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Correlation of mission type to cyclic loading as a basis for agile military aircraft asset 
management 

 
Jeffrey Newcamp*, W.J.C. Verhagen, Richard Curran 

 Delft University of Technology, Faculty of Aerospace, Kluyverweg 1, 2629 HS Delft, Netherlands 
 

Military attack aircraft are susceptible to the harmful effects of widespread fatigue damage caused by cyclic loading 
of structural components, which leads to airframe retirement. Modern structural health monitoring techniques use a 
multitude of sensors and high data collection rates. Some legacy airframes, which are most susceptible to fatigue 
damage due to their age, possess a counting accelerometer technology with few sensors and low data capture rates. 
The data provided by these 40-year old devices are crucial to understanding fleet health and can be used to extend 
structural lifetime for aging aircraft. Existing literature has addressed counting accelerometer usefulness, but a 
profound three-decade gap in research has led to a chasm between the current wealth of available data and tool 
development for utilizing those data. This research uses 11 years of A-10 Thunderbolt II counting accelerometer data 
to prove that mission type, mission duration and aircraft type correlate to aircraft loading patterns. It is shown that a 
mission type model can therefore influence fleet management strategies and the structural lifetime extension for 
aging aircraft. 
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1. Introduction 
 Mission type usage for military attack aircraft varies widely 
and the particular utilization pattern is important for determining 
an airframe’s lifetime. As an aircraft fleet ages, the initial 
lifetime estimate must be updated to reflect usage patterns. 
These calculations are especially important in a fiscal climate 
where air forces are retaining aircraft longer than initially 
projected. For example, the United States Air Force (USAF) 
employs a fleet averaging 26 years old, with an average age of 
21 years for the attack/fighter aircraft subgroup [1]. A 2012 
study concluded that the USAF fleet is the oldest it has ever 
been with no strategy in place to reverse the trend [2], [3]. The 
problem of aging aircraft is not new and accordingly, the 
Department of Defense’s (DoD) policy has evolved through 
time. MIL-HDBK-1530 and the USAF Policy Directive 63-10 
are two examples of how serious the DoD has taken aging 
aircraft issues [4], [5]. The Aircraft Structural Integrity Program 
(ASIP) has implemented inspections and enhanced monitoring to 
decrease the effects of aircraft aging [6], [7]. While there is a 
strong emphasis on monitoring for structural deterioration, there 
is much less emphasis on how mission type impacts loading.  
 For this research on aircraft loading, the A-10 Thunderbolt II 
was chosen as the case study aircraft. It is an aging aircraft, first 
reaching initial operating capability in 1977 [8]. The A-10 was 
built by Fairchild Republic to fill the close air support role for 
the USAF. It is a single-seat, twin-turbofan engine aircraft with a 
low wing, low-tail configuration possessing advanced 
survivability characteristics [9]. The structure is mostly 
aluminum with the primary exception of titanium armor 
shielding the cockpit from ground fire. Base weight is 28,000 
pounds and normal operating weight is 35,000 to 50,000 pounds. 
Though categorized as an attack aircraft, zero-g or negative-g 
maneuvers greater than 10 seconds are forbidden. The maximum 
airspeed is 450 knots indicated airspeed, or Mach 0.75, 
whichever is lower. At a nominal weight of 30,000 pounds at sea 

level, the normal load factor (Nz) limits are +7.3g/-3.0g. The 
A-10 possesses a basic structural health monitoring system 
known as a counting accelerometer governed by a now rescinded 
military specification [10], [11]. 
 The A-10 System Program Office of the USAF provided data 
from its Aircraft Data Acquisition and Distribution System 
(ADADS) for this study. Each A-10 has a counting 
accelerometer unit that records counts in discrete bins each 
representing an Nz loading (0.3g, 2.5g, 3g, 4g, 5.5g and 7g). 
These counts are unidirectional, meaning that an aircraft 
maneuver to 4.8g would accrue one count in each of the 2.5g, 3g 
and 4g bins. The system does not provide a time-history nor 
does it provide aircraft weight information. For each mission, the 
counting accelerometer data were transcribed by maintenance 
ground crews onto an Air Force Technical Order (AFTO) form 
278. The mission pilot then hand-carried the form into 
maintenance debrief and handed off the data to a support person 
who inputted the data into a digital storage service managed by 
the Oklahoma City Air Logistics Complex (OC-ALC). The 
ASIP manager is responsible for analyzing loading pattern data 
and for implementing fleet-wide changes. This data collection 
process is shown in Fig. 1.  

 
Fig. 1. Aircraft Data Acquisition and Distribution System data 
flow. 
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 This research analyzed two important hypotheses about 
aircraft loading. The first was that the type of flying mission 
impacts the loading pattern experienced by a military attack 
aircraft. Second, some mission types account for greater loading 
accumulation. These two hypotheses are essential first steps for 
future phases of this effort which aim to develop a fleet 
optimization model for assigning military aircraft to operational 
locations while maximizing aircraft availability and extending 
useful life.  
 
1.1. Theoretical Context 
 The A-10’s counting accelerometer technology originated in 
the 1950s so there exists a plethora of related work in the 1950s, 
1960s and 1970s but a dearth in the 1980s through present. 
Accordingly, the theory and methodologies developed at the 
outset of counting accelerometer usage have not been updated 
since the 1970s. The seminal work in counting accelerometers 
was conducted by Taylor who discussed counting accelerometer 
technology from a design perspective in 1954 [12]. Gray’s work 
applied counting accelerometer systems to individual aircraft 
tracking for fatigue crack growth prediction [13]. Lambert’s 
work in 1973 applied tracking data to life predictions and fleet 
optimization [14]. He suggested fleet basing optimization as a 
way to extend aircraft lifetimes because his work showed a 
theoretical relationship between aircraft stress and sortie pattern 
combination. Lambert did not propose ways to optimize fleets or 
basing and his theoretical calculations used generic data, not 
collected data. 
 De Jonge’s 1989 work using counting accelerometer data 
was among the most recent. He studied Royal Netherlands Air 
Force F-104G operational data and used a Weibull distribution 
to represent load factor cumulative occurrence distributions, 
which were different for reconnaissance, strike and air defense 
mission categories [15]. De Jonge’s study followed 15 counting 
accelerometer instrumentation kits that were installed on various 
aircraft over a 10-year period. His data comprised 9,500 flights 
but did not have the tail-number specificity that the A-10 data in 
this study possesses.  
 Aging aircraft operators are responding to aging aircraft fleet 
problems through enhanced structural health monitoring, as 
discussed by Albert et al, Connor et al, Maley et al and at length 
in Staszewski et al  [16], [17], [18], [19]. Boyd wrote that the 
greatest impact on the aging process comes from post-
manufacturing decisions [20]. This implies that combining 
structural health monitoring with usage decisions can impact 
fleet health. Unfortunately, current data collection is not uniform 
across aircraft fleets. Even within one mission design series, 
there exist multiple generations of flight data recorder 
technology possessing incremental capabilities. Therefore, 
historical data take many forms, making it difficult to conduct 
both longitudinal and horizontal studies. This research evaluated 
existing structural health monitoring data to draw correlations 
that are useful to different aircraft types. 
 The author recognizes the inferiority of a counting 
accelerometer system, as outlined by De Jonge, but the author 
understands the importance of developing tools to use these data 
[21]. The USAF has decades of counting accelerometer data that 
can be used for lifetime optimization but few established tools 
for analysis. Despite the failings of the data type, there still 
exists opportunity to use the data. 

 The remainder of this paper will address the two hypotheses 
listed in this introduction. This unprecedentedly large analysis of 
the entire A-10 fleet will show a new look at how mission type 
impacts aircraft loading patterns. The next section discusses the 
methodology used to analyze the data provided by the USAF, 
including the practice of data reduction and the established 
norms for analyzing counting accelerometer data. Then, the 
results section presents a thorough treatment of counting 
accelerometer data both in aggregate form and in population 
subsets. The relationship between g-count occurrences and 
mission type is analyzed, exponential usage models for each 
mission type are presented and an analysis of important findings 
is presented. Data verification then shows the relationship 
between this study’s data and existing studies. Lastly, the 
conclusions section summarizes the findings from this study. 

2. Methodology 
 
2.1. Data Reduction 
 The dataset from the USAF ADADS database 
contained 456,847 unique entries spanning from January 2002 to 
August 2015. The counting accelerometer data capture rates 
were low during 2002 and 2003 so data from those years were 
removed from the dataset. Only half of the collection year for 
2015 had occurred at the start of this study, so 2015 data were 
excluded. These exclusions resulted in 407,634 viable sorties. 
Because the data collection was subject to many failure modes 
(missing data, human error and accelerometer malfunctions), 
there resulted 278,678 useful entries after multiple filtering 
algorithms were applied. These algorithms removed clear errors: 
sortie durations d outside the reasonable range of 0.3 < d < 15 
hours, sorties firing more rounds than capacity allows and sorties 
with counting accelerometer failures indicated by 
discontinuities. Further reduction of the population was 
undertaken to remove eight infrequently flown mission types. 
Fig. 2 illustrates the data reduction process.  

 
ADADS Database

(2002-2015)
n = 456,847

Missing Data 
Algorithm

n = 362,894

Erroneous Data 
Algorithm

n = 278,678

Infrequent Mission 
Code Removal

n = 276,662

Date Reduction 
(2004-2014)
n = 407,634

 
Fig. 2. Data reduction process steps. 

 Descriptive statistics of the full dataset and the edited dataset 
show that the reduction steps did not skew the data. The means 
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for flight duration and number of rounds fired only show minor 
shifts between the full dataset and the edited dataset (0.40% and 
4.42% losses, respectively). These outcomes are reasonable. 
Only six of the original 365 tail numbers were removed and 
those six aircraft only represented seven missions in the original 
2002-2015 dataset.  
 Because this research relies on understanding fleet usage, 
losing a portion of the dataset would have resulted in an 
underestimation of yearly usage. To correct for this the 
associated number of sorties and mission types from the full 
dataset were reserved for analysis alongside the edited dataset. 
The erroneous counting accelerometer data were not replaced or 
corrected.  
 
2.2. Modeling the Usage Spectrum 
 Two assumptions were required during the modeling effort. 
The first was that data collected for mission types are 
representative of those missions. For example, if a pilot states 
that his mission was Close Air Support (CAS), then that pilot 
flew CAS for the majority of the mission. The second 
assumption was that the data contained in the study population 
from 2004-2014 is representative of the entire lifetime for the 
aircraft analyzed. Since there were not significant differences 
found between the years in the study, this assumption is 
reasonable. 
 The ADADS database accepts 18 unique mission codes,  
however the top 10 mission codes represented 99.33% of all 
missions and the remaining eight codes were antiquated. Table 1 
shows the 10 currently used mission codes along with the 
percentage of missions each represented in the dataset. One can 
see that the six most frequent mission codes account for 96.33% 
of all missions. Codes SAR, FAC, NAV and FCF were still 
included in the model despite their low representation because of 
their relevance to overall A-10 operations and loading spectra. 
For example, the Functional Check Flight (FCF) code only 
accounts for 0.58% of all A-10 missions, but an FCF is a full-
envelope check of the aircraft and greatly contributes to the 
width of the loading spectrum envelope. 
 
Table 1 
Mission types retained for analysis. 

Mission 
Code 

% of 
Dataset 

Cumulative 
% 

Median Missions 
In Fleet (1 yr) 

CAS 48.95 48.95 17,966 
SAT 14.00 62.95 5,182 
OTH 13.83 76.78 5,250 
BFM 7.26 84.04 2,543 
SA 7.10 91.14 2,866 
AR 5.19 96.33 1,472 

SAR 1.00 97.33 351 
FAC 0.74 98.07 254 
NAV 0.68 98.75 203 
FCF 0.58 99.33 211 

Sum: 99.33  36,298 
 
 A typical year for the A-10 fleet flies this mix of missions. It 
is from these data that one can understand the demands placed 
on the fleet. To simplify the usage data to a typical year, the 
medians of each mission code shown in Table 1 were calculated 
over the 11-year population. Fleet-wide, the median number of 

missions per year was 36,298. This number is subject to a 
variety of influences: political changes, budgetary climate and 
combat needs.  
 
2.3. Data Analysis 
 The edited database contained these factors: aircraft tail 
number, six levels of counting accelerometer data, an elapsed 
time indicator, mission type, base of assignment, rounds fired, 
date, flight duration and cumulative flight hours. Principal 
component analysis showed that mission type, mission duration, 
rounds fired and base of assignment had high eigenvalues and 
were the factors that impacted counting accelerometer 
occurrences and therefore explained the variance in the dataset. 
Each of these factors except rounds fired is discussed in this 
paper.  
 The established approach for analyzing aging aircraft 
counting accelerometer data is discussed by both Denyer and 
Gray [22], [13]. The calculation of normal load factor 
occurrences per 1,000 flight hours is used as the standard for 
comparison with historical studies (Equation 1). Normal load 
factor, Nzj represents the counting accelerometer bins where 
j = {0.3, 2.5, 3, 4, 5.5, 7}.  
 

 
(1) 

  
 Aircraft within one mission design series experience a range 
of loads, but that variability can be considered stochastic. 
De Jonge’s work with counting accelerometers acknowledges 
this, allowing the methodological use of Equation 1 for 
comparisons between different mission types [21]. Holpp and 
Landy also followed this approach using generic, DoD fighter 
data to assess aircraft loading spectra [23]. They showed 
counting accelerometer cumulative occurrence plots from a 
government study that highlighted differences between air-to-air, 
air-to-ground and loiter mission type categories. Holpp and 
Landy did not analyze the differences between mission types nor 
did they assess the reasons for the differences because their 
objective was to develop an overarching usage spectrum. 
De Jonge’s later work on fighter aircraft shows a difference in 
load experience for different mission types [15]. In this 
approach, he reduces counting accelerometer data to a singular 
parameter per flight, labeled the load severity factor. 

3. Results 
 To address the first hypothesis stating that the type of 
mission impacts the loading pattern, it must be shown that there 
exists a measurable difference in counting accelerometer 
occurrences for each mission type. This will be shown through 
the distillation of the dataset into mission type subgroups with a 
subsequent between–subjects treatment using ANOVA. Then to 
address the second hypothesis, that some mission types account 
for greater loading accumulation, the mission type subgroup data 
are parsed. Then their exponential decay model coefficients are 
compared. Lastly, bivariate correlation and the Pearson product-
moment correlation coefficient are used to show the relationship 
between flight hours and g-count occurrences to demonstrate 
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that the established relationships have a positive correlation with 
increasing time. 
 
3.1. Loading Environment 
 To understand the loading environment differences between 
missions, it is critical to first establish the loading environment 
for an individual sortie. The median yearly loading 
accumulations for the fleet are shown in Table 2. The median 
g-count occurrences per flying hour represent the distillation of 
the population data into a tangible cost for each hour an A-10 
flies. For example, an A-10 will accumulate the g-count 
occurrences shown in Table 2 in a 2.26-hour sortie, which is the 
average sortie duration during the data collection period. The 
A-10 fleet accumulated 748,812 counts on its 3g counters in a 
median year. Any candidate tail number accumulated 9 counts 
(integer scale) on the 3g counter in one flight hour. For the 
average A-10 sortie duration of 2.26 hours, a candidate aircraft 
would receive 20 counts on its 3g counter. This is the real 
structural loading cost of one hour of flight. 

 
Table 2 
Distribution of g-counts. 

Counting 
Accelerometer 

Median 
Yearly 

g-Counts 

Mean g-
Counts Per 

Flight Hr 

Mean g-
Counts Per
Avg Sortie 

0.3g 194,472 2.31 5.22 
2.5g 1,267,447 15.42 34.85 
3g 748,812 9.21 20.81 
4g 298,941 3.62 8.18 

5.5g 32,078 0.42 0.95 
7g 2,166 0.03 0.07 

 
 These medians and means are powerful tools for fleet 
managers. Knowing how much loading accumulation occurs in a 
typical flight hour can help managers predict useful lives for 
their fleets. Fig. 3 is a box plot of the counting accelerometer 
data, showing the means, 25th and 75th percentiles as well as 
outliers. The boxplot whiskers are set to 2.7 standard deviations, 
so all data beyond them are shown as individual datum points. 
The box plot shows the relationship between counts on each 
counting accelerometer for a typical flying hour.  
 

 
Fig. 3. Box plot of g-counts per flight hour. 

 Understanding the loading spectrum for a typical year and a 
typical flying hour are important, but it is essential to know how 
each mission code affects the loading patterns. Each mission 
code was isolated in the population to determine its contribution 
to loading patterns. The g-counts per flight hour for select 
mission codes are summarized in Fig. 4. Surface Attack (SA), 
Functional Check Flight (FCF) and Navigation (NAV) were 
chosen for inclusion because they represent a broad range of the 
mission type subgroups, thus emphasizing the variability. 
Because the counting accelerometers are discrete, not 
continuous, connecting lines were merely added for clarity of 
presentation. 
 

 
Fig. 4. Loading pattern per flight hour for mission types. 

 These data answer several important questions. First, the type 
of mission impacts the loading pattern experienced by the 
aircraft. The types of missions flown impact how many g-count 
occurrences are accumulated on the fleet. The stratification in 
the data is more visible at the lower g-levels with less variance at 
the 5.5g and 7g levels. In the full dataset not shown here, some 
mission types stand out compared to the others. Close Air 
Support (CAS) and Surface Attack Tactics (SAT) both have 
greater counts per flight hour than the other mission types. Other 
(OTH) is found close to the median at each bin. OTH is the 
catch-all mission code when a pilot felt that he did not 
predominantly fly one of the other mission codes, so this code is 
less valuable and serves as a proxy median. Consequently, fleet 
managers cannot use the data provided by OTH to devise fleet 
optimization algorithms.  
 Applying Equation 1 to these data allows for comparison to 
legacy aircraft and across time. The cumulative normal load 
factor occurrences per 1,000 flight hours for the same selected 
mission types are shown in Fig. 5. Connecting lines were again 
added for clarity of presentation. The logarithmic ordinate best 
represents the differences between mission type usage severity 
across the full spectrum of recorded normal load factors and 
confirms the result that mission type impacts the loading pattern.  
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Fig. 5. Usage severity shown for select mission types. 

 
 The underlying data used for Fig. 4 and Fig. 5 showed that 
the SAT and OTH g-count loading patterns are similarly shaped. 
An ANOVA to detect between-subjects effects shows 
significance for four of the six normal load factors, shown in 
Table 3. Fleet managers cannot be certain that the SAT and OTH 
5.5g and 7g trends are distinct due to their high p-values.  
 
Table 3 
SAT-OTH ANOVA comparison. 

Counting 
Accelerometer 

f-Statistic p-Value 

0.3g 24.603 0.000 
2.5g 15.222 0.000 
3g 36.924 0.000 
4g 326.662 0.000 

5.5g 0.750 0.386 
7g 0.140 0.708 

 
 The counting accelerometers were analyzed for variance 
using an ANOVA. Table 4 shows that the variance present 
within the counting accelerometer subgroups (0.3g, 2.5g, 3g, 4g, 
5.5g and 7g) are significant and should therefore be treated as 
different in further analyses.  
 
Table 4 
Summary of mission code ANOVA. 

Counting 
Accelerometer 

f-Statistic p-Value 

0.3g 364.988 0.000 
2.5g 1609.144 0.000 
3g 2063.013 0.000 
4g 2373.582 0.000 

5.5g 285.735 0.000 
7g 26.870 0.000 

 
3.2. Mission Evaluation 
 To show the correlation of loading pattern to mission type, it 
was required to map each mission code to the counting 
accelerometer data. Counter occurrences per sortie were 

evaluated, as were the percentages of counter occurrences with 
respect to the sum for each mission code. Both of these 
approaches presented factual but incomplete results because 
neither depicted usage in terms useful to aircraft managers. 
Since flight hours are the basic unit of aircraft usage, counter 
occurrences per flight hour best represented the loading patterns. 
All values higher than the mean in the counter subgroups 
(columns) are bolded.  
 
Table 5 
Counting accelerometer occurrences per hour for each mission 
type. 

 Counts Per Hour 
Mission

Code 0.3g 2.5g 3g 4g 5.5g 7g 

SAT 2.28 15.90 9.83 3.68 0.36 0.02 
AR 2.50 13.76 8.67 3.44 0.32 0.02 

BFM 3.21 15.97 10.87 4.86 0.48 0.04 
CAS 1.31 8.26 4.84 1.82 0.19 0.01 
FAC 1.50 9.93 5.65 2.08 0.23 0.01 
FCF 3.17 8.65 5.58 2.18 0.41 0.06 
NAV 0.71 3.42 2.06 0.77 0.11 0.01 
OTH 2.24 14.37 9.43 3.86 0.33 0.02 
SA 2.28 18.86 12.37 5.20 0.54 0.03 

SAR 1.62 12.02 6.65 1.95 0.18 0.01 
Bolded values are above the column mean. 

 
 The data in Table 5 were transformed to cumulative 
occurrences per 1,000 flight hours for each counting 
accelerometer. These data are shown graphically in Fig. 6, where 
the curve fits are all one-term exponential distributions 
calculated by Equation 2. Exponential fits were expected 
because each positive, lesser accelerometer must serially receive 
a count to register a higher count during a maneuver from 1g. 
The 0.3g counting accelerometer was masked from this data 
representation because data between the 0.3g and 2.5g counters 
are significantly impacted by the asymptotic nature of the 
function near 1g. The value x represents the normal load factor 
and a and b are coefficient terms. All values of b are negative 
resulting in exponential decay for increasing load factor. Table 6 
shows the coefficients used to build each exponential model. 
 

 (2) 
 
 The number of occurrences of a particular normal load factor 
may now be calculated. Then algebraic manipulation yields 
Equation 3 where the value y represents the number of 
occurrences per 1,000 flight hours of a normal load factor, x. 
The values a and b are both coefficients. 
 

 
 

(3) 

 
 These equations and the exponential models show the 
differences in loading accumulation for each of the ten mission 
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types. The limitation to this approach is that the counting 
accelerometers are discrete. Continuous data from a digital data 
recorder could reveal more information about the occurrences 
experienced at all load factors. Thus, these exponential fits 
assume exponential behavior between counting accelerometers. 
 

 

 

 
Fig. 6. Exponential fits for mission types. 

 
 

Table 6 
Coefficients for mission type exponential fits. 

Mission a b R2 RMSE 
AR 1.521e+05 -0.959 0.9980 306.2 

BFM 1.34e+05 -0.8457 0.9950 562.2 
CAS 1.137e+05 -1.049 0.9991 119.5 
FAC 1.513e+05 -1.091 0.9992 138.8 
FCF 8.743e+04 -0.9231 0.9993 108.4 
NAV 4.351e+04 -1.017 0.9995 38.4 
OTH 1.417e+05 -0.9115 0.9966 415.8 
SA 1.797e+05 -0.8983 0.9970 514 

SAR 2.461e+05 -1.207 0.9997 94.6 
SAT 1.938e+05 -0.9982 0.9986 292.5 

 
3.2.1. Basic Fighter Maneuvers (BFM) and Surface Attack (SA) 
Missions Accrue the Most g-Counts 
 These two mission types have g-count occurrences per hour 
above the mean for each counting accelerometer subgroup. 
Tangibly, this means that these mission types have more 
g-transients and therefore contribute more to structural 
degradation [24]. Because the counting accelerometer system 
increments each time a normal load factor is surpassed, the 
aircraft is experiencing more departures from the normal 
acceleration of gravity in both the positive and negative 
directions. Since fatigue damage is caused by the accumulation 
of loading, BFM and SA missions contribute the most to aircraft 
lifetime usage. This assumes stores weight, stores location and 
aircraft fuel load for BFM and SA missions are similar to those 
of other mission types. 
 This result is sensible. BFM is an aggressive mission type 
because it simulates an air-to-air engagement. As the data show, 
pilots will utilize all regions of the flight envelope to gain an 
energy advantage against an opponent. SA missions are 
characteristically aggressive because the run-in and safe-escape 
phases of an engagement with a ground asset are designed to 
evade enemy ground fire.  
 
3.2.2. Close Air Support (CAS) and Navigation (NAV) Missions 
Are the Least Damaging 
 CAS and NAV missions experience fewer g-transients 
compared to other mission types. These sorties spend more time 
at 1g. For CAS, this means more time orbiting an engagement 
area waiting for orders to engage an enemy position. Pilots 
flying CAS avoid excessive maneuvering and flight under 
elevated g-loads because of increased fuel burn for those actions 
and therefore decreased loiter time. NAV missions are generally 
flown over long distances where fuel consumption is closely 
monitored. Therefore, the likelihood for elevated g-loading is 
decreased. 
 
3.2.3. Aerial Refueling (AR) Missions Are Structurally 
Significant  
 Pilot tendency to code a mission as AR is greatest for those 
missions whose primary purpose is practicing aerial refueling 
with a tanker aircraft. These missions may include multiple 
rejoins, boom connects/disconnects and simulated breakaways. 
Maneuvering near a tanker aircraft is usually in the middle of the 
flight envelope, near 1g. Simulated breakaways, where the 
refueling aircraft expeditiously separates from the tanker aircraft, 
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often transit below 1g. This is shown in the data. AR missions 
account for a high number of 0.3g counts.  
 
3.2.4. Functional Check Flight (FCF) Missions Represent the 
Most Extreme Flying 
 FCF missions are required after major maintenance actions. 
These missions are designed to test the aircraft in all regions of 
the flight envelope to ensure the aircraft is capable of full 
functionality. Table 5 shows that FCF missions have the highest 
7g occurrences per flying hour. FCF missions also have the 
second highest occurrences per hour for the 0.3g counter. This 
occurs because FCF missions are required to fly at the extremes 
of the flight envelope. BFM and SA accrue more counts than the 
mean, but FCF is also an important mission type for fleet 
managers because of its contribution to loading at the extremes 
of the loading spectrum.  
 
 Three sample mission types (SA, FCF and NAV) are shown 
in a spider plot as Fig. 7, which is a different representation of 
the data shown in Fig. 4. This plotting technique best shows the 
differences between an aggressive mission type (SA), a more 
docile mission type (NAV) and a mission type with skewed 
loading (FCF). The skewness best illustrated by the FCF data 
trace shows the abundance of 7g counts accrued in FCF. The 
lines between each datum point were added for visual 
convenience and do not suggest continuous data. 
 

 
Fig. 7. Spider plot of normal load factor occurrences per flight 
hour. 

3.2.5. Relationship Between Aircraft Age and g-Counts 
 Median counting accelerometer counts were tabulated for 
each age-ranked tail number to determine if aircraft age had an 
impact on an aircraft’s g-count accumulation. The resulting 
linear trend equations are listed in Table 7, where y represents g-
count occurrences and x represents aircraft age. Not enough non-
zero data from the 5.5g and 7g counting accelerometers existed 
so their linear trend equations were omitted from Table 7. The 
low coefficients of determination, measures of the total variance 
of the dependent variables that can be explained by the 
equations, are due to the large sample size. These equations 
show there to be no significant aircraft age effect on g-count 
accumulation rate. This implies that the reason for aircraft 
retirement must not be because older aircraft were flown harder 

in bygone days but might be because older aircraft have merely 
accumulated more structural loading through time. 
 
Table 7 
Counting accelerometer linear trend relating aircraft age. 

Counting 
Accelerometer 

Linear Trend 
Equation 

R2

0.3g y = 0.0009x + 1.689 0.0069 
2.5g y = -0.0014x + 20.937 0.0003 
3g y = -0.0019x + 12.156 0.0014 
4g y = -0.0018x + 4.5616 0.0073 

 
3.2.6. Relationship Between Flight Duration and g-Counts 
 If older aircraft accumulate more structural loading through 
time, it must be shown that increased flight time correlates to 
increased loading. Fig. 8 illustrates the pattern comparing 
increasing flight duration to g-counts for one representative 
counting accelerometer (5.5g). Only flight durations between 0.6 
hours and 5.0 hours were plotted to best show the typical data 
and to exclude outliers. These exclusions reduced the number of 
samples compared to other plots in this section. As flight 
duration increases to the center of the distribution the tendency 
for higher g-counts increases. After the center, the tendency for 
higher g-counts decreases. The shape of the data shows that 
there is a flight duration effect. A longer flight duration gives a 
pilot more opportunity to maneuver the aircraft through the 
range of counting accelerometers. A density plot of the same 
data confirmed the relationship shown in Fig. 8. Excessive 
maneuvering increases g-counts but also consumes more fuel. 
During a sortie without aerial refueling, excessive maneuvering 
would lead to a shorter sortie duration. Therefore, sorties shown 
in the right-tail of the distribution represent two categories: 
sorties with minimal maneuvering to extend sortie duration and 
sorties where aerial refueling took place. These classes of 
missions are skewed towards long-distance flights, during which 
pilots refrain from excessive maneuvering. This result was 
verified through an interview with an A-10 test pilot [25]. For 
reference, the max endure label indicates the approximate 
maximum sortie duration without aerial refueling.  
  

 
Fig. 8. Relationship of flight duration to g-count occurrences, 
n = 265,680. 
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 Assuming a stochastic makeup of flight assignments, it 
follows that aircraft with more flight hours, regardless of flight 
duration, would have accumulated more g-counts through time. 
Fig. 9 shows this relationship using data from the 4g counting 
accelerometer for all 356 aircraft in the study. Aircraft with 
lower flight hours in the dataset tend to have shorter duration 
sorties, but higher g-counts (indicative of some mission types). 
Still, a natural scatter in the data confirms the stochastic nature 
of mission assignments across the fleet. A bivariate correlation 
of each of the counting accelerometer data revealed that all but 
the 7g accelerometer had a positive correlation. The results, 
along with relationship and strength are contained in Table 8 
[26].  
 

 
Fig. 9. Cumulative flight hours compared to g-counts for the 4g 
counting accelerometer, n = 356 aircraft. 

 
Table 8 
Bivariate correlation of g-counts to flight time in dataset. 

Counting 
Accelerometer 

Pearson 
Corr. (r) 

Relationship -
Strength 

Sig. 

0.3g 0.289 Pos – Sm 0.000 
2.5g 0.488 Pos – Med 0.000 
3g 0.460 Pos – Med 0.000 
4g 0.426 Pos – Med 0.000 

5.5g 0.211 Pos – Sm 0.000 
7g -0.100 Neg – Sm 0.058 

 
3.3. Validation 
 To verify the aforementioned data reduction and analysis 
methods, previous study data were evaluated for similarity. 
Benchmark A-10 cumulative occurrence data collected during a 
6,000 flight hour usage profile in 1992 was provided by 
Grumman Aerospace Corporation [27]. The A-10 data from this 
2016 study matched the profile data curvature from the 1992 
collection showing a decrease in occurrence magnitude at the 7g 
load factor (Fig. 10).  
 

 
Fig. 10. 1992 Grumman A-10 severity spectrum compared to 
2016 study data. 

 Other unclassified counting accelerometer data exist for a 
variety of aircraft but the work done by De Fiore, Leikach and 
Bohannon and Kaniss provided the most relevant military attack 
aircraft data [28], [29], [30], [31]. Navy Blue Angels A-4F data 
recorded in 1975 had a usable data retention rate of 73.68%, 
which was comparable to this study’s 68.36% retention rate [29]. 
The B-1B capture rate has been as high as 75% and as low as 
60% [22]. De Fiore’s analysis showed that increasing Nz 
increases the coefficient of variation in the data, similar to what 
was found in this study’s data [28]. Also, De Fiore found 
differences in loadings by mission type, a primary hypothesis of 
this study [15]. He concluded that air-to-ground missions were 
the most severe and navigation missions were nearly the least 
severe. However, De Jonge’s Weibull distribution fits possessed 
a lower coefficient of determination than this study’s 
exponential distribution fits. The reason for the small difference 
could be from the difference in sample size or operational 
reporting techniques. It is sensible to fit an exponential function 
to data collected in an incremental fashion. 
 Counting accelerometer bin frequencies in other aircraft 
studies mirrored the data in this study. Fig. 11 shows data from 
the Royal Australian Navy’s A-4G Skyhawk (16 aircraft 
representing 15,502 flight hours, 1962-1977) and the U.S. 
Navy’s A-7A Corsair II (194 aircraft representing 197,869 flight 
hours, 1932-1974) alongside A-10 data [31], [28]. The 
exponential fit equation is shown in Equation 4 where x is 
defined as the normal load factor. This exponential fit appears to 
be a poor fit because of the logarithmic ordinate, but the R2 
is 0.9967. 
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Fig. 11. Comparison of counting accelerometer data for multiple 
attack aircraft. 

  
 (4) 

 
 The comparison studies showed evidence that model 
variations (A-7A versus A-7B, for example) led to usage 
differences and within model mission assignments (lead versus 
chase, for example) led to usage differences. In the case of the 
latter, the chase aircraft is subjected to greater loading than the 
lead aircraft. Unfortunately, there is no designator or derived 
parameter in this study’s dataset that defines lead versus chase 
aircraft roles. 
 Looking at mission design series designations and data 
compiled by the United States Navy, the USAF and Fokker 
aircraft, it is clear that each aircraft type experiences different 
loading patterns. Attack aircraft usage spectra fall toward the 
middle of aircraft usage for the types identified in Fig. 12. 
Fighter aircraft and flight demonstration aircraft accrue more 
damaging flight hours while bomber, cargo and passenger 
aircraft accrue less damaging flight hours. This validation step 
shows that the macroscopic discussion of aircraft type matters 
just as mission types matter within an aircraft type. Fig. 12 was 
constructed using representative aircraft possessing counting 
accelerometer technology from each type category. All data 
were previously published [22], [32], [28].  
 

 
Fig. 12. Comparison of counting accelerometer data for aircraft 
types. 

 Lastly, the finding that flights longer than some peak lead to 
fewer g-counts is supported by De Jonge and Hol’s analysis of 
Fokker F27 and F28 commercial aircraft hourly damage 
calculations [32]. They found a decreasing trend in loading 
accumulation per flight hour because the percentage of flight 
time consisting of high loading takeoffs and landings is less for a 
long flight [32].  

4. Impact 
 The correlation between mission type and structural loading 
is a bridge between structural health monitoring data collection 
and implementation of those findings. This result is directly 
useful for military aircraft fleet operators and will impact the 
assignment of aircraft to varying mission roles. Fleet managers 
faced with the retirement decision may opt to reassign aircraft to 
less structurally damaging mission types thereby prolonging 
fleet viability.  
 Some nations and military services do this as standard 
practice, as discussed by Simpson [33]. The dialogue about 
extending service lives of aircraft now has a study that shows 
how closer mission type management can realize fleet lifetime 
extension. Military aircraft outside of the attack genre and 
commercial aircraft fleets can benefit from these results through 
use of the presented assessment strategy with their fleet-specific 
input data.   

5. Conclusions 
 This study has answered two hypotheses relating to the 
correlation of mission type to aircraft loading using case study 
data from the A-10 attack aircraft. The A-10 was chosen because 
it is wholly representative of attack aircraft worldwide. The 
A-10 dataset matched attack aircraft from the United States 
Navy and the Royal Australian Navy, proving these findings are 
not limited to USAF aircraft alone. Further studies would be 
needed to confirm the applicability of the conclusions of this 
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study for other aircraft types and for those in the commercial 
sector.  
 The first hypothesis posited that the type of mission impacts 
the loading pattern experienced by an attack aircraft. Data 
showed that there is a marked difference in g-counts for aircraft 
flying dissimilar mission types. This result was seen for each of 
the 10 mission types analyzed in the A-10 dataset. The 
differences were found to be statistically significant. Exponential 
decay models showed differences in the mission types and form 
the underlying equations for future optimization methods. Fleet 
managers can use these equations for fleet planning and mission 
allocation strategies. 
 The second hypothesis stated that some mission types 
account for greater loading damage accumulation. This was 
shown to be true. For the analyzed dataset, Basic Fighter 
Maneuvers and Surface Attack accrued the greatest elevated g-
counts while Close Air Support and Navigation accrued the least 
elevated g-counts. ASIP managers interested in prolonging 
aircraft lifetime can use these results to prioritize mission types 
that accrue the least number of elevated g-counts. For example, 
an aircraft’s lifetime could in practice be prolonged by flying 
fewer Basic Fighter Maneuvers or Surface Attack and more 
Close Air Support or Navigation. 
 These conclusions are vital for future research in this area. 
Because mission types are a distinct variable for aircraft loading 
history, there will exist an optimization for aircraft mission 
utilization. Accordingly, because military aircraft bases are often 
mission-specific, basing optimization will result in a change to 
fleet-wide loading accumulation.  
 The plethora of available counting accelerometer data is 
underutilized by researchers because they have focused on more 
modern structural health monitoring techniques. There is a lot to 
be gained from legacy data because it shows usage patterns over 
a much longer lifespan than more recent monitoring 
technologies. This paper has shown the intrinsic value in using 
existing data to show correlations in aircraft usage, which leads 
to potential for structural lifetime extension. 
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