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Abstract

Suction caissons have been used extensively for anchoring and supporting the offshore in-
stallations like oil platforms and wind turbines. These foundations are normally subjected
to complex combinations of the vertical, horizontal and moment loads (i.e. V, H, M) from
the self-weight, wind, wave and currents. In the past decades, extensive studies have been
conducted to investigate the combined V-H-M loading behaviour of suction caissons in clay.
However, most existing studies are focused on the ultimate bearing capacity, while the de-
flection response is more critical in foundation design for recent infrastructures like offshore
wind turbines. Due to the complex load conditions, predicting the three-dimensional (3D)
deflection response of the foundation is still challenging. Machine learning (ML) appears
on the research horizon due to its excellent capacity of solving nonlinear problems with de-
sired speed and accuracy. However, conventional machine learning approaches were limited
in their capacity to analyze raw natural data without artificial interventions. Meanwhile,
the deep learning technique (DL), as a branch of machine learning, allows a machine to be
fed with raw data, automatically extract the features, and discover intricate structures in
high-dimensional data. The deep learning technique has been used in many fields like lan-
guage translation, auto-pilot and image recognition. And Deep neural networks, including
deep learning algorithms and architectures, are gradually being developed. In light of these
backgrounds, this study proposed to develop a deep learning based surrogate model to predict
the 3D deflection response of suction caissons under combined V-H-M loading. The advanced
three-dimensional nonlinear finite element (FE) simulations under complex V-H-M loading
paths were performed on suction caissons of different geometric configurations and in clay soils
with different stiffness and strength properties. The 3D FE simulation data was then used
to train the deep learning based design model. Three popular neural network structures, i.e.,
Feed forward Neural Network (FNN), Convolution Neural Network (CNN), Recurrent Neural
Network (RNN) have been employed to develop the hybrid surrogate design model. In this
study, two different training strategies were proposed for this geotechnical problem. In the
first category, the 3D load-deflection behaviour of suction caisson is idealized as a point-to-
point mapping problem, i.e. mapping between the deflections (i.e. displacement and rotation)
with loads (i..e force and moment). This task was achieved by Fully-Connected Neural Net-
work model (FC-NN) based on FNN, One Dimension Convolution Neural Network model
(1D-CNN) based on CNN and Long Short Term Memory model (LSTM) based on RNN. In
the second training strategy, the load-deflection response was idealized as a time series pro-
cess, a line-to-line mapping problem, mapping between the past loading paths (i.e. 10 groups

xiii



of forces and moments) with future loading paths (i.e. 90 groups of forces and moments).
Besides the three neural network models mentioned before, another two complex and ad-
vanced models, LSTM Model combined with convolution neural network (1D-CNN+LSTM)
and Temporal Convolutional Network model (TCN), are also applied for temporal prediction.
The performance and training efficiency of these models were also systematically evaluated
by interpolation and extrapolation experiments. Basically, all the models can well capture
the 3D deflection response of the foundation with significantly high accuracy (i.e., root mean
squared error is smaller than 0.05 and coefficient of determination is near 1.000) than the
traditional design approach (such as macro-elements model), and with greater efficiency than
the 3D FE simulations. Among all the models, the TCN model has the highest prediction
accuracy and robustness. However, the FC-NN model has the simplest model structure and
highest computational efficient in learning the non-linear relationship between deflection re-
sponse and V-H-M load. Besides capturing the relationship between input and output, the
deep learning model can also assist to identify the intrinsic failure mechanism. By observing
the fluctuation of generalisation ability, the evolution of the failure mechanism of suction
caisson with embedment depth was revealed.
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Introduction 1
1.1 Research background

1.1.1 Offshore wind energy

Developing renewable energies has become the consensus around the world to solve the climate
and energy problems. Wind energy is one of the most promising renewable energy sources
with greater consistency and efficiency output. Compared with the on-shore wind, offshore
winds are faster, unobstructed and more consistent, making them more accessible (Abdel-
Rahman and Achmus, 2005). Therefore, many countries are putting their bats on offshore
wind energy to combat global environmental problems. By the end of March 2021, the global
offshore wind capacity in operation has reached nearly 35.3 GW, compared with 3.3 GW in
2011. According to projections from the Global Wind Energy Council (GWEC), 469 GW
new capacity of global offshore wind will be added in the next five years.The trend in new
capacity growth for offshore wind in Europe is shown in Figure 1.1. It should be noted that
more than 75% of all commissioned wind farms are constructed in offshore areas with water
depths of less than 30 m (Rystad, 2021). Driven by the successful leap from onshore to shallow
offshore, the industries are making another significant move to build offshore wind farms in
deeper water to maximize the potential global offshore wind resource.

Figure 1.1: Expected new installations from 2022 to 2026 (Source from WindEurope)

1.1.2 Foundation types for offshore wind turbines

For a typical offshore wind turbine, the foundation cost can take up more than 30%, as
shown in Figure 1.2 (Wang, 2020), making it a very important role in the economic feasibility
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Figure 1.2: Cost share of a typical offshore wind turbine (Wang, 2020)

of the whole project. Up to date, many different foundation types have been used to support
offshore wind turbines as shown in Figure 1.3, depending on the water depth and seabed
conditions. In shallow waters with water depths ranging from 0 m to 25 m, gravity bases,
suction caissons, and monopiles can be utilized. For the offshore wind turbine installations
in shallow waters (depth less than 30 m), the monopile is the most widely used foundation
type covering more than 81% of total installations in Europe (as shown in Figure 1.4).
However, when the construction moves to deeper water, the difficulty in installation and the
increase in the cost of the monopile make it less preferable. Instead, the multi-pod support
structures such as tripods and jackets, are preferred (Lau, 2015). In particular, the suc-
tion caisson foundation has been considered as a promising alternative for its easy installation.

Figure 1.3: Wind Turbine Foundation Options(Lau, 2015).

The typical suction caisson foundation consists of a steel cylindrical shell with a top plate
and various valves that allow water to be pumped into or out of the shell. It has an open
bottom that allows soil to enter the internal volume of the caisson. In the field, the suction
caisson will first penetrate the soil under its own weight, forming a sealed space. Then
the caisson is embedded into the seabed to target depth by pumping out the water in the
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Figure 1.4: Offshore wind foundations in Europe.

shell, creating a negative (suction) pressure inside the caisson. As a result, the resultant
pressure differential across the top plate will effectively push the caisson into the seabed.
This installation procedure is illustrated in Figure 1.5. Compared with other traditional
offshore foundations, the suction caisson has many advantages, including:

- Installed easily without noise pollution

- High overturning resistance

- Less steel costs

- Using reusable materials

- Located accurately

Therefore, the suction caisson foundation has a bright future for the application.

1.1.3 Design requirement of offshore wind turbine foundation

The offshore wind turbine is a long slender dynamic sensitive structure. For a typical 5 MW
offshore wind turbine, the hub height can be up to 110 m with a rotor diameter of 126 m.
Due to their high and flexible structural characteristics and the distribution of mass and
stiffness, offshore wind turbines have very strict requirement for the system frequency and
structure deflection.

For the safety, it is important to avoid the possible resonance from the overlap of the natural
frequency of offshore wind turbines with those of the external loads, like the wave and the
“shading effect” generated by blade passing (Bhattacharya et al., 2013). Figure 6 presents
a summary of the typical loading frequency applied to the offshore wind turbine (Jonkman
et al., 2009). The 1P and 3P denote the rotational frequency of the turbine and the blade
passing frequency, respectively. To avoid any resonance, the natural frequency of the system
should be designed lower than 1P (i.e., ‘soft–soft’), between 1P and 3P (i.e., ‘soft–stiff’) or
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Figure 1.5: Steps and forces during installation of a suction caisson (Randolph and Gourvenec,
2017).

larger than 3P (i.e., ‘stiff–stiff’ regions). Typically, the initial natural frequency of most
offshore wind turbines is designed to be ‘soft–stiff’, lying in the interval between turbine and
blade passing frequencies, accounting for the cost and design feasibility (Bhattacharya et al.,
2013; Yu et al., 2015). Therefore, the frequency is very strictly limited, typically between
0.22 Hz and 0.31 Hz.

Figure 1.6: Typical loading frequencies and dynamically sensitive regions of an NREL 5 MW
turbine structure(Jonkman et al., 2009).

According to the DNVGL design guideline, the maximum rotation of the offshore wind turbine
should be limited to 0.25 degrees. However, the soil will exhibit nonlinear response under
loading, with its stiffness degrading significantly at small strain. This will then affect the
foundation deflection response under external loads. As illustrated in Figure 1.7, results from
large-scale footing tests on 3 m diameter caisson foundations show the clear degradation of
foundation stiffness with the rotation (Houlsby, 2016). Therefore, the design of the offshore
wind turbine foundation requires an accurate prediction of the foundation stiffness more than
the bearing capacity under small deflection.
Meanwhile, the offshore wind turbines are subjected to complex loads from self-weight,
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Figure 1.7: Change of rotational stiffness of a foundation as a function of rotation ampli-
tude(Houlsby et al., 2006).

wind, wave and current. As shown in Figure 1.8, the dominant loads on the supporting
substructures of offshore wind turbines are the lateral force and moment, rather than the
huge vertical load on the offshore platform (Houlsby, 2016). Traditionally, the horizontal,
vertical and moment load components are treated separately in the bearing capacity approach
which ignore the interaction between them. This may lead to a non-conservative prediction.
Therefore, to accurately predict the foundation response of offshore wind turbines, it is
necessary to study the deflection response or stiffness response of the foundation under
complex 3D loading condition.

Figure 1.8: The representative loads on a typical offshore platform and a wind tur-
bine(Houlsby, 2016).

1.1.4 Artificial intelligence applications in geotechnical engineering

In 1956, a group of computer scientists proposed that computers could be programmed to
think and reason. Then they described this principle as “artificial intelligence.” Artificial
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intelligence (AI) is a field focused on automating intellectual tasks normally performed by
humans, and machine learning (ML) and deep learning (DL) are specific methods of achieving
this goal (Choi et al., 2020). Neural networks are a network structure that incorporates
deep learning algorithms and have been used extensively in recent years. Deep learning, in
turn, is a branch of machine learning that can actively extract features between data and is
more intelligent than conventional machine learning. The relationship of these concepts are
shown in Figure 1.9. The field of data science encompasses artificial intelligence (AI), which
comprises classical programming and machine learning (ML). ML includes several models
and techniques, such as deep learning algorithm (DL) with various neural networks.

Figure 1.9: The relationship between Machine Learning, Deep Learning, and Neural Net-
works(Choi et al., 2020).

Since the last century, artificial intelligence (AI) provides several advantages over more
traditional computing techniques. Numerous mathematical models are incapable to simulate
the complex behavior of most geotechnical engineering problems. In contrast, AI methods
are data-driven methodologies in which model development is determined by training
input-output data pairs to define the model’s structure and parameters. From the early 21st
century, Artificial Neural Network (ANN), a kind of deep learning algorithm, emerged as the
most widely used, with around half of studies relying on it. ANN and other machine learning
methods have been successfully applied in the diverse field of geotechnical engineering (shown
in Figure 1.10). Particularly, in the field of shallow and pile foundations, highly accurate
predictions of bearing capacity, settlement estimation and load-settlement response have
been achieved with deep learning neural networks (Shahin, 2016). This new method gives
ideas for studying the deflection response or stiffness response of foundations under complex
three-dimensional loading conditions.
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Figure 1.10: Distribution of the use of different AI techniques in the geotechnical engineer-
ing(Baghbani, 2022).

1.2 Research objectives and strategy

The previous background can be summarized as follows:

1. The offshore wind turbine foundation is a highly non-linear system under various load
combinations with significant stiffness degradation at slight deflection.

2. The field data on suction caisson is scarce, and the deflection responses of various suction
caissons under different load combinations and field conditions are impossible to obtain.
And the FE simulation process is very time-consuming.

3. The deep learning technique is famous for describing the complex multi-factor non-linear
system. The deep learning model can provide highly accurate predictions after trained,
and this technique has been used in many geotechnical fields.

In these lights, the deep learning’s excellent fitting capabilities are used to forecast the
mechanical response of the foundation in an effort to replace conventional computational
methods in the geotechnical domain. In this project, the response of the foundation under
the combined loads were analyzed first using the advanced three-dimensional (3D) finite
element modelling. Each simulation represents the mechanical response of the foundation
under one load combination, and the mechanical response under different time steps form
the loading path. After numerous simulations with different load combinations, the ultimate
state of the loading paths constitutes the failure envelope of the suction caisson. These
load-displacement response of the foundation were then studied. After finite element
modelling, the load-displacement data of caissons with different geometric configurations
and in different clay soils was fed to the deep learning model, which can directly learn the
mapping relationship between the displacement and external loads of caisson foundations
from the raw numerical data. The process from modelling to training the model is illustrated
in Figure 1.11(a).
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(a) Before neural network training

(b) After neural network training

Figure 1.11: Structure diagram of the whole research

After training, deep learning algorithms attempt to predict as precisely as possible mechanical
response and failure envelope. When the prediction accuracy reaches the acceptable level,
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the trained deep learning model will be regarded as an alternative method of the complex
FE modelling process and save computational cost (demonstrated in Figure 1.11(b)). In
the end, an AI-based model for the suction caisson foundation in clay was developed. This
trained AI-based model can implicitly incorporate the intrinsic control mechanism of the
foundation under varied conditions without the limitations of the predefined assumptions
in the traditional design model. This is of great benefit for the design companies, allowing
them to predict the load response of the caisson within seconds.

When the deep learning model mimic the nonlinear relationship between force and dis-
placement, the essential inputs to the training model are the horizontal displacement (u),
the vertical displacement (v), the angle of rotation (θ), the embedment ratio (L/D), and
the heterogeneity parameter (κ) of the soil. The horizontal reaction force (H), vertical
response force (V), and moment (M) are considered as corresponding outputs. This selection
of features follows the principle that the less input and output parameters decrease the
difficulty of training a deep learning model. In addition, different deep learning models were
studied to evaluate their accuracy and efficiency when using in foundation design. The deep
learning models can predict the foundation response with both high accuracy and efficiency.
The performance of each model was also systematically evaluated.

The main objectives of this project are summarized below:

- Investigate the three-dimensional response of the suction caisson under combined
loads(V-H-M) by performing 3D FEM simulations under different loading paths (i.e.
ratio between the u-v-θ), which will serve as the training database for deep learning;

- Study the influence of soil strength profiles (i.e. constant and linear su profiles against
depth) and foundation geometric configurations (i.e. length to diameter ratio, L/D) on
the 3D load-deflection response of caisson;

- Evaluate the performance of existing deep learning techniques when being used for
foundation design;

- Develop the AI-based model for offshore foundations by selecting the most appropriate
computational model and neural network structure;

1.3 Research contributions

- The 3D response of the foundation researched by FE modeling
After FE modeling, the behaviour of suction caisson foundations under three-
dimensional loading in different soil profile with different foundation geometries are
investigated. The calculation results reveal the non-linearity of the load-displacement
response of the foundation and the variation of the bearing capacity envelope with
changes in burial depth and soil profile under different deformation conditions. And
comparing the behaviour of the foundation under different reference point configura-
tions, a unique failure mechanism is proposed when the reference point is set at the
mudline.
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- Data driven model developed for 3D mechanical response of suction caisson
prediction.
Up to date, existing studies on the three-dimensional (3D) response of suction
caisson always tends to simplify their investigation into a two-dimensional (2D)
problem and only focus on the ultimate state. This was mainly limited by the high
computational expense and the complex of soil non-linearity induced deformation
of the foundation. While the development of hybrid surrogate model will greatly
facilitate reproducing the three-dimensional response of suction caisson under various
load combinations. The 3D load-deflection behaviour of suction caisson is idealized
as a point to point mapping problem. A fully connected (FC) neural network
based model trained from raw data predict nonlinear mechanical responses by fitting
the internal relationship within load and displacement. Moreover, this model can
capture the 3D response of foundations with a wide range of embedment ratios and
strength heterogeneity for the extensive applications. This advanced method will
investigate the behaviour of suction caissons more comprehensively and efficiently. The
modelling process and model’s applicability will be demonstrated in detail in Chapter 4.

- The unknown response of foundation predicted with limited data.
Deep learning algorithms are capable of accurately predicting future trends based
on historical time series data, (i.e. stock prices, weather patterns, etc.), thanks
to their superior computational power. Since 2017, time series prediction has also
been increasingly applied for geotechnical problems such as tunnel construction and
landslide displacement. After the point-to-point mapping problem was proven feasible,
the variation of H-V-M load response with the caisson deflection will be treated as a
time series of data, a line-to-line mapping problem. Therefore, the initial 10% data
of FEM simulations were used to predict the whole range response (100% data) of
the foundation. It means that future behaviour of suction caissons can be predicted
based on existing inspection data. This kind of temporal prediction has promising
applications for foundation monitoring and maintenance. The modelling process and
predictions will also be demonstrated in detail in Chapter 4.

- The deep learning models’ performances compared in foundation behaviour
prediction.
Although deep learning models have been widely used in the shallow and pile
foundation field, there are insufficient guidelines for selecting deep learning models.
Therefore, various state-of-the-art models were applied when performing non-linear
regression prediction and time-series prediction. The accuracy, robustness, efficiency,
and generalisation of the deep learning models were evaluated by interpolation and
extrapolation predictability. All the models can well capture the 3D deflection response
of the foundation with much higher accuracy than the traditional design approach.
With the simplest model structure, the Fully Connected Neural Network (FC-NN)
model was considered the most suitable for fitting the non-linear relationship between
force and displacement. The Temporal Convolutional Network (TCN) model was
discovered balancing accuracy, efficiency and robustness in the temporal prediction,
challenging the dominating long short-term memory (LSTM) model in the temporal
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domain. In Chapter 4, the prediction accuracy, computational efficiency and robustness
of the individual models are demonstrated.

- Providing a new direction of exploration in the geotechnical mechanism
combined with AI.
Based on the model generalisation results in Chapter 5, an attempt was made to find
the intrinsic mechanism for the poor generalisation ability of the partially embedded
depths. Through the analysis of the anomalous data, the changes in the data distribu-
tion pattern were found to coincide with the changes in the failure mechanisms of the
foundation under different embedment depths. The effect of the skirt geometry on the
suction caisson failure mechanisms will be explained again from the perspective of deep
learning. This way of argumentation forms a closed loop clarifying, to some extent,
that deep neural networks can not only work as a black box to provide an accurate
prediction of foundation response. But AI also has the potential to identify or reveal
the intrinsic mechanism in the geotechnical field.

1.4 Thesis outline

The entire article is organized as shown below.

Chapter 1 concentrates on the research background, the methodology and objectives of the
study.

Chapter 2 presents a comprehensive literature review related to the existing studies on the
3D combined response of suction caisson foundation and their limitations. Following the
discussion on the suction caisson, this chapter provides a comprehensive description of the
deep learning technique evolution and the AI technique applied in geotechnical engineering.

Chapter 3 explains how the database for this study was created. The FE simulations were
performed first to provide the training data for the deep learning algorithm. The data set
was generated by 3D FE modelling using Abaqus in both homogeneous and heterogeneous
clay. The data validation was verified from the perspective of the ultimate bearing capac-
ity and internal mechanisms. The FE simulation cases covered the foundations of a wide
range of load combinations and embedded ratios in both homogeneous and heterogeneous soil.

Chapter 4 is the core of the research. Section 4.1 describes how the deep learning algorithm
was combined to make predictions about the 3D mechanical response of foundation. Section
4.2 provides an overview of the deep learning models used for predictions. In Section 4.3, the
3D response force predictions at a given displacement were achieved by fitting a non-linear
relationship between force and displacement. Section 4.4 explained how the unknown
mechanical response of the foundation could be predicted from limited data. Moreover, the
performance of the different models, such as prediction accuracy, computational efficiency
and model robustness, was compared as well.

11



Chapter 5 further analyses the models prediction error and generalisation ability in different
embedment depths. Several attempts have been made (i.e. model splitting, data augmenta-
tion and model complexity adjustment) to improve the generalisation of the model according
to the regularisation theory. Finally, the generalisation ability of the improved model is
tested by fast prediction of the failure envelope experiment.
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Literature review 2
As highlighted in the preceding section, supporting substructures of offshore wind turbines
are subjected to complex loads. It is therefore critical to understand the load-deflection
response of a suction caisson foundation and develop an accurate and efficient design model
for foundation design. The suction caisson foundations have been used in oil and gas as
foundation or anchors since the last century. Extensive studies were conducted to understand
its behaviour. In this section, a thorough review is provided on the existing studies about
the suction caisson foundations, including the elastic model, bearing capacity envelope,
macro-element model, FEM method and the new trend of deep learning surrogated model.
The pros and cons of each theory/model have been discussed when being used in offshore
wind turbine foundation design.

2.1 Geotechnical methods in foundation design

2.1.1 The elastic design theory of suction caisson

The most simple and classic design method for the suction caisson foundation is the elastic
model which is based on a set of governing equations for the determination of elastic stress
changes within a half-space due to a surface point load (Randolph and Gourvenec, 2017).
The elastic response of a caisson, treated as a rigid cylindrical foundation, can be represented
by the following matrix equation: V/GGD

2

H/GGD
2

M/G0D
3

 =

 KV 0 0
0 KH KC

0 KC KM

 W/D
u/D
θ

 (2.1)

Where:

V,H,M. = vertical, horizontal and moment loading,
G0 = small-strain shear modulus,
D = caisson outer diameter,
KV ,KH ,KM ,KC = vertical, horizontal, moment and coupling stiffness coefficients, respectively.
w, u, θ = vertical, horizontal and rotational deformation, respectively

Although the elastic model is simple, it should be noted that the model does not reflect
the non-linear response of the soil. As is widely recognized (Atkinson, 2000), the soil only
exhibits linear elastic response at very small strains (less than 10−5). Figure 2.1 shows the
typical degradation of the soil modulus with shear strain and the most related strain range
for a foundation (Atkinson, 2000). It can be seen there is a huge degradation of the stiffness
from the elastic range to the strain level of a typical foundation, which means that using the
elastic model will highly overestimate the foundation stiffness and also cannot capture the
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nonlinearity of foundation stiffness (Houlsby, 2016).

Figure 2.1: Characteristic stiffness-strain behaviour of soil with typical strain ranges for
laboratory tests and structures(Atkinson, 2000).

2.1.2 The bearing capacity of suction caisson

Besides the studies on the elastic mode, a number of studies were performed to study the
ultimate bearing capacity of the suction caisson foundation under combined loading. To
capture the foundation capacity under complex vertical (V), horizontal (H) and moment (M)
loads, the failure envelope approach is usually adopted, as shown in Figure 2.2. The failure
envelope is a hypersurface that defines the multi-dimensional combination of bearing capacity
loads (Suryasentana et al., 2020). The failure envelope approach was first introduced by
Roscoe (1956) and has been widely adopted to describe the combined foundation bearing
capacity, for a broad range of foundation types, such as mudmat (Feng et al., 2014), rigid
pile (Graine et al., 2021), suction caisson (Gerolymos et al., 2015) and shallow foundation
(Gourvenec, 2007).

Many studies have been conducted to establish the failure envelope of the suction caisson
foundation (Bransby and Randolph, 1998; Bransby and Yun, 2009; Gourvenec and Barnett,
2011; Hung and Kim, 2014; Karapiperis and Gerolymos, 2014; Gerolymos et al., 2015; Vulpe,
2015; Mehravar et al., 2016). Numerous approximating expressions have been proposed to
predict HVM failure envelopes, listed in Table 2.1 below. Taking Hung and Kim (2014)’s
equation as an example in Figure 2.3, the computed and fitting outcomes are quite similar.
It indicates that these expressions are efficient in obtaining the failure envelope with high
accuracy. However, they only focused on the ultimate bearing capacity and due to the lim-
itation of the function itself, it’s impossible to capture the whole-range (from the initial to
ultimate) response of the foundation with this simple equation. Moreover, it should be noted
that the foundation deflection required to mobilize the bearing capacity is normally very large
and exceeds the service limit conditions of a foundation. This is extremely important to the
supporting foundations of offshore wind turbines. As explained in the preceding section, the
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Figure 2.2: Representation of failure envelopes in two- and three-dimensional load
space(Randolph and Gourvenec, 2017).

maximum allowed rotation of an offshore wind turbine is 0.25 degrees, which is significantly
away from the deflection required for mobilizing the bearing capacity. Therefore, although
the bearing capacity will be checked in the design of an offshore wind turbine foundation for
the ultimate limit state, the foundation design is more controlled by the service limit state,
i.e., the nonlinear stiffness at small deflection.

Figure 2.3: Comparison of VHM capacity envelopes between the proposed equation and FE
analyses(Hung and Kim, 2014).
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Table 2.1: Summary of published work on an approximating expression to predict HVM
failure envelopes

Reference Proposed Equation
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2.1.3 The macro-element model for suction caisson

To compensate for the deficiency of the elastic model and the failure envelope approach, the
macro-element model was proposed to model the nonlinear load-deflection response of a foun-
dation from the initial elastic state to the final ultimate capacity state. The macro-element is
originated from the plasticity theory by mimicking the foundation response as a soil element,
where the external loads (i.e.V,H,M) and foundation deflection (i.e.u, v, θ) are equivalent
to the stress and strain of soil, respectively. Same as a typical plasticity-based model, the
macro-element models can account for nonlinear soil behaviour in the integrated soil-structure
analyses. Many scholars have found that nonlinear analysis methods based on macro-element
can accurately simulate the elastic-plastic behaviour of structures by comparing them with
finite elements. The response computed by the macro-element agreed well with the response
computed in FEA and has the advantage of fewer degrees of freedom and less computational
effort than finite element software analysis. The macro-element concept has its roots back
to the pioneering work of Roscoe (1956), but the development of macro-elements dedicated
to integrated structural analysis accelerated in the 1990s. A typical macro-element model
consists of four parts:

- The elastic stiffness for foundation response at very small deflection

- The yield surface for separating the elastic and plastic response
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- The flow rule for determining the ratio between different deflection components

- The hardening law for determining the change of yield surface with plastic deflection

In the early years, the development focused on flat footings, but it became gradually more
application oriented focusing in particular on spudcan behaviour for jack-ups. Along with
the development of offshore wind over the last two decades, research has also focused
on modelling of suction caisson foundation response for OWT applications (Ibsen et al.,
2014; Villalobos Jara, 2006; Byrne, 2000; Pisanò et al., 2016; Skau et al., 2018; Yin et al.,
2020). These models have mostly built on formulations developed for surface foundations
and spud-cans, since the overall framework suits shallow foundation behaviour in general.
However, it should be noted the shape of the yield surface, the flow rule (i.e. associated or
non-associated) and the hardening law are strongly dependent on the geometric configuration
of the foundations and also the geotechnical properties of the seabed (e.g. the nonlinearity
of soil, the profile of undrained shear strength of clay, etc.). This shows the complexity of
defining a complete macro model and the difficulty of changing the framework once it is
defined (OWA, 2019). Up to date, most existing macro-element models are limited to a
certain foundation configuration (e.g. the aspect ratio) in homogeneous soil.

2.1.4 The finite element modelling for suction caisson

The finite element (FE) modelling is another approach to understand the foundation response
under complex loading. Benefiting from the advance on soil constitutive model and the
computer computation power, it becomes more common to directly model the foundation
and soil as continuum bodies in finite element model. The FE model is more flexible than
the macro element and is a good predictor of the deflection of the foundation. However,
finite element analysis requires experts with extensive engineering knowledge to design each
model. Meanwhile, in an offshore wind project, the design of the foundation for a wind
turbine usually requires thousands of integrated dynamic simulations under different load
combinations. It is impossible to use advanced finite element modelling in all the simulations.
It is, therefore, necessary to develop a model that inherits the accuracy and flexibility of the
model but is simpler and more efficient.

2.2 Application of deep learning in foundation design

Continued from Section 1.1.4, machine learning (ML) is more focused on the ”learning”
aspect than AI and algorithm is developed based on the human learning process. Machine
learning technique involves comparing the actual output of the ML algorithm with the desired
output and calculating the error. Based on this error, the optimiser adjusts the parameters
of model until a certain criterion is met and then stops adjusting. This process is known as
’learning’ and ’training’. Without any previous assumptions, machine learning algorithms
are capable of capturing the possible connections between information. However, Machine
learning technique requires careful human selection of data features before training(Reimers
and Requena-Mesa, 2020). While a specific kind of machine learning, known as deep neural
learning, requires more data and achieves greater fitting power and flexibility. In deep
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learning, features are selected purely based on their usefulness for regression or classification
steps, rather than their interpretability. This means that the deep learning technique
does not focus on the physical meaning behind the parameters, but only on whether the
combination of parameters will improve the prediction accuracy. As a result, this algorithm
ends up producing complex features that are difficult to interpret. The deep learning becomes
a black box in which the principles of feature extraction are difficult to explain.

The diversity, complexity, and engineering uncertainty of geology requires the engineers to
address the complex features of the data. Many mathematical models fail to simulate the
complex behaviour of most geotechnical engineering problems. In contrast, deep learning
is based on the data alone in which the model can be trained on input-output data pairs
to determine the structure and parameters of the model. In this case, there is no need to
simplify the problem nor incorporate any assumptions (Shahin et al., 2001). The automated
feature selection and good scalability of deep learning algorithms are therefore useful and
make them a promising choice for analyzing geotechical engineering problems(Reimers
and Requena-Mesa, 2020). Up to now, deep learning algorithms have been successfully
applied to soil-structure interaction of geotechnical engineering with typical and novel neural
networks (Cheng and Vanapalli, 2021; Zhang et al., 2020a; Nejad and Jaksa, 2017; Shahin,
2014; Momeni et al., 2014; Kuo et al., 2009; Padmini et al., 2008). These papers have
demonstrated the promising potential of deep learning in geotechnical engineering, which
is more accurate and efficient than traditional theoretical and modelling calculations. In
particular, Zhang et al. (2020b) employed Long Short-Term Memory (LSTM) model to
identify the mechanical response of caisson foundations in sand. The model was applied
to predict the mechanical response of soil-structure interaction and the failure envelope
of unknown caisson foundations under different specification tests. The results show that
the LSTM-based model is more flexible than the macro element method, allowing the
failure mechanism of caisson foundations to be understood directly from the raw data while
providing higher computational efficiency and accuracy compared to physical and numerical
simulations. However, this study is limited to the 2D problem (H-M) and does not consider
the 3D response of the foundation, ignoring the influence of vertical load. And there is
still potential for improvement in the model’s applicability since it only considers single soil
properties.

2.3 Summary

In this light, this study aims to develop an efficient surrogate model by combining the deep
learning and finite element modelling. The advanced finite element modelling will be used
to generate high-quality training data for deep learning. Once the model is trained properly,
we can simply input some basic parameters such as the configuration of the foundation
and the soil profile to obtain the response of the foundation directly. This method avoids
the complicated and time-consuming process of finite element modelling but maintains the
prediction accuracy of the 3D mechanical response.
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Finite element model of
suction caisson in clay 3
3.1 Introduction

Besides the many approximate expressions proposed for the failure envelope in Chapter 2,
extensive studies have been carried out on the bearing capacity of the suction caisson founda-
tion (in Table 3.1. It was found that the size and shape of the failure envelope are controlled
by a wide range of factors(e.g. soil profile, drain condition).

Table 3.1: Summary of factors influencing the failure envelope

Influence factors Reference

Embedment depth

Fu et al. (2017)
Gerolymos et al. (2015)
Gourvenec and Barnett (2011)
Gourvenec (2008)
Bransby and Randolph (1999)

Foundation geometry Bransby and Yun (2009)

Shear strength profile

Fu et al. (2017)
Vulpe et al. (2014)
Gourvenec and Barnett (2011)
Gourvenec and Randolph (2003)

Undrained and drained conditions Gourvenec and Cassidy (2005)

Deformable and non-deformable soil plug Vulpe (2015)

Limited interface shear Gerolymos et al. (2015)

Tension strength Taiebat and Carter (2000)

However, failure envelopes only represent the ultimate bearing capacity and the ultimate
state of the foundation, which is less relevant to the foundation design of offshore wind
turbines. Therefore, this research is still centered on the foundation’s 3D response predictions
under various load combinations, embedment depths and undrained shear strength. Failure
envelopes are only used to assist in proving the validation of the simulated data. And this
chapter presents a detailed description of the development of FE model, data validation in
terms of bearing capacity and failure envelope, and the analysis of the failure mechanism
of the foundations. Finally, the 192,000 sets of data incorporating homogeneous and
heterogeneous soils were supplied as a database for deep learning algorithms.
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3.2 Finite Element Modelling

Figure 3.1: A typical FE model mesh of caisson with diameter of 10 m and aspect ratio of 1

In this project, the influence of foundation geometric configurations and the soil properties
on the shape and size of the envelope will be systematically studied using the perfect
elasto-plastic model with the Tresca yield criteria. Commercial finite element software
Abaqus 6.14 was adopted to simulate the suction caisson foundation in clay seabed under
combined loads (Manual, 2020). The aim of the simulation is to find the H-V-M response
for foundations with different embedment ratios for two different soil conditions, i.e.
over-consolidation clay with constant strength profile, and normally consolidated with linear
shear strength profile. In this study, the installation process of the skirted foundations was
not modelled; rather, the foundations were assumed to be ”wished-in-place”. Therefore,
the modelling process in this case only focuses on the response of the foundation under loading.

Caissons are thin-walled large-diameter steel cylinders, open-ended at the bottom and
closed at the top, typically less than 20m in foundation diameter (D) with an aspect
ratio (L/D, L is the foundation embedment depth) typically less than 1 and thick-
ness ratio (D/t) ranging between 80-300 (Gourvenec and Cassidy, 2005). Therefore, a
typical suction caisson is modelling in Figure 3.3 with L = 10m. The model suction
caisson has a diameter of 10 m, with embedment depth to foundation diameter ratios of
L/D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] under different foundation geometry. And
the skirt thickness to foundation diameter ratio (t/D = 0.01) for all embedment ratios were
considered. The suction caisson was represented as rigid bodies with a single load reference
point (RP) located at mudline level along the centerline of the foundation. Meanwhile,
in order to save computational resources and computational time, only a half model is
built considering the symmetry of the problem. The detailed boundary conditions are
shown in Figure 3.2. The mesh boundary of the model extends five times the founda-
tion diameter vertically and fifteen times the foundation diameter horizontally from the
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centerline of the foundation to eliminate the boundary effects. The roller boundaries are ap-
plied around the mesh circumference and the base of the mesh was fixed in all three directions.

The skirted circular foundation was modelled as a rigid body and the soil foundation interface
was deemed fully bonded to the foundation to simplify the problem. In this paper, the clay is
simulated using three-dimensional eight-node hexahedral cells with hybrid, constant pressure
(C3D8H). It is advised to represent the behaviour of almost incompressible materials using
hybrid components which is appropriate for undrained soil conditions (Gourvenec, 2008). A
fine mesh domain was constructed around the foundation skirts and a coarser mesh domain
was established at the far field border, allowing the situation be correctly modeled with a
significant reduction in computing expenditure. The overall soil domain consisted of 40000
(50*40*20) elements. The mechanical properties in FE modelling are shown in the Table 3.2
below:

Figure 3.2: Boundary conditions of the FE model

Table 3.2: Mechanical properties in FE modelling

Suction caisson Outer diameter (D) 10 m
Length (L) 1− 10 m

Clay Angle of internal friction (ϕ′) 0.01◦

Angle of dilation (ψ) 0.01◦

Shear modulus to undrained
shear strength ratio (G/su) 500
Poisson’s ratio (νs) 0.495
Shear strength (su) 10kPa

Steel Young’s modulus (Es) 210 ∗ 106kPa
Poisson’s ratio (νs) 0.25

Sign convention and nomenclature
As recommended by Butterf̂ıeld et al. (1997), the sign system for displacements and loads
described in this study uses right-handed axes and clockwise positive signs. The marked

21



loads and capacities represent the resistance contribution from both the foundation’s base
and skirts. The sign convention for loads and displacements are illustrated in detail in Figure
3.4.

Figure 3.3: Example of skirted foundation geometry and loading

Figure 3.4: Sign convention for loads and displacements

3.3 Loading strategy

There are a range of loading methods such as the Load probe test, displacement probe test,
side swipe and sequential swipe test according to the exist researches. The failure envelope
of the foundation obtained by different methods are compared in Figure 3.5.

In the figure, the simple sweep method significantly underestimate the failure envelope.
And there are no significant differences among the other methods. The sequential swipe
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Figure 3.5: Dimensionless VH failure envelopes of caisson foundation(Suryasentana et al.,
2020)

test shows better performance than the widely used displacement probe test in terms of
accuracy and efficiency. But the sequential swipe method obtain the ultimate state of the
foundation instead of the whole loading path. It is not conducive to analysing the behaviour
of the foundation. And load probe test cannot guarantee the fast converge of model every
time. Therefore, the displacement probe test was chosen as the determining method for
the failure envelope(Bransby and Randolph, 1998; Suryasentana et al., 2020). Meanwhile,
the combined response of suction caisson (in Figure 3.6) can also be obtained by means
of displacement-controlled probe test, which is more accurate and controllable compared
to force-controlled probe test. This sort of probing experiment employs displacement as
the independent variable (input parameter) and response force as the dependent variable
(output parameter). The purpose of using deep learning method in Chapter 4 is to mimic
this one-to-one relationship between force and displacement and to identify the mechanisms
involved. The foundation’s complete behavior under load will be represented by a loading
path generated during a probe test. In contrast to conventional two-dimensional probe test,
this model concurrently probes horizontal displacement, vertical displacement, and rotation,
enabling them to represent a variety of displacement combinations. Therefore, a spherical
co-ordinate system is used to establish the displacement combinations in three dimensions,
which provides a better representation of the ellipsoidal surface compared to the traditional
Cartesian coordinate system. After determining the radius, each point on the sphere will
be indicated with only two parameters θ and ϕ. θ is the positive angle to the x-axis when
rotating counterclockwise and ϕ is the positive angle to the z-axis when rotating clockwise.
For a better understanding, consider θ to be the earth’s longitude and ϕ to be the earth’s
latitude (as shown in Figure 3.7). After weighing the computational time against the size
of the data set, 96 probe test directions for each depth of embedment were established.
This means that θ take 15◦, 45◦, 75◦, 105◦, 135◦, 165◦, 195◦, 225◦, 255◦, 285◦, 315◦, 345◦

respectively (30 degree increments for a total of 12 angles). ϕ takes 15◦, 30◦, 60◦, 75◦, 80◦,
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85◦, 88◦, 90◦ respectively (a total of 8 angles). θ and ϕ should be equally spaced to cover
the entire computation range. However, when spherical coordinate system is converted to
Cartesian coordinate system, the z (ρ ∗ cosϕ) values are distributed unevenly. To better
capture the failure pattern at smaller vertical displacements, ϕ distribution will shift from
sparse to dense after 80◦.

Figure 3.6: The typical shape of failure envelope under combined loads

Figure 3.7: Spherical coordinate system

Determination of ultimate displacement
As the ultimate bearing capacity of H, V, M is different, the displacements required to
mobilize the ultimate bearing capacity are also different. It is necessary to first study the
required ultimate displacements for the H, V, M bearing capacity, separately, which will
be used as reference values for the inputs of probe test simulations. In the case of the H
(horizontal force) under L/D = 1 burial depth, just the horizontal displacement is set, while
the displacements in the other two directions are equal to 0.
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(a) Horizontal bearing capacity under horizontal displacement

(b) Moment bearing capacity under counterclockwise rotation

(c) Vertical bearing capacity under vertical displacement

Figure 3.8: The ultimate bearing capacity of 10m buried caisson

In Figure 3.8(a), the entire loading process is represented by a displacement-force curve. By
presenting horizontal displacements in semi-log space, it is evident that the bearing capacity
of the foundation is fully activated at 0.1 m. To guarantee that the horizontal ultimate
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bearing capacity of the foundation will be mobilized at varying burial depths, the horizontal
displacement limit has been set to 0.2 m. Similar to the horizontal displacement-force
curve, the rotation-moment curve for θ-M (shown in Figure 3.8(b)) demonstrates that the
moment will not increase after 0.01◦. Therefore, the ultimate rotation is set to be 0.02◦

to guarantee that the moment capacity will be completely mobilized in the subsequent
numerical simulation. The third v-V curve(shown in the Figure 3.8(c)) demonstrates a steady
increase across the range of the setup and a drop in the growth rate at 0.02 m. Therefore,
in all the simulations of this study, the ultimate value for vertical displacement will be set
to 1 m. The three ultimate bearing capacities of the caisson with an embedded ratio of 1
and in homogeneous clay with su of 10 kPa and the meanings of the force and displacement
symbols are shown in Table 3.3.

Table 3.3: Summary of notation for loads and displacements

Vertical Horizontal Rotational

Load V H M
Ultimate load Vult = 5500kN Hult = 2300kN Mult = 14500kN ∗m
Dimensionless load V/Asu0 H/Asu0 M/ADsu0
Bearing capacity factor NcV = Vult/Asu NcH = Hult/Asu NcM =Mult/ADsu
Displacement v u θ

Note: where A = πD2/4, su0 is undrained shear strength at mudline level.

To simplify the calculations, the set ultimate displacements in all directions and all embedded
depths are consistent with the ultimate displacement for L/D = 1 which has been mentioned
before. Figure 3.9 displays the ultimate 3D displacements under 96 directions, with the
arrow indicating the loading direction of the suction caisson. These 96 directions are
plotted as a hemispheric envelope. Because in this project only the compressive bearing
capacity of the shallow foundation will be evaluated, not its pull-out resistance. There-
fore, simulations indicating the pull-out resistance (negative direction of v) are not considered.

Figure 3.9: Ultimate displacement values in 96 directions (created by 8 latitudes and 12
longitudes combination)
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3.4 Suction caisson response in homogeneous soil

In the simulation, the embedment ratio was considered instead of specific combinations
of D (foundation diameter) and L (embedment depth) to accommodate as many feasible
embedment depths combinations as possible while ignoring the impact of the foundation’s
dimensions. The embedment ratios are split into 10 equal parts from 0 to 1, while embedment
ratios larger than 1 and no-skirt foundations (embedment ratio = 0) are not taken into
consideration. The loading paths in each direction are represented by 100 data points
under 96 loading directions for each embedment ratios. And each loading path experiences
a significant shift after touching the failure envelope. A total of 96,000 (10*96*100) deep
learning data points were generated and dimensionlessly processed, shown in the Figure 3.10
below and in Appendix A.0. Data points at different embedment ratio are distinguished by
different colours. The response force is continuously mobilised with increasing displacement
in each direction. The bearing capacity will be fully mobilised when the loading path touches
the failure envelope.

Figure 3.10: All data points in ten embedded depths

3.4.1 Bearing capacity

Figure 3.11 shows the variation of three bearing capacity factor NcV ,NcH ,NcM (The exact
formula is shown in the Table 3.3) as a function of embedment ratio L/D. Predicted bearing
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(a) Ultimate horizontal capacity as a function of embedment ratio

(b) Ultimate moment capacity as a function of embedment ratio

(c) Vertical bearing capacity as a function of embedment ratio

Figure 3.11: Ultimate bearing capacity as a function of embedment ratio
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capacities in this study are compared with ultimate bearing capacity from analytical and
numerical solutions supported by Vulpe (2015) and Fu et al. (2017).

As observed in Figure 3.11, the pattern of the variation in bearing capacity with embedment
ratio produced from this simulation is consistent with the estimates of Vulpe (2015) and
Fu et al. (2017). In homogeneous soil, the variances with vulpe’s published numerical
values for vertical, horizontal, and moment bearing capacities are within 0.6%, 15%, and
8%, respectively. And it is in good agreement with Fu’s data, for vertical, horizontal, and
moment capacities are within 1.3%, 4.4%, and 6%, respectively. The variance in bearing
capacity is mostly attributable to the different positions chosen for the reference points
during the modelling. Different reference points result in distinct failure mechanisms, which
are primarily responsible for disparities in H and M. However, these slight differences is
acceptable, demonstrating the model’s validation.

3.4.2 Effect of embedment on failure mechanisms

Once the bearing capacity is determined, the size of the failure envelope is determined.
Based on the ultimate data points at each burial depth, ten initial ellipsoidal envelope were
sketched. The envelope is depicted using 96 data points in 96 directions extracted from 9600
data at each embedment ratio. All 96 data points lie on the envelope and can represent
the ultimate state of the loading paths. Origin 2018 was used to plot the H-V-M envelope.
The red points on the graph reflect the calculation points, whereas the grey surface with
blue mesh represents the fitted envelope (plotted in Figure 3.11). All fitted surfaces are not
ideal ellipsoids and have a few folds in the middle. Theoretically all envelopes should be
convex. The concave surface appearing in the figure is the fitting error caused by the uneven
distribution of points. But it is still approximated as an ellipsoidal surface. In all 10 figures,
the same viewpoint is used. On successive views the failure envelope is seen to be ’rotating’.
These trends will be analysed by splitting the H-V-M envelope into three 2-dimensional
envelope (H-M, H-V, M-V) respectively. This is shown in Figure 3.12 below.

By modelling the response of the foundation at ϕ = 90◦ (which means V=0) for different
embedment depths, the interrelationship between dimensionless H and M is shown in Figure
3.13. Each envelope represents result in an embedding depth and has twelve red hollow
points representing twelve loading directions. The H-M envelope is asymmetrically elliptical
at all embedment depths. It is eccentric to the negative side of the horizontal axis when
H/Asu > 0 and eccentric to the positive side of the horizontal axis when H/Asu < 0. It
has the opposite direction of eccentricity compared with the H-M failure envelope, in which
the reference point is set at the tip level (Bransby and Yun, 2009). And when the reference
point is set at skirt tip level, the effect of embedment depths is less significant for the shape
of H-M envelope. These two reference point configurations have minimal impact on V and
H. However, when the H applied at the tip level is equivalently translated to the mudline,
a counterclockwise additional overturning moment is generated. The maximum moment
is generated from rotation and horizontal forces on the reference point. The additional
overturning moment balances the clockwise moment applied at the reference point. This
results in the Mmax (maximum moment bearing capacity) requiring the interaction of
negative horizontal loads and Hmax (maximum horizontal bearing capacity) also requiring
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(a) Failure envelopes at L = 1m (b) Failure envelopes at L = 2m

(c) Failure envelopes at L = 3m (d) Failure envelopes at L = 4m

(e) Failure envelopes at L = 5m (f) Failure envelopes at L = 6m
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(i) Failure envelopes at L = 7m (j) Failure envelopes at L = 8m

(k) Failure envelopes at L = 9m (l) Failure envelopes at L = 10m

Figure 3.11: 3D failure envelopes at L = 1− 10m calculated using FE analysis

the interaction of counterclockwise moments. Meanwhile, the additional overturning moment
produced by H steadily grows as the depth of burial increases, resulting that the max
moment develop more quickly than the max horizontal force. This interrelationship explains
the gradual ’rotation’ of the fitted surface as the depth of embedment changes in Figure 3.11.
The failure envelope enlarges with increasing embedding depth. This phenomenon indicates
that both the bearing capacity and the shape of the failure envelope are highly dependent
on the embedment ratio. This is congruent with the results from Gourvenec (2008) and
Bransby and Randolph (1999).

When comparing with the H-M Failure envelope (Figure 3.14) at L/D = 0.1 and 1, it
is evident that the eccentricities of the two envelopes point in opposite directions. This
difference is attributed to a change in the failure mechanism. When the embedded depth is
altered, directions θ = 75◦ and θ = 255◦ experience a shift between positive and negative in
horizontal force. The loading in θ = 75◦ and θ = 255◦ is rotationally symmetrical. Therefore,
the vector diagrams for θ = 75◦ direction was selected for analysis.
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Figure 3.12: 3D failure envelopes at L = 1 − 10m calculated using FE analysis with slice
(H-M slice in red, H-V slice in green and M-V slice in blue)

The vector diagram for L/D = 0.1 (Figure 3.15(a)) shows that the failure mechanism can be
regarded as a scoop-slide mechanism (shown in Figure 3.16), with the failure concentrated
in the sheared wedge at mudline. And a primary scoop mechanism can be identified for the
L/D = 1 foundation, with no wedge generate at the mudline in Figure 3.15(b). The tip of
the skirt is particularly vulnerable to shear force and the effect of scoop mechanism expands.
The rotational center is considerably lower than the position of the reference point. This
indicates that the rotational center of the scoop mechanism also shifts downwards as the
depth of skirt increases. Therefore, the horizontal forces around the foundation at mudline
under the two embedded depths are in opposite directions, resulting in positive and negative
alternated horizontal forces in θ = 75◦ and θ = 255◦ directions.

When comparing with the Bransby and Yun (2009)’s study, an interesting phenomenon
can be observed. The vector diagram for L/D = 1 in this experiment is similar to the
vector diagram for the solid foundation of L/D = 1 in Bransby’s experiment, where the
scoop failure mechanism is prevalent and the internal processes of the skirt are not readily
apparent. And the vector diagram for L/D = 0.1 is similar to the vector diagram for
the solid foundation of L/D = 0.1 in Bransby’s experiment. Both of them consist of the
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Figure 3.13: Comparison of failure envelopes of skirted circular foundations in different em-
bedment predicted by FE analyses (H-M)

scoop-slide mechanism without the internal Hansen’s failure mechanism. This phenomenon
indicates that the setting of reference point at the mudline leads soil within the skirt to move
in tandem with the caisson and skirt’s unique internal failure mechanisms are not clearly
evident. The suction caisson can be considered as a solid foundation under this assumption.

In Figure 3.17 and Figure 3.18, According to the formula for vertical force (V = ρ ∗ cosϕ)
ϕ reflects the value of V with an inverse correlation. When ϕ = 90◦, it means that V = 0,
and the H-M relationship will be illustrated. When ϕ = 0◦, the envelope’s maximum
vertical bearing capacity will be demonstrated. Furthermore, by increasing embedment
ratios the failure envelopes expand, which confirms the effect of the embedment depth on
increasing the load bearing capacity again. In Figure 3.17, the H-V envelope increases
linearly with increasing embedment depth. While in the M-V envelope (in Figure 3.18),
an accelerated increasing trend of the ultimate vertical bearing capacity was observed
with the increasing embedment ratio in every direction. However, the patterns indicate
that such an increase is less pronounced for L/D ≥ 0.7, which is caused by the change
in the failure mechanism, consistent with Mehravar et al. (2016) conclusion. It is also
apparent that the shape of the H-M envelope is almost independent of V when com-
bine Figure 3.17 and Figure 3.18. While envelope size becomes progressively larger as V
decreases, eventually forming an ellipsoid. This pattern is effectively depicted in Figure. 3.11.
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(a) Failure envelope (H-M) at L/D = 0.1

(b) Failure envelope (H-M) at L/D = 1

Figure 3.14: Failure envelope (H-M) at L/D = 0.1 and 1 using probe tests from FE analyses
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(a)

(b)

Figure 3.15: Vector diagram of θ = 75◦ and ϕ = 90◦ (a) L/D = 0.1,(b) L/D = 1

Figure 3.16: Scoop-slide failure mechanism

3.4.3 Effect of load combinations on failure mechanisms

The change in the failure mechanism is not only connected to the depth of embedment, but
also to the direction of loading. By comparing the failure mechanism of foundation in this
project with the conclusions of the references, the validation of the data can also be demon-
strated. The affect of loading direction will be demonstrated in this part by three separate
perspectives (H-M, H-V, M-V). The following vector diagrams are all plotted under L/D = 1.

Figure 3.19 depicts the vector diagram of the H-M envelope for each load combination,
with the failure mechanism changing as the direction varies. After generalisation, the
failure mechanism will be decomposed into two halves (up-scoop and down-scoop). The
up-scoop is formed by the clockwise rotation generated by the positive moment, and the
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Figure 3.17: Comparison of failure envelopes of skirted circular foundations in different em-
bedment predicted by FE analyses (H-V)

Figure 3.18: Comparison of failure envelopes of skirted circular foundations in different em-
bedment predicted by FE analyses (M-V)
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Figure 3.19: Effect of of load combinations on failure mechanisms under H-M loading (ϕ = 90◦;
L/D = 1)

down-scoop is formed by the counterclockwise rotation generated by the negative horizontal
force. These two scoops are in opposition to one another, but the up-scoop produces a
much larger rotation than the down-scoop (shown in Figure 3.20). Hmax occurs at θ = 165◦

when the vector is completely toward left and sliding is dominant, as seen in Figure 3.19.
The process of foundation failure is dominated by shear failure at the base of the caisson,
without soil sheared within the skirts. θ = 165◦ is also an equilibrium point, where the
maximum displacement is concentrated in the middle of the burial depth. As θ increases,
the maximum displacement rises to the mudline and the maximum displacement falls to the
tips when θ decreases. Meanwhile, Mmax lies between θ = 105◦ and 75◦, at this point the
double scoop gradually degrades to one single scoop. The counterclockwise rotation of H
is balanced by the predominant clockwise rotation of M, which can be ignored. The vector
diagram at M (Figure 3.21(a)) illustrates that the centre of rotation drops to the minimum
position (around L/2). When θ is larger than 165◦, the foundation tilts to the left and the
down-scoop begins to dominate the failure mechanism, constantly balancing the positive
clockwise rotation generated by M. At θ = 225◦, the center of rotation of the down-scoop
climb up as the value of θ increases. The centre of rotation rises to the tips in Figure 3.21(b),
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showing the opposite ”vortex” to the Figure 3.21(a).

Figure 3.20: Double scoop failure mechanism

(a) Vector contour at Mult

(b) Vector contour at Hult

Figure 3.21: Vector contour in ultimate state

Figure 3.22 depicts the soil deformation mechanisms at several positions along the envelope,
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demonstrating that there are distinctly different mechanisms at different directions. At
ϕ = 30◦, a double wedge mechanism is visible, with a small horizontal force to the right
that does not conceal the fact that the soil is being pushed out in two Planter-type wedges.
As ϕ grows, the value of V decreases and the value of H increases. In addition, the failure
mechanism shifts progressively from piercing failure to slide failure. The symmetrical nature
of the vector diagram transforms into an asymmetrical one. When ϕ = 88◦, the vector points
downhill to the right as a result of the dominating horizontal force and the residual vertical
force.

Figure 3.22: Effect of of load combinations on failure mechanisms under H-V loading (θ = 15◦

and 195◦; L/D = 1)

When ϕ = 30◦, a basic symmetrical double-wedge mechanism occurred with small rotation,
showing a similar pattern in Figure 3.23. The scoop-type mechanism dominated when
ϕ = 88◦. Due to the existence of positive vertical load at this location, the centre of rotation
of the scoop is slightly eccentric. Whereas in other load combinations, a combined scoop and
slide mechanism predominated at intermediate positions.
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Figure 3.23: Effect of of load combinations on failure mechanisms under M-V loading (θ = 75◦

and 255◦; L/D = 1)

3.5 Suction caisson response in heterogenous soil

In heterogenous soil, the undrained shear strength of soil profile increased linearly with depth,
rather than the uniform strength of homogeneous soils. And the undrained shear strengths
are defined by the equation below:

su = sum + kz (3.1)

where sum is the shear strength at the mudline and k is the shear strength gradient with
depth z (Figure 3.24). The degree of soil strength heterogeneity can be expressed in terms of
a dimensionless index as:

κ =
kD

sum
(3.2)

Assume the shear strength gradient(k) to be 1 and the sum is equal to 0.01. This assures that
the shear strength of the heterogeneous soil at caisson tip is identical to in the homogeneous
soil. The soil strength heterogeneity index (κ) is calculated to be 1000. In the heterogeneous
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soil simulation, the mechanical properties are the same as those for homogeneous soils,
shown in Table 3.2 except soil shear strength. In the project, the deep learning algorithm
was designed to identify the soil shear strength change or not, rather than identify the
specific changes in soil strength. Therefore, the heterogeneous soil experiment data is used
as supplementary, 96 directions were calculated at the every depth of embedment, which
contains 12 θ values and 8 ϕ values (same as the experimental setup in the homogeneous soil).

Figure 3.24: Soil shear strength profile

The following figures compare homogeneous and heterogeneous soils from the prospective of
H-M plane(Figure 3.25), H-V plane (Figure 3.26) and the M-V plane (Figure 3.27) respec-
tively. Homogeneous and heterogeneous soil plots show the same size change trend that the
size grows when the embedment ratio increase. Furthermore, all envelopes demonstrate the
influence of embedment depths and load combinations on the shape and size of the envelopes.
In the H-V envelope, the size increases linearly with increasing embedment depth in both soil
profiles. Bearing capacity in a specific ϕ in homogeneous soil increases with the embedment
ratio, while an opposite trend shows in heterogeneous soil. This inverse phenomenon can
also be observed in the M-V envelope. This phenomenon is attributed to the constantly
changing heterogeneous soil shear strength at the foundation tip. As the depth increases,
the moment bearing capacity increases exponentially in the M-V envelope. However, the
shear strength of the heterogeneous soil is less than that of the homogeneous soil at all
embedment depth, except at embedment depth L/D = 1, where the shear strength of both
is the same. The variation in shear strength affects the horizontal and moment bearing
capacity more significantly than the vertical bearing capacity. When vertical displacement is
applied, the higher shear strength soil under the base of the caisson is mobilised. Therefore,
the size of the envelope of the heterogeneous soils is smaller than that in the homogeneous soils.

Moreover, it has been demonstrated that when the embedment depth decreases, heteroge-
neous soils exhibit the opposite eccentricity of the envelope as compared to homogeneous soils
(Bransby and Yun, 2009). However, this phenomenon was not observed in this simulation. A
reasonable explanation is the change in the failure mechanism originated from the difference
in reference points. Although the skirted foundation was modelled, the actual failure
mechanism is similar to that of the solid foundation. The internal double scoop mechanism
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reduce the foundation moment capacity significantly, as it involve shearing of shallower and
weaker soil beneath the top cap for the normally consolidated soil conditions. For the solid
foundation, internal Hansen mechanism and internal double scoop mechanisms are not admis-
sible, and so the foundation capacity is much greater. This results that the phenomenon of
negative eccentricity is not observed. This phenomenon further illustrates the insignificant ef-
fect of shear strength on the shape of the envelope when the reference point set at the mudline.

(a) Homogeneous soil (b) Heterogenous soil

Figure 3.25: Comparison of H-M failure envelopes of skirted circular foundations in soil
strength profile predicted by FE analyses

(a) Homogeneous soil (b) Heterogenous soil

Figure 3.26: Comparison of H-V failure envelopes of skirted circular foundations in soil
strength profile predicted by FE analyses
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(a) Homogeneous soil (b) Heterogenous soil

Figure 3.27: Comparison of M-V failure envelopes of skirted circular foundations in soil
strength profile predicted by FE analyses

3.6 Section conclusion

This chapter explained how finite elements were used to simulate the response of foundations
at various burial depths and load combinations in homogeneous and heterogeneous soils, re-
spectively. To better simulate the mechanical response of suction caissons under various soil
profiles and foundation configurations, 192,000 sets of computational data were established.
The validity of the modelling data was then confirmed by analysing the bearing capacity and
failure envelope and comparing them with existing researches. Additionally, the failure mech-
anisms of the foundations were further investigated. The transition of the failure mechanism
with burial depth and load combination was analysed. A novel ”double scoop” failure mech-
anism was presented when the reference point was set at the mudline. The 3D FE simulation
data in this chapter would be used to train and test the deep learning based design model in
Chapter 4.
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Deep learning-based loading
response prediction 4
4.1 Introduction

Training process
Considering its outstanding mapping ability, the deep learning is adopted in this study to
predict the three-dimensional (3D) nonlinear load response of the caisson. All the models
are implemented using Keras, a high-level deep learning toolkit based on Python. The entire
training process is illustrated in Figure 4.1 below. The displacement values of horizontal
displacement (u), vertical displacement (v) and rotation (θ), combined with the foundation
embedment ratio (L/D) are input features of the model. These input values are transformed
by randomly initialising the weight metrics (W ) and biases (b) through each layer of the
neural network to obtain the predicted values Ĥ, V̂ , M̂ . The H, V, M obtained through FE
simulations are used as labels for comparison with the predicted values. In each training,
error value is calculated by mean square error (MSE) loss function or mean absolute error
(MAE) loss function. The optimiser then revises the initialised weight metrics and biases
in each neuron of the model reversely based on the error value, until a certain criterion
is met and then stops adjusting. This process is referred to as ’training’. The updating
of parameters can also be regarded as the ’learning’ process of the neural network. The
trained network can predict the load response of the caisson directly after inputting the
new displacement and foundation configuration, thus skipping the cumbersome process of
FE simulations. The main hyperparameters to be adjusted during the training process are
marked as blue in Figure 4.1. The definition and selection of these hyperparameters will be
explained in detail in Section 4.3.2.

Training design
In finite element simulations, the 3D response of suction caisson is obtained by multiple
displacement probes from different directions. In deep learning, the unknown mechanical
response can be predicted from the displacements at each moment or the limited known
mechanical response in the past. The nonlinear regression predictions in this study are
focused on the relationship between force and displacement. The 3D displacements are
the input, and 3D forces are the prediction goal. In this approach, neural networks are
employed to reproduce the finite element calculation process. The loading paths under each
direction do not intersect before the ultimate state. It means that only one mechanical
response can be mobilized for every displacement combination. This one-to-one relationship
greatly facilitates the training of the neural network. However, this approach of training
only focuses on the relationship between displacements and forces at one moment, ignoring
the relationship between mechanical responses over different periods (past and future).
The mechanical response at each moment forms an entire loading path, which can also be
considered as a time series. The load response at the future moment heavily depends on
the load response in the past. Therefore, in this study, two different training strategies are
proposed: i) the load and deflection response at each moment is treated as an independent
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Figure 4.1: Constitutive modelling procedure using the LSTM deep-learning method (Hyper-
parameters are shown in blue)

point, i.e. one-to-one prediction; ii) the load and deflection response at different moments of
a fixed direction is treated as a time series and are dependent on each other, i.e. the temporal
prediction. Therefore, these two primary training approaches are utilized to comprehensively
study 3D response prediction for the suction caisson foundation in clay. A combination of
three displacements at a particular state of the foundation configuration is used to predict
the associated mechanical response at that moment (in Section 4.3). While the time series
forecast for the subsequent ninety data points is achieved based on the initial ten data points
along the loading path (in Section 4.4). The input and output of two primary training
approaches are shown in Figure 4.2.

4.2 Methodology

In this project, all the data simulated by Abaqus will be imported into the neural network
for training, and the neural network can transform the input data into a suitable internal
representation, which can be used for the regression research objective. This section describes
the neural networks and model structures that will be utilized in subsequent deep learning
applications. In a deep learning model, the two most important parts are the neurons and
the network structure.

Neurons
Biologists discovered the structure of biological neurons in the early 20th century. A biological
neuron usually has several dendrites and one axon. Dendrites are used to receive information
and axons are used to send messages. An artificial neuron, or Neuron, is the basic unit of a
neural network, which mimics the structure and properties of a biological neuron, receives a set
of input signals and produces an output. Figure 4.3 depicts a schematic of a single neuron (or

46



Figure 4.2: Two different training strategies to catch foundation response

node) with four inputs, initially introduced as a perceptron. These four inputs, corresponding
to the inputs in the point-to-point predictions in Section 4.3, should be multiplied by a weight
matrix wi respectively, and their aggregate is added to the bias b. Next, an activation function
f is applied to the net input value z and calculates the neuron’s output y. The neuron’s output
y will be sent to the next neuron, completing a loop. This process can also be expressed by
the following formula:

z =
n∑

i=1

wixi + b = w⊤x+ b (4.1)

y = f(z) (4.2)

with z is the net input value to the activation function f(·), xi is the input and main
component of z.

Network structure
A biological nerve cell has a relatively simple function, while an artificial neuron is just an
idealized and simple implementation of a biological nerve cell with an even simpler function.
A single neuron is insufficient to imitate the capabilities of the human brain; several neurons
must collaborate to conduct complicated operations. Neurons that collaborate in this
manner, through specific connections or information transfer, can be regarded as a network,
a neural network. Researchers have created great quantities of neural network architectures
to far. In the present study, the feed forward networks and memory networks are adopted
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Figure 4.3: Schematic of single neuron with inputs

(Bishop and Nasrabadi, 2006).

Feedforward networks
Neurons in a feedforward network are divided into distinct groups based on the sequence
in which it receives data. Each group can be regarded as a neural layer(Schmidhuber,
2015). The neurons in each layer receive the output of the neurons in the previous layer and
provide output to the neurons in the next layer. The whole network propagates information
in a single direction, and there is no reverse information propagation, as represented by
a directed, loop-free graph (Figure 4.4). Feedforward networks consist of, among others,
fully-connected feedforward networks (Section 4.2.1) and convolutional neural networks
(Section 4.2.2) (Nebauer, 1998). A feedforward network can be viewed as a function that
provides a sophisticated mapping from input space to output space by combining numerous
basic nonlinear functions. These networks have a straightforward design and are simple to
construct.

Memory networks(Recurrent networks)
In contrast, neurons in memory networks, also known as feedback networks, will receive
information not just from other neurons but also from their past. Unlike neurons in
feedforward networks, neurons in memory networks have a memory function which changes
at different moments (Mau et al., 2020). Therefore, a directed recurrent graph can represent
unidirectional or bidirectional information transmission in a memory network (Figure 4.9).
Recurrent neural networks are included in memory networks (Section 4.2.3). A memory
network is also regarded as a software with enhanced computational and memory capabilities
(Cheng et al., 2016).

4.2.1 Feedforward Neural Network(FNN)

Given a collection of neurons, it is possible to create a network using the neurons as
nodes. The topologies of network connections vary between neural network models. The
feedforward network has a relatively straightforward topology. Feedforward Neural Network
(FNN), also known as Multi-Layer Perceptron (MLP), was the first simple artificial neural
network to be developed. However, feedforward neural networks are composed of multiple
layers of logistic regression models (continuous non-linear functions) as opposed to multiple
layers of perceptrons. This terminology is being gradually replaced (Bishop and Nasrabadi,
2006). In this study, the neurons in two adjacent layers are fully interconnected, forming
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Figure 4.4: Multilayer feedforward neural network

a fully-connected (FC) neural network. The neurons in each layer can both receive signals
from the neurons in the preceding layer and send signals to the neurons in the following
layer. Layer 0 is referred to as the input layer, the final layer as the output layer, and the
intermediate layers as the hidden layers. As seen in Figure 4.4, there is no feedback in the
whole network; the signal propagates in a single path from the input layer to the output layer.

In accordance with the Universal Approximation Theorem (Haykin, 2009), a neural network
can be treated as a ”universal” function to some extent. Common continuous nonlinear
functions can be modeled by feedforward neural networks, which have a powerful capability
for fitting data. Theoretically, FC neural networks are ideal for the nonlinear regression
problem under investigation. Nonetheless, learning the parameters of a neural network is
more challenging than learning the parameters of a linear model, primarily due to the non-
convex optimisation problem and the gradient vanishing problem, as detailed in Section 4.3.2.

Figure 4.5: Schematic illustration of convolution and pooling processes in a CNN (Kunz et al.,
2020)
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4.2.2 Convolution Neural Network(CNN)

Convolutional Neural Network (CNN) is a deep feed-forward neural network with local
connectivity and weight sharing. Local connectivity decreases the excessive number of
parameters in FC neural networks, and weight sharing allows convolutional neural networks
to extract local invariant features. Therefore, the convolutional neural networks were first
used to process image information.

Each neuron in the convolutional layer (assumed to be layer l is connected only to a neuron
in a local window in the next layer (layer l − 1), forming a locally connected network. The
number of connections between each layer is also greatly reduced. While weight sharing
means that the weights are the same for each layer. A convolutional kernel captures only one
specific local feature of the input data. Therefore, to extract multiple features requires the
use of multiple different convolutional kernels. These properties speed up the computational
efficiency of the model and make convolutional neural networks invariant to a certain extent
in terms of translation, scaling and rotation. And compared to feedforward neural networks,
convolutional neural networks have fewer parameters. Current convolutional neural networks
are generally feedforward neural networks consisting of a cross-stack of convolutional, pooling
and fully connected layers (shown in Figure 4.5).

The role of the convolution layer is to extract features from a local region, with different
convolution kernels corresponding to different feature extractors. And the pooling layer
is responsible for feature selection, reducing the number of features, and consequently the
number of parameters. After the convolution layer, a pooling layer is added to minimize the
number of features and prevent overfitting. Currently, the use of pooling layers is typically
decreased by employing various strides and zero padding. This is because pooling layers
minimize the number of features and lose some data information.

Figure 4.6: Schematic illustration of convolution processes and data transfer by using Conv1d
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4.2.2.1 1 Dimension Convolution Neural Network(1D-CNN)

In time series prediction, the only types of data examined are time series data rather
than pictures. In light of this, 2D-CNNs are no longer appropriate, and 1D-CNNs are
believed to be the best option for predicting the data. Compared to 2D-CNNs, 1D-CNNs
are significantly more computationally efficient with the same complexity. And shallow
architecture 1D-CNNs can be trained and implemented more efficiently. Although the neural
network’s structure is similar to that of 2D-CNNs, the computational procedure has been
substantially simplified. A representation of the training flow of 1D-CNNs based on temporal
prediction for foundation behaviour is illustrated in Figure 4.6.

4.2.2.2 Temporal Convolutional Networks (TCN)

The TCN is a new network based on convolutional neural networks, specifically for the
prediction of time-series data. This network’s structure incorporates the most advanced
scripted algorithms and model structures available at the time. The characteristics are as
follows:

- Similar to an RNN, the architecture can transfer any length input sequence to an
output sequence of the same length. The TCN employs a 1D fully-convolutional
network (FCN) architecture (Long et al., 2015), in which each hidden layer has the
same length as the input layer and zero padding of length is added to guarantee
the subsequent layers have the same length as the previous layers. This feature is
represented in Figure 4.7(a) by the same sequence length at each layer.

- The architecture’s convolutions are causal, hence there is no information ”leakage”
from the future to the past. This signifies that the current prediction is based only on
data from the past and is consistent with reality. In Figure 4.7(a), the blue squares
indicate the present moment and the yellow squares represent the past moment. The
predictions in the blue squares depend entirely on the historical information in the
yellow squares.

- By applying dilation convolution (Oord et al., 2016), fewer convolution layers can be
configured to provide a broader field of vision, resulting in a longer-lasting memory. As
shown in the Figure 4.7(a), despite the size of the convolution kernel of 3, the referenced
historical input data have far exceeded the decision data of ordinary convolution.
Altering the dilation factor d also affects the quantity of information accessible for
decision making. A large dilation factor means that the information extracted by the
next layer of neurons refers to more previous layer neurons. The more information
is input into the next layer of neurons (i.e. the broader field of decision and feature
extraction).

- A number of dilation convolutions, activation functions and batch normalization layers
make up the residual block, which is shown in Figure 4.7(b). Residual blocks have
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a unique ’shortcut’ mechanism which gives shortcuts to the neural network, while
avoiding network degradation due to the complexity of the network (He et al., 2016).
Utilizing residual blocks enables deeper network architectures to circumvent issues such
as gradient vanishing.

(a) Visualization of a stack of dilated causal convolutional lay-
ers

(b) TCN residual block

Figure 4.7: Unique structure and algorithm of TCN (Bai et al., 2018)

The flow of TCN-based model training is shown in the Figure 4.8. A dilation convolution
with an activation function (ReLU) plus a shortcut from a one-dimensional convolution
form a residual block. The residual block, the flatten layer and the fully connected layer are
cross-stacked to form a feed-forward neural network. Firstly, input data are processed by
three layers of residual blocks. Then, the data are stretched by flattening and completely
connected layers. The training phase is finished after data is reshaped back to the initial
format.

Figure 4.8: Overall architecture of the TCN-based model
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4.2.3 Recurrent Neural Network(RNN)

In feed-forward neural networks, there is a unidirectional flow of information. While this
limitation makes the network easier to learn, it diminishes the neural network model’s
performance to some extent. Recurrent Neural Network (RNN) is a type of neural network
which has the capacity for short-term memory. In a recurrent neural network, neurons can
receive input from other neurons in the past, similar to how the dimension of time is added
to a fully connected neural network, as depicted in Figure 4.9.

Figure 4.9: Three-dimensional architecture of the recurrent deep-learning network (Hochreiter
and Schmidhuber, 1997b)

Let the vector xt denote the input to the network at moment t and ht denote the hidden
layer state (i.e. the hidden layer neuron activity value), then ht is related not only to the
input at the current moment xt , but also to the hidden layer state at the previous moment
ht−1 related. The equation for the recurrent network at moment t is:

ht = f (Uht−1 +Wxt + b) (4.3)

where U is the state-state weight matrix, W is the state-input weight matrix, b is the bias
vector, and f(·) is the nonlinear activation function.

4.2.3.1 Long Short Term Memory(LSTM)

Gradient explosion and disappearing, commonly known as the long-range dependence prob-
lem, occurs when the input sequence is long (Bengio et al., 1994; Hochreiter and Schmidhuber,
1997b). Numerous enhancements have been made for recurrent neural networks to address
this issue. Among them, the most influential one is the gating mechanism. The network
structure that contains this gating mechanism is called Long Short-Term Memory Network
(LSTM). LSTM network is a variant of recurrent neural networks that can effectively solve
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the gradient explosion or disappearing problem of the traditional recurrent neural networks.
Hidden states in recurrent neural networks can hold past data and can be treated as a kind
of Memory. In a basic recurrent network, the hidden state is rebuilt at each moment and is
hence comparable to a Short-Term Memory. Instead, the Long-Term Memory is a network
parameter that represents the training data-learned experience, and its update time is much
slower than that of Short-Term Memory. The memory unit c of an LSTM network is capable
of capturing a critical piece of information at a particular moment and storing it for a certain
time period. The lifetime of the information stored in memory unit c is greater than that of
short-term memory h, but much less than that of long-term memory. The LSTM network
introduces the internal state ct, i.e. the memory unit c at moment t, specialises in linear
recurrent information transfer. The LSTM outputs the hidden layer’s information simultane-
ously to the external state ht. The internal state ct is calculated by the following equation:

ct = ft ⊙ ct−1 + it ⊙ c̃t (4.4)

ht = ot ⊙ tanh (ct) (4.5)

where ft, it, ot are the three gates to control the path of information transfer; ⊙ is the vector
element product; ct−1 is the memory cell at the previous moment; c̃t is the candidate state
obtained by the nonlinear function, at each moment t, the internal state ct of the LSTM
network records the historical information up to the current moment.

The forgetting gate ft determines how much information should be discarded regarding the
internal state ct−1 at the last moment. The input gate it determines how much data will be
stored for the present moment of the candidate state c̃t. The output gate ot determines how
much information from the internal state ct need to be transmitted to the external state ht

at this time. The formula for the three gates is as follows.

it = σ (Wixt +Uiht−1 + bi) (4.6)

ft = σ (Wfxt +Ufht−1 + bf ) (4.7)

ot = σ (Woxt +Uoht−1 + bo) (4.8)

where σ(·) is the logistic function. The cell structure of the LSTM network and the hidden
layer information transfer process of LSTM are shown in Figure 4.10

4.2.3.2 Long Short Term Memory Model Combined With Convolution Neural
Network(1D-CNN+LSTM)

Convolutional layers are distinguished by their capacity to extract meaningful knowledge
and learn the internal mechanism of time-series data, whereas LSTM networks stands out at
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(a) General recurrent neural network

(b) LSTM’s unique gate control mechanism

Figure 4.10: The hidden layer information transfer process of general recurrent neural network
and LSTM

recognizing both short-term and long-term relationships. The purpose of the 1D-CNN+LSTM
model (Livieris et al., 2020) is to integrate the benefits of these deep learning techniques in
an effective manner. This model has two primary components: The first component includes
of convolutional and pooling layers in which complex mathematical processes are done to
produce input data features, while the second component utilizes the obtained features by
LSTM and dense layers. The structure of the model is shown in Figure 4.11. It shows better
prediction results compared to the CNN and the LSTM alone. Therefore, it was adopted as
a new model for temporal prediction.
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Figure 4.11: 1D-CNN+LSTM model architecture

4.3 Prediction of loading response by fully connected neural
network

4.3.1 Data pre-processing

From Chapter 3, 10 embedment depths were simulated in the homogeneous soil. In each case,
96 directions and 100 data points are intercepted in each direction, generating a grand total
of 96,000 data points. Similarly, 10 embedment depths were simulated in the heterogeneous
soil. In each case, 48 directions and 100 data points are intercepted along each loading path,
generating a total of 48,000 data points. The reason why 100 data points are captured is
to assist the temporal training in Section 4.4. And in the Abaqus calculation, the first 100
data points already adequately represent the entire loading path. The remaining data points
exhibit a negligible variance relative to the first 100 and can be disregarded. Each data
point includes displacement information in three directions, corresponding to three forces, a
foundation configuration and a soil shear strength profile. The force information of skirted
foundation is represented by the bearing capacity factor (NcH , NcV , NcM ) . The configuration
information of the foundation is represented by the embedment ratio (L/D) and the shear
strength profile is represented by the soil strength heterogeneity index (κ). Due to the small
displacement values are not dimensionless, the different scales of input and output parameters
also affect model performance. The following normalising equation ultimately eliminates the
size effect.

xnorm =
x− xmin

xmax − xmin
(x̄max − x̄min) + x̄min (4.9)

where xmax and xmin measured maximum and minimum of the parameter x; x̄max is the
threshold to be scaled and x̄min is the upper boundary to be scaled. The upper boundary is
typically set to 1 and the lower boundary is set to -1 in this project.

After normalization, the complete data is separated into three blocks, consisting of 64%
training set, 16% validation set, and 20% test set. The test set consists of a random
selection of 20% of the total data points. This portion of the data will not be trained. It
will only be utilized for the purpose of evaluating the trained model. The 20% training
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data is consisted by the validation set, and the model is tested on it after each training
epoch. The remaining 64% of data is actively engaged in the model’s training. These two
partitioning processes are controlled directly in the Keras environment with the parameters
train test split, validation split. All datasets are saved in comma-separated values (CSV)
files for quick importation into Python.

4.3.2 Evaluation metrics

The RMSE (Root Mean Squared Error) and R2 (Coefficient of determination) are used as the
primary evaluators of the regression results, while the MAE (Mean Absolute Error) serves as
the supplementary evaluator. RMSE is the root of MSE (Mean Squared Error) and has the
same theoretical meaning as MSE. However, RMSE characterises the data better since MSE
values do not match the unit scale of the error values, while RMSE better represents the error
with the same scale. √√√√ 1

m

m∑
i=1

(yi − ŷi)
2 (4.10)

Goodness of fit measures the degree to which a regression line matches the observed values.
The coefficient of determination (R2) is the statistical indicator of the goodness of fit. The
greater the R2, the better the fit, which is optimal at a value of 1. Negative R2 values are
possible if the model anticipates random values. The theoretical range of R2 is (−∞, 1],
with a typical value between [0, 1]. In practice, the better-fitting curve is typically selected
to calculate R2, so the value of −∞ occurs infrequently. The closer R2 is to 1, the more
effectively the variables in the equation explain y, and the better the model fits the data. In
contrast, the closer R2 is to 0, the less well a model fits the data.

R2 = 1−
∑

i (ŷi − yi)
2∑

i (ȳi − yi)
2 (4.11)

Considering that certain data points are 0, the Mean Absolute Percentage Error (MAPE)
calculation would be biased. Consequently, the MAE is utilised as an alternative in the
actual evaluation.

1

m

m∑
i=1

|(yi − ŷi)| (4.12)

4.3.3 Selection of deep learning model for nonlinear regression

The non-linear regression prediction for load-displacement relationship experiments was
conducted using FC-NN, 1D-CNN and LSTM, respectively. Both 1D-CNN and LSTM
models are more adept at analysing time-series data. Therefore, the time length of both
1D-CNN and LSTM models was set to 1, and no temporal relationship between data was
introduced. All three models have only one hidden layer and the same number of neurons,
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and the network structure is in Table 4.1-4.3. The training results of the three neural
networks were compared after selecting the most suitable model.

Table 4.1: Main hyperparameter during training FC-NN for nonlinear regression prediction
test

FC-NN

Hyperparameter Description Value

Nh Number of hidden layers 1
Nn Number of nodes in the hidden layer 128
η Learning rate in the optimizer 0.001
Batch size Number of training samples 200
Epoch Number of iterations during training 50
validation split Proportion of validation set in total training 0.2

Table 4.2: Main Hyperparameter during training LSTM for nonlinear regression prediction
test

LSTM

Hyper-parameter Description Value

Nh Number of hidden layers 1
Nn Number of nodes in the hidden layers 128
η Learning rate in the optimizer 0.001
Batch size Number of training samples 200
Epoch Number of iterations during training 50
validation split Proportion of validation set in total training set 0.2
input length Time length 1

Table 4.3: Main Hyperparameter during training 1D-CNN for nonlinear regression prediction
test

1D-CNN

Hyper-parameter Description Value

Nh Number of hidden layers 1
filters Number of filters in the hidden layers 128
kernel size Length of the convolution kernel 1
strides Step size of convolution kernel shift 1
padding padding mode valid
dilations Convolutional kernel dilation [1]
η Learning rate in the optimizer 0.001
Batch size Number of training samples 200
Epoch Number of iterations during training 50
validation split Proportion of validation set in total training 0.2

Out of 96,000 sets of data from homogeneous soils, 76,800 sets were randomly selected to
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train thees models, leaving 19,200 sets for testing. The prediction results of the test are
presented in the following Table 4.4 through three evaluation matrices.

Table 4.4: Prediction results of the three models

FC-NN LSTM 1D-CNN

RMSE 0.006 0.003 0.006
R2 0.998 0.999 0.998

MAE 0.003 0.002 0.003

In the table, all three of the models show excellent model predictions, and the predictions
are already very close to the actual values. However, the FC-NN model has the simplest
structure with the most computationally efficient. Therefore, FC-NN was chosen for the
following non-linear predictions.

4.3.4 Hyperparameter tuning

A deep neural network is a highly nonlinear model, and its hyperparameters must be
fine-tuned for optimal performance. Hence, this section explains the hyperparameters of the
neural network that were used for load response predictions, some of the hyperparameters
have been marked in blue in Figure 4.1.

Activation function

The activation function is very important in neurons, as it enhances the representation and
learning ability of the network. Two common activation functions are compared below.

ReLU (Rectified Linear Unit) (Nair and Hinton, 2010) is the activation function often
used in deep neural networks nowadays. Graphically ReLU is actually a ramp function,
defined as a neuron that only needs to perform addition, multiplication and comparison
operations, making it more computationally efficient. The ReLU function is also considered
to have biological plausibility. While Tanh is a Sigmoid-type function, which refers to a
category of S-curve functions that are saturated at both ends. The Tanh function’s output
is zero-centered, but the ReLU function’s output is always higher than or equal to 0. The
non-zero-centered output induces a bias shift in the input of the adjacent layer’s neurons.
Due to the Sigmoid activation function’s saturation, the derivative in the saturation zone is
much closer to 0. Consequently, the transmission of the error through each neuronal layer is
progressively diminishing. When a network is extremely dense, the gradient will continue to
degrade or perhaps vanish, making it difficult to train the entire network. This is known as
the problem of disappearing gradients. The ReLU, Tanh, Sigmoid function are all shown in
Figure 4.12.

In terms of optimization, the ReLU function is a left saturated function and has a derivative
of 1 when x > 0, whereas the Sigmoid function is saturated at both ends. This somewhat
mitigates the gradient vanishing problem and accelerates the gradient descent convergence.
The Sigmoid-type activation function produces a dense neural network, whereas the ReLU

59



Figure 4.12: Hidden layer activation functions

activation function produces a sparse neural network with around 50 percent of the neurons
activated (Glorot et al., 2011). Therefore, ReLU is selected as the model’s activation function.

Batch size and neurons

Using a grid search strategy, this part analyzes the number of neurons and batchsize of
each layer. After trial computations, the FC neural network with a single hidden layer
was able to predict the data. However, the stability and robustness of the prediction were
inadequate. The model’s performance can be enhanced by increasing the number of hidden
layers. Theoretically, the more the accuracy should be, the greater the solution space that
can be covered, and the deeper the network layers. However, increasing the number of
layers does not directly improve convergence and precision. If three layers are configured,
the network will face the challenge of overfitting, and much effort will be necessary to avoid
it. Therefore, a fully-connected model structure with two hidden layers is desired. In order
to maximize the performance of parallel computing within the GPU, the batchsize is often
required to be a multiple of 8 (e.g., 32, 128). This project investigates the performance of FC
neural network based models with batch size of 128, 256, 512, 1024 and 2048. The number
of neurons each layer is 16,32,64,128,256, respectively, for a total of 125 (5*5*5) sets of trials,
and the minimum mean squared error in each experiment generate the Figure 4.13(a) below.

From the Figure 4.13(a), it can be deduced that the optimal batch size is 128 and number
of neurons in the first and second layers are 256, respectively. An obvious rule is that the
higher the number of neurons and the smaller the batch size, the better the performance of
the model. Theoretically, the greater the number of neurons and the number of layers, the
better the model will perform. As batch size increases, the variance of the random gradient
decreases, less noise is introduced, and training becomes more stable. While appropriately
small batch sizes will lead to faster convergence. Therefore, the batch size must therefore
take into account training stability and convergence speed.

A new expanded experiment was designed based on 256 neurons per layer neurons and
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(a) Origin experiment (b) Addition experiment

Figure 4.13: Find the optimal neurons and batchsize by grid search method
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128 samples each batch. This time, the batchsize was set 32, 64, 128 and 256 neurons
respectively, and the number of neurons per layer was set 128, 256, 512, 1024, and 2048
respectively. The new results are shown in Figure 4.13(b). 1024 neurons per layers and 128
samples in a batch are the optimal solutions. The optimal number of neurons at 1024 instead
of 2048 indicates that the model’s performance has begun to degrade and the optimal batch
size doesn’t change. After evaluating computational efficiency and precision, the number of
neurons per layer is determined to be 256, while the batchsize is 128.

Optimiser and learning rate
The Adam algorithm (Adaptive Moment Estimation Algorithm) is selected as the optimiser
in this study (Kingma and Ba, 2014), which is a combination of the momentum method
and the RMSprop algorithm. In addition to using momentum as the direction of parameter
update, it can also alter the learning rate adaptively. Nonetheless, the initial learning rate
must be determined. When the batch size is small, the learning rate must be set to a low
value in order for the model to converge. Typically, the learning rate accelerates as batch
size grows. Figure 4.14(a) shows that both the training and test values have the same trend
during training at different learning rates. Figure 4.14(b) then shows the training process
at different learning rates. The model converges rapidly for all learning rates except for
the learning rate of 0.0001. While at learning rates of 0.01 and 0.005, the training process
shows fluctuations in loss value. This implies that at high learning rates, overfitting is prone
to occur. The loss curve of training remained stable at learning rates of 0.001 and 0.002.
Therefore, a learning rate of 0.001 was used as the initial value for model training.

(a) Comparison between train and test processes
under same learning rate

(b) Comparison of train processes under different
learning rates

Figure 4.14: Loss of train and test set at different learning rates

Loss function
Under the regression task, the loss function’s are divided into two main categories, MSE
(Mean squared error) and MAE (Mean absolute error). MAE loss is more robust to outliers,
but its derivative discontinuity makes the process of finding the optimal solution inefficient;
MSE loss is sensitive to outliers, but is more stable and accurate in the optimisation process.
Since there are no incorrect data points or noise in this experiment, MSE is employed to
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produce a more precise result. It computes the mean of the squared discrepancies between
the prediction and the target value. By square rooting the error, larger errors are punished
more severely than smaller ones. Its ideal value is zero. The specific formulae has been
shown in Section 4.3.2

Overfitting
The loss value learning curves for the training and testing sets are normally plotted and
compared. When a large loss value on the training set and a low loss value on the testing set
is observed, it means that the trained model has a problem with overfitting. Overfitting can
be solved in various approaches, including employing Dropout, introducing Early Stopping,
adding Batch Normalization, and changing the batch size.

The Dropout mechanism allows random disconnection between input or hidden layers. By
introducing this random disconnection mechanism, the robustness of the model can be
enhanced by avoiding over-reliance on a few points. Layer-wise Normalisation not only im-
proves the efficiency of the optimisation but also serves as an invisible regularisation method.
During training, the neural network’s prediction of a sample is related to the other samples in
the same batch. Because of the random nature of the batch selection, the neural network does
not ”overfit” to a particular sample, thus improving the network’s generalisation ability (Luo
et al., 2018). Early stopping refers to ending the training of a model while the loss is min-
imal or before the training and validation error begin to diverge, i.e., before overfitting begins.

After preliminary testing, the model has the potential to jump out of a local minimum after
using the optimal batch size. With early stopping, the probability of loss fluctuation during
training is significantly reduced. Therefore, the model’s inherent stability is strong, and there
is no need to include the dropout layer and Batch Normalization, which reduce computational
efficiency. The final hyperparameters utilized for FC-NN training are displayed in Table 4.5.

Table 4.5: Main hyper-parameters during training FC-NN for nonlinear regression prediction

FC-NN

Hyperparameter Description Value

Nh Number of hidden layers 2
Nn Number of nodes in the hidden layer 256,256
η Learning rate in the optimizer 0.001
Batch size Number of training samples 128
Epoch Number of iterations during training 50
validation split Proportion of validation set in total training 0.1

4.3.5 Experiment results

The experimental results of the AI-based design model are divided into two parts, the training
results for homogeneous soils only and the training results incorporating heterogeneous soils.
The first part of the results, i.e. 96,000 sets of data for homogeneous soils only, consists of
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three inputs of deformation (u,v,θ) and burial depth ratio L/D, and three outputs of load
response (H, V, M).

The predicted results are shown below, with the regression evaluation metrics calculated
from the test dataset, with RMSE = 0.035, R2 = 1.000 and MAE = 0.023. The red dot is
the actual value and the blue dotted line is the predicted value. In Figure 4.15, the red dots
represent the actual values, while the blue dashed line represents the anticipated value. The
fact that the two significantly overlap indicates that the forecasts are accurate. R2 = 1.000
indicates that the model fit has been optimal.

(a) Prediction of horizontal load (b) Prediction of vertical load

(c) Prediction of moment

Figure 4.15: Prediction results for 100 randomly samples on H, V and M respectively in
homogeneous (Test RMSE: 0.035Test R2: 1.000 Test MAE: 0.023)

The second experiment is based on the first experiment with the addition of data generated
when the soil profiles differ. The result of second experiment determines whether the model
can accommodate predictions of the underlying behaviour under multiple soil shear strengths
and failure mechanisms. In this phase, 192,000 data sets of homogeneous and heterogeneous
soils were trained. The soil strength heterogeneity index was introduced to the model input
in order to differentiate between the two types of soils. Three response forces were predicted
from five input values, showing excellent accuracy (shown in Figure 4.16). It was found that
even very “shallow” FC neural network model can learn the intrinsic failure mechanisms of
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the caissons from raw data and predict their nonlinear mechanical responses under complex
loading effectively.

(a) Prediction of horizontal load (b) Prediction of vertical load

(c) Prediction of moment

Figure 4.16: Prediction results for 100 randomly samples on H, V and M respectively in
homogeneous and heterogenous soil(Test RMSE: 0.024 Test R2: 1.000 Test MAE: 0.016)

4.3.6 Evaluation of surrogate model performance

The flat minimum (Hochreiter and Schmidhuber, 1997a) (shown in Figure 4.17(a)) is often
considered to have a relationship with generalisation ability. In general, a model is more
robust when it converges to a local flat minimum, which means small parameter changes do
not drastically affect the ability of the model, and less robust when it converges to a local
sharp minimum (shown in Figure 4.17(b)). Models with good generalisation ability should
generally be robust, and the ideal local minimum should be flat. The pursuit of global
minima will lead to overfitting. The following experiments on the model’s reproducibility are
used to evaluate the robustness of the model.

The outstanding performance of the model can come from the fortuitous selection of weights
and biases, which considerably helps model training and makes convergence very simple.
Or possibly the data were generously divided by chance, and the challenging data were
placed in the training set while the left data in test set is easily predicted. The random
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(a) Flat minimum (b) Sharp minimum

Figure 4.17: Example of a flat minimum and sharp minimum (Hochreiter and Schmidhuber,
1997a)

number seed (which symbolizes the randomness of the model) influences not just the model’s
initialisation weights and bias parameters, but also the partitioning of the test and validation
sets. To prevent a model that performs exceptionally well with a particular amount of
random number seeds. The robustness of the model was evaluated by repeating experiments
with various random seeds. After testing 50 random number seeds, the MSE loss values for
model training are shown below (Figure 4.18). The blue line represents the mean of the
fifty training runs, while the red line represents the standard deviation of each epoch. The
training process stabilizes after the fifth epoch, and the model rapidly converges. The error
line reaches its highest value at 22th epoch, and the loss value swings by 0.0007, which is
within an acceptable range. Experiments reveal that the model is very repeatable and robust.

Figure 4.18: The mean MSE Loss under 50 random seeds

The predictions of H, V, and M from these fifty experiments are represented by RMSE and
R2 (shown in Figure 4.19), with the RMSE of prediction for the three forces being less than
0.012 and R2 remaining above 0.9975. The overturning moment prediction has the smallest
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error and the horizontal force prediction converge fastest. The results of the 50 replicate
experiments demonstrate the high reproducibility and robustness of the model.

(a) RMSE for H, V, M predictions (b) R2 for H, V, M predictions

Figure 4.19: Distributions of H, V, M prediction error under 50 random seeds

(a) Prediction of horizontal load (b) Prediction of moment

Figure 4.20: Prediction results for 100 randomly samples on H and M respectively in sand
(Test RMSE: 0.002 Test R2: 0.999 Test MAE: 0.001)

The model is also tested against Zhang et al. (2020b)’s database which is generated from
an advanced numerical modelling combining the smoothed particle hydrodynamics with
the SIMSAND model. This database is validated by laboratory tests, physical model
tests, and a caisson foundation field test. The hyperparameters setting of this model are
not adjusted and the two columns of zhang’s data are reduced, which is a non-essential
input when in the FC-NN model. The model was trained and the experimental results are
shown in Figure 4.20. Although the R2 decreases slightly compared to the experimental
results of this study, the fit is still very good. The SIMSAND model producing a noisy
dataset is a reasonable explanation for this phenomenon. The MSE loss function would
be affected by the noise, leading to the predicted bias. The good prediction results are
attributable to the FC-NN model’s structure, which is easy to train. The LSTM model used
in Zhang’s study did not perform as well as the FC neural network in the point-to-point
problem. This is due to the high complexity of the LSTM model, which will be very
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effective in dealing with complex temporal problems, but its unique gating mechanism will
not perform well in simple regression problems. However, when it comes to time series
issues, the benefits of the LSTM will appear, and a comparison of these two models will be
presented in section 4.4. The successful application of this FC-NN based model structure
in the sandy dataset illustrates once again that the model’s robustness is outstanding.
This FC model structure can be adapted to different training data (i.e. clay and sand).
The model structure also has transfer learning capabilities and can be applied to similar issues.

(a) Simulation of realistic soil profiles by randomly
generated

(b) Prediction of horizontal load

(c) Prediction of vertical load (d) Prediction of moment

Figure 4.21: Realistic soil profile and the prediction. (a) Simulation of realistic soil profiles
by randomly generated, (b-d) Prediction results for θ = 45◦, ϕ = 80◦ loading path on H, V
and M respectively in non-linear soil profile (Test RMSE: 0.760 Test R2: 0.927 Test MAE:
0.583)

However, the above experiments were performed with data from the ideal situation. In
the field, the soil profile cannot present a perfect uniform or linear. For this purpose, the
inhomogeneity and randomness of the soils on site were simulated in Figure 4.21(a). The
figure simulates a realistic soil profile by randomly generating soil strength. For better
comparison with homogeneous soils, randomly generated soils has the similar average
strength value of 10.23 kPa. A specific foundation at L = 8m was built for comparison
experiments, and 96 directions of loading were performed. 192,000 data points created with
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homogeneous and heterogeneous soils are used to train the deep learning-based model and
then perform the prediction of non-homogeneous soils. The predicted results are shown in
Figure 4.21. The prediction errors RMSE, R2, MAE are 0.760, 0.927, 0.583 respectively. In
the figure, the prediction error in H, V, and M are all large. The poor prediction results
in nonlinear soils can be equated to the calculated difference between the FEM model in
calculating linear and nonlinear soils. It is unrealistic to predict nonlinear soils with a model
that has only learned the mechanism of uniform and linear soils. At the same time, there
are also errors between the foundation response in nonlinear soil calculated by the FEM
model and the actual field. As a result, more work has to be done before this technology can
be applied directly in reality prediction. To improve the prediction accuracy of field data,
it is not enough to learn heterogeneity parameters alone. A very feasible idea is to better
simulate the strength distribution of the soil profile by introducing more input parameters,
e.g. coefficients of variation, CPT data, etc. But how to characterize the soil strength
parameters by field data will be another issue.

4.4 Prediction of loading paths by temporal neural networks

4.4.1 Introduction

The loading process of a foundation can be considered as a time series, whose loading response
at each moment depends to a large extent on the loading state at previous times. On the
one hand this time series prediction makes it possible to predict how the loading path will
change at future moments. On the other hand after predicting the final state of the load,
the failure envelope of the caisson can be plotted. Throughout the training, the loads at the
first 10 points of each path will be used as input to predict the loads at the next 90 points.
The initial experimental setup was to predict the data for the next 70 points from the first
30 points, as shown in Figure 4.22. As the step size is adaptive in the Abaqus calculation,
the increase in displacement is not constant each time. For the model to converge, the
displacement increment is decreased as the foundation approaches a state of failure. This
results in an output loading path in which the data points are not evenly distributed and
a significant number of data points are concentrated near the failure. During loading, the
first ten data points already encompass the elastic deformation section and a portion of the
plastic deformation section, with the initial trend of the curve also indicating a shift. This
non-uniform distribution is also a prerequisite for building this experiment. If the future
forecast is made using 30 data points, which already contain the majority of the loading
path. Then only the post-failure trend of the loading paths needs to be modelled, which
is relatively unchallenged. Therefore, this section uses three main neural networks, FNN,
CNN and RNN for prediction, containing five specific models respectively FC-NN, LSTM,
1D-CNN, 1D-CNN+LSTM and TCN, which have been described in Section 4.2.

4.4.2 Experiment setup

The hyperparameter tuning in this section follows the same process as in Section 4.3.2,
considering in turn the number of layers, neurons, batchsize, and then the learning rate and
loss function settings. The activation function, optimizer, overfitting, and other parameters
are configured similarly to Section 4.3. For the sake of objectivity, the number of layers,
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(a) (b)

Figure 4.22: Comparison of loading path predictions with 10 points and with 30 points

learning rate, batch size, and epoch number were fixed in the comparison validation trials.
The procedure’s details are not repeated here.

FC-NN
When FC-NN was applied in Section 4.3, only a point-to-point mapping was performed. In
that case, 4 parameters (1, 4) in a data were input and 3 predictions (1, 3) were output
at a time. This section focus on the prediction of whole loading paths. At each moment,
4 parameters of 10 data are input as the shape of (10, 4). And 4 parameters of 90 data
are predicted for the future in the shape of (90, 4). The FC-NN model cannot accept
multi-dimensional data as input, so the 10 × 4 data are ordered into the form of 1 × 40
data for input, and the output data are then reshaped from 1 × 360 dimensions to 90 × 4
dimensions. In this training method, the model needs to establish the relationship between
40 input data and 360 output data, so the model needs to be deeper and the number of
nodes needs to be higher than the single-point regression prediction. The model learns not
only the relationship between the parameters in each data point but also the relationship
between the data points. The final hyperparameter settings are shown in Table 4.6. Figure
A.1 depicts the data transit and network structure of the model (where None indicates that
this dimension is variable, which can also be considered as batchsize from a data transfer
perspective). The two matrices on the right represent the shape of the input data and the
shape of the output data, with the shape of the output data in each layer corresponding
to the number of hidden nodes in that layer. The first three dense layers are configured
as hidden layers, whereas the final dense layer is just configured to alter the output data’s
shape. In the subsequent model, a dense layer is added at the end, which corresponds to the
integration of information from all hidden layers and the specification of the output shape,
and does not include it in the table of hyperparameters.

LSTM
Due to its unique gating mechanism, the LSTM handles temporal data exceptionally
effectively. Changes can also be made to adjust the time step to 1 for standard regression
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Table 4.6: Main hyper-parameters during training FC-NN for temporal prediction

FC-NN

Hyper-parameter Description Value

Nh Number of hidden layers 3
Nn Number of nodes in the hidden layers 64, 512, 1024
η Learning rate in the optimizer 0.001
Batch size Number of training samples 50
Epoch Number of iterations during training 300
validation split Proportion of validation set in total training set 0.2

prediction. However, as shown in Section 4.3.6, the LSTM’s ability degrades to an ordinary
FNN after losing its unique long-time memory, and the prediction is, in turn, less effective
than FC-NN. The time memory can be introduced to the current time-series problem by
setting the time step parameter to 10. These 10 data points are read 10 times, and the data
information of each (1, 4) is gradually retained and passed on to the next moment, which
ultimately becomes the algorithm’s input (10, 4). The two-layer LSTM was deemed suitable
for this task, and the training loss curve was already fluctuating, indicating a high likelihood
of overfitting. Therefore, the LSTM model was configured with two layers and 64 and 512
neurons in each layer, respectively. After adjusting the settings, Table 4.7 was obtained, and
the training procedure is depicted in Figure A.2.

Table 4.7: Main hyper-parameters during training LSTM for temporal prediction

LSTM

Hyper-parameter Description Value

Nh Number of hidden layers 2
Nn Number of nodes in the hidden layers 64,512
η Learning rate in the optimizer 0.001
Batch size Number of training samples 50
Epoch Number of iterations during training 300
validation split Proportion of validation set in total training set 0.2

1D-CNN
1D-CNN, as a type of convolutional neural network, has convolutional computation at its
core, so the size of the kernel determines the area of the field of view. Since there are only
10 data, the size of each kernel layer is set to 3 while ensuring that no data information
is lost. The computation of the first hidden layer in 1D-CNN receives only three adjacent
data from the input layer, unlike the LSTM model, which combines 10 historical data for
computation, so the memory is short term. The number of hidden layers was set to two to
facilitate a more accurate comparison with the LSTM. The filters in 1D-CNN were the same
amount of neurons in the FC-NN. No zero padding is set, as equal sequence size per layer is
not considered. Also, no dilation convolution is employed so that the comparison with the
following TCN model is more evident. The remaining hyperparameters are specified in Table
4.8.
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Table 4.8: Main hyper-parameters during training 1D-CNN for temporal prediction

1D-CNN

Hyper-parameter Description Value

Nh Number of hidden layers 2
filters Number of filters in the hidden layers 128,512
kernel size Length of the convolution kernel 3,3
strides Step size of convolution kernel shift 1
padding padding mode valid
dilations Convolutional kernel dilation [1, 1]
η Learning rate in the optimizer 0.001
Batch size Number of training samples 50
Epoch Number of iterations during training 300
validation split Proportion of validation set in total training 0.2

The pre-processing of the data is consistent with that of the LSTM. Theoretically, the
model could be optimised for over-fitting by adding a batch normalisation (BN) layer to
the model. However, trial calculations revealed that the model’s MSE loss curve did not
fluctuate considerably throughout training; hence, the BN layer was not included in the
model. A flatten layer also appears in the model. The role of this layer is to reduce the
dimensionality, stretching the two-dimensional data into one dimension before entering the
dense layer for information integration and specification of the output shape. The LSTM
model also has two-dimensional data, but the LSTM at the last layer only returns the final
value of the sequence, thus completing the dimensionality reduction. This procedure is
implemented directly in the Keras environment with the parameter return sequences. The
training procedure is depicted in Figure A.3.

1D-CNN+LSTM
The model is constructed by adding an LSTM computation layer to the 1D-CNN while
preserving the original 1D-hyperparameter CNN’s settings. Due to its two-layer 1D-CNN,
one-layer LSTM, and one-layer dense structure, the model’s total number of parameters
exceeds 2M. This is twice the total number of parameters of the preceding three models,
which maintain the total number of parameters at approximately 1M. This model was
created to maximise the utility of both 1D-CNN and LSTM. The specific hyperparameter
values are presented in Table 4.9, and the training flow is depicted in Figure A.4.

TCN
Theoretically, a network with a residual layer configuration can effectively tackle the problem
of network degradation; hence it is quite feasible to configure 30 or more residual blocks for
the most precise prediction. However, the final setup of TCN takes three residual blocks
with 64, 128 and 256 neurons per layer. This is to control the model’s size and facilitate
comparison with other models. Each residual block consists of two hidden layers coupled
to the activation function ReLU, and a shortcut for convolutional operations is configured.
To take full advantage of TCN, the model also uses zero padding and dilations. The best
prediction results were experimentally obtained with kernel sizes of 1, 3 and 3 for each layer,
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Table 4.9: Main hyper-parameters during training 1D-CNN+LSTM for temporal prediction

1D-CNN+LSTM

Hyper-parameter Description Value

Nh Number of hidden layers 3
filters Number of filters in the hidden layers 32,128
Nn Number of nodes in the hidden layers 512
kernel size Length of the convolution kernel 3,3
strides Step size of convolution kernel shift 1
padding padding mode valid
dilations Convolutional kernel dilation [1, 1]
η Learning rate in the optimizer 0.001
Batch size Number of training samples 50
Epoch Number of iterations during training 300
validation split Proportion of validation set in total training set 0.2

respectively. The settings of the hyperparameters are shown in Table 4.10 and the training
flow is shown in Figure A.5.

Table 4.10: Main hyper-parameters during training TCN for temporal prediction

TCN

Hyper-parameter Description Value

Nh Number of hidden layers 2
Nn Number of residual blocks 3
filters Number of filters in the hidden layer 64, 128, 256
kernel size Size of the convolution kernel 1, 3, 3
strides Step size of convolution kernel shift 1
padding padding mode same
dilations Convolutional kernel dilation [1, 2, 4]
η Learning rate in the optimizer 0.001
Batch size Number of training samples 50
Epoch Number of iterations during training 300
validation split Proportion of validation set in total training 0.2

4.4.3 Experimental results and model performance comparisons

Comparison of the model prediction accuracy
In Table 4.11 below, the performance of the models in forecasting the time series of the
loading routes is shown. Overall, all models can accurately predict the whole loading path,
and it has proven feasible to forecast the complete loading path using just 10 percent
of the available data. This gives a very effective way for forecasting the foundation’s
three-dimensional response.

In Figure 4.23, all of the predictions are comparable to the actual values produced by Abaqus
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Table 4.11: Prediction results of the five models

FC-NN LSTM 1D-CNN 1D-CNN+LSTM TCN

RMSE 0.159 0.103 0.140 0.085 0.071
R2 0.993 0.997 0.995 0.998 0.999

MAE 0.086 0.073 0.100 0.052 0.046

and exhibit the same load response pattern. FC-NN and TCN provide the most accurate
forecasts for H. From a numerical perspective, more than half models underestimate the hor-
izontal bearing capacity of the foundation slightly, while LSTM and 1D-CNN overestimates
it. For the prediction of V, most models overestimated slightly the load response before
ultimate vertical bearing capacity reached, except for FC-NN which underestimates the
response in the second half of the prediction. And only TCN learned the vertical response
under load perfectly, with the projected curve almost covering the actual curve. In the
forecasts for M, the 1D-CNN and TCN are the closest to the actual values in the first 15
points, with the slightly overestimating the ultimate load capacity. The rest models are closer
to the true value in the back part and the slightly underestimate the loading development
process. The M loading path has a point of steering, which can be explained by the fact
that for small rotation the negative moment is balanced by the greater positive horizontal
force, thus detecting the opposite moment at the reference point. As the negative moment is
progressively applied, the curve undergoes a direction shift. From the prediction curves of V,
it can be seen that the beginning and end of the model forecasts are pretty accurate, however
the middle process prediction exhibits more variances. The accuracy of the prediction at
the beginning is due to the proximity to the input data range, which has more reference.
Accurate prediction at the end is owing to the unequal distribution of the data points, as
shown in Figure 4.22, where the data points are spread more densely at the latter points.
The growth and yield prediction of each loading curve are concentrated between the 1st
and the 40th data. The remain of the curve is more intensive and deemed to have received
”reinforced training.” The predicted error is thus underestimated and the predictions from
the 1st to the 40th points in each path should be focused more. From the data, the TCN
demonstrates the best predictions for all loading paths, but in the actual curves, the other
models’ prediction errors for the behind of the loading path are more minor than in the figure.
The model overall performance is TCN>1D-CNN+LSTM>LSTM>1D-CNN>FC-NN. This
result is consistent with the expectation that TCN and 1D-CNN+LSTM have a more
complex model structure and should have better prediction results. The LSTM, which is
an ’expert’ in dealing with the temporal domain, can also provide good computational results.

Comparison of the model training process
Because this is a controlled experiment, the structure and parameters of each model are kept
as close as possible. Hence, the hyperparameter settings of some models are not optimal, it
can be verified by the training process of the models. Figure 4.24 below depicts the trajectory
of MSE Loss during training for the five models. Because the number of training epochs had
to be regulated, the early stop parameter was not set. Several large fluctuations can be seen
in the training process of the LSTM and 1D-CNN+LSTM, indicating that the learning rate
has undergone adaptive changes at these epochs. This also implies that the stability and
repeatability of the model will be relatively poor. Because there is a high probability that
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(a) Prediction of horizontal load development (b) Prediction of vertical load development

(c) Prediction of moment development

Figure 4.23: Prediction results (90 points) on H, V and M respectively in a random path

the training will stop in fluctuations. The FC-NN and 1D-CNN models, on the other hand,
do not show particularly pronounced fluctuations, but rather small continuous fluctuations
instead, indicating that the batchsize value is set too small and that there is also partial
overfitting. On the contrary, the TCN is devoid of substantial fluctuations due to the usage
of residual blocks, which significantly minimizes the likelihood of its overfitting.

Comparison of the model computational efficiency
The number of parameters and expense of training for each model are shown in Table 4.12
below. Theoretically, the more parameters a model has, the more complicated and difficult
the training becomes. Due to the LSTM model’s gating mechanism, its memory footprint is
huge and its training time is significantly lengthened. The LSTM contains half the number
of neurons of a 1D-CNN model, but more internal parameters, which slows down training.
1D-CNN+LSTM is a 1D-CNN model with an LSTM layer superimposed on top. The total
number of parameters is twice that of 1D-CNN, and the training expense is double. This
shows that combining with CNN can be an excellent solution to improve the shortcomings
of LSTM’s low computational efficiency. The FC-NN has the fewest parameters and is the
simplest model with the highest computational efficiency, whereas the TCN has the most
complex model structure, but the number of parameters does not change significantly due
to the application of dilation convolution, indicating that the model is well optimised. In
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(a) Training process of FC-NN model (b) Training process of LSTM model

(c) Training process of 1D-CNN model (d) Training process of 1D-CNN+LSTM model

(e) Training process of TCN model

Figure 4.24: Training process of five models

summary, FC-NN has the smallest number of parameters and is the most computationally
efficient algorithm. Models using gating mechanisms are much less efficient and have more
parameters. The model based on convolutional layers has an intermediate amount of
parameters and processing efficiency compared to the previous two networks.

Comparison of Reproducibility and Robustness of models
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Table 4.12: The number of parameters and training time in each model

FC-NN LSTM 1D-CNN 1D-CNN+LSTM TCN

Number of parameters 930,216 1,384,040 1,305,064 2,431,880 1,419,432
Training time 27s 387s 41s 72s 43s

In order to remove the influence of contingency on the model, an additional 30 repeat
experiments were performed. Early stop (minimum change of 0.00001, patience of 50 epoch)
was used to enhance computing performance and prevent overfitting. The training is ended
early if the value change of MSE Loss is smaller than 0.00001 within 50 epochs. The results
of the experiments are shown below (in Figure 4.25). The red line reflects the median error
over 30 repetitions, while the size of the box indicates the distribution of model predictions.
LSTM training is contingent and its results from repeated tests are inferior to those of
one-dimensional convolution model. The inclusion of LSTM did not increase the accuracy
of 1D-CNN+LSTM model, but rather made the computational outputs less robust. This is
due to the fact that LSTM models contain superfluous parameters, which are not conducive
to training. The models based on 1D convolution have higher computational efficiency
and stability. In particular, the TCN is very accurate and robust in its distribution. The
FC-NN model can be used in place of the LSTM to solve this problem, as the LSTM has no
discernible advantage. This is owing to the fact that the experiment’s time series has just 10
historical data points. Compared to long short-term memory, which LSTM excels at, this
experiment demands short-term memory, which hinders LSTM’s effectiveness. On the other
hand, the 10 historical data are ideal for a 1D-CNN with a field of view of 3. In addition, the
capacity of TCN to employ dilation convolution to compensate for 1D-field CNN’s of view
deficiencies was not utilized. The highest computational stability of TCN is due to the use
of residual blocks, and the highest computational accuracy due to the fact that each residual
block is equivalent to two layers of convolutional computation, for a total of six layers of con-
volutional computation. This is supposed to be more accurate than the 1D-CNN model with
only two hidden layers. In this scenario, the LSTM loses to the CNN represented by the TCN.

(a) RMSE for the five model predictions (b) R2 for the five model predictions

Figure 4.25: Prediction error distribution for multiple models under 30 random seeds
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4.5 Section conclusion

This chapter presents a comprehensive study on developing AI-based design model for the
suction caisson foundation in clay. To address this problem, two different training strategies
were proposed: 1. point-to-point mapping, wherein the deep learning model was utilised to
discover the nonlinear relationship between displacement and force. 2. line-to-line mapping,
in which a deep learning model was employed to predict the relationship between response
forces at various moments. Correspondingly, three main neural networks, including five deep
learning models were employed. The performance of the different models was compared in
terms of prediction accuracy, computational efficiency and robustness. It was found that both
training strategies work well in predicting the behaviour of foundations. Among all the deep
learning models, the FC-NN model is most efficient in capturing the relationship between
displacement and load. By applying the same hyperparameter setting to the database of the
suction caisson in sand from Zhang et al. (2020b), it was found that the FC-NN model works
not only for foundation in clay of this study but also that in the sand. When it comes to the
temporal prediction of the whole loading path, the TCN model shows the highest accuracy
and robustness.

78



Model generalisation 5
5.1 Introduction

The exceptional mapping ability of neural networks has been demonstrated in the preceding
section on the training data. However, it should be noted that the ”perfect” prediction on
the training data can also result in over-fitting, making the model inaccurate when applying
to the data outside the training one. An idea model should be stable with the perturbation.
In general, in addition to the accuracy of the prediction results, robustness and generalisation
are crucial measures of a model’s quality. Basically the robustness is the redundancy of
the model in terms of the sensitivity of prediction to the slight change of model parameter,
while generalisation is the accuracy of the model when being applied to predict the new
range and data. High robustness means that the system remains stable and effective when
some parameters deviates slightly from the optimal value. And generalisation ability implies
that the network model derived from a limited sample has strong prediction potential for
additional variable domains. Good generalisation has the capacity to passively accept many
external inputs without actively altering or damaging the model, and achieve the intended
outcomes. In Chapter 4, the model performance has been validated against the data in
test sets. The excellent robustness of the FC-NN based AI model is demonstrated by the
repetitive experiments. Moreover, the good results when applying the model on Zhang’s
experimental data proves its generalisation ability. However, it should be noted that the
validation in preceding section is an interpolation calculation. For example, the model was
trained by the data from cases with L/D ratios from 0 to 1 and tested against the case
with L/D ratios from 0 to 1 with new input. To further test the generalisation capability
of the deep learning model, extrapolation calculations were performed. Furthermore, it was
found the variation of model generalisation capability can be explained through the change
of intrinsic failure mechanism of suction caissons.

5.2 Interpolation experiments to analyse errors at different
embedment depths

Although many studies have been conducted to apply the machine learning technique in the
geotechnical domain, only 10.64% of them tested both the interpolation and extrapolation
predictability of the models (Zhang et al., 2021). So what are interpolation and extrapolation
experiments? Basically, if the trained deep learning model is a student, interpolation and
extrapolation are two kinds of exams as an analogy. The interpolation experiment tests the
deep learning model on the questions the model has already learnt. The exam questions are
probably the same type of questions as trained but with different values. On the other hand,
the extrapolation experiment requires the model to figure out the questions it has never
been exposed to before, which is expected to be solved using the knowledge (algorithm) that
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model has learned. These two types of tests are critical for a comprehensive evaluation of
the model’s applicability.

This chapter continues the work in Chapter 4 by examining the model’s non-linear regression
predictions of the relationship between force and displacement at each embedded depths in
homogeneous soil. By taking 80% of the data as the training set and the remaining 20%
as the test set. After averaged, the test data in each depth of burial accounts for 2% of
the total data (i.e. around 1920 data points). Since the training set already contains data
from each burial depth, this is an interpolation test. The data was subjected to an inverse
normalisation calculation to obtain the true error as shown in Figure 5.1.

Figure 5.1: RMSE, R2 and MAE of test prediction at different embedment depths

In the figure, RMSE and MAE show the same trend. RMSE and MAE can both determine
the calculated error between the predicted and true values of the model, where RMSE is
more sensitive to outliers in the model prediction and magnify the proportion of large errors
in the total error. So the calculated error of RMSE is generally larger than that of MAE.
Coefficient of determination (R2) is used to indicate the fit of the model. When R2 close to
1, it indicates the deep learning model has been fitted perfectly, i.e. the predicted trend is
highly interpretable and the mechanism is same as the intrinsic mechanism of foundation.
From the definition, the RMSE and MAE represent the straightforward errors generated
in the predictions (i.e. error between predicted and true values). While the R2 does not
provide a direct error between predicted and true values, but a good indication of the fit of
the model intrinsic mechanism.

Based on the analysis, the error in the RMSE and MAE calculations can be decomposed
into three components. The most significant error is the error in the model’s prediction of
the failure mechanism. The prediction error of the failure mechanism can be further divided
into the basic prediction error and the mechanism change error. The former error is the
prediction error due to the structure of the neural network, which is constant for all depths of
burial and unavoidable. The latter error is the prediction error due to changes in the intrinsic
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mechanism, so the mechanism prediction error is expressed mainly through the mechanism
change error. Thanks to the coefficient of determination (R2), which correlates well with the
degree of model failure mechanism fit. Consequently, this portion of the error is analyzed
primarily by R2. The value of R2 shows that the deep learning algorithm has learnt the
failure mechanism well at large burial depths (when L >= 4m, R2 = 1.000). While in the
range of L <= 4m, R2 increases continuously and RMSE and MAE decrease with increasing
burial depth. When L >= 4m, R2 is almost constant, indicating that the failure mechanism
of foundation does not vary much. However when L <= 4m, the failure mechanism of
foundation is not the same failure mechanism as when L >= 4m and the intrinsic mechanism
at small burial depths is constantly changing. The details of this mechanism change are
researched in the next section. Based on R2 in Figure 5.1, the value of which stays at 1
after L > 4m, it would be a misconception that the failure mechanism of the foundation
is constant after L > 4m and no additional mechanism change error trigger. In reality,
however, the predicted failure mechanism error for the foundation still varies slightly, as only
three decimal places are shown so R2 is rounded to 1. This deduction will be demonstrated
later. R2 reaches its maximum value at L = 10m and has the smallest mechanism prediction
error, and error increases as the depth of burial decreases.

The second part of the error is mainly due to data boundary effects. When predict L >= 4m,
the fit of the model is already reaching the optimum and the coefficient of determination
is equal to 1. At large burial depths, the comparison is more about the variability of the
RMSE and MAE data. The RMSE, for example, drops to the minimum value of 0.016 at
L = 7m and then rebounds, with RMSE gradually increasing to 0.022 at L = 10m. The
phenomenon can’t prove the error induced by mechanism change, as R2 is still 1.000. This is
because when the test set approaches the training set’s data boundary, less data is available
for the deep learning algorithm to train on, leading to an increase in the inaccuracy of the
prediction results. The most obvious manifestation of this is the appearance of larger errors
in the MAE and RMSE for large and small burial depths than for intermediate burial depths.
The overall trend of RMSE and MAE exhibit a shape of the arc. This boundary effect is
mainly observed in tests with L = 1, 2, 9, 10m, and the effect sharply vanish as the training
set data increases.

Size effects account for the last portion of the prediction error. This is due to the fact that
as the depth of burial grows, so does the bearing capacity of the foundation. The RMSE
and MAE obtained in the figure reflect the actual errors after the inverse normalisation
adjustment. Hence, the larger the burial depth, the more significant the error generated from
the size effect. From L = 5m to L = 6m, the MAE is almost constant, but the prediction
error from the change in mechanism is actually decreasing and the boundary effect error has
not yet developed. This is because the increasing size effect error balances the decreasing
mechanism prediction error. Also, there is no significant change in MAE from L = 1m to
L = 2m. However, in reality, both the boundary effect and the mechanism prediction error
are decreasing, which is also balanced by the size effect error.

Finally, MAE is plotted as an example to represent the prediction error’s in three parts (in
Figure 5.2). The three errors are plotted qualitatively with indeterminate quantities. The
red line represents the prediction error for the mechanism change, the green line represents
the data boundary effect error, and the blue line represents the error arising from the size
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effect.

Figure 5.2: Three main components of MAE at different embedment depths

5.3 Extrapolation experiments to detect intrinsic mechanism
changes at different embedment depths

In the interpolation experiment, R2 captures the change in foundation failure mechanism
very well. However, the constant R2 value of 1 after L > 4m does not establish that the
failure mechanism of the foundation changes significantly from L = 4m. This led to the
design of extrapolation experiments in an attempt to find the transition point in the intrinsic
mechanism of the foundation. The extrapolation experiment was first used to verify the
conclusion reached in the previous section that the deep learning model can capture the
intrinsic mechanism of the foundation well for large burial depths, and is relatively poor at
predicting mechanism for small burial depths.

In prior interpolation experiment, the 80% training set and the 20% test set were randomly
split according to a preset ratio. While in extrapolation experiment, a specific buried depth
was artificially divided as the test set. The deep learning model, now trained on the rest of
the embedment depths data, will be evaluated to determine whether it can accurately predict
the entire behaviour of foundation at a particular depth of embedment. This corresponds to
utilizing 90% of the data for the training set and 10% of the data for the test set. Although
there are more trained data, the model still faces a significant challenge because it lacks data
for a particular depth. Only by identifying the underlying failure mechanism correctly from
existing data, network can make precise predictions. The data from L = 2m representing
small burial depths and L = 7m representing large burial depths were independently
evaluated in Figure 5.3.

In Figure 5.3, it is evident that the prediction results for the data buried at a depth of 7m
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(a) Prediction by other embedded depths data
trained model at L = 2m RMSE: 0.033 R2: 0.995
MAE: 0.024

(b) Prediction by other embedded depths data
trained model at L = 7m RMSE: 0.038 R2: 0.999
MAE: 0.025

Figure 5.3: Prediction by other embedded depths data trained model at L = 2m and L = 7m

are superior than those embedded at a depth of 2m. R2 remaining at 1 at a 7m burial depth
implies that the predictions are pretty precise, verifying the conclusions from the last section.
But at L = 7m, the value of RMSE increases from 0.016 in the interpolation experiment to
0.038 and MAE increases from 0.012 to 0.025. Meanwhile, R2 at L = 2m decreases from
0.999 to 0.995, and both RMSE and MAE increase. The predicted value of the extrapolation
experiment is obtained by the generalisation ability of the model, and the accuracy of the
prediction also decreases. This phenomenon indicates that the extrapolation experiments
are more challenging for the model than the interpolation experiments.

Based on prior knowledge in Chapter 3, it is known that the failure mechanism varies
with the embedment ratio. The experiment result indicates that the model only learns
the particular failure mechanism at large burial depths and is insensitive to variation in
mechanisms. Since the foundation’s failure mechanism is continuous over a range of burial
depths, i.e. the failure mechanism at a specific burial depth is close to the failure mechanisms
at the two adjacent embedded depths. Hence, the deep learning model is trained by utilizing
data from two neighboring embedded depths to predict the response forces for a particular
depth (e.g. training the neural network using data from L = 1m and L = 3m to predict the
response force at L = 2m). Both homogeneous and heterogeneous soils were tested and the
results are shown in Figure 5.4.

In the figure, the heterogeneous and homogeneous soils demonstrate the same pattern
of variation, with one poorly fitted positions appearing about 5 − 6m of burial depth,
respectively. The outstanding fit at burial depth of 4m suggests that burial depths of 3m,
4m and 5m share the same failure mechanism. Similarly the excellent predictions for burial
depths of 7m indicate the same failure mechanism for burial depths of 6m, 7m and 8m.
However, the inferior prediction between L = 5m and L = 6m indicates a transition point
(i.e. a switch of the failure mechanism) between these two burial depths. According to
Section 3.4, the foundation has two main failure mechanisms (scoop and scoop-slide), which
are swift with depth change. This mechanism transformation can be estimated reversely
from the neural network’s generalisation performance if the vector contours of L = 5m and
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Figure 5.4: Variation of R2 at different embedment depths in homogeneous and heterogeneous
soils

L = 6m prove this mechanism change.

According to the conclusions of Section 3.4, there is a change in the failure mechanism from
1 to 10m resulting in a positive and negative alternation in the horizontal forces. Figure 5.5
indicates that this transition should take place between L = 5m and L = 6m. At L = 4m,
the θ = 75◦ loading path for develops in a positive direction along the horizontal axis.
Moreover, in this direction, the shape of the loading path changes significantly, and the scoop
dominates the failure mechanism. When failure happens, the ultimate moment-bearing
capacity is first reached. Then the path gradually develops towards the ultimate value of the
horizontal force along the positive axis. At L = 5m, the loading path is almost perpendicular
to the transverse axis, and after reaching the ultimate state of the moment, the path develops
slightly along the positive horizontal axis. At this stage, the state of the loading path is
quite close to the condition of the uniaxial moment bearing capacity experiment. And when
L = 6m, the loading path shifts along the negative direction of the transverse axis, and
keeps developing towards the negative ultimate horizontal bearing capacity after contacting
the failure envelope. As the embedment depth steadily rises, the wedge caused by sliding
vanishes at the mudline, and the displacement vector shifts from right (at L = 4m in Figure
5.6(a)) to the left (at L = 6m in Figure 5.6(c)). Therefore, the shift in the general direction
of the loading paths make neural network more difficult to predict.

As two main failure mechanisms of foundation exist within the ten embedment depths, the
deep learning model can be split into two models to learn these two failure mechanisms
separately. It was observed whether the models would improve the foundation intrinsic
mechanism predictions. Therefore, 96,000 dataset was divided into 48,000 sets of data when
L <= 5m and 48,000 sets of data when L >= 6m to train two deep learning models (i.e.
small burial depth model and large burial depth model) respectively. Take training the small
buried depth deep learning model as an example, 80% of the 48,000 datasets when L¡5m
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(a) Data in ϕ = 90◦ at L = 4m and the path in
θ = 75◦ is marked by the red dot

(b) Data in ϕ = 90◦ at L = 5m and the path in
θ = 75◦ is marked by the red dot

(c) Data in ϕ = 90◦ at L = 6m and the path in
θ = 75◦ is marked by the red dot

Figure 5.5: Comparison of data at three embedment depths

were randomly selected as the training set, and the remaining 20% of the data were used for
interpolation test. The small burial depth model was also used for extrapolation experiments
to predict the failure mechanism of the foundation with large burial depths (6-10m). The
prediction is illustrated in Figure 5.7.

In the figure, the computational interpolation experiments result for both models are the same
as the predictions in Figure 5.1, indicating that splitting one model into two smaller models
to predict the foundation mechanism at different burial depths separately does not improve.
Meanwhile, the prediction accuracy of both models gradually decreased as the test set moved
away from the training set range when doing the extrapolation experiments. This is plausible
given that both models have only learnt a single failure mechanism and Lacks the capacity to
predict the other mechanism accurately. It is also worth pointing out that the small burial
depth model’s extrapolation predictions are superior to those of the large burial depth model.
The large burial depth model exhibits a negative R2 when predicting the foundation behavior
at L = 1m, indicating that the model’s predictions are extremely weak. This phenomenon
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(a) Mechanism in ϕ = 90◦ at L = 4m (b) Mechanism in ϕ = 90◦ at L = 5m

(c) Mechanism in ϕ = 90◦ at L = 6m

Figure 5.6: Comparison of mechanism at three embedment depths

Figure 5.7: Mechanism prediction under different embedment depths by two deep learning
models

also indicates that the mechanism changes faster in small burial depths than in large burial
depths, and the rate of mechanism change decreases with increasing burial depth. Also the
interpolation experiments of the small burial depth model are still lower than the predicted
results at L = 1m than at L >= 2m, demonstrating the rapid change of the mechanism here.

5.4 Extrapolation experiments to evaluate model generalisa-
tion ability

To further test deductions in Section 5.3 and the generalisation ability of the model. With
burial depths of L = 2.30m, L = 4.50m, andL = 7.80m, three new data sets were generated.
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At each burial depth, twelve completely new directions with θ = 37◦, 127◦, 217◦ and 307◦

respectively and ϕ = 40◦, 70◦ and 83◦ were chosen at random. This represents a new burial
depth and loading direction for the trained model. There are 100 data points in each load
combination and 1200 data points for each embedment depth.

The predictions at L = 2.30m, L = 4.50m, and L = 7.80m are shown in Table 5.1. The
deeper the burial depth, the better the prediction outcomes, demonstrating that the AI
model learns the failure mechanism in large burial depths more again. By comparing the
generalisation in different directions at the same burial depth. It can be found that there is
no obvious pattern between different θ predictions. And when ϕ = 40◦, the accuracy of the
prediction is significantly lower than the other two ϕ values, which is caused by the uneven
distribution of the data, resulting in a smaller amount of training data when ϕ is smaller.

Table 5.1: Generalisation prediction error at three new test sets

Data Direction θ=37° θ=127° θ=217° θ=307°

L = 2.3m

ϕ=40° RMSE: 0.012 RMSE: 0.015 RMSE: 0.015 RMSE: 0.019
R2: 0.470 R2: 0.883 R2: 0.765 R2: 0.644

ϕ=70° RMSE: 0.016 RMSE: 0.025 RMSE: 0.028 RMSE: 0.015
R2: 0.959 R2: 0.985 R2: 0.962 R2: 0.979

ϕ=83° RMSE: 0.026 RMSE: 0.023 RMSE: 0.030 RMSE: 0.023
R2: 0.443 R2: 0.996 R2: 0.853 R2: 0.977

L = 4.5m

ϕ=40° RMSE: 0.022 RMSE: 0.020 RMSE: 0.018 RMSE: 0.019
R2: 0.938 R2: 0.947 R2: 0.946 R2: 0.969

ϕ=70° RMSE: 0.019 RMSE: 0.019 RMSE: 0.020 RMSE: 0.015
R2: 0.996 R2: 0.997 R2: 0.994 R2: 0.997

ϕ=83° RMSE: 0.022 RMSE: 0.019 RMSE: 0.051 RMSE: 0.023
R2: 0.992 R2: 0.999 R2: 0.978 R2: 0.998

L = 7.9m

ϕ=40° RMSE: 0.027 RMSE: 0.029 RMSE: 0.024 RMSE: 0.046
R2: 0.997 R2: 0.996 R2: 0.992 R2: 0.979

ϕ=70° RMSE: 0.032 RMSE: 0.038 RMSE: 0.041 RMSE: 0.038
R2: 0.997 R2: 0.998 R2: 0.995 R2: 0.997

ϕ=83° RMSE: 0.052 RMSE: 0.028 RMSE: 0.064 RMSE: 0.029
R2: 0.995 R2: 0.999 R2: 0.995 R2: 0.999

The small burial depths model and large burial depths model were trained artificially by
splitting the data into small burial depths (L <= 5m) and large burial depths (L >= 6m)
according to the mechanistic variation between burial depths of 5m and 6m. Theoretically,
better predictions should be obtained. In Figure 5.7, this ”targeted training” of splitting
a model into two smaller models to learn the two failure mechanisms separately did not
improve in the interpolation test. However, this experiment did improve the generalisation
ability of the model at partial burial depths. In particular, the following table 5.2 was
obtained when the small burial depth model was used to evaluate generalisation ability at
L = 2.3m. The coefficient of determination (R2) of the prediction on L = 2.3m data improves
from 0.993 to 0.996, and the RMSE and MAE both decrease. However, the improvement is

87



still concentrated at larger ϕ rather than ϕ = 40◦. In contrast, the generalised prediction
performance of test sets at L = 4.5m and L = 7.9m decreased to some degrees. This
phenomenon shows that the generalisation ability atL = 4.5m is influenced by the data at
large burial depths and that the generalisation ability of L = 7.9m is influenced by the data
at small burial depths. Therefore, the mechanism of foundation cannot be simply divided
into two distinct failure mechanisms. In addition, there is a connection between these two
mechanisms, which shift progressively with depth.

Table 5.2: Generalisation abilities at L = 2.3m after training by divided data (Better perfor-
mance is viewed in green and same performance is viewed in light green)

Data Direction θ=37° θ=127° θ=217° θ=307°

RMSE: 0.012 RMSE: 0.015 RMSE: 0.015 RMSE: 0.019
ϕ=40°

R2: 0.470 R2: 0.883 R2: 0.765 R2: 0.644
RMSE: 0.016 RMSE: 0.025 RMSE: 0.028 RMSE: 0.015

ϕ=70°
R2: 0.959 R2: 0.985 R2: 0.962 R2: 0.979

RMSE: 0.026 RMSE: 0.023 RMSE: 0.030 RMSE: 0.023

Normal

ϕ=83°
R2: 0.443 R2: 0.996 R2: 0.853 R2: 0.977

RMSE: 0.013 RMSE: 0.020 RMSE: 0.017 RMSE: 0.010
ϕ=40°

R2: 0.365 R2: 0.858 R2: 0.191 R2: 0.963
RMSE: 0.010 RMSE: 0.024 RMSE: 0.017 RMSE: 0.026

ϕ=70°
R2: 0.978 R2: 0.978 R2: 0.972 R2: 0.982

RMSE: 0.033 RMSE: 0.023 RMSE: 0.024 RMSE: 0.026

Divided

ϕ=83°
R2: 0.848 R2: 0.996 R2: 0.914 R2: 0.987

5.5 Improvement of generalisation

The previous section has demonstrated that the failure mechanism of foundation is insep-
arable and can not improve generalisation results at different depths by splitting the deep
learning model into two models. This section will explore more approaches to improve the
generalisation of the model.

According to the theory, regularization is one of the primary ways to enhance neural
network generalisation. Regularization improves generalisation, e.g. by utilizing L1 Norm
and L2 Norm regularization, by restricting the complexity of the model and preventing
overfitting. The effect of L1 Norm and L2 Norm regularisation is often less pronounced in
deep learning models than in shallow machine learning models, especially in the case of over-
parameterisation, where the number of model parameters is much larger than the number of
training data. Therefore, when training deep learning models, other regularisation methods
are often used, such as data augmentation, early stopping, dropout, integrated methods,
etc. Since preventing model overfitting improves the model’s capacity for generalisation in
a sense. Therefore, the methods, such as early stop, change of batch size, and the Adam
optimiser, are employed in Section 4.3.2 to prevent overfitting, indicating that the model’s
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capacity to generalise has already been enhanced. In addition to the regularization methods
already used, there are two more feasible methods for improving generalisation (i.e. data
augmentation and model complexity change). Therefore, this section will further utilise data
augmentation and model complexity change to enhance the model’s generalisation ability.

Variance and bias are the crucial components of error, which evaluate fitness and precision
of model respectively (Fortmann-Roe, 2012). Contrary to variance, bias diminishes as model
complexity grows. The bias and variance of the two improvement methods are illustrated in
Figure 5.8.

(a) Change in error after data augmentation (b) Change in error after model complexity change

Figure 5.8: Bias and variance contributing to total prediction error in two improvement
methods

Data augmentation
In idealisation, a smaller bias exists and the variance changes negligibly in the generalisation
results after data augmentation. To demonstrate the error components in the original
model, the total error and bias curve are displayed in dashed lines. After data enhancement,
prediction errors are shown with solid lines. This approach does not alter the model’s
complexity (in Figure 5.8(a)). This reduction in inaccuracy is mostly attributable to the fact
that data boundary effects are reduced with data augmentation (i.e. it minimises prediction
bias by increasing the number of trainable data points), and data augmentation supports
the model with more data references. However, the variance of the prediction results from
the additional data remains unchanged. Hence the variance of the model does not improve
significantly. In the three generalisation test datasets, the prediction results at L = 7.9m
and L = 4.5m were better, while the prediction results at L = 2.3m were relatively poor. So
the approaches to improve the generalisation results is not only to improve the prediction
results at L = 2.3m, but also guarantee the good prediction performance at L = 4.5m and
L = 7.9m. Deep neural networks require a substantial amount of training data in order
to produce more accurate results. When the data is accessible, data augmentation can be
used to strengthen the model’s robustness and prevent overfitting. In particular, when the
embedment depth is 2.3m, the generalisation ability is constrained due to the small amount
of data available. Therefore, the 19200 training data at L = 1.5m and L = 2.5m are added to
improve the generalisation ability. After the data enhancement, the generalisation capability
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of the network was not significantly improved at L = 2.3m. Meanwhile the prediction
accuracy at both L = 4.5m and L = 7.9m has decreased. Because the mechanisms in the
small burial depths change so rapidly, data augmentation at small burial depths just hinder
the model’s ability to capture the specific mechanisms and mechanism change. Therefore,
the data augmentation failed, as evidenced by the decline in predictions across all three test
datasets.

(a) Impact of model complexity on generalisations
at L = 2.3m

(b) Impact of model complexity on generalisations
at L = 4.5m

(c) Impact of model complexity on generalisations
at L = 7.9m

Figure 5.9: Impact of model complexity on generalisations at three embedment depths

Model complexity change
In contrast, after model complexity increase, the generalisation results are less biased but
more variance. This approach increases the number of the neurons or the layers of hidden
and the complexity of input and output relationships at the same time. When the model is
too complex, its fitting capability improves, and model training becomes more difficult. Each
training epoch involves more occasionally. As a direct consequence, the prediction accuracy
of the model has improved and the robustness of the model is reduced correspondingly,
resulting in a reduced bias and more variance (in Figure 5.8(b)). There are two possible
scenarios for this approach; too high or too low a model complexity will result in a large pre-
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diction error, so it is necessary to first experiment to determine where the model complexity
lies. Then, the most suitable model complexity is chosen to improve the generalisation ability.

The experiments in this chapter were all implemented with a fully-connected neural network
with 128 neurons in the first hidden layer and 256 neurons in the second hidden layer,
indicated by (128,256). Eight controlled experiments were conducted by increasing and
decreasing the neurons in multiples, adjusting the model complexity. The simplest of these
neural network structures was (64, 64), and the most complex was (512, 1024), and the results
were calculated as shown in Figure 5.9. The three error evaluation metrics show similar
trends. The model structure (128, 256) is already very close to the optimal solution. As the
model’s complexity increases, the model’s prediction error shows a trend of first decreasing
and then increasing. Of the three evaluation metrics, R2 provides an excellent response to
changes in bias. Since RMSE is more sensitive to variance, the difference between RMSE
and MAE also provides an excellent response to changes in variance. The bias and variance
illustrate a generally consistent trend with Figure 5.8. Also the variation of RMSE, R2,
and MAE with depth is consistent with Figure 5.1. However, the optimal network structure
differs for different burial depths. At L = 7.9m, the optimal network structure is (256, 256),
and as the depth of burial reduces, the failure mechanism changes more rapidly, necessitating
a neural network with a higher degree of complexity to learn it. At L = 2.3m, the optimal
network structure is (256, 512). The prediction results of the optimal network structure at
L = 2.3m in each direction are shown in Table 5.3. In the table, the generalisation ability
has been improved in all directions. It shows that increasing the complexity of the model is
the most fundamental way to improve the generalisation ability of the model.

Table 5.3: Generalisation abilities at L = 2.3m after training by more complex model (Better
performance is viewed in green and same performance is viewed in light green)

Data Direction θ=37° θ=127° θ=217° θ=307°

RMSE: 0.012 RMSE: 0.015 RMSE: 0.015 RMSE: 0.019
ϕ=40°

R2: 0.470 R2: 0.883 R2: 0.765 R2: 0.644
RMSE: 0.016 RMSE: 0.025 RMSE: 0.028 RMSE: 0.015

ϕ=70°
R2: 0.959 R2: 0.985 R2: 0.962 R2: 0.979

RMSE: 0.026 RMSE: 0.023 RMSE: 0.030 RMSE: 0.023

Original model

ϕ=83°
R2: 0.443 R2: 0.996 R2: 0.853 R2: 0.977

RMSE: 0.012 RMSE: 0.009 RMSE: 0.013 RMSE: 0.014
ϕ=40°

R2: 0.916 R2: 0.971 R2: 0.933 R2: 0.954
RMSE: 0.014 RMSE: 0.013 RMSE: 0.015 RMSE: 0.016

ϕ=70°
R2: 0.978 R2: 0.993 R2: 0.975 R2: 0.986

RMSE: 0.017 RMSE: 0.014 RMSE: 0.017 RMSE: 0.018

Complexer model

ϕ=83°
R2: 0.987 R2: 0.996 R2: 0.955 R2: 0.995

5.6 Application of generalisation ability

One of the project’s primary objectives is to train the model with existing data and produce
a deep learning model capable of predicting the foundation’s response under new load
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combinations. This objective necessitates that the trained deep learning model not only
can predict with high accuracy but also the ability to generalise, as it is impossible to have
the foundation’s response under every potential load combination. The performance of the
FC-NN based model has been optimised by the improved generalisation ability in Section
5.5. For a given burial depth and soil strength profile, non-linear regression prediction for
the displacement-load relationship can predict the complete load response, including the
failure envelope. A caisson foundation with a burial depth of 3m in homogeneous soil is used
as a showcase. To better simulate the conditions in practice, L = 3m data is excluded from
the training set of the model. The data points on each loading path were not intercepted
to obtain the complete loading process. A total of 109,032 data points were obtained for
the remaining nine burial depths and were divided into 80% training set and 20% test
set. After training, the interpolation prediction error on the test set was RMSE = 0.004,
R2 = 1.000, MAE = 0.002. The generalisation (i.e. extrapolation test) error at L = 3m is
RMSE = 0.004, R2 = 0.998, MAE = 0.002, showing excellent accuracy and generalisation
ability. At L = 3m, additional 120 θ values and 25 ϕ values were set, making up 3000
new loading directions. After calculating the spherical coordinate equation, the ultimate
displacement values at 3000 directions were determined and inputted into the trained model.
The predictions were imported into Origin for surface fitting and compared with the true
values obtained from Abaqus calculations for 96 directions in Figure 5.10. The grey surface
in the figure is the predicted envelope fitted by 3000 points, the true values essentially fall
on the surface, indicating that the predictions are very accurate. This demonstrates that
the model can fit the foundation behaviour through the foundation configuration and soil
strength configuration. The data set of the neural network can also be continuously updated
and the model structure is easily adapted. This approach is more precise, adaptable and
comprehensive than only concentrating on the foundations’ ultimate bearing capacity.

Figure 5.10: Comparison of predicted envelope and true value at L = 3m
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5.7 Section conclusion

This chapter was an extension of Chapter 4. Further, it analysed the prediction and gener-
alisation ability of the FC-NN model for point-to-point mapping prediction by interpolation
and extrapolation experiments. The three main components of the model error were anal-
ysed through interpolation experiments on the model. By performing extrapolation tests
on multiple model test sets, the results once again proved that the failure mechanism of
the foundation changed with the depth of burial. Attempts were also made to enhance the
model’s generalisation ability by various approaches. To improve the model’s generalisation
in all loading directions on the new test set, altering the model’s complexity is preferable to
data augmentation. Finally, the improved model was utilised to accurately predict the failure
envelope at a given depth of burial.
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Conclusions and
recommendations 6
6.1 Conclusions

This study provides two new solutions by developing artificial intelligence (AI)-based
data-driven model to better investigate the three-dimensional response of different suc-
tion caissons under 3D loads. This two methods predict the mechanical response of the
foundation from point-to-point mapping and line-to-line mapping respectively. During re-
search process, geotechical and deep learning findings can be divided into the following points.

Failure envelope and mechanism
To train the neural network for deep learning, Abaqus was used to generate a significant
amount of data. The distribution of the H-V-M bearing capacity and the trend of the
envelope shape and size were used to validate the simulation results. This modeling’s
reference point was established at the mudline rather at the skirted tips. This deviation
generated from the location of reference points has led to a major modification in the
foundation’s failure mechanism. A comparison with experimental data from Bransby reveals
that this skirted foundation’s failure mechanism is more similar to that of a solid foundation.
At different embedment depths, the foundation was dominated by the scoop-slide failure
mechanism, with few internal scoop mechanism observed. Also, the failure mechanism
changes depending on the load combination. The failure envelopes of M-V and H-V do not
differ significantly, consistent with existing findings. In the study of the failure process under
H-M dimension, the failure mechanism of the foundation near Mmax and Hmax is close to a
double scoop failure mechanism. Its upper scoop is controlled by the clockwise overturning
moment of the foundation, and the lower scoop is generated by the reverse horizontal force,
and the two scoops are mutually suppressed. At θ = 165◦, the two scoops balance each
other, producing a slide-dominated failure mechanism. And the position of the centre of
scoop changes as the load combination changes.

Displacement-load relationship prediction
In the prediction of the displacement-load relationship , a FC-NN based surrogate modelling
approach is proposed to predict the foundation behaviour, making it possible to acquire a
complete loading process by inputting foundation configuration and soil profile. Prediction
of the displacement and load relationship by neural networks is more accurate and flexible
compared to the traditional general formulation. By training on Zhang’s data, this modelling
approach has higher computational accuracy and efficiency than the LSTM surrogate
modelling method in sand. The robustness and generalisation ability of the model were
also evaluated, demonstrating that it possesses high reproductivity, high stability, and good
generalisation ability. Even very “shallow” FC neural network model can learn the intrinsic
failure mechanisms of the caissons from raw data and predict their nonlinear mechanical
responses under complex loading effectively.
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Temporal prediction for the loading path
By predicting the loading paths for different load combinations, the behaviour of various
foundations is obtained. In the prediction of each loading path, it is feasible to predict the
complete path using 10% data points. This kind of time-series prediction has promising
applications for foundation monitoring and maintenance. It is possible that workers antici-
pate the future behavior of the foundation by using the collected data. The TCN model has
the highest accuracy in predicting H and V, but the LSTM model excels in predicting M.
This indicates that TCN model has great potential for application in the field of time series
prediction.

Interpolation and extrapolation tests
Analysing prediction errors at different burial depths by interpolation experiments proves
that the total prediction error can be decomposed into mechanism change error, size effect
error and data boundary effect error. Changes in the intrinsic mechanism can be inferred
between L = 5m and L = 6m by extrapolation experiments based on the performance of
the generalisation. Moreover, the FC-NN model can better capture the failure mechanism
at large burial depths than at small burial depths. The prediction of failure mechanisms
and foundation behaviour at small burial depths cannot be optimised by splitting the deep
learning model or data augmentation. The prediction of generalisations in different burial
depths and loading directions can only be optimised by modifying the model’s complexity.
Moreover, the foundation behaviour at small burial depths requires a more complex model
structure to predict, as the intrinsic failure mechanisms change faster at small burial depths.

In this research, the generalisation ability analysis is employed to infer the transition point of
the intrinsic failure mechanisms. This feasible strategy demonstrates that deep learning not
only has the ability to simulate the relationship between inputs and outputs adaptively, but
also to mine the intrinsic patterns of data through the generalisation ability. This method
provides a new direction of exploration in the geotechnical field combined with AI.

Comparison of deep learning models
In Section 4.4, the performance of different models is evaluated. The FC-NN model is the
simplest model and has most computationally efficient. But FC neural network is plagued
by temporal issues which can only be alleviated by adding additional neurons and making
the model more complex. This approach can’t capture long-term memory of the data.
The 1D-CNN has the same temporal issue, and its memory term can only be modified
by adjusting the size of the convolution kernel. The LSTM model can capture temporal
relationships very well. However, in the repetitive experiments, the LSTM prediction results
exhibited considerable fluctuations, showing that the model is less robust. 1D-CNN+LSTM
model extracts local features using CNN and global features via LSTM, which have good per-
formance in the tests of prediction accuracy. Complexity and difficulty in locating optimum
hyperparameters are the only disadvantages of the model. TCN enhances the field of vision
by incorporating dilation convolution and decreases model degradation with residual blocks.
TCN permits long-term memory and has the greatest prediction accuracy and robustness,
challenging the LSTM model in the temporal domain. The models’ merits and limitations
are summarized in Table 6.1 below. In summary, FC-NNs are already competent for the
displacement-load regression tasks, while 1D-CNNs and LSTMs are redundant and make the
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model’s training more challenging. In the time series task, a two-layer LSTM or 1D-CNN
model structure is sufficient, while models with more layers are difficult to train. TCNs can
avoid the problem of model degradation and can be configured with deeper layers to obtain
higher accuracy. Therefore, the TCN model is favored as a convenient method to investigate
the load response of foundations.

Table 6.1: Pros and cons of different models(Minus sign means poor performance; Plus sign
indicates good performance)

Model Efficiency Accuracy Robustness Memory Complexity

FC-NN ++ + + −− ++
LSTM −− ++ − ++ −
1D-CNN + ++ + − +

1D-CNN+LSTM − ++ + ++ −−
TCN + ++ ++ ++ −−

6.2 Limitations

Although this deep learning-based model has demonstrated excellent prediction accuracy,
applicability, robustness and generalization, there are still some limitations to the model.

- In Section 4.3.6, the ideal uniform and linear soil profiles are used for training the
model. The model performs poorly when trying to predict the foundation’s response
in the non-linear soil with this trained model. This phenomenon exposes the model’s
limitations in practical use because the soil strength profile is full of randomness in
reality.

- In Section 5.3, extrapolation experiments were performed to examine the intrinsic
mechanism changes at different burial depths. In Figure 5.7, when the large and small
burial depth models are extrapolated separately to predict other burial depths, the
prediction accuracy gradually decreases as the predicted burial depths are far from the
training set range. This is the second limitation of deep learning models, i.e., the deep
learning model cannot predict the foundation behaviour outside the training range
well.

Both of these limitations illustrate that deep learning is highly dependent on the validity
and scope of the training set data. In practical problems, obtaining very comprehensive and
practical training data is difficult, which limits further learning of the model. Moreover,
there are still many areas where the model can be improved and enhanced.
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6.3 Recommendations

There are some ideas in the research that have not been realised due to time constraints.
These future works will make the model more comprehensive and adaptable to a broader
variety of circumstances. These recommendations are given below.

- For the first limitation, a more complex nonlinear soil strength profile can be considered
by introducing the parameter of coefficient of variation and CPT data in the model.
The second limitation is the common problem with the deep learning method. A
feasible way to alleviate the problem is simulating the foundation geometry with
embedment ratios greater than 1 to increase the training set range.

- In this Abaqus simulation, only the Mohr-Coulomb constitutive model is used for
modeling, however nonlinear models such as the NGI-ADP model may also be em-
ployed. Different constitutive models’ predictions will be refined by more comparative
experimentation data. The soil strength heterogeneity index may be utilized as a
learnable parameter for the neural network, rather than simply as a discriminative
parameter for whether the soil is homogeneous or not. The dataset may be enhanced.
The trained model will be more general and widely adaptable.

- The experiments in laboratory or in-site may detect either displacements or forces
as data. Consequently, it is expected that the network will be able to forecast the
associated displacements after a given load. In this non-linear prediction, the force
may correspond to more than one displacement because the loading path contains
the response after foundation failure. This phenomena causes the model to predict
force-induced displacements with significant inaccuracy. This issue may be effectively
alleviated by truncating the data once the foundation fails.

- In time series prediction, the unequal distribution of data might lead the neural network
to focus on the elastic deformation section and ultimate state data, while neglecting
the response force developing and yielding. The loading path would be optimized via
linear interpolation, resulting in a more uniform data distribution and more precise
prediction. The neural network will also pay more attention to the general trend of the
path rather than just the beginning and endpoints.

- After the model has been trained, the neural network’s parameters may be visualized
and fitted formulas in a neural network can be extracted.These fitted formulas will
significant assistance in solving geotechnical problems and identifying potential internal
relationships between parameters.
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Appendix A
A.1 FEM Data

A.1.1 Code for batch production of inp files

1 function inp_generate3d

clear ;
clc ;
close all ;
phi = [15 , 3 0 , 6 0 , 7 5 , 8 0 , 8 5 , 8 8 , 9 0 ] ;

6 theta = 15 : 3 0 : 3 4 5 ;
for i = 1:12

for j = 1:8
filename = [ 'Caisson_1D.inp' ] ;
filename_new = [ 'Caisson_1D' , 'theta' , num2str ( theta (i ) ) ,'phi' ,

num2str ( phi (j ) ) ,'.inp' ] ;
11 fid_o = fopen ( filename ) ;

tline = fgets ( fid_o ) ;
file_to_open=[filename_new ] ;
fid_temp= fopen ( file_to_open , 'w+' ) ;
m = 1 ;

16 n = 1 ;
while ischar ( tline )

if m == 100821%H
tline=['_PickedSet22 , 1, 1, ' , num2str ( 0 . 2∗ sin ( phi (j ) /180∗

pi ) ∗cos ( theta (i ) /180∗pi ) ) , ',' , '\n' ] ;
end

21 if m == 100823%V
tline=['_PickedSet22 , 3, 3, ' , num2str ((−1)∗cos ( phi (j )

/180∗pi ) ) , ',' , '\n' ] ;
end

if m == 100825%M
tline=['_PickedSet22 , 5, 5, ' , num2str (0 . 02∗ sin ( phi (j )

/180∗pi ) ∗sin ( theta (i ) /180∗pi ) ) ,',' ,'\n' ] ;
26 end

fprintf ( fid_temp , tline , '\n\r' ) ;
tline = fgets ( fid_o ) ;
m=m+1;

end

31 fclose ( fid_temp ) ;
fclose ( fid_o ) ;

end

end
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A.1.2 Code for Abaqus automatical running

1 clc ;
clear ;
phi = [15 , 3 0 , 6 0 , 7 5 , 8 0 , 8 5 , 8 8 , 9 0 ] ;

for i=15:30:345
6 for j = 1:8

temp=num2str (i ) ;
temp1=num2str ( phi (j ) ) ;
filename=['Caisson_1_5Dtheta' ,temp , 'phi' , temp1 ] ;
disp ( filename )

11 eval ( [ 'dos(''abaqus job=' , filename , ' cpus=8 int'')' ] ) ;
pause (1 ) ;

end

end

A.1.3 Data point in Homogeneous soil

(a) Data point at L = 1m (b) Data point at L = 2m

(c) Data point at L = 3m (d) Data point at L = 4m
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(g) Data point at L = 5m (h) Data point at L = 6m

(i) Data point at L = 7m (j) Data point at L = 8m

(k) Data point at L = 9m (l) Data point at L = 10m

Figure A.0: 3D Data point at L = 1− 10m calculated by FE analysis

A.2 Deep learning model Code

0 # -*- coding: utf -8 -*-

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from numpy import concatenate

5 from sklearn.preprocessing import MinMaxScaler
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from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

from keras.models import Sequential

from keras.layers import Dropout

10 from keras.layers import Dense , Activation

from keras.layers import LSTM

from keras.layers import LeakyReLU

from keras.layers.core import Flatten

import keras.backend as K

15 from keras.callbacks import LearningRateScheduler

from keras.models import load_model

import torch

import torch.nn as nn

import torch.optim as optim

20 from math import sqrt

from math import sin

from math import cos

from math import pi

from sklearn.metrics import mean_squared_error ,r2_score

25 import tensorflow as tf

from sklearn.model_selection import train_test_split

from google.colab import drive

drive.mount('/content/drive ')
np.random.seed(7)

30 split = 96000

split1 = 97200

finish = 98400

# IMPORTING DATASET

dataset = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/flexdirection.

csv',usecols=[0,1,2,3,4,5,6])
35 dataset = dataset.astype('float32 ')

scaler = MinMaxScaler(feature_range=(-1, 1)) # scalar

dataset = scaler.fit_transform(dataset) #1

X = dataset[0:split , 0:4]

Y = dataset[0:split , 4:7]

40 train_X , test_X , train_y , test_y = train_test_split(X, Y, test_size = 0.2,

random_state = 8)

train_X.shape ,test_X.shape ,train_y.shape ,test_y.shape ,train_X ,train_y

##### Build model #######

model = Sequential ()

model.add(Dense(units=256 ,input_dim=4))

45 model.add(Activation('relu'))
model.add(Dense(units=256 ,activation='relu'))
model.add(Dense(3))

model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(learning_rate = 0

.001),metrics=['accuracy '])
model.summary ()#Show model structure

50 history = model.fit(train_X , train_y , epochs=100 , batch_size=128 ,

validation_split=0.1, verbose=1,

shuffle=True)

hist = pd.DataFrame(history.history)

hist['epoch '] = history.epoch

hist.tail()#Record training history data

##### plot loss curve ######

55 plt.plot(history.history['loss'])
plt.plot(history.history['val_loss '])
plt.title('Model loss')
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plt.ylabel('MSE Loss')
plt.xlabel('Epoch ')

60 plt.legend(['Train set', 'Validation set'], loc='upper right')
plt.show()

####### Model Prediction ######

yhat = model.predict(test_X)

yhat.shape ,test_X.shape

65 ###### Convert to true value ######

inv_yhat = concatenate (( test_X[:, :],yhat ), axis=1)

testPredict_out = scaler.inverse_transform(inv_yhat)

inv_yhat = testPredict_out[:,4:]

inv_y = concatenate (( test_X[:, :],test_y ), axis=1)

70 testY = scaler.inverse_transform(inv_y)

inv_y = testY[:,4:]

###### Model Evaluation ######

rmse = sqrt(mean_squared_error(inv_y , inv_yhat))#RMSE

75 r2=r2_score(inv_y , inv_yhat)# R^2

mae=mean_absolute_error(inv_y , inv_yhat)# MAE

print(inv_yhat.shape )

print(inv_y.shape )

print('Test RMSE: %.3f' % rmse)

80 print('Test R 2 %.3f' % r2)

print('Test M A E %.3f' % mae)

###### Plot every loading path in H, V, and M######

plt.rcParams['figure.figsize '] = (4.0, 4.0)

85 inv_yhat1 = inv_yhat[:,0]

inv_y1 = inv_y[:,0]

plt.scatter(inv_yhat1 ,inv_y1 , s=2 ,color='', marker='o', edgecolors='r',label=
'true')

plt.plot([-4.0, 4.0],[-4.0, 4.0],'#000000 ')
plt.xlim(-4.0, 4.0)

90 plt.ylim(-4.0, 4.0)

#plt.title('Model loss ')
plt.ylabel('Abaqus dimensionless calculation ')
plt.xlabel('FC-NN dimensionless prediction ')

95 #plt.text(0.1, 0.1, s="R2=0.712 MAE=0.157")

#plt.legend(['R20.712 ', 'MAE0.157 '], loc='upper right ')
plt.figure(figsize=(900 , 900))

plt.show()

inv_yhat1 = inv_yhat[:,1]

100 inv_y1 = inv_y[:,1]

plt.scatter(inv_yhat1 ,inv_y1 , s=2 ,color='', marker='o', edgecolors='r',label=
'true')

plt.plot([-6.0, 0],[-6.0, 0],'#000000 ')
plt.xlim(-6.0, 0)

plt.ylim(-6.0, 0)

105
#plt.title('Model loss ')
plt.ylabel('Abaqus dimensionless calculation ')
plt.xlabel('FC-NN dimensionless prediction ')
#plt.text(0.1, 0.1, s="R2=0.712 MAE=0.157")

110 #plt.legend(['R20.712 ', 'MAE0.157 '], loc='upper right ')
plt.figure(figsize=(900 , 900))

plt.show()
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inv_yhat1 = inv_yhat[:,2]

inv_y1 = inv_y[:,2]

115 plt.scatter(inv_yhat1 ,inv_y1 , s=2 ,color='', marker='o', edgecolors='r',label=
'true')

plt.plot([-2.0, 2.0],[-2.0, 2.0],'#000000 ')
plt.xlim(-2.0, 2.0)

plt.ylim(-2.0, 2.0)

120 #plt.title('Model loss ')
plt.ylabel('Abaqus dimensionless calculation ')
plt.xlabel('FC-NN dimensionless prediction ')
#plt.text(0.1, 0.1, s="R2=0.712 MAE=0.157")

#plt.legend(['R20.712 ', 'MAE0.157 '], loc='upper right ')
125 plt.figure(figsize=(900 , 900))

plt.show()

A.3 Deep learning model structure and training procedure

Figure A.1: FC neural network structure
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Figure A.2: LSTM model network structure

Figure A.3: 1D-CNN model network structure
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Figure A.4: 1D-CNN+LSTM model network structure
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Figure A.5: TCN model network structure
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Géotechnique, 57(9):715–728.

Gourvenec, S. (2008). Effect of embedment on the undrained capacity of shallow foundations
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