
Mapping hyperbolic space for the virtual reality game ”Holonomy”

A. de Vries 1

Supervisor(s): M. Skrodzki 1 R. Bidarra1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: A. de Vries
Final project course: CSE3000 Research Project
Thesis committee: M. Skrodzki, R. Bidarra, G. Smaragdakis

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Short PaperCSE3000 – Research Project – Final Report (2023)
Delft University of Technology
M. Skrodzki (Responsible professor), R. Bidarra(Supervisor) and G. Smaragdakis(Examiner) (Editors)

Mapping hyperbolic space for the virtual reality game "Holonomy"

A. de Vries 1

1TU Delft, The Netherlands

Abstract
Non-Euclidean spaces are spaces that do not satisfy all of Euclid’s postulates. An example of such a space is hyperbolic space.
In this paper, a method is discussed to draw a tessellation of hyperbolic space in a manner that fits with the virtual reality game
"Holonomy", a game which takes place in hyperbolic space. The main result shows that the new approach is better in terms of
simplicity than the old approach and is able to draw the game world more faithfully than the old approach. The features of the
new approach could still be significantly expanded upon.

1. Introduction

Recent developments have made it possible to immerse oneself
into non-Euclidean spaces, i.e. spaces that do not satisfy all of
Euclid’s postulates. A common example of a non-Euclidean
geometry is hyperbolic geometry. Hyperbolic geometry was
not fully mathematically described until only the 19th century,
when mathematicians such as Gauss, Schweikart, Lobachevsky
and Bolyai among others published studies on the topic of non-
Euclidean geometries [Cox98]. In short, Hyperbolic geometry is
the geometry where the fifth postulate of Euclid’s postulates is
negated [Ben01]. This results in a geometry where objects live on
a surface that curves away from the origin, as opposed to a flat
Euclidean surface. Whenever hyperbolic geometry is introduced, it
is normal to think of it as a very abstract concept, how would one
even imagine what it is like to live in a curved space? This makes it
interesting to visualize the effects of hyperbolic geometry with the
use of virtual reality, since that makes understanding its unintuitive
properties more intuitive to understand. For example, one such
property that is interesting to illustrate is the effect of Holonomy,
which is the idea that the world rotates around an observer when
they move through it, even though the observer keeps facing in the
same direction [Wee21].
The main problem in this research is improving the map of an
already developed virtual reality game that takes place on the
hyperbolic plane. The goal in this research is to make it simpler
and faster than the current implementation. In the game, which is
called "Holonomy", users navigate in 3x3 meter grid [YBS*22].
The floor in the game world is a hyperbolic plane, while the vertical
direction is normal Euclidean space. Formally, the dimension in
which the game takes place is thus H2 × E. Here, Hn means
hyperbolic space in n dimensions and En means Euclidean space
in n dimensions. While navigating this space, the goal is to collect
a number of keys, and then return to the starting position to open
a treasure. Another gamemode is to reach a set of flags in a level.

Figure 1: Old rendering of the minimap [YBS*22]

The game world is made up of tiles of the hyperbolic plane, such
that each room in the game represents a tile of the hyperbolic
plane. Players can see their current position in the game world via
a minimap. Its old implementation can be seen in Figure 1. Each
tile is given a unique color such that it is possible for the player to
distinguish which tile they are currently at.
The old implementation of the minimap is not well documented
and was assessed difficult to grasp. This is why we create a new
minimap generation algorithm that can be well understood such
that it is easy to extend with new features. One such feature would
be making the minimap continuously rendering within the game.
The old minimap is only rendered once every new tile. This means
that the minimap is always centered on the room in which the
player is currently present. The minimap is only updated whenever
the player crosses over to a new room, at which point the minimap

© 2023 The Author(s)

2 A. de Vries / Mapping hyperbolic space for the virtual reality game "Holonomy"

Figure 2: Regular tessellations of the Euclidean plane [CJT11]

is centered on that new room, because the old implementation
is too slow for continuous rendering. To make the effects of
hyperbolic geometry more intuitive, the map needs to be updated
continuously as the player moves itself in the hyperbolic plane.
This helps the player to orient themselves. Exploration of the game
is not pleasant if the player is seriously disoriented [DP01].
The reason why it is challenging to draw the hyperbolic plane
in a fast manner is because the number of tiles to render grows
exponentially with relation to the distance from the origin tile.
While all tiles in the hyperbolic world are perfectly square, we as
humans do not live in a hyperbolic world but in a Euclidean world.
Thus, we can only look at the hyperbolic world from our own
Euclidean world, which means we need a model for the hyperbolic
world. One such model is the Poincaré disk model, which is used
in the rendering of Figure 1. This model distorts the size of each
tile. As a result, it becomes difficult to draw a lot of these different
tiles, since almost all tiles have a different Euclidean size in this
model in relation to each other. Meanwhile, the size of all tiles in
the Euclidean plane is the same no matter what way we project
it, since us humans live in a Euclidean world. The Poincaré disk
model is discussed more in Section 2.
The main aim in this research is thus to derive a simple and fast
algorithm that renders the minimap in the VR game "Holonomy".
In this light, the following main research question has been
formulated:

What is a simple and fast algorithm to render the hyperbolic
plane and is suitable for the VR game "Holonomy"?
Subquestions that derive from this main research question are:

- Is it possible to derive a simple and fast algorithm by first draw-
ing an origin polygon, then reflecting that polygon to draw a
grid?

- How much of a change in simplicity and speed would the new
minimap provide compared to the old minimap?

The derived algorithm in this paper can draw the tile representation
of "Holonomy" more faithfully than the old algorithm. It is also
less complex than the previous solution, which makes it possible to
extend the implementation more easily with extra features.
Section 2 provides an overview of previous work done in this area.
Section 3 discusses implementation of the developed algorithm and
how it works in practice. Section 4 compares the new solution to
the old one in terms of code complexity and speed. It also discusses
limitations of the implementation. Finally, section 5 draws the main
conclusion.

Figure 3: Generating a Euclidean tiling by reflecting an origin tile

2. Background information & related work

This section discusses other work that has taken place in generating
tilings of hyperbolic space. These different methods all have their
own advantages and disadvantages.

2.1. Theoretical background

In this paper, we are only interested in computing a regular tiling.
A tiling is regular if it is made up of regular polygons. [GS77]. Reg-
ular polygons are polygons of which all of its angles are the same
size, and whose sides are of equal length. So fundamentally speak-
ing, a regular tiling of any plane is just a series of vertices and lines
that connect those points, which make up the regular polygons.
Thus, to draw a regular tiling of any plane, either of two general
methods can be applied:

• First generate all vertices of the tiling, then connect those ver-
tices via geodesics (a shortest path between points)

• Draw an origin tile whose vertices and geodesics are known, then
reflect that origin tile along each of its edges to recursively draw
a tiling.

As an example, consider we’d want to tile the Euclidean plane us-
ing squares (as in Figure 2). In the second method, one would draw
4 points a distance d from the origin of the grid, such that all an-
gles between neighboring points are π

2 and the angles within each
polygon are π

2 . By "neighboring points", we mean points that are
generated closest in Euclidean distance to one another for the re-
mainder of this paper. Then, we would connect those points via
straight lines. Now we have an origin tile. Since we now have an
origin tile, we can reflect the tile along all of its 4 sides to end up
with 4 new tiles. We can continue reflecting those new tiles along
their sides for as long as we want to recursively draw a tiling of the
Euclidean plane. This idea is illustrated in Figure 3.
There are only 3 ways to regularly tile the Euclidean plane: trian-
gles, squares and hexagons as can be seen in Figure 2. There are in
fact an infinite amount of ways to tile the hyperbolic plane, it can
be tiled using any p sides per tile and q amount of sides that meet
at a vertex so long as 1

p +
1
q < 1

2 . From now on, the Schläfi symbol
{p,q} is used to represent a tiling with p sides per tile and q amount
of sides that meet as a vertex. The tiling used in "Holonomy" is an
Order-5 square tiling, i.e. a {4,5} tiling. The old minimap imple-
mentation uses the Poincaré disk model to display it. The Poincaré

© 2023 The Author(s)

A. de Vries / Mapping hyperbolic space for the virtual reality game "Holonomy" 3

disk model projects hyperbolic space to a 2D unit circle [KMP10].
The advantage of the Poincaré disk model is that it is conformal,
meaning that angles at all vertices where the lines of the tiling meet
are preserved. Small shapes are also somewhat preserved, which
makes it useful for displaying the rooms used in "Holonomy".
There are other methods to model Hyperbolic space, such as the
Beltrami-Klein model [Cox98] or the Poincaré half-plane model
[Sta08]. These are out of scope of this paper, since these projec-
tions of hyperbolic space are not intuitive to show how navigating
in a hyperbolic space works. The Beltrami-klein model has the dis-
advantage that the size of nearby rooms is distorted a lot more than
in the Poincaré disk projection, while the room size is even more
distorted in the Poincaré half-plane model.

2.2. Known algorithms to compute hyperbolic tilings

Hyperbolica [Cod] is a game similar to "Holonomy", in the sense
that the primary goal is of the game is to explore walking around
in a hyperbolic space. Hyperbolica also allows the player to see
their current position in the hyperbolic plane on a map. However,
the tiling of this map is pre-computed for performance reasons
[Hac23]. This makes it unsuitable for "Holonomy", since levels in
"Holonomy" are not bounded like they are in Hyperbolica.
Fast algorithms for computing hyperbolic tilings could also be cre-
ated by writing code executed on the graphics card. A graphics card
is suitable for tasks which consist of lots of simple tasks. Since gen-
erating a tiling is basically just computing a lot of different lines, it
is useful to investigate whether a program on the graphics card can
quickly compute a {4, 5} tiling of the hyperbolic plane. One such
shader that can compute tilings of the hyperbolic plane is the one
by [mat19]. This particular shader is a fragment shader. This means
that the program receives a fragment coordinate as input, and out-
puts the correct color for that pixel. An advantage of this shader
implementation is that it is not too difficult to make it continuously
moving. We just need to make sure that we send the player coordi-
nates as input variables to the shader, and call hyperTranslate
of the shader code with the correct coordinates, which lets the hy-
perbolic plane translate. The disadvantage of the shader approach
is that it is not easily possible to assign a unique color to each gen-
erated tile. This is because there is no straightforward method to
detect if a given pixel is in a specific tile of the world, meaning that
we would only be able to generate a minimap in which each gener-
ated tile has the same color, which is not very useful for navigating
a hyperbolic space.
Another interesting method of computing tessellations is the
method used in Hyperrogue, a game that takes place on the hy-
perbolic plane with a top-down perspective [KC17]. Hyperrogue
supports many different tilings, not just the {4, 5} tiling of H2. Hy-
perrogue generates its tilings via a datastructure called a Geodesic
Regular Tree Structure (GRTS) [CK22], which is a table that de-
fines the underlying tree structure of any tiling. A tiling of any space
can be seen as a tree structure. Any tile can be seen as a child of
the origin and possible in-between tiles by considering when that
tile was generated by which tile. See Figure 5 for the tree structure
used in "Holonomy".
Figure 4 shows the tree structure of a {4, 5} tiling of H2 in Hy-
perrogue, where the green edges represent different edges of the
tree with the origin tile as the root. Tiles have the same number if

0

1

1

1

1

3

1

4

3

1

4

3

1

4

3

1

4

6

4
3

1

4
3

5

6

4

3

1

4

3

5

6

4
3

1

4
3

5

6

4

3

1

4

3

5

2

1

4
3

5
64

3
1

4
35

6

4
3

1

2

1

4

3

5

6

4

3

1

4

3

5

6

4

3

1

2

1

4
3

5

6 4
3

1

4
3 5

6

4
3

1

2
1

4

3

5

6

4

3

1

4

3

5

6

4

3

1

3

4

3

4
3

5

6

4
3

2

4343

2

4
3

5

6

4
3

4

3

4

3

4

3

5

6

4

3

2

4

3

4

3

2

4

3

5

6

4

3

4

3

4

3

4
3

5

6

4
3

2

4 3 4 3

2
4

3
5

6

4
3

4

3

4
3

4

3

5

6

4

3

2

4

3

4

3

2

4

3

5

6

4

3

4

Figure 4: Tree structure for a {4,5} tiling of hyperbolic space in
Hyperrogue [Kop23]

Figure 5: Tree structure of "Holonomy". Each tile represents a
room in the game, while the letters at each node represent the co-
ordinates for that tile, which is a series of steps from the origin tile.
For more information, see [YBS*22].

their subtrees have the same shape, i.e. they are congruent. With this
structure, a tiling can be generated lazily, i.e., a new tile is generated
whenever we need it. Whenever a tile is generated, its information
is saved as an object in computer memory, which contains informa-
tion about its neighboring tiles as well as how the individual edges
of the tile are constructed. To render the generated tiles, projections
of hyperbolic space are used. The procedure is discussed in more
detail by [CK22].
The problem with the Hyperrogue approach is that the method is
too general for the scope of this paper. Hyperrogue supports a lot
of different tilings of the hyperbolic plane, thus it also needs an effi-
cient algorithm to compute many different tilings of the hyperbolic
plane, whereas Holonomy has a completely different goal. Holon-
omy only takes place in a {4, 5} tiling of the hyperbolic plane.

© 2023 The Author(s)

4 A. de Vries / Mapping hyperbolic space for the virtual reality game "Holonomy"

Figure 6: Rendered result of running Algorithm 1 for 45 tiles

Since we are only interested in a simple and fast minimap gener-
ation algorithm, the Hyperrogue method will not work for us. We
need an algorithm which does not take a long time to understand
and is easy to extend with other features. We can do this similarly to
our Euclidean tiling example previously, we only need to concern
ourselves with constructing an origin tile of the hyperbolic plane.
Once we have this tile, we can reflect it along its edges to recur-
sively build a tiling of the hyperbolic plane in the Poincaré disk
projection. This is the algorithm that has been created, and we will
get into that now.

3. Implementation

The main implementation is Algorithm 1. The algorithm gener-
ates an initial tile, then generates new tiles in a breadth-first man-
ner. New tiles are generated by reflecting a tile along all of its
edges. The implemented algorithm allows for generating an arbi-
trary amount of n tiles of H2. The old minimap makes use of 45
tiles, since it is rendered up to 3 steps away from the current tile of
the user as seen in Figure 1. Since there are 11 tiles in each subtree
from the origin tile, this means we have 4 ∗ 11+ 1 = 45 tiles. A
rendered result of generating 45 tiles can be seen in Figure 6.
It is first necessary to explain some geometric formula’s used to
generate the tiling.

3.1. Geometric formula’s

To invert a point A to point A′ in circle c with centerpoint O and
radius r, we make use of the definition of a circle inversion, the
distance from O to A times the distance from O to A′ must be equal
to r2 [Cox71].

OA ·OA′ = r2

Given 3 non-colinear points, it is possible to construct a circle that
goes through those 3 points by solving a system of equations al-
gebraically. Thus, given two points A and B in the Poincaré disk,

Algorithm 1 Algorithm to generate a Holonomy tiling with n tiles
Require: n > 0,T is initialized ,U is initialized

I← GENERATEINITIALTILE() ▷ This is Algorithm 2
Add I to T
return If n tiles have been generated
Q← a Queue containing tiles, initialized empty
for all d ∈ { North, West, South, East } do

R← I.REFLECTINTODIRECTION(d,U,don’t care) ▷ This
is Algorithm 3

Add R to T
return If n tiles have been generated
Add R to Q

end for
while Q is not empty do

C← Q.REMOVEMIN()
for all s ∈ { Forward, Left, Right } do

if C.ISSTEPLEGAL(s) then
Convert s to a direction d based on C
R←C.REFLECTINTODIRECTION(d,U,s)
Add R to T
return If n tiles have been generated
Add R to Q

end if
end for

end while

Algorithm 2 Algorithm to generate the initial tile
Require: InitialPoints, edges and U are initialized

edges ← Array of size 4
for all pairs of neighboring points i, j in InitialPoints do

edge← CIRCLEBETWEENPOINTSINDISK(i, j,U)
Add edge to edges

end for
return new HolonomyTile(edges, Direction.O, ε, no con-
straints)

Algorithm 3 Algorithm to reflect a tile into a certain direction
Require: edges and path are initialized, and dir, U , s are given

newEdges←Map of size 4
rc← The circle of edges[dir]
o← dir.OPPOSITE()
newEdges[dir]← edges[o].REFLECTINTOEDGE(rc,U)
newEdges[o]← edges[dir] with swapped start and endpoint
for both d of dir.ORTHOGONALS()do

newEdges[d]← edges[d].REFLECTINTOEDGE(rc, U)
end for
p←path+s
G← The new generation constraints based on s
return new Holonomytile(newEdges, dir, p, G)

© 2023 The Author(s)

A. de Vries / Mapping hyperbolic space for the virtual reality game "Holonomy" 5

we can construct the hyperbolic line
−→
AB by inverting point A to

get point A′ and constructing the circle that goes through points
A,B and A′ [Goo01].
Next, we should explain the objects that make up the tiling.

3.2. Datatypes used in the implementation

The implementation makes use of two enumeration datatypes, Di-
rection and Step. Direction is one of {North, West, South, East,
Origin} and Step is one of {Forward, Left, Right, Don’t care}. The
options "Origin" and "Don’t Care" are only present as dummy val-
ues for the initial tile.
An edge is an object in computer memory containing the following
attributes:

• A circle c with a radius and centerpoint, that represents the circle
to which a hyperbolic line in the Poincaré disk belongs.

• A startpoint and endpoint, which are both on the boundary of
circle c, which represent that we should only draw this circle
from the startpoint to the endpoint.

A HolonomyTile is an object in computer memory containing the
following attributes:

• A mapping from direction to edges. The edges are saved in such
a way that we can loop through the directions {North, West,
South, East} to draw the polygon "without lifting the pen from
the paper" intuitively speaking. This makes it easier to floodfill
the tile with a color.

• A current forward direction.
• A string that is of regular expression ε|d|ds∗ informing the se-

ries of steps that was taken to generate this tile. Here, d ∈
{ ’N’, ’W’, ’S’, ’E’} and s ∈ { ’F’, ’L’, ’R’}.

• Generation constraints given as booleans describing if 1) a left
step has occurred in this path, 2) if we have seen a right step
before another left step and 3) if the last step taken to generate
this tile was a right step.

A HolonomyTiling is an object in computer memory which has the
following attributes:

• Integer P = 4.
• Integer Q = 5.
• A constant 4x3 array StepToDirection, which is shown in

Table 1.
• A unit circle U , which is the circle that represents the Poincaré

disk. This should be initialized with centerpoint (0,0) and radius
equal to half the length of the viewport (on what we actually
render our computed minimap).

• A list of points that are the vertices of the initial tile. Upon con-
struction, the HolonomyTiling object should receive a param-
eter initialRotation that specifies how much the initial
tile is rotated as an angle with the positive x-axis. The tiling
used in "Holonomy" (the one in Figure 6) corresponds to an
initialRotation of π

4 .
• The list of known tiles T , initialized as empty.

3.3. Detailed explanation of Algorithm 1

Algorithm 1 is a method of HolonomyTiling. The list of initial
points is calculated upon constructing the HolonomyTiling object.

Figure 7: Geometric constructions to calculate the initial distance
d

The first point is generated at a distance d from the origin with an-
gle initialRotation with the positive x-axis. We first have to
derive the formula of d.
To explain the derivation of d, we first need to draw some geometric
constructions shown in Figure 7. The points A,B and C represent
initial points such that the angle ∠CAB is π

q = π

5 . A′ is the inver-
sion of A within the unit circle (the green circle). The circle with
centerpoint M is the circle which represents the hyperbolic line

−→
AB.

P is the midpoint of A and A′. We know that α = 1
2 ·

2π

q = π

q = π

5 ,

β = 1
2 ·

2π

p = π

p = π

4 and γ = π−α− π

2 = π

2 −α. The line segment

we want to know the length of is
−→
OA, which is d. P is the mid-

dle point of A and A′. We also know that
−→
OA′ has length 1

d , since

A′ is the inversion of A. Thus, we know that
−→
OP =

d+ 1
d

2 . Now, we
express h in terms of β,γ and lines

−→
OP and

−→
AP. This results in

h = tanβ ·−→OP

h = tanγ ·−→AP

Since we know β,γ and can express
−→
OP and

−→
AP in terms of d, we

can use this system of equations to get a formula for d. This will
result in the formula:

d =

√√√√cot(π

q)− tan(π

p)

cot(π

q)+ tan(π

p)

This derivation is based on the one by [Chr]. Once we have d and
initialRotation, we just need to convert from polar coordi-
nates to Cartesian coordinates to get the position of the first point.
The subsequent 3 points are similarly generated a distance d from
the origin, by adding π

2 to initialRotation for each subse-
quent point.
Upon calling Algorithm 1, the initial tile is constructed as outlined
in Algorithm 2. In Section 3.1, we described how we could con-
struct a circle between points in the disk. Algorithm 3 shows what
happens when calling ReflectIntoDirection. Here, the op-
posite direction is defined to be 180 degrees from the direction
which it is called upon, and the orthogonal directions are the two 90
degree directions. So for North, the opposite direction is South, and

© 2023 The Author(s)

6 A. de Vries / Mapping hyperbolic space for the virtual reality game "Holonomy"

Step Forward Left Right
Current forward direction
North North West East
West West South North
South South East West
East East North South

Table 1: Step to direction conversion table for a HolonomyTiling
object

the orthogonal directions are West and East. ReflectIntoEdge
will construct the new hyperbolic line by reflecting this edge into
the given reflection circle. This is done by inverting the start and
endpoint of this edge into the reflection circle to obtain start’ and
end’. Then we construct the hyperbolic line from end’ to start’ us-
ing the construction discussed in Section 3.1. The reason that this
line is from end’ to start’ is because reflecting a {4, 5} tile in any
circle causes the drawing direction to reversed as well. We need to
be sure that we can draw the edge "without lifting the pen from the
paper" by looping through the edges {North, West, South, East}, so
that’s why in our newly constructed tile, each edges[dir] will have
the startpoint end’ and the endpoint start’. To determine if a step is
legal, so if a tile should be generated in a certain step, the underly-
ing tree structure of a {4, 5} tiling is used as shown in Figure 5. A
{p,q} tiling of H2 in general can be described as an infinite tree as
discussed in Section 2.2. The following two rules are applied when
deciding if a tile should be generated in a certain step [Lav17]:

• No two consecutive "Right" steps are allowed
• No two consecutive "Left" steps are allowed without at least one

"Right" step in between.

Each tile contains a field that tells what the current forward direc-
tion of that tile is. This is the direction that was taken to gener-
ate this tile as shown in Algorithm 3. We can think of this as an
observer "looking at" the current forward direction, and deciding
where to "walk" next. So when we need to expand from the current
tile, we first need to check if the step we want to take is legal. Based
on our two rules, a Forward step is always legal. A Left step is legal
if it is the first Left step in the path of this tile or if we have seen
any Right step before this Left step (the boolean describing if we
have seen a Right step is set to false again after we have taken a
Left step). Finally, a Right step is legal as long as the last step was
not a right step.
Then, if we have assessed that the step is legal, we convert that step
to a direction in which we can reflect the current tile based on the
current forward direction. This conversion table is Table 1. Again,
one can think of this table as an observer "facing the current for-
ward direction" and deciding where to go next. If, for example, that
observer takes a "Left" step while facing "West", that observer is
going in the "South" direction in absolute terms.
Finally, to give each tile a color, loop through the generated edges
of the tile in the order {North, West, South, East} to specify a re-
gion of the viewport that needs to be colored. To decide what color
to give to a tile, use a hash function on the path of the tile. Then,
to actually draw the tiles on the viewport, first draw the unit cir-
cle which is saved as an attribute of HolonomyTiling. Then, loop

Figure 8: Minimap generation process. a) Initial tile generated b)
4 Immediate neighboring tiles generated c) and d) Breadth-first ex-
pansion of new tiles in the directions of "Forward" and "Left" re-
spectively

Figure 9: Tiling with 45 tiles translated to point (140,40)

through all generated tiles in T , and loop through each edge of the
tile in the order {North, West, South, East}. Each edge is just a
circle with two points that specify what part of that circle to draw,
so we just need a graphics library that can draw circles for us. The
entire process is shown visually in Figure 8.

3.4. Translating the tiling

To move the tiling to another place, we need to have a function for
the HolonomyTiling object called MoveInitialTile(B), such
that now the initial tile is centered at point B instead of (0,0). To do
this, we need to construct a hyperbolic bisector (a hyperbolic mid-
dle line between 2 points) between (0,0) and B such that we can
reflect the initial points in this bisector to obtain new initial points

© 2023 The Author(s)

A. de Vries / Mapping hyperbolic space for the virtual reality game "Holonomy" 7

Algorithm 4 Algorithm to move the initial tile to a a new location
centered at point B
Require: B is not (0,0),U is initialized and B is inside of U

B′← INVERTPOINT(B,U)
M←MIDPOINT((0,0),B′)
c1← The circle with centerpoint M that goes through (0,0)
I← The two intersections between c1 and the unit circle
c2← The circle that goes through B’ and the first of the inter-
section points of I
Update the initial points of the tiling to be the originally con-
structed initial points inverted in c2

centered at B. Then, we can call Algorithm 1 to generate the tiling
from point B instead of point (0,0).
The procedure is outlined in Algorithm 4. It should be noted that
circle c2 is constructed with Construction 1.6 from [Goo01]. A
tiling with 45 tiles which is translated to the point (140,40) can
be seen in Figure 9. This translation can be controlled by saving a
global variable B and increasing/decreasing components of B based
on user input.

4. Evaluation and discussion

One can compare the old and new minimaps by comparing Figures
1 and 6. What can immediately be seen is that the old minimap is
not actually a faithful Poincaré disk projection. In Section 2.1, we
established that the Poincaré disk model should preserve angles. In
a tiling of H2, every tile is the same size, thus all angles have to be
of the same size as well. This is not the case in Figure 1, while it
is the case in Figure 6. This means that the new minimap is a more
faithful representation of the game world of "Holonomy".
We also want to compare the old and new implementations in terms
of complexity and in terms of runtime in order to check if the new
implementation is simpler and faster than the older one. To com-
pare in terms of complexity, code metrics are calculated for both
the old and new implementations. These metrics are calculated us-
ing Visual Studio 2022. Cyclomatic complexity (CC) is the amount
of linearly independent paths through a piece of code (lower is bet-
ter). For individual functions, McCabe, the creator of the metric, in-
terprets a value between 0-10 as little risk, a value between 11-20 as
moderate risk, values between 21-50 as high risk and values above
50 as very high risk. [McC08]. However, the values we calculate
for CC indicate the sum of the CC for each method in that class,
since we want to measure how difficult it is to grasp what a class is
doing. Class coupling (CO) is the amount of classes which a single
class uses (lower is better). Again, we measure this per class since
we want to measure how difficult a specific class is to grasp. We
also measure the maintainability index (MI) since it is a common
metric to measure the relative maintainability of a piece of code
[Wel01], which is a good indicator for understanding the code. For
the MI, higher is better. It is a number from 0 to 100, see [Jon22]
for a more extensive explanation. 0-9 indicates poor maintainabil-
ity, 10-19 indicates moderate maintainability and 20-100 indicates
good maintainability. Both the old and new implementations were
written in the C# programming language, it is thus fair to compare
them to one another with these metrics.

MI CC CO LOSC LOEC
Circle 67 7 4 62 29
Direction 91 1 0 13 2
DirectionUtils 80 10 2 39 4
Geodesic 65 12 4 81 20
GeomUtils 63 16 4 200 76
HolonomyTile 69 18 19 182 37
HolonomyTiling 66 25 18 192 73
MainForm 72 14 23 117 38
Step 91 1 0 11 2
Mean 73.8 11.6 8.2
Weighted mean 67.0 16.8 12.1
Standard deviation 10.3 7.4 8.5
Sum 897 281
Old minimap 58 33 42 314 162

Table 2: Code metrics for the implemented solution.
MI=Maintainability index, CC=Cyclomatic complexity, CO=Class
coupling, LOSC=Lines of source code, LOEC=Lines of executable
code

To compare in terms of runtime, elapsed time is measured with the
System.Diagnostics.Stopwatch C# class for the parts of
the code which generate the minimap. This includes both comput-
ing it, as well as drawing it on a viewport output. This is done 10
consecutive times, such that we can be sure that the runtime is con-
sistent and does not get influenced by external factors.

4.1. Code metrics

The computed code metrics are in Table 2. The rows "Circle"
to "Step" represent code of the new solution, with their mean,
weighted mean and standard deviation computed in the next 2 rows.
We compute a weighted mean, since some classes skew the values
quite a bit in one direction, such as the Direction and Step class.
The weight of each class for computation of the weighted mean is
the fraction of lines of executable code, since that gives a good idea
how much work the class is trying to do. The old minimap was im-
plemented in a single file, and its metrics are shown in the last row.
It can be seen that the new solution is slightly better in terms of
code metrics than the old solution. The weighed mean of CC and
CO for the new minimap are quite a bit better than the value for the
old minimap. The MI value for the new minimap is also a bit bet-
ter than the old minimap. We can see that taking a weighted mean
instead of the mean makes the value worse for all three metrics,
since there are a few classes which unfairly improve the mean for
the new implementation.
Lower values for the CC and CO indicate that the new minimap
implementation is able to be easier grasped, since the classes gen-
erally try not to do too many things. The lower CO also indicates
that the new minimap is more organized than the old one, since a
low CO indicates that a class will generally do a single thing. In
other words, different functionalities are not coupled as much as in
the old implementation.
While the MI did improve, it did less so than the CC and CO. It
is still an improvement, so based on the fact that the CC and CO
improved quite a bit, we can conclude that the new implementation

© 2023 The Author(s)

8 A. de Vries / Mapping hyperbolic space for the virtual reality game "Holonomy"

Old minimap New minimap
Runtime of
10 different
executions

17, 17, 19, 18,
19, 18, 19, 17,
17, 18

25, 27, 26, 25,
26, 25, 25, 25,
27, 25

Standard
deviation

0.83 0.80

Mean 17.9 25.6

Table 3: Runtime comparison of the old and new algorithms. Val-
ues are in milliseconds

is slightly more maintainable.
The total of both lines of source code and the lines of executable
code are greater in the new implementation than the old one. This
isn’t necessarily a problem however, since all individual classes of
the new solution have a lower amount of lines than the total of the
old implementation. Finally, we note that that the new implemen-
tation is well documented in this paper, which increases the ability
for it to be grasped.

4.2. Runtime comparison

Result of the runtime comparison procedure is seen in Table 3. It
can be seen that the old minimap is slightly faster than the new
minimap. This is to be expected, as the old minimap makes use of a
compute shader to compute some of the necessary textures for the
minimap. So to make the new implementation faster, one would
have to dispatch some of the computations to a compute shader.
This would happen for a method like ReflectIntoEdge and all
of the geometric formula’s from Section 3.1, since graphics cards
are suited for lots of simple computations like those. Implementing
a compute shader was not achieved for the new implementation,
since the research initially focused on deriving a simple algorithm,
which ended up already taking enough time.

4.3. Unwanted behaviour

There are a couple of instances where tile edges are computed twice
in slightly different manners. This happens because they are com-
puted twice via different inversion circles. For example, the edge
between the tiles "North, Left" and "West, Right" is one such edge
(the edge between the orange and brown tile in Figure 10). It is first
created by reflecting the "North" tile into its "West" edge, then later
again by reflecting the "West" tile into its "North" edge. These re-
flections should result in exactly the same edge, but sometimes they
are slightly different, possibly due to floating-point errors. Another
such example is the east edge of tile "west, forward, forward, right"
A work-around would be to ink the borders of each tile black with
a sufficient width, such that it isn’t noticeable to the user. This does
make the tiling slower to draw though.
Translation of the tiling as described in Section 3.4 does not ap-
pear to work as expected for the vertical direction when x = 0 for
point B. It does work as expected when point B has a non-zero x-
component and a non-zero y-component, just not when it has a zero
x-component and a non-zero y-component.

Figure 10: Rendered result of running algorithm 1 for 1000 tiles

5. Conclusion and future work

In short, we have a shown a new minimap generation algorithm
for the game "Holonomy". It can draw the game world of "Holon-
omy" more faithfully than the old implementation, preserving an-
gles of the hyperbolic plane. It is also able to translate the tiling to
a new point within the unit circle based on user input. Code metrics
and discussion in Section 4.1 shows that the new implementation is
simpler than the old implementation. It will thus be easier to extend
the new implementation with other features than the old implemen-
tation. The new minimap is slightly slower than the old minimap
though.
Immediate future work would focus on implementing fixes for the
unwanted behaviour described in Section 4.3. It would also be in-
teresting to research if the derived algorithm could eventually be
faster than the old algorithm, by implementing parts of the algo-
rithm using compute shaders. To make the minimap continuously
rendering based on player movements, the procedure described in
Section 3.4 can be expanded upon to incorporate player move-
ments. Finally, it would be interesting to evaluate whether a con-
tinuously rendering minimap in "Holonomy" would actually im-
prove how players move through hyperbolic space. This could be
done by comparing performance of players using a non-continuous
minimap against players who use a continuous minimap.

6. Responsible research

Making a simpler and faster minimap has few ethical implications
in the context of this research. Of course, if the given implemen-
tation were to be used in an actual game or application, such as
"Holonomy", this map should not mislead or actively try to disori-
entate the user. This should not happen if an implemented version
of the algorithm works as intended.
The research that has been conducted is reproducible, since the im-
plementation of the discussed algorithm is completely described in
section 3. Each step of the algorithm is explained: it is either dis-

© 2023 The Author(s)

A. de Vries / Mapping hyperbolic space for the virtual reality game "Holonomy" 9

cussed in Sections 1 and 2 or there has been given a reference which
explains why the given step works as intended. Then what remains
is the data gathered and discussed in Section 4. The only code met-
ric that Visual Studio 2022 generated which was not shown in the
paper was the "Depth of Inheritance". This was not very interesting
to show, since both the old and new algorithms do not make use of
inheritance (other than boilerplate code), and as a consequence this
parameter would have been "1" for all classes, having no influence
on the result. The runtime measurement of both implementations
was run on the same machine one after another, which means exter-
nal factors could not have influenced the result. It is also explained
how the data was gathered.

Acknowledgements

We would like to thank Eryk Kopczyński for providing an exten-
sive explanation on how Hyperrogue computes hyperbolic tessella-
tions and for providing Figure 4. We would also like to thank Scott
Jochems for providing Figure 5.

References
[Ben01] BENNETT, ANDREW G. Hyperbolic Geometry | Mathematical

Association of America. July 2001. URL: https://www.maa.org/
press/periodicals/loci/joma/hyperbolic-geometry
(visited on 06/16/2023) 1.

[Chr] CHRISTERSSON, MALIN. Non-Euclidean Geometry: Interactive
Hyperbolic Tiling in the Poincaré Disc. Malin Christersson’s Math Site.
URL: https : / / www . malinc . se / noneuclidean / en /
poincaretiling.php (visited on 04/30/2023) 5.

[CJT11] CONWAY, JOHN H., JIAO, YANG, and TORQUATO, SALVATORE.
“New family of tilings of three-dimensional Euclidean space by tetrahe-
dra and octahedra”. Proceedings of the National Academy of Sciences
108.27 (July 5, 2011). Publisher: Proceedings of the National Academy
of Sciences, 11009–11012. DOI: 10.1073/pnas.1105594108.
URL: https://www-pnas-org.tudelft.idm.oclc.org/
doi/10.1073/pnas.1105594108 (visited on 06/16/2023) 2.

[CK22] CELIŃSKA-KOPCZYŃSKA, DOROTA and KOPCZYŃSKI, ERYK.
Generating Tree Structures for Hyperbolic Tessellations. Mar. 16,
2022. DOI: 10 . 48550 / arXiv . 2111 . 12040. arXiv: 2111 .
12040[nlin]. URL: http://arxiv.org/abs/2111.12040
(visited on 06/02/2023) 3.

[Cod] CODEPARADE. Hyperbolica on Steam. URL: https://store.
steampowered.com/app/1256230/Hyperbolica/ (visited
on 04/25/2023) 3.

[Cox71] COXETER, H. S. M. “Inversive Geometry”. Educational Studies
in Mathematics 3.3 (1971). Publisher: Springer, 310–321. ISSN: 0013-
1954. URL: https://www.jstor.org/stable/3482030 (vis-
ited on 06/23/2023) 4.

[Cox98] COXETER, H. S. M. Non-Euclidean Geometry. Google-Books-
ID: usKZpDAH0WUC. Cambridge University Press, Sept. 17, 1998.
362 pp. ISBN: 978-0-88385-522-5 1, 3.

[DP01] DARKEN, RUDOLPH and PETERSON, BARRY. “Spatial Orienta-
tion, Wayfinding, and Representation”. Handbk Virtual Environ 2002
(Nov. 22, 2001). DOI: 10.1201/b17360-24 2.

[Goo01] GOODMAN-STRAUSS, CHAIM. “Compass and Straightedge in
the Poincaré Disk”. The American Mathematical Monthly 108.1 (2001).
Publisher: Mathematical Association of America, 38–49. ISSN: 0002-
9890. DOI: 10.2307/2695674. URL: https://www.jstor.
org/stable/2695674 (visited on 06/17/2023) 5, 7.

[GS77] GRUNBAUM, BRANKO and SHEPHARD, GEOFFREY C. “Tilings
by Regular Polygons”. Mathematics Magazine 50.5 (1977). Publisher:
Mathematical Association of America, 227–247. ISSN: 0025-570X. DOI:
10 . 2307 / 2689529. URL: https : / / www . jstor . org /
stable/2689529 (visited on 06/16/2023) 2.

[Hac23] HACKERPOET. HyperEngine. original-date: 2022-03-
24T23:44:36Z. Apr. 22, 2023. URL: https : / / github . com /
HackerPoet/HyperEngine (visited on 04/30/2023) 3.

[Jon22] JONES, MIKE. Code metrics - Maintainability index range and
meaning - Visual Studio (Windows). Apr. 30, 2022. URL: https://
learn.microsoft.com/en- us/visualstudio/code-
quality / code - metrics - maintainability - index -
range-and-meaning (visited on 06/21/2023) 7.

[KC17] KOPCZYNSKI, ERYK and CELINSKA, DOROTA. “HyperRogue:
Playing with Hyperbolic Geometry”. (July 2017). URL: https : / /
www.researchgate.net/profile/Dorota- Celinska-
Kopczynska / publication / 336702574 _ HyperRogue _
Playing _ with _ Hyperbolic _ Geometry / links /
5dae0eb2299bf111d4bf8e60 / HyperRogue - Playing -
with-Hyperbolic-Geometry.pdf 3.

[KMP10] KINSEY, L. CHRISTINE, MOORE, TERESA E., and PRAS-
SIDIS, EFSTRATIOS. Geometry and Symmetry. Google-Books-ID: fF-
puDwAAQBAJ. John Wiley & Sons, Apr. 19, 2010. 960 pp. ISBN: 978-
0-470-49949-8 3.

[Kop23] KOPCZYNSKI, ERYK. Questions about Hyperrogue for a Bache-
lor’s thesis project. E-mail. June 4, 2023 3.

[Lav17] LAVROV, MISHA. Answer to "Description of the order-5 square
tiling of the hyperbolic plane as a graph". Mathematics Stack Exchange.
Apr. 13, 2017. URL: https://math.stackexchange.com/a/
2231612 (visited on 06/13/2023) 6.

[mat19] MATTZ. Hyperbolic Wythoff explorer. June 16, 2019. URL:
https://www.shadertoy.com/view/wtj3Ry (visited on
05/04/2023) 3.

[McC08] MCCABE, THOMAS. “Software quality metrics to identify risk”.
Nov. 2008. URL: https : / / web . archive . org / web /
20220329072759if _ /http : / / www . mccabe . com / ppt /
SoftwareQualityMetricsToIdentifyRisk.ppt 7.

[Sta08] STAHL, SAUL. A Gateway to Modern Geometry: The Poincaré
Half-plane. Jones and Bartlett Publishers, 2008. 270 pp. ISBN: 978-0-
7637-5381-8 3.

[Wee21] WEEKS, JEFF. “Body coherence in curved-space virtual reality
games”. Computers & Graphics 97 (June 1, 2021), 28–41. ISSN: 0097-
8493. DOI: 10.1016/j.cag.2021.04.002. URL: https:
/ / www . sciencedirect . com / science / article / pii /
S0097849321000443 (visited on 06/17/2023) 1.

[Wel01] WELKER, KURT D. “The Software Maintainability Index Revis-
ited”. (2001) 7.

[YBS*22] YARAR, BARAN, BAKKER, BO, SNELLENBERG, RAVI, et al.
“Holonomy”: a non-Euclidean labyrinth game in virtual reality. Tech.
rep. TU Delft, 2022. URL: http://resolver.tudelft.nl/
uuid:60d473f0-f327-411e-a402-95d44e27f088 1, 3.

© 2023 The Author(s)

https://www.maa.org/press/periodicals/loci/joma/hyperbolic-geometry
https://www.maa.org/press/periodicals/loci/joma/hyperbolic-geometry
https://www.malinc.se/noneuclidean/en/poincaretiling.php
https://www.malinc.se/noneuclidean/en/poincaretiling.php
https://doi.org/10.1073/pnas.1105594108
https://www-pnas-org.tudelft.idm.oclc.org/doi/10.1073/pnas.1105594108
https://www-pnas-org.tudelft.idm.oclc.org/doi/10.1073/pnas.1105594108
https://doi.org/10.48550/arXiv.2111.12040
https://arxiv.org/abs/2111.12040 [nlin]
https://arxiv.org/abs/2111.12040 [nlin]
http://arxiv.org/abs/2111.12040
https://store.steampowered.com/app/1256230/Hyperbolica/
https://store.steampowered.com/app/1256230/Hyperbolica/
https://www.jstor.org/stable/3482030
https://doi.org/10.1201/b17360-24
https://doi.org/10.2307/2695674
https://www.jstor.org/stable/2695674
https://www.jstor.org/stable/2695674
https://doi.org/10.2307/2689529
https://www.jstor.org/stable/2689529
https://www.jstor.org/stable/2689529
https://github.com/HackerPoet/HyperEngine
https://github.com/HackerPoet/HyperEngine
https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning
https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning
https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning
https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning
https://www.researchgate.net/profile/Dorota-Celinska-Kopczynska/publication/336702574_HyperRogue_Playing_with_Hyperbolic_Geometry/links/5dae0eb2299bf111d4bf8e60/HyperRogue-Playing-with-Hyperbolic-Geometry.pdf
https://www.researchgate.net/profile/Dorota-Celinska-Kopczynska/publication/336702574_HyperRogue_Playing_with_Hyperbolic_Geometry/links/5dae0eb2299bf111d4bf8e60/HyperRogue-Playing-with-Hyperbolic-Geometry.pdf
https://www.researchgate.net/profile/Dorota-Celinska-Kopczynska/publication/336702574_HyperRogue_Playing_with_Hyperbolic_Geometry/links/5dae0eb2299bf111d4bf8e60/HyperRogue-Playing-with-Hyperbolic-Geometry.pdf
https://www.researchgate.net/profile/Dorota-Celinska-Kopczynska/publication/336702574_HyperRogue_Playing_with_Hyperbolic_Geometry/links/5dae0eb2299bf111d4bf8e60/HyperRogue-Playing-with-Hyperbolic-Geometry.pdf
https://www.researchgate.net/profile/Dorota-Celinska-Kopczynska/publication/336702574_HyperRogue_Playing_with_Hyperbolic_Geometry/links/5dae0eb2299bf111d4bf8e60/HyperRogue-Playing-with-Hyperbolic-Geometry.pdf
https://www.researchgate.net/profile/Dorota-Celinska-Kopczynska/publication/336702574_HyperRogue_Playing_with_Hyperbolic_Geometry/links/5dae0eb2299bf111d4bf8e60/HyperRogue-Playing-with-Hyperbolic-Geometry.pdf
https://math.stackexchange.com/a/2231612
https://math.stackexchange.com/a/2231612
https://www.shadertoy.com/view/wtj3Ry
https://web.archive.org/web/20220329072759if_/http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt
https://web.archive.org/web/20220329072759if_/http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt
https://web.archive.org/web/20220329072759if_/http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt
https://doi.org/10.1016/j.cag.2021.04.002
https://www.sciencedirect.com/science/article/pii/S0097849321000443
https://www.sciencedirect.com/science/article/pii/S0097849321000443
https://www.sciencedirect.com/science/article/pii/S0097849321000443
http://resolver.tudelft.nl/uuid:60d473f0-f327-411e-a402-95d44e27f088
http://resolver.tudelft.nl/uuid:60d473f0-f327-411e-a402-95d44e27f088

