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Discrete Well Affinity Data-Driven Proxy
Model for Production Forecast

X. Tian, A. Blinovs, and M. Khait, TU Delft; and D. Voskov*, TU Delft and Stanford University

Summary

A physics-based data-driven model is proposed for forecasting of subsurface energy production. The model fully relies on production
data and does not require any in-depth knowledge of reservoir geology or governing physics. In the proposed approach, we use the
Delft Advanced Reservoir Terra Simulator (DARTS) as a workhorse for data-driven simulation. DARTS uses an operator-based lineari-
zation technique that exploits an abstract interpretation of physics benefiting computational performance. The physics-based data-
driven model is trained to fit data increasing the fidelity of the model forecast and reflecting significant changes in reservoir dynamics
or physics over its history. The model is examined and validated for both synthetic and real field production data. We demonstrate that
the developed approach is capable of providing accurate and reliable production forecast on a daily basis, even if the exact geological
information is not available.

Introduction

Computer technologies are progressing rapidly. Computational capacities that are currently available provide an opportunity for many
subsurface applications to perform complex numerical simulations of high-resolution 3D geocellular computer models. Predictions
obtained from such models are an important factor governing efficient reservoir management and decision making. The models describe
complex geological features through a set of gridblocks and associated rock and fluid properties. However, in many cases, the reliability
of geological information is questionable or even not available. Although it is possible to develop a high-fidelity model on a reliable
basis of reservoir geology, a high-resolution computer model can exceed a few million blocks and can take hours or even days to simu-
late. It is still not computationally feasible to perform history matching or reservoir-development optimization at such resolution
because it involves a large number of simulation runs.

Different methods have been developed to overcome the issue. Those methods fall into two categories: simplified full-field models
or data-driven approaches. Methods such as upscaling, multiscale methods, and streamline simulation fall into the first category.
Upscaling is the process of numerical homogenization, where the high-resolution model is represented as a set of coarser gridblocks
with assigned effective properties aiming to replicate a high-fidelity model response (Durlofsky 2005). Multiscale methods are designed
to efficiently capture the large-scale behavior of the solution without resolving all the small-scale features (Hou and Wu 1997; Jenny
et al. 2003). The streamline simulation method (Batycky et al. 1997; Datta-Gupta and King 2007) is a Eulerian-Lagrangian approach
with implicit-pressure/explicit-saturation time approximation. In this approach, a full 3D transport solution is translated into a set of 1D
equations solved along streamlines.

All methods in the first category require an underlying geological characterization as a basis for model construction. However, there
are many cases when this information is not available or its reliability is questionable. Does it mean we cannot solve optimization or
history-matching problems efficiently? Methods from the second category help to resolve this issue. Data-driven methods assume the
building of a proxy model with a sufficient amount of degrees of freedom to accurately mimic a realistic reservoir response according
to its calibration to the production data. With frequent, sustained, and accurate data being fed into a reliable regression framework,
data-driven models can provide an accurate forecast for the given reservoir.

There are many data-driven approaches available in the industry, including the statistical data-driven model proposed by Jansen and
Kelkar (1997); reduced-order models (Cardoso et al. 2009); the capacitance/resistance model (Albertoni and Lake 2003; Yousef et al.
2005; Holanda et al. 2018); the flow-network model (Lerlertpakdee et al. 2014; Ren et al. 2019; Borregales et al. 2020; Kiærr et al. 2020)
where a complex 3D flow is represented as a set of 1D finite-difference reservoir models; the interwell numerical-simulation model (Zhao
et al. 2015, 2020) and the interwell numerical simulation model with front-tracking for 3D multilayer reservoirs (Guo and Reynolds 2019),
which applies a new Riemann solver derived from a convex-hull method that helps to solve the Buckley-Leverett problem with gravity and
allows for the inclusion of wells with arbitrary trajectories with multiple perforations; and many other alternative methods that rely on artifi-
cial intelligence (Mohaghegh 2009) and data fitting (Zubarev 2009). All of these approaches have specific advantages and limitations.

In this study, combining advantages of methods from both categories, we develop and validate a framework capable of performing an
accurate forecast using the historical field data while respecting underlying physical processes at the same time. Moreover, the exact grid
parameters or detailed reservoir geology are no longer the prerequisites of reservoir simulation and prediction using the data-driven
model. We focus our study on general applicability and validations of the proposed data-driven model methodology for realistic
reservoir-simulation problems with limited heterogeneity and gravitational effects. It is achieved through the utilization of the operator-
based linearization (OBL) technique (Voskov 2017) as implemented in the DARTS framework.

Methodology

In this section, we describe the main components of the proposed data-driven physics-based simulation framework. It includes the gen-
eration of a connectivity graph, governing equations, nonlinear solution, and training of the model.

Connectivity Graph for Proxy Model. To connect spatial well locations with production data, we need to represent the domain of
interest in a discrete form. The geometrical discretization of the reservoir is typically performed using the control-volume partitioning.
For our proxy model, we use unstructured partitioning and finite-volume discretization suggested by Karimi-Fard et al. (2004). This
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results in a spatial connectivity graph that forms a discrete representation of the proxy reservoir model in terms of connections between
control volumes and associated transmissibilities (Lim 1995). In the proposed data-driven approach, we adopt this technique for the par-
titioning of the reservoir domain with a coarse resolution.

The discretized model is defined using boundaries that are gridded utilizing the hierarchical approach: a volume (convex polyhedra)
is bounded by a set of surfaces (convex polygons), a surface is bounded by a series of curves (segments), and a curve is bounded by two
endpoints (nodes). The automatic open-source meshing software package Gmsh (Geuzaine and Remacle 2009) was used in this work
for the model gridding. Exact grid parameters and rock properties (e.g., permeability or exact layer geometry) are considered to be
unavailable; therefore, the corresponding initial guesses for control parameters are computed using averaged values derived from initial
evaluations of the reservoir. When those values are not known, they can be estimated using an analog field or common sense. Typical
unstructured mesh with corresponding well locations are shown in Fig. 1.

Governing Equations. In this subsection, we describe the set of governing equations required for a general compositional numerical
simulation. Transport equations for an isothermal system containing nc components and np phases can be written as

@

@t
/
Xnp

j¼1

xcjqjSj

 !
þr

Xnp

j¼1

xcjqjvj þ
Xnp

j¼1

xcjqjq
?
j ¼ 0; c ¼ 1;…; nc; ð1Þ

where phase velocity is described by Darcy’s law,

vj ¼ �K
krj

lj

ðrpj � cjrdÞ; ð2Þ

where / is rock porosity, xcj is mole fraction of component c in phase j, Sj is phase saturation, qj is phase molar density, vj is phase
velocity, q?j is phase rate per unit volume, K is permeability tensor, krj is relative permeability, lj is phase viscosity, pj is pressure of
phase j, c is gravity term, and d is depth (positive downward).

Eq. 1 can be written in a discrete form by applying the finite-volume discretization in space and backward Euler approximation
in time,
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where V is the volume of a control volume, L is the interface connecting a control volume with another gridblock, T is the transmissibil-
ity of interface L, and Dwl is the pressure potential between two gridblocks. For simplicity, gravity and capillarity are neglected in this
study. The fully implicit time approximation requires the flux term to be defined according to the nonlinear unknowns at the new time-
step (nþ 1), which introduces nonlinearity to the system of governing equations. We use the overall molar formulation proposed in
Collins et al. (1992). In this formulation, the primary nonlinear unknowns are pressure p and overall composition zc; therefore, the phys-
ical state x is completely defined by these variables. The derivatives of all properties in Eq. 3 with respect to nonlinear unknowns can
be found by applying several closing assumptions.

Next, the Jacobian and the residual are constructed during the linearization stage. It is required by the Newton-Raphson method,
where at each nonlinear iteration, the following linear system of equations is solved,

@gðxkÞ
@xk

ðxkþ1 � xkÞ ¼ �gðxkÞ; ð4Þ

where
@gðxkÞ
@xk

is the Jacobian matrix containing the derivatives with respect to primary unknowns, x is the vector of nonlinear unknowns

x ¼ fp; zcg, k is the nonlinear iteration step, and g is the residual. The conventional nonlinear-solution approach involves evaluation and
storage of all properties and their derivatives with respect to the nonlinear unknowns, which can be challenging for analytical derivatives
of complex physical problems or can introduce certain performance overhead in the case of numerical or automatic differentiation. A
new strategy for linearization was proposed in Voskov (2017) and will be briefly described in the next subsection.

Operator-Based Linearization. Eq. 3 can be written in a compact form as

gðxÞ ¼ VðnÞ/0ðnÞ
Dt

acðxÞ � acðxnÞ½ � þ
X

l

bl
cðxÞTabðnÞðpa � pbÞ þ ccðx; n; hÞ ¼ 0; ð5Þ
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Fig. 1—Typical grid for connectivity graph generated for the proxy model with corresponding border lines and well positions.
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where x defines the physical state, n represents spatial variation, /0 is initial porosity, and Tab is the geometric part of transmissibility.
All involved operators are defined as

acðxÞ ¼ 1þ crðp� pref Þ
� �X

j

xcjqjSj; ð6Þ

bcðxÞ ¼
X

p

xcj
krj

lj

qj; ð7Þ

ccðx; n; hÞ ¼
X

j

qjxcjqjðx; n; hÞ; ð8Þ

where cr is the rock compressibility, pref is initial reservoir pressure, and h is the vector of well controls.
In this form, the nonlinear system has a simplified description in terms of operators ac and bc, which depend only on the physical state

and are valid at any spatial location of a reservoir. When several regions for pressure/volume/temperature properties or special-core-
analysis laboratory properties are introduced in a reservoir, several sets of the operators can be used accordingly. The values of operators
are uniquely determined in the parameter space, the dimensionality of which is defined by the set of nonlinear unknowns p and zc.

The OBL method suggests applying interpolation for the evaluation of both operator values and their derivatives at any point in
parameter space instead of conventional direct evaluation. The approach uses a uniformly distributed mesh in parameter space. Then,
operator values are only computed at a limited set of supporting points in the parameter space and are saved in a table. When assem-
bling Jacobian and residual, we use the operator values from the table as supporting points. For every state , the multilinear interpolation
is applied to calculate the operator values and derivatives using the values of the supporting points. In this case, the expensive property
and its derivative evaluations required by the physical model are limited to a few supporting points in parameter space, which signifi-
cantly reduces the computational time. Moreover, operators are evaluated and added to the table adaptively only at those supporting
points in the discrete parameter space, which are required to perform interpolation in the course of simulation (Khait and Voskov
2018a). This approximated physical description allows for increased simulation performance, essential for gradient-optimization prob-
lems, while the approximation error remains under control.

An extensive study on applications of OBL for various subsurface problems can be found in Khait and Voskov (2017, 2018b), Kala
and Voskov (2020), and Wang et al. (2020), with practical suggestions on the choice of the range and resolution for interpolation
tables. We use the solution provided by the OBL approach for solving both high-fidelity and proxy-forward models. In this study, the
number of uniformly distributed interpolation points is 64 for both the pressure and the mole fraction of the component. The interpola-
tion ranges of pressure and mole fraction are [0, 200] and [0, 1], respectively.

Training of Proxy Model. The parameters of a model that are changed during the training stage are called control variables.
A gradient-based optimization algorithm adjusts the control variables to ensure that the data-driven proxy model response matches the
“true” response based on the historical recorded data, although it can have the potential of overfitting. In this study, we take the response
of the high-resolution model as the observed “true” response, and the data-driven model will be trained to match this response.

Model training is performed with the objective function J

JðuÞ ¼ 1

2
qðuÞ � qobs
� �T

C�1
D qðuÞ � qobs
� �

; ð9Þ

where u is the control-variable vector (e.g., transmissibility, well index, and so forth), qðuÞ is the vector of production/injection rates
from the proxy model (model response), qobs is the vector of observed rates, and CD is the covariance matrix. The covariance matrix is
derived from the observed rates of the reservoir-model ensemble. The training is performed through the solution of the constrained opti-
mization problem, which can be formulated as

min
u2Rn

JðuÞ; dðuÞ � 0; ð10Þ

where dðuÞ corresponds to the constraints vector. These constraint vectors contain the minimum and maximum of the control variables,
which define the lower and upper bounds of this optimization problem. To solve the constrained-optimization problem defined by
Eq. 10, a gradient-based optimization with the implementation of the sequential least-square quadratic programming (SLSQP) algo-
rithm was used (Kraft 1988). The reason that we choose the SLSQP approach instead of the family of Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithms is because of our experience. In our extensive tests, the Limited-memory BFGS algorithm for Bound con-
strained minimization (L-BFGS-B) implementation in the open-source SciPy library (scientific tools for Python) did not demonstrate
very stable behavior in proxy model training, while SLSQP performed more robustly. The SLSQP algorithm requires evaluation of the
gradients of the objective function with respect to control variables. Next, we will describe two strategies to compute these gradients.

Numerical Gradients. The most generic and easy-to-implement approach for the calculation of objective-function gradients with
respect to control variables is the numerical gradients approach. It yields the following form using the forward Euler approximation,

@J

@uk
¼ Jðuþ dkeÞ � JðuÞ

e
þ OðeÞ; ð11Þ

where dk is the Dirac delta function. The disadvantage of the evaluation of the numerical gradient is that it lacks robustness if the
choice of e is inappropriate. Because each derivative requires a forward simulation run, the numerical gradients method can be compu-
tationally expensive with the increase of the degrees of freedom. However, the numerical gradients approach is straightforward and
easy to implement because one can directly take the response of the simulator to calculate the gradients without modifying the source
code. As for the low efficiency of calculating gradients, it can be tackled to a certain extent with the parallel implementation of
numerical-gradient evaluation. This procedure is embarrassingly parallel because it boils down to independent evaluation of multiple
(one for each optimization parameter) objective function values.

For parallel implementation of numerical gradients evaluation, we used a Python process pool through the multiprocessing Python
package. Each worker process from the pool ran a single simulation, calculated the objective-function value, and returned it to the
parent process. Therefore, gradient evaluation speeds up on any system with one or several multicore processors. We also explore
another approach using adjoint gradients, explained next.
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Adjoint Gradients Formulation. The main idea of the adjoint method is introducing a Lagrange multiplier k to form a new aug-
mented objective function J that shares the identical extrema with the original objective function J. The augmented objective function
can be written as

J ðx;u; kÞ ¼ Jðx;uÞ þ kTgðx; uÞ; ð12Þ

where kT is the transposed form of Lagrange multipliers. The extrema of Eq. 12 locate either at the boundary of the feasibility region or
at stationary points. For the latter case, the first-order derivatives with respect to k; x, and u should be equal to zero, which leads to the
set of equations

J k ¼ gðx;uÞ ¼ 0; ð13Þ

J x ¼ kTgxðx; uÞ þ Jxðx;uÞ ¼ 0; ð14Þ

J u ¼ kTguðx; uÞ þ Juðx; uÞ ¼ 0; ð15Þ

where the notations with subscripts k; x, and u mean the derivatives with respect to the corresponding variables. As can be seen from
Eq. 13, the derivative of J with respect to k is actually the governing equation of the reservoir, so that this equation is already satisfied.
Next, k can be computed using Eq. 14. After applying the values of k in Eq. 15, the adjoint gradient can be obtained and passed to the
optimizer to perform history matching.

Comparisons of the accuracy and performance of both methods can be found in Appendix A. To ensure that the gradient optimiza-
tion process stays in the physical range, a large penalty term was imposed for nonphysical regions. Moreover, the optimization was
penalized whenever the nonlinear convergence of the proxy model was not reached because of the nonphysical combination of parame-
ters. Also, the scaling of the objective function and vectors of optimization parameters was implemented in the training procedure to
preserve reliable performance.

Governing Relations for Control Variables

Because the training is performed by means of constrained optimization, every control variable is bounded by the minimum and maxi-
mum values. Using the bounds, every control variable is scaled to the interval ½0; 1� because some of the regression algorithms are sensi-
tive to the scale of a problem. Here, we briefly describe how the initial guess and constrained intervals for control variables can be
calculated using the available data and how they are included in the data-driven model.

Rock-Fluid-Property Variables. We used a modified Brooks-Corey model (Brooks and Corey 1964) to derive rock and fluid property
variables for a multiphase-flow representation in the data-driven proxy model. The modified Brooks-Corey model can be expressed as

kro ¼ ke
ro 1� S�w
� �no ; ð16Þ

krw ¼ ke
rw S�w
� �nw ; ð17Þ

S�w ¼
Sw � Swc

1� Swc � Sor
; ð18Þ

where S�w is the normalized or effective water saturation; krw is the water relative permeability; ke
rw is the endpoint water relative per-

meability; ke
ro is the endpoint oil relative permeability; nw, no are the exponents for water and oil, respectively; Sw is water saturation;

Swc is residual or connate water saturation; and Sor is the residual oil saturation.
The relative permeability is included in the bc operator, where it is multiplied by the

qj

lj

term of the corresponding phase j, as can be
seen in Eq. 7. Therefore, the vector of six rock-fluid property variables was defined as

vn ¼ fSor; Swc; no; nw; k
e
rwqw=lw; k

e
roqo=log; ð19Þ

subjected to the constraints

vn;min ¼ f0:0; 0:0; 0:00001; 0:00001; 100; 10g; ð20Þ

vn;max ¼ f0:49; 0:49; 5; 5; 3000; 2000g: ð21Þ

The first four parameters are unitless; the units of the last two are ½s� m�2�. These constraints were obtained from the physical inter-
pretation of control variables.

Reservoir-Property Variables. In reservoir simulation, the general unstructured grid is usually characterized by a spatial connectivity
graph represented as a connection list (Lim 1995). It involves the specification of the connections between gridblocks and associated
transmissibility of those connections. The transmissibility Tij between gridblocks i and j can be defined for a general unstructured grid
(Karimi-Fard et al. 2004) as

Tij ¼
rirjX
n

rn

; ri ¼
Aki

Di
; ð22Þ

where A is the interface area between two gridblocks, Di is the distance from the pressure node to the interface along the line connecting
two pressure nodes, and ki is the gridblock permeability.

Transmissibility directly affects the flow dynamics in the reservoir because it is involved as a constant multiplier in the term Tij of
the convection operator in Eq. 5. In our approach, the reservoir property variables effectively change the transmissibilities in the proxy
model. As the initial guess, they can be defined with two-point flux finite-volume discretization on an unstructured grid using initial
knowledge about the reservoir properties (rock permeability) and approximate geometric parameters (thickness and net-to-gross ratio).
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Note that transmissibility is a linear multiplier between the pressure drop and the flow rate. However, it still remains highly nonlinear with
respect to the objective function. The reason that we adjust transmissibility instead of permeability is that the high-fidelity model used in
this study is defined on a structured grid , while the proxy model uses an unstructured grid. For an unstructured grid, it is relatively easy to
make the reservoir volume close to the reservoir volume of the high-fidelity model for the sake of model validation and a fair comparison.
Therefore, we take the pore volume and average thickness as the bases of the proxy model, and then adjust the other properties in the course
of proxy model training. Nevertheless, the porosity can also be chosen as a control variable and it can be adjusted in the course of training.

In our approach, the number of reservoir property parameters equals the number of connections. Through the regression course, the
reservoir property variables were constrained by vl;min ¼ 1 cp�m3/d/bar and vl;max ¼ 50; 000 cp�m3/d/bar.

Well-Property Variables. A well index was proposed by Coats et al. (1974) in the steamflood simulation to relate the gridblock pres-
sure/rate to the wellbore flowing pressure/rate. The equation that relates a well and a reservoir gridblock under the assumption of a
single-phase flow can be written as

qw
i ¼

Tw
i

l
Pi � Pw

i

� �
; ð23Þ

where qw
i is the well rate into (out of) the block i, Tw

i is the well index of the gridblock i intersected by a well, Pi is the gridblock pres-
sure, and Pw

i is the well bottomhole pressure (BHP).
Once it is determined in single-phase assumptions, it is also applied to a multiphase flow. Instead of using an arbitrary initial guess

of the well index, we use the Peaceman (1983) equation (Eq. 24) to calculate the well index using a high-fidelity structured grid and
then apply them as the initial guess in the proxy model. Although the well-index values calculated using the Peaceman equation might
not be true for the proxy model, they will be adjusted and updated in the course of training.

Tw
i ¼

2pDz
ffiffiffiffiffiffiffiffi
kxky

p
ln ro=rw þ S

; ð24Þ

where

ro ¼ 0:28
ky=kx

� �1=2
Dx2 þ kx=ky

� �1=2
Dy2

h i1=2

ky=kx

� �1=4 þ kx=ky

� �1=4
: ð25Þ

Similar to transmissibility, a well index can be seen as a representation of the linear parameter between the pressure difference and the
rate. The main difference of a well index is that it is involved in the hc operator, which directly relates the reservoir pressure with the
wellbore pressure. Besides, the wellbore pressure can be used as either a control or a constraint in a simulation. In our study, the set of
well property variables consisted of Nwell well indices. They were constrained by a minimum value of vw;min ¼ 1 cp�m3/d/bar and maxi-
mum value of vw;max ¼ 1; 000 cp�m3/d/bar in the training stage.

Validation of Proposed Methodology

We validate the proposed data-driven approach using two ensembles of high-fidelity fluvial models. For each model of each ensemble,
two reduced-order models are constructed. The first model is built through the conventional flow-based upscaling (Chen and Durlofsky
2006), while the second uses the proposed data-driven approach. The high-fidelity models are considered as reference models to gener-
ate the observation true data of the oil rate. The data-driven model is then trained with the true data using constant transmissibilities and
well indices as an initial guess. Next, both the results of the upscaled model and the data-driven model are compared with the high-
fidelity model for the entire ensemble to check their accuracy. All models are under the assumption that fluid and rock physics are
known and fixed except for transmissibility and well indices. The same set of parameters was also used for the rest of the model tests.
These parameters are described in Appendix B.

Generation of Ensemble of High-Fidelity Fluvial Models. The stochastic ensemble of fluvial models was used to illustrate the accu-
racy of the proposed data-driven methodology. High-fidelity-model ensembles were generated by two different modeling approaches:

• FlumyVR (Armines, Paris, France) (Grappe et al. 2016), or process-based models using Flumy software (Fig. 2a)
• Multipoint statistics (MPS) models (Strebelle and Levy 2008) (Fig. 2b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 2—Porosity distributions of a (a) typical high-fidelity model realization generated by process-based modeling approach with
Flumy software and (b) stochastic modeling approach using MPS.
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This results in completely different model complexity between the ensembles. Each high-fidelity ensemble model has a size of
100� 100 grid cells (cell dimensions are 10� 10� 10 m). The models use a simple five-spot vertical well setup. One injector (blue dot
I1 in Fig. 2) is located in the middle of the reservoir and surrounded by four producers (red dots P1, P2, P3, and P4 in Fig. 2) located at the
reservoir edges. Injection wells are modeled by setting a BHP control of 250 bar plus uniformly distributed random perturbations ranging
from 1 to 30 for every 200 days, and production wells are set at a fixed BHP control of 100 bar. The simulation was limited by 4,000 days.
The main difference between models generated by MPS and Flumy is the main paleoflow orientation ranging from southwest/northeast to
west/east. Besides, the Flumy model has a limited statistical variability compared with the MPS model (de Hoop et al. 2018).

A typical porosity distribution of the high-fidelity realizations from MPS and Flumy ensembles can be seen in Fig. 2. It is clear that
the model generated by MPS is more complex because the phase can flow only through distinct channels, which are usually smaller-
sized than the coarse gridblock. In contrast, the model generated by Flumy has many overlaying channels providing multiple possible
flow paths. Once the coarser proxy models are trained to match the historical field data of the Flumy or MPS models, it can be seen that
the trained proxy model of Flumy is easier for capturing the reservoir dynamics on a coarser scale. More details regarding the high-
fidelity ensemble generation, upscaling, and simulation properties can be found in de Hoop et al. (2018).

Generation of Upscaled Proxy Models. Upscaled proxy models were generated using a global flow-based upscaling technique, which
involves solving the fine-scale incompressible single-phase pressure equation and using it to obtain coarse-scale transmissibility,

�r � K

l
r P� qgð Þ

� �
¼ qwell: ð26Þ

Under the two-point flux approximation, Eq. 26 can be written in the discrete form, in which the coarse properties can be evaluated,

qc
x

� �
iþ1=2;j

¼ Tc
x

� �
iþ1=2;j

Pc
i;j � Pc

iþ1;j

	 

; ð27Þ

where qc
x

� �
iþ1=2;j

is the coarse flux across the interface iþ 1=2; j, simply defined as the integrated fine-scale fluxes across the coarse

interface; Tc
x

� �
iþ1=2;j

is the coarse transmissibility; and (Pc
i;j and Pc

iþ1;j) are the coarse pressures obtained by arithmetic averaging of the

fine-scale pressures contained in each coarse-scale block, respectively. A similar approach for a flow-based upscaled well index for
well in block i can be derived, given by

Tw
i ¼

qi

Pc
i;j � Pw

: ð28Þ

The big advantage of the global flow-based upscaling technique is its computational efficiency and accuracy. However, in highly
heterogeneous reservoirs, it has one downfall: The resulting transmissibility values might be large or even negative (Chen and Durlof-
sky 2006). In this case, we correct the value of transmissibility at the nearest bound (the upper or lower bound), and then assign new
pressure values to the neighbor blocks by requiring that Darcy’s law is fulfilled. However, the correction of transmissibility can cause
new pressure differences between the neighbor blocks. Hence, the upscaling procedure of computing the transmissibility must be
applied in an iterative fashion until the criteria are satisfied. This iterative upscaling procedure is generally used to obtain a positive def-
inite transmissibility matrix, which is typically reached within five iterations (Holden and Nielsen 2000).

Each high-fidelity model was scaled up laterally by 100 times (10� 10) in the x- and y-direction, which means that the upscaled model
has the size of 10� 10 grid cells (cell dimensions are 100� 100� 10 m). The global upscaling with specific well conditions used in the
reference model was applied, and details can be found in de Hoop et al. (2018). The resulting upscaled transmissibility, porosity, and well
index were used to initialize the upscaled proxy model. Well controls and simulation time were kept identical to the high-fidelity model.
Moreover, the same upscaled porosity was used in the data-driven proxy model to ensure that pore volumes match between models.

Generation of Data-Driven Models. Data-driven proxy models were generated with the same grid and well configuration as for
upscaled proxy models. The initial guess for transmissibilities and well indices of the data-driven proxy model was chosen as a uniform
distribution of 100 and 200 cp�m3/d/bar.

Then, data-driven models are trained using the observation true data. The regression was limited by 100 iterations. Some cases con-
verged before reaching the imposed maximum. The training of a single realization takes from 20 minutes to 1 hour on a single cluster node
with two IntelVR XeonVR (Intel Corporation, Santa Clara, California, USA) central processing units (CPUs) with E5-2650 v3 processors.

Comparison between Upscaled and Data-Driven Proxy Models. For the correct comparison of the data-driven and upscaled model
response, we have ensured consistency between model volume, physical properties, and well controls. Those parameters are identical
because the upscaling procedure is sensitive to the boundary conditions. We compare a stochastic response of the trained proxy results for
two data-driven models with conventional flow-based upscaled models to validate the accuracy of the proxy modeling methodology.

Fig. 3 illustrates the total water rate of all 100 realizations for high-fidelity, data-driven proxy, and upscaled proxy cases. It can be
seen that the stochastic response of the high-fidelity and data-driven models have a reasonably good agreement for both mean and indi-
vidual realization water rates, whereas the upscaled model rates matched worse. Fig. 4 shows the P10, P50, and P90 quantile response
from Fig. 3. It shows that the data-driven model has a better agreement with the response of the high-fidelity model compared with the
response of the upscaled model. The oil and water mean errors for the data-driven and upscaled models are shown in Table 1.

Then, the same test was performed for a more complicated model ensemble build with the MPS modeling approach. The water rates
and the corresponding quantiles of all 100 realizations for the high-fidelity, data-driven proxy, and upscaled models are shown in
Figs. 5 and 6, respectively. The oil and water mean errors for the data-driven and upscaled models are shown in Table 2. Based on
those results, one can conclude that errors for both types of proxy models are higher for the MPS ensemble than the Flumy ensemble.

This result is expected because it is much more difficult to find a value for the effective property on a coarse scale that will accu-
rately represent complex fine-scale features (e.g., small and poorly connected channels, which can be seen in Fig. 2b) typical for an
MPS model. On the contrary, the channels in the Flumy model overlap each other, creating more distinct and rough flow paths, which
are easier to capture on a coarse scale. The overall accuracy of the data-driven proxy model is still significantly higher than that for the
upscaled proxy model. This is because the upscaled model uses the reduced-order approximate properties, while the data-driven model
is directly trained by the response of the reservoir. For example, the scaling up of some reservoir properties (e.g., porosity and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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permeability) is performed using averaging methods. In this case, some accuracy might be lost using more homogenized properties to
characterize the original heterogeneity of the model. Besides, we only apply well-established single-phase upscaling, which has a lim-
ited accuracy in a multiphase-flow situation. The examples of Flumy and MPS confirm the applicability of the data-driven approach for
uncertainty-quantification analysis when a reliable and accurate high-fidelity model is not available.

Fig. 3—Total water rate for the high-fidelity (reference) model with the size of the 100 3 100 gridblock for the hundred Flumy realiza-
tions, together with the responses of data-driven and upscaled models (10 3 10). Gray lines indicate the rates from a single-model
realization, whereas the red, blue, and green lines indicate the quantile response of the ensemble (i.e., the P10, P50, and P90).

Fig. 4—P10, P50, and P90 quantile response of the high-fidelity (reference), data-driven, and upscaled models for 100 Flumy realizations.

Model

Water Rate

(%)

Oil Rate

(%)

Data-driven model 1.5 5.8

Upscaled model 13.0 10.6

Table 1—Mean errors of the water and oil rates of the Flumy model.
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Fig. 5—Total water rate for the high-fidelity (reference) model with the size of the 100 3 100 gridblock for 100 MPS realizations,
together with the responses of data-driven and upscaled models (10 3 10).

Fig. 6—P10, P50, and P90 quantile response of the high-fidelity (reference), data-driven, and upscaled models for 100
MPS realizations.

Model

Water Rate

(%)

Oil Rate

(%)

Data-driven model 4.5 5.9

Upscaled model 19.6 12.0

Table 2—Mean errors of the water and oil rates of the

MPS ensemble.
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Discrete Well Affinity Proxy Model for a Realistic Field

In this section, we provide the description of a realistic field used in this study. Next, we describe a generation of the discrete well
affinity (DiWA) proxy model and illustrate the performance of the proposed methodology.

High-Fidelity and Proxy Models. We analyze the performance of the proposed framework using a reservoir model of the Brugge
Field (Peters et al. 2010). It is a synthetic model developed as a benchmark for optimization of reservoir production. The structure of
the Brugge Field consists of an east-west elongated half-dome with a large boundary fault at the northern edge. The model has 30 wells
(20 producers and 10 injectors; see Fig. 7a) located in the peripheral waterdrive. There are more than 100 realizations of this model. A
single realization encoded as FY-SS-KP-8-73 is used as the true high-fidelity model in this study, and 40 other realizations with the KP
code are taken for the high-fidelity ensemble. A covariance matrix can be obtained using these 40 realizations to regularize the objective
function during history matching. The true data for history matching were obtained by a 10-year-long simulation with monthly varying
BHP well controls.

Only the basic information about the field was used for the DiWA proxy model, and then it wass trained using the observed true data
generated from high-fidelity model. For example, the reservoir boundaries were approximated using several piecewise linear segments,
as can be seen in Fig. 7b. Next, the unstructured mesh was generated and extruded by an average value of reservoir thickness. The two-
point stencil was used for the discretization of an unstructured grid to create the discrete connectivity graph for the proxy model.

The mesh was constructed using two regions by Gmsh software: an outer with coarser meshing and an inner with finer meshing, as
seen in Fig. 7b. This is done to preserve accuracy in the area where the main flow occurs, whereas the outer cells were made larger to
reduce the number of degrees of freedom along with the computational load. There are no significant flow dynamics in that area, hence
the coarsening of that zone does not significantly affect simulation accuracy. The resulting performance of the proxy (coarse grid)
model vs. the high-fidelity (original fine grid) model is an improvement of approximately two orders of magnitude (0.46 vs. 97 seconds
for a single run of forward simulations). This performance is further enhanced using parallel implementation of numerical-gradient cal-
culations discussed above, which brings the proxy model execution to approximately 20 runs per second.

Generation of Proxy Ensemble. Here, we introduce the response of the proxy ensemble to regularize the objective function for the
training procedure. The initial guesses for control variables were calculated using a uniform permeability of k¼ 1,000 md and
governing equation described in Eq. 1. The vector of rock-fluid property parameters vn ¼ f0:15; 0:25; 4; 3; 1800; 300g and vw was set
to 200 cp�m3/d/bar for all wells. The total volume of the proxy model was adjusted with model thickness, porosity, and initial water sat-
urations of individual cells to match fluid-in-place volumes of the high-fidelity model. In a more general case, these parameters can be
adjusted in the training period.

Obtained optimal reservoir property and rock-fluid property parameters are used as the basis for proxy model ensemble generation,
where we have applied a random perturbation of parameters using a normal distribution with 20% variance. The results of the training
stage are shown in Fig. 8. A good data fitting was obtained using the data-driven proxy model. However, some periods were not
matched very well, which can be seen between 1,000 and 3,000 days for some wells. This is related to an insufficient number of degrees
of freedom in the proxy model, which results in a limited variety of possible flow distribution.

Training and Forecast. Fig. 9 illustrates a 2-year production forecast of the Brugge model using the data-driven prior-ensemble train-
ing. For fair analysis of the model, we have generated a new set of well controls, different from the one used during training, with
random perturbations within 20% of 100 bar for producers and 120 bar for injectors. The obtained results indicate a relatively accurate
rate prediction for all 20 production wells. The mean error for the training period is calculated using Eq. 29 and is equal to 1.83%,
whereas the prediction-period error reaches the value of 3.18%.

ME ¼

XN

i¼1

Qi
o;opt � Qi

o;truth

Qi
o;truth

�����
������ 100

N
; ð29Þ

where N is the number of timesteps; Qo;opt is the oil rate of optimized proxy model; and Qo;truth is the oil rate of true data generated
from high-fidelity model.

For comparison, the data-driven model training can be performed using a regularization with a more accurate high-fidelity prior
ensemble available for the Brugge model. It can be seen from Fig. 10 that the high-fidelity prior ensemble has less variation than the
proxy model-based prior ensemble. Consequently, this results in a smaller variation in the covariance matrix and is more constraining
for the objective function. The mean error for the training period is calculated to be equal to 1.67% using Eq. 29, whereas the
prediction-period error came to 4.27%. By comparison, there is no large improvement in terms of model accuracy when trained on the
high-fidelity prior ensemble, whereas the time to generate its ensemble is more significant. Besides, multiple realizations of the high-
fidelity model are usually not feasible for realistic situations when the detailed geological model is not available.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 7—(a) High-fidelity Brugge model used to generate the true model response (139 3 4839 gridblocks). (b) Unstructured proxy
model mesh with 283 elements: Red cells indicate a producing well, and white cells indicate an injection well.
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It was observed that the accuracy of the proxy model increases with the increase of data density for each well. In cases when the
well rate is small compared with the other wells, the output from those wells is less informative for the regression algorithm. Hence, it
fails to adjust parameters in the proxy model for those wells with the same quality than for others. Moreover, the number of regression
parameters should be chosen wisely because the model is prone to overfitting. A superb training can be achieved in this case, but the
model will struggle to give an accurate prediction.

Fig. 9—Oil production rates obtained with the history-matched data-driven proxy model. Gray lines are oil production rates from
multiple prior realizations of the high-fidelity model, the black line is a true response, and the red line is the history-matched esti-
mated data-driven proxy response.

Fig. 8—Oil production rates obtained with the history-matched data-driven proxy model. Gray lines are oil production rates from
the prior proxy ensemble, the black line is a true response, and the red line is the history-matched estimated data-driven
proxy response.
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Enrichment of DiWA Proxy Model

In this section, we extend the proposed data-driven framework to more complex situations. The reservoir models with multiple flow
regions and the enrichment around nonmatching wells are investigated and applied in data-driven framework. Besides, more frequent
changes of BHP control are introduced in the course of oil recovery to increase the complexity of the training.

We take the same Brugge model as earlier. The initial guess for reservoir property variables is calculated using a uniform per-
meability of k¼ 1,000 md. The initial guess vector of rock-fluid property parameters is f0:15; 0:255; 4; 3; 1800; 276g, and the well
property variables are set as the same with high-fidelity model. The observed true data are generated using the high-fidelity model run-
ning for 3,720 days. For every 120 days, the BHP controls of the injection wells are set as 170 bar plus uniformly distributed random
perturbations ranging from 1 to 30, and the BHP controls of the production wells are set at 130 bar minus uniformly distributed random
perturbations ranging from 1 to 30. The first 3,000 days are chosen as the training period to train the proxy model. The rest of the
720 days are considered as the forecast period to test the forecast accuracy of the trained proxy model.

Data-Driven Model with Multiple Flow Regions. To increase the degrees of freedom of the DiWA proxy model and investigate how
the rock-fluid property variable affects the performance of model training, we introduce more flow regions to the Brugge Field model.
The rock-fluid property variables vary in different regions, while the grid cells inside each region share the same set of rock-fluid
property variables. Fig. 11 shows the examples in which Brugge Field is divided into two and four regions.

When training the proxy model, the gradients of the reservoir property variable (i.e., transmissibility) and the well property variable
(i.e., well index) are calculated using the adjoint method, whereas the gradients of the rock-fluid property variable are calculated using
numerical gradients. We were using a desktop station with Intel Core i7-8556U for all the experiments here. The oil rates of the trained
proxy models and the observed true data are shown in Fig. 12. The mean error, the CPU time of model training, the number of the con-
trol variables, and the number of iterations of these three models are shown in Table 3.

As can be seen in Fig. 12, some of the wells do not have a good match with the observed true data if a single region is applied in the
proxy model. In this case, we introduced more flow regions so that the number of rock-fluid property variables is enriched. However,
the mean errors shown in Table 3 indicate that the enrichment of the number of the rock-fluid property variables does not guarantee the
improvement of training performances, whereas the CPU time for training the model increases with the increase of the
control variables.

Fig. 10—Oil production rates obtained with the history-matched data-driven proxy model. Gray lines are oil production rates from
multiple prior realizations of the proxy model, the black line is a true response, and the red line is the history-matched estimated
data-driven proxy response.

Fig. 11—Region division of Brugge Field model. The cells with the same color share the same set of rock-fluid property variables.
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Enrichment around Nonmatching Wells. It is noticed that some production wells (e.g., Wells P11, P14, P15, and so forth) do not
have a good match with the observed true data in Fig. 12. In this subsection, we test an enrichment in the degrees of freedom around
those nonmatching wells. In this procedure, we take the midpoint of the edges of the original block where the nonmatching well is
located, and then use those midpoints to split the original block into four new triangles. The well is relocated in the central triangle.
This procedure increases the degrees of freedom (transmissibilities) of the proxy model. Two cases are introduced in this subsection to
investigate the performance of the method of enrichment around nonmatching wells. Models are shown in Fig. 13.

The adjoint method is also implemented for the training of the enriched models in this subsection to improve the computational effi-
ciency of gradient evaluation. The oil rates of the trained proxy models and the observed true data are shown in Fig. 14. The mean
error, the CPU time of model training, the number of the control variables, and the number of iterations are shown in Table 4.

Fig. 12—Oil rates of the trained proxy models and the observed true data. The black curves represent the observed true data. The
red, orange, and green curves show the results of the model with one, two, and four regions, respectively. The vertical lines sepa-
rate the training and forecast periods.

Flow

Region

Training

(%)

Forecast

(%)

CPU Time

(minutes)

Number of

Control Variables

Number of

Iterations

One region 35.9 31.1 48.2 430 100

Two regions 42.9 36.6 54.1 436 100

Four regions 40.2 24.5 52.7 448 45

Table 3—Mean error of the training and forecast periods, the CPU time of model training, the number of control variables, and the number of

iterations for the data-driven models with multiple regions.

Fig. 13—Enrichment around nonmatching wells. The left model contains the enrichment around Well P11. The right model con-
tains the enrichment around Wells P11, P14, and P15. After the enrichment, the new well positions are located in the central
red triangles.
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As can be seen in Fig. 14 and Table 4, the oil-rate curves of the enriched models (orange and green curves) almost overlap with the
true data (black curves). The mean errors of both the training and forecast period decreased. The results indicate that the enrichment
around nonmatching wells can improve the accuracy of the DiWA model.

Conclusions

In this work, a physics-based data-driven framework was developed using the DARTS platform. The resulting DiWA strategy was eval-
uated on two synthetic data ensembles and showed good prediction accuracy for a significantly reduced model size. Both training and
prediction accuracy are within a satisfactory level, with good modeling of all well production rates. In addition, the data-driven proxy
methodology was compared with a conventional flow-based upscaling technique and demonstrated an improved accuracy within both
stochastic ensembles.

The DiWA framework was examined on a more realistic Brugge Field data set. The proposed data-driven methodology demonstrates
good predictive performance for training using synthetic data generated from the high-resolution Brugge Field. We compared the results
of optimization with two types of covariance matrices using a high-fidelity prior ensemble and a data-driven proxy prior ensemble. Both
approaches behave equally accurately, while the proxy-based prior ensemble is more feasible in practical applications. To investigate
how the enrichment of the number of control variables will affect the performance of history matching, we tested the same proxy models
with multiple flow regions and others with enrichment around nonmatching wells. The results show that both types of enrichment help to
reduce the mean errors of both the training and forecast periods and therefore improve the performance of history matching. This frame-
work is also capable of handling a more complex 3D model with multiple layers, which will be investigated in our future research.

The proposed data-driven DiWA method offers a great opportunity to obtain a fast and reliable framework for solving many subsur-
face engineering problems, as was demonstrated in this work. The rising popularity of those techniques indicates their potential in a
modern data-dependent world. There is still a wide range of methods that can be coupled with data-driven approaches to increase pre-
diction capabilities and incorporate data-driven models into widely accepted engineering practice. The main advantage of the proposed
approach is that it is capable of providing accurate and reliable production forecast on a daily basis even though the exact geological
information is not available. Besides, it also has the potential for a natural extension of the proxy model for more complex production
scenarios and physical processes. For example, in the last section of this study, we have shown that this framework is capable of

Fig. 14—Oil rates of the trained proxy models and the observed true data. The black curves represent the observed true data. The red,
orange, and green curves show the results of the model without enrichment, the model with enrichment around Well P11, and the
model with enrichment around Wells P11, P14, and P15, respectively. The vertical lines separate the training and forecast periods.

Enrichment

Training

(%)

Forecast

(%)

CPU Time

(minutes)

Number of

Control Variables

Number of

Iterations

None 35.9 31.1 48.2 430 100

P11 9.3 6.6 38.7 436 100

P11, P14, P15 6.8 5.0 65.8 448 100

Table 4—Mean error of the training and forecast periods, the CPU time of model training, the number of control variables, and the number of

iterations for data-driven models with enrichment around nonmatching wells.
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extending to the cases with multiple flow regions, more frequent changes of BHP control, enrichment around nonmatching wells. Apart
from these, more components and phases can be introduced in this framework. Finally, with appropriate geological information avail-
able, the proposed proxy methodology can be used for better characterization of petrophysical data.

Nomenclature

A ¼ interface area between neighboring gridblocks, m2

cr ¼ rock compressibility, bar�1

CD ¼ covariance matrix
d ¼ depth (positive downward), m
D ¼ distance from the pressure node to the interface along the line connecting two pressure nodes, m
g ¼ residual of governing equation
J ¼ objective function
J ¼ augmented objective function
krj ¼ relative permeability of phase j
kro ¼ oil relative permeability
ke

ro ¼ endpoint oil relative permeability
krw ¼ water relative permeability
ke

rw ¼ endpoint water relative permeability
kx ¼ permeability in x-direction, md
ky ¼ permeability in y-direction, md
K ¼ permeability tensor, md
L ¼ interface connecting two neighboring gridblocks

nc ¼ number of component
no ¼ exponent for oil
np ¼ number of phase
nw ¼ exponent for water

Nwell ¼ number of wells
p ¼ phase pressure, bar

Pc ¼ coarse pressures obtained by arithmetic averaging the fine-scale pressures, bar
Pw ¼ well bottomhole pressure, bar
q* ¼ phase rate per unit volume, 1/d
qc ¼ coarse flux across the interface of two neighboring gridblocks, m3/d
qw ¼ well flow rate into (out of) the block, m3/d
q ¼ phase rate, m3/d

qobs ¼ observed phase rates, m3/d
ro ¼ equivalent well-block radius, m
rw ¼ well radius, m
S ¼ phase saturation

Sor ¼ residual oil saturation
Sw ¼ water saturation

S*
w ¼ normalized or effective water saturation

Swc ¼ residual or connate water saturation
t ¼ time, day

Tij ¼ transmissibility, cp � m3/d/bar.
Ti

w ¼ well index, cp � m3/d/bar
u ¼ control variables
v ¼ phase velocity, m/d
V ¼ volume of a control volume, m3

xc ¼ mole fraction of component c in phase j
zc ¼ overall composition
a ¼ operator about accumulation term
b ¼ operator about flux term
c ¼ gravity term
d ¼ Dirac’s delta function

Dw ¼ pressure potential, bar
Dx ¼ block size in x-direction, m
Dy ¼ block size in y-direction, m
Dz ¼ block size in z-direction, m

e ¼ perturbation to control variables
n ¼ spatial variation
h ¼ well controls
k ¼ Lagrange multiplier
l ¼ phase viscosity, cp
q ¼ phase molar density
/ ¼ porosity

/0 ¼ initial porosity
x ¼ physical state
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Appendix A—Comparison of Numerical and Adjoint Gradients

To validate the adjoint method and investigate the improvement of the gradient-calculation efficiency, the adjoint gradients are com-
pared with the numerical gradients using five models with different grid resolutions. The models are shown in Fig. A-1. The angles h
between adjoint gradient and numerical gradient are calculated using

h ¼ arccos
grada � gradnum

kgradak � kgradnumk
; ðA-1Þ

where grada and gradnum are the vectors of the adjoint gradient and numerical gradient, respectively.

For each model in Fig. A-1, 100 different realizations are generated by uniformly sampling the permeability of cells from 1 to
100,000 md. Later, the adjoint gradients and numerical gradients are computed and compared for all 100 realizations of each model.
The mean values of the angle and the CPU time for computing the adjoint gradients and numerical gradients for five models are shown
in Table A-1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. A-1—Five models with different grid resolutions: Model 1, Model 2, Model 3, Model 4, and Model 5.

Model

Angle h
(degrees)

Number of

Transmissibility

and Well Index

tgradnum

(seconds)

tgrada

(seconds) tgradnum
/tgrada

1 3.49 424 1,711.28 3.75 456

2 3.33 478 2,214.77 4.23 524

3 3.60 599 3,483.75 5.43 642

4 3.24 741 5,376.97 6.79 791

5 4.34 983 10,312.31 9.69 1,064

Table A-1—Angles between adjoint gradients and numerical gradients and the CPU time of

computing gradients.
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The third column of Table A-1 shows the total number of control variables of each model, which are transmissibility and well index.
tgradnum

and tgrada
are the mean CPU times of computing the gradients by using the adjoint method and the numerical method, respec-

tively. As can be seen in Table A-1, the angle h for the five models is approximately 3.6�, which is small and therefore validates the
values of the adjoint gradient. This also indicates that the adjoint gradient can be used to test if the choice of e for calculating the numer-
ical gradient as mentioned in Eq. 11 is appropriate. This is because the adjoint method avoids introducing an extrasmall perturbation e
to calculate the gradient. Plotting the number of control variables vs. CPU time from Table A-1 is shown in Fig. A-2. Fig. A-2 indicates
that if more control variables are introduced, a higher efficiency of gradient calculation using the adjoint method can be obtained com-
pared with the numerical method.

Fig. A-2—CPU time for computing the adjoint method and the numerical method.

Appendix B—Physical Modeling Properties

Table B-1 introduces the main physical properties used for comparison among high-fidelity, upscaled, and data-driven models.

Phase Oil Water

Fluid compressibility, cj (1/bar) 1.34�10�4 4.35�10�5

Fluid densities, qj (kg/m3) 897.0 1002.8

Residual saturation, Sjr 0.15 0.225

Endpoint relative permeability, Krje 0.4 1.0

Saturation exponent, nj 3.0 3.0

Viscosity, lj (cp) 1.294 0.320

Table B-1—Physical properties.
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