
Delft University of Technology
Faculty Electrical Engineering, Mathematics & Computer

Science
Delft Institute of Applied Mathematics

GPU Acceleration Of The PWTD

Algorithm For Application In

High-Frequency Communication And

Fotonics

Thesis Report for the
Delft Institute of Applied Mathematics

as part of

the degree of

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

Rory Gravendeel

Delft, the Netherlands
23 August 2020

Copyright © by Rory Gravendeel. All rights reserved.

MSc Thesis report APPLIED MATHEMATICS

“GPU Acceleration Of The PWTD Algorithm For Application In
High-Frequency Communication And Fotonics“

RORY GRAVENDEEL
4076494

Delft University of Technology

Thesis advisor

Dr. K. Cools

Members of the graduation committee

Prof.dr.ir. C. Vuik

Prof.dr.ir. H.X. Lin

R. van Driel, MSc

23 August 2020 Delft

Abstract

When creating electronic devices, it is essential to model what happens when an elec-
tromagnetic field hits the device and it scatters. Conventionally, this can be modelled
using the Marching-on-in-Time algorithm. This can become computationally expensive
for complex systems. To speed up the algorithm, the Plane-Wave Time-Domain algorithm
is combined with the MOT algorithm. To accelerate the process even more, part of the
algorithm is implemented using a Graphics Processing Unit, or GPU.

To test if using GPUs for this type of problem is actually beneficial, three experiments are
set up. The first one tests the basic operations of addition and multiplication on matrices
and vectors of various sizes, to determine if and when the computation time of the GPU is
lower than that of a CPU. The second experiment tests the use of Fast Fourier Transform
planner functionality and compares the CPU computation time with that of the GPU for
the FFT of matrices of various sizes. The third experiment compares an example of the
PWTD algorithm on the CPU and the GPU. These experiments are performed on three
different devices.

The results from experiment 1 and 2 show that, after a certain point, the GPU is almost
always faster, no matter the operation. Experiment 3 shows that the current GPU im-
plementation is currently not as fast as the regular PWTD algorithm, though one of the
devices is only 0.003% slower.

In conclusion, theoretically a decrease in computation time is expected. From experi-
ment 3 it follows that it is not the case yet, though with more optimisation the GPU
implementation would almost certainly become faster.

iv

Contents

1 Introduction 1

2 Problem Description 3

3 Plane-Wave Time-Domain Algorithm 5
3.1 Finite Element Method . 5
3.2 Marching-On-In-Time Algorithm . 7
3.3 Plane-Wave Time-Domain Algorithm . 9

3.3.1 Subsignals . 9
3.3.2 Plane-Wave Decomposition . 9
3.3.3 Implementation Issues . 14

3.4 Two-Level Algorithm . 19
3.4.1 Partitioning . 19
3.4.2 Transforming . 20
3.4.3 Algorithm . 21

3.5 Multilevel Algorithm . 22
3.5.1 Partitioning . 22
3.5.2 Transforming . 23
3.5.3 The algorithm . 24
3.5.4 Complexity . 25

3.6 Some notes . 25

4 Background Information 26
4.1 Fast Fourier Transform . 26

4.1.1 Theory . 26
4.1.2 Fast Fourier Transform . 28
4.1.3 Parallel FFT . 29
4.1.4 Implementations . 32

4.2 Julia . 33
4.2.1 History And Versions . 33
4.2.2 Syntax . 33
4.2.3 Types . 34
4.2.4 Packages . 34
4.2.5 Compiler . 35

4.3 GPU Programming . 35
4.3.1 Introduction . 35
4.3.2 The Workings Of A GPU . 35
4.3.3 GPU Architecture . 36
4.3.4 Single vs Double Precision . 37

v

4.3.5 GPU Programming Languages . 38

5 Methodology 40
5.1 CUDA Programming . 40

5.1.1 Kernels . 40
5.1.2 CUDA in Julia . 41
5.1.3 Operations . 42
5.1.4 Fourier Transforms . 42

5.2 Benchmarking . 43
5.2.1 Built-in Tools . 43
5.2.2 BenchmarkTools . 44

5.3 PWTD Package . 45

6 Numerical Experiments Setup 46
6.1 Initial Setup . 46

6.1.1 Capgemini Server . 46
6.1.2 University Laptop . 47
6.1.3 Personal Desktop . 47
6.1.4 Theoretical Computing Performance 48
6.1.5 Development . 48

6.2 Experiment 1: General GPU Acceleration 48
6.3 Experiment: Planner Test . 49
6.4 Experiment 2: FFT GPU Acceleration . 50

6.4.1 Experiment Parts . 51
6.4.2 Benchmarking . 52

6.5 Experiment 3: PWTD GPU Acceleration 52
6.5.1 GPU Implementation Of Fourier Transforms 53
6.5.2 Implementation Of Planner Functionality 53
6.5.3 Rewriting The Convolve Function 54
6.5.4 Eliminating All Unnecessary CPU-GPU Copies 54

7 Numerical Results 55
7.1 Exp. 1: General GPU Acceleration . 55
7.2 Planner Results . 59

7.2.1 Square Matrices . 59
7.2.2 Same Size, But Rectangular . 62
7.2.3 The Third Matrix Type . 66

7.3 Exp. 2: FFT GPU Acceleration . 69
7.3.1 Part 1: BenchmarkTools In A For-loop 69
7.3.2 Part 2: BenchmarkTools Rewritten 69
7.3.3 Part 3: Julia Testing . 73

7.4 Exp. 3: PWTD GPU Acceleration . 74

8 Conclusion 76

9 Recommendations and Future Work 78
9.1 Recommendations . 78
9.2 Future Work . 79

vi

10 Appendix 80
10.1 Code . 80

10.1.1 Experiment 1 . 80
10.1.2 Planner Experiment . 83
10.1.3 Experiment 2, Part 1 . 86
10.1.4 Experiment 2, Part 2 . 89
10.1.5 Experiment 2, Part 3 . 93

vii

Chapter 1

Introduction

GPUs have become ubiquitous in the current data science world of Artificial Intelligence
and Machine Learning. They are capable tools that use parallel computation to sig-
nificantly speed up processes. Due to the lowering costs for capable hardware and the
availability of easy to use programming languages that make use of GPUs, parallelisation
has seen an expansion in both research and modelling in many major scientific fields,
including in the field of mathematics. To see what kind of an effect parallelisation can
have, this research aims to speed up a current complex algorithm by implementing parts
of it on a GPU.

The algorithm in question uses the Plane-Wave Time-Domain algorithm to enhance a
Marching-on-in-Time scheme. The main component of this algorithm uses convolutions,
which can be mathematically difficult to solve. Fourier transforms can be used to solve
the convolutions more efficiently; Fourier transforms can then be parallelised using various
algorithms, which is why they are the prime candidates for GPU enhancements. Fourier
transforms are also one of the first examples major companies such as Nvidia use to tout
the computational gains of using GPUs.

This research aims to find out by how much the computation time of the Plane-Wave
Time-Domain algorithm can be reduced by implementing it partly on a GPU. This in-
cludes research on the use of GPUs for basic operations but also for the Fast Fourier
Transform, an implementation of the discreet version of the Fourier transform. Moreover,
a more in-depth look is taken at FFTs as much research has been done into optimizing
FFTs, including parallelisation. Furthermore, data has to be transferred from the CPU
to the GPU and back, which adds additional computation time. It is therefore essential
to also minimise the number of transferals.

The structure of this report is as follows. In chapter 2, the main problem is described for
which the MOT and PWTD algorithms will be used. It also discusses the main research
questions of the thesis. Chapter 3 discusses the MOT and PWTD algorithms themselves
and discusses two related implementations for using the algorithms on the main problem
described in chapter 2. Chapter 4 examines additional background information, which
includes a closer look at Fourier transforms, GPU programming and the programming
language Julia that was used for this thesis.

Chapter 5 then discusses the methodology for the experiments. This includes a look at
CUDA programming in general and in Julia, a review of benchmarking in Julia and a quick
discussion of the PWTD package created by thesis advisor Dr. Kristof Cools. Chapter 6
then describes the setup of the experiments for the research, with the results following in

1

chapter 7. A conclusion is drawn in the following chapter; recommendations and future
work are discussed in chapter 9. Any additional information, such as programming code,
has been added to the appendix.

2

Chapter 2

Problem Description

Many devices, such as antennas and aeroplanes, experience electromagnetic fields whilst
they are operative. It is imperative for developers of such devices to know what happens
when these fields interact with their devices and how the field might scatter after collision.
The scattering of these fields can be modelled and solved mathematically.

Assume there is a scatterer bounded by a surface S as below, which corresponds to the
aforementioned device. Though in this case it is portrayed as a two-dimensional flat
surface, it can be any three-dimensional object. Next, consider an incident field ui(r, t)
that is fired upon the scatterer, which can for instance correspond to an electromagnetic
field. It is assumed that ui is temporally bandlimited by ωmax (i.e. it is bandlimited in
the time-domain). Figure 2.1 below sketches the described situation.

Figure 2.1: Surface scattering problem.

Here r is the directional vector in the xyz-domain and t the time. When ui interacts

3

with S it creates a scattered field denoted by us(r, t). The total field is then u(r, t) =
ui(r, t) + us(r, t), the sum of the incident and scattered fields.

The goal is to determine the total field for all t. Note that the total field adheres to the
wave equation

∇2u(r, t)− ∂2

∂t2
1

c2
u(r, t) = 0 (2.1)

Using the boundary condition, which is assumed to be a Dirichlet boundary condition on
S, us can be represented in terms of surface sources q(r, t) on S such that

us(r, t) =

∫
S

dr′
δ(t−R/c)

4πR
∗ q(r′, t) (2.2)

This can be solved numerically with a Marching-On-In-Time algorithm. Also denoted
as the MOT algorithm, MOT can be accelerated by applying the Plane-Wave Time-
Domain algorithm, which will be discussed in the next chapter. Both MOT and PWTD
can become computationally expensive for large systems. To address this, parts of the
PWTD algorithm will be accelerated by using GPUs to reduce the computation time
needed to model scattering.

To narrow the scope of this research, the following thesis question has been determined:

By how much can the computational time of the Plane-Wave Time-Domain
algorithm be reduced by using GPUs?

To help answer this question, three sub-questions have been defined:

• How can the performance of the FFT on GPUs best be optimised?

• How can the number of (and concurrently the computational costs and
time from) transferals of data between CPU and GPU best be minimised?

• By what other means can the PWTD algorithm be optimised?

4

Chapter 3

Plane-Wave Time-Domain Algorithm

This chapter discusses the Plane-Wave Time-Domain algorithm itself and how it can be
used in conjunction with the problem from chapter 2. The chapter is built-up as follows: in
the first section, the Finite Element Method is described together with a simple example.
Section two expands upon this by introducing the Marching-on-in-Time algorithm. In
section three, the PWTD algorithm for the problem from chapter 2 is introduced. Sections
four and five discuss a two-level, respectively a multilevel implementation of the PWTD
algorithm. The chapter concludes with a short note on Fourier transforms.

3.1 Finite Element Method

The Finite Element Method is a widely-used algorithm that can be applied in a wide
range of problems, especially in for instance problems with complex geometries. In this
section, FEM is discussed shortly to denote its main building blocks. This is combined
with an example to illustrate the process of the algorithm. In general, a FEM problem
can be sketched as follows:

Assume there is a surface with a boundary over which one wishes to determine the solution
or evaluate a system of partial differential equations with a boundary value problem. The
surface is denoted by Ω, its boundary by ∂Ω. A vector n is the normal vector perpendicular
to the boundary, with ||n|| = 1.

To work through the algorithm, a Boundary Value Problem (BVP) example is introduced
for the function u(x, y): {

−∆u+ u = f(x, y) in Ω
∂u
∂n

= g(x, y) on ∂Ω

First multiply the system by a test function ϕ, where ϕ is chosen as a continuous function.
The following equation is then obtained:

(−∆u+ u)ϕ = ϕf

Next, integrate over Ω to obtain∫
Ω

ϕ(−∆u+ u)dΩ =

∫
Ω

ϕfdΩ

5

By applying Integration by Parts [19], the Divergence Theorem of Gauss [19] and the
natural boundary condition, the weak formulation is obtained:∫

Ω

∇u∇ϕ+ uϕdΩ =

∫
Ω

fϕdΩ +

∫
∂Ω

gϕdΓ

Galerkin’s Method [20] is then applied to the weak formulation. Set

u(x, y) =
∞∑
j=1

cjϕj(x, y) '
n∑
j=1

cjϕj(x, y) = un(x, y)

Assume {ϕj(x, y)}nj=1 is a basis, so the ϕj are linearly independent.

Next, divide Ω and ∂Ω into meshpoints, as figure 3.1 below illustrates. The meshpoints
are numbered.

Figure 3.1: Surface divided into meshpoints

For each gridnode, assume that ϕi belongs to node i and ϕi is piecewise polynomial.
Furthermore:

ϕi(xj, yj) = δij =

{
1 i = j
0 i 6= j

The u determined above for the Galerkin method is then added into the weak formulation,
where it follows that:

n∑
j=1

cj

[∫
Ω

∇ϕi∇ϕj + ϕiϕjdΩ

]
=

∫
Ω

ϕifdΩ +

∫
Ω

ϕigdΓ ∀i ∈ {1, . . . , n}

The right-hand side can be set as bi and the part between the []-brackets as Sij; the system
can then be rewritten as:

n∑
j=1

Sijcj = bi (3.1)

6

Depending on the chosen elements, Sij is then evaluated over each element before the
final system is determined.

There are various methods that can help in the last step, such as the Holand and Bell
Theorem over triangular elements, combined with Newton-Côtes. The type of element
can also be varied; one could opt for extra nodes per triangle or for quadratic elements
such as Taylor-Hood elements. The choice of basis functions also plays an important role.
Note that this walk-through of the Finite Element Method is based upon notes for the
courses WI4205 Applied Finite Elements and WI4450 Special Topics at the University of
Technology Delft, both given by Fred Vermolen in 2018. More information can be found
in [19].

3.2 Marching-On-In-Time Algorithm

The Marching-On-In-Time algorithm, or MOT-algorithm as it is commonly abbreviated
to, works in the same way as the Finite Element Method, only then with added temporal
basis functions to accommodate the time-variable in equations. These extra time functions
are added to the Galerkin part of FEM. When compared to the previous section, the
notation is changed so it is more aligned to the notation of the original problem. See also
section 18.2 of [3].

Let q(r, t) be an unknown source density. ui(r, t) is denoted as the field incident on the
scatterer, which is temporally bandlimited by ωmax. The scatterer is bounded by a surface
S as described in the problem description chapter. When the incident field interacts with
the surface S, a scattered field is generated, denoted by us(r, t). The total field can then
be denoted as u(r, t) = ui(r, t) + us(r, t), which adheres to the wave equation:

∇2u(r, t)− ∂2

∂t2
1

c2
u(r, t) = 0

The incident and scattered fields can be represented in terms of similar surface sources
q(r, t) that are located on S, such that

us(r, t) =

∫
S

dr′
δ(t−R/c)

4πR
∗ q(r′, t)

−ui(r, t) =

∫
S

dr′
δ(t−R/c)

4πR
∗ q(r′, t) ∀r ∈ S

where

• δ(.) is the Dirac delta-function, such that for f on Rn, we have for a ∈ Rn that∫
Rn δ(x− a)f(x)dx = f(a)

• r is the directional vector in the xyz-domain

• R = |r− r′|

• c is the wave speed in the medium of field S

• ∗ is the convolution operation, in the temporal domain

7

The convolution operation [25] can be defined as follows:
For functions f, g : [0,∞) → R the operator ∗ is defined as the integral of the product of
two functions after one is reversed and shifted, such that

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ

Equivalently

(f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ)dτ

To solve this system numerically, represent q(r, t) in terms of the basis functions fn(r), n =
1, . . . , Ns, which are spatial functions, and Ti(t), i = 0, . . . , Nt, which are temporal func-
tions. As with FEM, rewrite q as

q(r, t) =
Ns∑
n=1

Nt∑
i=0

qn,ifn(r)Ti(t)

Here qn,i represent unknown expansion coefficients, like the cj in the Finite Element
Method.

Next, substitute q(r, t) in its basis functions form into the equation for ui(r, t). Test the
resulting equation at time t = tj = j∆t with test function f̃m(r) for m = 1, . . . , Ns. In
the same way as for equation 3.1, a matrix equation can be obtained for the system of
the form:

Z̄0Qj = U i
j −

j−1∑
k=1

Z̄kQj−k (3.2)

where

• The m-th element of vector Qj is given by qm,j

• The m-th element of vector U i
j is given by −

∫
S
drf̃m(r)ui(r, tj)

•

Z̄k,mn =

∫
S

drf̃m(r)

∫
S

dr′fn(r′)

[
δ(t−R/c)

4πR
∗ Tj−k(t)

]
|t=tj (3.3)

With this equation the coefficients qn,j can be determined by starting at the first time
step j = 0, from which the next value of the above equation can be determined per time
step.

The setup is similar to that of the Finite Element Method, but with an added temporal
basis function. The evaluation process does differ somewhat and can be computationally
expensive. The operation on the right-hand side of equation 3.2 requires evaluation of
field us(r, t) at O(Ns) points on S due to all the prior sources. Furthermore, it requires
O(N2

s) operations to complete. As this operation is repeated for all Nt timesteps, the
final complexity is equal to O(NtN

2
s).

To reduce the computational costs the Plane-Wave Time-Domain algorithm is applied.
Do note that, unlike with FEM, only the boundary is turned into a mesh since in this case
the problem is a Boundary Element problem, where only the boundary of the scatterer
affects the system.

8

3.3 Plane-Wave Time-Domain Algorithm

The Plane-Wave Time-Domain algorithm is at the heart of this thesis research, as it
is the algorithm to be accelerated by using GPUs. This section discusses the regular
algorithm by first examining the necessary notation and subsignal division. After that,
the general definition of a plane-wave is considered as well as a plane-wave representation
for the scatter-problem. Finally, the PWTD decomposition is implemented and reviewed.
The steps in [3] are followed since it is the main source for the algorithm; additional
explanation has been added to certain parts for clarification. The same notation of [3] is
also used here so the source material can easily be referenced.

3.3.1 Subsignals

The Plane-Wave Time-Domain algorithm calls for all source signals to be of a finite
duration. This works for the original problem from chapter 2, as the source signal q(r, t)
can be divided into subsignals ql(r, t) of an equal duration, such that

q(r, t) =
L∑
l=1

ql(r, t). (3.4)

Each subsignal ql is zero outside of an interval (l−1)Ts ≤ t ≤ lTs, where Ts is the duration
of the subsignals. The field radiated by source ql can then be denoted by ul(r, t); the total
field can then be expressed by summing up over all the intervals:

ul(r, t) =
L∑
l=1

ul(r, t) (3.5)

The relation between the subsignal and subfield can then be denoted as

ul(r, t) =

∫
S

dr′
δ(t−R/c)

4πR
∗ ql(r, t) (3.6)

3.3.2 Plane-Wave Decomposition

The first step of the PWTD algorithm is to determine a fitting plane wave representation
for the transient wave fields in 3.6. This step is motivated by the use of frequency domain
fast multipole schemes, which are discussed at the end of this section. Before that, the
definition of a plane wave must be considered.

A wave can be described with the following wavefunction [13]:

ψ(x, t) = A cos(kx− ωt+ φ)

where A is the amplitude, k the wavenumber, ω the angular frequency and φ the phase
angle of the wave. This type of wavefunction is a one-dimensional plane wave. It is one-
dimensional because it only depends on the Cartesian coordinate x. Moreover, the wave
maxima are located at kx− ωt+ φ = 2jπ where j is an integer. These wave maxima are
a series of parallel planes normal to the x-axis and spaced a distance λ = 2π/k apart.
They propagate along the x-axis at a velocity v = ω/k.

9

In the same way a three-dimensional plane wave can be described. Consider then the
wavefunction

ψ(x, y, z, t) = A cos(k · r− ωt+ φ)

where r = (x, y, z) and k = (kx, ky, kz) ·n, where n is an arbitrary unit vector. The planes
are normal to n and are located at the wave maxima k · r− ωt+ φ = 2jπ.

Using this, a plane wave decomposition for 3.6 can be explored. [3] posits the following
plane wave representation for ul(r, t), denoted as ũl(r, t):

ũl(r, t) = − ∂t
8π2c

∫ θint

0

dθ sin θ

∫ 2π

0

dφ

∫
S

dr′δ
[
t− k̂ · (r− r′)

/
c
]
∗ ql(r′, t) (3.7)

Here k̂ = x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ is a unit direction vector. Via the integral
over S the source distributions ql are projected onto a plane wave travelling in the k̂
direction. θint in the first integral is the upper limit of θ.

Next, if θint is set equal to π, then ũl can be conveyed as a superposition of plane waves
that move in all directions. The necessary relation between ul and ũl can then be found by
integrating over θ and φ in equation 3.7. To do this efficiently, equation 3.7 is transformed
into a different coordinate system (x′, y′, z′) ≡ (ρ′, θ′, φ′) where the z′-axis is aligned with
R = r − r′. This coordinate system transformation is motivated by the slant stack
transform operation [7]. Figure 18.3 of [3] shows how the translation to the new coordinate
system works in a 2D system; it has been added below for reference.

Figure 3.2: Figure 18.3a of [3]: Translation into new coordinate system.

10

In this new coordinate system the upper limit on θ′, θ′int, is a function of φ′, r and r′, so
θ′int(φ

′, r, r′). Then

ũl(r, t) = − ∂t
8π2c

∫
S

dr′
∫ 2π

0

dφ′
∫ θ′int(φ

′,r,r′)

0

dθ′ sin θ′δ
(
t− k̂′ ·R′

/
c
)
∗ ql(r′, t) (3.8)

Here k̂′ = x̂′ sin θ′ cosφ′ + ŷ′ sin θ′ sinφ′ + ẑ′ cos θ′ and R′ = ẑ′|R|. Furthermore, assume
θint > cos−1(ẑ ·R/R). By defining R = |R| and using the fact that k̂′ ·R′ = R cos θ′, one
can set τ = R cos θ′/c such that, in conjunction with equation 3.8, it follows that

ũl(r, t) = −
∫
S

dr′
∫ 2π

0

dφ′
∫ R/c

−(R/c) cos θ′int

dτ
∂tδ(t− τ)

8π2R
∗ ql(r′, t)

=

∫
S

dr′
δ(t−R/c)

4πR
∗ ql(r′, t)−

∫
S

dr′
δ(t+R cos θ′int/c)

4πR
∗ ql(r′, t)

= ul(r, t)−
∫
S

dr′
δ(t+R cos θ′int/c)

4πR
∗ ql(r′, t) (3.9)

If again θint = π, 3.9 reduces to

ũl(r, t) = ul(r, t)−
∫
S

dr′
δ(t+R/c)

4πR
∗ ql(r′, t) (3.10)

The second term in equations 3.9 and 3.10 is called the ghost term, which is anticausal
and thus has outputs and states that do not depend on past inputs. This also means that
the ghost term is seen by the observer before the source signal even exists. By using a
causality trick, one can time-gate out the ghost signal by setting the subsignal length to
Ts < R/c, as this ensures the ghost signal and true signal never overlap.

Next, the question of why the derivation of equation 3.7 is need to further the advancement
of a speedy algorithm that can calculate the transient fields is discussed. Consider a
source distribution restricted to a sphere of radius Rs. Furthermore, consider a collection
of observers that are also located in a (different) sphere of the same radius. The centres
of the source- and observer-sphere correspond to rs and ro, respectively. The vector
connecting the two centres is denoted by Rc = ro − rs. Assume Rc = |Rc| > 2Rs, so the
distance between the two centres is larger than the radii of both spheres added together
and thus the spheres don’t overlap. Also note that the vector r−r′ = (r−ro)−Rc−(r′−rs).
Figure 18.5 from [3] visualises the vectors just described; for easy reference, the image has
been added in figure 3.3.

11

Figure 3.3: Figure 18.5 from [3] showing the vectors of the PWTD algorithm.

Equation 3.7 can then be rewritten into

ũl(r, t) =

∫
d2k̂δ

[
t− k̂ · (r− ro)

/
c
]
∗ T (k̂,Rc, t)

∗
∫
S

dr′δ
[
t+ k̂ · (r′ − rs)

/
c
]
∗ ql(r′, t) (3.11)

where

∫
d2k̂ =

∫ π

0

dθ sin θ

∫ 2π

0

dφ integration over the unit sphere

T (k̂,Rc, t) = − ∂t
8π2c

δ
(
t− k̂ ·Rc

/
c
)

translation function

Now a three-stage implementation of 3.11 is used to evaluate ũl, where each convolution
is determined separately.

1. First perform the rightmost integration and convolution of 3.11, which is equal to

qout
l (k̂, t) =

∫
S

dr′δ
[
t+ k̂ · (r′ − rs)

/
c
]
∗ q(r, t)l (3.12)

This operation is known as the slant stack transform (SST) [7] of ql. The quantities
qout
l can be interpreted as rays leaving the source sphere in direction k̂.

2. Next, perform the second integration and convolution, so evaluate

qin
l (k̂, t) = T (k̂,Rc, t) ∗ qout

l (k̂, t) (3.13)

Each outgoing ray is translated by the operator T from the source sphere to the
observer sphere. The qin

l can be seen as rays entering the observer sphere.

3. Lastly, perform the final integration and convolution:

ũl(r, t) =

∫
d2k̂δ

[
t− k̂ · (r− ro)

/
c
]
∗ qin

l (k̂, t) (3.14)

This action shifts all the projections of the incoming rays correctly to the observer.

12

Setting Ts < (Rc − 2Rs)/c ensures that

ul(r, t) =

{
0 for t < lTs
ũl(r, t) for t ≥ lTs

and it ensures that the ghost signal is timed out correctly.

Fast Multipole Method

As a side-note, one recognises the Fast Multipole Method in the above derivation of the
plane wave decomposition of the algorithm, per [8]. The method is started from the
matrix Z of 3.2. For scattering problems, the matrix elements can be written as

Znn′ = −i
∫
S

d2x

∫
S

d2x′fn(x)
eik|x−x

′|

4π|x− x′|
fn(x′) (3.15)

Here fn are again the basis functions, which is comparable to 3.3. The following elemen-
tary identities are used to rewrite 3.15:

eik|X+d|

|X + d|
= ik

∞∑
l=0

(−1)l(2l + 1)jl(kd)h
(1)
l (kX)Pl(d̂ · X̂) (3.16)∫

d2k̂eik·dPl(k̂ · X̂) = 4πiljl(kd)Pl(d̂ · X̂) (3.17)

It follows that

Znn′ ≈ k

(4π)2

∫
S

d2xfn(x)

∫
S

d2x′fn′(x′)

∫
d2k̂eik·(x−x

′−X)TL(kX, k̂ · X̂) (3.18)

where

TL(κ, cos θ) ≡
L∑
l=0

tl(2l + 1)h
(1)
l (κ)Pl(cos θ) (3.19)

The Legendre polynomials and Bessel functions found in 3.18 and 3.19 are discussed
below.

Bessel Functions

The Bessel functions [34] are the solutions of Bessel’s differential equation:

z2d
2w

dz2
+ z

dw

dz
+ (z2 −m2)w = 0 (3.20)

Here m is an arbitrary complex number, which is also known as the order of the Bessel
function.

There are two kinds of Bessel functions, of the first kind and of the second kind. These
are, in the case of cylindrical coordinates,

13

Jm(z) =

(
1

2
z

)m ∞∑
k=0

(−1)k
(

1
4
z2
)k

k! Γ(m+ k + 1)
(3.21)

Ym(z) =
Jm(z) cos(mπ)− J−m(z)

sin(mπ)
(3.22)

Here Γ is the gamma-function, which is equal to

Γ(n) = (n− 1)!

In the case of spherical coordinates and assuming that m is a positive integer, the Bessel
functions become

jm(z) =

√
1

2
π/zJm+ 1

2
(z) (3.23)

ym(z) =

√
1

2
π/zYn+ 1

2
(z) (3.24)

Legendre Polynomials

For a variable x, the Legendre polynomial [2] can be written as

Pn(x) =
1

2n

n∑
k=0

(
n

k

)2

(x− 1)n−k(x+ 1)k (3.25)

Legendre polynomials can be useful for expanding 1/r-potentials and for multipole ex-
pansions.

3.3.3 Implementation Issues

Reference [3] also highlights some implementation issues that need to be addressed before
the algorithm can be implemented correctly. These issues are related to spatial integration,
spectral integration and subsignal temporal representation.

Before discussing these, another operation to consider is bandlimiting. A bandlimited
signal is a signal in which a particular band of frequencies are present. In other words, it
is the limiting of a signal’s Fourier Transform to zero above a certain finite frequency.

Spatial Integration

Whilst performing the integration of 3.12 and 3.3, make sure the correct quadrature rules
are used; this depends entirely on the discretization function used. The corresponding
quadrature rules are discussed with Spectral Integration.

Spectral integration

To numerically evaluate the fields using 3.11, the correct quadrature rules have to be
used to perform the integration over the unit sphere. Three key observations help when
evaluating 3.11 numerically.

14

1. If the translation function is excluded from the integral in 3.11, it is equivalent to
the time-dependent radiation pattern of a source distribution contained in a sphere
of radius 2Rs [17]. If it is assumed that ql(r, t) is temporally bandlimited to a
ωs > ωmax, this piece of the integral can be defined in terms of spherical harmonics
(see the previous section) Ykm(θ, φ) as

g(k̂, r, t) = δ
[
t− k̂ · (r− ro)

/
c
]
∗
∫
S

dr′δ
[
t+ k̂ · (r′ − rs)

/
c
]
∗ ql(r′, t)

=

∫
S

dr′δ
[
t+ k̂ · [(r′ − rs)− (r− ro)]

/
c
]
∗ ql(r′, t)

=
K∑
k=0

k∑
m=−k

gkm(r, t)Ykm(θ, φ) (3.26)

Set K = dχ12Rsωs/ce where χ1 > 1 is an excess bandwidth factor that provides
fast convergence for the series in 3.26.

2. The translation function T in 3.11 is only a function of the angle θ′, where θ′ lies
in between the vectors k̂ and Rc. Therefore it can be denoted either in terms of
Legendre polynomials in θ′ or in terms of spherical harmonics in (θ, φ), as

T (k̂,Rc, t) =

=

 − ∂t
16π2Rc

∞∑
k=0

(2k + 1)Pk(ct/Rc)Pk(cos θ′) |t| ≤ Rc/c

0 elsewhere
(3.27)

=


∞∑
k=0

k∑
m=−k

Tkm(Rc, t)Ykm(θ, φ) |t| ≤ RC/c

0 elsewhere

(3.28)

3. Spherical harmonics posses an orthogonality property, hence the terms in 3.28 for
which k > K do not contribute to the result whilst integrating g(k̂, r, t)∗T (k̂,Rc, t)
over the unit sphere. Because of this property the first sum in 3.28 can be stopped
at k = K. Furthermore, the translation T can then be replaced by the truncated
version T̄ (k̂,Rc, t) in all previous expressions, where T̄ is denoted by

T̄ (k̂,Rc, t) =

 − ∂t
16π2Rc

K∑
k=0

(2k + 1)Pk(ct/Rc)Pk(cos θ′) |t| ≤ Rc/c

0 elsewhere
(3.29)

From these three observations it follows that the integral in 3.11 can be denoted by
multiplying two distinct functions. These two functions can be expressed in terms of
spherical harmonics Ykm, k = 0, . . . , K;m = −k, . . . , k. The integral can then be evaluated
by using a (2K + 1)-point trapezoidal rule in the φ-direction and a (K + 1)-point Gauss-
Legendre quadrature in the θ-direction.

The Trapezoidal Rule [28] for an integral is defined as follows:

∫ b

a

f(x)dx ≈
N∑
j=1

f(xj−1) + f(xj)

2
∆xj (3.30)

15

where xj are the quadrature points.

The Gaus-Legendre quadrature is defined as follows:

When integrating over the interval [−1, 1], the Gauss-Legendre quadrature has the form

∫ 1

−1

f(x)dx ≈
n∑
i=1

wif(xi) (3.31)

Here n is the number of gridpoints, wi are the quadrature weights and xi are the roots of
the n-th Legendre Polynomial, see 3.25. The weights are then given by the formula

wi =
2

(1− x2
i)[P

′
n(x1)]2

This together yields the following expression for ũl:

ũl(r, t) =
K∑
p=0

K∑
q=−K

wpqδ
[
t− k̂pq · (r− ro)

/
c
]
∗ T̄ (k̂pq,Rc, t)

∗
∫
S

dr′δ
[
t+ k̂pq · (r′ − rs)

/
c
]
∗ ql(r′, t) (3.32)

where

wpq =
4π(1− cos2 θp)

(2K + 1)[(K + 1)PK(cos(θp)]2

k̂pq = x̂ sin θp cosφq + ŷ sin θp sinφq + ẑ cos θp (3.33)

φq = 2πq/(2K + 1)

θp is the (p+ 1)th zero of PK+1(cos θ)

Subsignal temporal representation

In part 1 of Spectral integration, the assumption was made that the subsignals were
temporally bandlimited. However, it is also necessary for each subsignal to be timelimited,
which is not possible due to the temporal bandlimiting. Luckily this can easily be fixed.
The entire signal is bandlimited to ωmax and can be divided into subsignals that are both
bandlimited to ωs = χ0ωmax where χ0 > 1 and approximately time limited. This can be
done by using the correct local interpolation functions.

It is known that q(r, t) is temporally bandlimited. It can be locally bandlimited by using
temporally bandlimited and approximately time limited functions as

q(r, t) ∼=
Nt∑
k=1

q(r, k∆t)ψk(t). (3.34)

Here ∆t is the time step and ψk(t) is a bandlimited interpolant. A near optimal ψk is
given by

16

ψk(t) =
ω+

ωs

sin(ω+(t− k∆t))

ω+(t− k∆t)

sinh
(
ω−pt∆t

√
1− [(t− k∆t)/pt∆t]2

)
sinh (ω−pt∆t)

√
1− [(t− k∆t)/pt∆t]2

(3.35)

where

ωs = π/∆t = χ0ωmax

χ0 > 1 is the oversampling ratio

ω± = (ωs ± ωmax)/2

pt integer that defines the approximate duration of the interpolation function.

If this is plotted for ∆t = 0.01, χ0 = 3, pt = 2 the following two figures follow for k = 20
and k = 50:

0 0.2 0.4 0.6 0.8 1

t

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

k

Figure 3.4: Bandlimited interpolant for k = 20

17

0 0.2 0.4 0.6 0.8 1

t

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

k

Figure 3.5: Bandlimited interpolant for k = 50

The interpolant oscillates closely around the t-axis, where it eventually creates a massive
spike at t/∆t = k; figure 3.5, for instance, has 100 datapoints and k = 50, so naturally
its spike is halfway along the axis.

From 3.34 it follows that the signal can be divided into subsignals ql given by

ql(r, t) =

(l+1)Mt−1∑
k=l Mt

q(r, k∆t)ψk(t) (3.36)

Here each subsignal ql is defined in terms of Mt samples of the signal q but spans M ′
t =

Mt+2pt time steps. This means that each subsignal ql(r, t) is created from the samples of
q(r, t) in an interval of length Ts = Mt∆t but that the duration of each subsignal ql(r, t)
is of duration T ′s = M ′

t∆t = (Mt + 2pt)∆t. Therefore, neighbouring subsignals overlap by
2pt samples. Together with the function ψk being bandlimited to ωs, this results in the
required time limitation.

It can be easily seen that χ0 and χ1 determine the accuracy of this three-step PWTD
algorithm. [3] has run various tests to verify this, the results of these tests can be found
at the end of section 18.3.

18

3.4 Two-Level Algorithm

The most computationally expensive part of the MOT algorithm is the computation of 3.2,
especially the sum on the right-hand side. The idea is to combine the MOT algorithm with
the PWTD algorithm to create a Plane-Wave Time-Domain-enhanced Marching-on-in-
Time algorithm. The main concept behind this algorithm is quite simple: the scatterer is
first divided into subscatterers. The contributions of all the subscatterers that are nearby
are then determined directly using MOT, the other contributions are determined using
the PWTD scheme. This section will discuss a two-level implementation of the PWTD-
enhanced MOT algorithm; section five will build upon this by introducing a multilevel
scheme.

For both implementations the steps are the same:

1. Create a partitioning of the scatterer and its boundary

2. Transform the waves

3. Perform the algorithm

3.4.1 Partitioning

To describe the partitioning of the two-level algorithm, consider a cubical volume around
the scatterer S. This cube is divided into smaller cubes that are all of equal size and
each fits into a sphere of radius Rs. Set Ng as the total number of non-empty boxes and
Ns as the number of spatial basis functions for the MOT scheme. (Recall from the MOT
scheme that Ns is the total number of spatial basis functions, and Nt the total number of
temporal basis functions.) The set of spatial basis functions in a non-empty box is called
a group. Of importance is the average number of spatial basis functions in each group,
which is equal to Ms = Ns/Ng, where Ms ∝ (Rsωmax/c)

2. Remember that ωmax is the
bandlimiting factor for ui(r, t).

The non-empty boxes are numbered 1, . . . , Ng. Define γ, γ′ = 1, . . . , Ng as corresponding
groups in the numbered non-empty boxes, where γ denotes the source group and γ′

denotes the observer group. Each group pair (γ, γ′) is then either near field or far field.
The distinction between the two depends on the distance between the group centers. If
this distance is less than a preset distance Rc,min the pair is near field, if it is larger than
Rc,min it is far field. Assume that Rc,min = ξRs, where 3 ≤ ξ ≤ 6 is chosen beforehand.

An example of the two-level partitioning can be found in figure 3.6. Note that figures 3.6
and 3.7 are reconstructions of the images in figure 18.9 in [3] where the images have been
redrawn and coloured in. Next, assume that the box with the cross in it is box 1 and is
the observer box; furthermore, assume that Rs = 3. Then group pair (2, 1), where box 2
is the box immediately above box 1, is a near field pair. Group pair (11, 1), where box 11
is the eleventh box after tracing the boundary upwards from box 1, is a far field pair.

19

Figure 3.6: Example of two-level subdivision

3.4.2 Transforming

To avoid ghost signals in the PWTD, a correct signal duration must be defined. To that
end, the fundamental subsignal duration Ts can be defined as below; subsignal durations
that are needed in the determination of fields related to other far field pairs (γ, γ′) are
denoted as Ts,γγ′ :

Ts = Mt∆t (3.37)

Mt = min
γ,γ′
{b(Rc,γγ′ − 2Rs)/(c∆t)c}

Rc,γγ′ the distance between the centers of group-pair (γ, γ′)

Ts,γγ′ = Mt,γγ′∆t (3.38)

Mt,γγ′ = Mtb(Rc,γγ′ − 2Rs)/(cTs)c

Ts is then the maximum duration of a subsignal without obtaining a ghost signal between
the nearest groups of far-field pairs of blocks. Ts,γγ′ are integer multiples of Ts per their
definition; this allows these values to be reused easily.

To evaluate the convolution for 3.13, define the Fourier Transform (see chapter 4.1) of the
translation function:

F
{
T̄ (k̂,Rc,γγ′ , t)

}
=

∞∫
−∞

T̄ (k̂,Rc,γγ′ , t)e
−iωtdt

= − iω

8π2c

K∑
k=0

(2k + 1)(−i)kjk(ωRc,γγ′/c)Pk(cos θ′) (3.39)

Here jk is the spherical Bessel function, see also 3.23. Pk is a Legendre polynomial as in
3.25. For any sphere pair (γ, γ′) these functions can easily be constructed by using the
normalised translation function

20

T̃ (θ′,Ω) = Rc,γγ′

{
T̄ (k̂,Rc,γγ′ , t)

}
(3.40)

= − iΩ

8π2

K∑
k=0

(2k + 1)(−i)kjk(Ω)Pk(cos θ′) (3.41)

Here θ′ is the ray angle and Ω = ωRc,γγ′/c the normalised frequency. These normalised
translation functions are then saved in a table for later use.

3.4.3 Algorithm

Using everything defined before, a two-level algorithm can now be defined to determine
the sum on the right-hand side of equation 3.2. The parts the sum that correspond to
the near and far field pairs are determined in separate steps, starting with the near field
evaluations.

1. Evaluation of the near field contributions
Evaluate the following sum during every time step:

j−1∑
k=1

Z̄γγ′

k Qγ′

j−k (3.42)

Here Z̄γγ′

k denotes a submatrix of Z̄k from 3.2 that relates fields over group γ to

sources in group γ′. Qγ′

j−k is a vector with values defined by the qn,j−k for all sources
n in group γ′.

2. Evaluation of the far field contributions
Follow the three steps of the Plane-Wave Time-Domain algorithm.

(a) Construction of outgoing rays
A set of outgoing rays is constructed for each group, generated by subsignals
of duration Ts, every Mt time steps. By convolving the subsignal related to
the spatial basis function fn(r), the contribution from fn to the outgoing ray
travelling in the direction of k̂pq can be evaluated with

V +
n (k̂pq, t) =

∫
S

dr′δ
[
t+ k̂pq · (r′ − rc)

/
c
]
fn(r′) (3.43)

Here rc corresponds to the center of the group that encapsulates the basis
function fn.

(b) Translation
The outgoing rays are translated to incoming rays from group γ to group γ′.
The translation is described in the following steps:

i. By using the rays stored in 2a, an outgoing ray can be constructed by
connecting these rays. The Fourier transform of the translation function
is also computed, in anticipation of the coming convolution.

ii. The spectrum of the applicable function is determined from the T̃ table
through local interpolation.

21

iii. The translation function spectrum and outgoing ray spectrum are multi-
plied.

iv. The inverse Fourier transform is applied to transform the result back into
the time domain. The obtained rays are superimposed onto incoming rays.

(c) Projection of incoming rays onto observers
By convolving the incoming rays with

Ṽ −n (k̂pq, t) =

∫
S

dr′δ
[
t− k̂pq · (r′ − rc)

/
c
]
f̃n(r′) (3.44)

the field at the nth observer can be evaluated. The step is completed by
performing the spherical integration.

Complexity

One important factor to look at is the complexity of the two-level algorithm. As de-
termined in [3], the cost in step 1 is equal to O(NtNsMs) and in step 2 it is equal to
O(NtN

2
sM

−1
s logNs). The complexity can be minimised by setting Ms ∝

√
Ns so the

total complexity is then equal to O(NtN
1.5
s logNs).

3.5 Multilevel Algorithm

The multilevel algorithm is built upon the foundations of the two-level algorithm. In prin-
ciple, small subscatterers are accumulated into larger entities before the translation, on
multiple levels. The same three basic steps are discussed as with the two-level algorithm.

3.5.1 Partitioning

A ranked subdivision of the scatterer is created by recursively dividing a cubical box that
encapsulates the scatterer into smaller boxes. Assume there is a box that encapsulates
the scatterer. Divide this box into eight smaller boxes. A box that is divided into smaller
boxes is called the parent, making each smaller box its child. This is done recursively.
The smallest/finest box is designated at level 1; this goes all the way up to level Nl. For
level i = 1, . . . , Nl the following are defined:

Ng(i) the number of non-empty boxes

Ms(i) the average number of sources in each group

Rs(i) the radius of the sphere that encloses a level i box

K(i) the number of spherical harmonics for the translation functions

As in the two-level algorithm, a set of near and a set of far field group pairs are constructed.
Again, every source/observer combination belongs to only one group pair. However, not
all far field pairs have to inhabit the same level. The greater the distance between source
and observer, the higher the level they are in. To do so, define Rc,min(i) = ξRs(i) as the
cutoff separation for each level. Here Rs(i) is the radius of the sphere that encapsulates
each box in level i. To define the near and far field pairs, one must start at the highest
level. A group pair on level Nl is denoted as ‘level-Nl far field’ when the centres of their
corresponding spheres are separated by more than Rc,min(Nl). Following that, level Nl−1

22

group pairs are denoted as ‘level Nl − 1 far field pairs’ when their sphere centres are
separated by more than Rc,min(Nl − 1), though they must not include interactions in any
of the Nl-level far field pairs. This process is continued recursively. At level 1 the group
centers that are separated by less than Rc,min(1) are labeled as near field pairs.

An example of the multilevel subdivision can be found in figure 3.7. The observer is again
located in the box marked with an X. In level 1 with the smallest boxes, the signals are
near field pairs. The somewhat larger boxes are then level 2, with the corresponding level
2 far field pairs. The largest boxes are level 3, in this case Nl = 3

Figure 3.7: Example of multilevel subdivision

As before, the fundamental subsignal duration for level i can be set as

Ts(i) = Mt(i)∆t

Mt(i) = min
γ,γ′
{b(Rc,γγ′ − 2Rs(i))/(c∆t)c}

Ts,γγ′(i) = Mt,γγ′∆t

Mt,γγ′(i) = Mt(i)b(Rc,γγ′ − 2Rs(i))/(cTs(i))c

3.5.2 Transforming

To make this algorithm more efficient, for a level i the information stored in level i−1 rays
can be reused. This is done by implementing two operations, interpolation and splicing.
Their two complementary operations at the observer side are resection and anterpolation.

Interpolation and anterpolation manipulate the outgoing respectively incoming rays. In-
terpolation rewrites the rays in terms of spherical harmonics, increases the sampling rate
and zero-pads the outer spherical spectrum. Anterpolation truncates the spherical har-
monics and lowers the sampling rate over the sphere.

An outgoing ray can be spliced into two rays and interpolated; resection is its comple-
mentary operation. Figures 18.10 and 18.11 of [3] illustrate these operations well. Figure

23

18.10 from [3] has been added in figure 3.8 to show how the process works visually, as this
makes it easier to understand the process.

Figure 3.8: Figure 18.10 from [3] that visualises the operations mentioned in
section 3.5.2.

3.5.3 The algorithm

Define the multilevel evaluation of 3.2 as follows:

1. Evaluation of the near field contributions.
As in the two-level scheme, all the near-field interactions are dealt with via the
MOT algorithm. They all reside on the first level.

2. Evaluation of the far field contributions

24

These contributions will be evaluated in a three-stage process, which is comparable
to the two-level scheme. Since independently setting up all of the outgoing and
incoming rays is too costly, apply interpolation, splicing, resecting and anterpolation
for a more efficient construction.

(a) Construction of outgoing rays
At level 1, convolve the source signatures of V +

n (k̂pq, t) from 3.43. Higher level
rays are constructed from previous levels through interpolation and splicing.
Levels must be crossed starting from level 1. So if the group pair resides in
level i, the rays must cross levels 1, 2, . . . , i− 1, i.

(b) Translation
As in the two-level scheme, the rays are translated between the far field pairs
(γ, γ′). Since the number of harmonics K(i) is level dependent, a new table for
the translation function T̃ (θ′,Ω) has to be created for each level.

(c) Projection of incoming rays onto observers.
Starting at level Nl−1, the incoming rays are resected and anterpolated at the
higher level. By convolving incoming rays at level 1 via Ṽ −n (k̂pq, t) from 3.44,
the fields at the observer sphere can be constructed.

3.5.4 Complexity

As for the two-level algorithm, the complexity of the multilevel algorithm is determined
in [3]. Again minimizing it by setting Ms ∝

√
Ns, the complexity of step 1 is equal

to O(NtNs) and the complexity of step 2 is equal to O(NtNs log2(Ns)). Thus the total
complexity is equal to O(NtNs log2(Ns)).

3.6 Some notes

As mentioned before, the Fast Multipole Method and the Fast Fourier Transform are
related per [8]. Both permit a sparse matrix for the matrix Z of 3.2. Since by 3.39 a
Fourier transform is applied to find the translation function 3.41, the relation with FMM
is understandable. This also peaks the interest in the Fourier transform and speeding it
up: a large part of the algorithm is applying Fourier transforms to translation functions.
Optimizing that part of the algorithm accelerates the algorithm itself considerably. The
same also applies for the multilevel algorithm.

25

Chapter 4

Background Information

This chapter contains all the background information on Fourier transform and on pro-
gramming on GPUs in, for instance, the programming language Julia. An important
part of the PWTD algorithm is the use of Fourier transforms, which the entire first sec-
tion is dedicated to. It discusses the discrete Fourier transform, various algorithms to
determine them and a way how to parallelise Fourier transforms. The second section is
devoted to the programming language Julia, while the third section is dedicated to GPU
programming.

4.1 Fast Fourier Transform

As seen in the section on the Plane-Wave Time-Domain algorithm, the main part of
equation 3.32 consists of multiple convolutions. Convolutions can be solved by using
Fourier transforms, per the theory below. Furthermore, Fourier transforms are excellent
candidates for parallel programming, therefore accelerating Fourier transforms by using
a GPU can result in large performance gains.

4.1.1 Theory

The Fourier transform transforms a function of time into into a function of frequency,
which is complex-valued; it lives in the frequency domain. The Fourier transform is
represented as follows, for a function f in the time domain:

f̂(ξ) =

∫ ∞
−∞

f(t)e−2πitξdt (4.1)

f(t) =

∫ ∞
−∞

f̂(ξ)e2πitξdξ (4.2)

Discrete Fourier Transform

To evaluate the Fourier transform numerically, the discrete Fourier transform (DFT) is
introduced. Assume there is a finite sequence of examples of a function. The DFT
converts this sequence into a sequence of same length discrete-time Fourier transforms. If
{xn} := x0, x1, . . . , xN−1 is the sequence to be converted and {Xk} := X0, X1, . . . , XN−1

is the sequence the function is converted to, the DFT can be denoted as

26

Xk =
N−1∑
n=0

xne
− 2πi

N
kn (4.3)

=
N−1∑
n=0

xn [cos(2πkn/N)− i sin(2πkn/N)] (4.4)

The transformation is denoted by F , such that X = F(x). w = e2πi/N corresponds to the
first complex N -th root of 1. Evaluating the DFT directly requires O(n2) operations.

The DFT can be used to approximate the Fourier transform of functions on an interval.
Assume the function f(t) is to be evaluated on the interval [t0, t1]. The interval is split
into N gridpoints, where the distance between two neighbouring gridpoints is denoted as
∆t and the total distance of the interval is denoted as T. It follows then that tj = t0 +j∆t
such that t1 = t0 + (N − 1)∆t. The interval can be approximated with a sum, which is
denoted as:

∫ t1

t0

f(t)e−itωdt = ∆t
N−1∑
j=0

f(tj)e
−itjω

= ∆t e−it0ω
N−1∑
j=0

fje
−ij∆tω = (∗)

By setting ωk = k 2π
N∆t

= k 2π
T

, then

(∗) = ∆t e−it0ωk
N−1∑
j=0

fje
−ijk 2π

N

It follows that
N−1∑
j=0

fje
−ijk 2π

N = DFT
[
fj|N−1

i=0

]
k

Convolutions

As discussed at the beginning of the section, Fourier transforms can be used to determine
the convolution of two functions. The Convolution Theorem is stated below.

Theorem 1 (Convolution Theorem). Let f and g be two functions with convolution f ∗g.
Let F denote the Fourier transform, then F(f) and F(g) are the Fourier transforms of
f respectively g. Denoting · as point-wise multiplication, we then have

F(f ∗ g) = F(f) · F(g) (4.5)

F(f · g) = F(f) ∗ F(g) (4.6)

This also works for the Fourier inverse:

f ∗ g = F−1 (F(f) · F(g)) (4.7)

f · g = F−1 (F(f) ∗ F(g)) (4.8)

The proof can be found at [11]. A standard convolution algorithm has a complexity of
O(n2); the Fourier transform reduces this to O(n log n). The Convolution Theorem is
also applicable to the discrete Fourier transform.

27

4.1.2 Fast Fourier Transform

As discussed before, the computational cost of the DFT is quite high at O(n2). To reduce
this, various algorithms have been developed that lower the computational costs. These
algorithms are called fast Fourier transforms and can rapidly compute DFTs by factorizing
the DFT into a product of sparse matrices or factors. This can reduce the computational
costs from O(n2) to O(n log n). The most-used FFT algorithms are the Cooley-Tukey
algorithm and Split-Radix algorithm.

Cooley-Tukey algorithm

The Cooley-Tukey algorithm [9] is one of the most well-known and widely-used FFT
algorithms. It rewrites the DFT into terms of smaller DFTs recursively, and solves these.
This reduces the computation time to O(N logN). Furthermore, these smaller DFTs can
be combined with other algorithms to solve them quickly.

In general, Cooley-Tukey algorithms follow the same re-expression of the DFT, which has
a composite size N = N1N2:

1. Perform N1 DFTs of size N2

2. Multiply by complex roots of unity

3. Perform N2 DFTs of size N1

In part 2, these complex roots are also called twiddle factors. These can be written as
ωnN = exp(−2πikn/N). The twiddle factor is also known as the phase factor, and it has
some symmetry and periodicity properties attributed to it:

Symmetry property: ω
k+N

2
N = −ωkN

Periodicity property: ωk+N
N = ωkN

Normally, either N1 or N2 is a small factor called the radix, which is generally a prime
number such as 2 or 3. If N1 is the radix, the algorithm is called a ‘decimation in time’
(DIT) algorithm; if N2 is the radix it is called a ‘decimation in frequency’ (DIF) algorithm.
An example of a radix-2 DIT algorithm follows.

The DFT is defined as in 4.3. The radix-2 DIT first computes the even-indexed DFTs
(x2m = x0, x2, . . . , xN−2) and then the odd-indexed DFTs (x2m+1 = x1, x3, . . . , xN−1).
These two results are combined to determine the DFT of the entire sequence. This can
then be performed recursively. This is the same as writing

Xk =

N/2−1∑
m=0

x2me
− 2πi

N
(2m)k +

N/2−1∑
m=0

x2m+1e
− 2πi

N
(2m+1)k (4.9)

The common multiplier e−
2πi
N
k is then factored out of the odd-sum. The two sums are

the DFT of the even-indexed part x2m (which is denoted as Ek) and the DFT of the
odd-indexed part x2m+1 (which is denoted as Ok). It then follows that

28

Xk =

N/2−1∑
m=0

x2me
− 2πi
N/2

mk + e−
2πi
N
k

N/2−1∑
m=0

x2m+1e
− 2πi
N/2

mk (4.10)

= Ek + e−
2πi
N
kOk (4.11)

Due to the periodicity of the complex exponential, Xk+N
2

is also obtained; its derivation

can be found in [9]:

Xk+N
2

= Ek − e−
2πi
N
kOk (4.12)

The algorithm gains its speed by re-using the results of these intermediate computations.

Split-Radix Algorithm

The split-radix algorithm [12] is derived from the Cooley-Tukey algorithm that uses a
combination of the radix-2 and radix-4 algorithms. It recursively re-expresses a DFT of
length N into three DFTs, one of length N/2 and two of length N/4. The algorithm
therefore only works if N is a multiple of 4. As it divides the DFT into smaller DFTs, it
can be used in combination with other algorithms.

The DFT definition 4.3 is again assumed. The first part of the algorithm sums over the
even indices x2n2 , then it sums over the odd indices via two pieces: x4n4+1 and x4n4+3,
depending on the index being either 1 mod 4 or 3 mod 4; nm denotes an index that runs
over 0, . . . , N/m− 1. Using ωN = exp(−2πi/N), the summation then looks like

Xk =

N/2−1∑
n2=0

x2n2ω
n2k
N/2 + ωkN

N/4−1∑
n4=0

x4n4+1ω
n4k
N/4 + ω3k

N

N/4−1∑
n4=0

x4n4+3ω
n4k
N/4 (4.13)

The smaller DFTs can then be performed recursively and combined. Using the twiddle
factors and denoting Uk as the sum of size N/2 and Zk and Z ′k as the first and second
sums of size N/4, respectively, it can be written as

Xk = Uk +
(
ωkNZk + ω3k

N Z
′
k

)
Xk+N/2 = Uk −

(
ωkNZk + ω3k

N Z
′
k

)
Xk+N/4 = Uk+N/4 − i

(
ωkNZk − ω3k

N Z
′
k

)
Xk+3N/4 = Uk+N/4 + i

(
ωkNZk − ω3k

N Z
′
k

)
This gives all the outputs for Xk by letting k run over 0, . . . , N/4− 1, thus requiring less
computations.

4.1.3 Parallel FFT

From the algorithms described above, it becomes evident that a parallel implementation
of FFTs is a valid extension due to the splitting of the DFT into smaller DFTs. There
are two implementations to consider: the parallelisation of current algorithms and the
development of new parallel algorithms.

29

The easiest way to use parallel programming for FFTs is to parallelise the currently used
algorithms. A paper by Michael Balducci et al [4] describes parallel forms of the most
popular FFT algorithms. As an illustration, the parallel form of the Radix-2 algorithm
is discussed. It follows the development of this parallel form from an article [22] by
Somasundaram Meiyappan.

The Decimation-In-Frequency form of the Radix-2 algorithm sets N2 = 2, thus it performs
N/2 DFTs of size 2. Figure 4.1, figure 3 from article [22], illustrates this implementation
for a DFT of length 8.

Figure 4.1: 8-point Radix-2 FFT DIF-implementation

The Radix-2 algorithm divides the computation of the DFT into log2N stages, in this case
3. In the first stage, a single 8-point DFT is performed, in the second stage two 4-point
DFTs and in the third stage four 2-point DFTs. The two latter stages are well suited for
parallel execution, as the two respectively four DFTs can be performed simultaneously.

The downside to using parallel programming here is the communication costs after each
stage. The results from the performed DFTs have to be communicated to the other
processors before the next stage can start. Figure 4.2 (figure 5 from [22]) shows how this
works using four processors.

30

Figure 4.2: 8-point Radix-2 FFT on four cores

In the first stage again a single 8-point DFT is performed. The results are then commu-
nicated, where processor 2 is awaiting the results from processor 0. In stage 2 two 4-point
DFTs are performed on processor cores 0 and 2, after which the results have to be commu-
nicated over all processors before stage 3 can be started. Depending on the device used,
this constant communication can considerably slow down the parallel implementation.

Article [22] does offer a solution of sorts that can reduce the communication costs. Denoted
as Communicate Twice, the same DFT is computed on multiple processors, after which
the results can directly be used. Figure 4.3, which corresponds to figure 6 from [22], shows
how this works.

Figure 4.3: 8-point Radix-2 FFT using Communicate Twice-method

In stage 1, all the processors perform the same, 8-point DFT. It is assumed that all the
results are approximately the same. Then processors 0 and 1 perform the first 4-point
DFT whilst processors 2 and 3 perform the second 4-point DFT of stage 2. Finally, stage
3 is performed as usual, with all four processors computing a different 2-point DFT. At
the end of stage 3, the results are added together.

The upside to this method is that it reduces communication time considerably. The

31

downside is that performing the same operation multiple times might give different results,
which can distort the final value of the FFT.

Note also that the above situation is an ideal situation, where the right amount of proces-
sors are available so no DFTs have to be queued. Regular system are normally outfitted
with four to eight processors (though the AMD Threadripper 3970X with 32 cores would
surely come in handy) which means that larger DFTs will have to queue smaller DFTs on
the processors, especially in the latter stages. This again brings more computation time
with it. The usage of GPUs in this case brings a significant advantage: since they have
hundreds of computing units available, larger DFTs can be computed efficiently in this
way.

To counteract the scaling issue of this method, newer parallel FFT algorithms have been
developed. An article [21] by Herbert Karner and Christoph Ueberhuber from the Tech-
nical University of Vienna discusses these newer algorithms.

4.1.4 Implementations

There are various implementations of the discrete Fourier transform. The most well-known
are discussed below.

FFTW

FFTW, or the Fast Fourier Transform of the West, is a software library that can be used
to compute DFTs efficiently. It was developed by Matteo Frigo and Steven G. Johnson
at MIT [15]. It is a free library and is, in most instances, the fastest implementation of a
fast Fourier transform.

FFTW’s strength is that it accepts any input, independent of length, rank or it being real
or imaginary. FFTW incorporates a planner that chooses the best algorithm for the input.
The most-used algorithms are the Cooley-Tukey algorithm and the split-radix algorithm,
as discussed before, as well as the prime-factor algorithm and Rader’s algorithm. Besides
these algorithms, the planner can also choose to use a combination of these algorithms
or produce its own code for arbitrary array sizes, though the code generator can produce
algorithms that the developers do not completely understand. More information on the
planner can be found in the official FFTW documentation [16].

FFTW is free and reliably fast, which means that many programming languages have
packages that use the library. For the programming language Julia, more information on
the packages used for FFTW can be found at [29] and [35].

Intel MKL

Intel MKL, or Math Kernel Library, is a mathematics library that can be used by all
devices that use Intel processors. Besides Fourier transforms, the library can accelerate
various mathematical operations, including linear algebra, vector mathematics, statistics
and partial differential equations. FFTs written for FFTW can easily be ported to Intel’s
library by using included interface wrappers.

Performance wise, Intel MKL and FFTW are more or less on a par, with each trying
to trounce the other when it comes to speed-up whilst performing FFTs. Intel was at
the top from 2011-2016, though FFTW has become the better alternative the last few

32

years. In his keynote during JuliaCon 2019 [40], professor Steven Johnson addressed
the performance of FFTW, comparing it to various FFT implementations including Intel
MLK. FFTW has the better performance, especially when the size is not a power of 2.

Nvidia cuFFT

Nvidia has developed its own FFT library that makes use of its CUDA platform for
graphics cards and is called cuFFT [42]. It uses GPU-acceleration to achieve performance
improvements up to ten times compared to CPU implementations. It also makes use of the
Cooley-Tukey algorithm (as well as the Bluestein algorithm) and can work in conjunction
with FFTW. There is also an OpenCL version called clFFT [31]. More information on
the differences between CUDA and OpenCL can be found in chapter 5.

4.2 Julia

Julia is a relatively new programming language that was developed by Jeff Bezanson,
Stefan Karpinski, Viral B. Shah and Alan Edelman [5]. The developers wanted to build a
programming language that combined all the best parts of MatLab, Python, Ruby, Perl,
R and C, whilst also being extremely fast. It was to be a programming language that
was easy to use, but could still be extremely powerful when needed and could excel at
everything that was thrown at it. The developers have more or less succeeded in this
goal. Though still seen as up and coming, Julia is picking up more and more users,
especially those performing numerical mathematical computations. It has currently been
downloaded over 4 million times.

There are various reasons why Julia is so powerful, which will be discussed below in more
detail. These include its unique syntax, its compiler, types, packages and ease of GPU
usage.

4.2.1 History And Versions

Julia’s first version was released on 14 February 2012, dubbed version 0.0. Exactly a year
later version 0.1 was released to the general public. A new version was released every
year, with 0.2 and 0.3 in 2014, 0.4 in 2015, 0.5 in 2016 and 0.6 in 2017. The first huge
upgrade was released in August 2018 together with a version 0.7. This latter version was
released to help test packages for the big 1.0 release and to guide users into any syntax
and underlying code changes to the language.

Version 1.0 has been designated a long-term release, with support for at least a year. New
.1 releases are released every few months with new features, with version 1.1 released in
January 2019, 1.2 in August 2019, 1.3 in November 2019, 1.4 in April 2020 and 1.5 in
August 2020. New updates for 1.0 are released on a regular basis to iron out any bugs.

4.2.2 Syntax

Julia has its own unique syntax, which has elements of MatLab and Python in it but also
its own unique approach to mathematical programming. It follows Python in that it uses
tabbed-indents for for-loops and such instead of curly brackets that open and close an
operation. On the other hand, when using an index it will start at 1 like MatLab, instead

33

of 0 such as Python does. Many functions like zeroes that create an array of matrix
filled with zeroes are equivalent to those found in MatLab.

It does add its own unique twist by adding options to include symbols such as ∈,⊂ and
Greek letters; these are defined in the same way as in LATEX. These work in various ways:

• As Booleans; for instance, running A = [1,2,3,4,5], 2∈A will return True.

• As an index; one can run through a for-loop by using the set A above and setting
for i∈A, println(i), end which will return 1, 2, 3, 4, 5.

• Setoperations; setting A=Set([1,2,3]) and B=Set([2,4,6]), the operation
intersect(A,B) returns Set([2]).

4.2.3 Types

One of the hallmarks of Julia is its approach to types. Their main attribute is that they are
highly dynamic. This ranges from values being of any type when typesetting is omitted,
to setting detailed types and type unions to values. Types can also be parametrised by
other types. An extensive list of all the type-operations available can be found in the
corresponding Julia documentation [38].

4.2.4 Packages

Julia has a built-in package manager that manages installed packages in its own unique
way. It is designed around environments, which are sets of packages that can be used by
an individual project or can be used globally on a system. Environments can be updated
independently from each other, which can prevent updates from breaking other packages.

Denoted by Pkg and called by pressing the]-key in the Julia REPL (which stands for
Read-Eval-Print Loop), it can install packages from the general Julia repository or from
specific Github repositories by using the add ‘Package’-command. It can also handle
updates of packages for the user; the command status returns a list of all installed
packages and their versions, the command update updates the packages.

There are a few ways to create a package.

• Create a GitHub (or GitLab) repository and install it as a package. Adding files
can then be done via Git.

• Use the package PkgTemplates [39] to create a package.

• Use the command pkg> generate to create a new package.

For more information on packages, see the Julia documentation [37].

Benchmarking is also done by using different packages. As benchmarking will encompass
a large part of the thesis, this will be discussed in more depth in the following chapter on
Methodology.

34

4.2.5 Compiler

Julia makes use of a so-called just-in-time, or JIT, compiler to run code. What this means
is that the code is compiled whilst a program is executed rather than it being compiled
before execution. The executing code is continuously analyzed to optimise speed-up. This
can increase performance and speed up the code. However, it has its downsides as well.
Initial execution can have somewhat of a delay due to the original code being compiled
into bytecode, before it is dynamically compiled into machine code. This raises some
problems with running benchmarks, as the source code has to be compiled into bytecode
before it is compiled as machine code; this adds time to the overall execution time of
the application. Running the application again on the pre-compiled bytecode improves
performance and gains the desired speed-up of using a JIT-compiler [1].

4.3 GPU Programming

4.3.1 Introduction

The GPU, or Graphics Processing Unit, is an integral part of any personal computer, be it
a laptop, phone or gameconsole. At its core it is a specialised unit for creating and storing
images and outputting them to a display. The GPU relies on parallel programming and
processing, which makes GPUs excellent candidates for algorithms that require parallel
processing of large amounts of data.

Though traditionally used for video games, in recent years GPUs have been used for
various other processes. These include video decoding and deep learning, where especially
the latter has gained popularity. AI and machine learning development have thrived due
to the general availability and affordability of powerful graphics cards.

Scientific Computing has also gained much from the implementation of graphics cards.
The power of GPUs alone can speed up large-scale problems; parallel programming makes
this even more powerful. This section takes a look at why GPUs are more powerful for
certain tasks, and takes a look at the architecture of GPUs versus CPUs. A quick look at
the programming languages for GPUs is also taken; the more popular one, CUDA, will
be discussed in more depth in the Methodology chapter, as it is used for this thesis.

4.3.2 The Workings Of A GPU

A GPU differs from a CPU in various different ways. The most obvious difference is in the
amount of cores each processing unit has. A CPU mostly has four to eight, even up to 24
cores. A GPU, on the other hand, can have thousands. The downside of the GPU is that,
when compared to a CPU, it can only perform a fraction of the operations a CPU can
perform. However, it can do them very, very fast by utilizing all those cores in parallel.
Also of some importance is that CPUs run at higher clock speeds (the number of clock
cycles per second) and are able to manage input and output of the system, something the
GPU cannot do.

Most operating systems are also dependent on CPUs to run and GPU usage is only
effective for larger-scale problems. Therefore most programs and algorithms start with
CPU operations; parts of the code are then programmed directly onto the GPU before the
results are sent back to the program. A systematic approach can be found in figure 4.4.

35

The image shows that via the IO (Input/Output) data is sent to the CPU, from where
data is sent to the GPU, where parallel programming is then applied. The data is then
sent back to the central computing system, which can in turn also send data between the
two computing units. Finally, data is sent back to the IO before the program is stopped.

Figure 4.4: Operations in a regular CPU-GPU system

This data transfer between the CPU and GPU is the entire crux of GPU programming:
though programming simple operations in batches on a GPU might reduce computational
costs significantly, data transfer from the CPU to GPU and back is extremely slow. All
the data has to be copied from the CPU RAM to the GPU VRAM before the operations
can start, then afterwards the new data has to be copied back before it can be used by
the CPU.

4.3.3 GPU Architecture

As discussed before, a GPU has a multitude of processors that all execute the same set
of instructions in parallel, without any dependence between the cores. The GPU has a
fixed number of multiprocessors, each of which contains a further eight scalar processors.
The following image from [26] shows how this works in practice.

36

Figure 4.5: Architecture of a GPU, per [26]

As a side-note, the different types of memory in 4.5 are discussed below.

• Global Memory Memory of the device itself. Largest in size of all four memories,
though also has the largest access time, about 200 times larger.

• Register Memory Each processing unit has its own register memory. Each thread
that is run can only use one register.

• Shared Memory Memory that can be accessed by all threads in a multiprocessor
block.

• Texture Memory Read-only memory on a multiprocessor.

Efficient utilization of the register- and shared memory should also cut down on compu-
tational and latency costs.

[26] chapter 3 goes into greater detail in how to use the architecture of the processors and
memory effectively. It includes various methods and techniques that have been optimised
for GPU computations. The rest of the reader is also insightful. For instance, chapter 2
describes various ways to use parallel programming with certain methods such as matrix-
vector products and LU decomposition.

4.3.4 Single vs Double Precision

Another attribute to consider when using GPUs for computing is the precision of the
values used. Most GPUs only support single precision operations, whilst CPUs support

37

double precision operations. To understand why, one must first look at the definitions of
single and double precision.

Per the IEEE standard for Floating-Point Arithmetic [18], single and double precision are
defined as follows:
A single precision floating point uses 32 bits to convey a value. It uses 1 bit to determine
if the value is positive or negative, uses 8 bits to describe the exponent and 23 bits to
represent the digits of the number.
A double precision floating point uses 64 bits to describe a value. As in single precision,
it uses 1 bit to determine if the value is positive or negative. Furthermore, it uses 11 bits
to describe the exponent and the remaining 52 bits to represent the digits of the number.

What this means is that double precision floating points are more accurate than single
precision floating points. However, there is a trade-off to using them, as double precision
values take up more memory and they need more computational power when in use.
Because of this, GPUs mostly have more cores that can compute single precision floating
points than cores that compute double precision floating points. Chapter 3 of article
[14] discusses the maximum theoretical performance of a few CPUs and GPUs. As an
example, an Nvidia GTX 1080ti has a maximum theoretical computing performance of
354 GFLOPS for double precision floating points, and 11340 GFLOPS for single precision
floating points, due to the many more single precision cores available. GFLOPS stands for
Giga FLOPS, or Floating Point Operations. There are videocards available (such as the
Tesla GPUs used in the server) that have more double precision cores available. However,
these cards are significantly more expensive than regular consumer cards.

4.3.5 GPU Programming Languages

There are two main competitors for GPU programming, which are CUDA and OpenCL.
CUDA is developed by Nvidia and only works with its own cards; OpenCL is developed
and maintained by the non-profit Khronos Group. Both are discussed shortly below;
as mentioned before, a more in-depth look will be taken into CUDA in the chapter on
Methodology.

CUDA

CUDA stands for Compute Unified Device Architecture and is a parallel computing plat-
form that is developed by Nvidia for computing on GPUs. If developers have a GPU with
CUDA cores, the CUDA platform acts as a software layer that gives direct access to the
GPU’s instruction set and parallel processing cores. It is designed to work with C, C++
and Fortran, eliminating the need for extensive GPU programming skills.

CUDA has a few advantages over regular GPU programming:

• Unified and shared memory; this encapsulates a fast shared memory region that can
be shared among threads.

• Faster downloads and readings to and from a GPU

• Robust documentation

• Regular updates

38

The last two are especially important. Nvidia regularly updates CUDA with new features,
the current version 11.0.221 is from August 2020. Because of these regular updates and
support from Nvidia, developers are more likely to support and use CUDA. The platform
has become synonymous with development in machine learning and AI development be-
cause of this. The fact that even Nvidia’s mainstream graphics cards [33] support and
use CUDA cores means that the bar is low for developers to start using CUDA in their
programs.

OpenCL

OpenCL stands for Open Computing Language, and it is a framework for writing programs
that can run on any platform consisting of CPUs, GPUs and other types of processors
and hardware accelerators, as OpenCL views the system as a set of computing devices.
It is an open standard that is maintained by the non-profit Khronos Group. [43]

OpenCL has its own C-like programming language called OpenCL C, which can make
it cumbersome to program for. Third-party APIs do exist for most programming lan-
guages. OpenCL C includes ways to implement parallelism with vectors, operations and
synchronization.

One of the advantages of OpenCL is that it is vendor-independent, meaning that it runs on
almost every GPU, including for instance built-in Intel GPUs. This counteracts vendor
lock-in. Furthermore, since it is maintained by a non-profit organization, the premise
of the platform is to empower developers [41] instead of selling as much hardware as
possible. The software is royalty-free and an open standard, meaning that anyone can
use the platform for free. This does mean that there is less documentation available in
comparison to CUDA, and due to the difficulty of implementing OpenCL as a result of
its proprietary programming language, it is a lot less popular than CUDA.

39

Chapter 5

Methodology

Chapter 5 will focus on the methodology that was used for this thesis report. The first
section focuses on the programming on GPUs, which is done via CUDA. Some examples
illustrate how Julia makes it relatively easy to program on GPUs. The second section will
focus on benchmarking, which is essential for determining when a certain process is faster
on either the CPU or GPU. The final section focuses on the Plane-Wave Time-Domain
algorithm and the package that thesis advisor Dr. Kristof Cools wrote for it.

5.1 CUDA Programming

The platform CUDA is essential for GPU programming for Nvidia graphics cards, as
discussed in the previous Background chapter. Using CUDA in Julia requires the usage
of various packages and the writing of so-called kernels. These are discussed below.
Operations are also discussed; though they essentially work the same as operations for
CPUs, some context is necessary for using operations on GPU arrays.

5.1.1 Kernels

Running functions on the GPU works via kernels. A function or operation is written, after
which arrays are defined on the GPU and the operation or function is run on these arrays.
The CUDA kernel is started by using the @cuda macro. An example below illustrates an
easy kernel for adding two arrays together. N is taken as a power of 2. Note that these
kernels are written in Julia and differ from regular CUDA kernels. Julia translates the
kernel into a CUDA kernel with the proper configuration.

using CUDAnative, CuArrays

function gpu_add1!(y, x)

for i in 1:length(y)

@inbounds y[i] += x[i]

end

return nothing

end

x_d = fill(CuArray, 1.0f0, (N,))

y_d = fill(CuArray, 2.0f0, (N,))

40

@cuda gpu_add1(y_d, x_d)

These kernels allow code to speak directly to the GPU, and further variables can be
specified. Note also that arrays defined on the GPU are denoted with an underscore d,
where the d stands for device. This is to distinguish them from regular CPU arrays.

In the example below, the first example has been expanded upon to include the amount
of threads of the GPU that should be used, and it uses the thread index number and
dimension of each block to perform parts of the summation in parallel. Note that both
examples are from the CuArrays documentation [32].

using CUDAnative, CuArrays

function gpu_add2!(y, x)

index = threadIdx().x

stride = blockDim().x

for i = index:stride:length(y)

@inbounds y[i] += x[i]

end

return nothing

end

x_d = fill(CuArray, 1.0f0, (N,))

y_d = fill(CuArray, 2.0f0, (N,))

@cuda threads=256 gpu_add2!(y_d, x_d)

Most standard operations on GPU arrays will try to optimise the usage of threads and
blocks for the user, though the specification in kernels can be useful for certain applica-
tions.

5.1.2 CUDA in Julia

Julia is a high-level scripting language, which brings many advantages with it. This
includes the ability to write kernels for the GPU natively for a program as well as all
the code surrounding it. CUDA programming is done via various packages, of which the
three most important ones are discussed below.

• CUDAnative.jl The main package used for running and compiling Julia kernels
on CUDA hardware. This package makes sure the Julia GPU kernel is translated
correctly to a CUDA kernel in C.

• CuArrays.jl A package that has various operations to create arrays on the GPU.
This includes copying existing arrays and creating entirely new arrays on the GPU
with for example random numbers or zeros.

• GPUArrays.jl A package that can correctly implement operations on CuArrays
(or CLArrays) and always works in conjunction with one of the two packages.

41

5.1.3 Operations

Because of these packages, it is possible to perform basic operations on GPU arrays. As
an example, one can create a CUDA array on the GPU and then perform an FFT on it,
without requiring extra packages or difficult kernels. An example of this can be found
below. A randomised matrix of size 512 × 512 is created as well as a same-sized matrix
with zeros, where the FFT is written to. The GPU operation in this case is started by
the @sync macro. The @sync macro waits for all prior operations to complete before it
starts the new operation, to make sure that the GPU operation starts correctly. Starting
a GPU kernel requires the @cuda macro as seen in the examples of the previous section.

x_d = CuArrays.randn(512,512)

y_d = CuArrays.fill(0.0f0, (512,512))

y_d = CuArrays.@sync(fft(x_d, 1))

Note that operations that incorporate a GPU array and a CPU array will not compute;
furthermore, functions that are written for CPU variables and arrays will run slowly on
GPU arrays (or not at all) as the variables have to be written back to the CPU before
the function can commence.

Also of note is the usage of operations in kernels themselves. Most basic operations, such
as addition and multiplication that are defined in the Base code of Julia, will work in a
kernel. Regular functions such as the Fourier transform using the function fft() will not
work in a kernel. GPU functions outside of basic operations have to be defined in the
original package.

5.1.4 Fourier Transforms

The implementation of Fourier transforms in the FFTW package are a great example of
defining a function for usage with GPU arrays. Due to Julia’s typing implementation,
functions can be defined for different types of input, in this case for both a GPU and CPU
array input. This works as follows:

julia> using CUDAnative, CuArrays, FFTW, AbstractFFTs

julia> x = randn(ComplexF32, (512,)); y = similar(x);

julia> x_d = CuArray(x); y_d = CuArray(y);

julia> y = fft(x);

julia> y_d = fft(x_d);

julia> typeof(y)

Array{Complex{Float32},1}

julia> typeof(y_d)

CuArray{Complex{Float32},1}

julia> y = fft(x_d)

ERROR: CUFFTError

42

Note that the added julia> implies that the code has been run in the Julia REPL, with
the corresponding results printed underneath each line. This particular example also
shows how a CPU array can be copied to the GPU by using the CuArray()-function. By
using the typeof() command the typing of a variable or array is returned. It shows that
the Fourier transform works irregardless of typing. The last command shows that a CPU
array cannot receive the contents of a function run on a GPU array; the system throws
an error.

5.2 Benchmarking

To determine if using GPUs for certain operations is faster than using CPUs, these oper-
ations need to be timed, or benchmarked, to determine which method is faster. Bench-
marking in Julia can be done by calling packages into the code, and specifying which part
of the code has to be benchmarked. Julia also provides built-in tools for benchmarking.
Both options are used in the experiments as described in the following chapter, and are
discussed in more detail below.

5.2.1 Built-in Tools

Julia provides various macros that can be used for benchmarking purposes. The most-used
macros are as follows:

The @time-macro is one of the most widely-used benchmarking tools Julia provides. It
is used together with the expression that the user wishes to benchmark. It prints the
time it takes to execute the expression, the number of allocations to the memory for the
expression to execute as well as the amount of memory used, and the total number of
bytes allocated for the execution. After that the value of the expression is returned.

An example:

julia> @time exp(265)

0.043850 seconds (85,71 k allocations: 4.788 MiB)

1.2247225219887542e115

The @timed-macro expands upon the @time-macro by providing the same results as well
as the garbage collection time and various memory allocation counters. In this case, these
values are returned as an array:

julia> @timed exp(265)

(1.2247225219987542e115, 2.001e-6, 176, 0.0,

Base.GC_Diff(176, 0, 0, 5, 0, 0, 0, 0, 0))

Returning these values as an array has its benefits: values can easily be assigned to
variables and can be reused in other arrays to, for instance, portray the increase in com-
putation time over the increase of size for the original problem.

The @elapsed-macro is the simplest of the three. It only returns the computation time
of the expression, without returning the result or any other values.

julia> @elapsed exp(265)

3.3999e-5

43

5.2.2 BenchmarkTools

BenchmarkTools.jl [24] is a package with the sole purpose of benchmarking code in Julia,
and was primarily developed by Jarrett Revels. Where the built-in tools provide rudi-
mentary benchmarking options, the BenchmarkTools.jl package provides a diverse bench-
marking toolset that covers everything from basic benchmarking to running collections
of benchmarks, saving and reloading benchmarking parameters and the easy comparison
of benchmarks. Most of this is covered in the BenchmarkTools.jl-documentation; below
some of the highlights and tools that are used for this report are discussed. As is the case
with the built-in Julia tools, most of these tools are used via macros.

The standard benchmarking macro from the BenchmarkTools.jl package is the @benchmark-
macro. As before, using it is pretty straightforward:

julia> @benchmark exp(265)

BenchmarkTools.Trial:

memory estimate: 0 bytes

allocs estimate: 0

minimum time: 0.001 ns (0.00% GC)

median time: 0.001 ns (0.00% GC)

mean time: 0.023 ns (0.00% GC)

maximum time: 0.101 ns (0.00% GC)

samples: 10000

evals/sample: 1000

The @benchmark-macro provides a lot more data that the built-in tools. It also bench-
marks differently. It performs the benchmark multiple times (in this case 10000 times)
and determines the minimum, maximum, median and mean time for the expression. Fur-
thermore, these values can be assigned to variables:

julia> @BenchmarkTools.mean(@benchmark exp(265))

BenchmarkTools.TrialEstimate:

time: 0.026 ns

gctime: 0.000 ns (0.00%)

memory: 0 bytes

allocs: 0

julia> x = @BenchmarkTools.mean(@benchmark exp(265)).time

julia> x

0.022997000000000014

Another way that BenchmarkTools.jl differs from the Julia tools is in the use of explicitly
interpolating external variables of the expression. The reason why this is useful is that
the evaluation of a variable also takes time. Explicitly interpolating it leaves out the
computation time of the variable, and only focuses on the benchmarking of the expression
itself. Below an example from the first experiment of this report that showcases this:

44

x_d = curand(N,)

y_d = curand(N,)

z_d = cufill(0.0f0, (N,))

times_gpu_vec[i,2] = BenchmarkTools.mean(@benchmark

gpu_multi_vecvec!($x_d, $y_d, $z_d)).time

In this example, the function gpu multi vecvec!() is benchmarked for various GPU
arrays of size 2i. This function multiplies two vectors and stores the result in the third
vector. The GPU arrays xd, yd and zd are determined beforehand in the code; during
the benchmark they are explicitly interpolated. In this way, the computation time of the
GPU function can be compared to the corresponding CPU function without including the
computation time of the necessary vectors. This example also shows the saving of the
mean time as a variable in an array.

Besides the @benchmark-macro, the BenchmarkTools.jl package also provides comparable
macros to the built-in Julia tools. These are @btime, @btimed and @belapsed. The results
returned are in the same form as before, the main difference is that the benchmarking is
done based on the BenchmarkTools.jl package instead of the built-in tools.

BenchmarkTools.jl includes many more tools for benchmarking, though they are outside
the scope of this report.

5.3 PWTD Package

Thesis advisor Dr. Kristof Cools has, over the last few years, worked on a package [10]
in Julia that can perform the Plane-Wave Time-Domain algorithm. Instead of writing an
entire package for the GPU, it was decided that this package would be expanded with
GPU enhancements for parts of the code. Since the PWTD.jl package makes use of the
SampleArrays.jl package, also by Dr. Cools, that package was also reworked.

To rework the packages, they were forked in GitHub so the changes would not interfere
with the original code. This was done in the IDE (Integrated Development Environment)
Atom, which includes this functionality as well as other functionality of the Git language.
Furthermore, Julia provides tools for developing and testing packages. By using the
command pkg> dev #package in the package manager, a special development version
of the package is created that can be changed without repercussions for the original
package. This is done for both the PWTD.jl and SampleArrays.jl packages, and Julia is
smart enough to use the dev-version of SampleArrays.jl in the dev-version of PWTD.jl.

45

Chapter 6

Numerical Experiments Setup

This chapter discusses the various experiments, or simulations, that were developed to
determine the computational gains that GPU acceleration might bring to mathematical
operations in general as well as the Plane-Wave Time-Domain algorithm. The chapter
starts with a short introduction to discuss the machines that were used for the exper-
iments. The first experiment discussed concerns itself with the testing of various basic
operations on both the CPU and the GPU, to determine when and if it better to use a
GPU for these operations. The second experiment expands upon this by determining the
same answers, but then for Fourier transforms, with a smaller experiment that determines
if using the planner functionality of the FFTW package is a reasonable alternative to the
regular Fourier transform function. The third and final experiment concerns itself with the
implementation of GPU-accelerated FFTs in the Plane-Wave Time-Domain algorithm.

6.1 Initial Setup

All experiments for this thesis were done in the programming language Julia on three
different systems. Though the initial idea was to only use one system for testing (a server
at Capgemini), due to scheduling issues with the server the experiments were also run on
a laptop borrowed from Delft University of Technology as well as on a desktop built by
the author of this report. The hardware and software specifications for each device are
discussed below, as well as their general setup.

6.1.1 Capgemini Server

The server provided by Capgemini is made by HP and has top of the line specifications.
These are:

• Two Intel Xeon Gold 12-core processors

• 192 GB RAM

• 4TB SSD

• Two Nvidia Tesla V100 GPUs with 16 GB HBM2 Memory each, and 5120 cores
each

46

The two Intel processors also include hyperthreading. Hyperthreading is a system where
each core of the CPU can manage two threads simultaneously; this results in a total of
48 threads available for the system. Furthermore, the graphics cards have 16 GB HBM2
memory available each and are connected via an NVLink bridge.

The system is running Ubuntu 16.04, CUDA 9.0 and Julia 1.0. However, due to certain
circumstances, the software cannot be updated correctly or at all. This is because the
server is also used for other applications, including an AI demo that requires the server
to be connected to a router, which is then again connected to a different router, which is
then connected to the internet. Somewhere along the line the connection to the internet
is lost, hence the installation of updates and new packages is currently not possible.
Furthermore, the demo requires certain software to be kept as-is, so for instance CUDA
cannot be updated to version 11. (Running one of the experiments on the same laptop
with both CUDA 9 and 10.1 results in the same output. However, support for the Tesla
GPUs was added in CUDA 9, so it is feasible that improvements have been made in
CUDA versions 10 and 11. Therefore it is difficult to say what kind of an impact this
could have had on performance.) This does mean that drivers and packages haven’t been
updated in quite a while, which can also hamper performance.

Because the server was also used for other research and demonstrations, access to it was
sometimes limited. As this led to some delays in testing, a laptop from the University
was borrowed so work could be done when the server was in use.

6.1.2 University Laptop

The laptop that was used is the high-end model of the Delft University of Technology
Laptopproject 2017-2018, which is an HP Zbook Studio G4. This project aims to provide
powerful laptops at an affordable price to students for their studies. The laptop has the
following hardware specifications:

• Intel Core i7-7700HQ

• 8 GB DDR4 RAM

• Nvidia Quadro M1200 with 1 GB VRAM and 640 CUDA cores

Software wise, it is running Windows 10 with the 1909 update, CUDA 11 and Julia 1.3.
Drivers and packages are all up to date. The reason an older version of Julia was used is
because the update to a newer version failed during installation.

6.1.3 Personal Desktop

The desktop was built by the author and has the following hardware specifications:

• AMD Ryzen 5 3600X with six cores

• 32 GB DDR4 RAM

• Nvidia RTX 2080 Super with 8 GB VRAM and 3072 CUDA cores

The AMD processor also has hyperthreading, hence it can be seen as a 12-core processor.
Software wise, it is running Windows 10 with the 2004 update, CUDA 11 and Julia 1.4.
Drivers and packages are all up to date.

47

6.1.4 Theoretical Computing Performance

The theoretical maximum performance of the three GPUs [44], [45], [46] for both single
and double precision can be found in table 6.1.

GPU Name Single Precision Double Precision
Nvidia Quadro M1200 1399 GFLOPS 48 GFLOPS
Nvidia Geforce RTX 2080 Super 11150 GFLOPS 349 GFLOPS
Nvidia Tesla V100 141320 GFLOPS 70660 GFLOPS

Table 6.1: Theoretical performance of the used GPUs

The Quadro and Geforce card both show a massive performance difference between single
and double precision, by a factor of 32. For the Tesla, this factor is only 2 as Nvidia has
added more double precision cores to the card. This does mean that, for all three GPUs,
it is better to use single precision numbers, as the performance is then greater. This does
impact the accuracy of the experiments. Jowever, the main research question deals with
optimizing performance, and since ∆t is chosen small enough, using single precision will
not hamper the outcome of the PWTD algorithm.

6.1.5 Development

The development of the experiments was mainly done on the University laptop, after
which the code was ported to the server to see if results were the same or improved, due
to the vastly more powerful hardware. Testing on the desktop was done at a later stage,
as it was built after the experiments had originally been set up.

6.2 Experiment 1: General GPU Acceleration

This first experiment was developed to determine the performance increase a GPU might
provide for various operations, and to see for which problem-sizes it is more advantageous
to use the GPU. For each operation, two or three random vectors or matrices are created
of size 2N , with N varying from 1 to a predetermined maximum value dependent on the
device; as the server has more memory available, it can handle larger sizes.
The tested operations are as follows:

• Vector-vector addition

• Vector-vector multiplication

• Vector-matrix pointwise multiplication

• Vector-matrix regular multiplication

• Matrix-matrix addition

• Matrix-matrix pointwise multiplication

• Matrix-matrix regular multiplication

48

The addition operation speaks for itself. To illustrate the regular and pointwise multipli-
cation operations consider

A =

[
a1 a2

a3 a4

]
; B =

[
b1 b2

b3 b4

]
Pointwise multiplication A ·B results in[

a1b1 a2b2

a3b3 a4b4

]
Regular multiplication A×B results in[

a1b1 + a2b3 a1b2 + a3b4

a3b1 + a4b3 a3b2 + a4b4

]
The reason these operations were chosen is because they form the basis for most other
operations and functions.

The time it takes for the CPU and GPU to perform each operation is benchmarked as
discussed in chapter 4 using BenchmarkTools.jl. For each operation, the N for which
the GPU outperforms the CPU is then determined.

The programming language used for this experiment is Julia. To set the experiment up,
certain packages have to be added so the GPU can be called and used for operations. The
most important ones for this experiment are the packages mentioned in Chapter 4, as well
as the package CuArrays.CURAND. This package can create arrays with random numbers.

For each operation and size N , three randomised vectors or matrices are created for both
the CPU and the GPU. That means that each matrix and vector consists of values between
0 and 1, randomly chosen; hence they are not sparse. This is valid for all matrices and
vectors in experiments 1 and 2. Next, the operation is performed on the corresponding
vectors or matrices. Using BenchmarkTools, the operation is performed 1000 times and
the average time is determined for the operation to be performed. The times are then
plotted against the size of the vector or matrix for both the CPU and the GPU.

6.3 Experiment: Planner Test

Experiment 2 focuses on the acceleration of the fast Fourier transform. As described in
chapter 3.3 on the fast Fourier transform, the FFTW package includes a planner function-
ality that can determine the optimal algorithm for a certain size and type of array, which
can then be reused for the same type of array, thus theoretically lowering the computation
time for multiple FFTs of the same size.

To show that using the planner functionality does actually lower the computation time,
an extra side-experiment was set up that benchmarks the computation times for a certain
number of Fourier transforms for both the planner and for the regular fft()-function.

This simulation is done for differing sizes of the matrix that is to be transformed. Three
different types of matrices are used, since powers of 2 and square matrices are easier to
transform due to established algorithms. The first type is of size N×N , the second type is
of size N ×dN/3e to test non-square matrices, and the third type is of size N −5×dN/3e

49

to test non-square matrices of an uncommon size. The values of N are taken from the
array [16, 64, 256, 431, 512, 1024].

The benchmarking of the experiment includes the communication time to and from the
GPU. Furthermore, the planner is compared to the regular fft-function on both the CPU
and the GPU, but separately from one another. The CPU and GPU are compared in the
main part of experiment 2, as this experiment was created purely to show the effects of
using the planner.

Using the planner is a straightforward process. Arrays are defined as usual, after which
the function plan fft is used on the array that is to be transformed. This is shown in
the code below:

x_d = CuArrays.randn(512,512)

y_d = CuArrays.fill(0.0f0, (512,512))

p_d = plan_fft(x_d)

y_d = p_d * x_d

The planner is multiplied with the array, resulting in the desired Fourier transformation.

6.4 Experiment 2: FFT GPU Acceleration

The second experiment has more or less the same premise as the first experiment, only
it is more directly correlated to the third main experiment. In this experiment, the Fast
Fourier Transform is performed on both the CPU and the GPU for both vectors and
matrices of size 2N by 1 respectively 2N by 2N ; again N varies.

To do so, the FFTW package, as discussed in chapter 3.3.3, is used. As discussed before,
the built-in functions of FFTW support both CPU and GPU arrays, so this doesn’t result
in any discrepancies when comparing the computation times for both types of arrays. The
usage of different packages might have distorted the results.

The planner functionality is incorporated throughout the experiment, per the results of
the planner experiment. The rest of the experiment concerns itself with the benchmarking
of the Fourier transform on both the CPU and the GPU. Both benchmarking tools as
described in Chapter 4 are used. However, during the development of the BenchmarkTools
part, initially the size of the matrices was determined using a for-loop. The results were
unexpected and not concise with the results of experiment 1, and the size of the matrices
maxed out far earlier than the memory would normally allow. It seemed as if using a
for-loop completely filled the memory.

To combat that, the sizing and benchmarking of the Fourier transforms was taken out
of the for-loop. Furthermore, after the matrices of power 28 had been determined and
used, the Julia garbage collection command was used to clear out the memory before
performing the next computation. (This was the original bottleneck size.) In this case,
the experiment maxed out at matrix-size 212 on the laptop. On the desktop this was 214

and for the server 216.

Because of this, the experiment can be divided into three parts:

1. BenchmarkTools in a for-loop

50

2. BenchmarkTools rewritten

3. Built-in Julia benchmarking

Before the details of each part are discussed, some general notes about the experiment:

• The planner function for the CPU computation of the Fourier transform includes
some rudimentary parallel programming. This can be used by setting the
FFTW.set num threads() variable with an integer value different from 1, but not
higher than the number of threads available from the CPU. The planner will then
use that amount of threads for its computation. The GPU planner doesn’t use this
functionality, as it will already use the (far larger) number of threads provided by
the GPU.

• The plan is defined as a matrix either on the CPU or the GPU, it cannot be used
on both.

• A plan can also be created for the inverse Fourier transform, and can be used in the
same way.

• The CPU computation uses double precision values (ComplexF64), the GPU com-
putation uses single precision values (ComplexF32, also denoted by the added f0 to
0.0). This ensures that each computation plays to its own strengths.

6.4.1 Experiment Parts

BenchmarkTools In A For-loop

This is the original development of experiment 2. The idea was to first determine the
CPU computation times, but for a different number of CPU cores. As mentioned before,
the fft-package also includes parallel Fourier transforms for the CPU. Since the laptop
used has a CPU with four cores, the experiment was run for 1, 2 and 4 cores on all devices.
The results can be found in the next chapter.

After that, the minimal value of the three CPU computations is taken and compared to
the GPU computation.

BenchmarkTools Rewritten

As discussed in the prior section, the experiment seemed to not be fully optimised due to
the use of a for-loop. It was decided to rewrite the code so a for-loop was no longer used
and instead all the code was written out and it included garbage collection so memory
was freed up.

Built-In Julia Benchmarking

Since BenchmarkTools seemed to be flooding all the memory whilst performing compu-
tations, the built-in Julia benchmarking was also applied to the experiment to see if this
resulted in any differences.

Benchmarking in general as well as the differences in benchmarking between Benchmark-
Tools and the built-in tools are discussed below.

51

6.4.2 Benchmarking

Below some more details about the benchmarking used in this experiment.

BenchmarkTools Benchmarking

The general build-up of the experiment is as follows, where S is the size of the matrix as
a power of 2:

#CPU computation

x = randn(ComplexF64, (S,S))

y = similar(x)

p = plan_fft(x)

comp_times_cpu[i] = BenchmarkTools.mean(@benchmark y = p * x).time

#GPU computation

x_d = CuArrays.randn(S,S)

y_d = CuArrays.fill(0.0f0, (S,S))

p_d = plan_fft(x_d)

comp_times_gpu[i] = BenchmarkTools.mean(

@benchmark y_d = p_d * x_d).time

Built-In Benchmarking

As a counter to the BenchmarkTools package, a separate version of the experiment using
the built-in Julia benchmarking tools was also built. It replaces the BenchmarkTools
macros with Julia macros. Since there is no comparable macro that runs the expression
multiple times and takes the average, each expression is run 100 times in a for-loop and
the mean is then taken. This is to ensure that the results of both benchmarking tools are
comparable.

6.5 Experiment 3: PWTD GPU Acceleration

Experiment 1 and experiment 2 are more or less precursors for the final experiment, which
is the GPU implementation of the Plane-Wave Time-Domain algorithm. They showcase
why (partly) applying GPU implementations for the algorithm can speed up its eventual
computation.

Experiment 3 consists of a few steps that were followed to develop the GPU implemen-
tation. The steps are as follows; each step is discussed in more detail below. In the next
chapter, the results of the full implementation are discussed.

Step 1: GPU Implementation Of Fourier Transforms

Step 2: Implementation Of Planner Functionality

Step 3: Rewriting The Convolve Function

Step 4: Eliminating All Unnecessary CPU-GPU Copies

52

6.5.1 GPU Implementation Of Fourier Transforms

The first part of the GPU implementation is to determine which arrays are important
for the FFTs, and if and how they can be transferred to the GPU. The Fourier functions
for the Plane-Wave Time-Domain algorithm are actually housed in the SampleArrays.jl
package, in a file aptly titled fourier.jl. SampleArrays.jl also defines the signals required
for the PWTD algorithm to function; the Fourier and inverse Fourier functions in the
fourier.jl file are specifically written for these signals.

The first step is to add the correct additional packages to the PWTD.jl and Sam-
pleArrays.jl packages. These are CuArrays, CUDAnative, CuArrays.CURAND, CuAr-
rays.CUFFT and GPUArrays.

The second step is to determine which arrays have to be copied to the GPU for the FFT
to also perform on the GPU. Thus it is important that the correct part of the signal is
copied to the GPU and the Fourier function is rewritten in the correct way. Furthermore,
any multiplication with a vector or scalar has to be rewritten such that the vector and
scalar are also copied to the GPU before multiplication occurs.

The final step is to run a test to see if the new implementation works correctly. In their
original forms, the PWTD.jl and SampleArrays.jl packages make use of the regular fft-
function from the FFTW package. This function can also be used on GPU arrays, making
it relatively easy to test the package in its current state.

6.5.2 Implementation Of Planner Functionality

After determining which arrays have to be copied to the GPU, it is time to start imple-
menting the planner functionality into the package. The aim is to use the same planner
as much as possible, thus to define it as early as possible in the hierarchy of the package.
It is therefore necessary to look at the current hierarchy of functions in the package:

The translator is combined with a bundle of signals that needs to be transformed. Then,
for each signal in the bundle a TranslationKernel is determined which is then passed
on, together with the signal, into the Convolve function. Here a Fourier transform is
performed on the Translation kernel and on the bundle, which are then multiplied. The
inverse Fourier transform is then performed on the result. This corresponds to part 2b of
the Multilevel PWTD algorithm.

53

The idea is then to define the planner in the Translator, for both the forward and the
backward Fourier transform. The planner is then added to each connected function as an
extra attribute, until it is used in the Fourier functions. In this way, the planner does not
have to be determined for every signal of the signal bundle separately.

Finally, the fft-functions in the forward and backward Fourier transforms are replaced
with a multiplication of the bundle and the planner, as shown in chapter 5.4.1.

6.5.3 Rewriting The Convolve Function

Sadly only replacing the fft-functions by the GPU planner does not work, as the convolve2-
function in the convolve.jl file of PWTD.jl actually has a differently-defined Fourier trans-
form function for the TranslationKernel. Rewriting this function for the GPU has proven
to be quite difficult due to certain functions being CPU-functions only. Therefore, the
regular FFT is performed, after which it is copied to the GPU. This is then multiplied
with the Fourier transform of the signal, per Theorem 1.

6.5.4 Eliminating All Unnecessary CPU-GPU Copies

To make sure that the GPU-accelerated implementation of the PWTD is as optimal
as possible, it is imperative that all CPU-GPU copies that have nothing to do with the
accelerated Fourier transform are either circumvented or outright eliminated. Unnecessary
CPU-GPU copies are, for example, getting the value of a certain index of a GPU array
outside of a CUDA kernel, or performing CPU-only functions on a GPU. Julia will either
throw up an error or copy the array to the CPU, after which the function is performed
and the data is copied back to the GPU.

When such an unnecessary copy does occur, CUDAnative.jl will throw up the following
error:

Warning: Performing scalar operations on GPU arrays: This is very

slow, consider disallowing these operations with ‘allowscalar(false)’

It also shows in which file and line the scalar operation has been performed. Using
allowscalar(false), these scalar operations are disallowed and will throw up an error
with again the corresponding file and line. In this way, all needless CPU-GPU copies can
be eliminated for a more optimal package.

After all these steps have occured, one of the included testing files is timed against the
CPU version and benchmarked. The averaged times are then compared.

54

Chapter 7

Numerical Results

This chapter includes all the results to the numerical experiments as described in Chap-
ter 6. Each experiment has its own section dedicated to it, with subsections included
for different versions of each experiment and where otherwise necessary. In each part
the experiment is repeated shortly with some added context, after which the results are
presented and then discussed. Conclusions are drawn in the following chapter.

Some notes before the results are presented:

• Concerning benchmarking: both the built-in Julia tools as well as the Benchmark-
Tools.jl-package have been used for benchmarking. Both have their strengths and
weaknesses, however, when using the @benchmark macro in a for-loop it gives a
CUFFT memory error, due to not enough memory being available. This happens
for matrices that take up about 64MB in size, which is small for a graphics card with
at least 1 GB of video RAM. It seems as though BenchmarkTools fills the entire
available memory with all the matrices it needs for its benchmark before actually
performing the benchmark. This has caused some issues with primarily efficient
coding but also not being able to scale the experiments to an expected size. Where
applicable, it will be discussed again as well as ways to work around the constraint.

• The planner experiment has an entire section dedicated to it. During the develop-
ment of the experiment the results gave rise to an extra experiment. These have
been discussed in more detail in the previous chapter.

7.1 Exp. 1: General GPU Acceleration

In this section the results are presented for the first experiment as described in the previous
chapter. During this experiment, various operations were performed on both the CPU and
the GPU to show if and when the GPU becomes a more viable option. This experiment
was run on the personal desktop, University laptop and the server at Capgemini. The
corresponding plots can be found in the tables 7.1 for the desktop, 7.2 for the laptop and
7.3 for the server.

It can be observed that, for all three devices, at a certain point the GPU will be more
efficient than the CPU for all seven operations. Furthermore, since the computation time
is set at a log10 scale, it can be noted that at certain points the GPU is more than 10
times faster than the CPU. An example of this is the last image in table 7.1. For matrices
of size 210 the GPU is 101.7 ≈ 50 times faster!

55

Table 7.1: Results from experiment 1 on the desktop, showing that from a
certain matrix- and vector size it is more efficient to use a GPU.

56

Table 7.2: Results from experiment 1 on the laptop, showing that from a
certain matrix- and vector size it is more efficient to use a GPU.

57

Table 7.3: Results from experiment 1 on the server, showing that from a certain
matrix- and vector size it is more efficient to use a GPU.

58

Table 7.4: Planner results for CPU on desktop for matrix type 1. For large
matrix sizes, the two FFT methods are tied when it comes to computation
time.

7.2 Planner Results

This section shows and discusses the results from the extra experiment that was created
to showcase the speed increase that the planner-functionality should provide. The regu-
lar fft()-function and the planner function were applied to matrices of increasing size,
namely of size 16, 64, 256, 431, 512 and 1024, on both the CPU and the GPU. The FFT
or planner-matrix was then used to transform this matrix an r number of times, where r
stands for the number of runs. For the CPU r runs from 1 to 50, for the GPU from 1 to
10 on the laptop and from 1 to 20 on the server and desktop.

As mentioned in the previous chapter, the experiment was run on three differently sized
types of matrices, namely of size N ×N , of size N × dN/3e and of size N − 5 × dN/3e,
where N is one of the above sizes. The experiment was run on all three devices.

7.2.1 Square Matrices

The results for the first type of matrix on the desktop can be found in the tables 7.4 and
7.5, the results of the laptop can be found in tables 7.6 and 7.7, the results for the server
in tables 7.8 and 7.9.
The CPU comparison differs quite a lot from the GPU computation on the laptop. For
the matrices of size 16 and 64, the planner is the clear winner. But after that, both the
planner and the regular FFT perform almost the same. It is not clear why this seems
to be the case; this could be due to the fact that algorithms for powers of 2 are very
efficient and straightforward, hence the algorithm determination of the fft-function is
presumably not computation-heavy, though the same experiment on a matrix of size 431
shows the same result. It does follow that, for the CPU, there is no real preference for
the planner or the regular FFT after a certain size, at least for square matrices. This is
the case for all three devices.

The laptop GPU is an entirely different case. For all sizes after a certain (low) number
of runs, the planner is more efficient than the regular FFT. Do note that each set of runs

59

Table 7.5: Planner results for GPU on desktop for matrix type 1. The planner
functionality is, in nearly all cases, the better choice.

Table 7.6: Planner results for CPU on laptop for matrix type 1. For large
matrix sizes, the two FFT methods are tied.

60

Table 7.7: Planner results for GPU on laptop for matrix type 1. The planner
functionality is, in nearly all cases, the better choice.

Table 7.8: Planner results for CPU on server for matrix type 1. The planner
functionality is, in nearly all cases, the better choice.

61

Table 7.9: Planner results for GPU on server for matrix type 1. The planner
method seems the better choice in most cases, though the regular FFT method
works better with larger sizes.

per size was only performed twice due to memory constraints. It does show that using
the planner functionality for the GPU is recommended.

In the first two images of the CPU desktop computation, the planner seems to be the
clear winner. However, after the size of the matrix increases, the two methods seem to
be tied. Again this might be because FFT algorithms for powers of 2 are relatively easy
to determine. On the GPU, the planner seems to be the clear winner in nearly all cases
except for the last image, though there the computation times of the two methods are
fairly close.

The CPU computations on the server show more or less the same as those on the laptop,
though the planner does beat out the regular FFT function more often than not. The
GPU on the server is not the clear winner that is expected after the laptop and desktop
results. Though the GPU does win from the CPU in about half the cases, in some cases
it does not, especially at larger sizes. It is not clear why this is. The experiment has
been run on both one and two GPUs to see if this might explain why the GPU isn’t
always faster, but the results were relatively the same. Other reasons for the discrepancy
might be the relative ease with which the regular FFT function can determine the correct
algorithm to use for the FFT for square matrices of power 2, or the far speedier CPU that
the CPU inhabits compared to the laptop’s CPU. Because of this, it was decided to run
the experiment on differently sized matrices to see how those results would compare.

7.2.2 Same Size, But Rectangular

In this simulation, the size of the matrix was changed to N ×dN/3e to keep the power of
2 on one side, but to change the other dimension to something more random. Again the
experiment was run on both the CPU and the GPU. Results can be found in the tables
7.12, 7.13, 7.14 and 7.15.

In this situation it can be seen that on all three devices, the planner function is faster or
as fast as the regular FFT function on the CPU as the size of the matrix increases. This is

62

Table 7.10: Planner results for CPU on desktop for matrix type 2. The planner
method is the better method in most cases, though for larger sizes the methods
are more evenly matched.

Table 7.11: Planner results for GPU on desktop for matrix type 2. In most
cases the planner functionality is the better choice.

63

Table 7.12: Planner results for CPU on laptop for matrix type 2. For larger
sizes, both methods are tied.

Table 7.13: Planner results for GPU on laptop for matrix type 2. The planner
functionality is clearly the better choice.

64

Table 7.14: Planner results for CPU on server for matrix type 2. In all cases
the planner is clearly the better choice.

Table 7.15: Planner results for GPU on server for matrix type 2. As before, for
smaller sizes the planner method is better, but for larger sizes both methods
are somewhat tied.

65

Table 7.16: Planner results for CPU on desktop for matrix type 3. In nearly
all cases, the planner functionality is the clear winner.

Table 7.17: Planner results for GPU on desktop for matrix type 3. In all cases,
the planner method is the better choice.

the same on the GPU for the laptop and desktop, but again the GPU on the server shows
that the planner isn’t faster in all cases. The results have somewhat improved for the
planner, however, as the timings are closer to each other than in the previous situation.

7.2.3 The Third Matrix Type

In this case the size of the matrix was chosen as N − 5 × dN/3e so one size would no
longer be a power of 2. The results can be found in the tables 7.16, 7.17,7.18, 7.19, 7.20
and 7.21.
In this case, the planner is more or less on par with the regular FFT function on the
CPU on the laptop, and considerably faster on the GPU. On the server the planner and
regular function are again more or less on par on the CPU, and in this case the GPU usage
results in a faster computation of the Fourier transform. For the desktop, the planner
functionality is always faster, for both the CPU and the GPU.

66

Table 7.18: Planner results for CPU on laptop for matrix type 3. For larger
sizes, the two methods are tied.

Table 7.19: Planner results for GPU on laptop for matrix type 3. In all cases,
the planner method is the better choice.

67

Table 7.20: Planner results for CPU on server for matrix type 3. In nearly all
cases the planner method is the better choice, except for the larger sizes.

Table 7.21: Planner results for GPU on server for matrix type 3. In all cases,
the planner method is the better choice.

68

It follows that, on the laptop and desktop at least, using the planner on the GPU is always
the better option, were as for the CPU there is not always an immediate speed gain using
the planner. On the server, the CPU planner and FFT function have relatively the same
speed; on the GPU the planner is only noticably faster for irregularly shaped matrices,
for square matrices or matrices with one side size power of 2, the planner is not always
the faster option.

It is not clear why the latter is the case. This might be attributed to the long start-up
time necessary to get operations going on the GPU, or software not being up to date. It
can be concluded that, on the laptop and the desktop, using the planner functionality
will result in faster computations. For the server there is no definite conclusion.

7.3 Exp. 2: FFT GPU Acceleration

This section functions as a continuation of the previous section, which together cover
all the results of the second experiment as described in Chapter 6. The results of the
experiments comparing the computation times of the Fourier transform on the CPU and
the GPU will be presented and discussed.

As in the prior experiments, the images are in a log-format. The horizontal axis denotes
the size of the matrix as powers of 2; thus at point 3, the actual size of the matrix is
23 = 8 and at point 10 the actual size is 210 = 1024. The vertical axis donates the time
as a power of 10, so at point 3 the actual computation time was 103 = 1000µs.

7.3.1 Part 1: BenchmarkTools In A For-loop

For each device, the first two images compare the computation time of Fourier transforms
on the CPU with 1 core, 2 cores or 4 cores. The remaining two images are plots for the
Fourier transform on both a CPU and a GPU. The plots can be found in tables 7.22, 7.23
and 7.24.

On all three devices, it is immediately noticeable that using more cores on the CPU results
in a lower computation time after a certain size is reached, though it differs per device
when that size is reached.

Regarding the CPU vs GPU computation times, the CPU seems to be the better choice
in most cases. This is unexpected, as experiment 1 showed that for basic operations it
is almost always better to use a GPU after a certain size. It seems that using Bench-
markTools.jl in a for-loop has resulted in it flooding the memory, hence why the GPU
computation times are much larger than expected. Because of this, it was decided to run
the experiment again without the for-loop. This is discussed in part 2.

7.3.2 Part 2: BenchmarkTools Rewritten

For experiment 2 part 2, only the FFT on matrices was determined and the number of
CPU cores was set to 4. The computation time plots can be found in 7.25 for all three
devices. The first plot is from the desktop, the second from the laptop and the third from
the server.

From the table it can be noted that for the desktop and laptop, the GPU performs
significantly better. The laptop plot does show the GPU computation time climbing at

69

Table 7.22: Results for experiment 2 part 1 on desktop. The top half shows
that using more core results in less computation time after N = 8 for matrices
and N = 15 for vectors. The bottom half shows that the GPU is not a better
choice for FFTs in this experiment.

70

Table 7.23: Results for experiment 2 part 1 on laptop. The top half shows that
using more core results in less computation time after N ≈ 6.5 for matrices
and N = 11 for vectors. The bottom half shows that the GPU is not a better
choice for FFTs on matrices, though for vectors it is the better choice.

71

Table 7.24: Results for experiment 2 part 1 on server. The top half shows
that using more core results in less computation time after N = 7 for matrices
and N = 14 for vectors. The bottom half shows that the GPU is not a better
choice for FFTs in this experiment.

72

Table 7.25: Results for experiment 2 part 2. On the desktop and laptop the
GPU is a better choice for FFTs, on the server the CPU is better by a small
margin.

about the same rate as the CPU. This could be attributed to full memory as well as
the way BenchmarkTools.jl works. On the server the CPU has, after a certain point, a
smaller computation time than the GPU. It is difficult to say why that is; it could be a
combination of software not being up to date, the usage of CUDA 9 instead of version 10
or 11, which is more optimised for the Tesla GPU architecture, or the BenchmarkTools.jl
package not working properly on the server.

7.3.3 Part 3: Julia Testing

In part 3 of experiment 2 the built-in Julia benchmarking is used to compare the results.
The corresponding plots can be found in 7.26. Again the first plot is from the desktop,
the second from the laptop and the third from the server.

All three devices show a similar growth for the computation times for both the CPU
and the GPU. After size 27 the GPU is clearly the better option to determine Fourier
transforms. The speed-up is enormous, as the GPU is faster by a factor more than 100.

73

Table 7.26: Results for experiment 2 part 3. For all three devices the GPU is
a better choice.

7.4 Exp. 3: PWTD GPU Acceleration

In this section the results of the final experiment are discussed. In this experiment, the
PWTD-package was accelerated by coding parts of it and the SampleArrays-package on
the GPU. The previous chapter discusses this acceleration in more detail. The actual plot
of experiment 3 can be found in figure 7.1. It shows the original wave at the source in
blue, and then the resected wave at the observer in orange. The subsignals that make up
the wave are also plotted.

74

Figure 7.1: Plot of the single source signal problem used in experiment 3.

To test the GPU package against the regular CPU package, the file singlesource7.jl

was run ten times using both packages on the same machine, after which the averaged
time is compared. In this example file a wave is sent from a single source, which is then
observed at a different point. Testing was done on the University laptop and on the
desktop. Testing was also attempted on the Capgemini server, but the package would not
start correctly. Furthermore, it is obvious from prior experiments that in its current state
the server does not optimally make use of the GPU.

The results for the CPU and GPU can be found in table 7.27, and are in seconds. The
laptop results have about a 6.5 second difference on average; the desktop is very close,
with the GPU implementation only 0.32 seconds slower on average.

Run CPU Desktop GPU Desktop CPU Laptop GPU Laptop
Run 1 70.338 69.476 106.687 112.426
Run 2 70.323 70.848 107.177 113.137
Run 3 70.440 70.906 107.329 113.605
Run 4 70.584 71.257 108.372 112.631
Run 5 70.518 70.844 108.937 120.713
Run 6 70.112 71.111 110.482 114.171
Run 7 70.660 71.003 108.215 115.726
Run 8 70.452 71.101 109.589 114.084
Run 9 69.990 70.927 107.819 115.153
Run 10 70.524 69.663 106.747 114.714
Average 70.394 70.714 108.134 114.636

Table 7.27: Benchmark times of Experiment 3 on both the CPU and the GPU

75

Chapter 8

Conclusion

In this chapter the conclusion to the thesis is discussed. This is done by looking at the
original thesis questions and discussing the answers by using the results from the previous
chapter as well as discoveries made during the research of the thesis. As a reminder, the
original thesis questions can be found below.

The main question for this master thesis is as follows:

By how much can the computational time of the Plane-Wave Time-Domain
algorithm be reduced by using GPUs?

The sub-questions for this question are:

• How can the performance of the FFT on GPUs best be optimised?

• How can the number of (and concurrently the computational costs and
time from) transferals of data between CPU and GPU best be minimised?

• By what other means can the PWTD algorithm be optimised?

First the sub-questions will be discussed, after which the main thesis question will be
answered.

How can the performance of the FFT on GPUs best be optimised?
The FFTW documentation mentions planner functionality, which can speed up the com-
putation of multiple FFTs of the same size by predefining the correct algorithm for the
FFT. As the planner experiment has shown, using the planner can decrease the computa-
tion time for FFTs, therefore the usage of the planner is one of the better ways to improve
performance of FFTs on the GPU. Do note that this only works if multiple FFTs of the
same size are determined using the planner.

How can the number of transferals of data between CPU and GPU best be minimised?
The best way to minimise the number of transferals between the CPU and the GPU is to
incorporate as much as possible into the GPU kernels. This means a transferal of data
from the CPU to the GPU as early as possible, with as much of the code running via
GPU kernels as possible. Transferring important variables, such as the planner on the
GPU, as early is possible is also important.

By what other means can the PWTD algorithm be optimised?
Besides using the GPU, the literature [3] mentions the Windowed Plane-Wave Time-
Domain algorithm. It describes a way to shorten the translation functions. Theoretically

76

this reduces the computation times to O(NtN
4/3
s logNs) and O(NtNs logNs) for the two-

level respectively the multilevel windowed PWTD algorithm. Due to the added extra
implementation complexity this algorithm was not implemented.

Now to answer the main thesis question. From experiment 2, it is clear that the GPU can
reduce the Fast Fourier Transform on average by a factor 10, after a certain size matrix
or vector is computed. Therefore, theoretically, the cost of step 2 in the two-level and
multilevel algorithm is reduced by a factor 10.

Per chapter three, the complexity for the two-level algorithm is O(NtN
1.5
s) in step 1

and O(NtN
1.5
s logNs) in step 2. This can be interpreted as the number of operations

being equal to C1NtN
1.5
s in step 1 and equal to C2NtN

1.5
s logNs in step 2, where C1

and C2 are contants. After the GPU implementation, the number of operations will
be equal to C2

10
NtN

1.5
s logNs. Thus the total complexity of the two-level algorithm is

then max
{
C1NtN

1.5
s , C2

10
NtN

1.5
s logNs

}
which is smaller than the original complexity of

O(NtN
1.5
s logNs). This is assuming no extra complexity due to transfer times from the

CPU to the GPU and back.

For the multilevel algorithm, the number of operations in the first step stays equal to
C3NtNs. After using the GPU implementation, the number of operations in step 2 will go
from C4NtNs log2Ns to C4

10
NtNs log2Ns. C3 and C4 are again constants. The total number

of operations is then equal to max
{
C3NtNs,

C4

10
NtNs log2Ns

}
, again assuming that there

is no additional complexity due to the transferal of data between CPU and GPU. This is
again smaller than the original complexity of O(NtNs log2Ns).

Theoretically it is therefore expected that, using the GPU implementation of the FFT,
the algorithm will perform quite a bit faster when using a GPU. Actually running the
algorithm shows that, with the tested situations, the current GPU implementation is not
faster. In the case of the laptop, it is slower by about 6%. On the desktop, however,
the GPU implementation is only slower by about 0.003% and is thus nearly on a par
with the CPU implementation. If the PWTD algorithm were implemented with GPUs
in mind from the beginning instead of implementing it later, a larger speed-gain could be
witnessed.

In conclusion, theoretically a (partly-)GPU implementation is faster than a CPU imple-
mentation of the PWTD algorithm by a factor of about 10, assuming the correct bundle
size for the FFT and no copying from the CPU to the GPU and vice versa. The current
GPU implementation is nearly on a par with the CPU implementation on one of the
used devices, therefore it is certainly possible to create a full GPU implementation that
is faster than the CPU implementation.

77

Chapter 9

Recommendations and Future Work

In this chapter the results and conclusion are discussed and put into context. Following
that, several recommendations are given for the continuation of this research as well as
for readers considering using GPUs in their (future) research.

9.1 Recommendations

The results are fairly conclusive: in its current state, the GPU-accelerated Plane-Wave
Time-Domain algorithm does not provide the desired acceleration of the algorithm. Though
it is not that much slower than the regular algorithm, especially on the desktop, it is still
disappointing that no acceleration can be measured, notably as the prior experiments
are rather promising and even show an acceleration of a factor larger than 10 for square
matrix FFTs using the planner functionality.

It is, of course, important to place the acceleration of experiment 2 in the right context:
the operation on the GPU itself is performed faster than on the CPU, however, this does
not include the transfer of the CPU-array to the GPU and back before and after the
Fourier transform. For small arrays and matrices this can be a problem, as the transfer
times can then be larger than the gains made by performing the operation on the GPU. It
is very likely that that is what happened here as there are quite a lot of transfers of arrays
from the CPU to the GPU and vice versa. It also depends on the speed of the device
used. The desktop has faster and more modern hardware than the laptop, and the GPU
is nearly on par with the CPU implementation. The larger bandwidth for the GPU, CPU
and SSD mean that data can be transferred a lot faster, which most likely contributed to
the smaller difference between timings of the CPU and GPU for experiment 3.

As mentioned before, rewriting the axis-functionality for the GPU proved too difficult to
implement as not only would the axis-function have to be changed into a GPU kernel, but
many other arrays would also have to be copied to the GPU as well. Undoubtedly this
would have resulted in many more parts of the code having to be changed to accommodate
this, thus requiring almost a complete rewrite of the PWTD package. Building the entire
implementation for the GPU from the ground up is a better idea.

Another thing to consider is the nature of the testfile that was used for experiment 3. It
contains only a single source, making it one of the easier situations for the algorithm to
determine. A more complex situation will require the determination of a more difficult
Fourier transform, where the GPU will provide a greater speed-up.

78

Another thing worth mentioning is the performance of the server. This was, quite frankly,
disappointing. This is most likely due to the fact that the software of the server could
not be updated easily and the system was therefore stuck at CUDA version 9. Nvidia
has made many improvements in versions 10 and 11 of CUDA, especially for the GPUs
in the server. It is therefore disheartening that the server could not be used to its fullest
potential.

9.2 Future Work

When creating a GPU implementation of an algorithm, it is recommended to do so from
scratch and not by trying to improve an already existing package. Though the results are
somewhat promising, as for the desktop they are nearly on a par with the CPU, there
were several limitations that could not easily be circumvented due to how the algorithm
was implemented. Therefore it is better to plan out an implementation with the GPU in
mind.

79

Chapter 10

Appendix

10.1 Code

10.1.1 Experiment 1

using CuArrays, CUDAnative, AbstractFFTs, FFTW, Test

using BenchmarkTools

using GPUArrays

using CuArrays.CURAND

using Random

using CSV, DataFrames

using Plots

include("CPUFunctions.jl")

include("GPUFunctions.jl")

include("plotting.jl")

l = 10

A = zeros(l)

B = zeros(2*l)

for i=1:l

A[i] = 2^i

B[i] = 2^i

B[i+l] = 2^(i+l)

end

times_cpu_vec=zeros(length(B), 2)

times_gpu_vec=zeros(length(B), 2)

times_cpu_mat=zeros(length(A), 5)

times_gpu_mat=zeros(length(A), 5)

for i=1:length(B)

N=Int(B[i])

@show i

Random arrays of length N for CPU computations

x = randn(Float64,N)

80

y = randn(Float64,N)

z = zeros(N)

Random arrays of length N for GPU computations

x_d = CuArrays.rand(N,)

y_d = CuArrays.rand(N,)

z_d = CuArrays.fill(0.0f0, (N,))

Vector-vector addition

times_cpu_vec[i,1] =

BenchmarkTools.mean(@benchmark cpu_add_vecvec!($x, $y, $z)).time

times_gpu_vec[i,1] =

BenchmarkTools.mean(@benchmark gpu_add_vecvec!($x_d, $y_d, $z_d)).time

Vector-vector pointwise multiplication

times_cpu_vec[i,2] =

BenchmarkTools.mean(@benchmark cpu_multi_vecvec!($x, $y, $z)).time

times_gpu_vec[i,2] =

BenchmarkTools.mean(@benchmark gpu_multi_vecvec!($x_d, $y_d, $z_d)).time

end

for i=1:length(A)

N=Int(A[i])

@show i

Random arrays of length N for CPU computations

x = randn(Float64,N)

y = randn(Float64,N)

z = zeros(N)

M = randn(Float64, (N,N))

K = randn(Float64, (N,N))

L = zeros(N,N)

Random arrays of length N for GPU computations

x_d = CuArrays.rand(N,)

y_d = CuArrays.rand(N,)

z_d = CuArrays.fill(0.0f0, (N,))

M_d = CuArrays.rand(N,N)

K_d = CuArrays.rand(N,N)

L_d = CuArrays.fill(0.0f0, (N,N))

Matrix-matrix addition

times_cpu_mat[i,1] =

BenchmarkTools.mean(@benchmark cpu_add_matmat!($M, $K, $L)).time

times_gpu_mat[i,1] =

BenchmarkTools.mean(@benchmark gpu_add_matmat!($M_d, $K_d, $L_d)).time

Vector-matrix pointwise multiplication

times_cpu_mat[i,2] =

BenchmarkTools.mean(@benchmark cpu_multi_vecmat_point!($x, $M, $L)).time

times_gpu_mat[i,2] = BenchmarkTools.mean(

@benchmark gpu_multi_vecmat_point!($x_d, $M_d, $L_d)).time

Vector-matrix regular multiplication

81

times_cpu_mat[i,3] =

BenchmarkTools.mean(@benchmark cpu_multi_vecmat_reg!($x, $M, $z)).time

times_gpu_mat[i,3] = BenchmarkTools.mean(

@benchmark gpu_multi_vecmat_reg!($x_d, $M_d, $z_d)).time

Matrix-matrix pointwise multiplication

times_cpu_mat[i,4] =

BenchmarkTools.mean(@benchmark cpu_multi_matmat_point!($M, $K, $L)).time

times_gpu_mat[i,4] = BenchmarkTools.mean(

@benchmark gpu_multi_matmat_point!($M_d, $K_d, $L_d)).time

Matrix-matrix regular multiplication

times_cpu_mat[i,5] =

BenchmarkTools.mean(@benchmark cpu_multi_matmat_reg!($M, $K, $L)).time

times_gpu_mat[i,5] = BenchmarkTools.mean(

@benchmark gpu_multi_matmat_reg!($M_d, $K_d, $L_d)).time

end

CSV.write("cpu_data_vec.csv", DataFrame(times_cpu_vec), writeheader=false)

CSV.write("gpu_data_vec.csv", DataFrame(times_gpu_vec), writeheader=false)

CSV.write("cpu_data_mat.csv", DataFrame(times_cpu_mat), writeheader=false)

CSV.write("gpu_data_mat.csv", DataFrame(times_gpu_mat), writeheader=false)

plot_vector(times_cpu_vec,times_gpu_vec)

plot_matrix(times_cpu_mat,times_gpu_mat)

82

10.1.2 Planner Experiment

using CuArrays, CUDAnative, AbstractFFTs, FFTW, Test

using BenchmarkTools

using GPUArrays

using CuArrays.CURAND

using CuArrays.CUFFT

using Random

#using CSV, DataFrames

using Plots

using LinearAlgebra

function planner_test_cpu(size,runs)

x = randn(ComplexF64,(size,size))

y = zeros(size,size)

p = plan_fft(x)

for i=1:runs

y = p * x

end

return nothing

end

function fft_test_cpu(size,runs)

x = randn(ComplexF64, (size,size))

y = zeros(size,size)

for i=1:runs

y = fft(x)

end

return nothing

end

function planner_test_gpu(size,runs)

x_d = CuArrays.randn(size,size)

y_d = CuArrays.fill(0.0f0, (size,size))

p_d = plan_fft(x_d)

for i=1:runs

CuArrays.@sync y_d = p_d * x_d

end

return nothing

end

function fft_test_gpu(size,runs)

x_d = CuArrays.randn(size,size)

y_d = CuArrays.fill(0.0f0, (size,size))

83

for i=1:runs

CuArrays.@sync y_d = fft(x_d)

end

return nothing

end

function plotter_cpu(fft_data, planner_data, runs, size)

p = plot(runs, fft_data, linecolor=:red,

label=["Regular FFT"], legend=:topleft)

plot!(p, runs, planner_data, linecolor=:blue,

label=["Regular FFT","Planner FFT"], legend=:topleft)

title!(p,"CPU Planner vs FFT for size $size")

xlabel!(p,"runs")

ylabel!(p,"time")

savefig(p, "C:/Users/SID DrW/Documents/Github/MyPkg.jl/

Experiments/Experiment 2/planner-$size-CPU.png")

display(p)

sleep(3)

end

function plotter_gpu(fft_data, planner_data, runs, size)

p = plot(runs, fft_data, linecolor=:red,

label=["Regular FFT"], legend=:topleft)

plot!(p, runs, planner_data, linecolor=:blue,

label=["Regular FFT","Planner FFT"], legend=:topleft)

title!(p,"GPU Planner vs FFT for size $size")

xlabel!(p,"runs")

ylabel!(p,"time")

savefig(p, "C:/Users/SID DrW/Documents/Github/MyPkg.jl/

Experiments/Experiment 2/planner-$size-GPU.png")

display(p)

sleep(3)

end

#BenchmarkTools.DEFAULT_PARAMETERS.samples = 100

sizes = [16, 64, 256, 431, 512, 1024]

runs_cpu = [1,2,5,10,15,20,25,30,40,50]

runs_gpu = [1,2,3,4,5,6,7,8,9,10]

data_planner_cpu = zeros(length(runs_cpu), length(sizes))

data_fft_cpu = zeros(length(runs_cpu),length(sizes))

data_planner_gpu = zeros(length(runs_gpu), length(sizes))

data_fft_gpu = zeros(length(runs_gpu),length(sizes))

#CPU Computations

for i=1:length(sizes)

for j=1:length(runs_cpu)

84

evals = 5

temp1 = zeros(evals)

temp2 = zeros(evals)

for k=1:evals

temp1[k] = @elapsed fft_test_cpu(sizes[i],runs_cpu[j])

temp2[k] = @elapsed planner_test_cpu(sizes[i],runs_cpu[j])

end

data_fft_cpu[j,i] = sum(temp1)/evals

data_planner_cpu[j,i] = sum(temp2)/evals

end

plotter_cpu(data_fft_cpu[:,i], data_planner_cpu[:,i], runs_cpu, sizes[i])

end

GC.gc()

#GPU Computations

for i=1:length(sizes)

for j=1:length(runs_gpu)

evals = 2

temp1 = zeros(evals)

temp2 = zeros(evals)

for k=1:evals

temp1[k] = @elapsed fft_test_gpu(sizes[i],runs_gpu[j])

temp2[k] = @elapsed planner_test_gpu(sizes[i],runs_gpu[j])

end

data_fft_gpu[j,i] = sum(temp1)/evals

data_planner_gpu[j,i] = sum(temp2)/evals

GC.gc()

end

plotter_gpu(data_fft_gpu[:,i], data_planner_gpu[:,i], runs_gpu, sizes[i])

end

85

10.1.3 Experiment 2, Part 1

using CuArrays, CUDAnative, AbstractFFTs, FFTW, Test

using BenchmarkTools

using GPUArrays

using CuArrays.CURAND

using CuArrays.CUFFT

using Random

using CSV, DataFrames

using Plots

using LinearAlgebra

include("plotting.jl")

BenchmarkTools.DEFAULT_PARAMETERS.samples = 50

function cpu_fft!(x, y, p)

y = p * x

return y

end

function gpu_fft!(x, y, p)

CuArrays.@sync y = p * x

return y

end

l = 10

A = zeros(l)

B = zeros(2*l)

for i=1:l

A[i] = 2^i

B[i] = 2^i

B[i+l] = 2^(i+l)

end

#Data arrays for vectors

times_cpu1_vec=zeros(length(B))

times_cpu2_vec=zeros(length(B))

times_cpu4_vec=zeros(length(B))

times_cpu_vec=zeros(length(B))

times_gpu_vec=zeros(length(B))

#Data vectors for matrices

times_cpu1_mat=zeros(length(A))

times_cpu2_mat=zeros(length(A))

times_cpu4_mat=zeros(length(A))

times_cpu_mat=zeros(length(A))

times_gpu_mat=zeros(length(A))

for i=1:length(B)

86

@show i

N = Int(B[i])

CPU portion of the experiment

x = randn(ComplexF64, (N,1))

y = similar(x)

FFTW.set_num_threads(1)

p = plan_fft(x)

times_cpu1_vec[i] = BenchmarkTools.mean(@benchmark cpu_fft!($x, $y, $p)).time

FFTW.set_num_threads(2)

p = plan_fft(x)

times_cpu2_vec[i] = BenchmarkTools.mean(@benchmark cpu_fft!($x, $y, $p)).time

FFTW.set_num_threads(4)

p = plan_fft(x)

times_cpu4_vec[i] = BenchmarkTools.mean(@benchmark cpu_fft!($x, $y, $p)).time

times_cpu_vec[i] = min(times_cpu1_vec[i],

times_cpu2_vec[i], times_cpu4_vec[i])

GPU portion of the experiment

x_d = CuArrays.rand(N,1)

y_d = CuArrays.fill(0.0f0, (N,1))

FFTW.set_num_threads(1)

p_d = plan_fft(x_d)

times_gpu_vec[i] = BenchmarkTools.mean(

@benchmark gpu_fft!($x_d, $y_d, $p_d)).time

end

for i=1:length(A)

@show i

N = Int(A[i])

CPU portion of the experiment

x = randn(ComplexF64, (N,N))

y = similar(x)

FFTW.set_num_threads(1)

p = plan_fft(x, 1)

times_cpu1_mat[i] = BenchmarkTools.mean(@benchmark cpu_fft!($x, $y, $p)).time

FFTW.set_num_threads(2)

p = plan_fft(x, 1)

times_cpu2_mat[i] = BenchmarkTools.mean(@benchmark cpu_fft!($x, $y, $p)).time

87

FFTW.set_num_threads(4)

p = plan_fft(x, 1)

times_cpu4_mat[i] = BenchmarkTools.mean(@benchmark cpu_fft!($x, $y, $p)).time

times_cpu_mat[i] = min(times_cpu1_vec[i],

times_cpu2_vec[i], times_cpu4_vec[i])

GPU portion of the experiment

x_d = CuArrays.rand(N,N)

y_d = CuArrays.fill(0.0f0, (N,N))

FFTW.set_num_threads(1)

p_d = plan_fft(x_d, 1)

times_gpu_mat[i] = BenchmarkTools.mean(

@benchmark gpu_fft!($x_d, $y_d, $p_d)).time

if i > 7

GC.gc()

GC.gc()

end

end

plot_vector(times_cpu_vec, times_gpu_vec)

plot_matrix(times_cpu_mat, times_gpu_mat)

plot_matrix_reg(times_cpu_mat, times_gpu_mat)

plot_vector_cores(times_cpu1_vec, times_cpu2_vec, times_cpu4_vec)

plot_matrix_cores(times_cpu1_mat, times_cpu2_mat, times_cpu4_mat)

88

10.1.4 Experiment 2, Part 2

using CuArrays, CUDAnative, AbstractFFTs, FFTW, Test

using BenchmarkTools

using GPUArrays

using CuArrays.CURAND

using CuArrays.CUFFT

using Random

#using CSV, DataFrames

using Plots

using LinearAlgebra

include("plotting.jl")

CPU computations

times_cpu_mat = zeros(12)

FFTW.set_num_threads(4)

BenchmarkTools.DEFAULT_PARAMETERS.samples = 50

x = randn(ComplexF64, (2,2))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[1] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (4,4))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[2] = BenchmarkTools.mean(@benchmark y = p * x).time

@elapsed y = p * x

x = randn(ComplexF64, (8,8))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[3] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (16,16))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[4] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (32,32))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[5] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (64,64))

y = similar(x)

p = plan_fft(x)

89

times_cpu_mat[6] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (128,128))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[7] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (256,256))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[8] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (512,512))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[9] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (1024,1024))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[10] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (2048,2048))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[11] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (4096,4096))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[12] = BenchmarkTools.mean(@benchmark y = p * x).time

x = randn(ComplexF64, (2^13, 2^13))

y = similar(x)

p = plan_fft(x)

times_cpu_mat[13] = BenchmarkTools.mean(@benchmark y = p * x).time

GPU computations

FFTW.set_num_threads(1)

times_gpu_mat = zeros(12)

x_d = CuArrays.randn(2,2)

y_d = CuArrays.fill(0.0f0, (2,2))

p_d = plan_fft(x_d)

times_gpu_mat[1] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

x_d = CuArrays.randn(4,4)

90

y_d = CuArrays.fill(0.0f0, (4,4))

p_d = plan_fft(x_d)

times_gpu_mat[2] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

x_d = CuArrays.randn(8,8)

y_d = CuArrays.fill(0.0f0, (8,8))

p_d = plan_fft(x_d)

times_gpu_mat[3] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

x_d = CuArrays.randn(16,16)

y_d = CuArrays.fill(0.0f0, (16,16))

p_d = plan_fft(x_d)

times_gpu_mat[4] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

x_d = CuArrays.randn(32,32)

y_d = CuArrays.fill(0.0f0, (32,32))

p_d = plan_fft(x_d)

times_gpu_mat[5] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

x_d = CuArrays.randn(64,64)

y_d = CuArrays.fill(0.0f0, (64,64))

p_d = plan_fft(x_d)

times_gpu_mat[6] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

x_d = CuArrays.randn(128,128)

y_d = CuArrays.fill(0.0f0, (128,128))

p_d = plan_fft(x_d)

times_gpu_mat[7] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

x_d = CuArrays.randn(256,256)

y_d = CuArrays.fill(0.0f0, (256,256))

p_d = plan_fft(x_d)

times_gpu_mat[8] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

x_d = CuArrays.randn(512,512)

y_d = CuArrays.fill(0.0f0, (512,512))

p_d = plan_fft(x_d)

times_gpu_mat[9] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

GC.gc()

91

x_d = CuArrays.randn(1024,1024)

y_d = CuArrays.fill(0.0f0, (1024,1024))

p_d = plan_fft(x_d)

times_gpu_mat[10] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

GC.gc()

x_d = CuArrays.randn(2048,2048)

y_d = CuArrays.fill(0.0f0, (2048,2048))

p_d = plan_fft(x_d)

times_gpu_mat[11] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

GC.gc()

x_d = CuArrays.randn(4096,4096)

y_d = CuArrays.fill(0.0f0, (4096,4096))

p_d = plan_fft(x_d)

times_gpu_mat[12] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

GC.gc()

x_d = CuArrays.randn(2^13,2^13)

y_d = CuArrays.fill(0.0f0, (2^13,2^13))

p_d = plan_fft(x_d)

times_gpu_mat[13] =

BenchmarkTools.mean(@benchmark CuArrays.@sync y_d = p_d * x_d).time

plot_matrix(times_cpu_mat, times_gpu_mat)

92

10.1.5 Experiment 2, Part 3

using CuArrays, CUDAnative, AbstractFFTs, FFTW, Test

using BenchmarkTools

using GPUArrays

using CuArrays.CURAND

using CuArrays.CUFFT

using Random

using Plots

using LinearAlgebra

using Statistics

device!(0)

include("plotting.jl")

function cpu_fft!(x, y, p)

y = p * x

return y

end

function gpu_fft!(x, y, p)

CuArrays.@sync y = p * x

return y

end

N = 11

it = 100

cpu_data = zeros(N)

gpu_data = zeros(N)

cpu_int_time = zeros(it)

gpu_int_time = zeros(it)

#device!(0)

for i=1:N

@show i

z = randn(ComplexF32, (2^i,2^i))

y = similar(z)

p = plan_fft(z)

z_d = CuArray(z)

y_d = CuArrays.fill(0.0f0, (2^i,2^i))

p_d = plan_fft(z_d)

x = randn(ComplexF32, (2^i,2^i))

93

@time cpu_fft!(x, y, p)

x_d = CuArray(x)

@time gpu_fft!(x_d, y_d, p_d)

for j=1:it

x = randn(ComplexF32, (2^i,2^i))

tc = @timed cpu_fft!(x, y, p)

cpu_int_time[j] = tc[2]

x_d = CuArray(x)

tg = @timed gpu_fft!(x_d, y_d, p_d)

gpu_int_time[j] = tg[2]

end

cpu_data[i] = mean(cpu_int_time)

gpu_data[i] = mean(gpu_int_time)

end

plot_matrix(cpu_data, gpu_data)

plot_matrix_reg(cpu_data, gpu_data)

94

Bibliography

[1] M. Aboullaite, Understanding JIT compiler,
https://aboullaite.me/understanding-jit-compiler-just-in-time-compiler/

[2] M. Abramowits and I.A. Stegun, Handbook of Mathematical Functions,
Ninth edition, Dover Publications, December 1972

[3] A. Arif Ergin, B. Shanker and E. Michielssen, The plane-wave time-domain algorithm
for the fast analysis of transient wave phenomena,
IEEE Antennas and Propagation Magazine Volume 41, Issue 4, September 1999

[4] M. Balducci, A.a Choudary, J. Hamaker,Comparative Analysis Of FFT Algorithms
In Sequential And Parallel Form,
Mississippi State University

[5] J. Bezanson, S. Karpinski, V.B. Shah and A. Edelman, Why We Created Julia
https://julialang.org/blog/2012/02/why-we-created-julia, February 2012

[6] J. Bolewski, K. Kamieniecki, T. Besard, H. Ranocha, S. and V. Churavy, JuliaGPU
https://github.com/JuliaGPU

[7] J. Claerbout, Imaging the Earth’s Interior
Stanford Exploration Project, 31 October 1997
Chapter on Slanted Waves

[8] R. Coifman, V. Rokhlin and S. Wandzura, The Fast Multipole Method For Electro-
magnetic Scattering Calculations,
Proceedings of IEEE ANtennas and Propagation Society International Symposium,
July 1993

[9] J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of comples
Fourier series
Mathematical Computation 19, page 297-301.

[10] K. Cools, PWTD.jl package,
https://github.com/krcools/PWTD.jl

[11] G.R. Cooper, C.D. McGillem, Continuous and Discrete Signal and System Analysis
Harcourt College Publishers, 1984, page 118

[12] P. Duhamel, H. Hollmann, Split-radix FFT algorithm
Electronic Letters 20, February 1984, page 14-16

95

[13] R. Fitzpatrick, Quantum Mechanics
University of Texas Reader, page 15

[14] G. Fourestey, M. Rexroth, C. Schäfer, J.-P. Kneib, High Performance Computing
for gravitational lens modeling: Single vs double precision on GPUs and CPUs.
Astronomy and Computing, Volume 30, January 2020, 100340

[15] M. Frigo and S.G. Johnson, The Design and Implementation of FFTW3,
Proceedings of the IEEE 93(2), pages 216-231, February 2005

[16] M. Frigo and S.G. Johnson, FFTW Documentation
fftw.org/fftw3.pdf, version 3.3.8, 24 May 2018

[17] E. Heyman, R. Kastner, A. Shlivinski, Antenna Characterization in the Time Do-
main
IEEE Transatlantic Antennas Propagation, Vol. 45, Nr 7, 1997; pages 1140-1149

[18] D.G. Hough, M. Cowlishaw et al, IEEE Standard for Floating-Point Arithmetic
IEEE Std 754-2019, IEEE Computer Society

[19] J. van Kan, A. Segal, F. Vermolen, Numerical Methods In Scientific Computing
Second Edition, page 5, 6

[20] J. van Kan, A. Segal, F. Vermolen, Numerical Methods In Scientific Computing
Second Edition, page 131

[21] H. Karner, C. Ueberhuber, Parallel FFT algorithms with reduced communication
overhead,
Institute for Applied and Numerical Mathematics, Technical University of Vienna

[22] S. Meiyappan,
Implementation And Performance Evaluation Of Parallel FFT Algorithms,
National University Of Singapore

[23] J. Revels, BenchmarkTools.jl Documentation,
https://github.com/JuliaCI/BenchmarkTools.jl/blob/master/doc/manual.md

[24] J. Revels, BenchmarkTools.jl package,
https://github.com/JuliaCI/BenchmarkTools.jl

[25] S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing
Chapter 13: Convolution

[26] C. Vuik and C.W.J. Lemmens, Programming on the GPU with CUDA,
Reader for a course on CUDA programming on the GPU, January 2019

[27] C. Vuik, F.J. Vermolen, M.B. van Gijzen, M.J. Vuik, Numerical Methods for Ordinary
Differential Equations,
Delft Academic Press, Second Edition, page 52

[28] C. Vuik, F.J. Vermolen, M.B. van Gijzen, M.J. Vuik, Numerical Methods for Ordinary
Differential Equations,
Delft Academic Press, Second Edition, page 54, 56

96

[29] AbstractFFTs package,
https://github.com/JuliaMath/AbstractFFTs.jl

[30] Capgemini Website,
https://www.capgemini.com/

[31] clFFT,
https://clmathlibraries.github.io/clFFT/

[32] CuArrays.jl Package
https://github.com/JuliaGPU/CuArrays.jl

[33] CUDA GPUs,
https://developer.nvidia.com/cuda-gpus

[34] Digital Library of Mathematical Functions: Bessel- and Spherical Bessel Functions,
https://dlmf.nist.gov/10.47

[35] FFTW package,
https://github.com/JuliaMath/FFTW.jl

[36] Intel Math Kernel Library,
texttthttps://software.intel.com/en-us/mkl

[37] Julia Documentation On Packages,
https://docs.julialang.org/en/v1.0/stdlib/Pkg/

[38] Julia Documentation On Types,
https://docs.julialang.org/en/v1/manual/types/index.html

[39] Julia PkgTemplate Repository,
https://github.com/invenia/PkgTemplates.jl

[40] JuliaCon 2019 — Keynote: Professor Steven G. Johnson,
https://www.youtube.com/watch?v=mSgXWpvQEHE, mark at 44:11

[41] Khronos Group About page,
https://www.khronos.org/about/

[42] Nvidia cuFFT,
https://developer.nvidia.com/cufft

[43] OpenCL Overview,
https://www.khronos.org/opencl/

[44] Techpowerup, Nvidia Quadro M 1200,
https://www.techpowerup.com/gpu-specs/quadro-m1200-mobile.c2921

[45] Techpowerup, Nvidia Geforce RTX 2080 Super,
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-super.c3439

[46] Techpowerup, Nvidia Tesla V100,
https://www.techpowerup.com/gpu-specs/tesla-v100-pcie-32-gb.c3184

97

