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Abstract—The batch size is an essential parameter to tune
during the development of new neural networks. Amongst other
quality indicators, it has a large degree of influence on the model’s
accuracy, generalisability, training times and parallelisability.
This fact is generally known and commonly studied. However,
during the application phase of a deep learning model, when
the model is utilised by an end-user for inference, we find that
there is a disregard for the potential benefits of introducing
a batch size. In this study, we examine the effect of input
batching on the energy consumption and response times of five
fully-trained neural networks for computer vision that were
considered state-of-the-art at the time of their publication. The
results suggest that batching has a significant effect on both
of these metrics. Furthermore, we present a timeline of the
energy efficiency and accuracy of neural networks over the past
decade. We find that in general, energy consumption rises at a
much steeper pace than accuracy and question the necessity of
this evolution. Additionally, we highlight one particular network,
ShuffleNetV2 (2018), that achieved a competitive performance for
its time while maintaining a much lower energy consumption.
Nevertheless, we highlight that the results are model dependent.

Index Terms—green software, green ai, deep learning, infer-
ence, batching

I. INTRODUCTION

Sustainability has emerged as a challenging optimisation

problem in the AI research community. The community is

building the most powerful models with a colossal number of

parameters, but their massive energy footprint is an issue yet

to be solved. For example, the state-of-the-art GPT-3 model

has 175 billion parameters and has been estimated to require

more than 1 Gigawatt-hour of energy to be trained [11].

While the numerous applications enabled by these models are

impressively innovative, there is a growing concern about the

sustainability of taking these models to production.

A new field, dubbed Green AI, is rising to address this

concern [15]. The initial contributions in Green AI consist of

positional papers that are calling for a new research agenda [1],

[12], [14]. This involves the measurement and reporting of

energy consumption next to accuracy, but also the appreciation

of research efforts that do not necessarily rely on enterprise-

sized data or training budgets. Nonetheless, with enlarging

models and more complex training, the energy demand grows

considerably. Microsoft’s partnership with OpenAI to build a

dedicated supercomputer with 10,000 GPUs [7] is a recent

example. Thus, we advocate for an urgent need for boosting

Green AI to support the ever-growing AI energy demands.

From a study by Facebook AI, we learn that at least

50% of the operational carbon cost of machine learning tasks

can be attributed to inference [16]. Fully trained models can

be deployed to a huge number of independent devices that

collectively process a lot of data. Moreover, devices that act

as hosts to the neural networks do not necessarily have the

same computational power as the machine used for training.

In the case of mobile devices, battery life also becomes a

factor. For these use cases, efficiency is essential. To explore

this problem, some studies specifically focus on developing

computation-efficient models [9], [18]. Other works focus on

developing strategies for multiple-model selection, based on

the idea a diverse set of models can meet different energy

and performance requirements [10]. Based on the same prin-

ciple, by creating multiple instances of cascading models with

increasing complexity, energy-intensive models can be called

only when deemed necessary [3].
We argue that one should not only optimise for training [17]

and development, but consider the complete life-cycle of a

neural network. The batch size (i.e., the number of input data

samples that are processed at one time during inference) is

one of the most important hyperparameters to tune during the

training phase. It has implications on the model accuracy and

generalisability [5], training times and parallelisability [13],

etc. During inference, however, there is no dataset available

that can be divided into batches. Instead, the incoming stream

of requests depends on some external factor that provides

input. Hence, any attempt to process data in batches of a

specific size inadvertently introduces a form of delay to the

response. This is an important difference from the training

phase because the GPU always exerts some amount of power

even when idle.
In this study, we analyse this two-way optimisation problem

between the energy consumption and the response time during

inference. In addition, we present a timeline of state-of-the-

art neural networks and compare them in terms of their

energy consumption. We chose to focus on computer vision

networks because of their wide range of solutions and diverse

approaches as the field has evolved. In summary, we strive to

answer the following research questions:

RQ1: How does batch inference affect the energy consumption

of computer vision tasks under different frequencies of

incoming requests?

RQ2: How has the energy efficiency of computer vision mod-

els evolved in the last decade?
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The methods and tools used in this study are accounted for

in Section II. In Section III, we go over the experiment that

was devised to collect the delay and the energy consumption

for different experimental settings. This section also explains

the data collection for the neural network energy timeline.

The results of the experiment are presented in Section IV, and

we analyse and elaborate on these in Section V. Finally, we

take note of the threats to our study in Section VI and wrap

up our findings and recommendations with the conclusion in

Section VII.

II. RESEARCH METHODS

The goal of this study is to examine the effect of input

batching on the energy consumption and response times of

five fully-trained neural networks.

A. Case Selection

We first select networks that are considered state-of-the-
art (SotA) at their publication period. We assess this criterion

based on the accuracy reported in the original publication and

SotA leaderboards such as from “Papers with Code1”. Next,

we collect their pre-trained models provided by Pytorch2:

• AlexNet (2014) [6]

• DenseNet (2016) [4]

• ShuffleNetV2 (2018) [9]

• VisionTransformer (2020) [2]

• ConvNext (2022) [8]

The reason we choose these five networks in particular is

because their initial publication dates are spread out evenly

in the past decade. This not only provides a good variety of

different network designs, but it also facilitates RQ2, where we

attempt to compare the energy consumption of modern neural

networks to their predecessors. It should also be noted that

these models are designed for image classification. We choose

this problem space because image recognition is a canonical

deep learning challenge.

All experiments are performed on a single GeForce GTX-

1080 GPU3. The stop condition for any run mentioned in

this study is a fixed amount of processed image classification

requests. Because inference is reliant on external providers for

incoming requests, the time it takes to receive a certain amount

of requests can vary a lot. To make a fair comparison of the

differences in energy consumption, we assume regular streams

of incoming requests in this study.

B. Experimental Tooling

We develop a testbed in Python to automate the data

collection. The testbed is publicly available in an open source

repository to enable reproducibility4. The software provides

a simulated queue that creates image classification tasks at

a frequency that can be configured manually. Requests are

then pulled from the queue and collected in a batch with

1https://paperswithcode.com/sota/image-classification-on-imagenet
2https://pytorch.org/vision/stable/models.html
3https://www.nvidia.com/nl-nl/geforce/10-series/
4https://github.com/yarally/inference-batching

configurable size. These batches are fed to the neural networks.

Apart from the five networks mentioned in Section II-A, our

tool is immediately compatible with any image vision model

that Pytorch provides or any custom model that is built using

the same framework. We highly encourage experimenting with

different architectures and reporting the results.

C. Data Collection

For this study, we are interested in two quality metrics:

the average energy usage per image classification and the

maximum response time, meaning the time between a user

submitting a task and receiving an answer. As mentioned

before, we assume that the stream of incoming requests is

about constant. This entails that the time between any two

requests will be roughly the same for a fixed frequency.

We obtain the power usage of the GPU by querying the

NVIDIA System Management Interface5 every 10 millisec-

onds. The total energy consumption can then be computed as

a factor of time and the average power. Finally, this amount

is divided by the total number of images to calculate the

desired metric. For this study, we do not factor out the idle

consumption of the GPU because idling is an important part

of the experiment. By increasing the batch size, we inherently

increase idle times as well. The experiment is meant to show

whether this increase in batch size and response time improves

the energy efficiency or not.

The maximum response time is determined by providing

each incoming classification task with a timestamp. This

timestamp is resolved as soon as the request is handled, and

the program keeps track of the longest time in memory.

III. EXPERIMENTS

In the following section, we describe the setup of the exper-

iment in detail. We use the results of this single experiment

to answer both research questions (RQ1 & RQ2).

A. Batching During Inference

During the image vision training phase, a neural network

processes thousands upon thousands of images. To parallelise

this task and employ more of the available GPU power,

these images are often processed in batches. During inference,

however, when we look at image classification in a practical

setting, the usual dataset is replaced by an irregular stream

of incoming requests. We refer to the number of images that

come in per second as the frequency. If we choose to perform

inference in larger batch sizes, depending on the frequency,

we might have to wait for a batch to fill up before passing

it on to the network and this increases the response time to

the user. In a nutshell, this is the game that we attempt to

optimise: the trade-off between energy consumption and wait

time.

To carry out this experiment, we simulate a queue that

receives incoming image classification requests. These images

are then passed to a neural network using some batching

strategy. The setup is as follows: we compare four different

5https://developer.nvidia.com/nvidia-system-management-interface
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Fig. 1: Inference experiment diagram

frequencies (16, 32, 64 & 128); the five different networks

mentioned in Section II and five batching strategies (16,

32, 64, 128 & Greedy). This amounts to 100 different ex-

perimental configurations, where each configuration is rep-

resented by a triplet: <frequency, network model,
batching strategy>. The greedy batching strategy is the

baseline to which the other batch sizes are compared. Greedy

in our simulation means all the images in the queue are passed

to the network as soon as it becomes available6. The flowchart

in Figure 1 displays this entire process in a graphical format.

Each configuration triplet comprises one run, which contin-

ues until 213 image classification tasks have been requested

and processed. To minimise variance with regards to process

times, we cycle through three arbitrary images of roughly

the same size. Note that because we use the request count

as the termination criterion, we cannot compare settings with

different frequencies to each other in terms of energy con-

sumption. This is because as long as the GPU can keep up

with the incoming stream, the frequency will determine for

how long the simulation will continue and during idle periods,

the GPU will still exert power. Therefore, we expect that

the absolute energy consumption of low-frequency simulations

will be greater than that of high-frequency ones. For this

reason, we compare only the results that were accumulated

using the same frequency with each other when formulating

our answers to RQ1.

B. Image Vision Energy Timeline

To answer the second research question (RQ2), we calculate

the average energy consumption per image over all five

batching strategies for each combination of neural network

and simulation frequency. This amounts to four values per

model or 20 data points in total. We present these results in a

bar chart in Section IV.

IV. RESULTS

In this section, we present the results from the inference

batching experiment.

6The maximum greedy batch size is set to 128 to avoid out-of-memory
issues

Model Batch size 1-2 (W) Batch size 128 (W) Difference (%)

AlexNet ±65.0 87.3 ±34.3
DenseNet 72.5 163.1 124.9
ShuffleNetV2 ±65.0 87.1 ±33.9
VisionTransformer 76.2 185.8 144.0
ConvNext 93.1 166.4 78.6

TABLE I: GPU peak power in Watts (W) differences for small and
large batch sizes

A. Batching During Inference

For each of the five image vision models (i.e. AlexNet,

DenseNet, ShuffleNetV2, VisionTransformer & ConvNext),

we perform a trade-off analysis concerning the average energy

consumption per processed image and the maximum wait time

in the queue. The results are visualised in the scatter plots

from Figure 2. In these plots, the x-axis represents the average

energy consumption in Joules for processing a single image.

The y-axis shows the maximum time from when a user submits

an image until she receives a response. Furthermore, there

are four different classes that each corresponds to a different

setting of the simulation. For a class f=X, X represents the

frequency of the incoming image requests, e.g. the class f=32
will have 32 image requests every second. Finally, the labels

next to each data point correspond to the size of the batches

(i.e., 16, 32, 64, 128 and G), where G refers to the greedy

batching strategy (i.e., all the images in the queue are sent as

soon as it becomes available).

There are several things that we can observe from these

scatter plots. First of all, every network responds to batching

differently. AlexNet (Figure 2a) and ConvNext (Figure 2e)

both clearly benefit from batching as the greedy strategy is

almost always the least energy efficient. Two exceptions are

the frequency 32 simulation for ConvNext and the frequency

128 simulation in general. The latter is easy to explain if we

consider the average batch size of the greedy strategy. For

frequencies 16, 32 and 64, this ranges from 1 to 7 images per

batch, whereas for the 128 frequency simulation, the average

batch size lies around 122. Given the positive effect of larger

batch sizes, we can understand why the greedy strategy would

perform better in high-frequency scenarios.

The VisionTransformer (Figure 2d) also generally runs more

efficiently for larger batch sizes. For this model, the exception

can be found in the frequency 16 simulation. Here we find

that the greedy strategy, with an average batch size of 1.0004,

is the most energy-efficient.

For another interesting observation we direct our attention

to the scatterplot for ShuffleNetV2 in Figure 2c. We find that

there is virtually no horizontal spread in the points, which

suggests that the model’s efficiency does not depend on the

batch size. This belief is enforced if we also consider the

average peak power of the GPU while processing a batch of

images. For all the other models, there is a large difference in

peak power for processing a small batch of images versus a

large one. This does not hold for ShuffleNetV2, which can be

seen in Table I. This table shows that not only ShuffleNetV2,

but also AlexNet have a relatively small change in peak power
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Fig. 2: Energy consumption per unit inference vs the maximum response time. For each sub-figure, the upper plot show low frequency
simulations (16, 32, 64) and lower plot show high frequency simulations (128).
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for different batch sizes.

Finally we look at the results for DenseNet in Figure 2b.

Out of all five networks, the observed behaviour for DenseNet

is the most contradictory. We find that it performs the most

efficiently for smaller batch sizes regardless of the simulation

frequency. Because the greedy strategy takes very small batch

sizes (1-2) for frequencies 16-64, we find that greedy is

actually a very energy-efficient strategy for DenseNet.

Nevertheless, we cannot make any design decisions based

on these results without considering the second metric in the

scatter plots. Although the greedy strategy is often the least

energy-efficient, we see that it consistently achieves the lowest

wait times. For the frequencies 16 through 64 simulations, the

graphs show that the greedy strategy results in near-instant

response times while increasing the batch size introduces a

maximum delay between 1 and 15 seconds. For the high-

frequency simulation, we observe a shift in this trend. Since

the GPU is not quite able to process all the images as soon

as they enter the queue, a bottleneck is formed. This results

in higher wait times in general and we find that the smallest

batch size of 16 is the least favourable in this case. Across all

models, the batch size of 64 is the most optimal with regard

to the maximum wait time.

B. Image Vision Energy Timeline

For the second part of this experiment, we take a step back

to compare the overall energy consumption of the five models

to each other. Figure 3 shows the average energy required

to process a single image in four different simulations. This

average comes from the summation of the energy consumption

for all the batch sizes for one such simulation. The models on

the x-axis are in a specific order, which is not necessarily an

increasing one in terms of energy efficiency. The models on

the left and their respective papers were published before the

models on the right. This creates an intuition for how energy

efficiency evolves over time. The chart shows that there is a

positive linear relationship between energy consumption and

publication date. The exception to this trend is ShuffleNetV2,

which, in terms of energy efficiency, is on the same level as

AlexNet.

It would not be fair to look at this graph without considering

the improvements in accuracy that the newer models achieve.

In Figure 4, we highlight the relative changes in accuracy

and energy consumption from every network compared to

AlexNet, which was published first. The energy consumption

is based on the results from this study and the accuracy refers

to the achieved top 1 accuracy on the ImageNet dataset7.

From this graph we can conclude that since 2012, the energy

consumption has seen a steep increase of 131% and this trend

does not start to fall off. Accuracy, on the other hand, has

improved by 35%. Also notice that despite ShuffleNetV2’s

energy efficiency, it does not seem to sacrifice anything in

terms of performance.

7https://paperswithcode.com/sota/image-classification-on-imagenet
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V. DISCUSSION

In this section, we reflect and elaborate on the results

as presented in Section IV. First, we consider the trade-off

between energy and wait time to formulate an answer to

RQ1. After that, to answer RQ2, we examine the collected

energy consumption of the five networks. To further explain

our findings, we look at the inner mechanisms and design

principles of the five image vision models.

A. Batching During Inference

What we learn from the results might be somewhat unex-

pected. We did not find one recommended batch size or even

an indication that reduces energy consumption in all cases.

Instead, we find that each network behaves differently under

varying batch sizes. Nonetheless, for some of the networks,

the potential gain in energy efficiency cannot be ignored.

AlexNet was published in 2012 and at that time it rev-

olutionised the field of image vision. The architecture of

the model is simple, with only five convolutional layers [6].

ConvNext is a more modern CNN that incorporates design

choices from classical CNNs like AlexNet and ResNet, that
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have been presented in the past decade [8]. Even the base

model is quite a bit more complex than AlexNet, containing

four different blocks for a total of 36 convolutional layers8.

Nonetheless, both of these models are pure CNNs that do not

rely on any special tricks. If we compare the results now,

we find that there is a bias towards larger batch sizes as

opposed to the small batch sizes of the greedy strategy in

the low-frequency simulations. For the high-frequency simu-

lation, where the inference becomes the bottleneck, the greedy

strategy will process larger batch sizes, decreasing the energy

consumed per image. Because we do not expect large data

centres to experience this bottleneck, generally speaking, we

can conclude that purely convolution-based models will benefit

from performing inference in fixed batches (>16) rather than

using a greedy strategy. For AlexNet, a batch size of 32

seems ideal because it limits the maximum wait time and the

difference in energy consumption with the larger batch sizes

is very small. For ConvNext, the largest batch size is nearly

always the most energy-efficient, therefore we recommend a

batch size of 128 (or even larger) when solely considering

energy consumption. The increase in wait time should be

evaluated per use case.

The VisionTransformer is the only network that does not

rely on convolution. Nevertheless, we find that batching almost

always results in lower energy consumption when compared

to the greedy strategy. Again we recommend a batch size of

32 for the same reason as with AlexNet. The difference in

energy consumption with the largest batch sizes is small, so

here we can afford to optimise for the wait time. Because we

do not evaluate any other transformers in this study, it cannot

be guaranteed that these results will generalise. However, since

the VisionTransformer was designed to closely resemble the

architecture of a “standard transformer” as used in NLP [2],

we can make an educated guess that this will be the case.

ShuffleNetV2 and DenseNet are the anomalies in this exper-

imentation. For ShuffleNet, we find that the energy consump-

tion is completely invariant from the size of the batches. The

wait times still scale as expected, therefore greedy batching

is the most optimal inference strategy for this network. The

energy consumption of DenseNet does differ per batching

strategy, but this time with a bias towards smaller batch

sizes. This network seems to consume the least amount of

energy with batches of size ≤16. This means that for the low-

frequency simulations, the greedy strategy is optimal. To get

an intuition as to why this may be the case, we look at the

architecture of DenseNet. In regular CNNs, the output of one

layer is passed on only to the next layer. In DenseNet, all

the layers are densely connected, which means that any layer

receives the output from all the preceding layers [4]. All the

layers remain occupied until an image has been completely

processed by the network. One can imagine that this translates

poorly to the parallel processing of multiple images.

Now that we have established how each network responds

8https://pytorch.org/vision/main/ modules/torchvision/models/convnext.
html

differently to batching and why that makes it difficult to

provide recommendations, we move to answer to RQ1: “How
does batch inference affect the energy consumption for image
vision tasks under different frequencies of incoming requests?”

We find that in some cases, batching of the requests has a

positive effect on the energy consumption of a neural network.

However, there are strong exceptions to this observation. Our

recommendation to AI practitioners is therefore as follows:

When preparing newly trained networks for practical appli-

cation, one should consider the batch size as an optimisation

parameter that needs to be tuned. First, we establish whether

the network runs more efficiently on small or larger batch

sizes and then we tweak the batch size to lower values until

the system adheres to the tolerated response time for the use

case.

B. Image Vision Energy Timeline

In terms of accuracy and energy consumption, the timeline

that we have presented in Figure 3 looks consistent and

predictable. It also presents a critical problem: Although

the innovations between 2012 and the present have led to

impressive advancements in our neural networks and their

precision, the potential gains in this regard are starting to

diminish. From that, we formulate our answer for RQ2: “How
has the energy efficiency of image vision models evolved in the
last decade?”

Modern image vision models consume more than twice as

much energy as earlier iterations and although these models

demonstrate better performance, the gains in accuracy are

limited. It is not surprising that we find this to be the case.

Accuracy (or a similar measure) is the metric that currently

defines what is “state-of-the-art” [12], in fact, many challenges

and benchmarks only request a submission of the top-1 or

top-5 accuracy. Some leaderboards do focus on cost or energy

consumption9, but these are far and few between. If more chal-

lenges would accept submissions of new models where energy

consumption is considered as a primary objective alongside

accuracy, we can create opportunities for Green AI research.

The proof that competitive models can also be efficient is

already there. We established before that the ShuffleNetV2

architecture manages to break the increasing energy trend

without bowing down to its predecessors in terms of accuracy.

We look at the 2018 publication of ShuffleNetV2 to find out

how this was accomplished [9]. The authors mention that

most neural network design is guided by an indirect metric

of the computational complexity: the number of floating-point

operations (FLOPs). However, FLOPs only account for a part

of the equation. The direct metric, speed, is also influenced

by other processes like memory access. ShuffleNetV2 was

designed with this mindset, to optimise for the direct metric

of computational complexity rather than an indirect one. This

goal of designing a fast network coincidentally resulted in a

network that is also energy-efficient. In the same paper, the

authors present a collection of four guidelines for efficient

9https://dawn.cs.stanford.edu/benchmark/
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network design: (1) Equal channel width minimises memory

access cost (MAC); (2) Excessive group convolution increases

MAC; (3) Network fragmentation reduces degree of paral-

lelism; and (4) Element-wise operations are non-negligible.

Many of these guidelines focus on the reduction of memory

access during classification tasks. This could be an interesting

starting point for future research in Green AI.

VI. THREATS TO VALIDITY

In this section, we go through potential threats to the inter-

nal, external and construct validity, as well as the reliability.

Internal validity regards the extent to which evidence

supports cause-effect claims. During early experimentation,

we noticed that the GPU was idling on a higher power output

for the first few minutes. Because this influenced the average

energy consumption for some of the configurations, we in-

troduced a warm-up phase. Before starting a new simulation

and logging the energy consumption, we allowed the GPU to

“warm up” by passing 256 batches of 32 images through the

respective model. This factors out most of the inconsistencies.

External validity addresses the extent to which our results

can be generalised to broader contexts. We mentioned before

that the results collected in this study do not grant opportu-

nities for firm recommendations and guidelines. Because we

found a strong deviation in how different neural networks are

influenced by batch inference, we can hardly claim that our

findings will generalise well to other types of models. As such,

our main contribution is not on the empirical results, but on the

finding that a correct batching strategy will improve the overall

energy efficiency and should therefore be tuned accordingly.

Construct validity concerns how well our indicators rep-

resent the intended object of study. The main factor that hurts

the construct validity is how accurately our simulation mirrors

a real scenario. For the experiments, we assumed a constant

workload with little to no deviation. In practice, one would

expect a more erratic stream of incoming requests, with some

periods of complete downtime. Naturally, it is undesirable to

hold an unfilled batch while nothing new is coming in, so

there should be some maximum time since the last request

to avoid that. Nevertheless, our focus was not on optimising

this simulation, but on investigating the energy efficiency of

different batching strategies. Even in a more realistic scenario,

the deviations in energy consumption that we observed should

remain the same.

Reliability regards the extent to which the study can be

replicated with the same observed results. A single developer

worked on accumulating the results presented in this study,

but all the involved authors reviewed and approved the entire

process. The complete reproduction package is available on-

line10. This repository contains the source code that can be run

to reproduce the results for any of the models from Section III

or a different one provided by the Pytorch library11.

10https://github.com/yarally/inference-batching
11https://pytorch.org/vision/stable/models.html

VII. CONCLUSION

In this study, we examined the energy efficiency of different

neural networks that have been presented in the past decade.

We simulated how these networks could be employed in a

practical setting and extracted the optimal batching strategies

for each. We learned that there is no one size fits all solution

for recommending a batching strategy (RQ1).

AlexNet and ConvNext both operate more efficiently when

using fixed batch sizes as opposed to greedy batching. Our

results suggest a batch size of 32 for AlexNet and 128 (or

larger) for ConvNext. Because of their classical architecture,

we expect these results to generalise well to other pure CNN-

based models.

For the VisionTransformer, we find a similar result. A batch

size of 32 appears to be the sweet spot in terms of GPU

utilisation. A smaller batch size hurts the energy efficiency and

a larger one does not provide any improvements. For future

research, it would be interesting to repeat this experiment and

evaluate more transformer-based models to see if these results

generalise well.

The graphs from ShuffleNetV2 show little to no deviation

in the energy consumption for different batching strategies.

Based on these results we draw the conclusion that this neural

network is batch size invariant with regard to the energy

consumption. As such, the greedy strategy is the most optimal

because it limits the maximum response time.

Finally, the results for DenseNet highlight why we chose to

evaluate each network separately. Larger batch sizes actively

hurt the energy efficiency of this model, therefore the greedy

strategy is the most optimal one.

Furthermore, we presented an energy efficiency timeline in

Figure 3. In general, we find that the energy consumption

of modern neural networks has increased steadily in the last

ten years (RQ2). ConvNext, the most recent publication,

consumes more than twice as much energy as the revolutionary

AlexNet from 2012. Nevertheless, our timeline has an irregu-

larity that holds a great opportunity. ShuffleNetV2 is the only

model in our timeline that does not adhere to the increasing

energy trend. Additionally, when compared to its predecessors

AlexNet and DenseNet, we find that ShuffleNetV2 does not

perform any worse. We looked at the design principles that

were considered when developing this network and argue

that future work should incorporate the views and guidelines

presented in the corresponding publication.
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