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Abstract

A novel surrogate model to approximate microscopic behaviour and accelerate concurrent
multiscale finite element simulations is proposed. The study serves as a proof of concept,
focusing exclusively on 2D, geometric non-linear lattice materials. Despite numerous
successful implementations of surrogate modelling techniques in literature, challenges
remain, mainly with the black-box nature of most of these models, suffering from lack
of interpretability. To tackle these issues, this study reintroduces physics into the model
through the use of beam theory in so-called Beam Neural Networks. These networks are
tested against a benchmark feed-forward neural network in both interpolation and extrap-
olation. Although the findings do not satisfy the requirements for practical application,
they do indicate that the introduction of beam theory to the model has improved the
model’s extrapolation ability, suggesting that the proposal has improved robustness and
interpretability of the model. Given further optimization, there is promise of Beam Neu-
ral Networks to become an useful tool to accelerate concurrent multiscale modelling in
the future.
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1 I N T R O D U C T I O N

Throughout history, there has always been a continuous desire for new materials to deal
with the challenges introduced by new technologies and needs. Solutions to some of these
challenges have been found in so-called lattice materials. These materials consist of a pe-
riodic arrangement of beams, occupying a blurry line between structures and materials.
Because of this, lattice materials cover an unique range of applications, most notably as
metamaterials, which exhibit properties beyond their constituents. Recently, lattice mate-
rials have gained more attention in research, not only because of their properties, but also
because of advancements in computational science and micro-fabrication. One technique,
the FE2 method, is particularly popular for modelling lattice materials, as it is a multi-
scale method that is able to couple the macroscale behaviour of the material to microscale
phenomena. Yet, despite advancements in computational science, these methods remain
unpractical in full-scale simulations. In an effort to overcome this limitation, machine
learning (ML) techniques have been developed to act as a surrogate model replacing the
microscale simulations. Although proven effective, shortcomings remain, most notably in
their lack of interpretability. To address this, numerous physics-based ML models have
been suggested in literature.

In this study, a novel approach of embedding physics into a ML model is presented,
based on incorporating beam theory into an Artificial Neural Network (ANN), hence-
forth referred to as Beam Neural Network (BNN). The main challenge in this work is
to develop a network with the specific purpose of accelerating concurrent finite element
simulations of geometric non-linear lattice materials, as such material non-linearity is not
taken into account. Physics is introduced through in two different approaches: the first
is through Euler-Bernoulli beam theory, relating end-point displacements to end-point
forces. The second incorporates one-dimensional, finite element models of cantilever
beams, solved in static, geometrically non-linear context. The main benefit of the finite
element approach is its versatility, establishing a foundation for more sophisticated future
applications: most notably, dynamics, as the state of the model is known for each time
step: a requirement for incorporating dynamics. Since the primary goal of this work is to
serve as a proof of concept, speed comparisons to a benchmark FE2 simulation are omit-
ted, and complexity is reduced by focusing exclusively on 2D lattice materials, namely
honeycomb and re-entrant lattices. The BNNs are instead compared to a Feed-Forward
Neural Network (FNN), despite the availability of alternatives. This is because FNNs are
universal approximators and well-established in literature.

The data used in this study is obtained from finite element simulations of a single unit-cell
with periodic boundary conditions, covering the entire loading space. To assess the model
performances, first a hyperparameter selection study is performed, defining the config-
urable parts of the networks. Next, the models are assessed in interpolation, showcasing
their learning efficiency. However, to truly assess the effects of the incorporated physics,
network performance in extrapolation is investigated, where the benchmark FNN is ex-
pected to degrade rapidly, wheres the physics-based models are expected to demonstrate
more effective generalisation. Lastly, in order to justify any shortcomings of the BNNs,
their interpretability can be utilised, comparing beam-deformations to the lattice defor-
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introduction 2

mations, something that is not possible for the FNN.

In summary, the research objective can be described as such:
The goal of this study is to combine beam theory and ANNs to design a physics-based
ML-model (BNN), that offers improved interpretability and extrapolation capability in
comparison to a benchmark FNN. The model is designed within the framework of FE2

multiscale modelling, replacing microscale simulations to enhance computational speed,
although this is not investigated: this study is to be regarded as a proof of concept. Expec-
tations are that the proposed BNNs will enhance robustness and interpretability, although
the computational costs might restrict practical application to larger FE-models.

The report is structured as follows. In Chapter 2, an overview of important theoretical
concepts relevant to the study is provided. The model architectures of the benchmark
FNN and the novel BNNs are provided in Chapter 3, while Chapter 4 describes the
method used to generate data and specifications on the investigated lattices. Chapter 5

outlines the strategies used to evaluate different networks and to establish which one is
the most effective. Results and the discussion are covered in Chapter 6. Conclusions and
remarks on future research are provided in Chapter 7.



2 T H E O R E T I C A L B A C KG R O U N D

In this chapter, important theoretical concepts relevant to the study are introduced. Sec-
tion 2.1 discusses lattice materials, Section 2.2 contains background information on Euler-
Bernoulli beam theory, fundamentals on numerical modelling can be found in Section 2.3,
while artificial neural networks are introduced in Section 2.4.

2.1 lattice materials

For the context of this work, lattice materials are materials that consist of a periodic ar-
rangement of beams that form unit cells, in either two or three dimensions. The beam
cross-sections are considerably smaller than their outer dimensions and can be made from
a wide range of materials such as metals, composites, hydrogels and ceramics [1]. Lattice
materials are of interest because of their very high structural efficiency, as each beam or
rod is loaded in its optimal orientation, this results in a stiff or strong but light material
[2, 3]. Applications of these lattice materials have become more mainstream in recent
years, not only because of advancements in computational science and micro-fabrication
methods but also because of their use as metamaterials. Metamaterials exhibit properties
beyond their individual building blocks, due to the way the geometry of the unit cell is
constructed, resulting in unique properties [4].

Lattice materials have a unique range of applications because the design of the geometry
influences their properties. Examples of such applications are: thermal protection systems
due to low thermal conductivity, aerospace applications due to ultra-high stiffness and
for use in ceramic satellite parts because of negative thermal expansion behaviour [3]. In
this section, the most prominent properties and applications are given.

Ultra-lightweight structures

Composite lattice materials have shown to be able to fill in remarkable gaps in Ashby’s
chart for material selection, namely that of very stiff and strong, low-density materials
[5]. This is shown in Figure 2.1 for the relation between compressive strength and density
[6]. Lattice materials are able to achieve this over traditional materials because of their
high material efficiency, geometries are chosen in such a way that loads can be distributed
efficiently between struts. This strategic placement results in a porous material, having
a very high stiffness-to-weight and strength-to-weight ratio [2, 3]. Such ultra-lightweight
materials are particularly useful for applications where performance is dominated by the
mass of the part, such as aerospace applications. More specifically, the use of lattice
materials in sandwich structures (panels) is widespread, generally restricted to 2D-lattice
structures, which are mostly deformed in shear and bending when loaded out-of-plane
[2]. However, more recently, the use of 3D-lattice cores has been given more attention
in research, such as that of A. Alshaer and D. Harland [7]. In this work the authors
compared 2D sandwich panels to 3D variants and showed that the 3D-lattice cores are

3



2.1 lattice materials 4

more stretch-dominated and have excellent normalised stiffness and strength properties,
meaning that structures can be more lightweight than 2D counterparts.

Figure 2.1: Compressive strength-density Ashby chart [6].

Auxetic materials

Auxetic materials are metamaterials that have a negative Poisson’s ratio. These materials
contract laterally when under compression and expand laterally when under tension [8].
This unusual property might seem contradictory to what is customary in materials sci-
ence, however auxetic materials do exist through man-made architectures and geometries.
Examples of such (2D) structures are given in Figure 2.2 and consist of re-entrant types
(Figure 2.2a), which rely on movement of the ribs, chiral types (Figure 2.2b), which are
ligaments connected to rings that wind and unwind under movement, similarly, in the
missing rib model (Figure 2.2c), the circular core of the chiral type is replaced with a rigid
cross [9], rotation squares, relying on the rotation of rigid polygons connected by hinges
(Figure 2.2d) and perforated sheets (Figure 2.2e), which may mimic the properties of the
rotation squares structure using sheet material [8]. In practice, however, perforated sheets
also deform out-of-plane [10].

Figure 2.2: Selected types of auxetic material structures, from left to right: a) Re-entrant type, b)
Chiral circular, c) Missing rib model, d) Rotation squares, e) Perforated sheet.

Research in auxetic materials has gained traction over recent years, because of their use
in many different industries, such as medical, sports and defense. These materials have
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high indentation resistance: while most materials move away from the point of contact,
auxetic materials move towards the indentation, increasing the apparent density of the
material near this point, a property that is very useful for gloves and padding (sports) or
protective armour (defense) [3, 8]. A visual of auxetic behaviour is shown in Figure 2.3.
Moreover, auxetic materials have increased fracture toughness and shear properties, while
also having very remarkable wave propagation properties. Auxetic foams have shown to
have 10 times higher damping capacity than conventional foams. Furthermore, auxetic
materials have shown to have wave-steering properties, useful for guiding waves [8].

Figure 2.3: Non-auxetic (left) versus auxetic (right) materials’ behaviour when indented [11].

Tunable properties

While lattice materials can be used to make very efficient use of the properties of their
constituents, they can also be tuned to exhibit desirable properties. A version of this
has been explored by X. Wang et al. [12], where plate lattice metamaterials (PLM) were
investigated. The authors found that the properties of the PLM were easily tunable when
geometric properties such as plate thickness and hole diameter were varied. Changes in
elastic moduli, Poisson ratio’s and specific energy absorption were observed and linked
to the changes in geometric properties. When a systematic approach is used to achieve
desirable properties, possibilities open up to use lattice materials in designs that require
very specific properties. In this, machine learning methods that aid the design phase
can be imagined. These models could assemble different structures of unit cells into a
single lattice, in order to achieve a stress-strain relationship that can be custom-tailored
to design needs [3].

2.2 beam theory

This section discusses the beam theory that is used later for implementation in the beam
neural network (Chapter 3). More particularly, it discusses Euler-Bernoulli beam theory.

Euler-Bernoulli beam theory, also called classical beam theory, was first proposed in the
18th century and, being the first formulated beam theory, set the basis for many advance-
ments in structural engineering. To be able to apply Euler-Bernoulli beam theory, a few
assumptions need to be satisfied [13, 14]. The theory is applied to straight beams, with-
out elongation or torsion around the longitudinal axis, deformations are small and in a
single plane. Lastly, and perhaps most importantly, Euler-Bernoulli calculations neglect
shear deformations, implying that the cross-sectional planes remain perpendicular to the
neutral axis of the beam for any deformed state.
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The governing equations for Euler-Bernoulli beams in bending in the xz-plane are the
following [13, 14, 15, 16]:

ϕ(x) =
dw(x)

dx
, (2.1)

M(x) = −EI
d2w(x)

dx2 , (2.2)

V(x) = −EI
d3w(x)

dx3 , (2.3)

q(x) = EI
d4w(x)

dx4 , (2.4)

where w(x) is the lateral displacement, ϕ(x) is the slope of the beam, M(x) is the bending
moment in the beam, V(x) is the shear force in the beam, q(x) is a distributed load, E is
the Young’s modulus and I is the mass moment of inertia. E and I are assumed constant
throughout the whole beam.

In order to solve the above equations, boundary conditions must be known. For a can-
tilever beam, this means that the deflection and the slope of the beam at the fixed end
should both be zero, while at the free end, the bending moment is zero and the shear
force is equal to the applied load. For common engineering problems, tables of solutions
to the Euler-Bernoulli equations are available, these tables can be found in any book on
structural engineering. The author employed the book Mechanics of Materials by R.C. Hi-
bbeler [17]. It is common practice, however, to describe the deflections of beams in terms
of the applied loads. In this study, though, the opposite relation is desired. In Figure 2.4,
this relation is depicted for a cantilever beam, describing the maximum deflection.

V(x = L) =
3EIwmax

L3 (2.5)

Figure 2.4: Cantilever deflection example for a Euler-Bernoulli beam.

For a beam in tension or compression, the extension or compression can be described by:

EA
dux(x)

dx
= Nx(x), (2.6)

where Nx is a tensile force. Because of infinitesimal displacements, linear superposition
of pure bending and pure tension/compression can then be applied to obtain the total
displacement field of a beam [13].

2.3 numerical modelling

Predicting the mechanical behaviour of materials using constitutive relations is highly
complex, especially when plasticity and other non-linearities are introduced, for example
due to strut-buckling in lattice materials [18, 19]. A common way to work around these
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complexities is through numerical simulations, as these are able to reliably and accurately
predict the mechanical properties of the material as a whole. It must be noted that, where
Euler-Bernoulli beam theory does not take into account deformation shear effects, the
numerical methods in this work do take these into account by employing the Timoshenko
beam model, i.e. instead of using shear-stiff Euler-Bernoulli beams, shear-flexible Timo-
shenko beams are used [20]. This section outlines the most important numerical methods
used for modelling materials, starting with the finite element method in Section 2.3.1 and
thereafter its multiscale extension, the FE2 method in Section 2.3.2.

2.3.1 Finite element method

The finite element method (FEM) is a numerical analysis technique that is used to ap-
proximate a solution by dividing the domain into subdivisions of finite elements. It is a
computationally expensive method, as it involves approximating a large number of par-
tial differential equations and solving the problem (numerically) in weak form. Therefore,
this method has found more mainstream usage as the computational power of computers
has grown [21]. There are many different methods and interpretations of finite element
methods. This section will discuss only the most relevant and mainstream methods to
solve static finite element analyses, for linear and non-linear systems.

In this work, only a global review of the theory and equations behind the methods will be
given, for a more in depth approach to these methods, the reader is referred to the books
of K.J. Bathe (1996) [22] and R.D. Cook (1989) [23], as the theory in this section is based
upon these sources. Both books still, to this day, give a great overview of the possibilities
of FEM and the theoretical framework behind it. Besides these two books, a more recent
review of methods by B. Yang (2019) [24] has been used.

2.3.1.1 Linear analysis

The most common type of analysis is a linear, static system. For these analyses, the
response of the system is proportional to the applied loads, meaning that the stiffness
matrix, which describes the relation between stresses and strain in the material, remains
constant for the duration of the analyses. In this situation, deformations and rotations are
normally small and material properties are constant. The governing equation describing
this situation is:

f = Ku, (2.7)

where f is the load vector, K is the global stiffness matrix and u is the displacement vector.
The global stiffness matrix is obtained through assembly of the local, element stiffness
matrices. The solution of the equilibrium equation (Equation 2.7), is then obtained, which
will return an approximation of the response of the full structure under loading. In case
of structural analyses these will be the nodal displacements and stresses. The assembly
of Equation 2.7 is done in the following way:

First, the entire domain of the problem will is discretised into smaller parts, called finite
elements. Each element is defined by nodes along the element’s boundaries that serve as a
connection to other elements, nodes are interconnected to other nodes through edges, to
define the element shapes and create surfaces. The shape of these elements may vary per
application, a list of element types and applications is given in the work of A.F. Bower
(2018) [25]. Interpolation functions, also known as shape functions, are then introduced
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to calculate an approximation of the field variable (displacements), ũ(x, y, z), within each
element:

ũ(x, y, z) ≈
nnodes

∑
i=1

Ni ui(x, y, z), (2.8)

where u(x, y, z) are the nodal displacements and N are the interpolation functions. The
choice of interpolation function and its polynomial order depend on the element geome-
try, boundary conditions and the number of nodes within the element.
From the nodal displacements, element strains and stresses can be approximated, assum-
ing linear-elastic material behaviour:

ϵ = B u (2.9)

σ = Dϵ, (2.10)

where B is the strain-displacement matrix. In this work, B is defined specifically for
beams:

B =

 cos(ϕ)N
′
1 sin(ϕ)N

′
1 0 cos(ϕ)N

′
2 sin(ϕ)N

′
2 0

−sin(ϕ)N
′
1 cos(ϕ)N

′
1 −N1 −sin(ϕ)N

′
2 cos(ϕ)N

′
2 −N2

0 0 N
′
1 0 0 N

′
2

 , (2.11)

where ϕ is the angle between the element and the global x-axis and N1 and N2 are shape
functions. D is the elasticity matrix, representing the stress-strain relation for linear elas-
ticity, for beams only:

D =

 EA 0 0
0 GAs 0
0 0 EI

 , (2.12)

where E and G are the Young’s modulus and shear modulus of the material respectively.
I is the second moment of inertia, A the cross-sectional area and As the cross-sectional
area corrected with the cross-section dependent shear factor. Applying the virtual work
principle, in which the strain energy must equal the work done by nodal forces, you end
up back at the governing equation, but now applied separately for each element:

Keue = fe, (2.13)

Ke =
∫

Ω
BTDB dΩ. (2.14)

The elemental stiffness matrix, Ke, is calculated using Equation 2.14. In this equation,
Ω represents the domain of the element, consisting of integration points at which the
calculations are performed. The elemental stiffness matrices are then mapped from the
local system to the global system and assigned to the global stiffness matrix. The force
vector consists of body forces, surface tractions, concentrated nodal forces and the effects
of initial stresses and strains. Finally, the equilibrium equations of the whole system,
Equation 2.7, are obtained.
In order to analyse the stress and strain distribution in the whole system, the equilibrium
equations are to be solved. For a static, linear system, there are two main methods to do
this, either a direct solution method based on Gauss elimination or an iterative solution
method. For Gauss elimination, the stiffness matrix is formed into the upper-triangular
form and solved through back-substitution. Iterative methods converge towards the so-
lution until a certain tolerance is met. For more specifics on these methods the reader is
redirected to the work of K.J. Bathe (1996), Chapter 8 [22].
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2.3.1.2 Non-linear analysis

While linear, static problems have been discussed in Section 2.3.1.1, finite element meth-
ods are also very popular when non-linearities are present, as analytical solutions for
these problems can quickly become very complex. In structural analyses, non-linearities
result in displacement-dependent stiffness matrices and load vectors:

f(u) = K(u)u. (2.15)

The cause of non-linearity can be both due to material non-linearity and geometric non-
linearity. Material non-linearity expresses itself in plasticity of the material, while geomet-
ric non-linearity is due to large deflections or rotations in the system. Even though linear
analyses are sufficient for many applications, non-linear analyses have to be performed
for situations in which these effects can no longer be ignored in order to get meaningful
results. In this section, the differences between linear and non-linear static analyses will
be discussed.

This study will not take into account the effects of material non-linearity, instead it
will only focus on the effects of geometric non-linearity, therefore, in the case of a one-
dimensional beam, the stiffness matrix can be constructed as:

Ke = Ke
M + Ke

G, (2.16)

where Ke
M contains the linear material relations, from Equation 2.14, although the strain-

displacement matrix B is redefined, for linear elements, as:

B =

 cos(ω)N
′
1 sin(ω)N

′
1 N1γ cos(ω)N

′
2 sin(ω)N

′
2 N2γ

−sin(ω)N
′
1 cos(ω)N

′
1 −N1(1 + ϵ) −sin(ω)N

′
2 cos(ω)N

′
2 −N2(1 + ϵ)

0 0 N
′
1 0 0 N

′
2

 ,

(2.17)

where ω is a measure of the current orientation of the axis, taking into account the angle
between the element and the global x-axis, ϕ, the rotation of the beam axis, ψ, and the
shear strain γ, which is a measure of the rotation of the plane normal to the beam axis
with respect to the rotation of the beam axis itself. This can be summarised as:

ω = ϕ + ψ + γ (2.18)

or visualised as in Figure 2.5.

Figure 2.5: Geometrically non-linear element [26].
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Ke
G, is calculated as:

KG =
∫

L0

NWN + VWV dx, (2.19)

where N and V are the normal force and the shear force contribution and WN and WV

are defined as [26]:

WN =

1
L0



0 0 N1sin(ω) 0 0 N2sin(ω)

0 0 −N1cos(ω) 0 0 −N2cos(ω)

N1sin(ω) −N1cos(ω) −N2
1 L0(1 + ϵ) −N1sin(ω) N1cos(ω) −N1N2L0(1 + ϵ)

0 0 −N1sin(ω) 0 0 −N2sin(ω)

0 0 N1cos(ω) 0 0 N2cos(ω)

N2sin(ω) −N2cos(ω) −N1N2L0(1 + ϵ) −N2sin(ω) N2cos(ω) −N2
2 L0(1 + ϵ)


,

(2.20)

WV =

1
L0



0 0 N1cos(ω) 0 0 N2cos(ω)

0 0 N1sin(ω) 0 0 N2sin(ω)

N1cos(ω) N1sin(ω) −N2
1 L0γ −N1cos(ω) −N1sin(ω) −N1N2L0γ

0 0 −N1cos(ω) 0 0 −N2cos(ω)

0 0 −N1sin(ω) 0 0 −N2sin(ω)

N2cos(ω) N2sin(ω) −N1N2L0γ −N2cos(ω) −N2sin(ω) −N2
2 L0γ


,

(2.21)

where ε is the axial strain and γ is the shear strain, defined as:

ϵ =
∂ux

∂x
, (2.22)

γ =
∂uy

∂x
− θ, (2.23)

where ux and uy are axial and lateral deformations and θ is the rotation of the beam.

The proposed method to solve a non-linear system in this work is an incremental-iterative
solution procedure employing the Newton-Raphson method.

In incremental-iterative solution procedures, specifically for this study displacement control,
target displacements are applied to constrained nodes. During a sequence of iterations,
employing the Newton-Raphson method, the applied loads are adjusted such that the target
displacements are reached. Repeating the process for an entire load-displacement curve,
the equilibrium path can be traced, as long as convergence is obtained. A schematic of
the Newton-Raphson method can be seen in Figure 2.6, while the incremental-iterative
solution procedure is described in Algorithm 1.



2.3 numerical modelling 11

Figure 2.6: The Newton-Raphson method [22].

A few things are important to note in Algorithm 1. Firstly, the initial state, u0, should be
a reasonable guess of the state, for many applications u0 = 0 is appropriate. Secondly,
calculations of the internal force vector and stiffness matrix are performed as described in
the equations earlier in this section. Numerical solving of the integrals in Equations 2.14

and 2.19 can be performed effectively using single integration point Gauss integration,
which also mitigates shear locking: a phenomenon that occurs when linear elements are
not able to accurately model bending, causing an additional shear stress to be introduced,
making the element appear stiffer than it actually is. Thirdly, for this method a clear dis-
tinction between free (f) and constrained (c) DOFs is crucial. In operation 6, the stiffness
matrix is constrained in such a way that a new state of the constrained DOFs is forced.
Next, during a sequence of iterations, the free DOFs are assigned a new solution (opera-
tion 10), however in operation 13 the displacement increment at the constrained DOFs is
set to zero, to ensure that the displacements remain as described. Lastly, the residual is
calculated only at the free DOFs, as the residual at the prescribed DOFs is inherently zero.

Algorithm 1 Iterative solving algorithm: displacement control [26].

Require: Non-linear relationship fint(u) and K(u)
1: Initialisation n = 0, u0 = 0, partition DOFs in free (f) and constrained (c)
2: while n < number of time steps do
3: Get external force vector fn+1

ext {fn+1
ext = 0 at free nodes}

4: Initialise new state at previous one: un+1 = un

5: Compute internal force vector fn+1
int (un+1) and stiffness matrix Kn+1(un+1)

6: Constrain Kn+1 such that ∆uc = ūn+1 − ūn

7: Evaluate residual at free DOFs: r = fn+1
ext, f - fn+1

int, f
8: while |r| > Tolerance do
9: Solve linear system of equations Kn+1∆u = r

10: Update state: un+1 = un+1 + ∆u
11: Compute internal force vector fn+1

int (un+1) and stiffness matrix Kn+1(un+1)

12: Evaluate residual at free DOFs: r = fn+1
ext, f - fn+1

int, f

13: Constrain Kn+1 so that ∆uc = 0

14: end while
15: Proceed to next time step: n = n+1

16: end while
17: return Internal force vector fint and state u
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One way to model a lattice material, and perhaps the most straight-forward approach, is
to model the entire structure in finite elements, also known as direct numerical simulation
or full field analysis. As much as this is a desirable approach, it is often not feasible due to
limitations in computational power [27].

2.3.2 FE2 method

The FE2 method, as the name implies, is a modelling method in which two FE-models,
one at the macroscale, the other at the microscale, are solved in the same computation.
This assumes that the principle of scale separation is satisfied, i.e. Lmicro ≪ Lmacro, or
in words, that the scale of the micro-model fluctuations must be much smaller than the
macro-model fluctuations [28]. While solving the macroscale model, at each integration
point a microscale model is solved, this information is then passed back to the macroscale
model in an iterative loop. To solve the microscale models, the strain from the macroscale
model is downscaled to the micro-model, taking into account periodicity of the RUC,
this micro-model is then solved and the homogenized stresses are then upscaled back
to the macroscale model. This is repeated for every integration point and at every time-
increment of the macro-model [29, 30, 31]. A schematic of the method, applied to fiber-
reinforced composites, is shown in Figure 2.7.

Figure 2.7: Schematic representation of the FE2 method [30].

Even though the FE2 method removes the need for constitutive laws at the macroscale to
describe, for example, non-linear behaviour, because these properties are directly solved
from the microscale model, the computational effort of this method is still impractical
[31]. Machine learning techniques have been widely adopted in literature to accelerate
and reduce the computational cost of these simulations by replacing the microscale model
altogether with so-called surrogate models. In this work, focus is put on artificial neural
networks (ANNs).

2.4 artificial neural networks (ann)

Artificial neural networks are mathematical structures inspired by biological neural net-
works. Biological neural networks are believed to consist of approximately 10

10 neurons
[32], which are their fundamental building blocks. Artificial neural networks mimic the
structure of biological neural networks, where the neurons represent nodes, which are
interconnected with edges. Typically, and for the purpose of this study, the nodes are
placed in layers, where the first layer is the input layer, the location where values for
different features are set, and the last layer is the output layer, where the predictions are
obtained. Between the input and output layers, there are hidden layers. These layers can
be architected in different ways, but aim to return the predictions as accurate as possible.
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Accuracy is obtained by training the network, for which snapshots of the high-fidelity so-
lutions are required. The amount of training data needed depends on the type of problem:
static or dynamic, linear or non-linear and the history-dependency of the material. In gen-
eral, more training data leads to more accurate results. Training can be done supervised
or unsupervised [33]. In supervised learning, the input and the output of the training data
are paired, the network is fine-tuned based on the error between the network-generated
output and the known output. In unsupervised learning, inputs and outputs are not
paired, the network trains itself to uncover trends within the data. This work will focus
on supervised learning. A good practice is to divide the data in three different sets [33]: a
training set, which is used to fit the learnable parameters of the network, a validation set,
which is used to tune the hyperparameters, (e.g. the number of nodes in hidden layers
or the learning rate, by comparing the validation loss), and a test-set, which assesses the
performance of the network, after training has been completed.
One important thing to remember when designing neural networks, is that a neural net-
work can only be as good as their training data, data should thus be accurate and repre-
sentative.

The contents of this chapter are mostly based on the books of C.M. Bishop (2006) [33],
(2024) [34] and K.P. Murphy (2022) [35]. In this chapter, important theoretical concepts to
understand neural networks are discussed. Section 2.4.1 describes the concept of linear
regression, the basis of neural network modelling. Feed-forward neural networks are
discussed in Section 2.4.2, as they are the most common type of model. Furthermore,
recurrent neural networks will be introduced in Section 2.4.3, whereafter the black-box
problem is given elaboration in Section 2.4.4. A more complex architecture, the physically
recurrent neural network, is introduced in Section 2.4.5.

2.4.1 Linear regression

Linear regression is a supervised machine learning method that is commonly used to
predict dependent variables, from now on called targets t, based on a collection of inputs.
This section will discuss the theoretical framework behind regression model, to get a bet-
ter understanding of artificial neural networks (ANNs).

Multivariable linear regression can be expressed as:

y(x, w) = w0 + w1x1 + .... + wDxD. (2.24)

In these equations, w is a collection of weights or regression coefficients and x are input
variables. The weight determines the effect of the input on the output. The larger the
weight, the more effect that input has on the output.

For systems with only one input variable, Equation 2.24 reduces to the simple linear regres-
sion formula y(x, w) = w1x + w0, while the multiple input variable method of Equation
2.24 is also known as multiple linear regression. When there are multiple outputs, which is
called multivariate linear regression, Equation 2.24 can be rewritten into:

y(x, w) = wTx. (2.25)

While these methods are used in a plenitude of applications, fitting of the data will only
be possible by linear functions. To broaden the usability of the regression method, basis
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functions ϕ(x) are introduced, which are non-linear functions, for example in polynomial
expansion ϕ = [x, x2...xj]. Substituting this in Equation 2.25 gives:

y(x, w) = wTϕ(x). (2.26)

Linear regression, therefore, consists of linear combinations of fixed basis functions. How-
ever, the curse of dimensionality reduces the practical applicability of the method. The curse
of dimensionality is a phenomenon in which as the number of features in a system in-
creases, the dimensionality of the problem increases exponentially and the data becomes
less densely distributed, making fitting more difficult. Not only would this result in the
need for more training data, the final model would also be too complex, fitting to noise
rather than the underlying pattern, as the introduced features might not contain useful
information. Therefore, not only is accuracy reduced, the computational time is increased.

2.4.2 Feed-Forward Neural Networks (FNN)

The simplest version of a neural network is the feed-forward neural network (FNN), an
example of a FNN with a single hidden layer is shown in Figure 2.8. In this model, the
weights and biases are adapted throughout the training in the following way:
The first layer is the input layer, every node contains one feature, of in total D features:
xi....xD. Layers 2 to n − 1 are the hidden layers, the nodes in these layers form a linear
combinations of the previous layer’s nodal values, known as the weighted sum, z:

zj =
M

∑
i=1

w(n)
ji xi + w(n)

j0 , (2.27)

where M is the number of nodes in the previous layer, K is the number of nodes in the
current layer, j = 1, ..., K, n is the layer number and wj0 is the bias, a systematic deviation
of the model.

Figure 2.8: Schematic of a neural network containing one hidden layer.
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Normally, a non-linear activation function h(·) is then used to introduce non-linearity into
the system. The result is the activation aj, which represents a nodal value in the network:

aj = h(zj). (2.28)

Figure 2.9 shows the process of non-linear regression for one node only.

Figure 2.9: Schematic of a non-linear regression process for one node only.

Some common activation functions, the ones used in this study, are shown in Figure 2.10,
the ELU, tanh and softplus functions. A large number of variants of these functions exist,
most of these activation functions squash the input to an output that is bounded between
0 and 1 or between -1 and 1.

Figure 2.10: ELU, tanh and softplus activation functions.

The process illustrated in Figure 2.9 is repeated for every node in every hidden layer.
Noting that the biases are included within the weight vectors, the feed-forward neural
network of Figure 2.8, can mathematically be represented as:

yk(x,w) = h(
M

∑
j=0

w(2)
kj h(

D

∑
i=0

w(1)
ji xi)). (2.29)

2.4.2.1 Training

To minimise the error, the network is calibrated such that the weight values are optimized
[33]. This is done using a training set, where inputs and outputs (targets tn) are known.
During training of the system, the goal is to minimise the error function, which could be,
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for example, the root mean squared error, the mean absolute error or the mean squared
error (Equation 2.30):

E(w) =
1
N

N

∑
n=1

(y(xn, w)− tn)
2. (2.30)

One approach to determine the optimal set of weights is to create a multi-dimensional
graph of the error function, a surface over weight space. E(w) is a smooth, continuous
function, where minima can be found in which the gradient of the error function equals
zero:

∇wE(w) = 0. (2.31)

Moving in the direction of −∇wE(w), will guide the solution towards the local minimum.
The global minimum, the solution with the smallest value for the error function, can
be found done by comparing different values of local minima. There is no guarantee,
however, that the found minimum is the actual global minimum. For many applications
of neural networks, though, finding the true global minimum may not be necessary and
comparing several local minima is sufficient. A practical, numerical method to find local
minima is gradient descent.

2.4.2.2 Gradient descent

In gradient descent, weights are updated according to [33, 35]:

w(τ+1) = w(τ) − η∇wE(w(τ)). (2.32)

In this equation, τ represents the iteration step and η is the learning rate. Large values
for the learning rate might converge faster, but could converge to a globally, sub-optimal
solution. Whereas small values for the learning rate require more training epochs, but
tend to converge to a more optimal solution. Every iteration step, the weight vector is
moved in the direction that reduces the error the most. One thing to consider, how-
ever, is that for every step, the entire training set needs to be processed. More efficient
methods exist, such as the conjugate gradient and quasi-Newton methods or the use of
mini-batches. Mini-batch gradient descent is a method where the training data is divided
into mini-batches with a fixed amount of training snapshots. For every epoch the network
is trained and updated after each mini-batch is processed. This way, the full amount of
training data is still being processed, but the network is updated less frequently. Mini-
batch gradient descent allows for more robust convergence and is computationally more
efficient.

2.4.2.3 Error Backpropagation

To adjust weight values so that the error is minimised, advantage is taken of the gradient
of the error function described in Section 2.4.2.2 using a method called backpropagation
[36, 37]. In this method, for each forward pass through the network, a backwards pass is
performed to adjust the model parameters. The system therefore receives feedback on its
performance.

To calculate the gradient of the error function, a network of L layers is considered. An
untrained model will take an input, set weights and biases according to an initialisation
and, very likely, will return a large error at the output. To reduce this error, it is important
to know how the error varies with changes to the weights, more specifically for a single
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weight value in layer L. The set of activations in each layer depend on the weights and
biases associated with that layer and the activations in the previous layer. This weighted
sum is then inserted in an activation function. This process has already been summarised
in Equations 2.27 and 2.28. Note that the gradient of the error function depends on the
weight, the biases and the activation functions chosen. More specifically, a change in the
weights, w, will cause a change in the weighted sum z, which will influence the activation
a of which an error can be determined in the output layer.

This process can be summarised in the following equations, starting with the relatively
simple interaction between two nodes, one in the output layer L, and one in the previous
layer L − 1:

∂E
∂w(L)

=
∂E(L)

∂a(L)

∂a(L)

∂z(L)

∂z(L)

∂w(L)
. (2.33)

Based on Equations 2.27 and 2.28, the partial derivatives can be defined as:

∂z(L)

∂w(L)
= a(L−1) (2.34)

∂a(L)

∂z(L)
= h′(z(L)) (2.35)

∂E
∂a(L)

=
2
N
(a(L)− y). (2.36)

Equation 2.36 is for a network that uses the mean squared error as loss function. A
simplified version of Equation 2.33 can then be obtained by replacing the individual
partial derivatives with the expressions in Equations 2.34, 2.35 and 2.36:

∂E
∂w(L)

= a(L−1)h′(z(L))
2
N
(a(L) − t). (2.37)

2.4.2.4 Optimizers

Optimizers exist for the purpose of minimising the error function based on the models
learnable parameters. Some revolve around statistics (Bayesian optimization), some are
inspired by natural phenomena (Particle Swarm optimization), however most use gradi-
ent descent, as explained in Section 2.4.2.2.

Within gradient descent algorithms, the most popular, and the one used in this work, is
the Adam optimizer. In the Adam optimizer, momentum and adaptive learning rates
are implemented. Momentum entails that, to a certain extent, the direction of previous
update is retained, allowing for faster learning. Adaptive learning rates, meanwhile,
allows the model to change the learning rates for each parameter based on the history of
gradients for that parameter. Both these features allow this optimizer to rapidly converge
to an accurate solution. The governing equation for the Adam optimizer is [38]:

wt+1 = wt − η
νt√

st + ϵ
gt, (2.38)

where η is the learning rate, νt, st and gt are the exponential average of gradients, the
exponential average of the squares of the gradients and the gradient at time t along wj
respectively. ϵ is a small value to ensure that division by zero is not possible.

2.4.3 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are very similar to feed-forward neural networks,
however RNNs are used to handle sequential data. Because of this property, RNNs are
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used to model materials that show history-dependent behaviour or in dynamics, as the
previous state of the network is stored and utilised to the predict the current state. This
section will discuss the architecture of recurrent neural networks, its possibilities and
(dis)advantages.

2.4.3.1 Basic architecture

Basic RNNs employ the same base architecture as FNNs, as discussed in Section 2.4.2,
both consist of an input layer, hidden layers and an output layer. The differences however,
are firstly that the input vectors of RNNs are sequences of vectors through time [39,
40]: x = [..xt−1, xt, xt+1..], where xt = [x1, x2, .., xD], and secondly that the values of the
nodes within the hidden layers of the previous time step are taken into account when
calculating the same values of the current time-step. A folded representation of a simplistic
RNN is shown in Figure 2.11a, however more insight can be obtained using the unfolded
representation, shown in Figure 2.11b.

(a) Folded (b) Unfolded

Figure 2.11: Folded and unfolded Recurrent Neural Networks [40].

The unfolded schematic, Figure 2.11b, shows how at every time t, nodes in the hidden
layer receive both inputs from the current data xt and from hidden node values from the
previous state, at−1. The inputs from the hidden node values are multiplied by certain,
trainable, weights: wHH.

at = h(wHXxt + (wHHat−1 + w0)). (2.39)

Equation 2.39 shows how values for hidden nodes are determined, where h is the activa-
tion function, and w0 is the bias [39, 40].

2.4.3.2 Network properties

Just like regular FNNs, training is usually done with gradient descent-based methods
that minimise some error-function, however instead of applying backpropagation, a new
method backpropagation though time (BPTT) is introduced [39, 40, 41]. BPTT methods un-
fold the RNN, where parameters (weights and biases) of each separate copy in time are
shared, then gradients are determined for each time step, capturing the dependencies over
time. During backpropagation in RNNs, however, the concept of vanishing and exploding
gradients may become an issue [39, 40, 41]. The problem of vanishing gradients can be
described as the exponential shrinkage of error gradients, due to the continuous propaga-
tion back through time, making the network more dependent on short-term contributions
than long-term ones. The problem of exploding gradients would be the polar opposite,
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where there is a stronger dependence on long-term contributions than short-term ones.
This issue will limit the memory capacity of the RNN. More advanced Long Short Term
Memory (LSTM) architectures are able to deal with this. These networks utilise memory
blocks and memory cells, which regulate the flow of information. Furthermore, RNNs are
severely restricted by the curse of dimensionality, as the increased number of dependen-
cies leads to an exponential increase in the amount of training data required. Lastly, RNNs
still deal with the issue of overfitting data, as well as FNNs, reducing their generalisation
properties. Therefore, while RNNs have great potential to learn sequential dependencies
in data, the method still contains pitfalls which may affect data-interpretability. As such,
RNNs are considered black-box models, as no physical insight is utilised during data
analysis.

2.4.4 The black-box problem

Feed-forward neural networks and recurrent neural networks have been used extensively
in predicting the the stress-strain relations of materials. As FNNs are unable to keep track
of the loading-history of the material, they can only, realistically, be used to analyse elastic
material behaviour [42, 43]. History-dependent materials could, theoretically, be analysed,
however it would require the introduction of extra history variables, which grow the fea-
ture space and amount of training data needed. To handle history-dependence more
efficiently, recurrent neural networks were introduced, which are able to model sequen-
tial data and therefore have some sense of history. These models are capable of modelling
plasticity, as can be seen in Figure 2.12a, however these models can only approximate
accurately for problems withing the range of training data, Figure 2.12b: extrapolation
to untrained loading conditions is not accurate [42, 44]. Therefore, a lot of data, with
different loading conditions and histories, is required to cover the loading-space.

(a) Plasticity RNN modelling, within
trained loading-space

(b) Plasticity RNN modelling, outside
trained loading-space

Figure 2.12: Modelling plasticity with RNN [44].

These issues are related to their black-box nature. Black-box model is a term for a model
where the relation between input and output is unknown. Machine learning models are
especially prone to be classified as such, because physical models are replaced by linear
regressions and general mathematical functions with no intrinsic meaning to the original
problem, leading to a severe lack in interpretability. For this reason, machine learning
models are notoriously poor at extrapolating to untrained loading conditions and are typ-
ically only useful to make approximations within the loading space of the training data.

The issues described above have been subject to extensive research over the last years
and efforts to create more robust models have resulted in the development of various
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different model that incorporate physics into their network. The reasoning being that the
introduced physics force the network to comply the physical behaviour of the material, in-
creasing interpretability and extrapolating abilities. Various methods have been proposed:
Physics Informed Neural Networks (PINN) [45] introduce physics into the loss function,
expanding the loss to three sub-units: the observed data loss, the physics loss and the
boundary loss. Thermodynamics-based Artificial Neural Networks (TANN) [46, 47], use
different sub-ANNs to predict increments of the internal state variables and the energy
potential in order to solve for the dissipation rate and the stress increment. Deep Material
Networks (DMN) [48], predict the properties of materials using mechanistic homogeniza-
tion theory of RVEs. In the DMN, the nodes are redefined as building blocks, each of
these building blocks represents a simple structure with analytical homogenization solu-
tions. HyperCAN [49] utilises hypernetworks to construct adaptable constitutive artificial
neural networks, which can be integrated into multiscale simulations of truss metamate-
rials. Each network offers its own advantages and characteristics. For this study, the most
resemblance can be found in Physically Recurrent Neural Networks (PRNN) [50].

2.4.5 Physically Recurrent Neural Networks (PRNN)

Capturing history-dependent material behaviour while reducing the black-box behaviour
of the model can be done through physically recurrent neural network (PRNN) mod-
elling. The method is proposed by Maia et al. [50] and is used in combination with the
FE2 method, where neural networks are employed to accelerate the microscale predic-
tions. The architecture of this model can be seen in Figure 2.13 and shows that the model
contains three main elements. The first is the encoder, which converts macroscopic strains
into local and fictitious strains. The second block is the material layer, introducing physics
into the model. The third layer is the decoder, converting local and fictitious stresses back
into macroscopic stresses.

Figure 2.13: Physically Recurrent Neural Network architecture [50].

As mentioned, physics is introduced into the model through the material layer by group-
ing the strain components of each fictitious material point in a sub-group, shown in Fig-
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ure 2.13 through differently coloured boxes, which will be evaluated individually. These
sub-groups are passed through a material cell, containing the user-defined constitutive
material model, converting the local strains to local stresses. In order to take into account
path-dependency or the history of the model, the internal variables α of the previous time
step of each material point are stored for the next time step and automatically updated
once a new set of strains is computed. Constitutive model calculations thus depend on
the strain components of the current time step and the internal variables of the previous
time step:

σ, αt = D(ε, αt−1), (2.40)

where D is the constitutive model.

The material cell can be represented as shown in Figure 2.14.

Figure 2.14: Material cell for PRNN [50].

PRNN are able to significantly outperform regular RNN models, while requiring signifi-
cantly less training data, as the physics-based material models introduce built-in assump-
tions [50].



3 M O D E L A R C H I T E C T U R E S

The purpose of this study is to extend the work by Maia et al. [50] on physically re-
current neural networks, described in Section 2.4.5, and propose a novel framework that
reintroduces physics through beam theory. Instead of integrating a material layer to take
material non-linearity into account, the beam neural network incorporates a beam-layer
to take geometric non-linearity into consideration. First some preliminaries are discussed
in Section 3.1 and the benchmark FNN is given elaboration in Section 3.2, the BNN archi-
tectures are discussed in Section 3.3.

3.1 preliminaries

In this section, training aspects such as data normalisation and choice of loss function
are summarised. In the following, the network architectures investigated in this work are
discussed.

Firstly, the stress-values of the datasets are normalised between -1 and 1 to improve
training of the network. This is done separately for each stress-component:

σj,norm =
2(σj − σj,min)

(σj,max − σj,min)
− 1, (3.1)

where σj is the stress component of the curve to be normalised and σj,min and σj,max are
the minimum and maximum values for that stress component in the full training dataset.
Secondly, to assess the performance of the network, a loss function is required. During
training, the root mean squared error is used:

L =

√
∑(σTrue − σpred)2

ndata
, (3.2)

where L is the loss, σTrue and σpred are the true and predicted values of the stress tensor
and ndata is the number of data points within the curve, which is the number of curves
in the batch, multiplied by the number of stress-components in each curve (three), multi-
plied by the number of loading steps per curve.
To evaluate the validation error of the system, the network output is first denormalised
using σmin and σmax from the training data and then an error is computed using a relative
root mean squared error (RRMSE) to get a percentage error of the network performance:

Lrel =

√
∑(σTrue − σPred)2

∑(σ2
True)

. (3.3)

3.2 feed-forward neural network (fnn)

The first network to be discussed is the most straightforward, namely a fully connected
feed-forward neural network, shown in Figure 3.1. This network has three inputs: strains
ϵxx, ϵxy and ϵyy, a single hidden layer and an output layer with three stress outputs:

22
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σxx, σxy and σyy. Both the output and hidden layers have biases, but the nonlinear activa-
tion function is only considered in the former.

Three different activation functions that connect the input layer to the hidden layer are
investigated: ELU, tanh and softplus.

Figure 3.1: Feed-Forward Neural Network architecture.

3.3 beam neural networks (bnn)

Next to be investigated is the Beam Neural Network (BNN), not to be confused with
Bayesian Neural Networks. Three variants are proposed. Two utilise Euler-Bernoulli
beam theory, of which one allows for a change in angle of the beams within the beam-
layer (Section 3.3.2), and one that does not (Section 3.3.1). The former being able to fit
non-linear data, the latter not. The third network makes use of the finite element method
to model cantilever beams within so-called FE-boxes (Section 3.3.3).

3.3.1 Linear Beam Neural Network (BNN-L)

The general architecture of the Linear Beam Neural Network (BNN-L) is shown in Figure
3.2. This network can be subdivided into three components: the encoder, the beam-layer
and the decoder. The encoder linearly translates the global input strains into sets of
two local displacements, x and y. In turn, the beam-layer uses Euler-Bernoulli Equation
2.5 and Equation 2.6 to calculate the local forces, which are converted to local stresses
by dividing by the cross-sectional area of the beam for tensile forces and the apparent
top surface of the beam for bending forces. Given that the global output stresses are
normalised, a normalisation is performed on the output of the beam-layer, based on the
minimum and maximum values of stress components σxx and σyy in the training dataset.
Having the nodal values of the beam-layer output in the same order of magnitude and
the nodal values of the output layer allows for improved training of the network. Lastly,
the decoder linearly translates the local stresses to the global stresses. Throughout the
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network, no activation functions are used and bias is turned off to ensure that a zero-
strain input results in a zero-stress output.

Figure 3.2: Linear Beam Neural Network (BNN-L) architecture.

Whereas the BNN-L in its basic form contains all-horizontal beams in the beam-layer, a
variant investigated in this work consists of having beams with different initial angles.
For a network with one beam, it is set horizontally, at 0 degrees. With two beams, one is
set at 0 and the other at 45 degrees. Any network with more than two beams has these
beams spaced evenly between 0 and 90 degrees. Besides comparing networks with and
without different initial beam angles, the optimal number of beams within the beam-layer
is set as a hyperparameter and will be investigated.

3.3.2 Non-Linear Beam Neural Network (BNN-NL)

Figure 3.3: Non-Linear Beam Neural Network (BNN-NL) architecture.

Because the equations used in the beam-layer, Equations 2.5 and 2.6, contain a linear re-
lation between stress and strain, no non-linearity is introduced into the network, given
the absence of activation functions. Because of this, the linear beam neural network is
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only able to predict linear outputs to, potentially, non-linear data. The Non-Linear Beam
Neural Network (BNN-NL) aims to solve this. It is identical to the BNN-L, except that
the encoder also outputs an angle increment, dϕ, to the beam-layer, illustrated in Figure
3.3. While the initial angle of the beams are defined a priori, as discussed in Section
3.3.1, dϕ allows the network to change the angles of the beams with increased loading,
introducing a non-linear source to the network.

Just like the BNN-L, the number of beams in the beam-layer is considered a hyperparam-
eter to the system which will be investigated. Additionally, the effects of all-horizontal or
variable initial beams angles will be explored.

3.3.3 Finite-Element Beam Neural Network (BNN-FE)

The third network investigated in this research is the Finite-Element Beam Neural Net-
work (BNN-FE), illustrated in Figure 3.4. This network employs static, non-linear finite
element models in the beam-layer, within so called FE-boxes, to introduce non-linearity
into the network. Each FE-box contains an one-dimensional cantilever beam, consisting
of 4 nodes, i.e. 3 elements. Each node has 3 degrees of freedom (DoFs), namely displace-
ments dx and dy and rotation dϕ. For the node at the clamped side of the cantilever beam,
all DoFs are constrained to zero. For the end-point node, the dx and dy displacements
are constrained by the encoder output, which are, just like in previous networks, coupled
in sub-groups of two. All other DoFs are free. The finite element model in each box is
then solved through the Iterative solving scheme outlined in Algorithm 1 in Section 2.3.1.2,
using the supplementary equations of Section 2.3. In this study, linear shape functions
are used to approximate the displacements and solving the system of equations is done
through Gauss integration. Shear locking is prevented by underintegration, using only
one integration point in the middle of each element.

Figure 3.4: Finite-Element Beam Neural Network (BNN-FE) architecture.

Unlike the BBN-L and BNN-NL networks (Sections 3.3.1 and 3.3.2), for reasons that will
become clear in Chapter 6, the cantilevers in the beam-layer are analysed at fixed, hori-
zontal positions, that are unable to change their angle with loading increments. Also, no
additional activation functions or biases are applied.

A notable feature of the BNN-FE is the relatively easy incorporation of dynamics into
the network, as the state of the beams is known for every time step. This could become
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important in future research, where BNN-FE could become an alternative to RNNs which
suffer from the curse of dimensionality, where the BNN-FE does not.

An important thing to note, however, is that an implication of using finite elements in the
beam-layer is that computational effort is greatly increased. Therefore, in order to reduce
the time-requirements and thus increasing the number of training curves in the analyses,
two changes have been made. Firstly, the assembly of the stiffness matrix K and internal
force vector fint have been vectorized, such that the system of equations can be solved
for multiple curves and multiple FE-boxes at the same time. Secondly, even though
the original dataset contains 150 loading steps per curve, the dataset for analysing the
BNN-FE contains 11 loading steps, equally spaced out along the original 150. Although
this causes an increase in the iteration steps required to converge the Newton-Raphson
scheme, time requirements are greatly reduced overall without losing accuracy. Lastly,
the initial ability of the Newton-Raphson scheme to converge towards a solution greatly
depends on the initial displacement assignments of the encoder. In order to avoid non-
convergence of the scheme due to a too large difference between the solution and the
initial guess of the solution, the initialisation of the weight parameters of the encoder are
modified to a narrower range where displacements are expected to be smaller.



4 DATA G E N E R AT I O N

In this study two different datasets are used, one being for a honeycomb lattice architec-
ture (shown in Figure 4.1), the other for a re-entrant lattice architecture (shown in Fig-
ure 4.2). Using these two datasets allows for a comparison of the network performance
between an isotropic material: a hexagonal honeycomb (in linearity), and an auxetic ma-
terial, the re-entrant structure. The data used for training, validating and testing the
models in this work are obtained using a full-field finite element simulation of a single
(1x1) unit cell of a 2D lattice structure with periodic boundary conditions. During the
simulation, contact forces between beams are not taken into account. Results along the
border of the unit cell are homogenized to obtain the displacement gradients and Piola-
Kirchhoff stresses, relating the stresses to an undeformed reference configuration. Lastly,
the displacement gradients H11, H12, H21, and H22 are converted to strain to complete
the datasets using the following 2D relations [51]:

ϵxx = H11 (4.1) ϵxy =
H12 + H21

2
(4.2) ϵyy = H22. (4.3)

Figure 4.1: Schematic of honeycomb lattice.

Figure 4.2: Schematic of re-entrant lattice.

To ensure an equal amount of normalised strain for each curve in the dataset, an unit
sphere is placed in the loading space, on the surface of this sphere the loading conditions
are generated. Because of this, every curve in both the honeycomb and the re-entrant
datasets have equal magnitudes for the resultant strain vectors, namely 0.15. This ultimate
strain is achieved within the dataset through 150 loading increments for which the strain
and stress values are recorded. A visualization of this is shown in Figure 4.3 for a random
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selection of 100 curves. In total, both the honeycomb and the re-entrant datasets contain
the stress-strain curves for 10.000 different loading cases.

Figure 4.3: Unit-spherical loading space for data generation.

To avoid floating point errors, the base length of both lattices (length b in the schematics
of Figures 4.2 and 4.1) are set to 1 meter. The dimensions of both lattice cells are shown
in Table 4.1, where it can be seen that the only different between the lattices is the angle φ.
The material properties are constant, meaning that no material non-linearity is observed,
only geometric non-linearity.

Table 4.1: Material specifications.

Material properties
Young’s modulus E: 210 GPa Poisson Ratio ν: 0.3

Unit cell dimensions Honeycomb Re-entrant
Strut length L: 0.5 m Strut length b: 1 m Angle φ: 120 deg 23.86 deg

Strut dimensions
Cross-section: Circular Radius: 0.05 m



5 M O D E L S E L E C T I O N A N D E VA L U AT I O N

To determine the optimal network sizes and in order to compare network performance, a
selection procedure is employed. This section covers the choices made in this study.

5.1 dataset sizes

As outlined in Chapter 4, a total of 10.000 curves were obtained per material architecture.
The datasets are split into a training set and a validation set, where the training set is used
to train the network and the validation set is used to determine the network performance
on unseen data. It is desirable to use as much training and validation data as possible,
while maintaining reasonable time-requirements for the training of the network.

During training, the validation set remains the same set of curves throughout every epoch,
while the training dataset might vary if less curves are used than are available. This pro-
cess is shown in Figure 5.1, where the curves that are used during the epoch are symbol-
ised in red. It is shown that the validation set is always the same set of curves, while the
training curves are picked at random and used throughout the remainder of the training.
Note, however, that in case the training set contain all available curves, no random select-
ing of curves is performed.

Throughout this study, the number of curves in the training and validation datasets will
be reported, as this may vary per network and analysis. Networks that share identical
validation datasets may be compared directly. For networks where this is not the case, a
test dataset must be used, against which both networks can be fairly compared.

Figure 5.1: Visualisation of fixed curves in validation dataset, but randomly selected curves in
training dataset.

5.2 hyperparameter characterisation

The hyperparameters to be investigated in this work have been discussed in Chapter 3

and are summarised in Table 5.1.
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Table 5.1: Hyperparameters to be investigated per network.

Networks Hyperparameters

FNN
Activation function

Number of nodes in hidden layer
BNN-L / BNN-NL Number of beams in beam-layer
BNN-FE Number of FE-boxes in beam-layer

To test and compare hyperparameters, networks are trained for a range of possible values
of the hyperparameter. While training, the validation error is checked every 50 epochs.
The lower this validation error, the better the performance of the network. During train-
ing, the validation error tends to decrease at first, but after some epochs, overfitting of
the training data may occur, where the validation error increases again. This is illustrated
in Figure 5.2, where the best validation error is reached around epoch 550, whereafter
overfitting occurs. Therefore, a criterion can be set, where training is stopped when no
improvement to the validation error has been achieved for a number of epochs. In this
work, this criterion is set to 150 epochs of no improvement. The model with the lowest
validation error is then saved.

Figure 5.2: Validation error per epoch during network training.

5.3 learning curves and model selection

In order to compare different types of networks, their performances are assessed by vary-
ing the number of training curves and calculating their validation errors. Besides aiming
for the lowest validation error, it is desirable for a network to require the least amount of
training data to converge towards its best performance. It is then up to the user to decide
what properties of the network are prioritised and what network is deemed the best.
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Figure 5.3: Learning curve for three networks using mock data.

An example of such a learning curve is given in Figure 5.3, where three different networks
are depicted. In this case, network 2 converges quickly towards a low validation error,
while network 3 requires more training data, but converges towards a lower validation er-
ror overall. It is up to the user to decide whether or not the performance gain of network
3 is worth the higher training data requirement. Note that, as stated in Section 5.1, the
validation datasets of each network need to be identical in order to compare them fairly.
If this is not the case, network performance must be assessed using a test dataset.

Additionally, to assess the impact of incorporating physics into the networks, they are
evaluated in extrapolation. For this, networks are evaluated on a test dataset that con-
tains more loading iterations than the training data. For each iteration step, the error
between the network’s prediction and the true value is calculated. This is repeated over
a large number of test curves, which allows for the plotting of the average performance
of a network along a range of iteration points, both for interpolation and extrapolation.
An example plot is shown in Figure 5.4. It shows that while networks may perform well
in the training range, their behaviour in extrapolation might be very different. Network
1 performs best in the training range, while network 2 performs better in extrapolation.
Given that the aim of this study is to make a more robust model, better capable of comply-
ing with the physical behaviour of the material, network 2 would be preferred. Overall, a
reasonable target in this study would be to keep the prediction error within a 10% margin,
somewhat comparable to the macroscale simulation error.

Figure 5.4: Extrapolation behaviour of two networks using mock data.



6 R E S U LT S A N D D I S C U S S I O N

In this section, results are summarised. Section 6.1 outlines the choices made for the hy-
perparameter characterisation. Section 6.2 compares the performance of the investigated
networks in the training range, while Section 6.3 assesses the networks in extrapolation.
Additionally, some exploratory studies have been done, that build upon the findings of
the previous sections, these are provided in Section 6.4.

Throughout this chapter, results are obtained by averaging network outputs over multiple
runs, for this study averages of 15 runs are used. The shaded areas in plots show the
boundaries of the minimum and maximum results. Additionally, all networks utilise a
batch size of 4 and an initial learning rate of 0.01, except for the BNN-FE that requires an
initial learning rate of 0.001 in order to avoid non-convergence of the Newton-Raphson
scheme.

6.1 hyperparameters

As discussed in Chapter 3 and summarised in Table 5.1, each network has hyperparame-
ters that require evaluation. This section covers this process.

A shared investigation into BNNs and the effect of the initial angles of the beam in the
beam-layer has been provided in Appendix A. Based on that study, it is verified that there
is no effect of the initial angles of the beams in the beam-layer on the performance of the
networks. From this point onwards, all the beams in the beam-layer have a set initial
angle of zero degrees (a horizontal cantilever). An overview of the number of curves
per dataset used for the hyperparameter characterisation has been provided in Table 6.1.
Given larger computational effort requirements for the BNN-FE, a reduction of curves in
the training and validation datasets had to be imposed, as well as the data being sparse
instead of dense, i.e. the curve is covered by 11 data points instead of 150.

Table 6.1: Number of curves per dataset for hyperparameter characterisation, for both honeycomb
and re-entrant lattices.

Training Validation

FNN 8000 2000

BNN-L 8000 2000

BNN-NL 8000 2000

BNN-FE 500 500

Feed-Forward Neural Network (FNN)

For the FNN, the hyperparameters that are investigated are the number of nodes in the
hidden layer and the activation function that connects the input layer to the hidden layer.
As a reminder, the activation functions to be investigated are the ELU, tanh and softplus
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functions, graphically illustrated in Figure 2.10. Results of the FNN hyperparameter
characterisation are shown in Figure 6.1.

(a) Honeycomb

(b) Re-entrant

Figure 6.1: FNN hyperparameter characterisation. Relative validation error per hidden layer size,
for different activation functions. For a honeycomb lattice (a) and a re-entrant lattice
(b).

It can be seen that for both lattice architectures the softplus activation function performs
best. Moreover, for neither architecture any performance is gained from increasing the
hidden layer size above 25 nodes. Therefore, the choice is made for the softplus activation
function and a hidden layer size of 25 nodes.

Linear Beam Neural Network (BNN-L)

Next to be discussed is the BNN-L, where the hyperparameter to be investigated is the
number of beams in the beam-layer. Results can be seen in Figure 6.2. It is clear that for
both lattices only 2 beams are needed in the beam-layer to achieve convergence.
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(a) Honeycomb (b) Re-entrant

Figure 6.2: BNN-L hyperparameter characterisation. Relative validation error per number of
beams in beam-layer. For a honeycomb lattice (a) and a re-entrant lattice (b).

Non-Linear Beam Neural Network (BNN-NL)

The BNN-NL, similarly to its linear counterpart, also requires investigating into the num-
ber of beams in the beam-layer to achieve convergence. The results are given in Figure
6.3 and show that for both lattice architectures 3 beams in the beam-layer is sufficient.

(a) Honeycomb (b) Re-entrant

Figure 6.3: BNN-NL hyperparameter characterisation. Relative validation error per number of
beams in beam-layer. For a honeycomb lattice (a) and a re-entrant lattice (b).

Finite Element Beam Neural Network (BNN-FE)

Lastly, the number of FE-boxes in the beam-layer for the BNN-FE needs to be determined.
In a similar fashion, the results are shown in Figure 6.4, which show that the honeycomb
lattice requires 4 FE-boxes in the beam-layer and the re-entrant lattice requires 5 FE-boxes
in the beam-layer in order to have optimal performance.
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(a) Honeycomb (b) Re-entrant

Figure 6.4: BNN-FE hyperparameter characterisation. Relative validation error per number of FE-
boxes in beam-layer. For a honeycomb lattice (a) and a re-entrant lattice (b).

A summary of the choices on the hyperparameters of each network and both lattices is
shown in Table 6.2.

Table 6.2: Hyperparameter choices per network, per lattice architecture.

Hyperparameters
Honeycomb

choice
Re-entrant

choice

FNN
Activation function

Number of nodes in hidden layer
Softplus

25

Softplus
25

BNN-L Number of beams in beam-layer 2 2

BNN-NL Number of beams in beam-layer 3 3

BNN-FE Number of FE-boxes in beam-layer 4 5

6.2 network learning

In order to compare networks and their ability to generalise, a learning curve can be gen-
erated. In a learning curve, the validation error is plotted against the number of curves
in the training dataset, showcasing the performance of a network with different amounts
of data, with emphasis on the limited data regime, also explained in Section 5.3.

Given that the BNN-FE required sparse data due to training time constraints, it is also
worth looking at using sparse data for the other networks instead of dense data. The result
is shown in Appendix B and confirms that there is no difference in network performance
between sparse and dense datasets, therefore, from this point onwards sparse data is used.
Moreover, in order to fairly compare the BNN-FE and the other networks, the validation
datasets of the FNN, BNN-L and BNN-NL networks are adjusted to contain 500 curves.
An updated table is shown in Table 6.3.
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Table 6.3: Number of curves per dataset for network learning, for both honeycomb and re-entrant
lattices.

Training Validation

FNN Variable 500

BNN-L Variable 500

BNN-NL Variable 500

BNN-FE Variable 500

The learning curves for both lattices are shown in Figure 6.5 and show that the learning ef-
ficiency of all networks are reasonably comparable, indicating that the physics integrated
into the BNNs had no effect on the learning efficiency. Additionally, it can be seen that
the linear predictions of the BNN-L are insufficient for predicting non-linear material be-
haviour, more so for the honeycomb lattice than the re-entrant lattice. The other networks
show similar accuracy, although the FNN seems to have an edge over the BNN-FE and
BNN-NL respectively. Which is unsurprising, given that a FNN is very capable of making
accurate predictions withing the training range, given enough training data.

(a) Honeycomb

(b) Re-entrant

Figure 6.5: Learning curve. For a honeycomb lattice (a) and a re-entrant lattice (b).

In Figure 6.5 the FNN for both lattices and the BNN-NL for the honeycomb lattice do
not show convergence yet. For this reason, extended learning curves can be found in
Appendix C. Combining Appendix C with the results of Figure 6.5, the minimum number
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of curves in the training dataset to achieve convergence can be determined, the result is
shown in Table 6.4.

Table 6.4: Minimum number of curves per dataset required for network convergence.

Honeycomb
choice

Re-entrant
choice

FNN 8000 2000

BNN-L 10 10

BNN-NL 2000 25

BNN-FE 100 100

6.3 extrapolation

Where previous results have been focused on interpolation, assessment of the effects of the
incorporated physics into the networks is best performed in extrapolation. This section
will discuss the extrapolation results for the honeycomb lattice, whereas the results for
the re-entrant lattice are provided in Appendix D to avoid repetition.
In order to assess networks in extrapolation, test datasets containing 400 (dense) curves
are created that reach a normalised strain three times higher than in training, each with
450 time steps. The relative test error is then calculated per data point and plotted to
graphically show the performance of each network, previously explained in Section 5.3.
The average performance on the test dataset for all four networks can be found in Figure
6.6, where a clear distinction is made between trained and the extrapolated ranges.

Figure 6.6: Performances of networks in extrapolation: honeycomb lattice.

A few interesting remarks can be made about Figure 6.6. The results confirm that the
FNN shows strong performance within the interpolation range, while in extrapolation
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this degrades rapidly, highlighting the black-box nature of the FNN. Moreover, the FNN
shows disproportionately high relative error in early time steps, where stress values are
relatively small. This is due to the inclusion of the bias term, resulting in large relative
errors, even though absolute errors might be minor. Furthermore, both the BNN-NL and
BNN-FE perform almost identically in both interpolation and extrapolation, showing that
the integration of physics has enhanced its generalisation capabilities. Despite this, the
accuracy of the BNN-L within the interpolation range is be poor, indicating that linear
predictions of non-linear material behaviour is insufficient. Nevertheless, the average
performances of evaluated networks on the test dataset indicate that none demonstrate
the required performance to be used in actual FE2 modelling, failing to generalise well
enough in extrapolation.

While the average performance on the curves in the test dataset might give some insight
on the overall behaviour of the network, it fails to give information on the consistency of
the networks, i.e. the spread of the results. Figure 6.7 aims to provides more insight into
this, as it shows the performance for each of the 400 test curves.

(a) FNN (b) BNN-L

(c) BNN-NL (d) BNN-FE

Figure 6.7: Honeycomb extrapolation, all 400 test dataset curves plotted per network.

It is revealed that there is a large spread in the results and that there are distinct paths that
curves tend to follow. To explore this further, a plot can be generated where the loading
directions are plotted with their corresponding relative test error. Figure 6.8a shows
this for the BNN-FE network at time step 200, inside the extrapolation range, where the
colours represent a discrete interval in the model’s performance, from dark green (< 0.1
relative error) to dark red (> 1 relative error). Similar figures for the other models and at
more time steps are included in Appendix E. Side views of Figure 6.8a are provided in
Figures 6.8b, 6.8c and 6.8d to improve readability.
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(a)

(b) (c) (d)

Figure 6.8: Honeycomb extrapolation performance in the loading space, BNN-FE at time step 200.

Figure 6.8 shows that there are indeed distinct regions of poorer performance, meaning
that the model experiences more trouble in some loading conditions than in others. For
the honeycomb lattice, this region of poorest performance is for combined compression
in 11 and 22 directions. This is not a model specific issue, the same can be found for the
other networks (FNN, BNN-L and BNN-NL), as shown in Appendix E. To confirm the
intuition that the distinct grouping of curves in Figure 6.7 can be correlated to their po-
sitions in the loading space, the BNN-FE result in Figure 6.7d can be repeated, although
with colours representing the curve’s position in the loading space. In this case, the load-
ing space is subdivided in four sections, where shear is excluded. The result is shown in
Figure 6.9, confirming the correlation.
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Figure 6.9: Honeycomb extrapolation, BNN-FE with colours representing the curves’ position in
loading space.

To find the reason for the distinct split performance, the network predictions for a curve
in the region of poorer performance can be plotted (Figure 6.10) and combined with plots
showing the movements of the beams in the beam-layer in comparison with the true de-
formations of the lattice, shown in Figure 6.11 for the BNN-FE. Beam-layer deformations
for BNN-L and BNN-NL can be found in Appendix G and F respectively, where it can be
seen that the Euler-Bernoulli assumptions of infinitesimal displacements are significantly
stretched, extending beyond their original scope. The same can be done plotting a curve
that shows relatively good performance: Figures 6.12 and 6.13. Also for this case, the
beam deformations of the beams in the beam-layers of the BNN-L and BNN-NL are pro-
vided in Appendix G and F. The loading cases for these examples are shown in Table 6.5,
the loading case representing the region of poor performance will be known as loading
case 1, whereas the case representing the region of better performance will be known as
loading case 2.

Table 6.5: Loading cases: honeycomb lattice.

H11 (H12+H21)/2 H22

Loading case 1 (poor extr.) -0.7500 -0.4330 -0.5000

Loading case 2 (good extr.) 0.5000 0.7071 -0.5000
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(a) P11 (b) P12

(c) P22

Figure 6.10: Honeycomb extrapolation predictions per network: loading case 1.

Figure 6.11: True lattice deformations and beam deformations in beam-layer of BNN-FE at time
steps 0, 150 and 450 for a honeycomb lattice: loading case 1.
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(a) P11 (b) P12

(c) P22

Figure 6.12: Honeycomb extrapolation predictions per network: loading case 2.

Figure 6.13: True lattice deformations and beam deformations in beam-layer for BNN-FE at time
steps 0, 150 and 450 for a honeycomb lattice: loading case 2.
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Comparing the lattice deformation in loading case 1 to the deformation in loading case 2,
an immediate thing to note is the buckling behaviour due to the compressive loading in
loading case 1. The beams in the beam-layer of the BNN-L and BNN-NL are inherently
incapable of buckling due to limitations in Euler-Bernoulli beam theory, supported by
the beam-layer deformations in Appendices G and F. The BNN-FE, however, is capable
of modelling buckling and an effort to do so is shown in Figure 6.11, beam 3. However,
the observed buckling deformation reveals a fundamental constraint to the current model:
modelling buckling behaviour with only three elements leads to inaccurate representation
of the physical response. Moreover, buckling of the lattice originates from beam-to-beam
interactions, something that is not taken into consideration in the BNNs: more realistic
buckling behaviour could therefore be achieved by interconnecting the movements of
individual beams. This process highlights the benefit of interpretability in the model,
something that is not possible for the FNN.

6.4 exploratory studies

This section proposes improvements to the BNN-FE model to more accurately capture
buckling behaviour, focusing only on the honeycomb lattice. While these proposals have
been worked out, it is important to note that no formal model selection was conducted;
instead, the parameters of the previously developed BNN-FE were directly adopted. As
such, the findings presented here are only exploratory.

A first suggestion for improvement would be to increase the number of elements in the
cantilever beam, adding more degrees of freedom to the model. Given that the full-field
simulation used to generate the training data utilises 8 elements per beam in the lattice,
an immediately obvious choice would be to mimic this in the FE-boxes, thus increasing
the number of elements per beam from 3 to 8. A first attempt to do this is provided
in Appendix H, showing no difference to the original 3-element BNN-FE. A second sug-
gestion would be to introduce a non-linear encoder, giving the networks another source
of non-linearity. In this work, to obtain a non-linear encoder, a hidden layer is inserted
after the input layer, consisting of 100 nodes and equipped with the tanh activation func-
tion. From a physical point of view, adding a non-linear encoder would be advantageous,
given that lattice displacements throughout loading are inherently non-linear. However,
interpretability of the model is reduced, as it become more difficult to separate the effects
of the non-linear encoder and what is being captured by the beams. Results are shown
in Appendix I and, just like increasing the number of elements in the FE-model, show no
real improvements from the original BNN-FE.

Behaviour changes, however, when the two previous suggestions are combined, resulting
in a BNN-FE model with 8 elements in the FE-model and a non-linear encoder, illustrated
in Figure 6.14.
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Figure 6.14: BNN-FE with non-linear encoder and increased number of elements in the FE-model.

The performance of the model in extrapolation is shown in Figure 6.15, where the average
performance of the basic BNN-FE, that has 3 elements in the FE-model and a linear
encoder, is included. For direct comparison, the same test dataset is used for both models.
While each of the previous suggestions on their own were ineffective, the combination of
the two reveals improvement.

Figure 6.15: Performances of BNN-FE in extrapolation, with non-linear encoder and an increased
number of elements in the FE-model: honeycomb lattice.

To identify the origin of the improvements, the performance of the model on each curve
of the test dataset is plotted in the loading space. Figure 6.16 shows this for the network
at time step 200, while more time steps are included in Appendix J. Additionally, the
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deformations of the beams in the beam-layer, for loading case 2 of Table 6.5, are provided
in Figure 6.17.

(a)

(b) (c) (d)

Figure 6.16: BNN-FE with 8 elements in FE-model and non-linear encoder: extrapolation perfor-
mance in the loading space at time step 200, for a honeycomb lattice.

Figure 6.17: True lattice deformations and beam deformations in beam-layer for BNN-FE with 8

elements in the FE-model and a non-linear encoder, at time steps 0, 150 and 450 for
a honeycomb lattice: loading case 2.
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Figure 6.16 shows that, while less pronounced than the basic BNN-FE, the model still
experiences difficulty capturing the buckling behaviour of the lattice. Although, the
beam deformations in Figure 6.17 do show more expressive buckling behaviour. Nonethe-
less, given that no model selection has been performed, the revised BNN-FE does show
promise of improvement and could be a good first step towards a more well-rounded
surrogate model.

To summarise, while the evaluated models do not show adequate performance for prac-
tical application, the BNN-FE model, and in particular the exploratory version, shows
promise to become a useful tool, given further refinement and optimization.



7 C O N C L U S I O N S A N D F U R T H E R R E S E A R C H

In this work, the possibility of replacing the microscopic model within the FE2 framework
by a surrogate model was explored, with the aim to reduce computational costs associ-
ated with modelling lattice materials. This study served as a proof of concept, with the
main focus on geometric non-linearity of lattice materials, applied specifically to honey-
comb and re-entrant lattices. To address common pitfalls related to black-box modelling,
three physics-based artificial neural networks were developed and evaluated against a
benchmark feed-forward neural network (FNN), the main objective being to increase in-
terpretability and extrapolation capability of the model. Physics has been reintroduced
through so-called beam neural networks (BNNs) that make use of beam theory: two
of the physics-based models (BNN-L and BNN-NL) utilise Euler-Bernoulli beam theory
for a cantilever beam, where BNN-L is limited to the linear force-displacement relation
of the Euler-Bernoulli formation, and the BNN-NL introduces non-linearity by allowing
changing angles of the beams with increased loading. The third (BNN-FE) employs a
finite-element based approach applied on one-dimensional cantilever beams in so-called
FE-boxes, solved through a static, non-linear, iterative solution procedure.

A model selection was performed and models were evaluated in both interpolation and
extrapolation. No significant differences in the learning efficiency of the models were
observed. Regarding accuracy in interpolation, the FNN exhibited the best performance,
followed by an evenly matched BNN-FE and BNN-NL, whereas the BNN-L showed that a
linear approximation of non-linear material behaviour is insufficient. A better assessment
of the effects of the incorporated physics is their performance in extrapolation, show-
casing their generalisation capabilities. The FNN, not supported by physics, degrades
rapidly in extrapolation, while the BNNs demonstrated the ability to handle extrapola-
tion more effectively. Although, none of the networks displayed the required performance
to be used in actual FE2 modelling: a reasonable target would be to keep prediction er-
rors within a 10% margin, which is somewhat comparable to the macroscale simulation
accuracy. This target is not achieved in this study.

To understand the lack in performance, the networks’ performances were plotted in the
loading space, revealing their inability to make predictions on buckled lattices. In the
case of BNN-L and BNN-NL, this is due to limitations in the Euler-Bernoulli formation,
however the BNN-FE is expected to accurately capture buckling, yet fails to do so. To
investigate this, the interpretability of the physics-based model can be exploited, plotting
the deformations of the beams inside each FE-box. It was discovered, that modelling buck-
ling behaviour with only three elements leads to inaccurate representation of the physical
response. Additionally, the absence of beam-interactions and the linear relationship be-
tween strains and displacements in the encoder weakens the compliance with physical
reality.

Exploratory studies of possible improvements to the BNN-FE were carried out, to eval-
uate their feasibility. The first proposal was to increase the number of elements in the
FE-model in the beam-layer, which had no direct effect on the buckling behaviour of the
model. A second proposal was to add non-linearity to the encoder, however, this was also
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ineffective. The third proposal was to combine the two previous suggestions: incorpo-
rating both a non-linear encoder and increasing the number of elements in the FE-model
from 3 to 8. While each proposal on their own were unsuccessful, the combination of
both showed promise of improvements to the model, but the inadequate performance of
the model in buckling persists. It should be emphasised that in these exploratory studies,
the model parameters of the regular BNN-FE were directly adopted, further optimization
is possible and recommended.

This leads into the first recommendation for future research, namely a more extensive
study the effectiveness of increasing the number of elements in the FE-model and the
adoption of a non-linear encoder. Furthermore, it could be looked into to change the
cantilever FE-model into a more complex variant, like a tripod (Figure 7.1). A tripod ar-
chitecture could model tension and compression/buckling simultaneously, allowing for
more intricate stress-strain predictions. Additionally, more complex architectures would
allow beam-interconnection, linking their movements together for a realistic source of
buckling initialisation. It is expected that the linking of beams through more complex
FE-models will have the greatest impact on performance and should therefore be given
priority in future research. Moreover, given that in this study the BNN-NL and BNN-FE
models are closely matched, the BNN-NL should not be dismissed immediately. Trials
could be carried out integrating analytical buckling solutions into the BNN-NL, with the
aim to incorporate buckling capabilities into the model. It is clear, however, that the BNN-
FE model provides greater flexibility for incorporating changes and additional features.
Most notably, the BNN-FE would allow for incorporation of dynamics, given that the
states of the beam-models are known at each time step, without worsening the effects of
the curse of dimensionality, as is the case for RNNs. Therefore, additional research efforts
into BNN-FE are justified.

Figure 7.1: Tripod model architecture.

Should the suggestions to the current BNN-FE model bring the desired improvements,
the model could gradually be exposed to more complex scenarios, such as material non-
linearity, history dependency, dynamics or extending the modelling into the third dimen-
sion. However, the original purpose of the surrogate model should be kept in mind,
namely it should serve a reduction in computational effort. Given that it is likely that a
high number of elements is required in the BNN-FE, this negates any computational gain
over the full-field analysis when a 2D honeycomb or re-entrant lattice is the subject of
research. With this in mind, the BNN-FE approach might prove more useful for materials
that require more intense numerical simulation, such as porous materials like foams.

To conclude, whereas the proposed models fail to demonstrate sufficient accuracy, the
results show that there is room for improvement through further optimization and that
there is promise for BNNs to become a useful tool to accelerate FE2 modelling.
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A A P P E N D I X : F I X E D V E R S U S VA R I A B L E
B E A M A N G L E S I N B E A M - L AY E R

To investigate the effect of the initial angles of the beams in the beam-layer on the perfor-
mance the the networks, networks with fixed initial beam angles of 0 degrees have been
compared to networks with variable initial beam angles. In this case, for a network with
one beam, it is set horizontally, at 0 degrees. With two beams, one is set at 0 and the other
at 45 degrees. Any network with more than two beams has these beams spaced evenly
between 0 and 90 degrees.

The comparison of different initial angles is only performed for BNN-L and BNN-NL
models and not for the BNN-FE model, as it is expected that the initial beam angles
should have no effect on the network’s performance.

hyperparameters

First, the hyperparameters of networks with varying initial beam angles must be deter-
mined. Hyperparameters for networks with fixed beam angles in the beam-layer are
shown in Section 6.1. The number of curves used per dataset to charaterise the hyperpa-
rameters is shown in Table A.1.

Table A.1: Number of curves per dataset for hyperparameter characterisation of networks with
varying initial beam angles in the beam-layer. For both honeycomb and re-entrant
lattices.

Training Validation

BNN-L 8000 2000

BNN-NL 8000 2000

(a) Honeycomb (b) Re-entrant

Figure A.1: BNN-L hyperparameter characterisation. Relative validation error per number of
beams in the beam-layer. For a honeycomb lattice (a) and a re-entrant lattice (b).
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(a) Honeycomb (b) Re-entrant

Figure A.2: BNN-NL hyperparameter characterisation. Relative validation error per number of
beams in the beam-layer. For a honeycomb lattice (a) and a re-entrant lattice (b).

Using the results from Figures A.1 and A.2, choices can be made for the hyperparameters,
these can be found in Table A.2.

Table A.2: Hyperparameter choices for BNN-L and BNN-NL with variable beam angles in beam-
layer, per lattice architecture.

Hyperparameters
Honeycomb

choice
Re-entrant

choice

BNN-L Number of beams in beam-layer 2 2

BNN-NL Number of beams in beam-layer 3 3

learning curves

Configuring the networks with the chosen hyperparameters as shown in Table A.2, learn-
ing curves can be created and both networks can be compared to each other directly, as
the validation dataset is identical for both. Just like the hyperparameter characterisation,
the validation dataset contains 2000 curves. This process is shown in Figures A.3 and A.4.
It can be seen that networks behave near identically, regardless of initial beam angles. This
means that the initial beam angles in the beam-layer have no effect on the performance of
the network.
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(a) Honeycomb

(b) Re-entrant

Figure A.3: Learning curve for fixed and variable initial beam angles in beam-layer for BNN-L
network. For a honeycomb lattice (a) and a re-entrant lattice (b).

(a) Honeycomb

(b) Re-entrant

Figure A.4: Learning curve for fixed and variable initial beam angles in beam-layer for BNN-NL
network. For honeycomb lattice (a) and re-entrant lattice (b).



B A P P E N D I X : S PA R S E V E R S U S D E N S E
DATA S E T S

In this section, networks using sparse and dense data are compared, this is only done for
the FNN, BNN-L and BNN-NL networks, as the BNN-FE is only analysed using sparse
data. In this work, spars datasets are defined as datasets where every 15th data point are
using along the curve. Therefore, a curve containing 150 data points, will only contain 11

data points in its sparse state. The network hyperparameters for the sparse-data networks
are adopted from the dense-data equivalents, shown in Section 6.1. Then, for both the
learning curves are created using the relative validation error, however these cannot be
directly compared due to the composition of the validation dataset, where one dataset
is sparse and contains 500 curves and the other is dense and contains 2000 curves. To
compare them fairly, a test dataset containing dense data is used. In this work, this test
dataset is composed of 500 curves. The networks are analysed at their point of conver-
gence, results are shown in Figures B.1, B.2 and B.3.

From the results, it can be concluded that there is not difference in performance when
using sparse or dense datasets.

(a) Honeycomb

(b) Re-entrant

Figure B.1: Network assessment using sparse and dense datasets: FNN.
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(a) Honeycomb

(b) Re-entrant

Figure B.2: Network assessment using sparse and dense datasets: BNN-L.

(a) Honeycomb

(b) Re-entrant

Figure B.3: Network assessment using sparse and dense datasets: BNN-NL.



C A P P E N D I X : S E L E C T, C O M P L E T E
L E A R N I N G C U R V E S

feed-forward neural network (fnn)

To investigate the convergence of a FNN using sparse data, the entire learning curve is
required. This is shown in Figure C.1, which is an extended version of the graph in Figure
6.5. It can be seen that the network is reasonably converged when the training dataset
contains 8000 curves for the honeycomb lattice and 2000 curves for the re-entrant lattice.

(a) Honeycomb

(b) Re-entrant

Figure C.1: Extended FNN learning curve. For a honeycomb lattice (a) and a re-entrant lattice (b).

non-linear beam neural network (bnn-nl)

Similarly to the convergence of the FNN, the full convergence of the BNN-NL is looked
into. In this case, the convergence for the honeycomb lattice. The result is shown in Figure
C.2 and it can be determined that reasonable convergence is reached when 2000 curves
make up the training dataset.
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Figure C.2: Extended BNN-NL learning curve. For a honeycomb lattice.



D A P P E N D I X : E X T R A P O L AT I O N F O R A
R E - E N T R A N T L AT T I C E

Section 6.3 discussed the extrapolation performance for the honeycomb lattice architec-
ture. In this section, results are provided for the re-entrant lattice architecture.

Similarly to what is done in Section 6.3, a test dataset containing 400 curves is created,
that reach a normalised strain three times higher than in training. Relative test errors per
time step can then be calculated and averaged. The result is shown in Figure D.1.

Figure D.1: Performances of networks in extrapolation: re-entrant lattice.

To gain more insight in the performances of the individual curves in the test dataset,
Figure D.2 can be used. Showing that, like the honeycomb lattice in Section 6.3, there is
indeed a noticeable spread in the results.
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(a) FNN (b) BNN-L

(c) BNN-NL (d) BNN-FE

Figure D.2: Re-entrant extrapolation, all 400 test dataset curves plotted per network.

In order to gain more information on which loading cases are predicted well by the
networks and which are not, plots can be generated that display the relative test error for
each curve in the test dataset at a specific time step. Figure D.3 shows this for the BNN-
FE at time step 200. The colours represent a discrete interval in the model’s performance,
from dark green (< 0.1 relative error) to dark red (> 1 relative error). Appendix E
provides similar figures for more time steps and for the other networks (FNN, BNN-L
and BNN-NL).
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(a)

(b) (c) (d)

Figure D.3: Re-entrant extrapolation performance in the loading space, BNN-FE at time step 200

From Figure D.3 it can be seen that the BNN-FE struggles the most at making predictions
for loading cases where there is compression in the 11 direction. This also holds for the
other networks, see Appendix E. To understand why, two loading cases are investigated
further, loading case 1 is located in the region of poor fit, while loading case 2 is located in
the region of better fit. Table D.1 contains the specifics for each.

Table D.1: Loading cases: re-entrant lattice.

H11 (H12+H21)/2 H22

Loading case 1 (poor extr.) -0.9000 -0.3080 -0.3080

Loading case 2 (good extr.) 0.6481 0.4000 -0.6481

The network predictions for each loading case are plotted (Figures D.4 and D.6) and com-
bined with plots showing the movements of the beams in the beam-layer in comparison
with the true deformations of the lattice (Figures D.5 and D.7).
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(a) P11 (b) P12

(c) P22

Figure D.4: Re-entrant extrapolation predictions per network: loading case 1.

Figure D.5: True lattice deformations and beam deformations in beam-layer of BNN-FE at time
steps 0, 150 and 450 for a re-entrant lattice: loading case 1.
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(a) P11 (b) P12

(c) P22

Figure D.6: Re-entrant extrapolation predictions per network: loading case 2.

Figure D.7: True lattice deformations and beam deformations in beam-layer of BNN-FE at time
steps 0, 150 and 450 for a re-entrant lattice: loading case 2.



E A P P E N D I X : E X T R A P O L AT I O N
P E R F O R M A N C E I N LOA D I N G S PA C E

In this appendix, more figures are included of each networks’ performance on every
curve of the test dataset at specific time steps, plotted in the loading space. The figures
included show the results of both honeycomb and re-entrant lattices, at time steps 50, 100,
150 (interpolation) and time steps 200, 300, 450 (extrapolation). The colours in the plots
represent a discrete interval in the model’s performance, from dark green (< 0.1 relative
error) to dark red (> 1 relative error).

honeycomb lattice

Feed-forward neural network (FNN)

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure E.1: Extrapolation performance in loading space: feed-forward neural network (FNN),
honeycomb lattice.
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Linear beam neural network (BNN-L)

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure E.2: Extrapolation performance in loading space: linear beam neural network (BNN-L),
honeycomb lattice.

Non-linear beam neural network (BNN-NL)

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure E.3: Extrapolation performance in loading space: non-linear beam neural network (BNN-
NL), honeycomb lattice.



appendix: extrapolation performance in loading space 67

Finite element beam neural network (BNN-FE)

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure E.4: Extrapolation performance in loading space: finite-element beam neural network
(BNN-FE), honeycomb lattice.
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re-entrant lattice

Feed-forward neural network (FNN)

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure E.5: Extrapolation performance in loading space: feed-forward neural network (FNN), re-
entrant lattice.

Linear beam neural network (BNN-L)

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure E.6: Extrapolation performance in loading space: linear beam neural network (BNN-L),
re-entrant lattice.
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Non-linear beam neural network (BNN-NL)

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure E.7: Extrapolation performance in loading space: non-linear beam neural network (BNN-
NL), re-entrant lattice.

Finite element beam neural network (BNN-FE)

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure E.8: Extrapolation performance in loading space: finite-element beam neural network
(BNN-FE), re-entrant lattice.



F A P P E N D I X : B N N - L B E A M - L AY E R
D E F O R M AT I O N S

This section includes the beam deformations of the beams in the beam-layer of the BNN-
L, for both the honeycomb and re-entrant lattice. Although the encoder of the BNN-L
only provides endpoint deflections, deformations along the length of the beams can be
deduced from the Euler-Bernoulli beam theory. Loading cases match with the ones from
Section 6.3 and are repeated in Table F.1.

honeycomb lattice

Table F.1: Loading cases: honeycomb lattice.

H11 (H12+H21)/2 H22

Loading case 1 (poor extr.) -0.7500 -0.4330 -0.5000

Loading case 2 (good extr.) 0.5000 0.7071 -0.5000

Figure F.1: True lattice deformations and beam deformations in beam-layer of BNN-L at time
steps 0, 150 and 450 for a honeycomb lattice: loading case 1.
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Figure F.2: True lattice deformations and beam deformations in beam-layer of BNN-L at time
steps 0, 150 and 450 for a honeycomb lattice: loading case 2.

re-entrant lattice

Table F.2: Loading cases: re-entrant lattice.

H11 (H12+H21)/2 H22

Loading case 1 (poor extr.) -0.9000 -0.3080 -0.3080

Loading case 2 (good extr.) 0.6481 0.4000 -0.6481

Figure F.3: True lattice deformations and beam deformations in beam-layer of BNN-L at time
steps 0, 150 and 450 for a re-entrant lattice: loading case 1.
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Figure F.4: True lattice deformations and beam deformations in beam-layer of BNN-L at time
steps 0, 150 and 450 for a re-entrant lattice: loading case 2.



G A P P E N D I X : B N N - N L B E A M - L AY E R
D E F O R M AT I O N S

This section includes the beam deformations of the beams in the beam-layer of the BNN-
NL, for both the honeycomb and re-entrant lattice. Although the encoder of the BNN-NL
only provides endpoint deflections, deformations along the length of the beams can be
deduced from the Euler-Bernoulli beam theory. Loading cases match with the ones from
Section 6.3 and are repeated in Table G.1.

honeycomb lattice

Table G.1: Loading cases: honeycomb lattice.

H11 (H12+H21)/2 H22

Loading case 1 (poor extr.) -0.7500 -0.4330 -0.5000

Loading case 2 (good extr.) 0.5000 0.7071 -0.5000

Figure G.1: True lattice deformations and beam deformations in beam-layer of BNN-NL at time
steps 0, 150 and 450 for a honeycomb lattice: loading case 1.
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Figure G.2: True lattice deformations and beam deformations in beam-layer of BNN-NL at time
steps 0, 150 and 450 for a honeycomb lattice: loading case 2.

re-entrant lattice

Table G.2: Loading cases: re-entrant lattice.

H11 (H12+H21)/2 H22

Loading case 1 (poor extr.) -0.9000 -0.3080 -0.3080

Loading case 2 (good extr.) 0.6481 0.4000 -0.6481

Figure G.3: True lattice deformations and beam deformations in beam-layer of BNN-NL at time
steps 0, 150 and 450 for a re-entrant lattice: loading case 1.
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Figure G.4: True lattice deformations and beam deformations in beam-layer of BNN-NL at time
steps 0, 150 and 450 for a re-entrant lattice: loading case 2.



H A P P E N D I X : E X P LO R ATO R Y S T U DY O N
B N N - F E W I T H I N C R E A S E D N U M B E R O F
E L E M E N T S

In order to improve the buckling behaviour of the BNN-FE model, an increase of the num-
ber of elements in the FE-model is proposed. Where the original cantilever model in the
BNN-FE consists of 3 elements, the following model explores the possibility to increase
this to 8 elements. No other changes were made and no formal model selection was
conducted; instead, the parameters of the previously developed BNN-FE were directly
adopted.

The performance of the model in extrapolation is showed in Figure H.1, where the average
performance of the basic, 3-elements BNN-FE model is included. For direct comparison,
the same test dataset is used for both models.

Figure H.1: Performances of BNN-FE in extrapolation, with 8 elements in FE-model: honeycomb
lattice.

The model’s performance on every curve of the test dataset at specific time steps, plotted
in the loading space, is shown in Figure H.2. The figures included show the results at
time steps 50, 100, 150 (interpolation) and time steps 200, 300, 450 (extrapolation). The
colours in the plots represent a discrete interval in the model’s performance, from dark
green (< 0.1 relative error) to dark red (> 1 relative error). The deformations of the beams
in the beam-layer for loading case 1 of Table 6.5, are shown in Figure H.3.
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It is clear that no significant improvements are found compared to the original BNN-
FE. The network still struggles to capture the buckling behaviour, buckling is not even
observed in Figure H.3, where this is expected.

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure H.2: Extrapolation performance in loading space: BNN-FE with 8 elements in FE-model,
honeycomb lattice.

Figure H.3: True lattice deformations and beam deformations in beam-layer of BNN-NL with 8

elements in FE-model at time steps 0, 150 and 450, for a honeycomb lattice: loading
case 1.



I A P P E N D I X : E X P LO R ATO R Y S T U DY O N
B N N - F E W I T H N O N - L I N E A R E N C O D E R

In order to improve the buckling behaviour of the BNN-FE model, a non-linear encoder
is implemented, instead of the linear encoder used previously. The non-linear encoder is
constructed by introducing an extra hidden layer after the input layer, consisting of 100

nodes and equipped with the tanh activation function. No other changes were made and
no formal model selection was conducted; the parameters of the previously developed
BNN-FE were directly adopted.

The performance of the model in extrapolation is showed in Figure I.1, where the average
performance of the basic BNN-FE model with a linear encoder is included. For direct
comparison, the same test dataset is used for both models.

Figure I.1: Performances of BNN-FE in extrapolation, with non-linear encoder in FE-model: hon-
eycomb lattice.

The model’s performance on every curve of the test dataset at specific time steps, plotted
in the loading space, is shown in Figure I.2. The figures included show the results at time
steps 50, 100, 150 (interpolation) and time steps 200, 300, 450 (extrapolation). The colours
in the plots represent a discrete interval in the model’s performance, from dark green
(< 0.1 relative error) to dark red (> 1 relative error). The deformations of the beams in
the beam-layer for loading case 1 of Table 6.5, are shown in Figure I.3.
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It is clear that no significant improvements are found compared to the original BNN-
FE. The network still struggles to capture the buckling behaviour, buckling is not even
observed in Figure H.3, where this is expected.

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure I.2: Extrapolation performance in loading space: BNN-FE with non-linear encoder, honey-
comb lattice.

Figure I.3: True lattice deformations and beam deformations in beam-layer of BNN-NL with a
non-linear encoder at time steps 0, 150 and 450, for a honeycomb lattice: loading case
1.



J A P P E N D I X : E X P LO R ATO R Y N E T W O R K
P E R F O R M A N C E I N LOA D I N G S PA C E

Figure J.1 shows the performance of the BNN-FE network, where the FE-model contains
8 elements and the encoder is non-linear. Encoder non-linearity is obtained using an
additional hidden layer after the input layer, containing 100 nodes and equipped with the
tanh activation function.

(a) Time step 50 (b) Time step 100 (c) Time step 150

(d) Time step 200 (e) Time step 300 (f ) Time step 450

Figure J.1: Extrapolation performance in loading space: BNN-FE with 8 elements in the FE-model
and a non-linear encoder, honeycomb lattice.
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