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A B S T R A C T

We present PolyGNN, a polyhedron-based graph neural network for 3D building reconstruction from point
clouds. PolyGNN learns to assemble primitives obtained by polyhedral decomposition via graph node classifi-
cation, achieving a watertight and compact reconstruction. To effectively represent arbitrary-shaped polyhedra
in the neural network, we propose a skeleton-based sampling strategy to generate polyhedron-wise queries.
These queries are then incorporated with inter-polyhedron adjacency to enhance the classification. PolyGNN
is end-to-end optimizable and is designed to accommodate variable-size input points, polyhedra, and queries
with an index-driven batching technique. To address the abstraction gap between existing city-building models
and the underlying instances, and provide a fair evaluation of the proposed method, we develop our method
on a large-scale synthetic dataset with well-defined ground truths of polyhedral labels. We further conduct a
transferability analysis across cities and on real-world point clouds. Both qualitative and quantitative results
demonstrate the effectiveness of our method, particularly its efficiency for large-scale reconstructions. The
source code and data are available at https://github.com/chenzhaiyu/polygnn.
1. Introduction

Three-dimensional (3D) building models constitute an important
infrastructure in shaping digital twin cities, facilitating a broad range
of applications including urban planning, energy demand estimation,
and environmental analysis (Biljecki et al., 2015). Therefore, efficient
reconstruction of high-quality 3D building models is crucial for under-
standing an urban environment and has been a long-standing challenge.

Most reconstruction methods are dedicated to detailed surfaces
represented by dense triangles (Kazhdan and Hoppe, 2013; Erler et al.,
2020), irrespective of the ubiquitous piecewise planarity in the built
environment. Alternatively, a compact polygonal representation with
sparse parameters can adequately capture the geometry of urban build-
ings. To reconstruct compact polygonal building models, three cate-
gories of methods are commonly employed in practice. Constrained
reconstruction methods (Zhou and Neumann, 2010; Li et al., 2016b)
represent buildings with pre-defined templates or specific topologies.
However, the limited variety of available templates or topologies con-
strains the expressiveness of these methods. Geometric simplification
methods (Bouzas et al., 2020; Li and Nan, 2021) aim to obtain compact
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surfaces by simplifying dense triangle ones. These techniques, however,
necessitate an input model that is precise in both its geometry and
topology to ensure a faithful approximation. Primitive assembly meth-
ods (Nan and Wonka, 2017; Huang et al., 2022) produce polygonal
surface models by pursuing an optimal assembly of a collection of
geometric primitives. However, these methods often entail the use of
handcrafted features and thus possess limited representational capacity.

Despite successes in various other applications, learning-based so-
lutions for compact building modeling remain largely unexplored. No-
tably, Points2Poly (Chen et al., 2022) stands out as a pioneering effort
with the primitive assembly strategy. This method utilizes an implicit
representation to learn building occupancy, followed by a Markov
random field (MRF) to enhance compactness. However, it learns oc-
cupancy independently of the primitive-induced hypothesis, leading to
inefficiencies in large-scale applications.

In this paper, we present PolyGNN, a polyhedron-based graph neu-
ral network for reconstructing building models from point clouds.
PolyGNN leverages the decomposition of a building’s ambient space
into a set of polyhedra as strong priors. It learns to assemble the
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Fig. 1. Instead of learning a continuous function 𝑓 (∙) underpinned by exhaustive
queries with traditional deep implicit fields, PolyGNN learns a piecewise planar
occupancy function 𝑓 (★) supported by polyhedral decomposition.

polyhedra to achieve a watertight and compact reconstruction, framed
as end-to-end graph node classification. The neural network can be
efficiently optimized, enabling reconstruction at scale.

Our key innovation entails integrating occupancy estimation with
the polyhedral decomposition through primitive assembly. As illus-
trated in Fig. 1, instead of learning a continuous function with tra-
ditional deep implicit fields, we opt for learning a piecewise planar
occupancy function from the decomposition. There, one challenge lies
in consistently representing the heterogeneous geometry of arbitrary-
shaped polyhedra. To address this, we propose an efficient skeleton-
based strategy to sample a set of representative points within the poly-
hedron as queries. These queries, conditioned on the latent building
shape code, collectively characterize the building occupancy. More-
over, PolyGNN is designed to accommodate variable-size input points,
polyhedra, and queries using an index-driven batching technique.

We observe that existing 3D city models offer abstract represen-
tations of real-world buildings, often lacking geometric details. Thus,
employing existing mesh models as ground truths is inherently in-
adequate due to systematic errors. To facilitate supervised learning
for PolyGNN, we resort to creating a large-scale synthetic dataset
comprised of simulated airborne LiDAR point clouds and corresponding
building models. This dataset enables reliable one-to-one mapping be-
tween the two sources, effectively addressing the potential abstraction
gap. Subsequently, we assess the transferability of our method across
cities and on real-world data.

The main contributions of this paper are summarized as follows:

• We present PolyGNN, a polyhedron-based graph neural network
for reconstructing compact polygonal building models from point
clouds.

• We introduce a skeleton-based sampling strategy that efficiently
represents arbitrary-shaped polyhedra within the neural network.

• We demonstrate the transferability of PolyGNN on cross-city syn-
thetic point clouds and a real-world airborne LiDAR point cloud.

2. Related work

In this section, we discuss three categories of methods used for
polygonal building model reconstruction: constrained reconstruction,
geometric simplification, and primitive assembly. Subsequently, we
introduce a line of relevant works in neural implicit representation,
from which we draw inspiration for our work.
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2.1. Constrained reconstruction

Constrained reconstruction methods reduce the complexity of recon-
struction by incorporating constraints into the solution space, employ-
ing pre-defined templates or specific disk topologies.

With a library of roof model templates, Henn et al. (2013) ap-
plied estimation methods to derive best-fitting models from sparse
LiDAR point clouds. The widely adopted Manhattan-world assumption
restricts the orientation of building surfaces in three orthogonal direc-
tions, representing buildings with axis-aligned polycubes. Vanegas et al.
(2012) provided a solution to reconstruct Manhattan-world building
masses from LiDAR scans. Li et al. (2016a) and Li et al. (2016b)
further extended the solution with integer programming and an MRF,
respectively. Suveg and Vosselman (2004) proposed to integrate aerial
image analysis with GIS footprints, and formulated reconstruction as a
multilevel hypothesis generation and verification scheme.

Another common constraint is restricting output surfaces to spe-
cific disk topologies. Satellite data offers prospects for global building
models which often lack the necessary level of detail (LoD), and thus
are primarily limited to 3D models at LoD1 (Zhu et al., 2022; Sun
et al., 2022). The 2.5D view-dependent representation can generate
building roofs with vertical walls connecting them from LiDAR mea-
surements (Zhou and Neumann, 2010). Peters et al. (2022) employed
footprint partitioning and extrusion for an automated building re-
construction in both LoD1 and LoD2. Huang et al. (2022) proposed
an LoD2 building reconstruction approach with integer programming.
Furthermore, Xiong et al. (2014) and Xiong et al. (2015) exploited
roof topology graphs for reconstructing LoD2 buildings from predefined
primitives. Chen et al. (2017) proposed a three-stage method for LoD2
modeling that consists of primitive clustering, boundary representation,
and geometric modeling. Kelly et al. (2017) proposed a data fusion
technique for structured urban reconstruction from coarse meshes,
street-view imagery, and GIS footprints.

The constrained reconstruction approaches simplify the reconstruc-
tion and are thus efficient to implement. However, they only apply
to specific domains as the limited variety of templates or topolo-
gies restricts the expressiveness of these methods. Our reconstruction
method, instead, does not rely on templates or specific topologies, thus
remaining generic.

2.2. Geometric simplification

Another category of approaches generates compact 3D models
through the simplification of existing dense triangle meshes typically
obtained from photogrammetric surface reconstruction methods or
learning-based alternatives. We refer to Berger et al. (2017) for the
former, and Sulzer et al. (2023) for the latter.

Garland and Heckbert (1997) introduced a mesh simplification
method based on iterative vertex contraction using quadratic error
metrics. Salinas et al. (2015) further incorporated planar proxies de-
tected from a pre-processing analysis to preserve piecewise planar
structures. The variational shape approximation technique (Cohen-
Steiner et al., 2004) optimizes a set of geometric proxies to construct
an approximating polygonal mesh.

Several methods specifically focus on the simplification of urban
scenes. Verdie et al. (2015) proposed an approach that incorporates
various LoD configurations through classification, abstraction, and re-
construction. Bouzas et al. (2020) incorporated a structure graph to
encode planar primitives and formulated geometric simplification as
mesh polygonization. Li and Nan (2021) utilized planar regions to con-
strain edge collapse operations, achieving feature-preserving building
mesh simplification. Gao et al. (2022) proposed a three-stage approach
involving carving visual hulls to generate low-poly building meshes.

While geometric simplification methods hold promise for compact
building modeling, they often require high-quality input meshes for
faithful surface approximation. In practice, these methods may intro-
duce uncertainty and additional burdens without guaranteeing accu-
racy. In contrast, our proposed method can directly generate a compact
polygonal mesh without approximating an intermediate.
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2.3. Primitive assembly

Primitive assembly methods produce compact polygonal surface
models by optimizing the assembly of a set of geometric primitives.
In practice, planar primitives can be extracted with RANSAC (Schnabel
et al., 2007), region growing (Rabbani et al., 2006), or other optimiza-
tion methods (Yu and Lafarge, 2022; Li et al., 2019, 2023). High-quality
primitives are critical to primitive assembly methods.

Connectivity-based approaches (Chen and Chen, 2008; Van Kreveld
et al., 2011; Schindler et al., 2011) address the assembly by extracting
proper geometric primitives from an adjacency graph built on planar
shapes. While efficient in analyzing the graph, these methods are
sensitive to the quality of the graph. Linkage errors contaminating
the connectivity can compromise the reconstruction. A hybrid strategy
proposed by Lafarge and Alliez (2013) and Holzmann et al. (2018)
represented high-confidence areas by polygons and more complex re-
gions by dense triangles. Arikan et al. (2013) presented an interactive
optimization-based snapping solution, which requires labor-intensive
human involvement in handling complex structures.

Slicing-based approaches are more robust to imperfect data with
the hypothesis-and-selection strategy. With the primitives, these ap-
proaches (Chauve et al., 2010; Mura et al., 2016; Nan and Wonka,
2017; Bauchet and Lafarge, 2020) partition the 3D space into polyhe-
dral cells by extending the primitives to supporting planes, transform-
ing the reconstruction into a labeling problem where the polyhedral
cells are labeled as either inside or outside the shape or equivalently
by labeling other primitives. Li and Wu (2021) extended PolyFit (Nan
and Wonka, 2017) to leverage the inter-relation of the primitives for
procedural modeling. Huang et al. (2022) further extended PolyFit by
introducing a new energy term to encourage roof preferences and two
additional hard constraints to ensure correct topology and enhance
detail recovery. Fang and Lafarge (2020) proposed a hybrid approach
for reconstructing 3D objects by successively connecting and slicing
planes identified from 3D data. Further, Xie et al. (2021) proposed an
approach combining rule-based and hypothesis-based strategies.

Our method inherits primitive assembly while realizing the selection
by a graph neural network with the polyhedra from convex decomposi-
tion. The selection is therefore completely data-driven and requires no
handcrafted features.

2.4. Implicit neural representation

Recent advances in deep implicit fields have revealed their potential
for 3D surface reconstruction (Park et al., 2019; Peng et al., 2020; Erler
et al., 2020), and also specifically for buildings (Stucker et al., 2022).
The crux of these methods is to learn a continuous function to map the
input, such as a point cloud, to a scalar field. The surface can then be
extracted using iso-surfacing techniques like Marching Cubes (Lorensen
and Cline, 1987). To learn a more regularized field, Rella et al. (2022)
and Yang et al. (2023) both proposed to learn the displacements from
queries towards the surface and model shapes as vector fields. However,
these methods still require iso-surfacing to extract the final surfaces.
Although iso-surfacing is effective in extracting smooth surfaces, it
struggles to preserve sharp features, and introduces discretization er-
rors. Consequently, deep implicit fields alone are unsuitable for recon-
structing compact polygonal models. Notably, while Chen et al. (2020)
and Deng et al. (2020) both employed implicit fields for reconstructing
convex shapes obtained via binary space partitioning, transferring them
for compact building reconstruction from point clouds remains elusive.

Points2Poly (Chen et al., 2022) is a pioneering learning-based
effort for polygonal building reconstruction. The key enabler is a
learned implicit function that indicates the occupancy of a building,
followed by an MRF for a favorable geometric complexity. By its
design, Points2Poly is composed of two separate parts, hence cannot
be optimized end-to-end. The occupancy learning is agnostic of the
hypothesis. This limits its exploitation of deep features, and in turn,
limits its efficiency. The prohibitive complexity hinders its application
at scale. In contrast, our method directly learns to classify the polyhedra
with an end-to-end neural architecture, underpinning great efficiency.
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Fig. 2. Reconstruction by polyhedra classification. Candidate polyhedra (a) are gener-
ated by polyhedral decomposition and are classified by PolyGNN into interior ones and
exterior ones (b). The surface (c) is extracted in between pairs of polyhedra of different
classes. (d) (e) (f) are illustrations of 2D cross sections of (a) (b) (c), respectively.

3. Methodology

3.1. Overview

We formulate building reconstruction as a graph node classification
problem. As illustrated in Fig. 2, we first decompose the ambient space
of a building into a cell complex of candidate polyhedra following bi-
nary space partitioning. We then represent the cell complex as a graph
structure and classify the polyhedral nodes into two classes: interior
and exterior. Finally, the building surface model can be extracted as
the boundary between the two classes of polyhedra.

The above procedure can be formulated as follows. Given an un-
ordered point set  = {𝑥1, 𝑥2,… , 𝑥𝑛} with 𝑥𝑖 ∈ R3 as input, we first
decompose the ambient space into an undirected graph embedding
 = ( ,  ∣ ), where  = {𝑣1, 𝑣2,… , 𝑣𝑚} and  ⊆  ×  represent non-
overlapping convex polyhedra and their edges, respectively.  serves
as a volumetric embedding, from which we seek an appropriate subset
of  to align with the occupancy of the underlying building instance.
The surface reconstruction is therefore transformed into an assignment
problem which we address with a graph neural network 𝑓 :

𝑓 ≈ 𝑓 ( ∣  , ) = 𝑌 , (1)

where 𝑌 = {𝑦1, 𝑦2,… , 𝑦𝑚} ⊆ {0, 1}. Fig. 3 illustrates the architecture
of PolyGNN for solving the graph node classification problem, which
consists of two stages:

• Polyhedral graph encoding. A graph structure is constructed
from polyhedral decomposition, with polyhedra being graph
nodes. Node features are formed by conditioning polyhedron-wise
queries on a shape latent code that encodes the occupancy of the
building.

• Polyhedral graph node classification. With the encoded node
features and inter-polyhedron adjacency, graph nodes (i.e., poly-
hedra) are classified for building occupancy estimation.

In the following, we elaborate on the two main components of the
network.

3.2. Polyhedral graph encoding

3.2.1. Polyhedral graph construction
We adopt the adaptive binary space partitioning approach intro-

duced by Chen et al. (2022). We first identify a set of planar primitives
from the input point cloud that comprises the building, and subse-
quently partition the ambient 3D space to generate a linear cell complex
of non-overlapping polyhedra that complies with the primitives. Given
our focus on primitive assembly, we assume that high-quality planar
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Fig. 3. Architecture of PolyGNN. Given an input point cloud, a graph topology is constructed from polyhedral decomposition, with polyhedra being graph nodes. Node features are
formed by conditioning polyhedron-wise queries on a shape latent code. With the encoded node features and inter-polyhedron adjacency, graph nodes are classified for building
occupancy estimation. Space partitioning and surface extraction are two external solvers.
Fig. 4. Illustration of adaptive binary space partitioning. During partitioning, a binary
tree is dynamically constructed to analyze inter-polyhedron adjacency. 𝑡 denotes
iteration.

primitives have been extracted. As illustrated in Fig. 4, vertical prim-
itives and primitives with larger areas are given higher priority. The
tessellation is spatially adaptive therefore being efficient and respective
to the building’s geometry. The partitioning also involves the construc-
tion of a binary tree, which records the hierarchical information of
polyhedra and their inter-polyhedron adjacency.

3.2.2. Point cloud encoding
By adaptive binary space partitioning, the polyhedral embedding 

is produced in the Euclidean space, from which we seek an appropriate
subset of  to align with the occupancy of the underlying building
instance. In addition, we obtain the shape latent code 𝐳 embedded in
the feature space, via a graph neural network.
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We transform  into a neural feature representation, a process
which, in principle, can be achieved through any point cloud encoder.
We choose a lightweight plain encoder and a more modern convolu-
tional encoder, and demonstrate the performance of PolyGNN with the
two encoders.

With the plain encoder, point features are encoded with layers of
dynamic edge convolutions (Wang et al., 2019):

𝑔(1)𝑥𝑖
=

∑

𝑥𝑗∈ (𝑥𝑖)
ℎ𝛩

([

ℎ𝑥𝑖 , ℎ𝑥𝑗 , 𝑒𝑥𝑖 ,𝑥𝑗
])

, (2)

where 𝑔(1)𝑥𝑖 is the feature representation of point 𝑥𝑖. 
(

𝑥𝑖
)

denotes the
set of neighboring points of 𝑥𝑖 in the K-nearest-neighbor graph con-
structed from the input point cloud. 𝑒𝑥𝑖 ,𝑥𝑗 is the edge feature between
𝑥𝑖 and 𝑥𝑗 . ℎ𝑥𝑖 and ℎ𝑥𝑗 are the features of points 𝑥𝑖 and 𝑥𝑗 , respectively.
ℎ𝛩 is a multi-layer perceptron (MLP) that maps the concatenated input
to a new feature space. Features from 𝐿 layers are further concatenated
and aggregated by a max pooling operator, followed by another MLP
𝛾𝛩 to form the global latent code denoted as 𝐳(1):

𝐳(1) = 𝛾𝛩
𝑛

max
𝑖=1

([

𝑔(1)1𝑥𝑖
, 𝑔(1)2𝑥𝑖

,… , 𝑔(1)𝐿𝑥𝑖

])

. (3)

Alternatively with the convolutional encoder (Peng et al., 2020),
point features are first encoded with a shallow PointNet (Qi et al., 2017)
with local max pooling:

𝑔(2)𝑥𝑖
= max

𝑥𝑗∈ (𝑥𝑖)
ℎ𝛩

(

ℎ𝑥𝑗 , 𝑥𝑗 − 𝑥𝑖
)

. (4)

The point-wise features are then projected onto three feature planes
and form the latent code 𝐳(2):

𝐳(2) = 𝜇𝛩
(

𝚙𝚛𝚘𝚓𝚎𝚌𝚝𝑢
(

𝑔(2)
))

, (5)

where 𝑢 ∈ {XY,XZ,YZ} represents the three orthogonal planes. 𝜇𝛩
denotes a U-Net with weights shared across the planes, and 𝚙𝚛𝚘𝚓𝚎𝚌𝚝𝑢

indicates projection onto plane 𝑢.
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3.2.3. Query sampling
To encode an arbitrary-shaped polyhedron, one challenge lies in

consistently describing the heterogeneous polyhedral geometry. To
address this, we propose sampling representative points from inside the
polyhedron and coercing the geometry into fixed-length queries 𝐬 of
size 𝑘: 𝐬 = {𝑠1, 𝑠2,… , 𝑠𝑘}. It is clear that the more representative the
sampled points are, the more information they convey about the poly-
hedron. We propose skeleton sampling that picks samples from both
vertices and principal axes, as described in Algorithm 3.1 and Fig. 5.
Vertices, because of their prominence in describing sharp geometry, are
prioritized over points along the axes when a low value of 𝑘 is given.

Algorithm 3.1: Skeleton sampling ( , 𝐶, 𝑘)
Input: Vertices  , centroid 𝐶, and #samples 𝑘
Output: Representative points 𝐬

1 𝐬 ← init ∅;
2 if 𝑘 ≤ || then
3 𝑠 ← sample𝑘();
4 𝐬 ← 𝑠 ;
5 else
6 𝑘𝑚 ← ⌊

𝑘
|| ⌋ ;

7 𝑘𝑙 ← 𝑘 mod || ;
8 𝐬𝑚 ← sample𝑘𝑚{

(

𝑖, 𝐶
)

∶ 𝑖 = 1, 2, ..., || − 1} ;
9 𝐬𝑙 ← sample𝑘𝑙

(


||, 𝐶

)

;
10 𝐬 ← {𝐬𝑚, 𝐬𝑙} ;
11 return 𝐬

We also evaluate two other sampling strategies, namely volume
sampling and boundary sampling, as illustrated in Fig. 5. The volume
variant randomly takes points inside the volume of a polyhedron,
carrying relatively the least amount of geometric information about
the polyhedron. The boundary variant samples points on the boundary
of a polyhedron with area-induced probability. This variant can better
depict polyhedral occupancy with boundary information. Since the
skeleton variant picks samples from both vertices and principal axes, it
provides arguably the most efficient description of a polyhedron among
the three variants.

The representative points obtained by any of the three sampling
strategies reduce the complexity of an arbitrary-shaped polyhedron
to a fixed-size feature vector that can be consumed by the neural
network while preserving geometric information to different extents.
These representative points then serve as queries against 𝐳, leading to
the formation of polyhedron-wise features. Intuitively, these queries are
used to jointly describe the occupancy of the underlying polyhedron.
Note that each variant is applied individually, and their performances
are compared in Section 5.1.

3.2.4. Forming polyhedron-wise features
Inspired by the recent advance in 3D shape representation learn-

ing (Park et al., 2019; Yao et al., 2021), for the latent code 𝐳(1), we
form a shape-conditioned implicit representation 𝐳(1)𝑠 of the polyhedron
by concatenating the coordinates of the queries 𝐬 with 𝐳(1):

𝐳(1)𝐬 = 𝜉𝛩
(

𝐬 ∣ 𝐳(1)
)

= 𝜉𝛩
([

𝑠1, 𝑠2,… , 𝑠𝑘, 𝐳(1)
])

, (6)

where 𝜉𝛩 represents an MLP.
Alternatively, the conditioned implicit representation 𝐳(2)𝑠 of the

latent code 𝐳(2) is constructed by interpolating 𝐳(2) at the coordinates
of 𝐬:

𝐳(2)𝐬 = 𝜉𝛩
(

𝐬 ∣ 𝐳(2)
)

= 𝜉𝛩
∑

𝑢

(

𝚒𝚗𝚝𝚎𝚛𝚙𝚘𝚕𝚊𝚝𝚎𝐳(2) (𝐬)
)

, (7)

where 𝚒𝚗𝚝𝚎𝚛𝚙𝚘𝚕𝚊𝚝𝚎 denotes bilinear interpolation, and 𝐬 represents
the coordinates of queries. Both Eqs. (6) and (7) enable the modeling
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Fig. 5. Sampling representative points from a polyhedron. (a)–(c) visualize different
strategies to sample the polyhedron highlighted in (d). Volume: Points are sampled
randomly from inside the volume. Boundary: Points are sampled from the boundary.
Skeleton: Points are sampled along the polyhedral skeleton as described in Algo-
rithm 3.1. Representative points are color-coded by their parent polyhedra.

Fig. 6. Fusion of shape latent code and polyhedral queries to form polyhedron-wise
features, with the plain encoder (top) and with the convolutional encoder (bottom).

of multiple building instances with a single neural network. Fig. 6
illustrates the different formations of polyhedron-wise features with 𝐳(1)𝑠
and 𝐳(2)𝑠 .

Intuitively, 𝐳𝑠 represents a discrete occupancy function that, given
a polyhedron, describes its occupancy conditioned on the underlying
building instance. This representation can be interpreted as a spatial
classifier for which the decision boundary is the surface of the building.
Notably, instead of approximating a continuous implicit function by
exhaustive enumeration, our discretized formulation takes geometric
priors of individual polyhedra into account, which significantly reduces
computational complexity and mitigates solution ambiguity. Fig. 1
illustrates this distinction.

3.3. Graph node classification

The polyhedron-wise features produced by Eq. (6) or Eq. (7) do
not yet account for inter-polyhedron adjacency, which could provide
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Fig. 7. PolyGNN efficiently accommodates variable-size input points, polyhedra, and
queries with an index-driven batching technique (top). Batch size equals 4 in this
example. An example with scattered add operator (bottom).

additional information for classifying individual polyhedra. To leverage
this topological information and enhance classification performance,
we utilize another stack of graph convolution layers for graph node
classification, as outlined in Eq. (1). Specifically, we employ topology-
adaptive graph convolution (Du et al., 2017) for its adaptivity to the
topology of the graph and computational efficiency. It utilizes a set of
fixed-size learnable filters for graph convolution, defined as follows:

𝐆𝑙+1 =
𝐾
∑

𝑘=0

(

𝐃−1∕2𝐀𝐃−1∕2)𝑘 𝐆𝑙 , (8)

where 𝐆𝑙+1 and 𝐆𝑙 denote the node features before and after the
convolution at the 𝑙-th layer, respectively. 𝐀 is the adjacency matrix
implied by  in Eq. (1), and 𝐃 = diag[𝐝] with the 𝑖-th component being
𝑑 (𝑖) =

∑

𝑗 𝐀𝑖,𝑗 . 𝐾 is the number of filters, whose topologies are adaptive
to the topology of the graph.

Multiple graph convolution layers defined in Eq. (8) are stacked to
increase the receptive field of the neural network. The feature of the 𝑖-th
node 𝐺𝑖 is then fed into a binary classification head with the softmax
activation function to produce the probability of the polyhedron 𝑣𝑖
being interior :

�̂�𝑖 = sof tmax
(

𝜆𝛩
(

𝐺𝑖
))

, (9)

where 𝜆𝛩 denotes an MLP.
The number of input points, polyhedra, and queries may vary

considerably among different building instances, naturally impeding
parallelization with mini-batches. To mitigate this variability, we em-
ploy a batching mechanism tailored to accommodate such diversity.
Our approach entails recording indices of the points, polyhedra, and
queries within each batch. These indices are subsequently utilized to
acquire instance-level features, as depicted in Fig. 7.

The network can be supervised by cross entropy or focal loss (Lin
et al., 2017) that minimizes the discrepancy between the prediction and
the ground truth. It can be optimized end-to-end without any auxiliary
supervision. In the testing phase, given a building instance, we predict
the occupancy of the candidate polyhedra. Then the surface lies in
between pairs of polyhedra {𝑣𝑖, 𝑣𝑗} with different class predictions,
i.e., 𝑦 ≠ 𝑦 , as shown in Fig. 2.
𝑖 𝑗
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Fig. 8. Examples of abstraction gaps between real-world point clouds 𝑟 and existing
building models 𝑌𝑚. Instead of learning 𝑓 : 𝑟 → 𝑌𝑚, we learn an auxiliary mapping 𝑓 ′:
𝑚 → 𝑌𝑚, where 𝑚 is derived from 𝑌𝑚 by synthesizing 𝑟. Point clouds are color-coded
by their height fields.

4. Experimental settings

4.1. Datasets

Unlike other applications that adhere to rigorous definitions of
ground truths, reconstructing large-scale polygonal buildings presents
a challenge due to the abstraction of existing building models (Wang
et al., 2023; Wichmann et al., 2018), resulting in inevitable deviations
from actual measurements, as shown in Fig. 8. This abstraction would
impede a supervised learning algorithm due to its inherent biases. To
overcome this abstraction gap, we created a synthetic dataset com-
prised of simulated airborne LiDAR point clouds and their correspond-
ing building mesh models. This dataset enables a reliable mapping
between the two sources, enabling a fair evaluation of the proposed
method for primitive assembly.

Formally, let 𝑟 and 𝑌𝑚 be a real-world point cloud and its cor-
responding building model, respectively. Due to the abstraction gap,
the mapping 𝑓 : 𝑟 → 𝑌𝑚 cannot be accurately learned by a neural
network. Instead, we opt to learn an auxiliary mapping 𝑓 ′: 𝑚 → 𝑌𝑚
where 𝑚 is derived from 𝑌𝑚 by synthesizing 𝑟. Once 𝑓 ′ is learned, it
can be applied to 𝑟 to obtain the corresponding output 𝑌 ′

𝑟 = 𝑓 ′(𝑟).
Conditioned on good transferability to real-world point clouds, using
synthetic data in our task offers two-fold advantages. First, it enables
the learning of the desired mapping by circumventing the abstraction,
allowing the classifier to be trained and evaluated independently of
potential data discrepancies. Moreover, it facilitates the exploration
of a large volume of ‘‘free’’ training data, which benefits the learning
algorithm in general.

We utilize the Helios++ simulation toolkit (Winiwarter et al., 2022)
to simulate airborne LiDAR scanning. LoD2 building models from
Bavaria, Germany are used as references for their high quality and cov-
erage (State of Bavaria, 2022). Artifacts such as noise and inter-building
occlusions are intentionally included in the scanning process, to assim-
ilate the distribution of 𝑚 and 𝑟, thereby enhancing the robustness of
the neural network against real-world measurements. The virtual sensor
closely emulates the characteristics of Leica HYPERION2+, utilizing an
oscillating optics system with a pulse frequency of 1.5 MHz and a scan
frequency of 150 Hz. We simulate an airborne survey performed by a
Cirrus SR22 aircraft flying at an altitude of 400 m with a strip interval of
160 m. Our training dataset comprises 281,571 buildings with a total of
6,532,880,764 points extracted from the city of Munich, Germany, with
an additional 10,000 buildings reserved for evaluation. On average,
each building in the dataset is associated with 22,406 points. To assess
the cross-city transferability of PolyGNN, we also synthesize data from
220,127 buildings in Nuremberg, Germany. In addition to the synthetic

data, we apply the trained model directly to a real-world airborne
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LiDAR point cloud dataset containing 1452 buildings captured with
Leica HYPERION2+. For an individual building, we normalize it to unit
scale, generate a set of polyhedra with inter-polyhedron adjacency as
pre-processing (see Section 3.2.1), and use ray tracing to determine the
ground truth occupancy label for every polyhedron.

4.2. Evaluation metrics

We utilize multiple criteria to evaluate the performance of the
reconstruction. The classification accuracy directly impacts the fidelity
of the reconstruction and is therefore evaluated. Furthermore, since
the ground truths are reliably defined in our setting, we quantify the
surface discrepancy between the reconstructed surface and the ground
truth by calculating the Hausdorff distance 𝐻 :

𝐻 = max
{

sup
𝑎∈𝐴

inf
𝑏∈𝐵

𝑑(𝑎, 𝑏), sup
𝑏∈𝐵

inf
𝑎∈𝐴

𝑑(𝑎, 𝑏)
}

, (10)

where 𝑑(𝑎, 𝑏) represents the distance between points 𝑎 and 𝑏. We ran-
domly sample 10,000 points from both the reconstructed surface and
the ground truth and calculate both the absolute and relative distances.
We quantify the success rate 𝑆 by the proportion of 10,000 samples that
are solvable. Typical unsolvable cases include empty reconstruction due
to the absence of interior polyhedra, or timeout. For a fair comparison in
the context of large-scale reconstruction, in the event of an unsolvable
reconstruction, we assign the length of the largest side of the bounding
box as the absolute distance, and 100% as the relative distance. We
also employ RMSE for evaluating fidelity of the reconstruction on real-
world data. Additionally, we measure the geometric complexity of the
reconstructed building models in terms of the number of faces they
comprise, denoted as 𝑁𝐹 , and measure computational efficiency in
terms of running time 𝑡 with a 5 min timeout for an individual building.

4.3. Implementation details

We implemented adaptive space partitioning with robust Boolean
spatial operations from SageMath (The Sage Developers, 2021). For
query sampling, while a larger value of 𝑘, representing the number
of samples per polyhedron, could enhance the polyhedral represen-
tation, particularly for polyhedra with a large number of faces, this
increased representativeness would come with additional computa-
tional costs. For all of our experiments, we set 𝑘 to 16 to balance the
representativeness and computational complexity.

Although our implementation with the index-driven batching ac-
commodates variable-length input point clouds, unless otherwise spec-
ified, the input point clouds are downsampled to 4096 points. Point
clouds are normalized before being fed into the network and rescaled
for computing the Hausdorff distance. All experiments are optimized by
the Adam with a base learning rate 10−3 and weight decay 10−6, with
batch size 64. The network variants were trained for 50 epochs for the
ablation experiments, whereas they continued training until 150 epochs
for the best model in other experiments.

5. Results and analysis

5.1. Alternative and ablation experiments

As shown in Table 1, among the three sampling strategies pre-
sented in Fig. 5, skeleton sampling achieves the best classification
and geometric accuracy, followed by boundary sampling. This finding
aligns with the fact that both skeleton sampling and boundary sampling
leverage more explicit geometric information compared to the volume
counterpart, with the skeleton of a polyhedron capturing the most
critical information conveyed by its vertices and principal axes.

The individual contributions of the classification head and the
adjacency information to the reconstruction performance are analyzed
through another ablation experiment, as presented in Table 2. Re-

placing the classification head with a regression head and the use of
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Table 1
Impact of query sampling strategy on model performance.

Query sampling Accuracy (%) ↑ H (m) ↓

Random 94.5 1.20
Boundary 94.7 1.12
Skeleton 95.5 1.08

Table 2
Impact of classification head and adjacency information on model performance. ‘‘–’’
indicates complete failure where no model is reconstructed.

Classification Adjacency Accuracy (%) ↑ H (m) ↓

✗ ✗ 87.3 –
✓ ✗ 93.7 1.80
✓ ✓ 95.5 1.08

Fig. 9. Impact of adjacency in PolyGNN reconstruction. From left to right: input point
cloud color-coded by height field, reconstructed model w/o adjacency, reconstructed
model w/ adjacency, ground truth. (∙, ∙) denotes

(

𝑁𝐹 ,𝐻
)

.

Table 3
Impact of point cloud sampling strategy on model performance and per-epoch training
time. ‘‘res’’ represents grid resolution relative to a unit cube.

Point sampling Accuracy (%) ↑ Time train (h.) ↓

Grid (res. 0.05) 94.6 0.7
Grid (res. 0.01) 94.8 24.6
Random 95.5 2.1

the 𝐿2 loss cause the network to collapse completely, leading to the
prediction of every polyhedron as an exterior one. In this case, the clas-
sification accuracy represents the high dominance of exterior polyhedra
(87.3%). Furthermore, the results provide clear evidence that incorpo-
rating inter-polyhedron adjacency information significantly enhances
the reconstruction performance compared to relying solely on mono-
tonic polyhedral information (95.5% vs. 93.7%). This improvement
suggests that PolyGNN effectively exploits neighborhood information
for occupancy estimation. Additionally, Fig. 9 visually demonstrates the
effectiveness of such information where the network utilizes adjacency
information to achieve a more regularized reconstruction. This regu-
larization is analogous to the MRF employed in Chen et al. (2022),
while with PolyGNN it is integrated into the feature space, avoiding
additional computational overhead.

PolyGNN is designed to be agnostic to the number of points, al-
lowing for point clouds with varying sizes as inputs with advanced
mini-batching. In Table 3, we compare three point cloud sampling
options: random sampling, coarse grid sampling with a resolution of
0.05 within a unit cube, and fine grid sampling with a resolution of
0.01 within the same unit cube. The results demonstrate that random
sampling outperforms grid sampling with both resolutions in terms
of accuracy. It is worth noting that our random sampling strategy is
dynamic, where different random points are selected in different epochs
during training. This dynamic random sampling can also be considered
a form of data augmentation. Although computationally more efficient,
coarse grid sampling does not entail sufficient details for input point
clouds. Interestingly, fine grid sampling leads to significantly longer
training times, yet it yields lower accuracy compared to random sam-
pling, possibly due to the inherent difficulty of encoding shape latent
codes from variable-length inputs.

Table 4 compares the performance of the two encoders, demon-
strating the superiority of the convolutional encoder over the plain
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Fig. 10. Reconstruction examples on the Munich data with PolyGNN. From top to bottom: input point cloud color-coded by height field, polyhedra classified as building components,
reconstructed model, and ground truth model. Point clouds are rendered by their height fields. Polyhedra are randomly color-coded.
Table 4
Impact of encoder on model performance and per-epoch training time.

Encoder Accuracy (%) ↑ Time train (h.) ↓

Plain 95.5 2.1
Convolutional 96.5 0.4

encoder in terms of both accuracy and efficiency. This advantage
reveals that the latent code generated by Eq. (5) preserves more local
information compared to the shape latent code described in Eq. (3).
Unless otherwise stated, the subsequent experimental analysis utilized
the convolutional encoder.

5.2. Performance and transferability

PolyGNN achieves an average error of 0.33 m on the held-out
Munich evaluation set. Notably, we observe that when building in-
stances demonstrate similar levels of geometric complexity, accurate
classification often leads to lower geometric errors. The reconstructed
building models, as shown in Fig. 10, demonstrate conformity to the
distribution of the point clouds while maintaining compactness for
potential downstream applications. Buildings with simpler geometry
are of more regularity in the reconstruction.

To assess the transferability of PolyGNN, we applied the model
trained on the Munich data to buildings in Nuremberg. Fig. 11 show-
cases the reconstruction of a downtown area of Nuremberg. The Haus-
dorff distance measures 0.40 m. The comparable accuracy demonstrates
the strong cross-city transferability of our approach when confronted
with buildings that may vary in architectural styles. The inference with
the convolutional encoder takes 15 s for 4185 buildings in the area,
highlighting its efficiency for large-scale reconstruction.

Fig. 12 depicts the reconstruction results obtained by further ap-
plying PolyGNN trained exclusively on the synthetic data to real-world
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point clouds in Munich. Fig. 13 shows detailed examples. As expected,
a domain gap exists between the two datasets, resulting in suboptimal
reconstructions for certain buildings, especially those with architectural
styles that are less represented in the training data. Nevertheless, it
is noteworthy that the majority of the reconstructed buildings align
well with the distribution of the input point clouds. Fig. 14 further
demonstrates cases where we apply the trained model with extracted
planar primitives by RANSAC (Schnabel et al., 2007). By learning the
underlying mapping, the reconstruction may approximate the point
cloud distribution closer than the ground truth does, which validates
the effectiveness of our strategy of learning the auxiliary mapping.

5.3. Comparison with state-of-the-art methods

Table 5 presents a quantitative comparison between our method
and state-of-the-art methods in urban reconstruction, while Fig. 15
showcases examples for qualitative comparison as well. The 2.5D DC
method (Zhou and Neumann, 2010) outputs only facades and roofs, and
therefore cannot be fairly compared to other reconstructions quantita-
tively by Hausdorff distance. Nevertheless, it was unable to represent
building models with a concise set of parameters. In contrast, all the
other methods exhibit compact reconstructions. Compared to the tra-
ditional optimization-based approach City3D (Huang et al., 2022), our
method demonstrates the capability to handle more complex buildings
commonly found in large-scale urban scenes. City3D adopts exhaus-
tive partitioning, leading to a large solution space for exploration.
Thus, it only managed to reconstruct 9886 buildings within a 5 min
timeout using its Gurobi solver (Gurobi Optimization, LLC, 2023), re-
sulting in inferior reconstruction accuracy as measured by the balanced
Hausdorff distance. In contrast, our approach utilizes adaptive space
partitioning, resulting in a more compact candidate space that en-
hances both efficiency and overall accuracy. Compared to Geoflow (Pe-
ters et al., 2022), which explicitly confines reconstruction within the
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Fig. 11. Reconstruction of Nuremberg downtown buildings with PolyGNN.
Fig. 12. Reconstruction from real-world point clouds with PolyGNN trained on the synthetic dataset.
footprint, our method demonstrates superior performance in terms of
accuracy and compactness, even though it is not restricted to the
2.5D disk topology. Furthermore, in comparison to the learning-based
method Points2Poly (Chen et al., 2022), PolyGNN excels in efficiency
while achieving comparable or higher geometric accuracy. Fig. 13
701 
also demonstrates that PolyGNN transfers better than Points2Poly from
synthetic to real data, with lower RMSE.

Both Figs. 15 and 16 present comparisons with KSR (Bauchet and
Lafarge, 2020), another primitive assembly method. When provided
with identical input primitives, KSR necessitates additional wall points
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Table 5
Quantitative performance comparison with state-of-the-art methods. ‘‘Learning’’ indicates learning-based methods. 𝑆, 𝐹𝑁 , and 𝐻 denote success
rate, number of faces, and Hausdorff distance, respectively. Statistics were derived from 10,000 held-out samples, while 𝐹𝑁 was derived from
successfully reconstructed samples.

Method Learning 𝑆 (%) ↑ 𝐹𝑁 ↓ 𝐻 (m) ↓ 𝐻 (%) ↓

2.5D DC (Zhou and Neumann, 2010) ✗ 100.00 613.63 – –
City3D (Huang et al., 2022) ✗ 98.86 48.87 1.10 6.0
Geoflow (Peters et al., 2022) ✗ 99.97 137.66 0.42 2.8
Points2Poly (Chen et al., 2022) ✓ 99.76 27.94 0.83 4.7

PolyGNN (ours w/ plain) ✓ 99.76 36.37 0.81 4.7
PolyGNN (ours w/ conv.) ✓ 100.00 28.82 0.33 2.2
Fig. 13. Reconstruction from real-world point clouds. Numbers represent RMSE. Both
Points2Poly (Chen et al., 2022) and PolyGNN (ours) were trained only on the synthetic
data. The models produced by PolyGNN demonstrate lower RMSE.

Fig. 14. Reconstruction from real-world point clouds with planar primitives extracted
by RANSAC. From left to right: input point cloud color-coded by height field, the same
input color-coded by primitives, cell complex, reconstructed model, and the ground
truth. As revealed by the close-up views on the input point cloud, the reconstruction
recovered more detailed structures than the ground truth.

for achieving non-trivial results, along with pre-computed point nor-
mals. In contrast, PolyGNN can directly estimate building occupancy
from unorganized and incomplete point clouds. Furthermore, Fig. 17
shows a comparison with LowPolyBuildings (Gao et al., 2022), a sim-
plification approach operating on dense smooth surfaces. Notably,
PolyGNN’s reconstruction exhibits greater regularity with the same
level of complexity. Additionally, Fig. 18 showcases a comparison
with Manhattan reconstruction (Li et al., 2016b), a model-based ap-
proach that utilizes polycubes as the model library. Here, PolyGNN’s re-
construction demonstrates superior flexibility in describing arbitrarily
oriented building geometry.

Fig. 19 presents the running time comparison among different meth-
ods, highlighting the superior efficiency of our approach. City3D, which
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relies on an integer programming solver, encounters computational
bottlenecks as the number of planar primitives increases. Consequently,
for certain complex buildings, the reconstruction cannot even be solved
within a feasible time frame of 24 h. Points2Poly requires approxi-
mately 4 days for one epoch of training, whereas PolyGNN only takes
24 min (240× faster). The longer inference time of Points2Poly, on the
other hand, comes mostly from two factors. Firstly, more efforts are
required for its occupancy estimation. Table 6 presents the comparison
with the learning-based method Points2Poly, for reconstructing the
building in Fig. 3 with 60 planar segments. Points2Poly enumerates
queries with signed distance values to learn a smooth boundary, while
ours only requires discrete binary-class queries directly describing the
piecewise planar surface. Meanwhile, the adaptive strategy signifi-
cantly reduces the number of queries for both training and testing of
our method as fewer polyhedra need to be considered as candidates.
Secondly, the interface computation, which is necessary for assign-
ing graph edge weights, contributes to the longer running time of
Points2Poly. In contrast, PolyGNN can reconstruct a building directly
by inferring the polyhedral occupancy, leveraging GPU parallelization
for improved efficiency.

5.4. Robustness analysis

To analyze the robustness of PolyGNN against variations in point
cloud density, we randomly drop input points. As shown in Fig. 20,
even though PolyGNN was not explicitly trained against various point
densities, it manages to achieve reasonable reconstruction with sparsely
subsampled point clouds. When uniformly dropping 85% of the points,
the overall shape can still be maintained as long as planar primitives
remain accurate. Additionally, while preserving the decomposition, we
truncated different portions of input points to analyze the robustness of
PolyGNN against heterogeneously missing points, a scenario for which
it was also not explicitly trained. The reconstruction remains feasible
even when up to 30% of the points are truncated, as shown in Fig. 20.

We also apply different levels of noise to perturb the initial planes.
As shown in Fig. 21, the reconstruction starts to deviate from the
ground truth when the noise level reaches 5%. Increasing the noise
level results in irregular cell complexes and thus poses challenges for
primitive assembly. With 20% noise, the method fails to reconstruct the
main body. Since PolyGNN learns a discrete decision boundary, it is
inherently sensitive to the quality of planar primitives. We believe that
introducing different point distributions and noises into the training
data would further enhance the model’s robustness.

5.5. Limitations

We assume the availability of high-quality planar primitives ex-
tracted from point clouds. This assumption may not always be fulfilled
with real-world data that contains significant noise and occlusions,
and therefore is considered a limitation of the proposed method and
similar approaches that rely on primitive assembly. Additionally, since
PolyGNN operates on individual buildings, a preliminary step of build-
ing instance segmentation is required prior to reconstruction, especially
when dealing with point clouds of entire scenes.
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Fig. 15. Qualitative performance comparison with state-of-the-art methods: 2.5D DC (Zhou and Neumann, 2010), City3D (Huang et al., 2022), Geoflow (Peters et al., 2022),
KSR (Bauchet and Lafarge, 2020), Points2Poly (Chen et al., 2022), and PolyGNN (ours). Point clouds are color-coded by their height fields. (∙, ∙) denotes

(

𝑁𝐹 ,𝐻
)

. Note that
additional wall points were required by KSR; otherwise, it would generates trivial results (see Fig. 16).
Table 6
Efficiency comparison between Points2Poly (Chen et al., 2022) and ours, two learning-based methods. The building in Fig. 3 with 60 planar
segments is taken for calculating the number of queries. Efficiency is a derived factor based on the number of queries; the actual gain may
deviate due to parallelization.

Method Label type #Queries train #Queries test Efficiency train Efficiency test

Points2Poly w/ exh. Class + value 2,600,000 14,146,600 1x 1x
Points2Poly w/ ada. Class + value 2,600,000 1,127,100 1x 13x

PolyGNN (ours) w/ exh. Class 174,112 174,112 15x 81x
PolyGNN (ours) w/ ada. Class 13,872 13,872 187x 1020x
Fig. 22 shows some failure cases. When reconstructing buildings
with complex structures, PolyGNN may encounter challenges in captur-
ing fine details, such as intricate rooftop superstructures. These failures
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can be attributed to two factors. Firstly, the complexity of a building
implies a larger and more intricate polyhedral embedding, which poses
challenges to the network’s prediction. Secondly, the training dataset
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Fig. 16. Comparison with KSR (Bauchet and Lafarge, 2020). Additional wall points
were required by KSR for non-trivial results, in addition to point normals. Given
the same planar primitives, PolyGNN (ours) can estimate building occupancy from
unorganized incomplete points, and can still deal with added wall points even though
it was only trained on airborne data without wall points. Point clouds are color-coded
by their height fields.

Fig. 17. Comparison with geometric simplification. Left: smooth surface mesh with
Screened Poisson (Kazhdan and Hoppe, 2013) (𝑁𝐹 = 40,042). Middle: simplified mesh
with LowPolyBuildings (Gao et al., 2022) (𝑁𝐹 = 187). Right: direct reconstruction with
PolyGNN (ours) (𝑁𝐹 = 190). Our results demonstrate greater regularity.

Fig. 18. Comparison between Manhattan reconstruction (Li et al., 2016b) and
PolyGNN. Left: Manhattan reconstruction with polycubes as candidates. Right: PolyGNN
(ours) with arbitrary polyhedra as candidates.

predominantly consists of buildings with simple shapes, leading to
an under-representation of complex structures. As a result, the net-
work may have limited exposure to and understanding of complex
architectural elements with fine details.

6. Conclusion

We introduced PolyGNN, a novel framework for urban building
reconstruction with a polyhedron-based graph neural network. Unlike
traditional deep implicit fields that learn a continuous function, our
approach learns a piecewise planar occupancy function derived from
polyhedral decomposition. We proposed a skeleton-based sampling
strategy for representing an arbitrary-shaped polyhedron within the
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Fig. 19. Running time comparison. Statistics are derived from 30 buildings of various
geometric complexity with the number of planar primitives ranging from 6 to 367.

Fig. 20. Robustness to point cloud distribution with various point densities (top) and
levels of missing points (bottom). Each triplet from top to bottom: input point cloud,
polyhedra classified as building components, and reconstructed model. Polyhedra are
randomly color-coded.

neural network, and demonstrated its superior performance compared
to other variants. Furthermore, PolyGNN is end-to-end optimizable and
is designed to accommodate variable-size input points, polyhedra, and
queries with an index-driven batching technique.

We developed PolyGNN on a large-scale synthetic building dataset
furnished with polyhedral labels and analyzed its transferability on
cross-city synthetic data and real-world data. Both qualitative and
quantitative results demonstrate the effectiveness of PolyGNN, particu-
larly in terms of efficiency. Moreover, our framework is designed to
be generic. It can potentially be extended to handle other types of
point clouds, such as photogrammetric ones, and can be utilized for the
reconstruction of generic piecewise planar 3D objects beyond buildings.

Finally, we remark on the gap between synthetic and real-world
point clouds. In future work, we aim to bridge this gap further, enabling
learning-based reconstruction methods to better abstract and leverage
a vast volume of training data. Additionally, we intend to explore
techniques for integrating semantic attributes to enrich the polyhedral
graph and integrate plane extraction into the neural architecture.
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Fig. 21. Robustness to quality of planar primitives. Increasing levels of Gaussian noise
are added to perturb the initial planar primitives. From top to bottom: cell complex,
polyhedra classified as building components, and reconstructed model. Polyhedra are
randomly color-coded.

Fig. 22. Suboptimal reconstruction of buildings with complex structures. From left to
right: input point cloud color-coded by height field, reconstructed model with the plain
encoder, reconstructed model with the convolutional encoder, and ground truth.
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