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Abstract
3D modeling techniques can be used to automate
processes such as damage assessment in aircraft
engines. Aircraft engines often have shiny and
non-textured surfaces, where these modeling tech-
niques often have poor performance. This pa-
per gives more insight into the performance of in-
terest detection/matching algorithms on shiny and
non-textured surfaces as found in aircraft engine
borescope inspection videos. These algorithms are
often used in 3D modeling techniques. Three in-
terest point detection/matching algorithms are ex-
ecuted on different test videos, and various met-
rics are calculated for each algorithm. This pa-
per is the first paper that compares both recent
and traditional computer vision interest point detec-
tion/matching algorithms in these specific settings,
and contributes to a better understanding of the
usability of feature-based 3D reconstruction tech-
niques. The results show that more recent neural
network-based approaches outperform traditional
approaches.

1 Introduction
Making measurements in industrial videos is important for,
among other things, damage assessment. If a 3D model could
be made from an input video and then be used to automati-
cally make measurements, processes like damage assessment
would become more reliable and efficient. Even though there
are several robust 3D reconstruction methods available, these
methods assume input videos to contain plenty of texture re-
sulting in that interest points can easily be matched between
consecutive frames. With these matches, a 3D model can be
built. Keypoints or interest points in an image are points that
define what is interesting / stands out in an image. With a set
of interest points of an object, interesting information of this
object is captured. However, the surfaces in industrial videos
are often shiny and lack texture. 3D reconstruction methods
do not perform well in these scenarios, and a partial reason for
this is that interest points are difficult to detect on textureless
and shiny surfaces. In this paper borescope inspection videos
of aircraft engines are the industrial videos that are analyzed.
These videos contain shiny and non-textured surfaces and are

used for manual damage assessment. If a 3D model could be
reconstructed from these videos, manual damage assessment
could be assisted or replaced by automatic systems, speeding
up both the efficiency and reliability of this process.

As stated in the work of Sperker and Henrich [13], many of
the papers that evaluate interest point detectors and descrip-
tors [3,4,8] do so on datasets that consist of images where ob-
jects are well textured and have matte or semi-matte surfaces.
Since borescope videos contain objects that are shiny and tex-
tureless, most existing evaluation work is not that helpful for
interest point detection/matching on borescope videos. It is
still unclear how these interest point detectors perform on
shiny and non-textured surfaces, as found in the borescope
videos.

The work of J.Hartmann and J.H.Klüssendorf [4] compares
different popular feature descriptors on accuracy and speed
on a graph-based Visual SLAM algorithm. Visual SLAM
is a 3D modeling technique that is often used when models
need to be generated in real-time. The work of Ó. M. Mo-
zos [8] also compares various descriptors on repeatability, in-
variance, and distinctiveness, in settings that make the results
relevant when deciding what detector and descriptor to use in
Visual SLAM. The research of S. Gauglitz [3] also provides
a quantitative evaluation of detector-descriptor-based visual
camera tracking. These papers all agree that SIFT [6] per-
forms better or equivalent compared to other detectors and
descriptors in these scenarios.

SuperGlue [11] is a neural network based algorithm to per-
form interest point matching. The SuperGlue paper eval-
uates the algorithm on datasets that also contain environ-
ments that are not textureless and shiny. This also applies to
many other proposed neural network based algorithms such
as LoFTR [14], the work by Ignacio Rocco, Relja Arand-
jelovic, and Josef Sivic [10] and DRC-Net [5]. It is there-
fore still unclear how these algorithms perform when doing
interest point matching on shiny and non-textured surfaces as
found in borescope inspection videos.

The related work shows us that there is a question that still
needs to be answered:

• What interest point detection/matching algorithm per-
forms best on shiny and non-textured surfaces as found
in borescope inspection videos?

This research will focus on more recent computer vision ap-

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



proaches, as more traditional descriptor based interest point
matching algorithms often struggle on textureless surfaces.

The paper contributes to a better understanding of the per-
formance of interest point detection/matching algorithms in
environments where there are a lot of shiny and textureless
surfaces. The paper shows that more recent neural network-
based algorithms outperform more traditional computer vi-
sion approaches. The best performing algorithms are algo-
rithms that do not just consider the local context of an image
but instead also consider the global context, such as LoFTR
[14].

In section 2, more general information about the environ-
ment and experiments is discussed. A detailed explanation of
the conducted experiments is given in section 3, followed by
section 4 where the results of these experiments are reported.
Section 5 reflects on the ethical aspects and reproducibility of
the research, after which section 6 discusses and analyzes the
reported results, and gives recommendations for future work.
The paper is concluded in section 7.

2 Methodology
To determine what interest point detection / matching algo-
rithm performs best on the shiny / non-textured videos as
found in the borescope inspection videos of aircraft engines,
each algorithm is executed using the same approach on var-
ious videos. After execution, various metrics are computed
and used to compare the performance of the different algo-
rithms. This section will first explain what algorithms are
compared, and on which videos. After that, the approach to
obtain metrics of the different algorithms is explained, along
with a motivation for this approach.

2.1 Interest point matching algorithms
This research will focus on more recent computer vision ap-
proaches, whilst also using a more traditional algorithm to
be able to compare the performance of traditional approaches
with the performance of recent approaches. More recent com-
puter vision approaches often utilize neural networks to per-
form matching of interest points. These neural networks are
trained on datasets, whilst more traditional approaches of-
ten rely on calculating interest point descriptors to compute
matches. Two more recent interest point matching algorithms
that will be compared are SuperGlue [11] and LoFTR [14].
The reason that SuperGlue is chosen is because it still has
state of the art performance when compared to many other
neural network based approaches, and can therefore be used
to get a good general understanding of the performance of
neural network based approaches. LoFTR is chosen as it is
able to detect many high-quality matches especially in re-
gions with low texture, which is very useful for the specific
environment found in borescope videos.

The SuperGlue algorithm consists of two parts: interest
point detection and interest point matching. The codebase
linked in [11] uses SuperPoint [1] as an interest point detec-
tor. These detected interest points are then used as input for
the interest point matching part of SuperGlue.

The LoFTR algorithm consists of multiple components,
including a local interest point detector and a interest point

matching component. After the first component detects lo-
cal interest points using a neural network, the position of the
detected points is also taken into account. By including this
position, LoFTR can take the global context of the image into
account when performing the matching of keypoints. It can
therefore detect high-quality matches even in regions with
low texture. Feature detectors usually struggle to produce re-
peatable interest points in these low texture regions.

SIFT [6] is used to represent more traditional computer vi-
sion approaches. SIFT is chosen as it is still considered a
good standard as explained in section 1. SIFT uses various
techniques to create feature descriptors that are invariant to
scale, rotation and illumination. To calculate interest point
matches using SIFT, the feature descriptors in two images are
computed, and then descriptors are matched based on a dis-
tance metric such as the euclidean distance. Feature descrip-
tors with a low euclidean distance between them are likely to
describe the same keypoint in both images.

2.2 Test Videos
The algorithms mentioned in 2.1 are all evaluated on
borescope inspection videos of aircraft engines. These videos
have many non-textured and shiny surfaces. The camera used
to record the videos is inserted into the engine, and then kept
static. The rotor blades of the engine are then slowly ro-
tated, such that each rotor passes the static borescope cam-
era. The other parts of the engine do not move around, and
therefore the scenes contain both static and moving parts. The
videos were provided by Aiir 1, a company that improves avi-
ation borescope inspection videos using artificial intelligence.
Frames of example borescope videos can be found in figure
1. The reason these three videos were chosen is because they
all have a different degree of texture, varying from very little
to a noticeable amount. It is likely that any other video would
have a degree of texture that would fall within the range found
in these three videos. These videos therefore form a represen-
tative video set.

2.3 Manual quantitative evaluation
It is important that an interest point matching algorithm
matches interest points that lie on the blades, as the blades
are the moving parts of the scene. To be able to fully re-
construct a 3D model, all the blades would have to be mod-
elled. The static background is therefore not that relevant, as
it only shows one small part of the engine. Therefore, inter-
est point matches are manually classified into three different
categories, as found in figure 2.

As the videos contain many similiar scenes, instead of as-
sessing the whole video only a small fraction of the videos
was assessed. This smaller video starts when a new blade
enters the frame, and ends when that particular blade is no
longer fully visible in the frame. This blade is considered the
’target’ blade. The smaller videos last about one to two sec-
onds on average, depending on the video. The three different
categories are as follows:

• Correct matches: matches of two keypoints that lie on

1Aiir Innovations, see https://www.aiir.nl/
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(a) A frame of one of the example borescope inspection videos. The
surface heavily reflects the light of the borescope camera.

(b) A frame taken out of another example borescope inspection
video. It shows a textureless surface of the blades.

(c) A frame taken out of another borescope example video. This
video contains more texture than the other two videos.

Figure 1: Example frames taken out of borescope inspection videos, where the textureless and shiny surfaces can be seen.

the target rotor blade, and correctly match the same key-
point together.

• Irrelevant matches: matches of two static keypoints that
are not that relevant for 3D reconstruction. If this would
not be taken into account, it could be that an algorithm
will produce many correct matches and therefore appear
to perform well. If all these matches are from static
parts, 3D reconstruction would not yield useful models
for damage assessment in example. Matches are also
classified as irrelevant when a match connects two points
on a different blade than the blade we are tracking in the
video.

• Incorrect matches: matches of two keypoints that lie on
the target rotor blade, but wrongfully match two key-
points together.

After manually classifying the matches, different metrics
are computed to be able to quantitatively evaluate the differ-
ent algorithms. The metrics are as follows:

• The number of matches detected per frame pair averaged
over all frames.

• The percentage of irrelevant matches.

• The percentage of correct matches.

• The percentage of incorrect matches.

These metrics give a good indication of the performance
of the algorithms, as they highlight different relevant aspects.
Whilst it is important that the algorithms have an acceptable
number of correct matches, 100% correct matches would not
immediately imply that the algorithm is useful for 3D recon-
struction. It could be that there was only 1 detected match in
the image, which would not result in a good 3D model if used
as input. A similar argument holds if we would only take into
account the number of detected matches.

As can be seen in figure 1, some of the videos contain a
camera overlay which can influence the performance of the
algorithms. Therefore some of the videos were cropped, an
example can be seen in figure 3.

Due to limited time, it was not possible to individually as-
sess all of the matches given by the algorithms. Therefore,
for manual assessment, only the best hundred matches were
considered each frame pair if the total number of matches
was more than one hundred. All the tested algorithms define
a confidence score for each match, which was used to sort
the matches. The higher the confidence, the more likely the
match is correct according to the algorithm. The best one
hundred matches were chosen as this would give a decent im-
pression of the performance of the algorithm. If it for exam-
ple turns out that the top hundred matches already have a poor
metric score, then it is likely that all the matches that have



(a) An example of an irrelevant match. The match is part of the
static background, and therefore not useful for 3D reconstruction
algorithms.

(b) An example of a correct match. The match correctly links two
keypoints that are part of the moving parts of the target blade and is
therefore useful for 3D reconstruction algorithms.

(c) An example of an incorrect match. The match does link two
keypoints that lie on the target blade but wrongfully matches them
together. This would have a negative impact on the performance of
3D reconstruction algorithms.

Figure 2: Two frames taken out of two borescope inspection videos, where the textureless and shiny surfaces can be seen.

lower confidence scores will not result in better metrics. Al-
ternatively, if the best hundred matches turn out to have good
metric scores, then we can already make some preliminary
conclusions about the performance of the algorithm.

2.4 Automated quantitative evaluation
As only the best one hundred matches are assessed manually,
a better understanding of the performance of all the matches
is useful. The faster RANSAC [2] approach is used next
to manual assessment to automatically assess the matches.
RANSAC can be used in combination with calculating a ge-
ometric transformation matrix. Two consecutive frames of
the videos are related to each other with an affine transforma-
tion. There are various approaches to calculate the geomet-
ric transformation corresponding to a set of matches, such as
calculating the homography, essential or fundamental matrix.
The homography matrix can be used when scenes are planar,
as that guarantees that there is a projective transformation be-
tween two consecutive frames. As the scenes in the borescope
videos do not contain just planar scenes, this approach is not
suitable. The essential matrix can be used when a calibrated
camera is present, but the calibration settings of the cameras
used in the test videos is not known. The fundamental matrix
approach can be used with non-planar scenes, and is therefore
the most suited approach for these experiments.

To be able to automatically classify the matches, the funda-
mental matrix is calculated between two consecutive frames.
The fundamental matrix is a 3 x 3 matrix. After multiplying
this matrix with the homogeneous coordinates of a point in
the first image, the result describes a line on which the corre-

sponding point on the other image must lie. RANSAC uses
this matrix as follows:

1. RANSAC will select 4 random matches out of the output
of the algorithm.

2. It will calculate the fundamental matrix with these 4 ran-
domly selected matches.

3. The calculated fundamental matrix is then applied to all
the remaining matches, and it checks whether the second
points of the matches lie close to or on the line found by
multiplying the matrix with the first point of the match.

4. A score is calculated to see how many matches were
correct with this particular fundamental matrix, and this
score is compared to scores of previous iterations. If the
score is better, we save this fundamental matrix.

5. Step 1 is repeated until a certain number of iterations is
reached.

If there are many iterations, it is likely that the saved fun-
damental matrix describes the transformation of the move-
ment of the blades between the two consecutive frames. Such
a fundamental matrix will often classify matches between
the moving blades as correct. Matches that are incorrect or
matches that match two static points together do not adhere to
the relation defined by the fundamental matrix and are there-
fore classified as incorrect. An example of this can be found
in figure 4.



(a) The video frame before cropping. (b) The frame after cropping, where white parts represent cropped
parts of the image.

Figure 3: An example of a video where the overlay is cropped away.

Figure 4: An example of the filtering performed using RANSAC,
green lines correspond to correct matches, whilst the red lines are
classified as incorrect. Not all lines are drawn to prevent cluttering.

As can be seen in figure 4, there is still a green point that
does not lie on the moving blades. A reason why this might
occur is that the blades cast a shadow on the static back-
ground, which also moves as the blades rotate. RANSAC
therefore does not classify these matches as irrelevant, as they
are correct according to the fundamental matrix. Another lim-
itation of the RANSAC approach is that matches that do not
belong to the target blade of the smaller videos as explained
in section 2.3, are classified as correct matches. Even though
the match might be correct, it is not useful to create a 3D
model of the target blade.

The metrics per pair of frames that are calculated using
RANSAC are:

• The average number of matches detected.
• The percentage of correct matches.
• The percentage of incorrect + irrelevant matches.

2.5 Qualitative evaluation
To get a better understanding of the performance of the al-
gorithms, the output of the models is given as input to the
3D modelling algorithm Structure from Motion (SfM) [12].
This algorithm takes the matched keypoints and generates a
3D model represented by a point cloud. These point clouds
give a more concrete image of the performance of the differ-
ent algorithms.

3 Experiment details
This section will go into more detail on how the results were
obtained, what exact parameters were used, and explains de-

tailed decisions made in the evaluation process.

3.1 Algorithm setup details
Each algorithm is evaluated on the videos found in figure 1.
The evaluation settings per algorithm are as follows:

SIFT
The OpenCV implementation of SIFT was used, with the
default parameter values as specified by OpenCV. After the
feature points were extracted, the brute force matching algo-
rithm implementation of OpenCV was used to calculate the
matches between the feature points. The feature point de-
scriptors were compared using the euclidean distance metric.
The brute force matcher takes the descriptor of one feature
of the first image and compares it with all descriptors of the
second image, returning the closest one. Instead of using the
ratio test as described in [6], a cross-check is used to return
the most optimal matches. The cross-check ensures that de-
scriptors can only be matched to one other descriptor of the
other image.

When using RANSAC in combination with SIFT, the pre-
processed images were resized to a resolution of 1280x720
pixels. This was done to be able to directly compare the
results with the outcomes of the other two algorithms. The
findFundamentalMat implementation of OpenCV was used,
which has a built-in RANSAC implementation. The default
parameter values for this function as found in the OpenCV
implementation were used.

SuperGlue
The SuperGlue paper provides a publicly available imple-
mentation2 with pre-trained weights, which was used to eval-
uate the algorithm. Some pre-processing steps are required to
run the algorithm on the various videos, which can be found
on the GitHub page. The ’indoor’ pretrained weights were
used, and the video frames were not resized when manually
assessing the output. For all other parameters, the default val-
ues as found in the implementation were used. For RANSAC,
the pre-processed images were also resized to a resolution of

2SuperGlue implementation, see https://github.com/magicleap/
SuperGluePretrainedNetwork
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1280x720 pixels. The OpenCV findFundamentalMat imple-
mentation was used, with default parameter values.

LoFTR
The LoFTR paper also provides a publicly available imple-
mentation3 with pre-trained weights. As explained in the pa-
per, the width and height of the input images should be a
multiple of eight, and therefore after cropping the images,
they are resized to the closest resolution that is divisible by
eight. The ’indoor ds’ pretrained weights were used. The
same implementation for RANSAC was used to perform au-
tomatic assessment of the output as for the other two algo-
rithms, along with the same default weights. The images were
also resized to a resolution of 1280x720 pixels for automatic
assessment.

3.2 Qualitative evaluation
To be able to run SfM on the output of the different algo-
rithms, some pre-processing steps have to be made. SfM re-
quires the matches to be tracked across more than just two
frames. The interest point matching algorithms only match
image pairs, and these matches need to be converted from
just two frames to multiple frames of the videos. An algo-
rithm was developed to track matches across all frames as
follows:

1. Perform the image matching algorithm on the first frame
pair of the video. Then give all the found matches a
unique number and store them.

2. Move to the next image pair and let the algorithm again
compute all the matches. Then for each found match,
check if the previous frame pair already had a match at
that pixel location. If that is the case, label this match
with the same number as it was given in the previous
frame. If it is not the case, give it a new number as it is
a newly detected match.

By repeating step 2 until the end of the video has been
reached, all computed matches can now be linked to ea-
chother across multiple frames, and the output can be used
for for example SfM or VSLAM.

LoFTR only looks for matches in the reference image at
pixels where the pixel coordinates are divisible by eight. The
corresponding points in the other image of the image pair can
have arbitrary coordinates. The corresponding points found
in the second image of the pair therefore need to be rounded to
the nearest multiple of eight. By doing this the found matches
can be linked across more than just one image pair.

4 Results
4.1 Quantitative results
The results of the manual experiments can be found in tables
1, 2 and 3. All the results are averages per frame, and if there
are more than one hundred average matches per frame only
the best hundred matches were assessed (see section 2.3). The
results of the automated assessment can be found in tables 4,
5 and 6.

3LoFTR implementation, see https://github.com/zju3dv/LoFTR

Algorithm avg # of
matches

% irrelevant
matches

% of correct
matches

% of incorrect
matches

SIFT 19.09 67 30 3.0
SuperGlue 101.60 62 29 9.0

LoFTR 740.70 91 9.0 0.0

Table 1: Results of manual assessment of the matches calculated on
the video found in 1a. Percentages are based on the best one hundred
matches. The abbreviations used are as follows:

Algorithm avg # of
matches

% irrelevant
matches

% of correct
matches

% of incorrect
matches

SIFT 66.05 45 45 10
SuperGlue 555.89 37 62 1.0

LoFTR 5205.60 51 49 0.0

Table 2: Results of manual assessment of the matches calculated on
the video found in 1b. Percentages are based on the best one hundred
matches.

Algorithm avg # of
matches

% irrelevant
matches

% of correct
matches

% of incorrect
matches

SIFT 226.43 42 56 2.0
SuperGlue 619.30 58 42 0.0

LoFTR 3123.28 74 26 0.0

Table 3: Results of manual assessment of the matches calculated on
the video found in 1c. Percentages are based on the best one hundred
matches.

Algorithm avg # of
matches

avg # correct
matches

% correct
matches

% incorrect
matches

SIFT 17.25 15.70 91 9.0
SuperGlue 230.05 148.43 65 35

LoFTR 740.70 735.80 99 1.0

Table 4: Results when automatically assessing the matches of video
1a using RANSAC.

Algorithm avg # of
matches

avg # correct
matches

% correct
matches

% incorrect
matches

SIFT 63.40 51.54 81 19
SuperGlue 555.11 246.83 44 56

LoFTR 5205.60 4880.94 94 6.0

Table 5: Results when automatically assessing the matches of video
1b using RANSAC.

Algorithm avg # of
matches

avg # correct
matches

% correct
matches

% incorrect
matches

SIFT 222.64 222.64 87 13
SuperGlue 587.87 334.96 57 43

LoFTR 4760.75 4083.51 86 14

Table 6: Results when automatically assessing the matches of video
1c using RANSAC.

The results of the manual assessment show that in all tested
videos, LoFTR detects significantly more matches per frame
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than both SIFT and SuperGlue. The fraction of irrelevant
matches is highly dependent on what video is being assessed
and is roughly the same for SIFT and SuperGlue. LoFTR has
a higher fraction of irrelevant matches in all videos compared
to the other algorithms. The number of incorrect matches
varies per video for SIFT and SuperGlue, whilst LoFTR con-
sistently has the lowest number of incorrect matches. LoFTR
has the highest fraction of irrelevant matches in all the videos.

The results of the automatic assessment also show that
LoFTR detects significantly more matches compared to SIFT
and SuperGlue. The fraction of correct matches is also better
than or comparable to SuperGlue and SIFT. SuperGlue de-
tects more total correct matches than SIFT but has a higher
fraction of incorrect matches than both SIFT and LoFTR.

In the results of table 4, in a small number of frame
pairs, SIFT and LoFTR detected less than 4 matches. Since
RANSAC requires at least 4 matches to be able to calculate
the fundamental matrix, RANSAC could not be used. The
matches of these frames were therefore classified as incorrect.
Another interesting observation is that the video as found in
figure 1a has significantly worse manual assessment metrics
compared to video 1b, and the automatic assessment also
shows that the average number of matches is lower. The man-
ual metrics computed on video 1c show that all algorithms
have a lower fraction of incorrect matches.

4.2 Qualitative results

The qualitative results can be found in figure 9. Models were
reconstructed by the algorithm of Nonnemaker [9], which
uses a combination of SfM and Multi-View Stereo.

Figure 5: A 3D model reconstructed of video 1b using the input
matches of SIFT.

Figure 6: A 3D model reconstructed of video 1b using the input
matches of LoFTR.

Figure 7: A 3D model reconstructed of video 1b using the input
matches of SuperGlue.

Figure 8: A 3D model reconstructed of video 1c using the input
matches of SIFT.



Figure 9: A 3D model reconstructed of video 1c using the input
matches of SuperGlue.

The figure shows that the models of SuperGlue are better
than that of SIFT and LoFTR. The LoFTR model of the video
in figure 1c could not be reconstructed, and the model of the
video in figure 1b does not perform according to the expec-
tations found by the theoretical results. The algorithm of [9]
did not work properly on LoFTR, for unknown reasons.

5 Responsible Research
The results in this paper show that interest point matching al-
gorithms can be used to reconstruct 3D models of shiny and
textureless surfaces. If 3D modeling techniques would actu-
ally be used in manual tasks such as damage assessment, it
is important that the tested algorithms are not blindly trusted
and manual assessment should be used to correct and verify
automated assessment. If the automation is done carelessly,
it could have a significant impact on the safety of industries
such as aviation, as it is not yet clear how these algorithms
perform for automated damage assessment. This study only
shows that there is potential in the discussed algorithms to be
used in environments with shiny and textureless surfaces such
as aircraft engines.

Section 3 mentions the settings that were used to obtain the
results, together with the details of the environment used. The
exact process of how the different results were obtained is ex-
plained in sections 2.3 and 2.4. Implementations of the algo-
rithms that were tested are publicly available online, together
with pre-trained weights for the neural network approaches.
Implementations of any other algorithms that were used such
as RANSAC are also available online. The videos used are
not publicly available, but similar videos can be found on-
line4. Taking all of this into account, the methods and results
are fully reproducible for any skilled reader.

6 Discussion
The quantitative results indicate that LoFTR and SuperGlue
are interest point matching algorithms that perform better
than the more ’traditional’ SIFT algorithm on shiny and non-
textured surfaces as found in borescope inspection videos.
They consistently detect more correct matches than SIFT,

4https://www.rvi-ltd.com/borescope.html

which is essential to be able to precisely reconstruct a 3D
model of the videos. The qualitative results show that Super-
Glue creates better 3D models than LoFTR and SIFT.

One of the main observations is that LoFTR detects signif-
icantly more matches than both SuperGlue and SIFT. Both
the manual and automatic assessment methods show that
LoFTR also has the lowest amount of incorrect matches,
where manual assessment even shows that there were no in-
correct matches at all. The test video used also has a sig-
nificant impact on the different metrics. If a video contains
more texture, more matches are detected, and also the frac-
tion of correct matches increases, as can be seen in the results
of video 1c

The main problem that arises when trying to perform inter-
est point matching on textureless surfaces is that it is hard
to find and detect individual interest points, but it is even
more difficult to create an associated descriptor vector. More
’traditional’ computer vision approaches such as SIFT, use
hand-tuned descriptors, whilst more recent approaches such
as SuperGlue use learned descriptor representations to per-
form interest point matching. LoFTR uses a detector-free ap-
proach to match interest points, where the global context of
the image is taken into account. The results also show that
learned descriptor representations outperform the hand-tuned
descriptors and that the detector-free approach of LoFTR can
find many correspondences in regions with low texture, con-
firming that the results found in [1] and [14] also hold in
the context of aircraft engine borescope inspection videos.
Even though the qualitative results show that the SfM ap-
proach does not work as expected for LoFTR, research done
by Markhorst on VSLAM [7] does indicate that LoFTR has
potential to be used in 3D reconstruction algorithms. The
found results provide a better understanding of what the pos-
sibilities are for utilizing 3D reconstructions for applications
such as automatic damage assessment of aircraft engines.

The manual evaluation results alone are not sufficient to
draw reliable conclusions about the performance of the differ-
ent algorithms, as it only assesses the best hundred matches
per frame. These hundred matches could result in metrics
that are not representative of all the matches. To be able to
still draw meaningful conclusions, the automated quantitative
assessment was done using RANSAC, in addition to qualita-
tive evaluation. These approaches together with the manual
assessment give a good general understanding of the perfor-
mance of the algorithms.

Evaluating the algorithms on additional videos next to the
three that are evaluated in this paper would be good to get
a better understanding of the performance of the algorithms.
Due to limited time available, only three videos could be eval-
uated. These videos were chosen as they form a representa-
tive set of videos together. The degree of texture varies across
the videos from very little to a noticeable amount, and any
new video that would be evaluated would likely have a de-
gree of texture that would fit within these bounds.

In all the experiments, the parameters of the different algo-
rithms were set to their default values. It is still unclear what
the influence of different parameter settings is and what the
optimal parameters are. Further research is needed to estab-
lish a good understanding of the effect of the various param-
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eters. Additionally, future research might consider evaluating
more algorithms on borescope inspection videos to get a bet-
ter understanding of what the best algorithm is for matching
feature points on shiny and textureless surfaces as found in
borescope inspection videos.

7 Conclusion
Automating routine inspections such as damage assessment
in aircraft engine borescope inspection videos can lead to
more efficiency and reliability compared to manual inspec-
tions. Algorithms that reconstruct 3D models of the aircraft
engines could be used to automate these inspections. These
algorithms often use matched interest points between differ-
ent images of the engine to reconstruct a 3D model. As it
was still unclear how good interest point detection/matching
algorithms work in these specific scenarios where there are
many shiny and textureless surfaces, this paper has tried to
answer what the best algorithm would be for this task. The
results show that more recent computer vision approaches
based on deep learning have a better performance compared
to more traditional computer vision algorithms. Of these re-
cent approaches, SuperGlue appears to perform best in prac-
tice, whilst LoFTR has the best performance based on the
found metrics. These results show that even in these spe-
cific environments with shiny and textureless surfaces, inter-
est points can still be detected and matched with acceptable
performance. This means that 3D modeling algorithms can
be able to reconstruct 3D models using different matched
keypoints. This paper shows that the use cases for 3D re-
construction techniques can also be extended to areas where
surfaces are often shiny and textureless, allowing for potential
efficiency and reliability improvements.
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