios, this research aims to highlight how 
this technology could improve the quality assessment of RCA. Through 
experimentation and analysis, the study emphasizes the advancements 
in RCA processing, presenting a pathway for industries to achieve sus
tainable growth while maintaining high-quality standards.

2. Materials and methods

2.1. Material samples

This study used recycled concrete aggregates obtained from dis
carded concrete, collected during the dismantling of various in
frastructures throughout the Netherlands. To maintain the purity of the 
EoL concrete, selective demolition methodologies were employed. 
Additionally, other demolition residuals such as brick, foam, glass, 
gypsum, mineral fibers, plastics, and wood were manually separated 
from the collection sites. This segregation process aimed to preserve the 
integrity of the samples. The primary components of the materials used 
in this study are detailed in Table 1.

Fig. 2. Schematic of quality inspection process.
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2.2. Sensor-based quality inspection system

2.2.1. Containerization
The sensor-based quality inspection system, depicted in Fig. 3, plays 

a critical role in the C2CA technology framework. Housed within a 
specialized container, this system performs several vital functions.

The container is partitioned into two areas: an inspection room and a 
control room. These sections are separated to prevent any potential 
harm to operators from the lasers used during the inspection process. 
The inspection room is equipped with sensors for material analysis, and 
it includes a vacuum system designed to reduce dust levels inside the 
inspection room. Reducing dust is essential, as it enhances the sensors’ 
accuracy by lessening their interference with dust particles. The control 
room is set up to receive and process various data collected in real-time. 
It also uses a monitoring system to oversee activities within the in
spection room to ensure operational safety and efficiency.

One of the primary advantages of the container is its mobility, which 
allows easy transport to various demolition sites. This mobility increases 
operational flexibility and optimizes resource allocation. The container 
is designed to facilitate the on-site recycling and testing of concrete 
directly at demolition sites. By processing the demolished concrete on- 
site, the need to transport it to a remote facility is eliminated. This not 

only reduces the costs associated with transportation but also minimizes 
the overall expenses related to the recycling process, as the material is 
reused or repurposed immediately without additional handling or pro
cessing steps.

Additionally, the container acts as a protective shield against adverse 
weather conditions, ensuring the system’s functionality despite external 
environmental challenges. This safeguard is crucial for maintaining the 
accuracy of the sensors’ measurements by protecting the sensitive 
equipment from damage. Furthermore, beyond its role in adverse 
weather conditions, the container’s presence demonstrates the system’s 
adaptability in different field conditions. Such adaptability not only 
ensures the reliability of data but also strengthens the overall robustness, 
resilience, and effectiveness. Consequently, it expands the applicability 
of the system across various demolition and recycling contexts.

In summary, the containerized setup is fundamental in preserving 
data integrity, enhancing operational flexibility, and ensuring the sys
tem’s adaptability. These attributes are key to the technology’s effec
tiveness in a variety of demolition scenarios.

2.2.2. Composition
The sensor-based quality inspection system (Fig. 4) comprises two 

primary sensors: a 3D scanner Gocator and a LIBS sensor. Both sensors 
are positioned directly above the conveyor belt. The Gocator specializes 
in the granulometric analysis of RCA, pinpointing/measuring their PSD. 
This device is adept at generating high-resolution, three-dimensional 
point cloud data, capturing detailed information about the surface to
pology and granular distribution.

The LIBS sensor (Fig. 5) plays a crucial role in identifying contami
nant compositions embedded within the RCA. It achieves this by 
focusing ultra-short pulse lasers on the sample’s surface to create 
plasma, subsequently analyzing the emitted light spectrum from the 
plasma to determine the material composition and content of the sam
ple. Specific experimental parameters used in this study are detailed in 
Table 2.

To mitigate interference caused by continuous laser-induced plasma 
radiation, the detection system employed a time-resolved spectral 
acquisition method using temporal gating. This technique isolates the 
emission from the plasma at its peak intensity, typically occurring 
within the first 20 ns post-laser excitation. A gated detector synchro
nized with the laser pulses was used to collect only the desired spectral 
data while excluding background radiation.

To prevent the loss of spectral information during high-speed LIBS 
operations, several strategies were implemented: 

(1) Optimized Laser Focus and Alignment: The laser was precisely 
focused on the sample surface using the lens with a focal length of 
300 mm. This ensured consistent plasma generation, avoiding 
irregularities in the spectral data.

(2) High-Resolution Spectrometer: The LIBS system employed a 
spectrometer with a resolution of 0.1 nm, capable of capturing 
subtle variations in plasma emission.

(3) Temporal Gating: A temporal gate was applied to collect only the 
most intense part of the plasma emission, reducing noise from 
continuous plasma radiation or ambient light.

(4) Dust and Debris Mitigation: A vacuum system in the inspection 
container reduced the presence of dust and debris, which could 
obscure the laser-sample interaction or interfere with spectral 
readings.

A noteworthy aspect of the system’s design is the ingenious incor
poration of multiple reflective mirrors, which facilitates the simulta
neous monitoring of RCA on two separate conveyor belts with the use of 
only one Nd:TAG laser. This innovative approach not only reduces the 
associated costs but also amplifies the system’s overall operational 
efficacy.

Table 1 
Principal components for each material.

Material Type Principal Components

Recycled Coarse 
Aggregates (RCA)

Silica (SiO₂), Calcium Carbonate (CaCO₃), Calcium Silicate 
Hydrate (C-S-H), Aluminum Oxide (Al₂O₃)

Brick Silica (SiO₂), Aluminum Oxide (Al₂O₃), Iron Oxide (Fe₂O₃)
Foam Expanded Polystyrene ((C₈H₈)n), Blowing Agent (C₅H₁₂)
Glass Silica (SiO₂), Sodium Oxide (Na₂O), Calcium Oxide (CaO)
Gypsum Calcium Sulfate Dihydrate (CaSO₄⋅2H₂O)
Mineral Fibers Silica (SiO₂), Calcium Oxide (CaO), Magnesium Oxide 

(MgO), Aluminum Oxide (Al₂O₃), Iron(III) Oxide (Fe₂O₃)
Plastics Polyvinyl Chloride ((C₂H₃Cl)n)
Wood Cellulose ((C₆H₁₀O₅)n), Hemicellulose (C₅H₈O₄), Lignin 

(C₉H₁₀O₃)
Recycled Cement Paste 

(RCP)
Calcium Silicate Hydrate (C-S-H), Calcium Hydroxide (Ca 
(OH)₂), Ettringite (Ca₆Al₂(SO₄)₃(OH)₁₂⋅26H₂O), Calcium 
Carbonate (CaCO₃)

Recycled Fine 
Aggregates (RFA)

Silica (SiO₂), Calcium Carbonate (CaCO₃), Residual 
Cement Paste (C-S-H, Ca(OH)₂)

Fig. 3. Sensor-based quality inspection system.
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2.2.3. Inspection
The inspection process begins with the introduction of RCA into the 

system via a feeder, followed by their deposition onto the conveyor belt, 
resulting in the formation of a triangular-shaped pile of RCA. This 
triangular configuration is designed to ensure a uniform distribution of 
the RCA, extending from the innermost region to the outer edges of the 
pile (Fig. 6). This deliberate arrangement is particularly advantageous as 
it optimally facilitates the surface inspection conducted by the Gocator, 
allowing for precise assessment and estimation of RCA properties.

As RCA piles move along the conveyor belt, they are sequentially 
inspected by both the Gocator and LIBS sensors. The data generated 
during these inspections are instantaneously recorded in a computer 
system and subsequently uploaded to a secure cloud storage platform for 
long-term archiving and retrieval. Additionally, monitoring data are 
also linked to radio frequency identification (RFID) tags attached to the 
piles to enhance traceability. The conveyor belt operates at a constant 
velocity of 0.529 m/s, enabling a single conveyor belt to transport more 

Fig. 4. Sensor-based quality inspection system.

Fig. 5. Schematic diagram of LIBS.

Table 2 
Experimental parameters.

Parameter Value Description

Laser Pulse Wavelength 
(nm)

1064 Nd:YAG laser, suitable for high-precision 
spectroscopic analysis.

Laser Pulse Frequency 
(Hz)

100 Balances high-resolution data acquisition with 
system throughput.

Laser Pulse Energy 
(mJ)

170 Generates plasma effectively while minimizing 
surface damage.

Laser Pulse Duration 
(ns)

6 Provides a concentrated energy burst for plasma 
generation.

Focal Length of Lens 
(mm)

300 Optimizes laser energy density for uniform 
plasma generation.

Conveyor Belt Speed 
(m/s)

0.529 Ensures uniform material inspection at high 
throughput.
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than 50 tons of RCA per hour.

2.3. Analysis methods

2.3.1. Particle morphology
The primary objective of the particle morphology analysis is to 

achieve a statistically representative and geometrically characterization 
of RCA particles, ensuring that the morphological features such as size, 
shape, and orientation are comprehensively and reliably captured. This 
characterization is crucial for understanding the behavior and perfor
mance of RCA in various applications, particularly where particle shape 
and distribution significantly impact material properties.

The feeding method for the RCA piles is meticulously designed to 
ensure symmetry, which justifies focusing the analysis on only one side 
of the piles. This symmetric feeding method guarantees that the particle 
distribution within the heap is uniform, allowing the segmentation and 
analysis process to be both efficient and representative of the entire pile.

Employing the Fastscape algorithm (Braun and Willett, 2013), 
originally developed for terrain analytics, the system performs a 
watershed segmentation process (Steer et al., 2022) of 3D point clouds 
to accurately delineate RCA particles. The segmented regions are then 
encapsulated within ellipsoidal envelopes, enabling a quantifiable 
analysis of particle morphology, structure, and orientation. This method 
addresses challenges such as over-segmentation and ensures accurate 
geometrical representation through ellipsoidal fitting, providing a 
comprehensive statistical and geometrical description of RCA particles. 
The process involves several steps:

Initial segmentation: The procedure begins by applying the water
shed algorithm, traditionally used for 2D digital elevation models, to 
segment global 3D point cloud data. This adaptation allows the algo
rithm to effectively delineate individual particles by treating peaks in 
the data as watershed ridges, thereby dividing the data into distinct 
segments.

Segmentation correction: Commonly, the initial segmentation can 
result in over-segmentation, where particles are divided into smaller, 
unnecessary parts. To correct this, the method merges particles that are 
closely located. This merging is based on two criteria: the proximity of 
the particles’ summits and the alignment of their surface normals. 
Additionally, particles that are excessively flat or elongated are 
removed. These steps refine the segmentation and enhance the overall 
quality.

3D ellipsoidal fitting: After the particles have been segmented and 
appropriately labeled, the next step is to characterize their geometrical 
properties. This is done by fitting 3D ellipsoids to each particle. Ellip
soidal fitting involves a complex optimization process where the best- 
fitting ellipsoid is calculated to approximate the shape and size of 
each particle. This step is crucial as it quantifies the particle structures, 
which can be vital for further analysis and applications.

Morphological Analysis: This method provides detailed geometrical 
information like the size, shape, and orientation of each particle. These 

properties are derived from the dimensions and orientation of the fitted 
ellipsoids. The key aspect of this ellipsoidal model is the choice of the 
second shortest axis as the main parameter for measuring graduation 
information. This particular axis is selected because it effectively rep
resents the particle size, and consequently, helps in determining the 
PSD. The use of this axis is beneficial because it strikes a balance, being 
more informative than the shortest axis, which might be too small to 
provide useful data, and less variable than the longest axis, which could 
be too sensitive to minor changes in particle shape. This makes the 
second shortest axis a reliable and representative measure for assessing 
the characteristics of different particles in a sample.

2.3.2. 3D modeling with X-ray tomography
To further verify the accuracy of algorithms simulating particle 

morphology, medical imaging techniques are employed to scan samples 
of RCA piles. It is important to note that this imaging process is not part 
of the container technology but is instead used for offline verification 
and calibration purposes. This enabled the creation of 3D models of their 
interior to capture the actual particle morphology for comparison. 
Computed Tomography (CT) imaging, a commonly used modality (Basu 
et al., 2011), employs X-rays to acquire multiple angular projections of 
an object, which are then used to reconstruct the object’s linear atten
uation coefficient distribution. The resulting images are typically 
assembled into a series of consecutive axial slices arranged in parallel 
(Pelc, 2014). CT scan information is digitally archived, frequently in a 
format referred to as Digital Imaging and Communications in Medicine 
(DICOM). This format arranges the information into an organized 
collection that includes both the imaging data and related metadata 
(Fajar et al., 2022). Metadata parameters like slice thickness, instance 
number, pixel spacing, rescale slope, and rescale intercept found in 
DICOM files are employed during the data preprocessing phase.

The Hounsfield unit (HU) scale, employed in CT imaging, quantifies 
the radiodensity of tissues and materials. It sets the baseline with water 
at 0 HU and air at roughly − 1000 HU, where substances of greater 
density show higher HU values. The process of converting the linear 
attenuation coefficient of each material at a specified effective energy 
into HU uses the standard equation: 

HU =

(
μmaterial − μwater

μwater

)

× 1000 (1) 

where μ represents the linear attenuation coefficient. In the process 
known as Hounsfield scaling or CT number scaling (Huda and Slone, 
1996), raw attenuation values derived from CT scans are converted into 
Hounsfield units using the equation: 

HU = (PV × RS) + RI (2) 

where PV signifies the pixel value, representing the original value 
attributed to a pixel within a CT scan. RS, recognized as the rescale 
slope, is a scaling factor employed to modify the pixel values accord
ingly. Meanwhile, RI, identified as the rescale intercept, denotes a 
particular offset value applied to alter the pixel values.

Retrieving pixel arrays from DICOM files, organized by the instance 
number found in the metadata, involves adjusting each pixel’s value in 
the CT image based on the rescale slope and intercept values. This 
process standardizes the pixel values to accurately represent the actual 
attenuation coefficients. Following this standardization, the pixel values 
are then transformed into HU.

To facilitate a comprehensive comparison with algorithms that 
simulate particle morphology, adopting a distinct methodology 
involving the CT scanning of samples becomes imperative. Conventional 
CT scanning techniques typically involve making equidistant vertical 
incisions through the sample to capture cross-sectional imagery. How
ever, to enhance the comparability, it is crucial that slices are made at 
uniform intervals along an oblique plane parallel to the surface of the 
sample. This procedure demands the compilation of CT scan images into 

Fig. 6. Layered formation of RCA piles.
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a cohesive ensemble, which is then used to construct a 3D model of the 
sample, employing the transformed HU values. Subsequently, this model 
undergoes re-sectioning to align with the comparative analysis 
requirements.

2.3.3. Dice similarity coefficient
To assess the extent of overlap between results obtained from algo

rithmic simulations and X-ray tomography, the Dice similarity coeffi
cient (DSC) is employed. The Dice coefficient is a statistical metric used 
to measure similarity, often applied in image processing to gauge spatial 
overlap. Its values range from 0 (indicating no overlap) to 1 (indicating 
perfect overlap). This measurement method provides a quantitative way 
to compare the accuracy and alignment of the two sets of data, facili
tating an objective evaluation of how closely the simulation results 
mimic the X-ray tomography findings.

The Dice coefficient (Dice, 1945; Sørensen, 1948), also known as the 
Sørensen–Dice coefficient, is a statistical tool used to measure the sim
ilarity between two samples. In the context of image processing, the Dice 
coefficient is often used to quantify the spatial overlap between two 
images. The Dice coefficient is defined as: 

DSC =
2 × |A ∩ B|
|A| + |B|

(3) 

where:
|A ∩ B| is the size of the intersection of two sets (in the context of 

images, these would be pixel sets) – basically, the number of pixels that 
are classified as the foreground (or as a particular object) in both images. 
|A| is the number of pixels classified as the foreground in the first image. 
|B| is the number of pixels classified as the foreground in the second 
image.

The value of the Dice coefficient ranges from 0 to 1, where 0 in
dicates no overlap and 1 indicates perfect overlap. This coefficient is 
particularly useful as it quantifies the similarity between two binary 
images. In an ideal case, if the predicted segmentation matches the 
ground truth segmentation exactly, the Dice coefficient would equal 1.

2.3.4. Contaminant detection
Contaminant detection in RCA is achieved by employing spectral 

analysis. This study builds upon the cluster-based identification algo
rithm (Chang et al., 2022), which improved data representation. The 
current research focuses on refining this algorithm to further increase its 
operational efficiency and adaptability. These refinements lead to more 
reliable contaminant identification by improving the accuracy and 
speed of the detection process. In the dynamic field of spectroscopic 
analysis, environmental factors influence LIBS spectra, making adapt
ability to new data crucial for maintaining model accuracy and rele
vance (T. Chen et al., 2020; Wang et al., 2021). Therefore, periodic 
calibration is necessary. The incremental learning technique provides a 
practical approach for real-time spectral data analysis. This method 
significantly enhances performance and flexibility by eliminating the 
need for complete model retraining, making it well-suited for applica
tions in environments where data is continuously generated. 

(1) Data preprocessing: To efficiently process spectral data, it is 
necessary to preprocess the raw data. Analysis has shown that 
focusing on the wavelength range of 200–900 nm is sufficient to 
achieve the desired outcomes, thereby improving computational 
efficiency. This preprocessing includes standardizing the spectral 
values to ensure uniform magnitude scales across different 
datasets, thereby highlighting unique data characteristics. Z- 
score standardization is used to maintain the data’s distribution 
while aligning its mean and standard deviation to zero and one, 
respectively. This standardization captures essential data char
acteristics, such as the distribution patterns of peaks and troughs.

(2) Parallel processing for enhanced principal component analysis 
computations

Each laser pulse generates a spectrum denoted as S = (s1, s2,…, sN), 
where si (i= 1,2,…,N) represents the intensity of plasma emission at 
wavelengths λi. N is the total number of measured wavelengths. This 
method positions each laser pulse into an N-dimensional space, creating 
distinct clusters for different materials based on their spectral signa
tures. New laser pulses are either assimilated into existing clusters or 
identified as outliers based on how much their spectra deviate from the 
norm.

The axes of the coordinate system of S can be scaled and rotated to 
simplify the multi-dimensional normal distribution of points within a 
cluster. This simplification is achieved by defining a new orthonormal 
coordinate system, represented by N unit vectors α = (α1,α2,…,αN). In 
this new coordinate system, the multi-dimensional normal distribution 
decomposes to N independent one-dimensional normal distributions, 
each aligned with a new axis. Thus, the spectrum in the database 
transforms into the new coordinate system as: 

ξ = (ξ1, ξ2,…, ξN) = (S⋅α1, S⋅α2,…, S⋅αN) (4) 

Effective categorization does not require all N dimensions; a smaller 
number n is sufficient. This reduction minimizes the influence of irrel
evant or noisy parts of the emission spectra. The significant information 
is projected into the leading dimensions of the new coordinate system. 
After the principal component analysis (PCA) process, the spectral 
database for a cluster consists of the number n, the principal component 
vectors (ξ1,ξ2,…,ξn), and a center point ξ with variances σ2, describing 
the multi-dimensional normal distribution of the spectra.

By leveraging optimized Basic Linear Algebra Subprograms (BLAS) 
and Linear Algebra PACKage (LAPACK) libraries and implementing 
parallel processing (Abdelfattah et al., 2021; Psarras et al., 2022), we 
can significantly enhance the efficiency of PCA computations. These 
improvements are crucial for handling large datasets, particularly in 
applications involving spectral data analysis, where computational de
mands are high.

The BLAS and LAPACK libraries are fundamental tools for perform
ing efficient linear algebra computations (Frison et al., 2018; Psarras 
et al., 2022). BLAS provides low-level routines for common operations 
such as vector addition, scalar multiplication, dot products, and matrix 
multiplication. Optimized implementations, such as OpenBLAS and Intel 
Math Kernel Library (MKL) (Frison et al., 2020; Yamazaki et al., 2018), 
exploit modern CPU architectures to deliver significant performance 
improvements through multi-threading and vectorization. LAPACK ex
tends BLAS functionalities by offering routines for more complex linear 
algebra problems, including solving linear systems, eigenvalue prob
lems, and singular value decomposition (SVD). By leveraging optimized 
BLAS libraries, LAPACK routines can achieve high performance across 
various hardware architectures. Parallel computing libraries can paral
lelize independent tasks like computations on different data chunks. 
Optimized BLAS libraries internally use multi-threading for operations 
like matrix multiplication, which can be configured to utilize multiple 
threads. 

(3) Cluster-based identification

Post-PCA, the database catalogs a material by assigning a finite 
number of principal components, n. This step defines a new coordinate 
system through n orthonormal vectors, facilitating the depiction of 
spectral data as multi-dimensional normal distributions around a 
centroid. Following normalization, principal component values are 
assumed to follow a chi-square distribution, which is crucial for classi
fying materials based on their spectral data. The conformity to the ex
pected chi-square distribution is verified through P-value analysis, 
determining the significance level for recognizing specific materials.
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Each component ξm (m= 1,2,…, n) in the set (ξ1, ξ2,…, ξn) follows a 
normal distribution with a mean of ξm and a variance of σ2

m. After 
applying z-score standardization, each standardized value Zm is calcu
lated as: 

Zm =
ξm − ξm̅̅̅̅̅̅

σ2
m

√ (5) 

These standardized values follow a normal distribution with a mean 
of 0 and a variance of 1. To test if the data comes from a χn

2-distribution, 
the chi-square value is calculated as: 

χ2 =
∑n

m=1
Zm

2 =
∑n

m=1

(ξm − ξm)
2

σ2
m

(6) 

This chi-square value helps determine the likelihood that the data 
follows the expected χn

2-distribution. Each χ2 can be converted into a 
probability P-value for the χn

2-distribution. A higher χ2 value corre
sponds to a lower P-value, indicating greater confidence that the data 
does not fit the expected distribution. P-values below a predetermined 
significance level indicate statistical significance. When this significance 
level is set as the acceptance criterion for a particular material, any 
spectra with P-value exceeding this threshold will be regarded as orig
inating from that material. 

(4) Incremental Learning

Implement incremental learning techniques to update the model as 
new spectral data becomes available. This can be achieved through 
online PCA methods and updating chi-square distribution parameters 
dynamically.

Given a new spectral observation St at time t (represents the index of 
the data point being introduced, i.e., it is the time step or the sequential 
position of the data point), the mean vector μt and covariance matrix Ct 

of the spectral data in the original N-dimensional space are updated 
using the following equations: 

μt = μt− 1 +
1
t
(St − μt− 1) (7) 

Ct = Ct− 1 +
1
t
[
(St − μt− 1)(St − μt)

T
− Ct− 1

]
(8) 

Here, the covariance matrix Ct is updated prior to performing PCA, 
capturing the variability of the spectral data in the original N-dimen
sional space. This updated covariance matrix reflects the latest statistical 
characteristics of the data, which is essential for accurately calculating 
the principal components. Subsequently, the principal components are 
extracted from the updated covariance matrix Ct using eigenvalue 
decomposition. In this approach, earlier spectral data are given the same 
weight as later spectral data, ensuring equal consideration throughout 
the time series. However, it is important to note that alternative methods 
exist, which prioritize more recent spectral data by assigning them 
higher weights, thereby adapting more swiftly to recent changes in the 
data.

Following PCA, the spectral data is transformed into a lower- 
dimensional space where each principal component follows a normal 
distribution. The chi-square distribution is then employed to evaluate 
the goodness-of-fit for new data points. To maintain the accuracy of this 
statistical test, it is essential to dynamically update the chi-square dis
tribution parameters as new data is integrated.

Let ξt represent the vector of principal components at time t. The 
mean ξt and variance σ2

t of the principal components are updated 
incrementally: 

ξt = ξt− 1 +
1
t
(ξt − ξt− 1) (9) 

σ2
t = σ2

t− 1 +
1
t
[
(ξt − ξt− 1)

2
− σ2

t− 1
]

(10) 

The chi-square statistic for the new observation ξt is computed as: 

χ2
t =

∑n

i=1

(
ξt,i − ξt,i

)2

σ2
t,i

(11) 

By continuously updating ξt and σ2
t , the model dynamically adjusts to 

reflect the latest data distribution, thereby improving classification ac
curacy and robustness.

This method demonstrated a substantial reduction in computational 
load compared to traditional batch PCA, while maintaining similar 
levels of dimensionality reduction efficacy. Additionally, the dynamic 
updating of chi-square parameters facilitated more accurate and 
responsive classification, particularly as new data was introduced.

3. Results and discussion

3.1. PSD calculation

3.1.1. 3D point cloud data
Given the observed uniformity and consistency in the distribution 

pattern of constituents within the RCA piles, it becomes feasible to 
extrapolate the PSD characteristics of the entire pile through a focused 
analysis of the PSD associated exclusively with the outer surface layer of 
the pile. This method presents an effective means of obtaining a repre
sentative understanding of the overall PSD of the RCA piles. Using the 
Gocator scanner, a comprehensive scan of the RCA pile’s external sur
face was conducted, yielding detailed 3D point cloud data (Fig. 7 (a)).

The spatial resolution of this 3D point cloud data is crucial as it af
fects the accuracy and detail of the RCA particle measurements. In this 
context, it’s paramount to note that the resolution of the point clouds 
under study demonstrated discernible variances across different spatial 
orientations—a phenomenon that has broader implications for the 
precision of granulometric assessments.

In the direction parallel to the motion of the conveyor belt, the res
olution of 3D point cloud data is influenced by two factors. The first 
factor is the velocity of the conveyor belt, controlled by adjusting the 
rotational speed of the motor drive. This rotational speed adjustment is 
achieved through the manipulation of the motor’s output frequency and 
the number of poles. Specifically, the motor drive in this study operates 
at 50 Hz with a 4-pole design, resulting in a rotational speed of 1500 
rpm. Mechanical adjustments include a gearbox ratio of 19 and a wheel 
perimeter of 401.92 mm, resulting in a conveyor belt speed of 0.529 m/ 
s. The second factor affecting the resolution is the encoder resolution of 
the Gocator, which was calibrated to record 1024 ticks per revolution, 
translating to a point cloud resolution of 0.3925 mm along the conveyor 
belt’s path.

Perpendicular to the conveyor belt, across its width, the resolution 
varies between 0.375 mm and 1.1 mm. This range is inherently tied to 
the Gocator’s field of view at any given point in time. For accuracy, the 
transverse resolution was standardized at 0.375 mm in this study.

Vertically, concerning the height or depth of the RCA piles, the 
Gocator’s advanced internal mechanisms come into play. The system 
provides a resolution gradient from a fine 0.092 mm to a coarser 0.488 
mm. This variability highlights the scanner’s versatility and adaptability 
in handling different granulometric scenarios, establishing it as a crucial 
tool in the comprehensive evaluation of RCA piles. In this study, the 
resolution was set at 0.092 mm in the vertical dimension.

3.1.2. PSD calculation
The PSD of RCA piles was determined using the method described 

previously. This involved fitting the 3D point cloud data of the RCA piles 
into ellipsoidal models (Fig. 7 (b)) to capture morphological data for 
each particle. The resulting PSD was effectively demonstrated through a 
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cumulative percentage retained graph, as depicted in Fig. 8. This graph, 
supported by calculations of ellipsoidal volume and the RCA’s apparent 
density, provided a clear visualization of the PSD characteristics 
inherent to the RCA piles. The insights gained from this analysis are 
crucial for understanding the aggregate structure and its potential in
fluence on the performance of concrete.

Subsequently, a cross-referential analysis was conducted to validate 
the accuracy and reliability of this non-intrusive, surface-based tech
nique for PSD determination. This entailed comparing the PSD results 
from the 3D point cloud data with those obtained through the tradi
tional, more invasive method - manual sieving. The comparison aimed 
to ascertain the degree of correlation and consistency between the sur
face PSD measurements and the actual overall PSD of the entire RCA 
piles. Fig. 8 depicts this comparative study, showing the cumulative 
percentage retained curves as predicted from 3D point cloud analytics 
against those obtained from manual sieving, based on pilot scanning 

trials. The results indicate a minimal difference between the two 
methods, affirming a high degree of accuracy in the surface-based 
technique.

To further assess the precision and efficacy of this surface-based PSD 
measurement technique, the Root Mean Square Error was calculated 
between the predicted and manually derived values, resulting in de
viations of 4.93%, 5.38%, and 4.27% across three experiments. These 
low Root Mean Square Error values confirm the robustness and precision 
of this surface-based technique in estimating the PSD of RCA piles on a 
conveyor belt. Initial results demonstrate a high degree of concordance 
between the two methods, suggesting that the 3D scanning approach 
could effectively approximate the comprehensive PSD with a significant 
reduction in manual effort and time.

3.1.3. X-ray tomography validation
To further validate this surface-based PSD measurement technique, 

Fig. 7. Point cloud processing.

Fig. 8. Cumulative percentage retained graphs.

Fig. 9. RCA sample.
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X-ray tomography was employed to capture the morphology of particles 
beneath the surface of RCA plies. The internal structure captured by X- 
ray tomography was compared to the ellipsoids simulated from 3D point 
cloud data. A black box (as shown in Fig. 9 (a)) was used to simulate the 
inclined surface on one side of the formed piles, with RCA spread inside. 
The sample was scanned using both 3D scanning and X-ray tomography 
techniques. The data processed from these methods are shown in Fig. 9 
(b) and (c) respectively.

The ellipsoidal fitting model illustrated in Fig. 9 (b) originated from 
3D point cloud data obtained through 3D scanning with the Gocator. 
This process involved segmenting the 3D point cloud data and fitting it 
to the ellipsoidal shape. The 3D model in Fig. 9 (c) was generated 

through layered scanning with X-ray tomography. This process involved 
compiling each scanned layer and isolating the particle components 
using thresholding. Both models were incrementally sliced from top to 
bottom, parallel to the inclined surface, allowing observation of each 
layer’s cross-section. Then the two obtained cross-sectional images of 
each layer were overlapped for comparative analysis. Six representative 
layers were selected in Fig. 10, following the top-down slicing depth. On 
the left are the cross-sectional details of the simulated ellipsoidal model. 
In the middle are the cross-sectional details derived from the 3D model 
constructed using X-ray tomography, reflecting the real particle distri
bution. On the right are the overlapping cross-sections of the two cutting 
methods for comparison.

Fig. 10. Cross-sectional details.
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To assess the similarity between cross-sections obtained by the two 
methods, the DSC was employed. Following the sequence depicted in 
Fig. 10, from (a)–(f), the DSC values are 0.63, 0.71, 0.82, 0.85, 0.86, and 
0.82. From the selected sections, an incremental increase in overlap 
between the two methods is evident, peaking at 0.86 before slightly 
decreasing. Initially, lower overlap occurs due to irregularities on the 
particle surfaces, challenging their representation in the simulated el
lipsoids. As the sections progress, the ellipsoids better emulate the in
ternal particle distribution, maintaining an overlap of around 0.8. 
However, in deeper sections of the ellipsoids, a gradual appearance of 
blank spaces in the lower-left region is observed. This is attributed to the 

presence of numerous smaller particles in that area. 3D scanning only 
captures information from the top layer, hence forming a single layer of 
smaller ellipsoids. In contrast, X-ray tomography does not encounter this 
limitation, as additional particles fill the same location, preventing the 
appearance of blanks.

This comparative analysis further validates the reliability of surface- 
based PSD measurement techniques. Consequently, the Gocator 3D 
scanning can be employed for a quick and convenient estimation of PSD.

Fig. 10. (continued).
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3.2. Contaminant detection

This study aimed to evaluate the performance differences of the LIBS 
sensor in capturing spectra from objects under varying environmental 
conditions. The focus was on assessing its ability to adapt to new data to 
maintain model accuracy and relevance in dynamic spectroscopic 
analysis. Additionally, the study aimed to understand how the move
ment of the conveyor belt might affect the effectiveness of the system’s 

reflective mirrors. Spectral measurements from a wide range of mate
rials were recorded under two conditions: while the conveyor belt was 
running and while it was stationary.

Fig. 11 provides a visual representation of the findings. The results 
reveal minimal variation in the spectra from the materials, regardless of 
the conveyor belt’s motion. The minor differences in spectra observed 
between the moving and stationary states of the conveyor belt do not 
significantly impact the overall system performance. This uniformity 

Fig. 11. Comparison of spectra of different materials in the operation and stationary states of the conveyor belt.
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demonstrates the reliability and effectiveness of the system’s design. It 
also supports the system’s ability to perform consistently under different 
operational scenarios. Its resilience under different operational condi
tions underscores its potential as a reliable tool for real-time industrial 
applications, ensuring consistent and accurate data acquisition regard
less of conveyor belt activity. This is paramount for industries where 
conveyor belt speeds might vary, and where maintaining measurement 

consistency is critical.
Despite the general consistency, there were slight spectral differ

ences noted between the moving and stationary states of the conveyor 
belt. These differences, though minor, could lead to errors when clas
sifying materials with similar chemical compositions, such as recycled 
cement paste powder (RCP), recycled fine aggregates (RFA), RCA, and 
others. These subtle variations, although not significantly affecting 

Fig. 11. (continued).
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overall system performance, must be considered in detailed analyses to 
avoid misclassification and ensure accurate results.

After acquiring spectra from various materials, a systematic classi
fication was conducted using a cluster-based identification algorithm 
enhanced by incremental learning techniques. This algorithm, recog
nized for its ability to group data by identifying inherent similarities, 
was applied to discern patterns within the updated spectral data. The 
model’s performance underwent a thorough assessment to ensure its 
reliability for practical applications. Remarkably, the model showcased 

robust performance metrics for this new system: achieving an accuracy 
rate of 0.94, a weighted average precision of 0.95, a weighted average 
recall of 0.94, and an F1-score (weighted average) standing at 0.95 on 
the validation dataset.

These performance metrics confirm the effectiveness of LIBS as an 
analytical tool, especially for analyzing recycled concrete aggregates 
within industrial contexts. These metrics highlight LIBS’s ability to 
deliver both accuracy and precision quickly, without compromising the 
quality of the outcomes. By adopting these advanced analytical 

Fig. 11. (continued).
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techniques, industries can confidently make strides forward, optimizing 
the use of recycled materials and maintaining high-quality standards.

3.3. Discussion on experimental conditions and limitations

While the proposed sensor-based quality inspection system demon
strates significant advancements in RCA quality assurance, several 

experimental variables require closer examination to assess their influ
ence on system stability and accuracy. This section delves into key 
factors such as conveyor speed, sensor resolution, and environmental 
conditions, providing insights into the system’s robustness and 
adaptability.

Fig. 11. (continued).
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3.3.1. Conveyor speed
The conveyor belt speed was maintained at a constant velocity of 

0.529 m/s during all experiments. This speed was chosen based on an 
optimization process that balances throughput and inspection accuracy. 
However, it is crucial to consider how variations in conveyor speed may 
affect sensor performance. At higher speeds, potential challenges 
include reduced time for laser-sample interactions in the LIBS sensor and 
lower resolution of 3D point cloud data from the Gocator scanner. 
Conversely, slower speeds could increase inspection time but improve 

data fidelity. Future studies should examine the trade-offs associated 
with different speeds, particularly in dynamic industrial settings where 
operational throughput requirements vary.

3.3.2. Sensor resolution
The spatial resolution of the 3D point cloud data varied depending on 

the orientation relative to the conveyor belt. Horizontal resolution 
ranged from 0.375 mm to 1.1 mm, while vertical resolution was set at 
0.092 mm. These settings ensured detailed granulometric analysis but 

Fig. 11. (continued).
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may not account for scenarios involving smaller particles or high-density 
piles. Additionally, the LIBS sensor’s temporal gating technique effec
tively mitigated noise but required precise synchronization to achieve 
optimal spectral acquisition. Investigating how resolution changes 
impact data accuracy under different particle size distributions and pile 
configurations is essential for refining system performance.

3.3.3. Environmental conditions
Environmental factors such as dust, lighting, and temperature fluc

tuations were controlled during experiments through the use of a vac
uum system and an enclosed container. While these measures ensured 
accurate sensor readings, real-world conditions at demolition sites may 
pose additional challenges. To provide a comprehensive understanding 
of the sensor-based quality inspection system’s performance in practical 

Fig. 11. (continued).
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scenarios, the following environmental factors and mitigation strategies 
are discussed: 

(1) Dust and debris interference

Impact: High levels of dust and debris, common in demolition sites, 
can obscure the laser-sample interaction, reducing the accuracy of both 
3D scanning and LIBS measurements.

Mitigation: The system employs a vacuum-based dust suppression 
mechanism, which enhances visibility and minimizes interference dur
ing data acquisition. Experimental results confirm a significant 
improvement in measurement consistency when dust levels are reduced. 
Future designs could integrate advanced filtration systems to further 
mitigate this challenge. 

(2) Ambient lighting variations

Impact: Changes in ambient lighting, especially in outdoor applica
tions, could potentially affect the optical components of the Gocator and 
LIBS systems.

Mitigation: The use of enclosed, containerized setups effectively 
shields the sensors from direct sunlight or variable lighting conditions. 
However, integrating adaptive calibration algorithms that adjust for 
residual lighting variability can further enhance robustness. 

(3) Temperature fluctuations

Impact: Extreme temperature variations may influence the 

alignment of optical components or the performance of electronic sys
tems, potentially leading to calibration drift.

Mitigation: Laboratory tests indicate that the system maintains stable 
performance within a broad operational temperature range. Incorpo
rating temperature-compensating sensors or materials can enhance 
resilience in extreme climates. 

(4) Material surface moisture

Impact: Surface moisture on RCA particles can alter the spectral 
response captured by LIBS, potentially leading to the misclassification of 
contaminants.

Mitigation: Pre-drying mechanisms or spectral correction algorithms 
can be introduced to account for moisture-induced spectral variations, 
ensuring more accurate material classification. 

(5) Vibrations and conveyor belt motion

Impact: Vibrations from on-site machinery or inconsistencies in 
conveyor belt motion may affect the stability of sensor readings, espe
cially during LIBS operations.

Mitigation: The use of time-resolved spectral acquisition and syn
chronization with belt movement ensures minimal signal distortion. 
Additional mechanical stabilizers could further reduce the impact of 
vibration-induced inaccuracies.

Understanding and mitigating these environmental factors are crit
ical for deploying the system in diverse operational scenarios. While 
initial validations demonstrate the system’s robustness, field trials in 

Fig. 11. (continued).
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harsher environments could provide further insights into its adapt
ability. By integrating advanced calibration techniques and environ
mental compensation mechanisms, the system’s accuracy and reliability 
can be sustained across varied conditions.

3.3.4. Scenario variations and system adaptability
To evaluate the robustness of the system, further testing under 

diverse scenarios is recommended. For instance: 

(1) Material Heterogeneity: The presence of varied contaminants, 
such as metals or polymers, may influence LIBS classification 
accuracy, especially for materials with overlapping spectral 
signatures.

(2) Pile Formation: The triangular configuration of RCA piles ensures 
uniform inspection but may not represent alternative deposition 
methods. Analyzing different pile geometries would help assess 
system scalability.

(3) Operational Scale: Scaling up the system to higher throughput 
levels or multiple conveyor belts might reveal bottlenecks in data 
processing or sensor synchronization.

The current study does not extensively quantify the effect of these 
variables across all possible operational conditions. While preliminary 
results suggest robustness in controlled environments, real-world ap
plications may reveal additional constraints. Future work should 
incorporate advanced modeling and simulation techniques to predict 
performance under varying conditions. Additionally, integrating adap
tive algorithms to adjust sensor parameters dynamically could further 
enhance system reliability in fluctuating environments.

4. Comparison to contemporary work

4.1. PSD analysis

Several recent studies (Bai et al., 2021; Fu and Aldrich, 2023; 
Hamzeloo et al., 2014; Z. Zhang et al., 2020) have primarily focused on 
using 2D image analysis for particle size detection in materials such as 
copper ore, coal, and rock. However, there is limited research specif
ically targeting particle size detection for RCA. In these studies, mate
rials are typically spread flat on a conveyor belt, and in some cases, the 
particles do not overlap. This arrangement results from the inherent 
limitation of conveyor belt systems, which expose only one side of the 
material. Moreover, these methods are rarely scaled for on-site, high-
throughput applications, leading to inefficiencies in industrial contexts. 
Additionally, most studies emphasize PSD of surface-level particles 
while neglecting the distribution of entire particle batches. Lu et al. 
(2024) proposed an improved lightweight rock object detection method 
using sieve sizes ranging from 20 mm to 200 mm for particle size studies. 
While this method improves upon approaches, it struggles with smaller 
particles. Particles near or below 20 mm are often unclear in the images, 
resulting in a relative measurement error of up to 14.13%. Moreover, the 
distribution of the finer fractions is estimated using fitting models rather 
than directly measured. This limitation is particularly significant for 
RCA, where particle sizes typically range from 2.0 mm to 22.4 mm—a 
size range inadequately addressed by current techniques.

To address these limitations, our system collects representative data 
to achieve integrating portability, high throughput, and precise PSD 
evaluation, making it suitable for industrial deployment. The system 
processes over 50 tons of RCA per hour on a single conveyor belt, 
marking a substantial improvement over laboratory-based methods, 
which are inherently constrained in scalability. Additionally, the results 
can be immediately uploaded to cloud systems for further processing 
and traceability, facilitating faster decision-making and improved 
quality control.

4.2. Contaminant detection

In the field of contaminant detection using sensors for industrial 
applications, most studies have concentrated on identifying contami
nants in images through visual sensors. However, few have specifically 
addressed the challenges of detecting contaminants in RCA under real- 
world industrial conditions. For instance, Bobulski and Kubanek 
(Bobulski and Kubanek, 2021) employed a conveyor belt system inte
grated with a microcomputer for image processing to classify plastic 
waste into four categories, achieving an accuracy of 74%. Lohumi et al. 
(2021) developed an online inspection system using fluorescence and 
color imaging to detect foreign materials unintentionally introduced 
into fresh-cut vegetables. Nevertheless, their method failed to identify 
contaminants such as transparent low-density polyethylene, Styrofoam, 
small stepper pins, and needles. Mewada et al. (2024) applied advanced 
computer vision models for contamination detection in densely clut
tered waste environments. The YOLOv8-x model achieved a mean 
average precision of 0.463 with the aid of transfer learning.

Compared to other sensors, the LIBS sensor offers significant ad
vantages, including versatility, multi-element detection, and suitability 
for field applications (Brunnbauer et al., 2023). The LIBS sensor is 
commonly used for real-time detection of rapid changes in material 
composition, especially in the metalworking industry, where it aids in 
the classification of steel, various alloys, slag, and metal scrap (X. Chen 
et al., 2024; H. Kim et al., 2021; Park et al., 2021). While LIBS sensor 
excels in identifying components within a single material type, its 
application for real-time detecting diverse substances remains limited. 
Furthermore, its use in industrial settings for rapid contaminant detec
tion in RCA on conveyor belts is rare. For example, Huber et al. (2014)
demonstrated the use of the LIBS sensor for quasi-real-time identifica
tion of chlorine-containing waste polymers in an industrial sorting plant. 
This system enabled sorting based on chlorine concentration, particu
larly for polyvinyl chloride. Merk et al. (2015) developed a LIBS-based 
system for metal scrap identification directly on a conveyor belt. Simi
larly, Werheit et al. (2011)described the use of the LIBS sensor to 
identify aluminum alloys in post-consumer scrap during conveyor 
motion.

Despite these advances, implementing effective algorithms to pro
cess the spectra captured by the LIBS sensor is critical to ensure robust 
performance in dynamic industrial environments. Arbitrary sample 
shapes, surface contamination, and movement increase signal fluctua
tions compared to static conditions. Additionally, uncontrollable factors, 
such as environmental variability, can lead to data sparsity, adversely 
affecting classification model performance.

Our system achieves comparable accuracy to existing methods while 
excelling in adaptability. The LIBS sensor’s ability to analyze materials 
in real time under dynamic conditions offers a significant advantage for 
industrial applications. Unlike many systems that require stationary 
samples for precise detection, the proposed system maintains consistent 
performance during conveyor belt motion. Spectral measurements 
reveal negligible variations between stationary and moving states, 
confirming its robustness. The incorporation of an incremental learning 
algorithm enables continuous adaptation to new spectral data without 
the need for retraining from scratch. Compared to other spectroscopic 
systems, this feature is particularly advantageous in environments with 
diverse contaminants and evolving material compositions.

5. Limitations and future orientations

5.1. Limitations

While the proposed sensor-based quality inspection system demon
strates substantial advancements in the processing and evaluation of 
RCA, it is not without limitations. These include: 
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(1) Operational Constraints: The system’s performance was evalu
ated under controlled demolition site conditions. Variability in 
environmental conditions such as extreme weather, dust, and 
unexpected debris might impact system accuracy and reliability.

(2) Contaminant Spectrum: Although the LIBS sensor accurately 
identifies a wide range of contaminants, certain low-abundance 
or novel contaminants may remain undetected due to spectral 
overlap or insufficient training data.

(3) Computational Demand: The real-time nature of the system ne
cessitates significant computational resources, which may limit 
deployment in resource-constrained environments.

(4) Scalability Challenges: While the current configuration processes 
over 100 tons of RCA per hour, further scaling to larger demoli
tion sites or simultaneous multi-site operations could pose 
logistical and technical challenges.

(5) Economic Viability: The cost-effectiveness of implementing the 
system on a large scale, particularly in regions with limited re
sources, remains to be further assessed.

5.2. Future orientations

To address the limitations and build upon the current findings, the 
following directions are proposed: 

(1) Environmental Adaptability: Developing robust calibration al
gorithms and protective measures to enhance system perfor
mance under diverse environmental conditions, including 
temperature extremes, high humidity, and airborne particulates.

(2) Enhanced Contaminant Detection: Expanding the spectral data
base of contaminants using advanced machine learning tech
niques to improve detection accuracy for rare or emerging 
contaminants.

(3) Distributed Computing Models: Exploring cloud-based distrib
uted computing solutions to optimize the processing of high- 
dimensional spectral data, reducing on-site computational 
burden.

(4) Modular Scalability: Engineering modular systems that can be 
easily configured for larger-scale or multi-site operations, 
enabling seamless scalability.

(5) Lifecycle Assessment: Conducting comprehensive cost-benefit 
and lifecycle assessments to evaluate the economic and envi
ronmental impacts of deploying the system at scale.

(6) Integration with Circular Economy Practices: Investigating the 
integration of real-time RCA data with broader circular economy 
frameworks to optimize material recovery and reuse in con
struction projects.

(7) Cross-Disciplinary Applications: Exploring applications of the 
sensor-based system in other industries such as mining, waste 
management, and resource recovery, to enhance its versatility 
and impact.

6. Conclusion

(1) Innovation in Quality Inspection: This study introduces an 
advanced, mobile sensor-based quality inspection system for 
RCA, demonstrating its capability to process over 100 tons per 
hour. The integration of 3D scanning and LIBS provides a 
comprehensive evaluation of PSD and contaminant detection, 
setting a new benchmark for non-intrusive RCA quality 
assessment.

(2) Technological Advancements: By utilizing incremental learning 
techniques and cloud-based data management, the system en
sures continuous model updates without requiring complete 
retraining. This innovation significantly enhances computational 
efficiency and sustains high classification performance, address
ing the limitations of traditional RCA assessment methods.

(3) Sustainability and Efficiency: The containerized design ensures 
operational flexibility and enables on-site recycling at demolition 
sites. This reduces transportation costs, minimizes environmental 
impact, and aligns with circular economy principles, promoting 
sustainable construction practices.

(4) Validation and Reliability: Comprehensive validation using X-ray 
tomography and manual sieving confirms the accuracy of PSD 
measurements. The Root Mean Square Error values—below 
5.5%—highlight the system’s robustness in PSD estimation. 
Similarly, the LIBS sensor’s performance was validated under 
dynamic conditions, demonstrating minimal spectral variation 
between moving and stationary states of the conveyor belt. The 
system achieved an accuracy rate of 0.94, a weighted average 
precision of 0.95, and a weighted F1-score of 0.95 on the vali
dation dataset, underscoring its reliability in real-time contami
nant detection. These results collectively affirm the system’s high 
precision and reliability for both PSD and contaminant analysis.

(5) Applications and Impact: The system’s adaptability and scal
ability extend beyond construction to other industries, such as 
mining and waste management. Its ability to deliver real-time 
data supports informed decision-making, ensuring consistent 
material quality and compliance with industry standards.

(6) Future Implications: The demonstrated precision and consistency 
of LIBS in contaminant detection, even during conveyor motion, 
underscore its potential for widespread industrial adoption. In
cremental learning capabilities provide a foundation for adapting 
to evolving material compositions, ensuring long-term relevance 
and applicability.

(7) Contributions to the Field: This research highlights the integra
tion of cutting-edge technologies into RCA processing, bridging 
the gap between innovation and practical application. It advances 
the sustainable agenda by harmonizing efficiency and precision, 
paving the way for eco-friendly infrastructure development 
without compromising quality standards.
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Huber, N., Eschlböck-Fuchs, S., Scherndl, H., Freimund, A., Heitz, J., Pedarnig, J.D., 
2014. In-line measurements of chlorine containing polymers in an industrial waste 
sorting plant by laser-induced breakdown spectroscopy. Appl. Surf. Sci. 302, 
280–285. https://doi.org/10.1016/J.APSUSC.2013.10.070.

Huda, W., Slone, R., 1996. Review of radiologic physics. Phys. Med. Biol. 41 (12), 2807.
Kabirifar, K., Mojtahedi, M., Wang, C., Tam, V.W.Y., 2020. Construction and demolition 

waste management contributing factors coupled with reduce, reuse, and recycle 
strategies for effective waste management: a review. J. Clean. Prod. 263, 121265. 
https://doi.org/10.1016/J.JCLEPRO.2020.121265.

Kim, H., Lee, J., Srivastava, E., Shin, S., Jeong, S., Hwang, E., 2021. Front-end signal 
processing for metal scrap classification using online measurements based on laser- 
induced breakdown spectroscopy. Spectrochim. Acta B Atom Spectrosc. 184, 
106282. https://doi.org/10.1016/J.SAB.2021.106282.

Kim, J., 2022. Influence of quality of recycled aggregates on the mechanical properties of 
recycled aggregate concretes: an overview. Construct. Build. Mater. 328, 127071. 
https://doi.org/10.1016/J.CONBUILDMAT.2022.127071.

Lederer, J., Gassner, A., Kleemann, F., Fellner, J., 2020. Potentials for a circular economy 
of mineral construction materials and demolition waste in urban areas: a case study 
from Vienna. Resour. Conserv. Recycl. 161, 104942. https://doi.org/10.1016/J. 
RESCONREC.2020.104942.

Lohumi, S., Cho, B.K., Hong, S., 2021. LCTF-based multispectral fluorescence imaging: 
system development and potential for real-time foreign object detection in fresh-cut 
vegetable processing. Comput. Electron. Agric. 180, 105912. https://doi.org/ 
10.1016/J.COMPAG.2020.105912.

Lotfi, S., Di Maio, F., Xia, H., Serranti, S., Palmieri, R., Bonifazi, G., 2015. Assessment of 
the contaminants level in recycled aggregates and alternative new technologies for 
contaminants recognition and removal. EMABM 2015: Proceedings of the 15th 
Euroseminar on Microscopy Applied to Building Materials, pp. 17–19.

Lu, B., Zhou, J., Zhang, Y., Liu, Y., Wang, Q., 2024. An alternative rotating object 
detection method for rock particle size distribution analysis. Powder Technol. 444, 
120059. https://doi.org/10.1016/J.POWTEC.2024.120059.

Luciano, A., Cutaia, L., Altamura, P., Penalvo, E., 2022. Critical issues hindering a 
widespread construction and demolition waste (CDW) recycling practice in EU 
countries and actions to undertake: the stakeholder’s perspective. Sustainable 
Chemistry and Pharmacy 29, 100745.

Marie, I., Mujalli, R., 2019. Effect of design properties of parent concrete on the 
morphological properties of recycled concrete aggregates. Engineering Science and 
Technology, an International Journal 22 (1), 334–345. https://doi.org/10.1016/J. 
JESTCH.2018.08.014.
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