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A B S T R A C T

Surface solar irradiance (SSI) plays a crucial role in tackling climate change — as an abundant, non-fossil
energy source, exploited primarily via photovoltaic (PV) energy production. With the growing contribution
of SSI to total energy production, the stability of the latter is challenged by the intermittent character of the
former, arising primarily from cloud effects. Mitigating this stability challenge requires accurate, uncertainty-
aware, near real-time, regional-scale SSI forecasts with lead times of minutes to a few hours, enabling
robust real-time energy grid management. State-of-the-art nowcasting methods typically meet only some of
these requirements. Here we present SHADECast, a deep generative diffusion model for the probabilistic
spatiotemporal nowcasting of SSI, conditioned on deterministic aspects of cloud evolution to guide the
probabilistic ensemble forecast, and based on near real-time satellite data. We demonstrate that SHADECast
provides improved forecast quality, reliability, and accuracy in all weather scenarios. Our model produces
realistic and spatiotemporally consistent predictions extending the state-of-the-art forecast horizon by 26 min
over different regions with lead times of 15-120 min. Our physics-informed generative approach leads to up
to 60% performance improvement in extreme value prediction over the state-of-the-art deterministic models,
showcasing the advantage of probabilistic modeling of cloudiness over the classical deterministic approach.
It also surpasses the probabilistic benchmarks in predicting extreme values. Finally, SHADECast empowers
grid operators and energy traders to make informed decisions, ensuring stability and facilitating the seamless
integration of PV energy across multiple locations simultaneously.
1. Introduction

Harvesting solar energy resources is an essential pillar in efforts
to mitigate climate change [1,2]. Photovoltaic (PV) power generation
increased by 26% in 2022, accounting for two-thirds of the increase in
global renewable capacity for 2023 [3]. In concert with the growing
relevance of PV for total energy production, the challenge arising from
the intermittent character of surface solar irradiance (SSI) increases [4].
Power production and consumption, linked via transmission and stor-
age capacities, should be closely balanced at any moment in time [5].
The naturally arising volatility of PV production, primarily due to
changing cloudiness, impacts the reliability of the electricity grid [6]. A
key element in dealing with this challenge – and the topic of this paper
– are regional-scale, near real-time, uncertainty-aware SSI forecasts
with lead times of minutes to hours. Such forecasts enable operational
management of energy production from alternate sources, such as gas
turbines [3,7], facilitate the proactive scheduling of energy-intensive

∗ Corresponding author at: Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland.
E-mail address: acarpentieri@usys.ethz.ch (A. Carpentieri).

1 Currently at NVIDIA Corporation.

industrial operations [1,8], and thus reduce operation uncertainty and
stand-by costs [1,9].

The relevance of the topic spurred progress in SSI forecasting.
Yet, there remains ample room and an urgent need for substantial
further improvement. State-of-the-art methods span a wide range of
approaches. For short lead times of up to a few hours, which are
the focus of this work, data-driven methods prevail, with numerical
weather prediction [10] playing only a minor role. One distinguishing
feature is the input data used. Ground-based in-situ measurements
of SSI have the advantage of being highly accurate, but their lim-
ited spatial representativeness [11] discourages their exclusive use for
regional-scale forecasts.

Satellite-derived solar irradiance estimates offer a trade-off between
accuracy and spatial coverage, which makes them highly suitable for
https://doi.org/10.1016/j.apenergy.2024.124186
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List of Abbreviations

𝐴𝐹𝑁𝑂 Adaptive Fourier neural operator
𝐴𝑅 Autoregressive
𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀 Convolutional long short-term memory
𝐶𝑅𝑃𝑆 Continuous ranked probability score
𝐶𝑆𝐼 Clear-sky index
𝐹𝑆𝑆 Fraction skill score
𝑀𝐴𝐸 Mean absolute error
𝑀𝑆𝐸 Mean squared error
𝑃𝐼𝐶𝑃 Prediction interval coverage probability
𝑃𝐼𝑁𝐴𝑊 Prediction interval normalized average

width
𝑃𝐿𝑀𝑆 Pseudo-linear multistep
𝑃𝑉 Photovoltaic
𝑅𝑀𝑆𝐸 Root mean squared error
𝑆𝐸𝑉 𝐼𝑅𝐼 Spinning enhanced visible and infrared

imager
𝑆𝑆𝐼 Surface solar irradiance
𝑆𝑍𝐴 Solar zenith angle
𝑉 𝐴𝐸 Variational autoencoder

short-term SSI forecasting over extended regions, enabling simultane-
ous SSI forecasts for multiple sites [12]. Various data-driven SSI fore-
cast methods that rely on satellite data exist, notably statistical meth-
ods [13–18], deep learning models [19–23], and hybrid approaches
that also incorporate numerical weather predictions [24,25].

The majority of these approaches, despite using satellite data as in-
put, provide forecasts only at individual locations [12,23], which is not
suitable for managing arbitrarily large grids [23]. Approaches provid-
ing regional scale forecasts are mostly deterministic [26], which again
limits their practical use for lack of forecast uncertainty quantification.
Also, existing deterministic models tend to generate blurry forecasts, as
illustrated by recent studies comparing convolutional recurrent neural
networks and optical flow methods [19]. The blurriness results from the
mean squared error (MSE) minimization, which causes predictions to
converge towards the mean of the distribution of all possible future SSI
evolutions [27,28]. The resulting forecasts lack the spatial granularity
required to accurately represent the stochastic spatiotemporal behavior
of SSI. Furthermore, the tendency to converge toward the mean restricts
deterministic models from accurately predicting extreme SSI values,
which are crucial for estimating future PV production.

Spatiotemporal regional scale SSI forecasts with uncertainty quan-
tification are still scarce. In [15], an Analog Ensemble method is
applied to retrieve past SSI field sequences (analogs) based on four
similarity metrics and project them into the future to generate an
ensemble of forecasts. The analog-based approach can be effective but
requires a huge amount of past data and a complete search in the
dataset for each forecast. A more flexible ensemble-based approach is
proposed in [18], where scale-dependent autoregressive (AR) models
are applied to probabilistically forecast clear-sky index (CSI) fields in
a Monte Carlo sampling approach. However, linear AR models assume
stationarity in the data, making the model unable to predict distribution
shifts. Differently, in [20], a deterministic convolutional long short-
term memory (ConvLSTM) model is modified to directly forecast the
probability of each pixel CSI value inside different ranges. This clas-
sification based procedure drastically increases the dimensionality of
the output by a factor of 240, making it impractical for large-area and
multi-step forecasts. Both approaches make use of CSI, a dimensionless
index measuring the atmosphere effect on the incoming SSI.

Here we present the Solar High-resolution Adaptive Diffusion En-

semble forecasting model (SHADECast), producing uncertainty-aware h

2 
regional-scale SSI forecasts that model probabilistic cloud formation,
evolution, and dissipation, conditioned on a data-driven deterministic
cloud field forecast. Our approach is novel in that it combines insight
from atmospheric physics – leading us to split the task into a determin-
istic part upon which a probabilistic part then acts – with inspiration
from probabilistic video forecasting, where generative deep learning
models have emerged as the new state of the art due to their adept-
ness in modeling data distributions, enabling the sampling of realistic
future scenarios [29]. Notably, diffusion models [30,31] have exhibited
superior performance in image and video generation tasks [29,32]. In
precipitation nowcasting, they provide superior characterization of the
distribution of possible outcomes compared to generative adversarial
networks [28,33].

SHADECast is, to the best of our knowledge, the first uncertainty-
aware, physics-inspired, satellite-based regional-scale forecast model
for intraday SSI forecasts. As we are going to demonstrate, SHADECast
produces skillful, sharp and reliable solar forecasts without blurring un-
der variable weather conditions, thanks also to our innovative, physics
motivated splitting of the task at hand.

We assess our model’s performance by comparing it with three
benchmark models: two probabilistic models, SolarSTEPS [34] and
an adaptation of the precipitation nowcasting model LDCast [33],
as well as a deterministic model based on a ConvLSTM architecture
(IrradianceNet [20]). By addressing the challenges of dynamic weather
conditions and the need for accurate extreme value predictions, our
approach represents a significant advancement in the field of SSI fore-
casting. The following sections will detail our methodology and the
specific problem our model aims to solve, demonstrating the innovative
aspects of our approach.

This paper is organized as follows. Section 2 details the proposed
generative short-term forecasting approach. The dataset, benchmarks,
and metrics used for characterizing the forecast quality are described
in Section 3. Section 4 discusses the results of our approach. Section 5
presents conclusions and opportunities for future research

2. Generative short-term forecasting

Our goal is to generate an ensemble forecast consisting of future CSI
fields 𝐶̂ that are consistent with previous CSI fields 𝐶 observed shortly
before the time when the forecast is made. Based on a sequence of 𝑚
observed fields 𝐶𝑡−𝑚+1∶𝑡, we want to forecast 𝑛 future fields 𝐶̂𝑡+1∶𝑡+𝑛 by

eans of a forecasting process 𝑓𝜃 starting at time 𝑡,

̂𝑡+1∶𝑡+𝑛 = 𝑓𝜃
(

𝐶𝑡−𝑚+1∶𝑡, 𝜖
)

(1)

ith free parameters 𝜃 whose optimal values 𝜃∗ are determined by
inimizing the distance between the estimated conditional probability
istribution of forecasted cloudiness fields 𝑝𝜃(𝐶̂𝑡+1∶𝑡+𝑛|𝐶𝑡−𝑚+1∶𝑡) and the
ctual distribution of the future fields 𝑝(𝐶𝑡+1∶𝑡+𝑛|𝐶𝑡−𝑚+1∶𝑡). The normally
istributed random variable 𝜖 is sampled multiple times to draw indi-
idual ensemble members of the forecast from 𝑝𝜃 according to Eq. (1).
HADECast offers a concrete realization of this general concept.

The SHADECast forecast generation pipeline, depicted in Fig. 1, in-
egrates a variational autoencoder (VAE) for data compression, a latent
eterministic nowcaster based on Adaptive Fourier Neural Operator
AFNO) blocks [35,36], and a latent diffusion model represented by
he denoiser. These components collaboratively forecast an ensemble
f future cloudiness field sequences. The nowcaster’s deterministic
orecast guides the ensemble generation by the denoiser [31]. With re-
pect to previous SSI nowcasting methods and to LDCast, an important
onceptual innovation of our model lies in the decomposition of the
orecasting task into a deterministic forecast (nowcaster) for large-scale
ynamics and a probabilistic ensemble generation (diffusion) to model

igh-uncertainty regions.
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Fig. 1. SHADECast forecast generation pipeline. Upper left panel: Example CSI field of 24 Feb. 2016 at 11:45 UTC. The red box highlights the region forecasted in the right
panel. Lower left panel: SHADECast forecast generation pipeline. The input CSI fields (𝐶𝑡−𝑚+1∶𝑡) are fed to the encoder, which projects the image sequence to the latent space,
obtaining 𝑧𝑡. Then, the deterministic nowcaster forecasts the future latent representation of the CSI fields (𝑧𝑡+1∶𝑡+𝑠), where 𝑠 is the lead time in the latent space, which can differ
from 𝑛 due to data compression. The latent forecast is, then, fed to the denoiser together with Gaussian noise 𝜖. The pseudo linear multi-step (PLMS) sampler employs the denoiser
to generate an ensemble member. The decoder finally decompresses the latent ensemble forecast, obtaining 𝐶̂𝑡+1∶𝑡+𝑛. Right panel: Forecasts made by SHADECast (yellow box) and
benchmark models for lead times up to 120 min. For SHADECast, LDCast and SolarSTEPS the ensemble member chosen is the one with the lowest average root mean squared
error (RMSE). The first row shows the satellite-derived CSI fields.
2.1. Surface solar irradiance

SSI can be expressed as the product of the clear-sky SSI, SSIcs, and
the clear-sky index, CSI, so SSI = CSI ⋅ SSIcs. The clear-sky SSI is an
estimate of SSI in the absence of clouds. SSIcs mainly depends on the
solar zenith angle (SZA), its diurnal and annual cycle, and to a minor
degree on aerosols and atmospheric trace gases like water vapor. The
remaining most relevant factor affecting SSI are clouds, which are also
the most difficult component to forecast. CSI is a dimensionless variable
that quantifies the degree of cloudiness, which makes CSI a particularly
suitable variable to forecast [20,34].

The temporal evolution of cloudiness fields may be seen as a com-
posite of wind-driven cloud advection and cloud evolution – the forma-
tion, growth, and dissipation of clouds – governed by processes such
as microphysics and turbulence [34]. While cloud advection and cloud
evolution cannot be separated from each other in a strict physical sense,
it pays off to do so in the context of forecasting, as we demonstrate
below.

2.2. SHADECast

SHADECast is a conditional latent diffusion model incorporating
AFNO blocks [35], known for their efficacy in modeling chaotic systems
like weather [36]. With respect to current SSI forecasting models and
LDCast [33], the architectural innovation of SHADECast is the incorpo-
ration of an independently-trained AFNO-based forecasting model as
conditioning model (nowcaster in Fig. 1). The nowcaster focuses on
forecasting large-scale components of the dynamics of cloudiness, while
the diffusion model (denoiser) is responsible for forecasting the chaotic
dynamics of small scales, thus generating ensembles of possible future
evolutions.

The core concept of diffusion models entails forward diffusion and
backward denoising processes [30,31]. The forward diffusion process
iteratively introduces disruptive Gaussian noise into training data sam-
ples, whereas the backward process iteratively removes the noise from
3 
the noisy output of the forward process, restoring the data sample to its
original state. Fundamentally, the denoising process is implemented to
enable the model to learn the mapping of a known simple distribution
(usually an uncorrelated Gaussian) to the data distribution, enabling
the generation of realistic and accurate data samples.

Our conditional latent diffusion model consists of three main com-
ponents as depicted in Fig. 2:

1. A VAE, which compresses (decompresses) the data into (from)
the latent space. Following the approach in [37], modeling dif-
fusion in the latent space achieves an optimal trade-off between
accuracy and efficiency.

2. A latent AFNO-based deterministic nowcaster. It takes the latent
representation of the input CSI maps and forecasts consecutive
maps in the latent space. The number of latent time steps is
increased using a temporal transformer [38]. It can be used as
an independent forecasting model.

3. A latent denoiser, which maps Gaussian noise to the future CSI
maps in the latent space. Based on a U-Net architecture [39], it
is conditioned on the nowcaster’s output through AFNO Cross
Attention blocks (Fig. 2).

The forecast generation process shown in Fig. 1 involves the encod-
ing of 𝑚 past input CSI fields 𝐶𝑡−𝑚+1∶𝑡 into the latent space, resulting
in the latent tensor 𝑧𝑡 with an overall compression factor of 2. Then,
the nowcaster performs a forecast in the latent space (𝑧𝑡+1∶𝑡+𝑠). Here,
𝑠 represents the number of forecasted steps in the latent space, which
are related to 𝑛 by 𝑠 = 𝑛

𝑐𝑡
, where 𝑐𝑡 is the compression factor along the

time dimension. Then, 𝑧𝑡+1∶𝑡+𝑠 is employed to condition the denoiser
that generates the forecast ensemble. The conditioning is performed
by downsampling the deterministic forecast to match the dimensions
of the U-Net layers of the denoiser (Fig. 2). The conditioning step
is essential to guide the denoising process towards realistic future
scenarios of cloudiness evolution. In summary, the goal of the denoiser
is to project the input noise tensor (𝜖) to the latent representation of
the future 𝑛 satellite observations (𝐶 ). It does so by iteratively
𝑡+1∶𝑡+𝑛
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Fig. 2. SHADECast architecture. A AFNO-based U-Net architecture is employed in our denoiser, alongside principal blocks integrated into the SHADECast architecture. The
symmetrical design of the denoiser includes two downsampling and upsampling blocks. The latent forecast 𝑧𝑡+1∶𝑡+𝑠 undergoes 3-dimensional strided residual blocks to match spatial
dimensions with U-Net components, followed by concatenation with the output of AFNO cross attention blocks. In the right panel, 𝑥 represents the input from the previous layer,
and 𝑦 is the conditioning input. Downsampling is achieved through strided 3D convolutional layers, whereas upsampling utilizes spatial axis interpolation. The 3-dimensional
residual blocks consist of two convolutional layers connected by a skip connection.
performing numerous denoising steps [31]. In our case, the CSI field
sequence generation is governed by a pseudo-linear multistep sampler
(PLMS) [40] to reduce the number of required denoising steps. PLMS
permits to decrease the number of steps from ≈ 1000 to 25, maintaining
the sample quality (refer to Supplementary Table A.1). Finally, the
sampled sequence 𝑧̂𝑡+1∶𝑡+𝑠 is decoded back by the decoder to the final
forecast ensemble member 𝐶̂𝑡+1∶𝑡+𝑛.

Variational autoencoder
The VAE exhibits a symmetrical architecture, as in [41]. The VAE’s

encoder processes 4-dimensional inputs, specifically sequences of CSI
fields. This encoding phase consists of two downsampling 3-dime-
nsional residual blocks, outputting two tensors, 𝜇 and 𝛴, namely the
mean and covariance matrices of a Gaussian distribution. They serve as
the foundation for the decoder’s sampling process that samples a latent
vector from the latent Gaussian and reconstructs it into a sequence of
CSI fields. The downsampling and upsampling blocks in the VAE mirror
those in Fig. 2, with the exception of the cross-attention layer.

The CSI field sequence is represented as a four-dimensional tensor
with dimensions (𝐶ℎ, 𝑇 ,𝑊 ,𝐻), where 𝐶ℎ denotes the number of image
channels, 𝑇 is the time dimension, and (𝑊 ,𝐻) represents the width and
height of a single CSI map. In the latent space, dimensions 𝑇 , 𝑊 , and
𝐻 are reduced by a factor of 4, while 𝐶ℎ is increased by a factor of 32,
resulting in an overall compression factor of 2, as done in [33].

Regularization in the latent space is achieved through the Kullback–
Leibler (KL) divergence between the latent data distribution and
𝑁(0, 1). The reconstruction loss is quantified by the mean absolute error
that measures the disparity between the VAE’s input and the decoder
output. The final loss is an interpolation between the two losses, with
a coefficient of 0.05 for the KL loss.

The VAE comprises approximately 800,000 parameters. For detailed
architecture parameters, please refer to the training configuration file
available in our GitHub repository.

Nowcaster
The AFNO-based nowcaster consists of four AFNO blocks, a tem-

poral transformer [38], and another four AFNO blocks. The AFNO
blocks [35] (Fig. 2) transform the input using a 3-dimensional Fast
Fourier Transform (FFT) applied to the temporal and spatial axes of the
input tensor. Subsequently, a multilayer perceptron (MLP) processes
the transformed data along the channel dimension. Finally, the data
4 
undergoes inverse-FFT (IFFT), is summed with the original input, and
processed by another MLP.

The temporal transformer is employed to increase the time steps
through cross attention between the input and a sinusoidal time embed-
ding tensor [33]. The time steps are increased by a factor of 2, resulting
in 𝑠 = 2 in Fig. 1.

The nowcaster operates in the latent space following the approach
in [33]. Computing the AFNO in the latent space aligns with the method
in [36], where the authors utilized an embedding procedure to increase
the channel dimension at the expense of 𝐻 and 𝑊 . Through channel
mixing in the Fourier space, we approximate global attention [35],
as each pixel in the Fourier space contains information on the entire
image.

The loss chosen is the Mean Absolute Error (MAE) and it is com-
puted in the latent space. By computing the loss in the latent space
we noticed two major improvements. First, we save one iteration (the
decoding). Second, the forecasts result more detailed and less blurry
even at longer lead times.

Overall, the architecture of the nowcaster comprises ∼ 6M parame-
ters.

Denoiser
The denoiser’s AFNO-based U-Net architecture, depicted in Fig. 2,

is symmetrical and comprises two main components: downsampling
and upsampling blocks. The denoising process begins with the latent
forecast 𝑧𝑡+1∶𝑡+𝑠, which is downsampled with 3-dimensional strided
residual blocks. This step is crucial for achieving spatial dimension
alignment with the U-Net’s downsampling and upsampling blocks. The
resulting output is then concatenated with the output of AFNO cross
attention blocks, denoted as 𝑥 and 𝑦 for the input from the previous
layer and the conditioning input, respectively.

For downsampling, we employ strided 3D convolutional layers,
effectively reducing spatial dimensions (height and width). Conversely,
upsampling is achieved through interpolation on the height and width
axis of the tensor. The backbone of the architecture consists of 3-
dimensional residual blocks, featuring two convolutional layers with a
skip connection to enhance feature extraction. The denoiser is trained
to predict the noise as done in [37] and the chosen loss function is the
MSE. Moreover, as also done in [37], the exponential moving average
method is employed to stabilize the training.

This detailed architecture is visually represented in Fig. 2. The
denoiser is defined by approximately 320M parameters.
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3. Performance evaluation

The probabilistic spatiotemporal forecasting model presented in
Section 2 is trained to forecast cloudiness fields and, consequently, SSI
regional fields. The dataset, training procedure, evaluation metrics and
benchmark models are presented in the following.

3.1. Dataset

The CSI fields employed for this study are derived from spectral
measurements of Earth taken by the Spinning Enhanced Visible and
InfraRed Imager (SEVIRI) on board the Meteosat Second Generation
geostationary satellite [42]. The raw satellite images are processed
by the HelioMont radiative transfer algorithm [43] to produce two-
dimensional CSI fields. We refer to [18] for a comprehensive review of
the dataset. The dataset spans 10 years from 2007 to 2016 at a temporal
resolution of 15 min. The time period is motivated by constraints
on data availability. The HelioMont CSI fields are only available for
solar zenith angle (SZA) lower than 88◦. The spatial resolution is
approximately 0.02◦ × 0.02◦. The region covered ranges from 8.3◦E,
4.8◦N to 12.8◦E, 49.1◦N corresponding to images of size 384 px × 768 px

in the native Geostationary projection as shown in Fig. 1. Missing pixels
are filled by a linear three-dimensional (time, longitude and latitude)
interpolation if they cover less than 2% of the image, otherwise the
image is discarded.

Seven years of data are used for the model training (2007–2013)
and one for the validation (2014), while two years are kept for the
final testing (2015–2016). For training and validation, we cropped the
maps into 18 128 px × 128 px patches as shown in Fig. 3. Therefore,
or the training set we have 18 regions and 365 × 7 days of data split
nto overlapping 12-step sequences (4 input and 8 output maps).

To create the test set, we randomly sampled 200 days from the
-year period (2015–2016), and then randomly sampled 4 input se-
uences from each of the 200 days, resulting in 800 CSI satellite image
equences for every test set region. We make use of three 256 px ×
256 px regions, namely the areas corresponding to patches (a), (b), and
(c) as illustrated in Fig. 3. Using larger images for the validation (with
respect to the training set) accounts for the advection effect during the
forecast lead time, aiming to reduce areas completely generated by the
model. At maximum speed, clouds can cross most of the 128 pixels
(≈ 250 km) in less than 2 h, and so the model would generate most of
the forecast with no information on coming clouds. The use of smaller
image patches in training was driven by memory and computational
constraints. Notably, our model’s architecture enables the forecast of
arbitrarily large images.

In Fig. 3 we show average and standard deviation of CSI for every
pixel covered by HelioMont dataset. The values are computed daily for
500 randomly sampled days from the training set and then averaged.

3.2. Data processing and training

The number of CSI fields from Meteosat SEVIRI in a day depends
on the daylight hours, resulting in a higher number of available data
samples during summer as HelioMont cannot derive CSI at night. To
mitigate this bias in our model, we generate each training sample by
randomly selecting one day from the 365 × 7 available days and then
electing a sequence of maps from that day. This ensures that the
odels are trained on a balanced dataset, exposing them to an equal
umber of summer and winter sequences.

The validation set follows a similar sampling approach as the train-
ng set but with a fixed structure: sequences and days are sampled once,
nd these validation samples remain constant throughout the validation
rocess. This is done to obtain a consistent validation through the
raining process.

To facilitate model convergence and performance, the data are nor-
alized by mapping the values to the

[

−1, 1
]

range. The normalization
5 
is straightforward as HelioMont CSI values are bounded in the [0.05, 1.2]
ange.

The three components of SHADECast (autoencoder, nowcaster and
enoiser) are trained independently. The training and validation sets
re the same for the three training processes. The training is terminated
f the validation loss does not decrease for at least 10 epochs (early
topping). Moreover, after 5 epochs without improvement, the learning
ate is divided by a factor of 4. The initial learning rate for the VAE and
he nowcaster is 10−3, while for the Denoiser we set 10−4. Similarly,
he batch size is set to 256, 240 and 96 for the VAE, Nowcaster, and
enoiser, respectively. The batch sizes are chosen to maximally exploit

he available GPU memory and stabilize the training.

omputational requirements
The training of the SHADECast diffusion model requires approxi-

ately 500 GPU hours on 24 Nvidia P100 GPUs. Generating a 2-hour
orecast ensemble of 10 members at 15-min resolution for 256 × 256
ixels images, takes 1 min on a single Nvidia P100 GPU.

.3. Benchmark models

To assess our model’s performance, we compare it to two proba-
ilistic ensemble-based benchmark models: SolarSTEPS [34] and LD-
ast [33]. In order to use the latter, we adapted and trained the
riginal precipitation nowcasting model to forecast cloudiness. It shares
he same architecture as SHADECast (see Fig. 2) for a fair compar-
son. In LDCast, the forecaster component is trained together with
he denoiser and is, in fact, a feature extractor on the input maps.
herefore, the model is not conditioned on a deterministic forecast but,

ndirectly, on the input CSI fields. LDCast is chosen to illustrate that our
hysics-motivated choice of a separate nowcaster indeed improves the
orecast accuracy and reliability of the ensemble. Overall, the training
rocedure and the data used are the same as for SHADECast training.

SolarSTEPS [34] is an optical-flow based approach, which was
hown to outperform state-of-the-art models in the task of probabilis-
ically forecasting satellite-derived CSI maps over Switzerland. There-
ore, we consider it a valuable benchmark case in the present paper.
he SolarSTEPS approach is based on the scale-dependent temporal
ariability of cloudiness: the small scales have a shorter lifetime with
espect to bigger scale. The different scales’ temporal evolution is thus
odeled independently by different linear AR models. The approach
ermits the model to predict both the motion (optical-flow) and evolu-
ion (AR models) of cloudiness. The ensemble generation is governed by
erturbing the AR models with a novel technique to generate spatially
orrelated CSI fields based on the short-space Fourier transform [44].
he method presented in [44] is modified to take into account the
ariability of the input maps in the generation of the perturbing fields.
oreover, SolarSTEPS has shown to outperform trivial benchmark
odels such as the persistence model. The parameterization used in

ur evaluation reflects the one presented in [34].
Moreover, we investigate the advantages of our probabilistic ap-

roach in comparison to the state-of-the-art deterministic model in
loudiness forecasting, IrradianceNet [20]. The model architecture re-
ains consistent with the original paper. We retrained the model
sing only cloudiness fields on our training set as done for LDCast
nd SHADECast. In the original paper, the authors conducted a 2-
tep forecast. For comparability with other models, we autoregressively
orecast 8 steps into the future. The model is trained on 128 × 128
mages and tested on 256 × 256 similarly as done in [20]. Due to
he model architecture limitations, forecasting arbitrarily large images
s not possible. Consequently, a linear interpolation is applied on the
orders of the individual forecasts, as detailed in [20]. It is important
o note that the output interpolation introduces visible artifacts along
he borders of single forecasts.
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Fig. 3. Dataset overview. Upper panel: Average and standard deviation at pixel level of CSI values computed on 500 days sampled from the training set. The average daily CSI
standard deviation is computed along the time dimension. For every sampled day, the standard deviation along the time dimension is computed for every pixel and then averaged
over the 500 days. Lower panel: area covered by the HelioMont dataset [43]. The patches outlined in blue define the cropping applied to create the training set. For the test
set we used three 256 × 256 patches identified by the red borders: (a), (b) and (c).
3.4. Metrics

The evaluation of the forecast ensembles is carried out by using
probabilistic and deterministic metrics. For probabilistic forecasts, the
main properties we evaluate are the reliability and sharpness of the
forecast ensembles [45].

A reliable forecast ensemble is characterized by the observed value
falling within the predicted ensemble. In an ideal scenario where the
model accurately captures the uncertainty of the dynamics, the obser-
vations should be uniformly distributed within the ensemble. To assess
this distribution, rank histograms [46] depict the frequency of the
observed value’s location among the ensemble members. In practical
terms, a concave histogram signals under-confidence, indicating that
the model tends to overestimate uncertainty. This results in forecasts
with excessively high variance, suggesting a wider range of possibilities
than observed. Conversely, a convex histogram signals overconfidence,
indicating that the ensemble is too narrow and fails to adequately cap-
ture the actual uncertainty in the system dynamics. In such cases, the
forecasted range is too restrictive, leading to potential underestimation
of the true variability in the observed values.

Reliability is also described by the Prediction Interval Coverage
Probability (PICP). PICP measures the percentage of observed values
that lie in the ensemble prediction interval. We randomly sample 1000
pixels for each lead time image and check whether they fall inside
the 5% and 95% percentiles of our forecast. However, PICP does
not provide any information on the forecast informativeness, as an
overdispersive model could lead to high PICP values. For this reason,
we also measure the Prediction Interval Normalized Averaged Width
(PINAW). PINAW measures the width of the prediction interval and
so, it provides information on the forecast sharpness. An ideal forecast
should reflect high PICP values and a low PINAW.

The CRPS is employed to evaluate the overall quality of probabilistic
SSR forecasts [45,47]. CRPS accounts for both reliability and sharpness.
It does so by measuring the distance between the cumulative density
function of the ensemble 𝐹 and the Heaviside function 𝐻 centered on
the observation 𝑦. The normalized CRPS for the 𝑖th pixel is then defined
as:

nCRPS𝑖 =
1 +∞

(𝐹𝑖(𝑐) −𝐻(𝑐 − 𝑦𝑖))2𝑑𝑐 (2)
CSImax ∫−∞

6 
The Heaviside function centered in 𝑦𝑖 represents the ideal cumulative
distribution for a perfect probabilistic forecast and 𝐹𝑖 is the forecasted
cumulative distribution for the 𝑖th pixel. CRPS, then, measures the
distance between the Heaviside function and 𝐹𝑖 for every point 𝑐 in
the 𝐹𝑖 domain. It is computed at pixel level and averaged for every
forecast step, ending up with a CRPS value for every forecasted pixel.
We consider the normalized CRPS (nCRPS) by normalizing the CRPS
with the maximum clear-sky index value, which is CSImax = 1.2.

The models performance in predicting extreme cloudiness values
is measured by using the fraction skill score (FSS) [48,49]. Using a
sliding window, FSS computes the accuracy of predicting the frequency
of a particular event. In our case, the event corresponds to CSI values
exceeding a threshold. A perfect forecast is defined by FSS equal 1,
vice versa the worst forecast would have FSS = 0. We define 𝑂𝑛

𝑖,𝑗 and
𝐹 𝑛
𝑖,𝑗 as two neighborhoods of size 𝑛 centered in 𝑖, 𝑗 from the observed

and forecasted fields, respectively. 𝑂𝑛
𝑖,𝑗 and 𝐹 𝑛

𝑖,𝑗 define the frequency
of exceeding a set threshold inside the neighborhood, then FSS can be
defined as:

𝐹𝑆𝑆 = 1 −

∑

𝑖
∑

𝑗 (𝑂
𝑛
𝑖,𝑗 − 𝐹 𝑛

𝑖,𝑗 )
2

∑

𝑖
∑

𝑗 (𝑂
𝑛
𝑖,𝑗 )2 + (𝐹 𝑛

𝑖,𝑗 )2
(3)

Finally, the normalized Root Mean Square Error (nRMSE) is used to
measure the accuracy of the ensemble mean. The ensemble mean serves
as a representative estimate of the central tendency of the forecasted
distribution. Evaluating its accuracy provides insights into how well the
ensemble captures the expected or average outcome. The nRMSE for a
forecasted map is defined as:

nRMSE = 1
CSImax

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦̂𝑖 − 𝑦𝑖)2 (4)

4. Results and discussion

In the following, the forecast performance of SHADECast is dis-
cussed and compared to state-of-the-art SSI forecasting models.
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Fig. 4. Probability density distributions of the forecasted fields. The probability density distributions are computed on the forecasted CSI fields relative to the case study presented
in Fig. 1 for three lead times (+15 min, +60 min, +120 min). The distributions are shown for the ground truth satellite-derived CSI fields (Observations), for SHADECast and three
benchmark models. For SHADECast, LDCast and SolarSTEPS, the chosen ensemble member is the best performing one in terms of RMSE. The RMSE is computed for the different
ensemble members over all pixels and timesteps, then the ensemble member with the lowest RMSE is selected for each model. The dotted vertical lines represent the distribution
mean.
4.1. Clouds forming, evolving, dissipating

In the right panel of Fig. 1, we show an example of a forecast gen-
erated by SHADECast (highlighted in yellow). We present the ground
truth in the first row, a deterministic forecast generated by a convo-
lutional LSTM model based on [20] in the second row, SHADECast in
the fourth row and the two benchmark models in the remaining rows.
This particular case study is selected to exemplify the dynamic nature
of cloud evolution throughout the forecast period. This phenomenon
is visually represented by observing the shift in the mean of the CSI
distribution towards lower values, as illustrated in Fig. 4.

The ConvLSTM forecast is relatively accurate within the initial
15 min, but its quality gradually diminishes afterwards due to increas-
ing blurriness and the inability of the deterministic model to handle
uncertainty. The observed lack of small-scale structures is linked to the
convergence towards the mean [27] due to the pixel-level MSE mini-
mization performed in the training. As highlighted in the introduction,
our objective is modeling the distribution of potential outcomes, as the
average of all outcomes (MSE minimum) does not necessarily align with
the most probable outcome. SHADECast effectively simulates diverse
cloudiness evolution in high-uncertainty regions, providing insights
into variations that might appear indistinct in deterministic forecasts.
On the other hand, the model can recognize low-uncertainty regions
and keep them relatively unaltered among the ensemble members.
In Fig. 1, the Alps region (bottom right area in the map) remains
cloud-free throughout the 2-hour period. Similar patterns in the same
region are evident in the SHADECast ensemble members but not in the
benchmark probabilistic models (LDCast and SolarSTEPS). This case
study demonstrates the adaptability of SHADECast in capturing ground
truth uncertainty and projecting it into the forecast ensemble while
retaining the less uncertain patterns. Additional forecast examples for
the three test regions are also presented (see Figs. 8, 9, 10).

A distinguishing feature of SHADECast is that it allows for changes
of the CSI field probability density distribution over time, as shown in
Fig. 4. A scene can get more or less cloudy with time. This is a clear as-
set as compared to SolarSTEPS, which is limited by its underlying linear
AR model to forecast stationary time series. This leads SolarSTEPS to
produce fields that have approximately the same CSI distribution as the
input, making it incapable of predicting scenarios where the weather
situation drastically changes. This limitation is clearly visible in Fig. 1,
where the cloudy region expands significantly during the forecasted
period, and even more so in Fig. 4, which illustrates the distributions
of CSI values for individual fields at three lead times. Also apparent is
the narrowing of the distribution in the case of ConvLSTM, consistent
with the overall tendency of this deterministic forecast to damp the tails
of the CSI distribution in favor of mean values. This effect drastically
reduces the accuracy in predicting extreme CSI values. On the other
7 
hand, SHADECast accurately follows the observed distributional shift
and outperforms the benchmark models in predicting extreme values
(see Fig. 7).

4.2. Reliability and sharpness

Common measures to evaluate ensemble forecast performance in-
clude (see Methods for further details) rank histograms, PICP and
PINAW, as well as the CRPS. Rank histograms shown in Fig. 5 demon-
strate that SHADECast produces significantly more reliable probabilistic
forecasts compared to the benchmark models. One can notice the
tendency of LDCast and SolarSTEPS to generate ensembles that tend to
be overconfident, underestimating the uncertainty of cloudiness evo-
lution. LDCast overestimates, in particular, the occurrence of overcast
situations (low CSI). On the other hand, SHADECast can better model
the uncertainty, providing significantly more reliable ensembles. The
rank histograms are computed on the test set across three different
regions (see Fig. 3). In Supplementary Fig. A.2, we provide the rank
histograms for the three test regions, individually. The reliability of the
models does not depend on the considered location.

Model reliability can also be quantified via the PICP, shown in the
second row of Fig. 5, and the PINAW, also presented in Fig. 5. The
first metric calculates the average number of pixels that fall within
the ensemble prediction interval, with its width (prediction sharp-
ness) determined by the second metric. The average PICP is ≈ 70%
for ShADECast compared to 65% and 60% of SolarSTEPS and LD-
Cast, respectively. The major improvement of SHADECast over LDCast
can be noticed in the low-variability samples, where the model pro-
vides sharper predictions (lower PINAW) and achieves higher PICP.
Instead, SolarSTEPS generally provides ensembles with lower variance,
consequently achieving a lower PICP.

The CRPS serves as a compound metric, encompassing both reliabil-
ity and sharpness to offer a holistic evaluation of model performance. It
quantifies the distance between the ensemble and the optimal cumula-
tive distribution for each pixel. This metric is then averaged across the
entire test set (All-sky) and separately for low- and high-variability sub-
sets, where variability is measured by the standard deviation computed
on the input CSI fields. In the upper panel of Fig. 6, CRPS values are
averaged across the test set for each pixel within the three test regions.
Interestingly, similar spatial patterns are present in the right panel in
Fig. 3, indicating a relation between standard deviation (variability)
and CRPS values for the three models. In low-variability areas (Alps
region in Fig. 3), the models, especially SHADECast and LDCast, exhibit
a low CRPS. Conversely, the lower panel displays aggregated CRPS
values averaged over all pixels, presenting the average, 25th, and 75th
percentiles for each lead time.

SHADECast exhibits a 15% improvement in overall CRPS compared
to SolarSTEPS and a 7% improvement over LDCast. A 120-minute
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Fig. 5. Reliability evaluation. Upper panel: rank histogram for the 10 ensemble members (x-axis), comprising the entire test set. Our model (SHADECast) clearly provides more
reliable forecasts — frequencies closer to the maximum reliability line. The high external columns on LDCast and SolarSTEPS rank histograms highlight the models overconfidence
as more than 30% of CSI values fall outside the ensemble forecasts. Lower panel: PICP and PINAW metrics computed on the test set across different lead times. The first measures
the reliability (number of ground truth pixels falling inside the prediction interval), while the second measures the sharpness of the forecast (normalized width of the prediction
interval). Both metrics are measured using a confidence interval of 90%. The dotted lines represent the 25th and 75th percentile of the correspondent metric values over the entire
test set.
SHADECast forecast is, then, as skillful as a 96-minute and 106-minute
forecasts of SolarSTEPS and LDCast, respectively (see Fig. 6). This
improvement, particularly evident in high-variability situations, sug-
gests superior modeling of cloudiness evolution by SHADECast. The
substantial enhancement over SolarSTEPS is attributed to differences
in their CSI field generation mechanisms. SolarSTEPS simulates cloud
evolution by random perturbations, generating CSI fields that share the
spatial structure of the input satellite CSI maps but lack spatiotem-
poral information. In contrast, SHADECast models the spatiotemporal
distribution of CSI maps, capturing information on spatial structure
and temporal dynamics. The hypothesis is further supported by the
smaller improvement in the low-variability subset, where cloudiness
evolution is more static, resulting in similar performance between
SolarSTEPS and SHADECast. This analysis underscores the importance
of considering both, variability levels and the underlying dynamics of
cloud evolution when assessing the efficacy of probabilistic forecasting
models.

In low-variability situations, we notice a significant improvement
of SHADECast over LDCast measured by an average improvement of
∼ 15% in terms of CRPS. We attribute this finding to the conditioning
nowcaster in SHADECast, which can better direct the forecast in low-
variability situations, where a deterministic forecast contains more
information with respect to a high-variability weather scenario. In these
situations, the high-uncertainty regions are scarcer, so we expect the
SHADECast ensemble to be closer to the nowcaster’s forecast.

4.3. Forecasting extreme values

Deterministic forecasting models, such as the ConvLSTM-based
model IrradianceNet [50], tend to produce blurry forecasts after a few
steps. This is because such models are typically trained to minimize
the mean square error of their forecast, favoring an ‘average future
outcome’ instead of honoring, in a probabilistic sense, the inherently
uncertainty evolution of weather patterns and spatial structure of the
observed cloudiness field. This is due to the training process of minimiz-
ing a pixel-level loss function, such as mean squared or mean absolute
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error [51]. In practice, this translates to forecasts converging towards
a mean value, impeding the accurate forecast of extreme values. In our
case, extreme values represent extreme overcast or complete clear-sky
weather situations. We define extreme overcast and clear-sky with CSI
values below 0.15 and over 0.95, respectively.

To measure the ability of the forecasting models to predict such
extremes, we make use of the Fraction Skill Score (FSS) metric [48,52].
FSS evaluates the fraction of correctly predicted area for a specific
threshold of interest, indicating how well a model captures the spatial
distribution of an event. A higher FSS suggests better spatial agreement
between predicted and observed phenomena.

In Fig. 7, FSS values are shown for SHADECast and the benchmark
models for clear-sky and overcast situations for two window sizes. On
average, the probabilistic models perform better than ConvLSTM due
to their sharp forecasts, which do not suffer from increasing blurriness.
In fact, ConvLSTM forecasts perform discretely well in low variability
situations (central column) and on average in the first 15 to 30-minute.
After few steps, the accuracy degrades. On the other hand, SHADECast
outperforms the benchmark models on predicting clear-sky CSI values
higher than 0.95 with an average 14% improvement over ConvLSTM.
The improvement over the deterministic forecasts increases with the
lead time, reaching 60% improvement in forecasting extreme overcast
situations at 2-hours lead time.

5. Conclusions

We have introduced a novel method for probabilistically forecasting
SSI satellite maps that significantly outperforms existing approaches
across diverse weather situations, from low to high variability scenar-
ios. Our model stands out as the first ensemble-based approach capable
of forecasting SSI satellite maps while adapting to dynamic weather
conditions without suffering from blurriness and without requiring
additional information beyond the input CSI fields. We showcase our
generative approach’s superiority over classical deterministic models,
offering realistic forecasts that outperform benchmarks in predicting
extreme values.
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Fig. 6. Normalized Continuous Ranked Probability Score (nCRPS) plots. Upper panel: the nCRPS is averaged over the entire test set and reported at pixel level for the three test
regions (a, b, c). The metric is shown for three lead times (+15, +60, +120 min) for SHADECast and the benchmark models. Lower panel: Average, 25th and 75th percentiles
of nCRPS are shown for the 8 lead times and for the three models. The metric is computed for all the forecasts in the test set for every pixel and then averaged. The solid lines
represent the mean value for every lead time, while the dotted lines represent the percentiles. The values shown are averaged for the entire test set (All-sky) and for two subsets,
representative of low-variability and high-variability cloudiness situations.
Fig. 7. Extreme values prediction accuracy. Fraction skill score (FSS) with threshold set to 0.95 (Clear Sky) and 0.15 (Overcast) relative to two window sizes: 4 × 4 pixels and
16 × 16 pixels. For SHADECast, LDCast and SolarSTEPS, the FSS is computed for every ensemble member and then averaged. The table provides the average improvement of
SHADECast over the benchmark models (4 × 4 px and 16 × 16 px window sizes) for the Overcast and Clear Sky cases.
Our model exhibits superior performance, consistently outperform-
ing benchmarks: 15% and 7% average improvement over SolarSTEPS
and LDCast, respectively. This increased reliability is attributed to the
incorporation of a deterministic latent nowcaster, which conditions
the ensemble generation process. The modularity of our approach not
only improves the performance but also permits the incorporation of
alternative deterministic forecasting algorithm in our framework.

Built upon AFNO blocks and leveraging insights into cloudiness
dynamics, SHADECast tackles the forecasting challenge by dividing it
into a deterministic and a probabilistic components. The deterministic
9 
nowcaster forecasts low-uncertainty large-scale dynamics, whereas the
probabilistic aspect is managed by the diffusion model, responsible for
simulating the stochastic evolution of cloudiness fields at smaller scales.
In this way, the generated ensemble can simulate the spatial structure
and dynamics of cloudiness, enabling the prediction of extreme values.

Our contribution extends beyond theoretical advances, as SHADE-
Cast provides grid and trading operators with accurate and reliable
forecast ensembles. This empowers them to enhance the integration of
photovoltaic energy into the grid, mitigating the volatility impact on
grid resilience.
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Fig. 8. Visualization of generated ensembles for test region a. The date (24 Feb. 2016) and starting time (11.45 am) are chosen to show a changing weather situation in which
the cloudy surface (blue pixels) increases through the forecast. On the first column, the satellite CSI images are shown (Observations). The second, third and fourth columns show
the best, average and worst ensemble members, respectively. The ensemble members are evaluated by their average RMSE over the entire forecast. The last two columns show
the ground truth and forecasted probabilities of CSI exceeding 0.9 (clear-sky). The forecasted region is patch (a) (see Fig. 3).
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Fig. 9. Visualization of generated ensembles for test region b. The date (24 Jul. 2015) and starting time (05.30 am) are chosen to show a dissipation example of clouds on the
bottom of the region. The figure is structured as Fig. 8. The forecasted region is patch (b) (see Fig. 3).
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Fig. 10. Visualization of generated ensembles for test region c. The date (19 Mar. 2016) and starting time (11.15 am) are chosen to show a clear-sky and low variability weather
example. The figure is structured as Fig. 8. The forecasted region is patch (c) (see Fig. 3).
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One of the current limitation of the model is the lack of spatial
information (longitude and latitude), whose presence could further
enhance the adaptability of the model to different regions. Further
enhancements of the model can be reached by adding different sources
of data.

In conclusion, our model not only introduces a novel approach
to SSI forecasting but also establishes a new standard in reliability
and performance. By addressing the challenges of dynamic weather
conditions and providing enhanced forecast ensembles, SHADECast
contributes significantly to the advancement of energy meteorology and
renewable energy integration.

Code availability

The code to train and test SHADECast is made available at: https:
//github.com/EnergyWeatherAI/GenerativeNowcasting.

The code for SolarSTEPS is made available at: https://github.com/
EnergyWeatherAI/SolarSTEPS.

The original LDCast model is available at: https://github.com/
MeteoSwiss/ldcast, whereas in the SHADECast repository there is the
LDCast architecture adapted to forecast cloudiness fields.
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