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Summary

The RadioAstron Gravitational Redshift experiment aims to test the Einstein Equivalence Principle with un-
precedented level of accuracy, verifying the Local Position Invariance by means of frequency measurements
probing the varying flow of time experienced by the spacecraft H-maser during its highly eccentric orbit. The
relevance of this experiment within the framework of relativity comes from the modern physics need of under-
standing and trying to unify the two cornerstones of Quantum Mechanics and General Relativity, which are
not compatible. The most accurate measurement of the EEP violation parameter performed so far has been
recently carried out with the Galileo satellites 5 and 6 (GSAT0201 and GSAT0202), reaching an accuracy of
δε ≈ 3×10−5, improving the previous Gravity Probe A result by more than a factor 4. The current RadioAstron
Gravitational Redshift experiment aims to improve the Gravity Probe A result as well by an order of magnitude,
reaching δε ≈ 10−5.

The RadioAstron SPEKTR-R is a Russian space radio telescope, launched on July 18 2011 from the
Baikonour Cosmodrome in Kazakhstan. Its main purpose is to operate in the field of space VLBI science.
However, its ultra stable H-maser, combined with the highly eccentric orbit of the spacecraft, have made it
perfectly suitable for the realization of gravitational redshift experiments.

The experiment presents several challenges, both related to technical difficulties such as hardware synchro-
nization modes of the satellite radio system, and to the uncertainties involved in the actual frequency measure-
ments. The inaccurate knowledge of the spacecraft state vector, the impossibility to measure the frequency
offset between ground and space H-masers without making use of the EEP principle redshift formula, the noise
affecting the observations and the uncertainty in the coordinates of the main tracking station (Pushchino) are
the most relevant issues.

In support of the RadioAstron team, a simulation study was carried out to investigate the statistical prop-
erties of the EEP violation parameter estimation process with the purpose of understanding and describing the
limiting factors in the experiment. A covariance analysis by means of a multi-arc least squares orbit deter-
mination estimation including ε in the list of estimated parameters, has been done using the Tudat software
and using real orbital data corresponding to the experiments time intervals as a reference for the algorithm
initial step. Under the assumptions of statistically independent arcs, white Gaussian noise, arc-wise constant
frequency offsets for every station in one way observables, the simulation of RA Doppler measurements within
the orbit determination process has shown that the experiment accuracy mainly depends on the observations
noise and the a priori knowledge of the H-masers offset uncertainty. The spacecraft state vector parameters, as
well as the Pushchino station coordinates, are not correlated to ε, whose correlations with one way frequency
biases are, on the other hand, not negligible. Given a fractional frequency noise of 10−12 and an Allan deviation
reference value of 10−13 for one hour averaging time, the resulting EEP violation parameter accuracy, according
to the simulations study, corresponds to an order of magnitude of 1.9608 × 10−5 and the mean value of the
correlations of ε with the one way frequency offsets is right above 0.5.

The main assumption of white Gaussian noise is supported by the analysis of real frequency data from the
spacecraft with PRIDE tracking algorithms. However, results are still considered quite optimistic because of the
very simple radiation pressure force model adopted (cannonball), two way observations been considered com-
pletely unbiased and other possible unmodelled noise effects neglected. Moreover, the assumption of constant
offsets during one hour observation times is not completely realistic since it is known that they experience a
drift, even though this is believed to be extremely small in one hour time.

The simulations study also shows that ε and ∆f0 could be decorrelated in particular circumstances of low
noise and a favourable geometry of the spacecraft trajectory at the times of the Doppler observations but this
aspect is still under investigation.
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Chapter 1

Introduction

This thesis is intended to provide support to the RadioAstron Gravitational Redshift Experiment by means of
a study of the achievable experiment accuracy based on the current capabilities and the data collected through
the several Doppler tracking sessions performed with the Russian satellite. The results presented throughout
the report have been achieved through simulations carried out with the TUDelft Astrodynamics Tool Software
(Tudat). The experiment topic involves several different fields of study which are all intimately connected and
will be introduced in the following sections.

After giving some background information related to the fundamental physics aspect, the RadioAstron
mission and satellite characteristics in sections 1.1 and 1.2, the experiment is described in 1.3. Past and future
gravitational redshift tests are reported in 1.4 and 1.5. Finally, the research questions formulated for the thesis
project are given in 1.6.

1.1 Background information

General Relativity and Quantum Mechanics are the two cornerstones of modern physics. However, they are
very distinct theories and are not compatible. New attempts for their unification imply tiny violations of
General Relativity. More specifically, the new developed theories predict a violation of the Einstein Equivalence
Principle ([4]), therefore several tests have been going on. Gravitational Redshift experiments are fundamental
in this framework since their purpose is to verify the Local Position Invariance: one of the three principles
into which the EEP can be split. So far the best ever achieved accuracy has been recently obtained with the
’GREAT’ experiment, conducted with two European GNSS Galileo satellites ([8] and [9]) who has improved by
more than a factor of 4 the previous old Gravity Probe A experiment result. The RadioAstron Gravitational
Redshift Experiment follows this path aiming to reach an accuracy similar to the ’GREAT’ experiment. Future
experiments are introduced in section 1.5.

RadioAstron Spektr-R is a Russian space radio telescope which was launched in a highly elliptical orbit
on July 18 2011 from the Baikonour Cosmodrome. This satellite is designed for operating space VLBI science
increasing the resolution obtained by ground VLBI. The possibility of using a 10 m space radio telescope has
brought very significant improvements in the angular resolutions of radio astronomical observations ([10]). The
main ground radio data acquisition station is Pushchino, located near Moscow. The orbit of RadioAstron is
perturbed by the Moon in such a way that the radio telescope can be adopted for different kinds of VLBI
observations of different sky regions during its mission lifetime ([10]). Its main scientific goal is related to
purely astrophysical studies, regarding for instance objects like black holes, active galactic nuclei (AGN) and
interplanetary and interstellar plasma ([1]). However, thanks to the H-maser which is onboard the satellite, it
has been possible to perform a gravitational redshift test taking advantage of the highly elliptic orbit of the
spacecraft. Further details of the experiment are given in 1.3.
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1.2 RadioAstron Spektr-R Spacecraft

The Spektr-R spacecraft carries a Space Radio Telescope made up of a 10 m diameter antenna which is equipped
with 1.35, 6.2, 18 and 92 cm receivers ([1]). An overview of the SRT is shown here:

Figure 1.1: SRT configuration. Taken from [1]

As seen from Figure 1.1, on the other side of the satellite there is also a communication antenna which is
used to transmit the data acquired by the SRT. The power is generated through solar panels which are in the
x − y plane and, concerning the attitude determination, the satellite is equipped with star sensors used for
precise attitude control and radio telescope pointing.

The science equipment onboard RadioAstron is pictured in Figure 1.2:

Figure 1.2: Science complex picture from [1]

The main components of the science complex, according to [1] are characterized by the

• Blocks of co-axial antenna feeds
• LNA blocks
• Radio-astronomy receivers
• Frequency standards blocks: two Hydrogen masers and two rubidium frequency standards

The characteristics of the Hydrogen maser frequency standard can be found here below, according to [6]:
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Table 1.1: H-maser characteristics as reported in [6]. σy(τ) represents the Allan deviation corresponding to
an averaging time τ .

σy(τ = 1000s) 3× 10−15

σy(τ = 1h) 2× 10−15

Drift (1 day) 1× 10−15

Drift(1 year) 2× 10−13

The onboard hydrogen frequency standard provides a reference signal of 5 MHz or 15 MHz, while the
rubidium frequency standard is 5 MHz ([1]). Another reference signal used for RadioAstron is the 15 MHz
signal of the phase synchronization loop of the HDRRC that is synchronized thanks to the signal from an
H-maser of a ground tracking station. The data acquired by the SRT is sent to the ground station through the
HDRRC complex which works with several synchronization modes described later on.

The spacecraft is also equipped with an array of retroreflectors for laser ranging purposes. In particular
there are 100 angle retro-reflectors FA674M as reported in [2]. The configuration of the laser ranging equipment
is illustrated in the following figures:

Figure 1.3: Layout of laser retroreflector array. Picture from [2].
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Figure 1.4: Array numeration and general configuration. Picture from [2].

After the launch the spacecraft was inserted into a highly elliptical orbit characterized by a 578 km perigee
and 333500 km apogee, with an orbital period of 8.32 days ([1]). Since the mission lifetime would have been
too short (too low perigee height) two orbit corrections with thrusters were made on March 12012, extending
the mission lifetime to about 9 years. RadioAstron’s orbit is strongly perturbed by the Sun and the Moon and
it is predicted that its orbit eccentricity will change from 0.96 to 0.59 during its lifetime and the inclination will
vary in the interval 10 - 85 deg. ([1]). The radius of perigee varies from 7000 km to 81500 km, while the radius
of apogee from 280000 to 353000 km. The evolution of the orbit in time is given in the next group of figures:
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Figure 1.5: Perigee and Apogee heights (a), Declination and Right Ascension evolution through the years as
reported on [1](b,c,d,e)

A very important source of perturbation for RadioAstron is the solar radiation pressure. Due to the shape
of the satellite, the radiation pressure acts on different elements of the SRT in different ways and at different
times of the orbit; therefore the effect is significant. Moreover, due to the same effect, a torque acts on the
satellite and thus a set of reaction wheels constantly works in order to keep the attitude fixed. Since the torque
produces an effect which increases over time, the reaction wheels need to increase their rotational speed as well
in order to balance the perturbation. To accomplish this, the reaction wheels need to be unloaded in turn and
this produces other perturbations to the spacecraft center of mass ([1]).

The orbital parameters, as measured on April 142012, are given here:

Table 1.2: Orbital elements of RadioAstron on April 142012, as reported on [1]

Major axis a = 174714.234km
Eccentricity e = 0.692
Orbital inclination i = 79.69deg
Ascending node longitude W = 300.55deg
Argument of perigee w = 303deg
Time of perigee passage 07 : 12 : 37.00 UTC 14 April 2012
Orbital period ≈ 8.5d

Given the challenging aspects of RA orbit determination, the OD for the RadioAstron mission support has
been carried out by estimating additional parameters related to solar radiation pressure and the perturbing
accelerations due to the unloading of the reaction wheels. The details of this approach are found in [11]. The
orbital data of the satellite are found in [12].
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1.3 RadioAstron gravitational redshift experiment

The special equipment onboard RadioAstron, in particular the presence of a high performance Hydrogen maser
(H-maser) is extremely interesting for the performance of a gravitational redshift test. Comparing the frequency
of the space borne H maser with a same frequency standard located on Earth (at Pushchino station), can lead
to a better accuracy than the previous tests performed so far, described in section 1.4 ([6]).

The purpose of the experiment is to verify the following equation, derived in chapter 2, section 2.6, following
the approach of [13]:

∆fgrav
f

=
∆U

c2
(1.1)

This is the first order approximation in 1/c2 of the gravitational redshift effect.
Since the gravitational redshift is a direct measure of the validity of Einstein’s Equivalence Principle, any

violation of this effect (in the way predicted by Equation 1.1) would mean that the EEP, as described in section
2.2, does not hold. The deviation from Equation 1.1 can be expressed, according to [4], as:

∆fgrav
f

=
∆U

c2
(1 + ε) (1.2)

where ε represents the violation parameter (the quantity measured through the gravitational redshift exper-
iments), being equal to 0 in General Relativity.

The main concept is to compare the frequencies of the Ground H-Maser (GHM) and the Space H-maser
(SHM) to probe the varying flow of time. This is done by means of radio links between the ground stations
and the spacecraft. According to [6], the frequency shift experienced by a signal sent from the spacecraft to the
ground is:

f↓s = fs + ∆fgrav + ∆fkin + ∆finstr + ∆fmedia (1.3)

where f↓s is the signal’s frequency as received on the ground, fs is the frequency sent from the spacecraft, ∆fgrav
is the gravitational redshift effect (actually in the case of a one way space to ground link it is a blueshift), ∆fkin
is the kinematic contribution due to the relative velocity between the station and the satellite, ∆fmedia is the
perturbing effect of troposphere and ionosphere and finally ∆finstr is related to the instrumentation noise.

In the case of RadioAstron the main difficulty is that it is not possible to have a direct measure of fs and
thus this quantity is expressed as ([6]):

fs = fe + ∆f0 (1.4)

where fe is the frequency of the GHM and ∆f0 is an offset which is a function of time. The different environ-
mental conditions, in fact, determine a slight shift between the two frequency standards. The cavity ”pulling”
effect, in particular, may produce a drift of the bias over long times ([14]). Moreover, the accurate determination
of ∆f0 is not possible without making use of Equation 1.2. This problem is solved by measuring the difference
in gravitational redshift rather than its absolute value ([4]).

In principle, the accuracy of the experiment is given by the differentiation of Equation 1.2 ([6]):

δε =
δ

∆fgrav

f

∆U
c2

−
∆fgrav

f

∆U
c2

2 δ
∆U

c2
(1.5)

which can be approximated as:

δε ≈
δ

∆fgrav

f − δ∆U
c2

∆U
c2

(1.6)

by making use of Equation 1.2 with ε = 0.
It is clear then that the accuracy of ε depends obviously on the errors in both the gravitational redshift

measurement and the gravitational potential computation. They are indeed intimately connected because they
are functions of the spacecraft state vector uncertainty, but the former also of the several noise sources appearing
in Equation 1.3, among which the clock bias is the most difficult to estimate. The statistical properties of this
offset, together with the characteristics of the observations noise and the spacecraft precise orbit determination,
represent, in fact, the key aspects influencing the experiment accuracy. Understanding how these factors relate
to each other and coming up with a realistic error budget is the objective of this thesis work and is extensively
described throughout chapters 4 and 5.

The aim of the RadioAstron gravitational redshift experiment is to reach an accuracy of δε ≈ 10−5. The
contribution to the gravitational redshift due to the Moon can be neglected in the computations so only the
Earth’s gravitational field is considered.
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1.4 Past experiments

The most relevant past experiments that were carried out to measure the gravtational redshift, are the Pound and
Rebka, the Gravity Probe A and the most recent ”GREAT” experiment performed with the Galileo satellites.

1.4.1 Pound and Rebka

The experiment was performed in 1960 using the 22.5 m tower of the Jefferson Physical Laboratory at Harvard
University. The signals adopted were the gamma rays coming from Fe57 decay. These signals were emitted from
the top of the tower and received on the ground by another Fe57 nucleus. When gamma rays reached the bottom
of the tower they were blueshifted: their frequency in fact became larger according to the relativistic effect,
this meaning that the absorption of the signal from the ground Fe nucleus was less efficient. The gravitational
redshift effect was computed by moving the electromagnetic wave source at the top of the tower in order to
produce a Doppler shift that would compensate the effect of gravity. The gamma ray energy was 14.4 keV and
the velocity of the top source that determined the maximum absorption of the energy at ground was considered
a measure of the frequency shift. The frequency shift, according to Equation 2.26 would be gh/c2 ≈ 10−15 for
h = 22.5m and the accuracy achieved with the experiment was 1 % ([13], [15]).

1.4.2 GP-A

Gravity Probe A was a spaceborne experiment realized in 1976 by means of a rocket carrying onboard a Hydrogen
maser clock and reaching an altitude of 104 km. Through frequency measurements of the signals emitted by the
probe and with a very smart design of the compensation scheme it was possible to distinguish the gravitational
redshift effect with an accuracy of 1.4× 10−4 ([3]). Here the scheme of the measurements is reported:

Figure 1.6: GP-A experiment diagram, as reported in [3].

As seen from Figure 1.6 the two way probe tracking is very useful since it enables to compensate the
gravitational effect providing a detailed measure of the first order Doppler shift (relativistic Doppler shift).
Therefore, once obtained a measure of the first order shift, it is subtracted by the difference between the
spaceborne and ground H-maser frequencies in order to calculate the second order Doppler shift which is
exactly the gravitational redshift effect.

A very similar approach is adopted in the RadioAstron gravitational redshift experiment. However the
substantial difference between the two experiments is that RadioAstron is not designed for the gravitational
redshift experiment and thus it is more complicated to get the oscillating rate of the onboard H-maser.

1.4.3 GREAT project

The Galileo satellites 5 and 6 (GSAT0201 and GSAT0202), which were inserted in the wrong orbits due to
an error during launch (August 30th 2014), have been used to carry out a gravitational redshift experiment
reaching an accuracy of 3×10−5 on the EEP violation parameter (as reported in [8] and [9]). The two satellites
were, in fact, inserted in elliptic orbits and, being both equipped with H-masers, this has made them two perfect
candidates to test the Local Position Invariance. The acronym ”GREAT” stands for Gravitational Redshift
experiment with Eccentric sATellites.

Both the teams who have analysed the Galileo satellites data have adopted a least squares algorithm to fit
the measurements estimating both ε and a bias, the latter being assumed as a linear function of time ([8]). The
satellites state vector parameters were not estimated but some SLR data was acquired in order to improve their
orbital knowledge ([9]).
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The estimation approach adopted by the Galileo teams is similar to the one used for the simulation of the
RadioAstron gravitational redshift experiment in this project study. The main difference is that the simulations
described in chapter 4 were set up with a much larger number of estimated parameters, including also the
satellite state vector and the radiation pressure coefficient.

1.5 Future experiments

A future experiment that will test the local position invariance is the ACES mission which is in preparation.
This ESA mission is designed to test the EEP by placing a very precise atomic clock onboard the ISS and
compare its frequency with ground based clocks through both radio and optical links. The achievable level of
the gravitational redshift measurement is claimed to be 3×10−6, according to [16]. Since the ISS orbit is almost
circular the stability of the clock needs to be extremely high for performing this test.

1.6 Research questions

After introducing the experiment and its several challenging aspects, the following research questions are defined
and answered throughout the thesis report:

• What is the influence of the satellite state vector uncertainty on the EEP violation parameter estimation?
• What is the impact of the Pushchino tracking station position uncertainty on the experiment?
• How can both dynamical and observation models for the gravitational redshift experiment be simulated?
• What are the limiting factors in the experiment?
• How does the observations noise affect δε and its correlations?
• What is the influence of the clock offset a priori uncertainty on the experiment accuracy?
• Which conclusions can be drawn about the achievable experiment accuracy?
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Chapter 2

Fundamental physics of the project
study

This chapter provides the fundamental theory involved in the RadioAstron Gravitational Redshift Experiment
and the simulations study. It is the theory of General Relativity formulated by Einstein. Particular focus will
be given to the Equivalence Principle which is the cornerstone of the whole theory of General Relativity. It is
based on the concept that gravity is not a force but a metric theory. In other words, the trajectories of objects
follow straight lines in the curved spacetime which is shaped by the masses. Starting from an introduction to
the special relativity, given in 2.1, the EEP and the GR are presented in sections 2.2 and 2.3 up to the level
required for defining and understanding the Gravitational Redshift. This is treated in the separate section 2.6.
The main reference used for the description of the fundamental physics given in this chapter is [13].

2.1 Introduction to Special Relativity

The main assumption behind Einstein’s special theory of relativity was that the speed of light in vacuum is a
constant in every reference frame (actually in 1887 the Michelson-Moorley experiment had already confirmed
this, setting the basis for developing further studies about Newtonian mechanics or Maxwell equations). This
assumption is fundamental to understand the concept of flat spacetime.

In special relativity each inertial reference frame is still defined according to the first Newton law and is
therefore characterized by a notion of time according to which the second derivatives of the spacial coordinates
respect to time of a free particle (a particle on which no forces act) are equal to zero. However, the Newtonian
principle of addition of velocities (which comes from the Galilean transformations defined in classical mechanics
to describe relations between two different inertial frames) does not agree with the main assumption made about
the velocity of light. According to the Galilean transformations, in fact, light should have different velocities in
different inertial frames, based on the relative velocity existing between the frames. This problem is solved in
special relativity by admitting that the notion of time and simultaneity of events is different for each inertial
reference frame. Each inertial frame is then characterized by a set of 4 coordinates (t, x, y, z) forming the four
dimensional flat spacetime. A point defined in the spacetime is called an event in order to underline that it is
related to a certain position and a certain time. The geometry of the flat spacetime is non Euclidean; therefore a
new definition of distance needs to be introduced. The length of the infinitesimal line element in flat spacetime
is defined as:

ds2 = −(cdt)2 + (dx)2 + (dy)2 + (dz)2 (2.1)

where s is the length, t is the coordinate time and x, y ad z are the spacial coordinates. Equation 2.1 is invariant
for every system of coordinates defined in flat spacetime. It enables to calculate the distance between points in
spacetime.

Defining the tensor:

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.2)

the differential of the line element can then be expressed in the more compact form:

ds2 = ηαβdx
αdxβ (2.3)
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According to the notation adopted, the repeated indices imply a summation extended to the four coordinates.
This is the Einstein summation convention. ηαβ is the metric of the flat spacetime, which is also known under
the name of Minkowski spacetime, from the mathematician who provided its mathematical model.

According to the definition of the line element, when computing the distance between two points in the
spacetime, it is possible to distinguish 3 different cases:

• (∆s)2 > 0
• (∆s)2 = 0
• (∆s)2 < 0

When (∆s)2 > 0 the two points are said to be spacelike separated, when (∆s)2 = 0 they are null separated
or light separated, and when (∆s)2 < 0 they are timelike separated. Two spacelike separated points are, for
instance, points that are in two different spacial positions at the same time (∆T = 0). Two light separated
points are points for which for example ∆x = c∆T and ∆y = ∆z = 0; and two timelike separated points are
for instance points that are in the same position but at different times.

These definitions allow one to define the so called light cone of a generic point P in the flat spacetime: it
is the locus of points that are light (or null) separated from P. To each point P in spacetime a light cone is
associated: one can say that the upper part of the light cone is the locus of points generated by a light pulse
emitted from P, while the lower part by a light pulse converging in P.

Calling ”world line” a generic trajectory in the spacetime, from the light cone definition given earlier it
follows that particles with a non zero rest mass always follow timelike world lines: the cone is in fact delimited
by world lines followed by light and thus particles which move along world lines that lie inside the light cone
travel at velocities that are always smaller than light speed.

Given these basic definitions, a clock is defined as a device that can measure distances along timelike world
lines and a ruler as a device able to measure distances along spacelike world lines.

A very important quantity which can be introduced is the so called proper time, τ , defined by the following
relation :

dτ2 = −ds
2

c2
(2.4)

Equation 2.4 defines a quantity which is measured in real numbers and has the dimension of time. It represents
the time that a clock would measure along a particle’s world line.

A first relativistic effect can be immediately derived starting from the definition of the proper time. The
proper time between two points A and B that are timelike separated can be in fact computed by integrating
Equation 2.4 and applying the definition of ds given in Equation 2.1, obtaining:

τAB =

B∫
A

dτ =

B∫
A

dt

√
1− v2

c2
(2.5)

with t being the coordinate time, therefore:

dτ = dt

√
1− v2

c2
(2.6)

This relation explains the phenomenon of time dilation: time measured by an observer with a velocity v is
shorter than the difference between the time coordinates at the two timelike separated points. Equation 2.6
describes how to measure this time difference.
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2.2 Einstein’s Equivalence Principle

The main reference of this section is [13], chapter 6.
In the previous section introducing the special relativistic mechanics, the parameter m representing the mass

of a particle is the inertial mass as defined by Newton’s second law. However, Newton’s theory of gravity defines
another concept of mass, called gravitational mass. This is defined by the relation expressing the gravitational
attraction force between two bodies:

F12 =
Gm1m2

|~r2 − ~r1|2
(2.7)

where m1 and m2 are the gravitational masses, G is Newton gravitational constant and ~r2 and ~r1 are the
position vectors of body 1 and 2 defined in an inertial frame.

The concepts of inertial and gravitational masses are therefore different: the first is related to the inertial
properties of the body while the second is a measure of the strength of the body’s gravitational field, as seen in
Equation 2.7. In particular the inertial mass is a concept which is not related to a specific force and thus does not
depend on the origin of the force; gravitational mass instead is strongly related to the gravity force. In principle
there is no particular reason why these two different mass concepts should be exactly equal. What actually
can be said is that inertial and gravitational masses must be indeed proportional since all experiments confirm
that all bodies fall with the same acceleration in a gravitational field. However, the equality of gravitational
and inertial mass is today an experimental fact. This equality has been tested many times through several
experiments; it is actually one of the most accurately tested principles in physics. (e.g. torsion pendulum
experiment conducted in 1994 [17]).

The idea of equivalence between gravitational and inertial mass brings the conclusion that it is in principle
not possible to distinguish the effect of a gravitational field from the effect of a uniform acceleration. Einstein’s
Equivalence Principle (EEP) expresses exactly this concept and is the fundamental principle that sets the basis
for the theory of General relativity. It is hereby given:

” Experiments in a sufficiently small freely falling laboratory, over a sufficiently short time, give results that are
indistinguishable from those of the same experiments in an inertial frame in empty space.”

According to Einstein, since it is not possible to distinguish the effect of a uniform gravitational field respect to
the effect of a uniform acceleration, the equality between gravitational and inertial mass must hold. If gravity
had a different effect on masses of different composition then the EEP principle would not hold. It is exactly
this equality that represents the basis for Einstein’s geometric theory of gravity: if all bodies fall with the same
acceleration independently of their composition it can be said that the curve followed by them is a property of
the spacetime and not really the consequence of a force. This inspired Einstein in developing the concept that
Newtonian gravity is not really a force but consists of a geometric property of the spacetime. In other words
objects that are affected by gravitational fields follow ’straight’ trajectories in a curved spacetime.

The Einstein Equivalence Principle can be better clarified if split into its different aspects. A good distinction
between the main relevant statements included in the principle is provided by [18]:

• Free fall under gravity is the same for all substances (this is known as the Weak Equivalence Principle)
• For freely falling observers special relativity applies locally (this principle is known as the Local Lorentz

Invariance)
• The preceeding properties apply at all times and places (this is known as the Local Position Invariance)

The measurement of the Gravitational Redshift effect, which will be treated in section 2.6, is a way of testing
in particular the Local Position Invariance of the EEP.

2.3 Introduction to General Relativity

The final generalization of the theory of relativity is a theory which is consistent with the special relativity
principles and provides a new way of explaining Newtonian gravity as a geometric property of the spacetime.
The main principle is that mass determines a curvature in the spacetime.

The curved spacetime is not characterized by the Minkowski metric shown in section 2.1 but more in general,
by a metric which can be described as follows:

ds = gαβdx
αdxβ (2.8)

where gαβ is a symmetric tensor depending on position and coordinate time.
At this point the Equivalence Principle plays a fundamental role: it suggests that the properties of the

curved spacetime in a local region around a point P, are indistinguishable from the properties of flat spacetime.
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Mathematically speaking this turns into the assumption that in a point P of curved spacetime it is always
possible to choose a system of coordinates such that:

g′αβ(x′P ) = ηαβ (2.9)

and:

∂g′αβ(x′P )

∂x′γ
= 0 (2.10)

where ηαβ is the Minkowskian metric.
A coordinate system defined by these conditions is then called a ”local inertial reference frame” since it has

the same properties of an inertial frame of flat spacetime.
This assumption drives also the concept of vectors in the curved spacetime: here a vector is defined in a

certain point of curved spacetime where it obeys to the flat spacetime rules. At every point in curved spacetime
vectors can be then defined in the ’tangent spacetime’. Therefore a vector is defined as follows:

a(x) = aα(x)êα(x) (2.11)

and the idea of the scalar product is the same as in flat spacetime. It is important to underline that in
Equation 2.11 every term is a function of the position x: in particular, the orthonormal vector basis differs form
point to point in the spacetime defining a tangent spacetime according to the geometry of the curvature. This
is the difference with respect to the flat spacetime.

Of particular interest are orthonormal bases, defined by:

eα̂ · eβ̂ = ηα̂β̂ (2.12)

2.4 General form of Equations of Motion in curved spacetime

The main reference for this subsection is [13], chapter 8.
In flat spacetime the equation of motion of a non zero rest mass particle reduces to the condition imposed

by Newton’s first law. However, a test particle moving in a general curved spacetime with metric gαβ , has
a different equation of motion. Timelike world lines followed by free particles in curved spacetime are called
”geodesics” and, according to Einstein, the general equation of motion is described by:

d2xα

dτ2
= −Γαβγ

dxβ

dτ

dxγ

dτ
(2.13)

where Γαβγ represent the ”Christoffel symbols” which are defined by:

gαδΓ
δ
βγ =

1

2

(
∂gαβ
dxγ

+
∂gαγ
dxβ

− ∂gβγ
dxα

)
(2.14)

In Equation 2.13 xα still represents the four vector coordinates according to the four vector definition
provided in the special relativistic mechanics, but in this case the equation of motion is described in the most
general form for a test particle moving along a timelike worldine in a curved spacetime. The Christoffel symbols
are intimately related to the spacetime metric and its derivatives: they represent the influence that the curved
spacetime has on the particles motion.

Concerning the motion of light rays (zero rest mass particles) it is necessary to introduce a new parameter
in order to express the equations of motion since the spacetime distance for light rays is always zero. Therefore,
also in the general case, it is possible to choose a parameter γ such that Equation 2.13 holds with respect to γ
and not τ .

2.5 Observable effects of EEP

Based on what is explained in section 2.2, every experiment that confirms the equivalence between gravitational
and inertial mass can be seen as an observable effect of the EEP. As previously said, this equality has been tested
with great accuracy in physics. The first very important experiments were performed with torsion pendulums,
for instance the experiment of the torsion balance performed by Eotvos. It consisted in using two masses placed
on the opposite ends of a rod which was hung from a thin fiber. On the rod there was a mirror reflecting light
beams to a telescope. If there was a rotation of the rod, this would have been detected with very high accuracy
through the telescope. The forces acting on the system were the fiber tension, the gravitational force and the
inertial centrifugal force which would have balanced the system. The experiment was performed with masses of
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different compositions to test if the forces acting on them would be different. If so, there would be a torsion.
The greatest observable effects of the EEP were then obtained using the Solar System as a laboratory. In

particular, through the lunar laser ranging experiments performed so far, by measuring very accurately the
relative motion between the Earth and the Moon it was observed that the accelerations of the Earth and the
Moon about the Sun were the same. Since the Earth and Moon have very different compositions this is a
great confirmation that the EEP is not violated. More precise analyses have been recently studied in order to
improve the accuracy of the strong equivalence principle tests with Lunar Laser ranging (LLR). An overview of
the challenges involved with this kind of experiments is provided in [19] where the data modeling is treated.

Among the observable effects of the EEP, the gravitational redshift is one of the most relevant effects which
can be observed with a high level of accuracy.

2.6 Gravitational redshift

The main reference for this subsection is [13], chapter 9.
The gravitational redshift is a frequency shift effect due to the spacetime curvature which affects electro-

magnetic signals that travel through a region in which the gravitational potential is not uniform.
Given two observers that are located in different points characterized by different gravitational potentials,

the rates of emissions of signals are observed in a different ways by the two observers. Considering for instance
the case of a body of radius R, if f indicates the signal frequency, the following relation holds up to the first
order approximation:

f∞ =

(
1− GM

Rc2

)
f∗ (2.15)

where f∞ is the frequency observed far away from the star (where the potential is assumed to be zero) and ω∗
is the frequency observed at the surface of the star.

To prove Equation 2.15, a solution to Einstein’s equation for curved spacetime is needed. This is the
Schwarzschild solution which exactly describes the geometry of the curved spacetime affected by a homogeneous
spherical body. The Schwarzschild metric is described by the differential line element expressed in spherical
coordinates:

ds2 = −
(

1− 2
GM

c2r

)
(cdt)2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2θdφ2) (2.16)

which is time independent and spherically symmetric. G is the Gravitational constant and M the total mass
of the spherical object.

Given the formula for the energy of a photon measured by an observer with four velocity uobs:

E = hf = −p · uobs (2.17)

and considering the time independence of the metric in Equation 2.16 , a rigorous derivation of the gravitational
redshift can be achieved.

Given that for a static observer at radius r the spatial components of the four velocity are zero and only the
time component exists, this component can be computed starting from the normalization equation:

uobs(r) · uobs(r) = gα,βu
α
obs(r)u

β
obs(r) = −1 = gtt(r)(u

t
obs(r))

2 (2.18)

and thus

utobs =

(
1− 2GM

c2r

)−1/2

(2.19)

This means that the time component of uobs can be expressed in terms of the so called ”Killing vector”
associated with the time independence of the metric:

utobs(r) =

(
1− 2GM

c2r

)−1/2

ξα (2.20)

with

ξ = (1, 0, 0, 0) (2.21)
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being the killing vector. In general a killing vector is a vector that defines a direction along which the metric
is symmetric, in this case it is the time direction.

Computing the energy of the photon at the two different locations, it is obtained:

hf∗ =

(
1− 2GM

R

)−1/2

(−ξ · p)R (2.22)

and

hf∞ = (−ξ · p)∞ (2.23)

but since −ξ · p is always conserved due to the time symmetry of the metric, the relation between the two
observed frequencies is:

f∞ = f∗

(
1− 2GM

c2R

)1/2

(2.24)

This relation if approximated to the first order in 1/c2, leads to the more familiar equation:

f∞ = f∗

(
1− GM

c2R

)
(2.25)

where one can distinguish the Gravitational potential difference between R and infinity as GM/R. Therefore,
the frequency shift experienced by the photons can be expressed with good approximation by:

∆f

f0
=

∆U

c2
(2.26)

where ∆U is the difference gravitational potential difference between the two observers.
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Chapter 3

Methodological foundation of the
experiment

In this chapter the theoretical aspects concerning the methods and principles on which the RadioAstron grav-
itational redshift experiment is based are described. The Doppler tracking physics is explained in section 3.1
where the detailed model of the frequency transfer is provided, followed by an overview of the noise sources.
The orbit modeling and determination are treated in sections 3.2 and 3.3 where particular attention is given to
the explanation of the least squares method. This is, in fact, the mathematical and statistical tool adopted in
the simulations of the gravitational redshift experiment.

3.1 Doppler tracking

The purpose of Doppler tracking is to measure the relative velocity between a station on Earth and the spacecraft
by means of radio links that enable to compare observed frequencies with ground based reference signals. In
case the transmitted signal is derived from a space-based stable oscillator the measurement is said to be ”one
way”; while if the signal is transmitted from the ground and then transponded back by the spacecraft, the
measurement is said to be ”two way”. The observed frequency shift (Doppler), as a function of time, indicates
the relative motion between the spacecraft and the ground station ([20]).

3.1.1 Physical Model

According to the Doppler principle, if a frequency source moves respect to an observer, the frequency of the
signal as received by the observer will be different from the frequency transmitted by the source. The physical
model describing the Doppler shift is obtained starting from the following general relation, adapted from [21]
in the case of a one way link (space to ground or viceversa):

fA
fB

=
dτB
dτA

=
dτB
dtB

dtB
dtA

dtA
dτA

(3.1)

where fA and fB are the frequencies measured at the link ends, while t and τ represent the coordinate and
proper times, as defined in section 2.1.

As seen in Equation 3.1, the ratio between the two measured frequencies (at the ground and in space) is
defined both in terms of the different proper time rates at the two locations (dτBdtB

and dtA
dτA

) and in terms of the

purely geometric term dtB
dtA

. The general proper time rate equation comes from general relativity and can be
expressed in its most general form, according to [22], as:

dτ

dt
=

√
−gµν

ẋµẋν

c2
(3.2)

where gµν denotes Einstein’s general relativity metric and ẋ is the four velocity vector defined in the
relativistic mechanics.

The coordinate time transfer ratio dtB
dtA

can be, instead, obtained by differentiating the quantity tB− tA with
respect to tA. The general formulation of tB − tA, known as the light time equation, is adapted from [23]:

TAB = tB − tA =
|rB(tB)− rA(tA)|

c
+

∆r

c
(3.3)

where rB(tB) and rA(tA) are the vector positions of A (transmitter) and B (receiver) in an Earth centered
inertial frame, and the term ∆r

c represents the light time correction which is actually a delay due to relativistic
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effects.
In order to apply Equation 3.2 and Equation 3.3 to the specific project study of the RadioAstron Gravita-

tional Redshift experiment, the components of both the metric tensor and the coordinate time transfer have
to be written out according to the required level of accuracy. Since the gravitational redshift, as given by
Equation 1.1, is in 1

c2 , higher order terms can be neglected when developing fA
fB

. In particular, Equation 3.2

becomes, after a Post Newtonian expansion of gµν , according to Eq 3 from [21]:

dτ

dt
≈
√

1− 1

c2
(v2 + 2U) ≈ 1− 1

c2

(
v2

2
+ U

)
(3.4)

where v is the velocity module and U is the Newtonian potential with the convention U > 0.
Regarding the coordinate time transfer, its 1

c2 expansion is provided in [21] eq. 6:

TAB ≈
DAB

c
+
DAB · vB

c2
(3.5)

where DAB and vB are respectively the distance between the link ends and the velocity of B, both computed
at tA.

Therefore dtB
dtA

follows by differentiating Equation 3.5:

dTAB
dtA

=
d(tB − tA)

dtA
=
dtB
dtA
− 1 =

1

c

dDAB

dtA
+

1

c2

(
dDAB

dtA
· vB +DAB ·

dvB
dtA

)
(3.6)

Neglecting the acceleration term dvB

dtA
and given:

DAB = |rB(tA)− rA(tA)|=
√

(xB − xA)2 + (yB − yA)2 + (zB − zA)2 (3.7)

DAB = DABnAB (3.8)

dDAB

dtA
=

2DAB · (vB − vA)

2DAB
= nAB · (vB − vA) (3.9)

dDAB

dtA
=
d(DABnAB)

dtA
=
dDAB

dtA
nAB +DAB

dnAB
dtA

(3.10)

where nAB is the unit vector from A to B, Equation 3.6 becomes:

dtB
dtA

= 1 +
nAB · (vB − vA)

c
+

(vB · nAB)2 − (vA · nAB)(vB · nAB)

c2
(3.11)

neglecting the term dnAB

dtA
when using Equation 3.10.

The extensive formula describing fA
fB

is then obtained by substituting Equation 3.4 and Equation 3.11 in
Equation 3.1 and neglecting higher order terms:

fA
fB

=
1− 1

c2

(
v2
B

2 + UB

)
1− 1

c2

(
v2
A

2 + UA

) (1 +
nAB · (vB − vA)

c
+

(vB · nAB)2 − (vA · nAB)(vB · nAB)

c2

)
≈

≈
[
1− 1

c2

(
v2
B

2
+ UB

)][
1 +

1

c2

(
v2
A

2
+ UA

)](
1 +

nAB · (vB − vA)

c
+

(vB · nAB)2 − (vA · nAB)(vB · nAB)

c2

)
=

=

(
1 +

v2
A − v2

B

2c2
+
UA − UB

c2

)(
1 +

nAB · (vB − vA)

c
+

(vB · nAB)2 − (vA · nAB)(vB · nAB)

c2

)
≈

≈ 1 +
nAB · (vB − vA)

c
+
v2
A − v2

B

2c2
+

(vB · nAB)2 − (vA · nAB)(vB · nAB)

c2
+
UA − UB

c2
(3.12)

therefore:

fA
fB

= 1 +
nAB · (vB − vA)

c
+
v2
A − v2

B

2c2
+

(vB · nAB)2 − (vA · nAB)(vB · nAB)

c2
+
UA − UB

c2
(3.13)
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Given Equation 3.13, it is finally possible to compute the fractional frequency variation (∆f/f) in the case of
a space to ground link as:

∆f

f
=
fA − fB
fB

=
fA
fB
− 1 =

nAB · (vB − vA)

c
+
v2
A − v2

B

2c2
+

(vB · nAB)2 − (vA · nAB)(vB · nAB)

c2
+
UA − UB

c2

(3.14)
If the subscripts A and B are replaced respectively by e (Earth ground station) and s (satellite), the radial
velocity of the spacecraft with respect to the ground station is defined as Ḋ = −nAB · (vB −vA), nAB = n and
UA−UB

c2 = ∆U
c2 =

∆fgrav

f , then Equation 3.14 agrees (omitting the ionospheric and tropospheric contributions

but considering the clock offset) with eq.3 reported in [4]:

∆f1w

f
= −Ḋ

c
− v2

s − v2
e

c2
+

(vs · n)− (ve · n)(vs · n)

c2
+

∆fgrav
f

+
∆f0

f
+O

(v
c

)3

(3.15)

Regarding the two way Doppler measurements, the Doppler frequency shift can be easily derived starting
from the one way formula. It is important to observe that, in this case, the gravitational effect on the frequency
change is averaged out since the signal comes back to the original starting point where the gravitational potential
is the same. The formula for the two way link is given here, according to [14]:

∆f2w

f
= −2

Ḋ

c
− 2

v2
s − v2

e

c2
+
|v2
s − v2

e |
c2

− ae · n
c

∆t+ 2
(vs · n)− (ve · n)(vs · n)

c2
+O

(v
c

)3

(3.16)

where the acceleration term in this case is not neglected, being the light time ∆t double respect to the one
way measurement.

As introduced in section 1.3, the RadioAstron Gravitational Redshift experiment presents several challenges.
First of all, the uncertainty in the spacecraft radial velocity is such that the corresponding Doppler shift error
δḊ/c ∼ 10−11 and this is considered worrying ([14]). Therefore, following the example of Gravity Probe A,
one and two way data need to be combined in order to cancel the first order Doppler contribution (1/c). The
compensation scheme results in:

∆f1w −
∆f2w

2
= ∆fgrav + f(−

|v2e − v2s |
2c2

+
ae · n
c

∆t) + ∆f0 +O
(v
c

)3

(3.17)

where only the second order terms appear, together with the gravitational redshift which is not cancelled
out.

There is however an additional technical challenge in the case of RadioAstron because the HDRRC complex
is not able to operate in one and two way modes simultaneously. The three available synchronization modes
are described in the following figure:

Figure 3.1: Illustration of the RadioAstron onboard hardware synchroization schemes. (a) H-maser mode; (b)
Coherent mode; (c) Semi-coherent mode. Scheme reported in [4].

As seen from Figure 3.1, the H-maser and Coherent modes represent respectively the one and two way radio
links. In the first one the signal sent from the spacecraft is locked to the SHM (Space H-maser) while in the
second the signal from the tracking station is locked to the GHM (Ground H-maser). Finally the Semi-coherent
mode is a hybrid between the H-maser and Coherent ones. In this operation scheme the uplink is phase locked
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to the GHM as well as the 8.4 GHz and 15 GHz downlink carrier frequencies; however the modulation of
the 15 GHz downlink carrier signal is phase locked to the SHM. Due to technical reasons the Semi-coherent
mode has not been adopted for the experiment and the other two radio communication links are not able to
work simultaneously. This technical problem is overcome with the ”interleaving approach” which consists in
combining one and two way frequency data by switching the operation mode every 4 minutes approximately
([4]). This enables to interpolate into the gaps with an acceptable error and use Equation 3.17.

The theory given so far in this section does not take into account a number of perturbing factors influencing
the frequency measurements. When the signals encounter the atmosphere there are for instance several non
negligible effects acting along their paths. Moreover, the radio equipment of both the spacecraft and the ground
station has also an influence on the measurement accuracy. These factors determine noise, which is discussed
in section 3.1.2.

3.1.2 Noise sources

The noise affecting the frequency measurements has both instrumental and natural causes, as introduced in
section 1.3 with the terms ∆finstr and ∆fmedia. The former are characterized by ([24], [20]):

• Antenna mechanical noise (both transmitting and receiving)
• Radio-signal formation chain (amplifiers, frequency converters and so on)
• Phase modulation due to the transmitting antenna and spacecraft attitude and control noise
• On-board frequency oscillator
• Digital noise (rounding and so on) of the data handling/processing system

while the latter, instead, come from:

• Ionosphere
• Troposphere
• Interplanetary plasma

The aforementioned sources determine in principle both systematic and random errors. However, regarding
the present project study, the dominating noise is represented by the onboard oscillator, considered to be the
main responsible of the bias in the frequency observations, as stated with Equation 1.4. The problem is that
the clock offset cannot be determined accurately enough because it would require knowledge of ε. The other
items are assumed to be either negligible or ”under control”, meaning that their contributions are known. For
instance the interplanetary plasma, given RadioAstron’s orbit, does not represent any harm ([20], [24]) and can
be completely excluded, as well as the digital noise is something that is absolutely under control if the processing
algorithms are well thought. Moreover, the radio-signal formation chain, the phase modulation and the antenna
mechanical noise can be assumed to bring random noise with zero mean and to be negligible respect to the
ultra stable oscillator noise ([20]). According to [20] the mentioned sources of noise are below 10−15 (fractional
frequency).

The ionospheric and tropospheric perturbations, on the other hand, have to be computed and taken into
account when processing the frequency measurements because of the signal propagation through the Earth’s
atmosphere. The resulting uncancelled ionospheric and tropospheric noise, according to [4], has an order of
magnitude of 1− 2× 10−15 in terms of fractional frequency.

To sum up, the most relevant components of ∆finstr and ∆fmedia for the RadioAstron gravitational redshift
experiment are the onboard frequency offset, the ionospheric and tropospheric noises. Since the biggest source
of error is represented by the uncertainty of the H-maser offset between the ground stations and the spacecraft,
an estimate of this is provided by the Allan deviation of the H-maser. This measure of frequency stability will
be used as a reference to define the a priori statistical properties of the bias in one way frequency observations
for the simulations study. Its definition is provided in section ??.

3.1.3 Allan deviation

The Allan deviation mentioned in section 3.1.2, is the measure of frequency stability adopted to describe
oscillators. ([25].

Given, from [25], the definitions of fractional frequency fluctuation y(t) and fractional frequency average yk:

y(t) =
∆f

f
=
ν(t)− ν0

ν0
=

1

2πν0

dφ

dt
=
dx

dt
(3.18)

yk =
1

τ

∫ tk+1

tk

y(t)dt =
φ(tk + τ)− φ(tk)

2πν0τ
(3.19)
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where ν0 is the nominal frequency, φ is the phase, x = φ(t)
2πν0

, τ is the duration of the measurements, T is the
time interval between the measurements and tk+1 = tk + T ; the Allan variance is defined as ([25]):

σy
2(τ) = 〈

(yk+1 − yk)2

2
〉 (3.20)

with T = τ . The angle brackets indicate the expected value operator.
The Allan deviation is simply the square root of σy

2(τ). This quantity is expressed in time domain, being a
function of the averaging time τ . Based on the duration of the frequency observations, Equation 3.20 can then
provide a good estimate of the uncertainty due to the adopted ultra stable oscillator.

3.2 Orbit Modeling

The equation of motion of a spacecraft orbiting the Earth is mainly described by the gravitational interactions
between the spacecraft and the several celestial bodies influencing the motion of the satellite. In theory, as
explained in the fundamental physics chapter, the correct way of studying the motion of a body consists of using
the general form of the equation of motion in the curved spacetime defined by Einstein, which is Equation 2.13.
However, for most applications of the Earth orbiting satellites, the relativistic effects on the orbital dynamics
can be neglected (the speed of the spacecraft is much lower than the speed of light) and Newton’s classical
laws can be applied. Alongside with the gravitational phenomenon, there are in general also other effects to be
considered, such as the atmospheric drag and the solar radiation pressure. In the following part of the section
the reference formulas describing the spacecraft trajectory are given.

Since the Earth gravitational field has the biggest influence on RadioAstron, the motion of the satellite
is expressed with respect to a non-rotating reference frame fixed to the centre of our planet (J2000 is the
one adopted in the simulation software). This frame can be considered inertial when dealing with the short
time intervals of the orbit determination process. The spacecraft motion with respect to the Earth is however
perturbed by other bodies and therefore its acceleration can be expressed, making the simple preliminary
assumption of point mass bodies, by:

d2rs
dt2

= −Gms +mE

rs3
rs +G

∑
j 6=s,E

mj

(
rj − rs
rsE3

− rj
rs3

)
(3.21)

where E denotes the Earth, s the satellite and j the other bodies. Equation 3.21 represents a very simplified
case. In reality the perturbations due to the shape of the planet and its internal mass density distribution are
not negligible and need to be taken into account. Therefore, the gravitational potential of the Earth may be
expressed, in a body-fixed reference frame, as:

U = −µ
r

[
1−

∞∑
n=2

Jn

(
R

r

)n
Pn(sinφ) +

∞∑
n=2

n∑
m=1

Jn,m

(
R

r

)n
Pn,m(sinφ)cosm(Λ− Λn,m)

]
(3.22)

where R is the Earth’s mean equatorial radius, r the distance from the Earth’s center of mass, φ is the geocentric
latitude, Λ the longitude. Pn(sinφ) are the so called Legendre Polynomials of degree n, Jn,m and Λn,m represent
coefficients.

Equation 3.22 enables to describe the Earth’s gravitational potential up to the desired level of accuracy,
according to the application. Therefore, the first term on the right hand side of Equation 3.21 may be replaced
by −∇U . However, Equation 3.21 is defined in a non rotating frame so the spherical harmonics acceleration
has to be expressed in accordance to the other terms of the equation. Moreover the gradient of U provides
the acceleration in spherical coordinates so a coordinate transformation is also needed. These two steps are
achieved by the transformation matrices T xyzrφΛ and TXY Zxyz , so that:

r̈ = −TXY Zxyz T xyzrφΛ∇U (3.23)

where XY Z and xyz are respectively the inertial and body fixed frames (with rectangular coordinates), r̈
is the complete acceleration exerted from the Earth.

The acceleration due to the solar radiation pressure force is generally described with this general expression:

fR = −CR
WSA

Mc
eS (3.24)

where M is the satellite mass, A is the cross sectional area, CR is the satellite reflectivity, WS is the solar
energy flux, eS is the unit vector pointing to the Sun from the satellite and c the speed of light.

Concerning the perturbations due to the atmospheric drag, the acceleration is given by:

fD = −CD
1

2
ρ
A

M
|ν|ν (3.25)
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where ρ is the atmospheric density, CD is the drag coefficient, A is the reference area, M the mass of the
satellite and ν is the spacecraft velocity relative to the atmosphere.

To sum up, the equation of motion of the satellite can be expressed in its complete form as:

d2rs
dt2

= r̈ +G
∑
j 6=s,E

mj

(
rj − rs
rsE3

− rj
rs3

)
+ fR + fD (3.26)

The above mentioned equations are implemented in the Tudat software which enables to define both the en-
vironment (bodies involved), the level of detail regarding the accelerations due to each body and the reference
frame in which the orbit is to be propagated. The integration of the equation of motion is carried out by means
of a Runge Kutta Fehlberg method (RKF). This is a variable step size integrator that works by comparing two
different RK approximations and choosing at each step the optimal step size according to a specified tolerance:
if the two solutions do not agree within the specified level the step size is reduced, otherwise the approximation
is accepted. If they agree up to a higher accuracy than specified, then the step size is increased.

An RK integrator is an integration method that consists of evaluating the derivative function at different
points and times within the integration step, producing several approximations of the next function evaluation
which are then averaged with certain weights. Using the notation adopted in chapter 4 of [5], given a differential
equation of type ẏ = f(t,y) with initial condition y(t0) = y0, its approximation at t0 +h may be expressed as:

y(t0 + h) ≈ y0 + hΦ = η(t0 + h) (3.27)

where h is the step size, Φ is the increment function and η represents the approximation function.
Given Equation 3.27, it is possible to define the local truncation error:

eRK = |y(t0 + h)− η(t0 + h)|6 const · hp (3.28)

with p being the order of the truncation error (h is assumed to be a very small quantity).
The general s-order Runge Kutta formula implies s function evaluations which define the increment function.

Several coefficients (c, a, b) are involved in the process:

k1 = f(t0 + c1h,y0) (3.29)

ki = f(t0 + cih,y0 + h

i−1∑
j=1

aijkj) (i = 2...s) (3.30)

Φ =

s∑
i=1

biki (3.31)

The coefficients are chosen in order to maximize the order of the local truncation error defined in Equation 3.28.
The order of the RK integrator (and thus the number of coefficients), are chosen according to the required

accuracy of the application. This integration method is available in the Tudat software. The dynamical model
chosen for RadioAstron OD simulations and the settings adopted for the numerical integration of the equation
of motion are given in chapter 4.

According to the theory of the least squares estimation algorithm, explained in section 3.3 when dealing
with the orbit determination process, the dynamical model is absolutely perfect and represents reality without
any error. However, in practice, this is never true since the several perturbations acting on the satellites cannot
be perfectly modelled. In the case of RadioAstron OD simulations this aspect is discussed in section 4.1 where
the simulation concept is described.

3.3 Orbit Determination

The orbit determination aspect plays a fundamental role in the RadioAstron Gravitational Redshift Experiment:
the state vector parameters of the satellite (especially the velocity components) affect the Doppler equations in
a significant way, as seen in section 3.1. As stated in the introduction, the orbit of RadioAstron is not easy to
determine due to the several perturbation sources. Not only is the satellite orbit highly perturbed by the Moon
and by the solar radiation pressure, but also by the unloadings of the reaction wheels performed several times
a day (as reported in [11]). The process described in this chapter is the least squares algorithm which is going
to be used in the software for the orbit determination simulations.

Given a set of measurements and a reference trajectory, the algorithm provides a solution which best fits the
observations by minimizing the square of the residuals between the computed trajectory and the measurements.
The initial set of parameters is then updated according to the solution provided by the algorithm. The two
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analytical models that are involved in this process are the dynamical and the observation model. Therefore
assumptions about the dynamics of the satellite are very important, as well as assumptions on the noise profile
affecting the observations.

3.3.1 Linearization of the estimation problem

From now on, the vector of estimated parameters will be indicated with X and the vector of observations
with Y . In orbit determination problems X is usually characterized by at least 6 variables representing the
satellite state vector (position and velocity in an Earth centered inertial reference frame); while the observation
vector generally comprises all the kinds of measurements that are computed during the time interval of the
estimation. In the specific case of the RadioAstron Gravitational Redshift experiment, the observations consist
of Doppler measurements, as described in section 3.1. During the following theory explanation, both X and Y
will be treated in a general way, without specifying their exact number of components and which parameters
are estimated together with the satellite state vector (position and velocity).

The time evolution of the vector of estimated parameters, according to [5], can be described as an ordinary
differential equation:

Ẋ = F (X, t) (3.32)

with X made of n variables; and the observations can be expressed through an analytical model G plus an
uncertainty ε:

Y i = G(Xi, ti) + εi (3.33)

for l = 1, ...l and with Y i being a vector of p components (measurements) referred to ti, and εi representing
the vector of the observation errors at t = ti.

Assuming X∗(t) to be a reference solution (based on a priori information) and X(t) the true one, a lin-
earization process can be implemented:

Ẋ(t) ≈ F (X∗, t) +

[
∂F (t)

∂X(t)

]∗
[X(t)−X∗(t)] (3.34)

Y i = G(Xi, ti) + ε ≈ G(X∗i , ti) +

[
∂G(t)

∂X

]∗
i

[X(ti)−X∗(ti)] + εi (3.35)

where
[
∂F (t)
∂X(t)

]∗
and

[
∂G(t)
∂X(ti)

]∗
are respectively an n× n and p× n matrices characterized by the derivatives

of the dynamical and measurement models with respect to the state vector, computed at X(t) = X∗(t).
If, according to [26], the variables x and y are defined as follows:

x(t) = X(t)−X∗(t) (3.36)

yi = Y (ti)− Y ∗(ti) = Y (ti)−G(X∗i , ti) (3.37)

then Equation 3.34 and Equation 3.35 can be written in a more simple and concise way:

ẋ(t) = A(t)x(t) (3.38)

yi = H̃ixi + εi (3.39)

with:

A(t) =

[
∂F (t)

∂X(t)

]∗
(3.40)

and:

H̃i =

[
∂G(t)

∂X

]∗
i

(3.41)

The next step is now to relate the observations to a particular epoch state. To do so, the concept of
state transition matrix is first explained in subsection 3.3.2. Be aware that the term ”state” is adopted in this
mathematical treatment to identify the general vector of estimated parameters X and is not necessarily referred
only to the position and velocity of the spacecraft.



22 Delft University of TechnologyMSc Thesis

3.3.2 State transition matrix

The state transition matrix is a matrix that relates the states of two different epochs. It is defined by the
following relation ([26]):

x(t) = Φ(t, tk)xk (3.42)

where xk = x(t = tk).
The matrix Φ(ti, tk) is called the state transition matrix and connects the state at t = tk with the state at

t = ti. The main properties of this matrix are:

• Φ(tk, tk) = I
• Φ(ti, tk) = Φ(ti, tj)Φ(tj , tk)
• Φ(ti, tk) = Φ−1(tk, ti)

where I is the identity matrix.
Given the definition of Φ, it follows that:

˙x(ti) = Φ̇(ti, tk)xk (3.43)

therefore, using Equation 3.38, it follows:

Φ̇(t, tk)xk = A(t)Φ(t, tk)xk (3.44)

with:

Φ̇(t, tk) = A(t)Φ(t, tk) (3.45)

and the initial condition is given by the first property of the state transition matrix Φ(tk, tk) = I.
The procedure to compute the inverse of the state transition matrix is explained in detail in [26] but will

not be treated here extensively.
From [5], another equivalent and more direct way of defining the state transition matrix can be found:

Φ(t, t0) =
∂x(t)

∂x(t0)
(3.46)

The state transition matrix is an important tool that enables to connect the observations of one epoch to
the initial state. This is explained in subsection 3.3.3.

3.3.3 Relation between observations and epoch state

After defining the state transition matrix, Equation 3.39 can be written in the more complete form, as a function
of the state at t = t0 which is the initial epoch:

yi = H̃iΦ(ti, t0)x0 + εi (3.47)

In this way everything is reconducted to the initial state and the number of unknowns in the system is
significantly reduced.

More simply, the whole system of equations can be expressed in a more compact way as follows:

y = Hx0 + ε (3.48)

where the observation vectors of all the epochs are concatenated into y and H = H̃Φ(t, t0).
At this point the solution approach of the least squares method can be described. This is done in the next

subsection.

3.3.4 Least Squares Solution

The least squares criterion consists of choosing the state estimate which minimizes the sum of the squares of
the residuals with respect to the observations. Formally, it is the solution which minimizes the loss function J
([26]), reported here in its basic form (without weighting the observations):

J(x0) =
1

2
εT ε (3.49)

with x0 being the initial state vector and ε representing the difference between modelled and measured obser-
vations.
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In other words it is the solution which ”best fits” the observations, meaning that the square of the difference
between the modeled observations and the actual measurements is as small as possible ([5]). To this extent,
Figure 3.2 provides a clear illustration of the approach:

Figure 3.2: Least squares orbit determination approach. Figure taken from [5]

As seen in the illustrative scheme of Figure 3.2, starting from a reference trajectory, its parameters are
corrected with the purpose of finding the best fit of the observations.

In order to minimize the loss function expressed by Equation 3.49, if the columns of H are linearly indepen-
dent, then the minimum is uniquely identified by the condition:

∂J(x0)

∂x0
= 0 (3.50)

This condition implies, according to [5], that the general solution of the least squares problem is, if all
observations have equal weight:

x̂0 = (HTH)−1(HTy) (3.51)

where the hat symbol indicates the least squares estimate. Therefore, the least squares solution is, according to
the symbols adopted so far:

X̂0 = Xref
0 + x̂0 (3.52)

Since the solution provided by Equation 3.52 has been obtained by means of a linearization process, the
described method needs to be iterated in order to improve the accuracy of the estimation:

Xj+1
0 = Xj

0 + x̂j0 (3.53)

The iterations can be stopped according to the accuracy level that one wants to achieve. A measure of the
level of accuracy of the estimation is, for instance, the absolute difference between the solutions provided by
two successive iterations.

3.3.5 Weighted Least Squares

In the standard least squares approach described so far, all the observations have the exact same weight and are
treated in the same way. In the weighted least squares, instead, each observation is weighted according to its
mean measurement error, indicated with σi (in principle this shall include both random and systematic errors).
Therefore each residual yi is normalized respect to σi:

ȳi =
yi
σi

(3.54)

The final solution of the weighted least squares becomes then, assuming that H is always full rank ([5]) and
that the measurements are uncorrelated:

x̂0 = (HTWH)−1(HTWy) (3.55)
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where W = diag(σ−2
1 , ..., σ−2

n ).
In case the measurements noise is white Gaussian (this will be actually the assumption made for the simu-

lations study described in section 4), the terms characterizing the weighting matrix W will correspond to the
measurements standard deviations. The σ values appearing in Equation 3.54 and in Equation 3.55 through
W are therefore, conceptually speaking, different. In Equation 3.54 they are the theoretical measurement
uncertainties while in the weighting matrix of Equation 3.55 they appear under certain assumptions.

3.4 Postfit uncertainty

Once the weighted least squares fit is obtained, the computed solution will still be affected by errors due to
the uncertainty in the measurements. To express the least squares solution as a function of the measurements
uncertainty vector ε ([5]) the following relationship holds:

X̂0 = Xref
0 + (HTWH)−1(HTWy) = X0 + (HTWH)−1(HTWε) (3.56)

where it is clear that the solution provided by the least squares differs from the true one only because of ε.
In order to study the statistical properties of the solution in terms of its uncertainty, it is very useful to

compute its expected value and covariance:

E(X̂0) = X0 + (HTWH)−1(HTWE(ε)) (3.57)

Cov(X̂0, X̂0) = E((X̂0 − E(X̂0))(X̂0 − E(X̂0))) (3.58)

If the measurements errors are assumed to be only random (thus neglecting the systematic component), the
expected value of the least squares estimate is exactly the true solution, according to Equation 3.57. In fact, in
this case E(ε) = 0. If this assumption is valid, then the covariance of the least squares solution can be written
as ([5]):

Cov(X̂0, X̂0) = (HTWH)−1(HTW )E(εεT )(WH)(HTWH)−1 (3.59)

Moreover, if the measurement errors are considered uncorrelated and the weighting matrix is defined as in
subsection 3.3.5, it follows that W−1 = E(εεT ) and thus Equation 3.59 can be simplified as:

Cov(X̂0, X̂0) = (HTWH)−1 (3.60)

Once the covariance matrix is computed, the square root of the diagonal terms of the matrix will consist
of the standard deviations of the components of X̂0, while the other terms of the matrix (off-diagonal) are a
measure of the correlation between the errors of the individual components.

Concerning the accuracy of the least squares solution, it is important to underline that both X̂0 and ε are
treated as random variables and therefore the expected value and the covariance of X̂0 define an interval in
which the solution is most likely to be found. The following picture provides an illustration of this concept:
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Figure 3.3: Probability distribution of the least squares solution, assuming that the errors have a normal
distribution. Figure from [5]

In Figure 3.3, the marked area corresponds to a probability of 67%.
The assumption of uncorrelated white Gaussian noise, represented by Figure 3.3, is one of the main as-

sumptions on which the simulations study described in section 4 is based. Although this is a very optimistic
assumption (it represents an ideal situation), the contribution of systematic errors in the observations will not
be neglected in the simulations study. It will be treated with a proper selection of the estimated parameters, as
well as with the help of a consider covariance study. The mathematical theory of these topics is given in section
3.4.1.

3.4.1 Contribution of systematic errors and consider covariance

Systematic errors may come from uncertainties in the dynamical model, biases in observations, errors in the
ground stations locations and so on. In order to deal with this issue one can choose, for instance, to extend the
list of estimated parameters according to the specific needs. As an example, if observations are known to be
biased and this contribution is expected to be relevant (as in the case of RadioAstron Gravitational Redshift
experiment), the systematic error can be estimated as an additional parameter. The same can be said, for
instance, with respect to the radiation pressure coefficient.

However, despite the choice of estimating additional parameters, the impact of unmodeled systematic errors
on the covariance computation can be described through the consider covariance matrix. This mathematical
approach is useful when studying the impact of uncertainties of non estimated parameters characterizing the
measurement model. They are considered to be uncertain but their values are not updated at each iteration of
the least squares algorithm.

Given the vector of consider parameters, represented as C, Equation 3.33 can be rewritten as:

Y i = G(Xi,C, ti) + εi (3.61)

which is approximated by:

yi ≈ Hixx0 +Hicc+ εi (3.62)

where Hx and Hc denote the derivatives of the observation model with respect to the state vector X and the
consider parameters vector C. Y and y are always linked by the relation yi = Y i −G(X∗i , ti).

In this case the least squares solution may be written as ([5]):

X̂0 = X0 + (HT
xWHx)−1HT

xW (Hcc+ ε) (3.63)

If the consider parameters c are assumed to be random quantities with zero mean, the expected value of the
least squares estimation will still be the true solution X0.

Regarding the covariance of the solution with the consider parameters, it is given by ([5]):

P c = (PHT
xW )(HcCHc + E(εεT ))(PHT

xW )T = P + (PHT
xW )(HcCH

T
c )(PHT

xW )T (3.64)
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where P = (HT
xWHx)−1 and W−1 = E(εεT ), and C is the covariance of the consider parameters, so

C = E(ccT ).
Even if both ε and c are assumed to be random variables with zero mean, their impact on the solution is

very different. Measurement errors affect the single orbit determination creating a certain noise which decreases
as a function of the number of observations (assuming white Gaussian noise). On the other hand, the impact
of consider parameters is constant and does not decrease with increasing data (see Equation 3.64).

When applying least squares methods, in order to speed up the convergence process and improve the esti-
mation, it is very useful to use some a priori information about the covariance of X. The estimation with a
priori information will be discussed in the next subsection.

3.4.2 Estimation with a priori information

When some a priori information on the uncertainty of X is available, the estimation approach consists of using
a modified loss function to minimize for the computation of the least squares solution. In particular, given
xapr0 = X0 −Xapr

0 , the new loss function (assuming first the case with no weighting) will be ([5]):

J = (xapr0 )TΛxapr0 + (y −Hx0)T (y −Hx0) (3.65)

where Λ = P0
apr−1.

The minimization of Equation 3.65, according to [5], brings:

x̂0 = (Λ +HTH)−1(Λxapr0 +HTy) (3.66)

In the case of a weighted least squares, the solution instead becomes:

x̂0 = (Λ +HTWH)−1(Λxapr0 +HTWy) (3.67)

where W is the weighting matrix.
In conclusion, the relation between the estimated covariance and the a priori covariance is given by ([5]):

P−1
0 = (P apr0 )−1 + (HTWH) (3.68)

This approach speeds up the estimation process and enables to improve the final estimation. The use of a priori
information in the simulations study described in chapter 4 represents an extremely important tool. Both formal
errors and correlations of the parameters involved in the present project study of RadioAstron Gravitational
Redshift experiment are highly influenced by the a priori constraints given to certain variables, such as the
biases in one way frequency observables. This topic is treated in detail in section 5.3.



27 Delft University of TechnologyMSc Thesis

Chapter 4

RA Doppler measurements and
simulations of their statistics

This chapter describes the principles of the simulations study performed to support the gravitational redshift
experiment with RadioAstron. In section 4.1 the simulation concept and the goals of the project study are
explained, with references to the research questions of section 1.6. The assumptions under which the Doppler
measurements are generated and the orbit determination is carried out are then discussed in section 4.2, followed
by the adopted settings reported in section 4.3. Finally, section 4.5 is dedicated to the verification and validation
of the implemented simulations.

4.1 Simulation concept and parameters choice

The simulations study aims to reproduce the estimation of the EEP violation parameter by means of an orbit
determination process (including ε in the list of parameters) resembling the real experiments conditions. The
goal is to perform a covariance analysis to study how the uncertainties of the several parameters involved in
the RadioAstron gravitational redshift experiment impact the EEP violation parameter estimation. The orbit
determination simulation process is carried out through a least squares algorithm implementation, based on the
theory described in section 3.3. The most important output of the simulations study is represented by the ε
formal error which enables to answer the main research question about the accuracy of the experiment.

Some parameters involved in Equation 3.17, as the spacecraft state vector and ∆f0, cannot be determined
accurately enough without making use of Equation 1.1, which requires knowledge of ε. With respect to this
issue, the concept of performing an orbit determination analysis including the EEP violation parameter provides
useful statistical knowledge for a more precise description of the experiment error budget. More exactly, the
correlations with ε can be computed, as well as the δε as a function of the parameters uncertainties and the
observations noise.

The choice of the parameters to estimate in the simulations study is the first step towards the implementation
of the least squares multi-arc orbit determination process. The main criterion driving this choice consists of
selecting the most suitable parameters to resemble the realistic uncertainties faced in the experiment. At
the same time, attention must be paid to the number of parameters itself: a very high number might bring
numerical issues in the process of the covariance matrix computation, while a very small number leads to
unrealistic simulation results.

Given the main research questions of section 1.6, the spacecraft state vector parameters and ε are obviously
estimated for every experiment time interval. Position and velocity, in fact, contribute in big part to the terms
of the compensation scheme adopted for the processing of frequency measurements (Equation 3.17) and describe
the motion of the spacecraft.

Regarding the orbital dynamics of RadioAstron, however, as described in section 1.2, there are a number of
relevant perturbing effects acting on the spacecraft, such as the gravitational perturbation of the Moon, the solar
radiation pressure and the stabilization thrusters effect during the reaction wheels unloading. Although the ST
firings occur several times a day and are an important short term perturbing effect of the satellite center of mass
([11]), during the gravitational redshift experiment sessions no unloadings were performed. Therefore they are
not considered in the simulation of the RadioAstron dynamical model so no additional parameters related to
the ∆vs induced by the thrusters are needed. On the other hand, solar radiation pressure cannot be neglected
as well as, indeed, the Moon. In [11] it is shown that, when performing RadioAstron’s orbit reconstruction
from observations, the type of SRP acceleration model adopted in the estimation has a strong impact on the
quality of the measurements fit. The best accuracy is reached with an analytical model characterized by 3
different coefficients, while a model with only one coefficient produces the biggest error. This uncertainty needs
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to be taken into account in the simulations of the gravitational redshift experiment. The only available model
in Tudat is the cannonball, described by Equation 3.24, which is indeed not realistic. However, for a correct
estimation of δε in the simulations it is important to resemble only the uncertainty of the adopted model.
A preliminary study was then conducted to verify the goodness of the simulated spacecraft dynamical model
by fitting real satellite estimated position data provided by the RA navigation support team, as described in
section 4.5.1. The radiation pressure coefficients settings and statistical properties were chosen according to
the verification outcome and are summarized in section 4.3. The option of estimating empirical accelerations
has been investigated as well but has been rejected for the nominal simulations study. They would consist of 3
parameters for each time arc (given the experiments durations of roughly one hour and the spacecraft orbit, only
the constant terms would be estimated) against 1 parameter only in the case of the radiation pressure coefficient.
Moreover, comparisons between simulations run in both ways (once with radiation pressure coefficient and once
with empirical accelerations) applying the same settings have brought the same results for ε.

Regarding the observation model parameters, the discussion related to the noise affecting the measurements,
given in section 3.1.2, supported by the structure of Equation 3.17, strongly suggests to estimate a bias in one
way frequency links. This bias is assumed to be equal to the clock (H-maser) offset between the ground and
space based systems and thus it has an absolute nature (it is additive). In particular, since ∆f0 changes in time
and there are several different stations involved in the experiments, it is assumed that for each arc and for each
station there is a different bias. The number of biases is then a function of the number of ground stations and
the number of different experiment time intervals. The uncertainty of the frequency offset is supposed to be a
limiting factor for the experiment accuracy so the estimation of this parameter is extremely important.

An uncertainty in the geodetic position of the Pushchino station, the main RadioAstron operational ground-
based station, has been suspected as a source of significant contribution in the overall noise budget of the
experiment. Therefore the coordinates of the TS have been included in the list of parameters. This problem has
also been investigated in a deeper way with the performance of a consider covariance analysis which is reported
in section 5.2.

To sum up, the chosen set of parameters to estimate is summarized as follows:

• Initial state vector parameters for each arc
• Arc-wise radiation pressure coefficients (CR)
• EEP violation parameter (always referred to as ε and estimated over the whole time span in which exper-

iments are carried out, being it considered as an independent and unique fundamental physics parameter)
• Pushchino station coordinates (cartesian)
• Arc-wise biases in one way observations for each ground station

4.2 Assumptions

The main assumptions concerning the simulations structure are reported below:

• Each arc is statistically independent of the others. This means that the a priori covariance of the pa-
rameters at the beginning of each experiment time interval is not obtained by propagating the covariance
computed at previous times but it is chosen independently. The selected a priori uncertainty values are
the same at the beginning of every arc. A priori orbital data for the initial guess are taken from the
RadioAstron reconstructed orbit files. This data is available from [12].

• All ground stations involved have no uncertainty in their position, except PU for which an a priori standard
deviation of 10 meters per each coordinate is set. Since 10 meters is the accuracy that can be reached
with a normal GPS device, this value was not increased.

• Two way observations are unbiased. Although this assumption is not completely true in reality, it is still
representative of the real situation. The most relevant contribution to the bias in observations is the
onboard H-maser offset which appears in the one way Doppler equation but not in the two way model
(see Equation 3.15). Therefore, if other effects contributing to the bias are neglected, it is fine to assume
that two way observations are unbiased.

• Bias in one way observations is an absolute bias and is different for every station and every time arc. The
bias is assumed to be constant throughout one experiment duration (about one hour).

• Measurements are generated every second. One and two way Doppler observations are simulated at the
same time. Regarding the time spacing of the observations, to speed up the process of the simulations,
sometimes it was increased to 10 seconds making use of the property of Gaussian random variables
according to which noise decreases following the curve 1/

√
N (with N being the number of measurements).

• Noise is assumed to be uncorrelated white Gaussian.
• The non-gravitational perturbations in the dynamics of RadioAstron are represented by the solar radiation

pressure force (cannonball model), the coefficient of which is estimated arc-wise. The perturbations due
to the unloadings of the reaction wheels are neglected.
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The specific simulations settings are reported in section 4.3.

4.3 Simulation Settings

The RadioAstron simulated orbital motion is set up considering the gravitational influence of the Earth (spheri-
cal harmonic coefficients up to degree and order 8), the Sun, Moon, Mars and Jupiter. The acceleration exerted
by the Sun consists of the radiation pressure component too. To model this influence the cannonball model,
as given by Equation 3.24, is adopted with a cross sectional area of 100m2, a mass of 3600kg and a radiation
pressure coefficient set to 1.45. The acceleration settings adopted to propagate the orbit of RadioAstron are
summarized in Table 4.1 and the satellite parameters in Table 4.2.

Table 4.1: Acceleration settings

Body Type of acceleration exerted from the body
Earth Spherical Harmonics, degree and order 8
Sun Central gravity and radiation pressure
Moon Central gravity
Mars Central gravity
Jupiter Central gravity

Table 4.2: Satellite parameters

Satellite parameters Value
Mass 3600 Kg
Cross sectional area 100m2

CR 1.45

The estimates of lunar and planetary orbits are provided in the Tudat software by DE421 Ephemeris. All data
is expressed in the J2000 inertial reference frame, in which the spacecraft orbit is defined, and the adopted
time standard in the software is Terrestrial Time (TT). The Cowell propagation method and a Runge Kutta
with variable step size integrator type (RKF78) are applied for the numerical integration. The minimum and
maximum time steps were fixed respectively to 0.0001s and 100s, based on the knowledge that the spacecraft
motion experiences rapid changes at perigee compared to its apogee passages.

For the simulations of one and two way Doppler measurements, the generated observable in the software is
the fractional frequency fluctuation ∆f

f and the frequency ratio is expressed with terms up to the second order

in 1
c , according to the formulas described in section 3.1.1.
The time intervals (arcs) and the ground stations chosen for the simulation of the orbit determination process

are the ones corresponding to the real experiment scenarios. The experiments selected for the simulations study,
together with the starting time, stations and durations of the observations, are reported in Table 4.3. A set
of 15 experiments was chosen, in order to find a compromise between a consistent number of observations and
the required computational time to run the simulations and perform post processing analysis. The coordinates
adopted for each station are reported in Table 4.5 and the full list of the real experiment sessions is provided in
Table 4.4.
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Table 4.3: Experiments selected for the simulations study

Experiment code Start Time (UTC) Stations Duration (s)
raks13ab el053a 24/10/2015 14:00:00 Ef On Sv Wn Wz Zc 3600
raks13ac el053b 25/10/2015 14:00:00 Ef On Sv Wn Wz Zc 3600
raks13ad el053c 31/10/2015 22:00:00 Ef On Sv Wn Wz Zc 3600
raks13ae el053d 2/11/2015 18:00:00 Ef On Sv Wn Wz Zc 3600
raks13af 18/11/2015 10:00:00 On Wn Wz 3600
raks13ag 19/11/2015 09:00:00 Ef On Wn Wz 3600
raks13aj 6/12/2015 10:00:00 Ef On Wn Wz 2700
raks13ak 8/12/2015 20:00:00 Ef On Wn Wz 3600
raks13an el053e 28/05/2016 11:00:00 Ef On Sv Wn Wz Zc 3600
raks13ao el053f 29/05/2016 12:00:00 Ef On Sv Wn Wz Zc 3600
raks13aq el053h 14/06/2016 19:00:00 Ef On Sv Wn Wz Zc 1800
raks17ac 11/07/2016 07:39:00 Ma Wn Wz 1860
raks17ad 11/07/2016 10:20:00 Ma Wn Wz 1200
raks17ae 20/07/2016 01:11:00 Ef Wn 2340
raks17ai 28/07/2016 19:43:00 Pu 2220
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Table 4.4: List of experiments

exp. no date code telescopes
1 2015-10-24 raks13ab el053a Ef On Sv Wn Wz Zc

2015-10-25 raks13ac el053b Ef On Sv Wn Wz Zc
2 2015-10-31 raks13ad el053c Ef On Sv Wn Wz Zc

2015-11-02 raks13ae el053d Ef On Sv Wn Wz Zc
3 2015-11-18 raks13af On Wn Wz

2015-11-19 raks13ag Ef On Wn Wz
4 2015-12-06 raks13aj Ef On Wn Wz

2015-12-08 raks13ak Ef On Wn Wz
5 2016-05-28 raks13an el053e Ef On Sv Wz Wn Zc

2016-05-29 raks13ao el053f Ef On Sv Wz Wn Zc
2016-05-29 raks13an el053g Ef On Sv Wz Wn Zc

6 2016-06-14 raks13aq el053h Ef On Sv Wz Wn Zc
2016-06-15 raks13ar el053i Ef On Sv Wz Wn Zc
2016-06-15 raks13as el053j Ef On Sv Wz Wn Zc

7 2016-07-11 raks17ac Ma Wn Wz
2016-07-11 raks17ad Ma Wn Wz

8 2016-07-20 raks17ae Ef Wn
2016-07-20 raks17af Ef Wn
2016-07-20 raks17ag Ef Wn

9 2016-07-28 raks17ai
2016-07-29 raks17aj Ef

10 2016-09-29 raks17aw
2016-09-29 raks17ay
2016-09-30 raks17az
2016-09-30 raks17ba

11 2016-11-14 raks17bb Ef On Wn Wz
2016-11-14 raks17bc Ef On
2016-11-15 raks17bd On
2016-11-16 raks17be

12 2016-11-24 raks17bf
2016-11-24 raks17bg
2016-11-25 raks17bh
2016-11-26 raks17bi

13 2016-12-04 raks17bj Ef On Ys
2016-12-05 raks17bk Ef Ys
2016-12-06 raks17bl Ef Ys
2016-12-06 raks17bm On

14 2016-12-14 raks17bn Wn Ys
2016-12-16 raks17bo Ys
2016-12-16 raks17bp Ef Ys

15 2017-03-12 raks17bq
2017-03-12 raks17br Ef Ys
2017-03-13 raks17bs Wn Wz

16 2017-03-26 raks17bt On Ys
2017-03-29 raks17bu Ef Wn
2017-03-29 raks17bv Ef Wn

17 2017-04-12 raks17bw Wn Wz Ys
2017-04-15 raks17bx
2017-04-15 raks17by On Ys

18 2017-04-20 raks17bz Wn Ys
2017-04-20 raks17ca Wn Ys
2017-04-23 raks17cb On
2017-04-23 raks17cc On

19 2017-08-01 raks19af Bd Ys Zc
2017-08-10 raks19ag Ef Wn Wz
2017-08-10 raks19ah Ef Wz
2017-08-11 raks19aj Wz
2017-08-11 raks19ak
2017-08-20 raks19al Ef Ys
2017-08-20 raks19am Ef
2017-08-21 raks19ao Bd Sv Wn Wz Zc
2017-08-22 raks19ap Sv Wn
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Table 4.5: Ground stations coordinates, [7]

Ground station Altitude [m] Latitude [rad] Longitude [rad]
Ef 416.674 0.88 0.12
On 20 1.002 0.208
Sv 80 1.056 0.520
Wn 611 0.860 0.224
Wz 611 0.858 0.225
Zc 970 0.764 0.725
Ma 536.9 0.709 0.2915
Pu 239.091 0.9568 0.6567

The nominal settings of the a priori covariance matrix are summarized in Table 4.6:

Table 4.6: A priori covariance set up used in nominal simulations.

Estimated Parameters Covariance (a priori)
Position coordinates 1.7× 104[m2]
Velocity coordinates 2.0× 10−6[m2/s2]
Radiation pressure coefficients 100
EEP violation parameter 10−6

Pushchino station coordinates 100[m2]
Biases σ2

∆f0
f

ranging from 10−14 to 10−11

The nominal simulation settings used for the observations noise belong to the same interval as the a priori
frequency offset uncertainties reported in Table 4.6. They consist of 4 logarithmically spaced values for the
fractional frequency fluctuations that lie within the range [10−14 − 10−11]. This enables to study how sensitive
is the EEP violation parameter estimation to the measurements uncertainties and the statistical properties of
the frequency bias, which are believed to be the limiting factors of the experiment.

In conclusion, an overview of the global simulations architecture is given by Figure 4.1.

Parameters to
Estimate:

Arcs Initial
States
Arc-wise Rad.
Pressure
coefficients
EEP violation
parameter
Arc-wise One
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for each GS

Apriori
Covariance

Dynamical Model
Settings:
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Model Settings
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definition
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Noise
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LEAST SQUARES ORBIT
DETERMINATION SIMULATIONS

INPUT FILE
Ground Stations
Osbervation Times
and Arc durations
Orbital data files

OUTPUT FILES
Covariance/Correlation
matrix
Formal Errors
Residuals
Measurements
simulated

Figure 4.1: Software architecture for the gravitational redshift experiment simulations study
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4.4 Live RA Doppler measurements

In this section some real Doppler measurements of RadioAstron downlink signal are shown. The observations
were Doppler analyzed with the PRIDE tracking method during the internship at the Aalto University in
Finland using the software developed by Dr Molera ([27], [28]). The importance of showing real frequency
observations is to support and validate the approach adopted for the simulations. Some of the assumptions
were formulated, in fact, basing them on the results obtained with the real data processing.

The frequency detections acquired during the experiment el053a by Onsala ground station (which is among
the Gravitational Redshift Experiments list in Table 4.4) are shown in the following figure.

Figure 4.2: Experiment el053a, On station. First Doppler estimation with PRIDE tracking algorithm.

As seen from Figure 4.2, during the observation time interval the SNR drops down to zero both at the
beginning (approximately the first 50 seconds) and sometimes in the middle (between 400 and 700 seconds).
This results in visible discontinuities in the frequency detections plot. The last graph shows the frequency
residuals obtained after the Doppler effect compensation which is done through a polynomial fit of the frequency
detections. The final results after the last phase stop of the signal are shown in Table 4.7.

Table 4.7: Experiment el053a (24 October 2015). Details of the experiment and description of the signal’s
phase stop with PRIDE tracking algorithm.

Station Scan # Freq. Interval [MHz] Time interval [s] Phase rms [rad] Doppler noise [Hz]
Ef 1 [5.0 , 5.2] [50 , 450] 4.8495291594 0.0176867118957
On 1 [5.0 , 5.2] [50 , 450] 0.212571748348 0.00243326351357
Sv 1 [5.0 , 5.2] [50 , 450] 0.204802948366 0.0039171536214
Zc 1 [5.0 , 5.2] [50 , 450] 1.22684017918 0.0340884960954

The values of the Doppler noise correspond to a fractional frequency fluctuation of the order of 10−12−10−13

(the RA transmitter is at 8.4 GHz), which is in accordance with the chosen observations noise values for the
simulations study, reported in section 4.3.

Moreover, an important conclusion achieved with the real data processing is about the properties of the
Doppler noise. This analysis was done by means of an averaging time study. An example is reported in
Figure 4.3, where the data is related to the experiment coded rk17ab.



34 Delft University of TechnologyMSc Thesis

Figure 4.3: Doppler noise as a function of averaging time in the experiment rk17ab

As seen from the plot, the Doppler noise (both blue and black lines) follows the 1/
√
T behaviour. The

difference between the ”standard” and the ”alternative” approaches is simply in the procedure adopted to
compute the noise. The alternative approach works better with higher averaging times when the standard
algorithm crashes.

The outcome of the averaging time study suggests that the RadioAstron downlink signal noise has similar
properties to the Gaussian noise. Therefore the assumption made in the simulations study can be considered
realistic.

4.5 Verification and Validation

4.5.1 Dynamical model verification

The first step towards the verification of the simulation study was to check that the dynamical model imple-
mented in the software was realistic enough to describe RadioAstron trajectory. To this extent, some orbital
data provided by Dr Mikhail Zakhvatkin (Keldysh Institute of Applied Mathematics, Moscow, Russia) were
used for comparison purposes and to perform a test of the least squares algorithm of the Tudat. The provided
data consisted of state vector parameters (position and velocity) relative to the month of March 2016, hourly
spaced in time. Given the software these observations as input, the orbit determination tool was run. The fol-
lowing figures show the residuals between the computed orbit and the given input data. The orbit determination
process was performed for each of the 4 weeks of the month.
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Figure 4.4: Residuals between Tudat orbit propaga-
tion and reference RA orbital data during the first week
of March 2016

Figure 4.5: Residuals between Tudat orbit propaga-
tion and reference RA orbital data during the second
week of March 2016

Figure 4.6: Residuals between Tudat orbit propaga-
tion and reference RA orbital data during the third
week of March 2016

Figure 4.7: Residuals between Tudat orbit propaga-
tion and reference RA orbital data during the fourth
week of March 2016

As seen from the plots, the absolute values of the residuals have a mean corresponding to roughly 200 meters
for every week and their standard deviation is not extremely large. Although the curves do not exactly follow
the same path in the four different time intervals, in every case their distribution reminds of a quadratic form,
which is in particular more pronounced in a Figure 4.5 and Figure 4.7. This is a very positive indicator that the
fit provided by the software is good: it means, in fact, that the constant and linear terms are well compensated
by the orbital solution achieved by the algorithm. Finally, considering that, according to the RadioAstron
Navigation support team, there is an uncertainty of about 200 meters in the satellite position, the obtained
results can be defined reasonable.

In this simple orbit determination simulation, the estimated parameters (per week) were the initial position,
velocity and radiation pressure coefficient (the cannonball model is adopted, as described in section 3.2). The
estimated solar radiation pressure coefficients are significantly different for every week (differences are up to
0.5). This was indeed an expected result because the effect of the light pressure on RadioAstron varies with
time according to the spacecraft attitude with respect to the Sun. Therefore, the cannonball model does not
well represent reality since the resulting acceleration on the spacecraft is assumed to be always along the Sun’s
direction while this is not true due to the particular shape of the satellite. Moreover, estimating the radiation
pressure coefficient for shorter or longer time intervals than one week brings even larger differences that can be
up to a factor of 2. Given the outcome of this preliminary study two important assumptions were made in the
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nominal simulations settings (see section 4.2). First, the radiation pressure coefficients were estimated arc-wise
(each arc/experiment is roughly one hour long) and, second, their a priori uncertainty was set to the very large
value of 10.

4.5.2 Implementation of the EEP violation parameter estimation

Once tested the basic functionality of the least squares algorithm in estimating the spacecraft state vector with
realistic results, the implementation of the EEP violation parameter estimation was the next important step
to be verified. To do so, it was necessary to generate Doppler observables in the orbit determination process
(especially one way data, since the two way link measurements do not depend on ε, being the gravitational
redshift cancelled out) and check if the partial derivatives with respect to ε were correct. The analytical

expression of
∂∆f

f

∂ε is obtained starting from Equation 3.1 after including ε in it. Since the EEP violation
parameter affects the proper time rate, Equation 3.4 shall be, in fact, rewritten as:
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where the coordinate time transfer term has not been fully developed here as in section 3.1, being not a
function of ε.

Working out Equation 4.2, leaving for now dtB
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apart, brings:
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which, after neglecting the terms of order 1
c4 and making use of Equation 3.11 to express dtB

dtA
up to the first

order in 1
c2 , becomes:

∂∆f
f

∂ε
≈ ∆U

c2

(
1− Ḋ

c

)
(4.4)

where Ḋ is defined in section 3.1 and represents the radial velocity, while ∆U is the gravitational potential
difference.

Equation 4.4 enables then to verify that the partial derivatives computed by the algorithm are correct. The
comparison has been made with the data generated during an orbit determination simulation in which ε is
estimated and the following plot reports the result:



37 Delft University of TechnologyMSc Thesis

Figure 4.8: Comparison between the partial derivatives of one way Doppler observables w.r.t. ε computed with
Equation 4.4 (red) and the Tudat software (blue)

Figure 4.8 is related to the one way Doppler observations simulated during the first time arc of the list shown in
Table 4.4. The difference between the red and blue values is of the order of 10−13 which is very small considering
the y-axis scale. This might depend on the different models adopted in the two cases for the Earth gravitational
potential as well as on slightly different µ values. Equation 4.4 is, in fact, implemented in Matlab where U is
described with the simple central gravity model, while the Tudat settings for the Earth are much more detailed
as shown in Table 4.1.
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4.5.3 Verification of Noise implementation

The noise settings adopted during the simulations have been verified by checking the distribution of the residuals
obtained after the least squares algorithm application. The statistical distribution of the residuals agrees with
the chosen noise settings in the software. This is shown in Figure 4.9:

Figure 4.9: Residuals distribution obtained applying settings of white Gaussian noise with standard deviation
of 10−12 in terms of fractional frequency fluctuations.

The residuals resemble the Gaussian distribution so the noise settings are verified.
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4.5.4 Validation of correlations between EEP violation parameter and spacecraft
state vector

A very important validation of the results obtained about the correlations of the EEP violation parameter with
RadioAstron state vector in section 5, is provided by the analysis performed by Dr Mikhail Zakhvatkin by means
of a covariance analysis over a one month orbit reconstruction in which ε is estimated. The correlations result
are reported in Figure 4.10
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Figure 4.10: Correlations obtained with a covariance analysis performed by Dr Mikhail Zakhvatkin through a
one month RadioAstron orbit reconstruction.

The correlations of ε with the spacecraft state vector parameters are almost zero in accordance with the results
shown in section 5.1. The correlations of the H-maser biases with the EEP violation parameter are, on the other
hand, different from the ones obtained with the present simulation study. However, the a priori assumptions
about the frequency offsets are quite different in the two analysis. The correlations reported in Figure 4.10 are
obtained, in fact, by assuming that the H-maser biases are constant throughout a period of 2− 3 days while in
the results shown in section 5.1 the biases are constant throughout one hour time intervals and change according
to both stations and time arcs.
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Chapter 5

Results

This chapter provides the results of the simulations study whose concept is described in chapter 4. The EEP
violation parameter formal error and the correlations between the estimated parameters are reported in section
5.1. In section 5.2, the consider covariance analysis related to Pushchino coordinates is shown and section 5.3
provides the physical interpretation of all the obtained simulations results.

5.1 EEP violation parameter formal error and correlations

The main simulation results regarding the ε formal error, obtained by varying both noise and biases statistical
properties applying the settings described in Table 4.6, are shown in Figure 5.1 and Figure 5.2. The specific
values are reported in Table 5.1.

Figure 5.1: ε formal error as a function of noise and frequency offset a priori uncertainty
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Figure 5.2: ε formal error as a function of noise and frequency offset a priori uncertainty

Table 5.1: EEP violation parameter formal error obtained with different noise and a priori bias uncertainty
settings in terms of fractional frequency fluctuations

Bias\Noise 10−14 10−13 10−12 10−11

10−14 1.6255× 10−6 1.9623× 10−6 4.3079× 10−6 3.8298× 10−5

10−13 2.9937× 10−6 1.6221× 10−5 1.9608× 10−5 4.3020× 10−5

10−12 3.0302× 10−6 2.9786× 10−5 1.6013× 10−4 1.924× 10−4

10−11 3.0306× 10−6 3.0146× 10−5 2.855× 10−4 8.512× 10−4

The global visualization of the computed correlations between the whole list of estimated parameters is
reported in Figure 5.3. The picture was obtained with noise and a priori clock offsets uncertainty of 10−12 in
terms of fractional frequency fluctuations. The order of the parameters is the following:

• Initial states of each arc (parameter indexes from 1 to 90 in the correlation figures)
• EEP violation parameter (represented as ε and corresponding to index 91)
• Arc-wise radiation pressure coefficients (92 to 106, represented with Cr)
• Ground station coordinates of PU (107 to 109, represented as Pu)
• Arc-wise one way biases (110 until the end)
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Figure 5.3: Correlations of the estimated parameters. Results obtained with fractional frequency noise and
clock offsets uncertainties set to ∆f

f = 10−12

The correlations of the EEP violation parameter with the spacecraft state vector and with the coordinates of
Pushchino tracking station are negligible (being almost zero) also in all the other simulated scenarios (different
noise and biases settings). On the other hand, the correlations of ε with the absolute biases in one way
observations experience significant changes depending on the noise and H-maser offsets statistical properties.
The situation is described in Figure 5.4 and Figure 5.5, where the mean correlation values reported on the y-axis
correspond to the average correlation of ε with the biases. The specific values are provided in Table 5.2

Figure 5.4: ε formal error as a function of noise and frequency offset a priori uncertainty
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Figure 5.5: ε formal error as a function of noise and frequency offset a priori uncertainty

Table 5.2: Mean correlation values of EEP violation parameter with one way frequency biases with different
noise and a priori bias uncertainty settings in terms of fractional frequency fluctuations

Bias\Noise 10−14 10−13 10−12 10−11

10−14 0.975 0.526 0.0617 0.00612
10−13 0.992 0.980 0.529 0.0618
10−12 0, 993 0.994 0.980 0.526
10−11 0.993 0.994 0.994 0.936

A few simulation tests with noise values below 10−14 have shown an exceptional case of decorrelation between
one single bias and ε, detected during the 15th time arc. Although the mean correlation of ε with the biases
remains still very high, this exceptional case consists of a correlation coefficient of 0.4 against the other values
ranging in the interval 0.84 − 0.99. This phenomenon is shown in Figure 5.6 and will be discussed in part in
section 5.3.
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Figure 5.6: Correlations of the estimated parameters. Results obtained with fractional frequency noise set to
∆f
f = 10−15 and clock bias uncertainty 10−12

5.2 Consider covariance study on Pushchino tracking station posi-
tion accuracy

Estimating the station coordinates in the simulations might affect the reliability of its correlations with the
EEP violation parameter: this was the main doubt raised by the research group. Therefore, since this issue
is extremely important for interpretation of experimental data, a further investigation was made through a
consider covariance study. As discussed in section 3.4.1, this analysis consists of evaluating the impact of the
a priori uncertainty of non estimated parameters (in the present case Pushchino station coordinates) on the
final solution accuracy. More specifically, for the current project study, the impact on the correlations is the
most important result. Figure 5.7 shows the new computed correlations matrix in which the tracking station
cartesian coordinates are identified by the last three parameters. Their a priori uncertainty values (σ) are set
to 10 m while random noise and bias a priori standard deviations are both set to 10−12 in terms of fractional
frequency fluctuations.
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Figure 5.7: Consider covariance analysis. Pushchino station coordinates are the last three parameters while ε
is parameter 91. Fractional frequency of noise and bias uncertainties set to 10−12.

As seen in the figure, the correlations with the EEP violation parameter have not changed respect to the previous
cases. Moreover the EEP violation parameter formal error is 1.6013e − 04 which does not change respect to
the case in which Pushchino coordinates are estimated. This result shows that the ground station position
uncertainty is harmless even if the station coordinates are not estimated, following the more realistic approach
of the consider covariance analysis.

5.3 Interpretation of the results

The obtained ε formal error as a function of the observations noise and clock offset statistics, along with the
correlations between the estimated parameters provide a good answer to the main research questions given in
the introduction. The ε formal error represents the accuracy of the gravitational redshift experiment and the
correlation images give a clear idea of how the parameters uncertainties are related to each other.

5.3.1 EEP violation parameter formal error

The two simulated scenarios described in Figure 5.1 and Figure 5.2, in which the observations noise and the a
priori covariance of the H-masers offsets vary within the same range of values (expressed as fractional frequency
fluctuation), are similar but present a few differences. In general, the ε formal error is influenced by both noise
and clock uncertainty when one setting is fixed respect to the other. However, as expected, noise has a greater
impact on the experiment accuracy because this setting directly affects the measurements quality respect to
the a priori knowledge of the clock uncertainty. It is clear, for instance, that a noise level of 10−11 sets a limit
to the achievable experiment accuracy as shown in Figure 5.2. All the other a priori constraints given to the
satellite state vector uncertainty, radiation pressure coefficients and Pushchino coordinates do not influence ε
formal error in a significant way as noise and frequency bias do (they are, in fact, not correlated with ε as
shown in Figure 5.3). According to the expectations of the real experiment ([4]), the formal error obtained
with the simulations lies in a range of realistic values (they are a bit optimistic though because of the simplified
simulations assumptions). Further considerations about the achievable experiment accuracy are given in section
5.3.5.
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5.3.2 Correlation between satellite initial states and EEP violation parameter

An impressive result of the analysis is, indeed, the fact that ε is poorly correlated with the satellite state vector
parameters. However this result has a physical explanation supported by the structure of Equation 3.15. The
temporal signature of the initial states and ε on the frequency observable is, in fact, very different. Changes in
the state vector parameters are reflected into significant variations of the first order Doppler which affects the
total ∆f1w/f in a very different and much larger way respect to the changes in the gravitational redshift effect
due to ε variations. The different sensitivities of the frequency observable w.r.t. the state vector and the EEP
violation parameter are shown in Figure 5.8 where the partial derivatives w.r.t. the satellite x initial position
of the first arc and ε are plotted as a function of the observation times:

Figure 5.8: Partial derivatives of observables w.r.t. the EEP violation parameter (red) and x initial position
coordinate of the first arc (blue). The different curves of the same color are due both to the different ground
stations involved in the observations and the different Doppler observables (one and two way).

As seen in Figure 5.8, the behaviour of the partial derivatives w.r.t. the two parameters are different and this
is an indicator that they are not correlated. As expected, the ε partial derivatives in the second subplot (two
way observables) are zero since the two way Doppler measurements are not a function of the EEP violation
parameter, being the gravitational redshift term cancelled out. Moreover, as an additional verification step, the
derivatives w.r.t. the x initial position coordinate, are almost doubled in the second half of the plot and this is
perfectly in accordance with Equation 3.16 because in the two way measurements some of the Doppler terms
are actually twice the one way contributions. Actually the combination of one and two way data improves
the decorrelation process because of the additional two way observations which are sensitive only to the state
vector. The first subplot of Figure 5.8 (one way observables) gives an indication of the different slopes of the
red and blue curves. Figure 5.9 provides a zoom into the derivative w.r.t. ε showing that it has a very small
negative slope:
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Figure 5.9: Partial derivatives of one way observables w.r.t. the EEP violation parameter (red). Zoom into
the curve.

The extremely small slope of the red line suggests that the satellite is far from perigee and therefore the
gravitational potential has a very small variation within an observation time of one hour, given the characteristics
of RadioAstron’s orbit (see section 1.2). This is confirmed by the plot of the spacecraft distance from Earth as
a function of the observation times, together with the partial derivatives w.r.t. the EEP violation parameter,
shown in Figure 5.10:

Figure 5.10: RadioAstron distance and partial derivatives wrt the EEP violation parameter as a function of
the observation times.

It is visible that the derivatives w.r.t. ε experience strong changes during the last arcs. The physical explanation
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of this phenomenon is that, based on the time arc of the Doppler observations, the satellite is at different
positions along its orbit and, according to its specific orbital dynamics and geometry, it has a different radial
velocity. Therefore, according to Equation 4.4, it follows that the derivative behaviour mainly depends on the
pattern of the gravitational potential difference. Figure 5.10 shows important aspects which are relevant for
the correlations between frequency offsets in one way observations and the EEP violation parameter. This
discussion is in section 5.3.4.

Poor correlations of other position and velocity coordinates with ε are explained by a similar discrepancy
between their partial derivatives as pictured in Figure 5.8. However, unlike changes in the initial position
coordinates, changes in the spacecraft velocity produce definitely larger variations in the frequency observables
compared to changes in ε. The reason why quite loose a priori constraints given to the spacecraft state vector
(reported in Table 4.6) do not affect the EEP violation parameter accuracy is related to the observations noise
level. This affects the weighting matrix in Equation 3.68 in a way that makes measurements more trustworthy
compared to the a priori information. It is then important to remember that the state vector parameters are
estimated and are not treated as consider parameters.

Finally, as expected, within each arc the state vector parameters (including the radiation pressure coefficient)
are cross-correlated but no correlations appear between initial states of different arcs. Although states at
different time intervals are related by the orbital dynamics law, the lack of correlations in the present case is
a consequence of considering each arc to be statistically independent from the others (see the first assumption
stated in section 4.2). This means that the state vector uncertainty is not propagated from an arc to the next
one but the a priori covariance matrix is the same at the beginning of every time interval considered for the
orbit determination.

5.3.3 Correlation between Pu coordinates and EEP violation parameter

Another important result is that the correlations of ε with Pushchino ground station coordinates are very
low. This means that the current uncertainty on the geodetic position of the tracking station does not have a
significant influence on the experiment measurement accuracy. This is confirmed by the partial derivatives of
one and two way frequency observables w.r.t. the parameters:

Figure 5.11: Partial derivatives w.r.t. Pu station coordinates and EEP violation parameter (one way observ-
ables).
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Figure 5.12: Partial derivatives w.r.t. Pu station coordinates and EEP violation parameter (two way observ-
ables).

As shown in Figure 5.11 and Figure 5.12, the temporal signature of the TS coordinates has a pronounced
curvature respect to the ε one. Changes in ε affect the frequency observations in a larger and different way
than changes in Pushchino coordinates. Their different behaviour agrees with the low correlation numbers.
The formal error of the EEP violation parameter, moreover, is not affected by the assumed 10 meters σ of Pu
cartesian coordinates even when these are treated as consider parameters, as presented in section 5.2. Figure 5.7
shows that also correlation-wise there are no changes. Given the same results obtained with the two approaches
(covariance and consider covariance) it is possible to conclude that, as long as the geodetic Pushchino coordinates
uncertainties are smaller or equal than 10 m (GPS capability), they are harmless for the gravitational redshift
experiment.

5.3.4 Correlation between EEP violation parameter and clock offsets

The global correlation images presented in section 5 show that the EEP violation parameter and the clock
offsets are in general highly correlated and statistically independent from all the other parameters. From a
careful observation of Figure 5.4 and Figure 5.5 it emerges that the correlation values between ε and the biases
follow a specific criterion: they depend on the ratio between noise and a priori clock offset uncertainty (σnoise

δ
∆f0
f

).

The numbers reported in Table 5.2 agree perfectly with this type of dependency with only one exception in
the case of noise and δ∆f0

f = 10−11 where the correlation number is not exactly equal to the other terms of
the diagonal. However this result might be less reliable due to the matrices higher condition number obtained
with those settings. In general, the higher σnoise

δ
∆f0
f

gets, the lower the correlations become. This phenomenon

can be explained with a few considerations about the measurements principle and the a priori assumptions.
Generally speaking, the clock offset and ε are two very distinct and independent variables that are not correlated
a priori. One is a fundamental physics parameter while the other one is a bias between two oscillators due to
environmental conditions. For this reason their a priori covariance matrix is set to be diagonal (a priori cross
correlations are assumed to be zero). On the other hand, when performing the experiment, they happen to be
correlated. This is due to the measurement principle and its related complications which make it difficult to
distinguish the two contributions. Examining Equation 3.15, it can be noticed that the derivatives of the one way
observables w.r.t. the absolute bias are equal to 1 and are constant throughout the observations time according
to the assumption made in section 4.2. On the other hand, the derivatives w.r.t. the EEP violation parameter,
in the majority of time arcs, are characterized by an extremely small slope so it is difficult to appreciate the
sensitivity of the frequency observables respect to ε. The correlations between the two parameters become then
very high.

However, Figure 5.10 shows that in some cases (last arcs) the partial derivative w.r.t. the EEP violation
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parameter is very steep compared to other arcs. Although this might suggest that in these few circumstances
there should be a decorrelation between the two parameters (despite the specific noise and a priori constraints),
the outcome of a simulation performed considering only those specific time intervals in which the observables
are more sensitive to ε (when the derivative is steep) has brought the same high correlation result (mean value
of 0.98 maintaining the nominal settings of 10−12 for noise and frequency offset uncertainty). Moreover, if the
absolute biases and ε are estimated alone, without all the other parameters included in the nominal simulations,
their mean correlation value remains the same.

To investigate this phenomenon a synthetic study was performed in Matlab. By means of a synthetic
information matrix, whose columns resemble the partial derivatives w.r.t. ε and the bias, the correlations
between the two variables were then reproduced. The column related to the bias was simply described by a
constant function equal to 1 (as in the nominal simulations), while the other one (resembling ε) was described
with different models: linear, quadratic and sinusoidal. In the linear case both the intercept and the slope
were changed to see the impact on the correlations. The covariance was computed without weights and a priori
information. It turned out that no matter how much the linear model changes, correlations do not get lower
0.88. Moreover, if both the slope and the intercept are very small, the resulting correlation with the constant
absolute bias is almost one. In case the partial derivative w.r.t. ε is described by a parabola the correlations get
lower than in the linear case but still remain over 0.5. Finally, in the case of a sinusoidal model, as expected, the
correlation between the two parameters goes dramatically down, being close to 0. The correlations obtained with
the linear model, varying both the intercept and the slope within the realistic values of the nominal simulations,
are represented in Figure 5.13:

Figure 5.13: Correlations obtained with the synthetic study by means of a linear model describing the derivative
w.r.t. ε

As seen, correlations are constantly very high. The synthetic study confirms the outcome of the nominal
simulations done with the Tudat.

The case of low correlation between clock offset and ε during experiment raks17ai (15th time arc) reported
in Figure 5.6 is really surprising. It seems that the decorrelation between the two parameters is related to a
combination of circumstances. During that time interval, the x velocity coordinate of the satellite happens to
be highly correlated with the bias (correlation coefficient of 0.7, definitely much greater than usual) and, unlike
the majority of time intervals, arc number 15 presents a slightly different geometry (the shape of the spacecraft
trajectory does not resemble a straight line as it usually happens during one hour time intervals). The derivative
w.r.t. ε therefore does not have a linear behaviour but reminds a parabolic one (curvature is very small). This

happens also in a couple of previous time intervals but during the last arc the values of
∂∆f

f

∂ε oneway
are higher.

The low correlation coefficient of 0.4 between the EEP violation parameter and clock offset could be explained
by these coincidences. Although this topic has not been deeply investigated, it points to some further interesting
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investigations for possible future gravitational redshift experiments.
To sum up, the correlation issue between ε and ∆f0 arises because of the difficulty in distinguishing their

different contributions to the fractional frequency observables. With reference to Equation 3.68, reported below,
this is comprised in the term HTWH which is influenced by noise through the weighting matrix.

P−1
0 = (P apr0 )−1 + (HTWH) (5.1)

The a priori information, on the other hand, does not envisage any correlation between the parameters. There-
fore the correlations depend on the ratio between noise and the a priori clock offset uncertainty. When noise is
lower than δ∆f

f , HTWH predominates over (P apr0 )−1 so correlations increase. When noise is greater than the

offset uncertainty then (P apr0 )−1 becomes more relevant and correlations get lower because of its structure.

5.3.5 Final considerations about the experiment achievable accuracy

The real experiment data processing suggests that the fractional frequency noise level is of the order of 10−12

([29]). Data reported in [4] about the Allan deviation of both RadioAstron H-maser and the signal recorded at
Effelsberg ground telescope show that, within 3000 seconds averaging time, the clock uncertainty still remains
below 10−13. The combination of a 10−12 noise with a frequency offset uncertainty of 10−13 brings, according to
Table 5.1, to an accuracy of 1.9608×10−5 on the ε estimation with a mean correlation value with the frequency
offsets of 0.53. The ε formal error agrees with the order of magnitude of the expected real experiment accuracy
reported in [4] of roughly 2.5×10−5. However, the predicted result of the simulations study is referred to the case
in which clock offsets are estimated arc-wise. In reality, differenced measurements between apogee and perigee
are considered, as stated in section 1.3. With this approach the constant frequency offset term is cancelled
out and only the drift remains. Therefore, in order to have a more realistic error budget, the uncertainty of
the clock drift between two gravitational redshift experiment sessions should be known. This value would be
a function of time so it would have a different impact according to the time spacing of different gravitational
redshift sessions. The implementation of this new approach is described and recommended in section 6.2.

The outcome of the simulations study is quite optimistic for several reasons. Assumptions about the noise
profile (which is assumed to be ideally white Gaussian and not time correlated), considering two way observations
completely unbiased, not taking into account the interleaving measurement approach and adopting a very simple
radiation pressure model to describe the orbital dynamics of RadioAstron are quite strong. The assumption
of considering biases that belong to the same link end (spacecraft-ground station) as different independent
parameters is also not true because they are a function of time. Therefore they are also a priori correlated.
Although this assumption introduces indeed some errors, unlike the others it might actually complicate the
estimation problem. If bias differences were estimated instead of absolute values, they would be a function of
time and it should be easier to distinguish their temporal signature from ε.

One of the positive aspects, as confirmed by the covariance analysis performed by Dr Mikhail Zakhvatkin
with much more accurate models (shortly summarized in section 4.10), is that the simulations study correlations
results with respect to the state vector are validated. This means that the simulation concept has been developed
correctly. On the other hand, possible unmodelled effects affecting the real frequency fluctuations in terms of
noise might represent a dangerous obstacle in reaching δε ≈ 10−5.
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Chapter 6

Conclusions and recommendations

This chapter provides both a summary of the key points of the project study, along with the results obtained
in chapter 5 (this is given in section 6.1), and some future recommendations for further improvements (section
6.2).

6.1 Summary of the results and answers to the research questions

The list of research questions defined in section 1.6 has been discussed and answered throughout the report with
the simulations study results. The main subjects to be investigated were the impact of the satellite state vector,
the frequency offset (clock contribution), the observations noise and the ground station position (Pushchino)
uncertainties on the experiment accuracy (EEP violation parameter estimation), in terms of both formal error
and correlations.

The resulting output of the covariance and formal error analysis shows that the satellite state vector un-
certainty does not influence the accuracy of the ε estimation, as well as an error in Pushchino tracking station
coordinates does not represent a harm. On the other hand, the observations noise together with the frequency
offset uncertainty do have a big influence on both the EEP violation parameter formal error and its correlations
with biases in one way frequency measurements. In other words, ε turns out to be statistically independent of
the spacecraft state uncertainty and all the other parameters included in the simulations, except the arc-wise
one way frequency biases (representing the frequency offset due to the H-maser clocks). It is very difficult to
distinguish the effect of an absolute bias from the EEP violation parameter since they affect the frequency
observables during the experiments in almost the same way. Their correlation depends on the ratio between
noise and H-maser offset uncertainty. Therefore, in order to decorrelate them, very low a priori uncertainties
need to be set compared to the observations noise level. Moreover, both noise and δ∆f0

f play a crucial role
in determining the accuracy of the ε measurement. In general, noise has a greater influence on δε. However,
when either noise or bias uncertainty are fixed to a fractional frequency value of 10−12, variations of one setting
respect to the other one yield almost identical ε formal errors (see Figure 5.1 and Figure 5.2, yellow curves). In
this specific case, the observations noise and the bias uncertainty are almost interchangeable.

Given the realistic value of measurements noise of 10−12 in terms of fractional frequency fluctuations, and an
uncertainty of ∆f0

f of 10−13 (resulting from combining Allan deviations of RadioAstron H-maser and a ground

radio telescope for one hour averaging time), the resulting EEP violation parameter accuracy, according to the
simulations study, corresponds to an order of magnitude of 1.9608× 10−5.
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6.2 Recommendations for completion of the RadioAstron gravita-
tional redshift experiment

The first future recommendation concerning the covariance analysis consists in extending it to a more general
case in which biases are assumed to be functions of time. In reality, in fact, the frequency offset between H-
masers experiences a drift. Therefore, estimating not only the absolute values but also the differences between
frequency biases would improve the correlation study. Moreover, since the principle adopted to carry out the
real experiment is to measure the gravitational redshift difference and not its absolute value, it would be in-
teresting and more appropriate to see how the EEP violation parameter correlates with the difference between
absolute biases. In this case the a priori covariance of the biases differences shall be then differentiated accord-
ing to the time spacing of the observations, given the time dependency of the H-masers drift. Beforehand, an
assumption about the type of variation experienced by the clock bias as a function of time shall be made. The
implementation of this new simulation set up is not straightforward and requires changes in the Tudat software.

As already done with Pushshino coordinates, the consider covariance analysis shall be extended to the state
vector parameters as well to make sure that their uncertainty does not affect the accuracy of the experiment
even if they are not estimated. To implement this, though, the a priori covariance related to the position and
velocity of RadioAstron shall be very accurate for each time arc. Adopting a simple diagonal matrix would
bring to an unrealistic result since the propagated uncertainty would follow an exponential curve and thus would
result in extremely high uncertainty values.

Since the correlations might also have a geometrical nature due to the particular positions of ground stations
and spacecraft at the times of the observations, a simulation including all the list of experiments together would
be ideal to check if there are any significant changes in the covariance analysis done so far. However, given the
analysis performed by Dr Mikhail Zakhvatkin for a very long time interval (a month), nothing is expected to
change with respect to the correlations between ε and the state vector parameters. On the other hand, it has
been shown that in very particular cases, in combination with low noise, the EEP violation parameter could
be decorrelated from the bias, thanks to the favourable characteristics of the spacecraft trajectory during the
observations time interval and other circumstances that are not completely clear yet. Investigating this aspect
would be great for the design of future gravitational redshift experiments.

Although the covariance analysis provides good support for the real data processing, it does not give an
indication of how the true experiment error behaves as a function of the errors affecting the involved parameters.
The simulations study as implemented so far, in fact, is not reliable for a true error study because the adopted
dynamical model for the spacecraft is not realistic enough and, above all, unmodelled effects in noise might
significantly affect the experiment. Therefore, in order to extend the simulations study to the true experiment
error, the orbital motion of RadioAstron has to be described with the most accurate model for the radiation
pressure force, which represents the main source of uncertainty in the dynamics. Moreover, since the dynamical
model will always present some uncertainty, adding process noise to the state vector propagation while imple-
menting the least squares algorithm estimation would be beneficial. With regard to the process noise, however,
the most difficult part would be understanding what its appropriate magnitude and time-correlated probability
distribution shall be. The first suggestion would be trying different cases and find out how true, formal errors
and correlations change according to the chosen process noise matrix.

In conclusion, the application of a least squares algorithm to study the error budget of the experiment
represents a very robust mathematical and statistical method. The correlations computed alongside with the
parameters estimation add an important value to the formal errors result and give an indication of how reli-
able is the experiment outcome. Therefore, this rigorous approach of estimating the EEP violation parameter
through a statistical orbit determination process might have a great benefit if applied as a technique for the
real data processing.
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