

Delft University of Technology

FEVERLESS
Fast and Secure Vertical Federated Learning based on XGBoost for Decentralized Labels
Wang, Rui; Ersoy, Oguzhan; Zhu, Hangyu; Jin, Yaochu; Liang, Kaitai

DOI
10.1109/TBDATA.2022.3227326
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Big Data

Citation (APA)
Wang, R., Ersoy, O., Zhu, H., Jin, Y., & Liang, K. (2024). FEVERLESS: Fast and Secure Vertical Federated
Learning based on XGBoost for Decentralized Labels. IEEE Transactions on Big Data, 10(6), 1001-1015.
https://doi.org/10.1109/TBDATA.2022.3227326

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TBDATA.2022.3227326
https://doi.org/10.1109/TBDATA.2022.3227326

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

FEVERLESS: Fast and Secure Vertical
Federated Learning Based on XGBoost

for Decentralized Labels
Rui Wang , O�guzhan Ersoy , Hangyu Zhu, Yaochu Jin , Fellow, IEEE, and Kaitai Liang ,Member, IEEE

Abstract—Vertical Federated Learning (VFL) enables multiple clients to collaboratively train a global model over vertically partitioned

data without leaking private local information. Tree-based models, like XGBoost and LightGBM, have been widely used in VFL to

enhance the interpretation and efficiency of training. However, there is a fundamental lack of research on how to conduct VFL securely

over distributed labels. This work is the first to fill this gap by designing a novel protocol, called FEVERLESS, based on XGBoost.

FEVERLESS leverages secure aggregation via information masking technique and global differential privacy provided by a fairly and

randomly selected noise leader to prevent private information from being leaked in the training process. Furthermore, it provides label

and data privacy against honest-but-curious adversaries even in the case of collusion of n� 2 out of n clients. We present a

comprehensive security and efficiency analysis for our design, and the empirical results from our experiments demonstrate that

FEVERLESS is fast and secure. In particular, it outperforms the solution based on additive homomorphic encryption in runtime cost

and provides better accuracy than the local differential privacy approach.

Index Terms—Differential privacy, privacy preservation, secure aggregation, vertical federated learning, XGBoost

Ç

1 INTRODUCTION

TRADITIONAL centralized deep learning models, demand-
ing to collect a considerable amount of clients’ data to

maintain high accuracy, to some degree, may increase the
risk of data breaches. Data may not be easily shared among
different entities due to privacy regulations and policies. To
tackle this “Data Island” problem [1], Google proposed Fed-
erated Learning (FL) [2] to allow multiple clients to train a
global model without sharing private data. The basic para-
digm of FL is that all clients train local models with their
own data, and then the information of local models,
e.g., gradients, may be exchanged to produce a global
model.

Based on different types of data partition [1], FL can be
mainly categorized into Horizontal Federated Learning
(HFL) and Vertical Federated Learning (VFL). The former
focuses on training with horizontally partitioned data
where clients share the same feature space but differ in data
index set. Several research works [3], [4], [5], [6] have found
that training data of HFL is still at high risk of leakage
although private data is kept locally. Other studies [7], [8],
[9], [10], [11] have been dedicated to enhancing the security
of HFL. On the contrary, VFL is mainly applied in the sce-
nario of training with vertically partitioned data [12], [13]
where clients share the same data index set but differ in fea-
ture space. In this article, our principal focus is to achieve
privacy-preserving training on VFL.

To the best of our knowledge, many existing studies [12],
[13], [14], [15], [16], [17], [18] have proposed innovative
approaches to prevent private information breaches in the
context of VFL. Specifically, [14] introduced encryption-
based privacy-preserving logistic regression to safeguard
the information of data indexes. [15] gave a comprehensive
discussion on the impact of ID resolution. [17] introduced a
scheme without using a coordinator for a limited number of
clients. Recently, [16] proposed an asymmetrically VFL
scheme for logistic regression tackling privacy concerns on
ID alignment.

Unlike the training models used in the aforementioned
works, XGBoost [18], which is one of the most popular mod-
els applied in VFL, can provide better interpretation, easier
parameter tuning, and faster execution than deep learning
in tabular data training [19], [20]. These practical features
and advantages draw academia and industry’s attention to
the research on XGBoost, especially in the privacy-preserv-
ing context. [12] introduced an approach for tree-based

� Rui Wang and Kaitai Liang are with the Department of Intelligent Sys-
tems, Delft University of Technology, 2628 XE Delft, The Netherlands.
E-mail: {r.wang-8, kaitai.liang}@tudelft.nl.

� O�guzhan Ersoy is with the Institute for Computing and Information Sci-
ences, Radboud University, 6525 EC Nijmegen, The Netherlands, and also
wtih the Department of Intelligent Systems, Delft University of Technol-
ogy, 2628 XE Delft, The Netherlands.

� Hangyu Zhu is with the School of Artificial Intelligence and Computer Sci-
ence, Jiangnan University, Wuxi, Jiangsu 214126, China. E-mail: hangyu.
zhu@jiangnan.edu.cn.

� Yaochu Jin is with the Faculty of Technology, Bielefeld University, 33619
Bielefeld, Germany, and also with the Department of Computer Science, Uni-
versity of Surrey, GU2 7XHGuildford, U.K. E-mail: yaochu.jin@surrey.ac.uk.

Manuscript received 19 May 2022; revised 2 November 2022; accepted 5
December 2022. Date of publication 7 December 2022; date of current version
13 November 2024.
This work was supported by European Union’s Horizon 2020 research and
innovation programme under Grants 952697 (ASSURED) and 101021727
(IRIS).
(Corresponding author: Rui Wang.)
Recommended for acceptance by Jesus M. Cortez.
Digital Object Identifier no. 10.1109/TBDATA.2022.3227326

IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2024 1001

2332-7790 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8495-3631
https://orcid.org/0000-0001-8495-3631
https://orcid.org/0000-0001-8495-3631
https://orcid.org/0000-0001-8495-3631
https://orcid.org/0000-0001-8495-3631
https://orcid.org/0000-0002-6428-4212
https://orcid.org/0000-0002-6428-4212
https://orcid.org/0000-0002-6428-4212
https://orcid.org/0000-0002-6428-4212
https://orcid.org/0000-0002-6428-4212
https://orcid.org/0000-0003-1100-0631
https://orcid.org/0000-0003-1100-0631
https://orcid.org/0000-0003-1100-0631
https://orcid.org/0000-0003-1100-0631
https://orcid.org/0000-0003-1100-0631
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0003-0262-7678
mailto:r.wang-8@tudelft.nl
mailto:kaitai.liang@tudelft.nl
mailto:hangyu.zhu@jiangnan.edu.cn
mailto:hangyu.zhu@jiangnan.edu.cn
mailto:yaochu.jin@surrey.ac.uk

model training through a hybrid method composing homo-
morphic encryption and secure Multi-Party Computation
(MPC) [21], [22]. After that, [13] proposed a similar system
to train XGBoost [18] securely over vertically partitioned
data by using Additively Homomorphic Encryption (AHE).
By applying Differential Privacy (DP) [23], [24] designed a
VFL system to train GBDT without the need of encryption/
decryption.

However, most of the above solutions based on AHE and
MPC do not scale well in terms of efficiency on training
XGBoost. Beyond that, all the existing schemes basically
assume that training labels are managed and processed by a
sole client. In practice, a VFL scheme supporting distributed
labels is necessary. For instance, multiple hospitals, clinics
and health centers currently may be set to COVID-19 test
spots and aim to train a model, e.g., XGBoost, to predict
with good interpretation if citizens (living in various loca-
tions) are infected based on their health records and symp-
toms. In this context, the labels (and their values), e.g., the
test results, are likely distributed among different health
authorities - even targeting to the same group of patients,
and feature space is vertically portioned. For example, a car-
diac hospital only maintains heart data for the patients,
while a psychiatric center holds the mental records, in
which both authorities may collect and manage each of its
registered patient’s label locally. Another common scenario
could be in the financial sector where multiple bank
branches and e-commerce companies prefer to build a
global model to predict if their customers may pay for some
service (e.g., car loan) on time. The banks have part of fea-
tures about the customers (e.g., account balance, funding in-
and-out records), while the companies may obtain other fea-
tures (e.g., payment preference). Since the customers may
get the same service, e.g., loan, from different institutions, it
is clear that labels must be distributed rather than central-
ized. In addition to efficiency and functionality aspects, one
may also consider capturing stronger security for VFL.
Training an XGBoost usually should involve the computa-
tion of first and second-order derivatives of the loss function
(note gradients and hessians contain labels’ information),
and the aggregation of them is required in each round. In
the context where the labels (and their values) are held by
different clients, if the gradients and hessians are transmit-
ted in the form of plaintexts and the summations of them
are known to an aggregator (who could be one of the clients
engages in training), inference and differential attacks (Sec-
tion 3.3) will be easily conducted by the aggregator, result-
ing in information leakage.

To tackle these problems, we propose a fast and secure
VFL protocol, FEVERLESS, to train XGBoost on distributed
labels without disclosing both feature and label value. In
our design, privacy protection is guaranteed by secure
aggregation (based on a masking scheme) and Global Dif-
ferential Privacy (GDP). We leverage masking instead of
heavy-cost multiparty computation and we guarantee a
“perfect secrecy” level for the masked data. In GDP, we use
Verifiable Random Function (VRF) to select a noise leader
per round (who cannot be predicted and pre-compromised
in advance) to aggregate noise from “selected” clients,
which significantly maintains model accuracy.

Our contributions can be summarized as follows.

(1) We define VFL in a more practical scenario where
training labels are distributed over multiple clients. Beyond
that, we develop FEVERLESS to train XGBoost securely and
efficiently with the elegant combination of secure aggrega-
tion technique (based on Diffie-Hellman (DH) key exchange
and Key Derivation Function (KDF) and GDP.

(2) We give a comprehensive security analysis to demon-
strate that FEVERLESS is able to safeguard label value and
feature privacy in the semi-honest setting, but also maintain
robustness even for the case where n� 2 out of n clients
commit collusion.

(3) We implement FEVERLESS and perform training time
and accuracy evaluation on different real-world datasets.
The empirical results show that FEVERLESS can maintain
efficiency and accuracy simultaneously, and its performance
is comparable to the baseline - a ”pure” XGBoost without
using any encryption and differential privacy. Specifically,
training the credit card and bank marketing datasets just
takes 1% and 6.5%more runtime than the baseline andmean-
while, the accuracy is only lower than that of the baseline by
0.9% and 3.21%, respectively.1

2 PRELIMINARIES

2.1 Xgboost

XGBoost [18] is a popular tree-based model in tabular data
training that can provide better interpretation, easier
parameters tuning and faster execution speed than deep
learning [19], [20]. It also outperforms other well-known
boosting tree systems in terms of accuracy and efficiency,
like Spark MLLib [25] and H2O [18], especially for large-
scale datasets. Therefore, in this paper, we consider using
XGBoost as a building block for classification tasks.

Assume that a training set withm data points composing
with feature space X ¼ fx1; . . . ; xmg and label space Y ¼
fy1; . . . ; ymg. Before training starts, every feature will be
sorted based on its values, and split candidates will be set
for features. XGBoost builds trees based on the determina-
tion of defined split candidates and some pruning condi-
tions. Specifically, computing gradients and hessians first
according to Eqs. (1) and (2) for each data entry, where
y
ðt�1Þ
i denotes the prediction of previous tree for i-th data
point, and yi is the label of ith data point:

gi ¼ 1

1þ e�y
ðt�1Þ
i

� yi ¼ ŷi � yi; (1)

hi ¼ e�y
ðt�1Þ
i

ð1þ e�y
ðt�1Þ
i Þ2

: (2)

For splitting nodes, the XGBoost algorithm determines
the best split candidate from all others based on maximum
Lsplit in Eq. (3), where � and g are regularization parameters:

Lsplit ¼ 1

2

" P
i2IL giP

i2IL hi þ �
þ

P
i2IR giP

i2IR hi þ �
�

P
i2I giP

i2I hi þ �

#
� g:

(3)

1. For banknote authentication dataset, FEVERLESS takes 13.96%
more training time than the baseline, and the accuracy is 30.4% lower.
This is because the model is trained by a small-scale dataset, so that the
robustness is seriously affected by noise.

1002 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2024

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

The current node will be the leaf node if the following
conditions are fulfilled: reaching the maximum depth of
tree, the maximum value of impurity is less than a preset
threshold. The calculation of the leaf value follows:

w ¼ �
P

i2I giP
i2I hi þ �

: (4)

2.2 Diffie-Hellman Key Exchange

Based on Decision Diffie-Hellman (DDH) hard problem [26]
defined below, Diffie-Hellman key exchange (DH) [27] pro-
vides a method used for exchanging keys across public
communication channels. Without losing generality and
correctness, it consists of a tuple of algorithms (Param.Gen,
Key.Gen, Key.Exc). The algorithm ðG; g; qÞ Param.Gen
ð1aÞ generates public parameters (a group G with prime
order q generated by a generator g) based on secure parame-
ter a. ðski; pkiÞ Key:GenðG, g, qÞ allows client i to gener-

ate secret key (ski �Zq

$

) and compute public key
(pki gski). Shared key is computed by ðpkskji ; pk

ski
j Þ

Key:Excðski; pki; skj; pkjÞ. Inspired by [22], [28], we utilize
shared keys as maskings to protect the information of labels
against inference attacks during transmission in public
channels. The correctness requires pk

skj
i ¼ pk

ski
j . The secu-

rity relies on the DDH problem [26], which is defined as:

Definition 2.1 (Decision Diffie-Hellman). Let G be a
group with prime order q and g be the fixed generator of the
group. The Probabilistic Polynomial Time (PPT) adversary A
is given and ga and gb where a and b are randomly chosen. The
probability of A distinguishing ðga; gb; gabÞ and ðga; gb; gcÞ for
a randomly chosen c is negligible:

Pr a; b �Zq

$

: Aðg; ga; gb; gabÞ ¼ true

� �����
�Pr a; b; c �Zq

$

: Aðg; ga; gb; gcÞ ¼ true

� ����� < neglðaÞ:

2.3 Pseudo-Random Generator and Hash Function

Pseudo-Random Generator (PRG) [29] is an algorithm that
is able to generate random numbers. The ”pseudo-random”
here means that the generated number is not truly random
but has similar properties to a random number. Generally,
the pseudo-random numbers are determined by given ini-
tial values a.k.a seeds. In cryptographic applications, a
secure PRG requires attackers not knowing seeds can distin-
guish a truly random number from an output of PRG with a
negligible probability. Similar to PRG, the hash function
allows mapping arbitrary sizes of data to a fixed bit value.
For reducing the communication cost of FEVERLESS, we
use SHAKE-256 [30], one of the hash functions in SHA-3

[31] family, to generate the customized size of maskings.

2.4 Key Derivation Function

Key Derivation Function (KDF) [32] is a kind of hash func-
tion that derives multiple secret keys from the main key by
utilizing Pesudo-Random Function (PRF) [33]. In general,
KDF algorithm DK KDF ðmainkey; salt; roundsÞ derives
keys DK based on the main key, a cryptographic salt and
the current round of processing algorithm. The security

requires a secure KDF that is robust for brute-force attacks
or dictionary attacks. Inspired by [34] where key shares gen-
erated by DH key exchange are converted to AES keys, in
this paper, we use KDF to generate maskings for every
round to reduce communication costs. The main key we use
is generated by DH key exchange.

2.5 Verifiable Random Function

Verifiable Random Function (VRF) [35] is a PRF providing
verifiable proof of the correctness of outputs. It is a tool
widely used in cryptocurrencies, smart contracts and leader
selection in distributed systems [36]. Basically, given an
input x, a signature scheme and a hash function, a practical
leader selection scheme with VRF [36] works as:

Sleader HðsignskiðxÞÞ) (5)

where ski is the secret key for i-th client, and the maximum
leader score Sleader is used to determine leader. The security
and unforgeability of VRF require that the signature scheme
has the property of uniqueness, and the hash function is
able to map the signature to a random string with a fixed
size. The correctness of this Sleader is proved by the signature
of x.

2.6 Differential Privacy

Differential Privacy (DP) [37], [38] is a data protection sys-
tem targeting on the publishing of statistical information of
datasets while keeping individual data private. The security
of DP requires that adversaries cannot distinguish statistical
change between two datasets where an arbitrary data point
is different.

The most widely used DP mechanism is called ð�; dÞ-DP
requiring less noise injected than originally proposed �-DP
but with the same privacy level. The formal definition is
given as follows.

Definition 2.2. (ð�; dÞ - Differential Privacy) Given two real
positive numbers ð�; dÞ and a randomized algorithm A: Dn !
Y, the algorithm A provides ð�; dÞ - differential privacy if for all
data sets D, D0 2 Dn differing in only one data sample, and all
S � Y:

Pr½AðDÞ 2 S� � expð�Þ � Pr½AðD0Þ 2 S� þ d: (6)

Note the noiseN � Nð0;D2s2Þwill be put into the output
of the algorithm, where D is l2 - norm sensitivity of D and

s ¼ ffi
2 lnð1:25=dÞp

[39].

3 PROBLEM FORMULATION

3.1 System Model

We here make some assumptions on our system. We sup-
pose that a private set intersection [40], [41] has been used
to align data IDs before the training starts, so that each client
shares the same data index space I . But the names of fea-
tures are not allowed to share among clients. As for the rela-
tionship of label tagging (indexes indicating a label belongs
to which client, e.g., the label a is held by client A;B), we
will consider that this can be known to the public in
advance. But this assumption does not mean that the label

WANG ETAL.: FEVERLESS: FASTAND SECURE VERTICAL FEDERATED LEARNING BASED ON XGBOOST FOR DECENTRALIZED... 1003

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

“value” is leaked. For instance, client C knows that client
A;B have a, but it does not know the specific value of a. We
also consider that the training is conducted on a dataset
with m samples composing with feature space X ¼
fx1; . . . ; xmg, each containing f features, and label set Y ¼
fy1; . . . ; ymg. Besides, features fXðcÞj j j 2 f1; . . . ; fgg and
labels fyðcÞi j i 2 f1; . . . ;mgg are held among n clients where
each client has at least one feature and one label. X

ðcÞ
j and

y
ðcÞ
i refer to j-th feature and i-th label owned by c-th client,
respectively. Note we summarize the main notations in
Table 1.

Considering a practical scenario wherein training labels
are distributed among clients, we propose a new variant of
VFL, named VFL over Distributed Labels (DL-VFL). The
concrete definition is given as follows.

Definition 3.1 (DL-VFL). Given a training set with m data
samples consisting of feature space X , label space Y, index space
I and clients set C, we have:

X c \ X c0 ¼ ;; Yc \ Yc0
��� ��� < m; I c ¼ I c0 ; 8c; c0 2 C; c 6¼ c0:

Remarks. Different clients hold the subset of X sampled
from feature space. A client c participating DL-VFL shares
the same sample ID space I with the corresponding labels,
where a single label may be tagged to multiply clients (1-to-
many case), for example, the label a! client A; B. One
may easily see the special case where a single label is
assigned to only one client (i.e. Yc \ Yc0 ¼ ;), 1-to-1 case.
Recall that the “tagging” relationship between label and cli-
ent can be publicly known. Based on this assumption, our
experiments are conducted in 1-to-1 cases for simplicity. We
state that the designed experiments are also compatible

with 1-to-many cases. This is so because the assumption
allows the source client (which is defined below) to have
knowledge of label holders, so that it can request “distinct”
and missing labels from those holders, e.g., requesting a
from either client A or B. Note as for 1-to-many, the size of
missing labels, jmIDsj, could be smaller than 1-to-1, which
may require less communication cost and runtime.

We will further require the participation of the source cli-
ent and noise leader in our design. And they are defined as
follows.

Definition 3.2 (Source client). A source client with split can-
didates wants to compute the corresponding Lsplit based on
Eq. (3). But some labels are missing so that

P
gi and

P
hi are

unable to derive.

For the case that a source client does not hold all labels in
the current split candidates, we propose a solution based on
secure aggregation and global differential privacy to help
the source client to compute Lsplit while safeguarding other
clients’ privacy. Note each client may have a chance to act
as a source client because all the labels are distributed,
where the source client leads the Lsplit computation, and cli-
ents provide missing label values to the source client.

To achieve GDP, we define a noise leader who is selected
fairly and randomly from all clients (except for the source cli-
ent) - preventing clients frombeing compromised beforehand.

Definition 3.3 (Noise leader). By using VRF, a noise leader is
responsible for generating the maximum leader score , aggregat-
ing differentially private noise from a portion of clients and
adding the noise to the gradients and hessians.

3.2 Threat Model

Wemainly consider potential threats incurred by participating
clients and outside adversaries. We assume that all clients are
honest-but-curious, which means they strictly follow designed
algorithms but try to infer the private information of others
from the received messages. Besides, we also consider up to
n� 2 clients’ collusion to conduct attacks, and at least one
non-colluded client adds noise per round. Through authenti-
cated channels, DH key exchange can be securely executed
among clients. Other messages are transmitted by public chan-
nels, and outside attackers can eavesdrop on these channels
and try to reveal information about clients during the whole
DL-VFL process. Note this paper mainly focuses on solving
privacy issues in training DL-VFL based on XGBoost. Thus,
other attacks, like data poisoning and backdoor attacks deteri-
orating model performance, are orthogonal to our problem.

3.3 Privacy Concern

Since we assume feature names are not public information
for all clients, and the values of features never leave clients,
privacy issues are mainly incurred by the leakage of label
information.

3.3.1 Inference Attack

During the training process, gradients and hessians are sent
to the source client for Lsplit computation. For the classifica-
tion task, the single gradient is in the range ð�1; 0Þ [ð0; 1Þ
for binary classification. According to Eq. (1), a label can be

TABLE 1
Notations Summary

Notation Description

X feature space
X
ðcÞ
j j-th feature owned by c-th client

xi i-th data point with d features
Y label space
y
ðcÞ
i the label of i-th data point owned by c-th client

I data index space
C clients set
g
ðcÞ
i the gradient of i-th data point owned by c-th client

h
ðcÞ
i the hessian of i-th data point owned by c-th client

G summation of gradients
H summation of hessians
m number of data entries
n number of clients
f number of features
d the maximum depth of tree
�; d parameters of differential privacy
Dg sensitivity of gradients
Dh sensitivity of hessians
Lsplit impurity score
w leaf value
pkc public key generated by c-th client
skc secret key owned by c-th client
g generator of multiplicative group
Bj

z z-th bucket of j-th feature

1004 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2024

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

inferred as 1 and 0 if the range is ð�1; 0Þ and (0,1), respec-
tively. Besides, hessian illustrated in Eq. (2) can leak a pre-
diction of the corresponding data sample. With training
processing, the prediction is increasingly closer to a true
label. The source client and outside attackers can infer the
true label with high probability. Gradients and hessians
cannot be transmitted in plaintext. We thus use a secure
aggregation scheme to protect them from inference attacks.

3.3.2 Differential Attack

The differential attack can happen anytime and many times
during the calculation of gradients and hessians. Fig. 1
describes an example of a differential attack taking place in
a single node split. After sorting feature1, the semi-honest
source client defines 2 split candidates and further com-
putes Gf2;5g ¼ g2 þ g5 and Gf1;2;3;5g ¼ g2 þ g5 þ g1 þ g3 for
the candidates 1 and 2, respectively. Since the source client
holds label 2, even if Gf2;5g is derived by secure aggregation,
the g5 still can be revealed by Gf2;5g � g2.

Another example of differential attack is shown in Fig. 2.
Assume split candidate 1 is the one for splitting the root
node. In the current tree structure, the source client may
split the right node by computing Lsplit of split candidate 2.
In this case, Gf1;3g should be aggregated by the source client.
And the g5 can be revealed by Gf1;2;3;5g �Gf1;3g � g2, where
Gf1;2;3;5g is computed in the previous node.

4 A PRACTICAL PRIVACY-PRESERVING PROTOCOL

4.1 FEVERLESS Protocol Description

To prevent a source client from knowing gradients and hes-
sians sent by other clients, one may directly use MPC [42]
based on AHE [12], [43]. But this method yields expensive
computation costs. Getting rid of the complex mechanism
like MPC, we leverage secure aggregation protocol via
masking scheme based on DH key exchange [22], [24], [28].
By further using KDF and Hash Function, our masking (for
gradients and hessians) can be derived without exchanging
keys per training round. Our approach significantly reduces
the communication cost but still maintains the robustness
up to n� 2 colluded clients. Meanwhile, the secure aggrega-
tion can provide “perfect secrecy” for broadcast messages.
After receiving the broadcast messages, the masking will be
canceled out at the source client side. But only using the
masking is unable to defend against differential attacks.
One may consider using Local Differential Privacy
(LDP) [44] to make sure that each client may add noise per
send-out message, barely consuming any extra computation
cost. The accumulated noise, from all clients, may seriously
affect the model’s accuracy. To tackle this problem, we use
a GDP [45] approach with noise leader selection. A hybrid
method is finally formed based on a masking scheme and

GDP, so that per client’s sensitive information can be pro-
tected by the “masks” and the aggregated values are
secured by the noise which is injected by the chosen clients.

We here briefly introduce our design. Assume each client
c 2 ½1; n� generates respective secret key skc and computes
gradients g

ðcÞ
i and hessians h

ðcÞ
i locally, where fi j yi 2 Ycg.

FEVERLESS works as follows.
1. Broadcast missing indexes. The source client broadcasts

the mIDs¼ fi j yi =2 Ycg. Regardless of 1-to-1 or 1-to-many
cases, the source client will need to send out the missing
indexes (with knowledge of tagging relationships).

2. Key exchange computation. Each client c computes public
key pkc ¼ gskc using secret keys skc, sends pkc to other cli-
ents and computes the corresponding shared keys2 fSc;c0 ¼
pkskc

c0 ¼ gskcskc0 j c; c0 2 C; c 6¼ c0g based on secret key skc
received public keys fpkc0 j c0 2 Cg.

3. Data masking. Each client c runs the masking generation
algorithm to compute the maskings for protecting gradients
and hessians. Specifically, based on KDF, clients’ indexes and
the number of queries, the masking generation algorithm is

conducted by maskðcÞg
P

c6¼c0
jc�c0 j
c�c0 � ðHðSc;c0 k0kqueryÞ, maskðcÞh

 P
c 6¼c0

jc�c0 j
c�c0 � ðHðSc;c0 k1kqueryÞ3. Then the masked gradients

GðcÞ and hessians HðcÞ are generated by GðcÞ ¼P
i2mIDs g

ðcÞ
i þ

maskðcÞg � rðcÞg ,HðcÞ ¼P
i2mIDs h

ðcÞ
i þ mask

ðcÞ
h �rðcÞh .

4. Noise leader selection. Each client generates the selection
score selecc using the VRF, HðSIGNskcðcount; mIDs; rÞÞ, and
broadcasts it, where count is the number of times clients con-
duct VRF, r is a fresh random number, and SIGN is the signa-
ture scheme. The client with the maximum score will be the
noise leader. For ease of understanding, we assume client n
with the largest selection score selectmax

n is the leader, in Fig. 3.
5. Noise injection. a) Noise leader selects k clients adding

noise. For the details of the selection, please see Algorithm

5. b) The selected clients send fgnðcÞg ¼ Nð0;D2
gs

2Þ þ rðcÞg ;g
n
ðcÞ
h ¼ Nð0;D2

hs
2Þ þ r

ðcÞ
h jc 2 kg to noise leader, in which the

rðcÞg and r
ðcÞ
h are two random values to mask noise. c) The

leader aggregates the noise: fNg ¼ k �Nð0;D2
gs

2Þ þRg andfNh ¼ k �Nð0;D2
hs

2Þ þRh, and further adds them to GðnÞ and
HðnÞ, respectively.

6. Aggregation and computation. All clients send the
masked values to the source client. The source client com-
putes

Pn
c¼1 G

ðcÞ þ k �Nð0;D2
gs

2Þ, Pn
c¼1 H

ðcÞ þ k �Nð0;D2
hs

2Þ
and Lsplit.

7. Final update. The source client with maximum Lsplit

updates the model following XGBoost [18] and broadcasts
the updatedmodel and data indexes in child nodes as step 8.

We present an overview of FEVERLESS in Fig. 3. Note
the depicted process can be conducted iteratively.

4.2 XGBoost Training Over Distributed Labels

At the initial stage, we allow all clients to agree on a tree
structure (maximum depth and the number of trees) and the
learning rate for updating prediction. To avoid the

Fig. 1. A differential attack on single node split.

2. Shared keys are only generated once, and the KDF is used to gen-
erate the remaining maskings.

3. For simplicity, we do not show the modular computations here.
The full description is elaborated on Algorithms 3, 4, and 5.

WANG ETAL.: FEVERLESS: FASTAND SECURE VERTICAL FEDERATED LEARNING BASED ON XGBOOST FOR DECENTRALIZED... 1005

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

overfitting problem, we should define regularization param-
eters. Threshold impurity is also another vital parameter
used to identify tree and leaf nodes via the maximum impu-
rity. After that, we should choose �, d for DP, a hash function
for masking generation, and noise leader selection. Besides,
we select a multiplicative groupGwith order q generated by
a generator g and a large prime number p to runDH.

During the initialization process, all clients set parame-
ters and sort their own features based on values. Then, split
candidates can be defined, and data samples between two
different candidates will be grouped as a bucket. In the end,
all entries are assigned initialized values to calculate the
derivatives of the loss function. The detailed algorithm is
described as follows.

Algorithm 1. Initialization

1: Set parameters: all clients agree on the maximum depth of a
tree d, the number of trees ðNT Þ, learning rate ðhÞ, regulari-
zation parameters ð�; gÞ, the threshold of Lsplit, �, d, p, g,
selection portion (p) and hash function

2: for c 2 ½1; n� do
3: for each feature j owned by c do
4: sort(X

ðcÞ
j)

5: define buckets: Bj
z

6: set initialized values: ŷi
ðcÞ

After initialization, all clients can invoke Algorithm 2 to
train the model collaboratively. The inputs are from feature
space consisting of features X

ðcÞ
j and labels y

ðcÞ
i distributed

on different clients, respectively; while the output is a
trained XGBoost model that can be used for prediction.
Generally, trees are built one by one. And we see from lines
4-10 in Algorithm 2 that each client can compute gradients
and hessians at beginning of a new tree construction.

Following that, clients are to split the current node. Note
that XGBoost training in DL-VFL requires each client to cal-
culateG andH. If the labels in some buckets are incomplete,
the corresponding gradients and hessians cannot be com-
puted. Thus, each client should first broadcast the missing
data index setmID (see lines 15-17 in Algorithm 2). Based on
the predefined bucket Bj

z, mID can be defined if labels in Bj
z

are not held by clients. In each broadcast, a client sending
messages is regarded as a source client. Then others send the
corresponding g

ðc0Þ
i and h

ðc0Þ
i back to the source client to com-

pute Lsplit through Algorithms 3, 4, and 5. After finding a
maximum impurity Lc

split max, the current node will be split
into “left” and “right” nodes if Lc

split max > threshold Lsplit,
in which the value of the split candidate is own by c.

In node splitting, clients should set a given node as ”leaf”
if current depth reaches the predefined maximum depth or
the maximum Lsplit is less than the predefined threshold of
Lsplit (see line 12, 24-32 in Algorithm 2). The derivation of
leaf value is followed by (4) where G and H are intaken.
Since a leaf node is either “left” or “right” split by one of the
clients in C from its parent node, this client knows G and H
and leaf value can be derived. Finally, this leaf value will be
broadcast, and clients who own the corresponding g

ðcÞ
i and

h
ðcÞ
i can use it to update predictions. The details for the

above process are shown in Algorithm 2.

4.3 Secure Aggregation With Global
Differential Privacy

In lines 15-19 of Algorithm 2, the source client is able to com-
pute Lsplit from the requested missing data indexes and the
aggregation of received messages. To avoid that inference

Fig. 2. A differential attack on multiply node splits.

Fig. 3. Overview of FEVERLESS. : Source client broadcasts missing IDs, aggregates gradients and hessians securely, updates model and
broadcasts nodes IDs. : DH key exchange and maskings generation. : Noise leader selection. ➊Broadcast missing indexes. ➋Key
exchange computation. ➌Data masking. ➍Noise leader selection. ➎Global noise injection. ➏Aggregation and computation. ➐➑ Final update and
broadcast updated model. Note sensitive data are in red. The maskings in ➌ protect data from the source client, and the noise in aggregated
gradients and hessians prevents the source client from conducting the differential attack.

1006 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2024

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

and differential attacks conducted on labels by source client
and outside adversaries, we propose a privacy-preserving
approach, shown in Algorithms 3, 4, and 5, to “twist” the DH
key exchange, noise leader selection and secure aggregation
together. This method represents a viable alternative to train
XGBoost securely in DL-VFL without demanding excessive
computational resources and affectingmodel accuracy.

To generate the secure-but-can-be-canceled-out mask-
ings, we adopt DH here. In Algorithm 3, all clients ran-
domly select numbers as their secret keys and generate the
corresponding public keys. For any two clients in the set C,
they will exchange the public key and compute the corre-
sponding shared keys. For simplicity, we do not describe
the signature scheme for DH. We assume DH is conducted
on authenticated channels, which means the man-in-the-
middle attack [46] should be invalid here.

Algorithm 2. Protocol Overview

1: Input: fXðcÞj j j 2 f; c 2 jCjg: features, fyðcÞi j i 2 m; c 2 jCjg:
labels

2: Output: XGBoost model
3: Building trees:
4: for nt 2 ½1; NT � do
5: for c 2 ½1; n� do
6: for each data entry i owned by c do
7: g

ðcÞ
i @ŷiðcÞLossðŷiðcÞ; y

ðcÞ
i Þ

8: h
ðcÞ
i @2

ŷi
ðcÞLossðŷiðcÞ; yðcÞi Þ

9: end
10: end
11: for each node in the current tree do
12: while current depth < d do
13: for c 2 ½1; n� do
14: for each feature j owned by c do
15: for each Bj

z owned by c do
16: BroadcastmID ¼ fi j yi =2 Ycg
17: end
18: aggregate G,H by Algorithms 3, 4, and 5
19: compute Lsplit according to Eq. (3)
20: end
21: find the maximum L

ðcÞ
split and broadcast

22: end
23: L

ðcÞ
split max maxðfLðcÞsplit j c 2 ½1; n�gÞ

24: if L
ðcÞ
split max � threshold Lsplit then

25: set current node as leaf node
26: c computes w and broadcast
27: Break

28: else
29: c splits the current node to the left node and right

node and broadcasts the data index of them.
30: end
31: end
32: set remaining nodes as leaf nodes
33: c computes w and broadcast
34: clients participating in calculation of w: update ŷi

ðcÞ

35: end
36: end

If the shared keys are used as maskings directly, our sys-
tem is not robust for clients’ collusion unless the amount of
communication has been sacrificed as a cost to updating
maskings per round. But the communication complexity is

exponentially increased with the number of clients for a sin-
gle node splitting. Considering the structure of trees, the
overall communication complexity will be Oð2d �NT � n2Þ,
which may not scale well in practical applications.

Algorithm 3. Diffie-Hellman Key Exchange

1: for c 2 ½1; n� do
2: skc Z	p
3: end
4: for c 2 ½1; n� do
5: pkc ¼ gskc mod p
6: for c0 2 ½1; n� ^ c0 6¼ c do

7: Sc;c0 ¼ pk
skc0
c mod p

8: end
9: end

To tackle this issue, we use KDF to update maskings per
round automatically. Specifically, in lines 24-25 of Algo-
rithm 5, shared keys are taken as main keys. 0 and 1 are salt
values for gradients and hessians, respectively. Since the
query in each round varies, the generated maskings should
be dynamic accordingly. Besides, the sign of maskings is
determined by the indexes of clients. In this way, we only
need to use DH once, and the communication complexity is
independent of tree structure.

To enable FEVERLESS to hold against differential attack,we
use the GDP approach allowing the chosen one to inject a
global noise to aggregated values per round. The approach is
quite subtle. If the noise leader is selected by the source client,
the system will be vulnerable to collusion. Moreover, a client
could be easily identified as a target if we choose it in advance,
e.g., by selecting a list of leaders before the training. To avoid
these issues and limit the probability of collusion to the greatest
extent, we use VRF to iteratively select the leader (see Algo-
rithm 4) to securely inject a global noise. The input of VRF
includes mIDs and a fresh random number r (line 4 in Algo-
rithm 4), so that this client will not be predicted and set before-
hand - reducing its chance to be corrupted in advance by
outsiders and the source client.

Algorithm 4.Noise Leader Selection

1: count = 1
2: for each time run this algorithm do
3: for c 2 ½1; n� ^ c 6¼ source client do
4: selecc H ðSIGNskcðcount; mIDs; rÞÞ
5: Broadcast

6: end
7: selecmax

c maxðfselecc j c 2 ½1; n�gÞ
8: set c as noise leader
9: count+=1
10: end

All clients can broadcast their scores and then the onewho
provides the “max value” will become the leader. Then the
leader re-generates a selection score as score threshold
(selecthreshold) and sends it to the rest of the clients. (line 2-6 in
Algorithm 5). The clients send the masked noise back to the
leader if the re-generated score is larger than the threshold
(lines 7-13 in Algorithm 5). Subsequently, the leader will

WANG ETAL.: FEVERLESS: FASTAND SECURE VERTICAL FEDERATED LEARNING BASED ON XGBOOST FOR DECENTRALIZED... 1007

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

select k̂ clients, notify them and aggregate this masked noise
to generate a global noisewith a randomnumber. In this con-
text, even if these selected clients are colluded (note at least
one is not) with the noise leader and source client, there is
still a noise that cannot be recovered, safeguarding the train-
ing differentially private. Note since the noise is masked by
the random number, the source client (even colluding with
the leader) cannot recover the “pure” global noise to conduct
the differential attack. And each client adds a noise with a
probability p. If k out of k̂ are non-colluded, the probability of
collusion is ð1� k

nÞh. To cancel out the randomness, the
selected clients will subtract the same randomness from
maskedmessages (line 28-31 in Algorithm 5).

Algorithm 5. Secure Aggregation With Global Differen-
tial Privacy

1: Noise injection:
2: if c ¼ leader then
3: selecthresholdc H ðSIGNskcðcount; mIDs; rÞÞ
4: Broadcast

5: count+=1
6: end
7: for c 2 ½1; n� ^ c 6¼ source client ^ c 6¼ noise leader do
8: selecc H ðSIGNskcðcount; mIDs; rÞÞ
9: if selecc > selecthresholdc then

10: send
g
n
ðcÞ
g ¼ Nð0;D2

gs
2Þ þ rðcÞg and

g
n
ðcÞ
h ¼ Nð0;D2

hs
2Þ þ

r
ðcÞ
h to noise leader

11: count+=1
12: end
13: end
14: if c ¼ leader then
15: c selects k clients from clients of sending noise,

k ¼ djfgnðcÞg gj � pe
16: if k < 1 then
17: redo noise injection
18: end
19: notify k clients
20: noise aggregation: fNg ¼ k �Nð0;D2

gs
2Þ þRg, fNh ¼ k �Nð0;

D2
hs

2Þ þRh

21: end
22: Secure aggregation:
23: for c 2 ½1; n� do
24: maskðcÞg ð

P
c6¼c0

jc�c0 j
c�c0 � ðHðSc;c0 k0kqueryÞmodNÞÞmodN

25: mask
ðcÞ
h ð

P
c6¼c0

jc�c0 j
c�c0 � ðHðSc;c0 k1kqueryÞmodNÞÞmodN

26: GðcÞ ¼P
i2mIDs g

ðcÞ
i þ maskðcÞg modN

27: HðcÞ ¼P
i2mIDs h

ðcÞ
i þ mask

ðcÞ
h modN

28: if selecc > selecthresholdc ^ received notification then

29: GðcÞ ¼ GðcÞ � rðcÞg modN

30: HðcÞ ¼ HðcÞ � r
ðcÞ
h modN

31: end
32: if c ¼ leader then
33: GðcÞ ¼ GðcÞ þ fNg modN
34: HðcÞ ¼ HðcÞ þ fNh modN
35: end
36: send fGðcÞ; HðcÞg to source client
37: end

Considering that the source client may procrastinate the
leader selection and noise injection procedure so as to buy

some time for its colluded clients to prepare sufficient large
VRF values to participate in the competition of selection
and adding noise. One may apply a heartbeat protocol [47]
to prevent a newly elected leader from intentionally halting
the noise-adding stage for a long period, say 1 min. If there
is no response from the leader after for a short while, a new
leader will be randomly selected. Furthermore, the heart-
beat may help to solve the problem that the leader acciden-
tally drops from the network. We note that the heartbeat
protocol is not our main focus in this paper.

Before replying to the source client, we have the clients
with labels put maskings on gradients and hessians, and for
those without labels, they just generate and later send out
maskings, in which the noise leader (i.e. one of the maskings
generators) injects the noise. In this way, the maskings,
guaranteeing perfect secrecy of the messages, will be can-
celed out after the aggregation of the values, and the differ-
entially private noise will consolidate indistinguishability of
individual data entry.

Note that in lines 24-34 of Algorithm 5, the maskings and
masked values are in the range ½0; N � 1�. And N should be
sufficiently large to avoid overflow, and the summation of
gradients and hessians should not exceedN .

4.4 Theoretical Analysis

Computation cost: We use B and d to denote the number of
buckets and the maximum depth respectively, and f ðcÞ here
represents the number of features held by a client c. For
each client c, the computation cost can be divided into 4
parts: (1) Performing at most fðcÞ �B �NT � ð2d � 1Þ times
computation of Lsplit and w, taking Oðf ðcÞ �B �NT � 2dÞ time;
(2) Creating n� 1 shared keys and 1 public key, which is
OðnÞ; (3) Conducting OðfðcÞ �B �NT � 2dÞ time to compute
VRF outputs, select noise leader and generate noise; (4)
Generating 2fðcÞ �B �NT � ð2d � 1Þ maskings, which takes
OðfðcÞ � B �NT � 2d � nÞ time. Overall, each client’s computa-
tion complexity is Oðf ðcÞ � B �NT � 2d � nÞ.

Communication cost: Each client’s communication cost can
be calculated as (1) Broadcasting at most fðcÞ �B �NT � ð2d �
1Þ times of missing indexes mID; (2) Broadcasting 1 public
key and receiving n� 1 public keys from other clients; (3)
Broadcasting 1 leader selection score and sending noise to
noise leader at most fðcÞ �B �NT � ð2d � 1Þ times; (4) Sending
source client 2 masked gradients and hessians of size
2dlog2Ne. Therefore the overall communication cost is f ðcÞ �
B �NT � ð2d � 1Þ � ðkmIDk � aI þ aL þ aN þ n � aK2dlog2NeÞ,
where aI ;aL, aN and aK refer to the number of bits of index,
leader selection score, noise and public keys, respectively.
Thus, we have the communication complexity OðfðcÞ � B�
NT � 2dÞ.

4.5 Security Analysis

We show that FEVERLESS provides label value and data
privacy against an adversary controlling at most n� 2
clients in the semi-honest setting [48]. Here, we provide a
brief summary of analysis and theorems. The formal
proofs, in the random oracle model, are given in Section
1 of Supplementary.

Label Value Privacy: This implies that the value of a label
among honest parties should not be leaked to the adversary.

1008 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2024

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

We achieve this by using a secure aggregation mechanism
where the masks are created via DH key exchange and
KDF. In brief, we show that because of the Decisional DH
problem (see Definition 2.1), the adversary cannot distin-
guish the individual values from randomly chosen ones.
That is why the adversary A cannot learn the owner of the
label.

Data Privacy: FEVERLESS provides data privacy, mean-
ing that an adversary A cannot extract the features of train-
ing data and key shares of any honest party. Individual key
shares are not separable from random values because of the
secure masking. Since the calculations of gradients or hes-
sians are irrelevant with features of training data, the adver-
sary cannot infer features even if gradients are breached. If
the source client is not part of the adversary, no data infor-
mation is leaked. But we require an additional countermea-
sure for the case where the source client is part of the
adversary because it can collect the summation of the data
values. We use differential privacy [37], [38] to achieve data
privacy. Because of the noise added by differential privacy,
the adversary cannot learn the individual data of an honest
client. Moreover, we select the noise clients by the VRF
which ensures that the noise leader cannot be predicted or
compromised in advance.

Theorem 4.1 (A not including source client). There exists
a Probabilistic Polynomial Time (PPT) simulator Sim for all jCj :
¼ n
 3, jXj :¼ f
 n, jYj :¼ m
 1,

S
c2CXðcÞ,

S
c2CYðcÞ

and A � C so that jAj � n� 2, the output of Sim is indistin-

guishable from the output of REAL : REAL
C;X ;Y
A ðXC;YCÞ

� Sim
C;X ;Y
A ðXA;YAÞ:

Theorem 4.2 (A including source client). There exists a
Probabilistic Polynomial Time (PPT) simulator Sim for all jCj :¼
n
 3, jXj :¼ f
 n, jYj :¼ m
 1,

S
c2CXðcÞ,

S
c2CYðcÞ and

A � C so that jAj � n� 2, the output ofSim is indistinguishable

from the output of REAL:REALC;X ;YA ðXC;YCÞ � Sim
C;X ;Y
A ðG;H;

XA;YAÞ where G ¼P
i2mIDs g

ðcÞ
i þNð0; ðDgsÞ2Þ; H ¼P

i2mIDs h
ðcÞ
i þNð0; ðDhsÞ2Þ:

Theorem 4.3 (Privacy of the Inputs). No A � C such that
jAj � n� 2 can retrieve the individual values of the honest cli-

ents with probability 1�Pk̂
i¼0

h
i

� �
n�2�h
k̂�i

� �ðPtÞk̂ð1� PtÞðn�k̂Þ�
k̂�i
k

� 	

k̂
k

� 		
, where h and k̂ refer to the number of non-col-

luded clients and the number of clients who have selection score
larger than threshold, respectively; and Pt is the probability of
selection score larger than the threshold.

Note for a concrete example, if we set n ¼ 10; h ¼ 2; k̂ ¼
5; k ¼ 8; Pt ¼ 1

2 , the probability is 0.938. This means the
source client cannot remove the noise with 0.938, which is a
relatively high probability.

5 EXPERIMENT

We perform evaluations on the accuracy, runtime perfor-
mance and communication cost, and compare our design
with two straightforward secure approaches: one is based
on LDP (for accuracy), and the other is built on AHE with

GDP (for runtime). These approaches are most-commonly-
used components for privacy-preserving FL, and they could
be the building blocks for complex mechanisms, e.g., MPC.
We note the protocol should intuitively outperform those
MPC-based solutions, and one may leverage our source
code to make further comparisons if interested. In the
experiments, the baseline, which is the pure XGBoots algo-
rithm, follows the training process of Fig. 3 without using
any privacy-preserving tools (steps ➋ - ➎). And LDP does
not conduct DH key exchange but each client injects noise
into the aggregation of gradients and hessians, while AHE
follows Fig. 3 except executing DH key exchange. In AHE,
each client sends (additive) encrypted messages to the
source client after step ➎. We here show the performance of
the best case where there is only one (non-colluded and ran-
domly selected) client adding noise per round (k ¼ 1).

5.1 Experiment Setup

All the experiments are implemented in Python, and con-
ducted on a cluster of machines with Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2.10 GHz, with 15 GB RAM in a local area net-
work. As for the cryptographic tools, we set the key size of
DH and Paillier as 160 bits and 1024 bits respectively(to save
some time in running the experiments). This size can reach a
symmetric security level with 80 bits key length. Note one
may indeed increase the key size to obtain stronger security,4

but this will bring a longer experiment time as a side effect.
We use 1024-bitMODPGroupwith 160-bit PrimeOrder Sub-
group from RFC 51145 for DH Key exchange. SHAKE-

256 [49], a member of SHA3 [49] family, is used as a hash
function in leader selection and secure aggregation.

Intuitively, the smaller � we set, the more secure FEVER-
LESS will be; but larger noise will be added. We note the
above statement can be seen from the experimental results.
To present comprehensive results on the accuracy, we set �
to be: 10, 5, 2 and 1, and d is set to 10�5. In terms of accuracy
and runtime, we evaluate different situations by varying
the number of clients, the number of trees, and the maxi-
mum depth of trees (from 2 to 10). Other parameters regard-
ing training follow the suggestions in [18] and the library6 of
XGBoost. To deliver fair results, we conduct each test for 20
independent trials and then calculate the average.

Datasets. We run the experiments on three datasets -
Credit Card [50], BankMarketing [51] and Banknote Authen-
tication7 - for classification tasks. Because the more concen-
trated the distribution of labels and features, the more like
centralized learning. The entire algorithm requires less inter-
action among clients. This situation is less common in practi-
cal applications. To fairly investigate the model performance
in DL-VFL, wemake the features and labels as sparse as pos-
sible, and they are uniformly distributed among clients.
� Credit Card: It is a commercial dataset used for predicting

whether customers will make payments on time. It provides
30,000 samples, and each sample composes of 23 features.

4. Note a stronger security level will not affect the training accuracy.
5. https://tools.ietf.org/html/rfc5114
6. https://xgboost.readthedocs.io/
7. https://archive.ics.uci.edu/ml/datasets/banknote

+authentication

WANG ETAL.: FEVERLESS: FASTAND SECURE VERTICAL FEDERATED LEARNING BASED ON XGBOOST FOR DECENTRALIZED... 1009

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

https://tools.ietf.org/html/rfc5114
https://xgboost.readthedocs.io/

� Bank marketing: Consisting of 45,211 data points and 17
features, the goal of bank marketing is to predict if a client
will subscribe to a term deposit.
� Banknote authentication: Offering 1,372 data points and 4

features, this dataset is used to classify authenticated and
unauthenticated banknotes. Note that different from tradi-
tional tabular data, features in the dataset are extracted
from images that are taken from genuine and forged bank-
note-like specimens through Wavelet Transform [52]. Using
the small-scale dataset, the trained model may not be robust
to noise, which brings a negative impact on accuracy.

5.2 Evaluation on Accuracy

In Fig. 4, we present a clear picture of the accuracy perfor-
mance based on the #tree and the maximum depth in
ð2; 10�5Þ�DP. We merge the #client in one tree structure,
which means in one bar, and the value is the mean of accu-
racy when conducting on different numbers. The accuracy

of the baseline in credit card (about 0.82) and bank market-
ing (nearly 0.9) remains unchanged as the #tree and maxi-
mum depth increases, while the accuracy in banknote
authentication rises from 0.9 to approximately 1.0. To high-
light the differences and ensure all results are displayed
clearly, we set the ranges of accuracy as ½0:5; 0:9�; ½0:5; 1� and
½0; 1� for the three datasets, respectively.

Compared with the baseline, shown in the top and mid-
dle rows of Fig. 4, FEVERLESS and LDP suffer from contin-
uously shrinking accuracy as tree structure becomes
complex. This is so because the injected noises are accumu-
lated into the model via the increase of query number. And
the accuracy is easily affected by the depth. In the worst
case where the #tree and maximum depth are both equal to
10, FEVERLESS decreases 10.37% (resp. 14.98%), and LDP
drops 24.78% (resp.24.59%) in credit card (resp. bank mar-
keting). But on average, FEVERLESS’ accuracy only shrinks
by around 0.9% (resp. 3.21%), while LDP suffers from an

Fig. 4. Comparison among the baseline, FEVERLESS and LDP under � ¼ 2. Top row: Credit card dataset, accuracy range: [0.5, 0.9]. Middle row:
Bank marketing, accuracy range: [0.5, 1]. Bottom row: Banknote authentication, accuracy range: [0, 1].

1010 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2024

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

estimated 3x (resp. 2x) accuracy loss. The difference in the
degree of deterioration mainly comes from how much noise
is added for each query. We note the deterioration of
FEVERLESS is independent of the #client. Thus, we can
maintain great accuracy even in the case where there exists
a considerable amount of clients.

Despite the fact that less noise is added in FEVERLESS,
we do not predict that the accuracy falls to the same level
(around 50%, like randomly guessing in binary classifica-
tion) as LDP in the bottom row of Fig. 4. This is so because
the model is trained by an extremely small-size dataset,
which makes it hard to maintain the robustness but rela-
tively sensitive to noise. If setting a larger �, we may see our
advantage more clearly.

To distinguish the performance between FEVERLESS and
LDPmore clearly, Fig. 5 shows the comparison over different �,
when #depth and #tree are set to 10. The performance of the
model is decayed as the decrease of �. In the left (resp.middle) of
Fig. 5, the averaged accuracy of FEVERLESS falls from 0.7686 to
0.5967 (resp. from 0.8517 to 0.6831), while that of LDP also
decreases to 0.5299 (resp. 0.5853). We notice that the highest val-
ues of LDP stay at the same level as those of FEVERLESS. This is
because, in the case of 2-client training, only one client needs to
add the noise in LDP (which is identical to our GDP solution).
At last, the worse case can be seen on the right of Fig. 5 due to
the weak robustness of the model obtained from the banknote
authentication. The results are far away from the baseline there.
This is because in small-scale datasets, the heterogeneity of data
distribution is not large, so the original XGBoost can achieve
high accuracy. However, the model trained in this way is less
robust, which means it is more sensitive to noise. Therefore,
compared with the model trained on a large-scale dataset, it
does not perform well under the condition of differential pri-
vacy. But even in this case, FEVERLESS still holds a tiny advan-
tage over LDP.

Note that we did not compare the accuracy to systems
using AHE. Because the calculation process of homomorphic
encryption does not change the precision of the value, training
through encryption will not affect the model. Therefore, the
accuracy of using AHE is the same as the pure XGBoost.

5.3 Evaluation on Training Time

To highlight the runtime complexity, we average the results
varying by client number into one tree structure as well. We

further set the ranges of time as [0 s, 9,500s], [0 s, 3,500s] and
[0 s, 110s] for the datasets to deliver visible results. Note since
the banknote dataset contains the least samples, it does
deliver the best training efficiency here. Fig. 6 presents the
comparison of the training time by varying maximum depth
and the number of trees among the datasets.

The training time increases exponentially and linearly
with depth and the number of tree, which is consistent
with our analysis given in Section 4.4. In Fig. 6, compared
with the baseline, the runtime of FEVERLESS at most
increases 110.3 s (resp. 50 s, 4.3 s), while AHE requires
around 70x spike (resp. 48x, 21x) in credit card (resp. bank
marketing, banknote authentication), where #depth and
#trees are equal to 10. For the average case, FEVERLESS
consumes Approx. 1%ðresp:6:5%; 13:96%Þ more training
time than the baseline, while AHE requires the
351%ðresp:155:1%; 674%Þ extra, w.r.t. the three datasets. Its
poor performances are due to the laborious calculations in
encryption, in which each client has to conduct an encryp-
tion per query. By contrast, the masksings in FEVERLESS
avoid these excessive costs. We further investigate the run-
time performance on the #client in Section 3 of Supplemen-
tary material.

5.4 Evaluation on Communication Cost

In Figs. 7, 8, and 9, we demonstrate the communication cost
based on the number of clients, tree and depth. For the con-
venience of comparison, we set #clients=4, #tree=4 and
depth=4 as default. To sum up, we see that the communica-
tion cost of FEVERLESS is almost the same as those of the
baseline and LDP. But as compared to AHE, FEVERLESS
significantly reduces the cost while maintaining privacy.

In each presented figure, we show the results executed
on the datasets Credit card (left), Bank Marketing (middle)
and Banknote Authentication (right). Note that the compari-
son among FEVERLESS, LDP, and AHE requires a condi-
tion that #client=2; when #client=1, we can only show the
results of the baseline. Via the experiments, we elaborate
that how the communication cost varies with the increasing
number of clients, depth and the number of trees among the
baseline, FEVERLESS, AHE and LDP. In general, adding
noise has no clear impact on communication costs. The per-
formance of FEVERLESS and LDP is on par with that of the
baseline. The AHE approach does harm communication

Fig. 5. Comparison of accuracy by varying � in depth =10, the number of trees =10. Left: Credit card. Middle: Bank marketing. Right: Banknote
authentication. Accuracy ranges from 0.4 to 1.

WANG ETAL.: FEVERLESS: FASTAND SECURE VERTICAL FEDERATED LEARNING BASED ON XGBOOST FOR DECENTRALIZED... 1011

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

costs, which can be seen from the continuously and signifi-
cantly increasing bars in the figures. Naturally, when more
clients engage in the training, more communication costs
should be added to the model. Especially, in the number of
clients equal to 4, the communication costs of AHE is
around 6*1e6 Bytes in Banknote Authentication dataset,
which is about 3x than other methods. Similar situations

can be observed when training with complex tree struc-
tures. In depth (resp. the number of trees) equals 10, the
communication costs of AHE reaches about 1.3*1e7 Bytes
(resp. 1.5*1e7 Bytes), which is 2.6x (resp. 2.4x) than other
methods. AHE generates such a large amount of communi-
cation costs because it requires transmitting ciphertexts dur-
ing interactions among clients.

Fig. 6. Comparison of time. Top row: Credit card dataset, range: [0 s, 9,500s]. Middle row: Bank marketing, range: [0 s, 3,500s]. Bottom row: Bank-
note authentication, range: [0 s, 110s].

Fig. 7. Comparison of communication cost on the number of clients.

1012 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2024

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

6 CONCLUSION AND FUTURE WORK

We consider a practical scenario where labels are distribut-
edly and maintained by different clients for VFL. By
leveraging secure aggregation and GDP, we present a novel
system, FEVERLESS, to train XGBoost securely. FEVER-
LESS can achieve perfect secrecy for labels and data, and
adversaries cannot learn any information about the data
even if the source client is corrupted. With DP against dif-
ferential attack, the source client knows nothing more than
summation. Our design is also robust for the collusion of
n� 2 out of n clients. FEVERLESS is about the same speed
and accuracy as the pure XGBoost, taking 1% extra runtime,
and sacrificing 0.9% accuracy. In Section 2 of Supplemen-
tary material, we discuss how to reduce noise, hide label
tagging information and use other security tools. Although
our system achieves great performance in terms of security
and efficiency, its accuracy still does not work well in small-
scale datasets. This remains an open problem. We will also
consider secure solutions against malicious adversaries.

ACKNOWLEDGMENTS

Y. Jin is funded by an Alexander von Humboldt Professor-
ship for AI endowed by the German Federal Ministry of
Education and Reseaech.

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Trans. Intell. Syst. Technol.,
vol. 10, no. 2, Jan. 2019, Art. no. 12.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y.
Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Int. Conf. Artif. Intell. Statist., 2017,
pp. 1273–1282.

[3] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 1310–1321, doi: 10.1145/2810103.2813687.

[4] T. Orekondy, S. J. Oh, Y. Zhang, B. Schiele, and M. Fritz,
“Gradient-leaks: Understanding and controlling deanonymiza-
tion in federated learning,” 2018, arXiv: 1805.05838.

[5] J. Geiping, H.H. BauermeisterDr€oge, and M. Moeller,
“Inverting gradients - how easy is it to break privacy in feder-
ated learning?,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 16 937–16 947. [Online]. Available: https://proceedings.
neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6
bf145-Paper.pdf

[6] H. Li and T. Han, “An end-to-end encrypted neural network for
gradient updates transmission in federated learning,” 2019, arXiv:
1908.08340.

[7] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai,
“Privacy-preserving deep learning via additively homomorphic
encryption,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 5,
pp. 1333–1345, May 2018.

[8] S. Truex et al., “A hybrid approach to privacy-preserving feder-
ated learning,” in Proc. 12th ACM Workshop Artif. Intell. Secur.,
2019, pp. 1–11, doi: 10.1145/3338501.3357370.

[9] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig,
“HybridAlpha: An efficient approach for privacy-preserving fed-
erated learning,” in Proc. 12th ACM Workshop Artif. Intell. Secur.,
2019, pp. 13–23, doi: 10.1145/3338501.3357371.

[10] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient homomorphic encryption for cross-silo federated
learning,” in Proc. USENIX Annu. Tech. Conf. USENIX Assoc.,
2020, pp. 493–506, [Online]. Available: https://www.usenix.org/
conference/atc20/presentation/zhang-chengliang

[11] H. Zhu, R. Wang, Y. Jin, K. Liang, and J. Ning, “Distributed addi-
tive encryption and quantization for privacy preserving federated
deep learning,” 2020, arXiv:2011.12623.

Fig. 8. Comparison of communication cost on depth.

Fig. 9. Comparison of communication cost on the number of trees.

WANG ETAL.: FEVERLESS: FASTAND SECURE VERTICAL FEDERATED LEARNING BASED ON XGBOOST FOR DECENTRALIZED... 1013

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/2810103.2813687
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.1145/3338501.3357371
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang

[12] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving
vertical federated learning for tree-based models,” Proc. VLDB
Endow, vol. 13, no. 12, pp. 2090–2103, Jul. 2020, doi: 10.14778/
3407790.3407811.

[13] K. Cheng et al., “SecureBoost: A lossless federated learning frame-
work,” IEEE Intell. Syst., vol. 36, no. 6, pp. 87–98, 2021.

[14] S. Hardy et al., “Private federated learning on vertically parti-
tioned data via entity resolution and additively homomorphic
encryption,” 2017, arXiv:1711.10677.

[15] R. Nock et al., “Entity resolution and federated learning get a fed-
erated resolution,” 2018, arXiv:1803.04035.

[16] Y. Liu, X. Zhang, and L. Wang, “Asymmetrically vertical feder-
ated learning,” 2020, arXiv:2004.07427.

[17] S. Yang, B. Ren, X. Zhou, and L. Liu, “Parallel distributed logistic
regression for vertical federated learning without third-party
coordinator,” 2019, arXiv:1911.09824.

[18] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2016, pp. 785–794, doi: 10.1145/2939672.2939785.

[19] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learn-
ing. Cambridge, MA, USA: MIT Press Cambridge, 2016.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[21] O. Goldreich, “Secure multi-party computation,” Manuscript Pre-
liminary Version, vol. 78, pp. 639–648, 1998.

[22] K. Bonawitz et al., “Practical secure aggregation for privacy-preserv-
ing machine learning,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2017, pp. 1175–1191, doi: 10.1145/3133956.3133982.

[23] C. Dwork, “Differential privacy: A survey of results,” in Theory
and Applications of Models of Computation, M. Agrawal, D. Du, Z.
Duan, and A. Li, Eds., Berlin, Germany: Springer, 2008, pp. 1–19.

[24] Z. Tian, R. Zhang, X. Hou, J. Liu, and K. Ren, “FederBoost: Private
federated learning for GBDT,” 2020, arXiv: 2011.02796.

[25] X. Meng et al., “MLlib: Machine learning in apache spark,” J.
Mach. Learn. Res., vol. 17, no. 1, pp. 1235–1241, 2016.

[26] D. Boneh, “The decision diffie-hellman problem,” in International
Algorithmic Number Theory Symposium. Berlin, Germany: Springer,
1998, pp. 48–63.

[27] W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[28] G. �Acs and C. Castelluccia, “I have a dream! (differentially private
smartmetering),” inProc. Int.Workshop Inf. Hiding, 2011, pp. 118–132.

[29] J. Ha

stad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudo-

random generator from any one-way function,” SIAM J. Comput.,
vol. 28, no. 4, pp. 1364–1396, 1999.

[30] N. Sha, “standard: Permutation-based hash and extendable-out-
put functions,” Federal Inform. Process. Stand. Pub., vol. 3, p. 202,
2015.

[31] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Sha-3
proposal blake,” Submission NIST, vol. 92, 2008.

[32] H. Krawczyk and P. Eronen, “HMAC-based extract-and-expand
key derivation function (HKDF),” RFC 5869, May, 2010.

[33] B. Kaliski, Pseudorandom Function. Boston, MA, USA: Springer,
2005, pp. 485–485, doi: 10.1007/0-387-23483-7_329.

[34] J. Zdziarski, Hacking and Securing iOS Applications: Stealing Data,
Hijacking Software, and How to Prevent It. Sebastopol, CA, USA:
O’Reilly Media, Inc., 2012.

[35] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random
functions,” in Proc. 40th Annu. Symp. Foundations Comput. Sci.,
1999, pp. 120–130.

[36] S. Micali, “ALGORAND: The efficient and democratic ledger,”
CoRR, vol. abs/1607.01341, 2016, arXiv:1607.01341

[37] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our data, ourselves: Privacy via distributed noise generation,” in
Proc. Annu. Int. Conf. Theory Appl. Cryptographic Techn., 2006,
pp. 486–503.

[38] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Proc. Theory Cryp-
togr. Conf., 2006, pp. 265–284.

[39] M. Abadi et al., “Deep learning with differential privacy,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308–318.

[40] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu,
“Practical multi-party private set intersection from symmetric-key
techniques,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2017, pp. 1257–1272.

[41] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set inter-
section based on fOTg extension,” in Proc. 23rd USENIX Secur.
Symp., 2014, pp. 797–812.

[42] I. Damga

rd, V. Pastro, N. Smart, and S. Zakarias, “Multiparty

computation from somewhat homomorphic encryption,” in Proc.
Annu. Cryptol. Conf., 2012, pp. 643–662.

[43] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in International Conference on the Theory and Appli-
cations of Cryptographic Techniques. Berlin, Germany: Springer, 1999.

[44] P. Kairouz, S. Oh, and P. Viswanath, “Extremal mechanisms for
local differential privacy,” in Proc. Adv. Neural Inf. Process. Syst.,
2014, pp. 2879–2887.

[45] K. Wei et al., “Federated learning with differential privacy: Algo-
rithms and performance analysis,” IEEE Trans. Inf. Forensics Secur.,
vol. 15, pp. 3454–3469, Apr. 2020.

[46] A. S. Khader and D. Lai, “Preventing man-in-the-middle attack in
diffie-hellman key exchange protocol,” in Proc. 22nd Int. Conf. Tele-
commun., 2015, pp. 204–208.

[47] S. Nikoletseas and J. D. Rolim, Theoretical Aspects of Distributed
Computing in Sensor Networks. Berlin, Germany: Springer, 2011.

[48] N. P. Smart, Cryptography Made Simple. Berlin, Germany: Springer,
2016.

[49] M. J. Dworkin, “SHA-3 standard: Permutation-based hash and
extendable-output functions,” Federal Inf. Process. Stds. (NIST
FIPS), Nat. Inst. Stand. Technol., Gaithersburg, MD, USA, 2015.

[50] I.-C. Yeh and C.-H. Lien, “The comparisons of data mining techni-
ques for the predictive accuracy of probability of default of credit
card clients,” Expert Syst. Appl., vol. 36, no. 2, pp. 2473–2480, 2009.

[51] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to pre-
dict the success of bank telemarketing,” Decis. Support Syst.,
vol. 62, pp. 22–31, 2014.

[52] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image
coding using wavelet transform,” IEEE Trans. image Process.,
vol. 1, no. 2, pp. 205–220, Apr. 1992.

Rui Wang received the BSc degree from the Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2017, and the MSc degree from
the University of Southampton, Southampton,
U.K., in 2018. He is currently working toward the
PhD degree in focusing on privacy-preserving
machine learning with the Department of Intelli-
gent Systems, Delft University of Technology,
Delft, the Netherlands.

O�guzhan Ersoy received the BSc and MSc
degrees in electrical and electronics engineering
from Bo�gaziçi University, in 2012 and 2015,
respectively, and the PhD degree from the Delft
University of Technology, The Netherlands,
in 2021, where he was also a postdoctoral
researcher. His PhD and postdoctoral study
focused on secure, scalable, and incentive-com-
patible protocols for Bitcoin-like blockchains.
Currently, he is a postdoctoral researcher with
the Digital Security Group, Radboud University,

The Netherlands. His research interests include blockchain technology,
machine learning, and applied cryptography.

Hangyu Zhu received the BSc degree from
Yangzhou University, Yangzhou, China, in 2015,
the MSc degree from RMIT University, Mel-
bourne, VIC, Australia, in 2017, and the PhD
degree from the University of Surrey, Guildford,
U.K., in 2021. His main research interests include
federated learning, privacy-preserving machine
learning, and evolutionary federated neural archi-
tecture search.

1014 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2024

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.14778/3407790.3407811
https://doi.org/10.14778/3407790.3407811
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/0-387-23483-7_329

Yaochu Jin (Fellow, IEEE) is an alexander von
Humboldt professor of artificial intelligence with
the Faculty of Technology, Bielefeld University,
Bielefeld, Germany. He is also a distinguished
chair professor of computational intelligence with
the Department of Computer Science, University
of Surrey, Guildford, U.K. He was a finland distin-
guished professor in Finland, and changjiang
distinguished visiting professor, in China. His
research interests include evolutionary optimiza-
tion, evolutionary and multiobjective machine

learning, secure and privacy-preserving machine learning, and evolu-
tionary developmental approaches to artificial intelligence. He is cur-
rently the editor-in-chief for the IEEE Transactions on Cognitive and
Developmental Systems and Complex and Intelligent Systems. He was
an IEEE Distinguished Lecturer (during 2013, 2015, and 2017–2019)
and was the vice president for Technical Activities of the IEEE Computa-
tional Intelligence Society (during 2014–2015).He was the recipient of
the 2015, 2017, and 2020 IEEE Computational Intelligence Magazine
Outstanding Paper Award, and the 2018 and 2021 IEEE Transactions
on Evolutionary Computation Outstanding Paper Award. He was named
a Highly Cited Researcher by the Web of Science Group for 2019-2021.
He is a member of Academia Europaea.

Kaitai Liang (Member, IEEE) received the
PhD degree from the Department of Computer
Science, City University of Hong Kong, Hong
Kong. He joined the Delft University of Tech-
nology, The Delft, the Netherlands, in 2020.
Before that he was an Assistant Professor of
secure systems with the Department of Com-
puter Science, University of Surrey, Guildford,
U.K. His research interests include applied
cryptography and information security; in par-
ticular, data encryption, blockchain security,

postquantum crypto, privacy enhancing technology, and privacy-pre-
serving machine learning.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WANG ETAL.: FEVERLESS: FASTAND SECURE VERTICAL FEDERATED LEARNING BASED ON XGBOOST FOR DECENTRALIZED... 1015

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2024 at 10:42:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

