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Abstract 

In the present work, the effective elastic modulus of carbon nanotube (CNT) polymer 

nanocomposites has been evaluated through micromechanics modeling and finite 

element analysis (FEA). In the micromechanics model, the inherent trend of CNTs to 

aggregate is taken into account, considering a two-phase material system, that of the 

matrix with the finely dispersed CNTs and the inclusions, involving agglomerated 

CNTs and matrix material. A new model is proposed for the elastic stiffness evaluation 

of the two phases and the elastic stiffness of the nanocomposite, introducing two 

aggregation parameters. It was proved that this analysis was rational and operative. The 

same aggregation concept has been investigated using FEA, and a comparative study  

between the two procedures was performed. Furthermore, an additional treatment with 
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FEA was performed, based on a three-phase model, including the matrix, the CNTs and 

the interphase. A parametric analysis has been executed and a comparison with 

experimental data of  linear low density polyethylene (LLDPE)/CNT nanocomposites 

has been performed.  

Key words: Linear low-density polyethylene; Carbon nanotube reinforced 

nanocomposites; Micromechanics; Finite element analysis. 

1. Introduction

The remarkable mechanical properties of carbon nanotubes (CNTs), such as hardness, 

high strength and flexibility, low density and excellent electrical and thermal properties, 

have rendered them a distinguished reinforcement agent. It has been observed that the 

addition of 1 wt.% CNT to a matrix resulted in 36–42 % increases in the composite 

hardness [1,2]. 

Over the past few decades, CNTs, as reinforcing agents for a variety of polymeric 

structures, have attracted great attention because of their structure and properties. This 

is due to the unusual physical and mechanical properties, as a direct result of the almost 

perfect microstructure, namely the hexagonal sheet of carbon atoms rolled in a 

cylindrical shape [3-7]. As a result, CNTs have been employed in a wide range of 

applications such as chemical and genetic probes, mechanical memory, sensors and 

structural materials [3]. A lot of research has been focused on the mechanical 

enhancement of polymers reinforced with CNTs [3-9]. Polymer/CNT nanocomposites 

appear to have numerous potential advantages such as increased energy absorbance, 
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high toughness, easier manufacturing processing and high strength and modulus over 

weight ratio. 

Modeling of the elastic properties of CNT/polymer nanocomposites has been the 

subject of numerous works [3, 6, 10-14].  Odegard et al. [10] used the Mori–Tanaka 

method to predict the elastic properties of CNT/polyimide composites at various 

lengths, orientations, and volume fractions. Seidal and Lagoudas [12] predicted the 

elastic properties of CNT/epoxy composites using a variety of analytical 

micromechanical approaches. 

Anumandla and Gibson [13] presented a comprehensive micromechanical model that 

incorporates the effect of nanotubes’ curvature, length, and their 1D/3D random 

orientations, to calculate the elastic modulus of CNT nanocomposites. 

Mechanical properties of high-density polyethylene composites reinforced with CNTs 

were also presented by Kanagaraj et al. [14]. 

Referring to  more recent works, in [15], a new form of the rule of mixtures, containing 

an exponential shape function, length efficiency parameter, orientation efficiency factor 

and a waviness parameter, was  proposed to predict the mechanical properties of CNT-

reinforced epoxy composites, for both low and high wt.% ranges.  

In [16] the mechanical enhancement of a polymer/CNT nanocomposite was analyzed 

with regard to the Young’s modulus and the yield strength of the interfacial region, on 

the basis of a three – phase micromechanical model.  

In a recent work [17], the tensile modulus of polymer/CNT nanocomposites was 

evaluated by the Kolarik model, on the assumption of CNTs continuous networks into 

the polymer bulk, where the interphase surrounding the CNTs is also accounted for. 
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In the same trend, two models for the tensile modulus considering the dispersion and 

CNTs networking as well as the interphase around CNTs [18] are combined to predict 

the tensile modulus, as well as the effect of the model parameters. 

Finite Element Analysis (FEA) has been proved to be a useful tool for studying and 

analyzing the mechanical performance of polymer/CNT nanocomposites [19].  

FEA is particularly useful in the verification of the accuracy of micromechanics model 

for composite materials.  

In [20] using a representative volume element (RVE), the effects of several geometrical 

and material parameters on the low-velocity impact behavior of nanocomposites have 

been studied. In addition, different impact velocities and the impact energy absorption 

characteristics of nanocomposites have been investigated.  

In another work [21], a coupled field finite element analysis is carried out for CNT 

reinforced epoxy based composite subjected to thermo-mechanical loading. The effect 

of CNT length on the thermo-mechanical behavior was analyzed using a hexagonal 

RVE. 

 Despite these advantages of CNTs and the research that has been performed so far, 

there is still a need of further research to improve our understanding by developing 

models predicting the mechanical enhancement of polymer/CNT nanocomposites. 

Regarding linear low-density polyethylene (LLDPE), which is the matrix material 

employed in this work, there are limited studies on blending LLDPE with CNTs [6,7, 

22-26].  

The scope of the present work, is the prediction of the elastic stiffness of polymer /CNT 

nanocomposites focusing on the two main features of CNTs: Their inherent tendency to 
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agglomerate and the role of the interphase region around CNTs, given the large surface 

area between the matrix and the nanofillers.  In the present work, a new version of a 

micromechanics model is presented for the elastic stiffness evaluation, introducing two 

agglomeration parameters. The nanocomposite is considered to contain a fictitious 

matrix, involving matrix material and dispersed CNTs, and inclusions which involve 

CNTs agglomerates and matrix material. The elastic stiffness of the fictitious matrix has 

been evaluated by  Odegard’s model , using the concept of the effective fiber, treated as 

a transversely isotropic material. A finite element analysis was also executed on the 

basis of these main assumptions. The accuracy of the micromechanics model has been 

evaluated against the FEA results.The concept of the interphase was further elaborated 

by FEA, through a parametric analysis within the context of a three phase model. The 

effect of the interphase modulus and thickness on the nanocomposites’ elastic properties 

has been extensively analyzed. The model simulation was performed on the basis of the 

tensile modulus experimental results executed in our previous works [6, 7]. Specifically, 

two types of LLDPE reinforced with CNTs at different CNT content, were investigated, 

namely zLLDPE and mLLDPE produced by Ziegler-Natta and metallocene catalysts, 

analytically presented in [6,7].  

 

2. Analytical Micromechanics model: Inclusion model 

 

In this section, the Young’s modulus of the LLDPE/CNT nanocomposites is analyzed, 

considering the inherent tendency of the nanofillers to produce agglomerates, when they 

are dispersed into the polymeric bulk. The elastic properties of the LLDPE/CNT 
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nanocmposites examined were experimentally studied in [6,7] and are presented in 

Table 1.  

 

 

Table 1 

Mechanical properties of the LLDPE/CNT nanocomposites studied,  

taken from ref. [6,7] 
            Material      

 

 

 

    CNT            Young’s     Modulus         Yield      Failure     Yield       Failure 

   volume        Modulus     Increment       stress       stress       strain       strain 

   (%)              (MPa)          (%)              (MPa)        (MPa)      (%)          (%) 

 

  

             zLLDPE                                          

                

zLLDPE/2%CNT 

 zLLDPE/4%CNT               

zLLDPE/6%CNT                                 

zLLDPE/8%CNT                         

zLLDPE/10%CNT                             

zLLDPE/15%CNT         

zLLDPE/20%CNT 

 

 

 

mLLDPE 

 

mLLDPE/2%CNT  

mLLDPE/4%CNT 

mLLDPE/6%CNT 

mLLDPE/8%CNT 

mLLDPE/10%CNT 

 

-        335             -                    5.6              22.7        12         1125 

 

  0.013            430            28.3               6.8              16.7        8.4        874 

  0.0262          472            40.9               7.0              18.1       10.3       871 

  0.0393          477            42.4               7.5              23.2       10.0       915 

  0.0525          500            49.2               8.0              18.2       12.0       682 

  0.0655          600            79.1               9.7              11.9        7.7        445 

  0.098            548            63.6              10.5             10.7        11.5      275 

  0.131            730            118.0            11.2             10.9         8.9       125 

 

 

                                                                      

-            205                 -              3.86/5.3           22.7     16.0       1036 

 

0.0176           261              27.3           3.77 /5.5          16.7     14.7       1187 

0.0266           302              47.3           3.23/5.8           18.1     10.1        788 

0.0360           350              70.7           5.13/7.5           23.2     20.1        708 

0.0455           363              77.1           5.41/7.8           18.2     16.3        638   

0.0879           410              100            6.0 /8.5            11.9     20.5        468 

 

  

 

 

In this Table, the different mechanical performance, mainly  due to the different LLDPE 

matrix, is revealed. In addition, mLLDPE/nanocomposites exhibit two yield stresses, as 

shown in Table 1 and analyzed in [7]. 

Several theoretical works on the prediction of the mechanical enhancement of polymer 

nanocomposites have been developed so far, [6, 10, 11, 14, 27, 28-30]. Following [30], 
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it is assumed that the nanocomposite is mainly a two – phase system. The first phase is 

the polymeric matrix which contains a number of dispersed CNTs and is called 

fictitious matrix. The second phase involves spherical regions, which contain 

agglomerated (concentrated) CNTs embedded in the matrix material. These phases are 

called inclusions. The two phases are illustrated in Figure 1. In the present work, a new 

analysis approach will be hereafter adopted, regarding the calculation of the elastic 

modulus of the involved phases. 

 

 

 

 

Figure 1: a) Schematic presentation of the inclusion model with agglomerated CNTs 

dispersed into the matrix b) Orientation of the effective CNT referring to the  local 

x1x2x3  and to the global 1 2 3x x x      coordinates.  

 

 

 



8 
 

2.1 Calculation of the elastic stiffness f

mE  of the fictitious matrix 

This procedure is similar to the one, followed in our previous work [6], where the 

distinctive mechanical enhancement, obtained by the dispersed nanofillers, is combined 

with a micromechanics model, initially developed for conventional composites. 

Therefore, the elastic stiffness tensor C (of the fictitious matrix) as expressed by Mori-

Tanaka [27] and later by Benveniste [11] is given by: 

( ) ( )
1

f f

m f f m m f+v   A  v v
−

= − +C C C C I A                                                            (1) 

where Cm is the matrix stiffness tensor, Cf the CNT’s stiffness tensor, I is the identity 

matrix tensor, vf is the volume fraction of the fictitious matrix   and Af is the dilute 

mechanical strain concentration tensor for the CNTs: 

( ) ( )
1

1

f m f m  
−

− = + −
 

A I S C C C                                                                                 (2) 

where S is the Eshelby tensor, expressed for spheroidal inclusions [31, 32] is given by: 

             

11 12 13

21 22 23

31 32 33

44

55

55

s   s  s     0    0   0

s   s  s     0   0   0

s   s  s     0   0   0

0    0    0     s  0   0

0    0    0    0   s   0  

0    0    0    0   0    s

 
 
 
 

=  
 
 
 
  

S                                                                             (3) 

where  

s11=(1/(2 (1-v))) (1-2 v+(3 t^2-1)/(t^2-1)-(1-2 v+3 t^2/(t^2-1)) g) 

s22=s33=(3/((1-v) 8)) t^2/(t^2-1)+(1/(4 (1-v))) (1-2 v-9/(4 (t^2-1))) g 

s12=s21=(1/(4 (1-v)))  (t^2/(2 (t^2-1))-(1-2 v)-(3/(4 ( t^2-1))) g) 

s13=s23=-1/(2 (1-v))  t^2/(t^2-1)+1/(4 (1-v)) (3 t^2/(t^2-1)-(1-2 v)) g 

s31=s32=-1/(2 (1-v)) (1-2 v+1/(t^2-1))+1/(2 (1-v)) (1-2 v+3/(2 (t^2-1))) g 
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s44=(1/(4 (1-v))) (t^2/(2 (t^2-1))+(1-2 v-3/(4 (t^2-1))) g)                                                           

s55=(1/(4 (1-v))) (1-2 v-(t^2+1)/(t^2-1)-0.5 (1-2 v-(3 t^2+3)/(t^2-1)) g) 

                                                                                                                                        (4) 

with   g = t (t(t^2 − 1)^.5 − ArcCosh[t]) (t^2 − 1)^1.5⁄ , v being the Poisson’s ratio 

of the CNTs and t their aspect ratio. The angle brackets in eq (1) represent the average 

value over all possible orientation of the CNTs, as follows: 

f f

ijkl ip jq kr ls pqrsc c c c  =A A                                                                                                   (5) 

and cij are the direction cosines for the transformation: 

11

12

13

21

22

23

31

32

33

c =cos  cos -sin  cos  sin

c =sin  cos +cos  cos  sin

c =sin  sin

c =-cos  sin -sin  cos  cos

c =-sin  sin +cos  cos  cos

c =sin  cos

c =sin  sin

c =-cos  sin

cosc

    

    

 

    

    

 

 

 

=

                                                                                (6) 

with γ, φ, ψ being the angles for the transformation from the local effective fiber coordinates 

 ( x1,x2,x3) to  the global coordinates  1 2 3x ,x ,x    (see Figure 1). 

 

Then, the orientation average of tensor Af is given by: 

/2

f

f 0 0

/2

0 0

( , , ) ( , ) sin( ) d d d

( , ) sin( ) d d d

  



  



         

      

−

−

=
  

  

A

A                                                (7) 

where λ(φ,ψ)  is the orientation distribution function: 

2 2

1 2( , ) exp  exps s       = − −                                                                                  (8) 
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Parameters s1, s2 determine the orientation of the CNTs. The fictitious matrix is treated 

as an isotropic material, due to the random dispersion of the CNTs.  Therefore, factors 

s1, s2   are equal to zero and consequently λ(φ,ψ)=1. Odegard et al. [10], introduced a 

coupling between the established micromechanics model and an equivalent continuum 

modeling method. More specifically, the nanotube, the local polymer chains around the 

nanotube and the CNT/polymer interface can be modeled as an effective continuum 

fiber. In this way, both effects, that of the agglomerate tendency of the CNTs and the  

specific contribution of the interphase are accounted for in the present approach. 

Hereafter, the elastic stiffness tensor C, and consequently the longitudinal modulus f

mE  

of the fictitious matrix, has been evaluated. Carbon nanotubes (effective fibers) were 

treated as a transversely isotropic material, described by five elastic constants, namely 

the longitudinal elastic modulus E1, the transverse modulus E2=E3, one shear modulus 

G12, and the Poisson’s ratios v12=v13 and ν23. To obtain a good approximation of the 

experimental data, the elastic properties of the CNTs employed are: E1=910 GPa, 

E2=E3=304 GPa, G12=G13=194 GPa, v12=v13= 0.2 and ν23=0.3. 

 

 2.2 Calculation of the elastic stiffness incE  of the inclusion 

The elastic stiffness of the inclusions will be calculated by the empirical model by Tsai-

Pagano [33, 34], with the main assumptions of a good matrix-nanofiller adhesion, good 

dispersion quality and random orientation of CNTs. Therefore the inclusions modulus 

Einc   is given by : 

L T

inc inc inc

3 5
E = E + E

8 8                                                                                                        (9)
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where     L

incE and T

incE are the corresponding moduli in the longitudinal and transverse 

direction, which are given as follows: 

 

L

inc f f m fE =E λV +E (ξ-λV )
                                                                                               (10)

 

T m f
inc

m f f f

E E
E =

E λV +E (ξ-λV )                                                                                               (11)

 

 

where ξ is the volume fraction of the inclusions into the nanocomposite and λ is the 

ratio of the volume fraction of CNTs into the inclusion over the total volume fraction Vf 

of the CNTs. It  therefore follows that the L

incE expresses the mixture law for the iso-

strain condition, and the T

incE represents the iso-stress condition.  

Regarding agglomeration parameters ξ, λ, it can be easily shown that for the volume 

fraction of the fictitious matrix vf   the expression vf =  1-ξ  is valid. 

 By definition, the values of ξ, λ are positive and lower than unity. When ξ=1, CNTs are 

uniformly distributed in the original matrix, and when λ=1 all the CNTs are embedded 

in the inclusions. When ξ=λ all the CNTs are uniformly distributed in the original 

matrix and the inclusions [30]. 

 

2.3 Calculation of the elastic stiffness Ec   of the nanocomposite 

 

The elastic stiffness of the nanocomposite Ec is finally given by the semi-empirical 

model of Cox-Krenchel [35], or the modified rule of mixtures: 
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f

c o c inc mE =h h E ξ+E (1-ξ)+C
                                                                                                               (12)

 

where  f

mE is the elastic modulus of the fictitious matrix, ho  is a parameter denoting the 

CNTs orientation, which in the present  case  was equal to 0.2, indicating random 

orientation of the inclusions into the fictitious matrix. Parameter hL  is given by: 

    
L

tanh(a t )
h =1-

a t

inc

inc           
with 

                   

f

m

inc

-3E
a=

2E lnξ
                                                             

(13) 

 

where tinc  is the inclusions’ effective aspect ratio, equal to 1 for spherical inclusions and 

tinc>1 for elliptical inclusions. C is a normalization parameter which satisfies the 

boundary condition Ec=Em  for Vf=0 . 

The inclusion model parameters are summarized in Table 2 for zLLDPE and 

mLLDPE/CNT nanocomposites. Figures 2, 3 demonstrate the simulated values of the 

nanocomposites’ elastic modulus for various values of the model parameters, in 

comparison with the experimental data. 
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               Table 2 

               Parameters of Inclusion Model for zLLDPE/CNT  and  mLLDPE/CNT 

               nanocomposites. 

 

               

 Material 

 

tinc 

 

ξ 

 

λ 

                 

zLLDPE/CNT 

 

1 

 

0.9 

 

0.27 

 3 0.64 0.2 

 5 0.5 0.2 

 5 0.43 0.3 

 10 0.2 0.6 

 10 

 

0.18 0.8 

    

mLLDPE/CNT 

 

3 

 

0.74 

 

0.2 

 5 0.61 0.2 

 10 0.5 0.2 

 10 0.5 0.28 

 12 0.4 0.24 
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Figure 2:  Variation of the Young’s modulus of the zLLDPE/CNT nanocomposites 

with CNTs volume fraction. Lines: Inclusion model simulation at various model 

parameter values. Points: Experimental data taken from Ref.[6] 
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Figure 3:  Variation of the Young’s modulus of the mLLDPE/CNT nanocomposites 

with CNTs volume fraction. Lines: Inclusion model simulation at various model 

parameter values. Points: Experimental data taken from Ref [7]. 

 

 

In Figures 2 and 3,  the model results with the best approximation with the experimental 

data are depicted, for various model parameter values. These results demonstrate the 

unavoidability of the CNTs agglomeration. The existence of agglomerates in the 

nanocomposites under investigation has been verified by scanning electron microscopy 

images [6,7]. The model parameter values with the best approximation to the 

experiments are: tinc =5, ξ=0.5, λ=0.2 for zLLDPE/CNT and tinc =5, ξ=0.61, λ=0.2 
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for mLLDPE/CNT nanocomposites. It is revealed that a high percentage of the CNTs 

participates to the agglomerates in both material types. 

 

3. Finite element analysis model  

In this section, the effective elastic modulus of the LLDPE/CNT nanocomposites will 

be analyzed in terms of two different micromechanical techniques, based on finite 

element analysis (FEA): an inclusion model and a three-phase model. 

3.1 Inclusion model 

The first procedure is based on the previously presented analytical inclusion model. The 

method employed is the three - step homogenization process. Following the analytical 

model, the pure matrix and the randomly distributed CNTs consist a new phase, called a 

fictitious matrix. The design and meshing of the RVE, based on this assumption are 

shown in Figure 4. The elastic constants of the CNTs are listed in Table 2 and the 

Young’s modulus of the polymeric matrix is the experimental one, as obtained in our 

previous works [6,7] equal to 335 MPa and 205 MPa. The aspect ratio of the CNTs in 

zLLDPE and mLLDPE matrix was 667 and 400 respectively, equal to the nominal 

properties. 

The second phase, the inclusion, consists of CNTs agglomerates and matrix material, 

and is randomly distributed into the nanocomposite. Therefore, the whole system is 

described by two phases, the fictitious matrix and the inclusions. The representative 

volume elements (RVEs) are presented in Figures 4, 5 and 6.  

At the first step of the homogenization, the fictitious matrix has been modeled.  The 

calculations were performed using the software Ansys 2019R2. The matrix was treated 
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as an isotropic material with a Young’s modulus Em equal to 335 MPa for the zLLDPE 

and 205 MPa for the mLLDPE and a Poisson’s ratio equal to 0.42. The CNTs were 

treated as a transversely isotropic material with a longitudinal modulus equal to 910 

GPa. All the engineering constants are listed in Table 3. 

                  

Figure 4:    RVE of the fictitious matrix. 

                    Table 3 

                   Engineering Constants of CNTs. 

 

 

E1 

(GPa) 

 

 

E2=E3 

(GPa) 

 

G12 = G13 

(GPa) 

 

v12 = v13 

 

 

v23 

 

 

910 

 

304 

 

194 

 

0.2 

 

0.3 
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It is to be noted here that the elastic constants of the CNTs employed in the FEA 

analysis are the same to those in the analytical model. In general, it is difficult to 

calculate the elastic properties of CNTs in the microstructure with perfect accuracy and 

molecular dynamics simulations are often used to calculate them. For this reason, the 

values of elastic constants chosen for CNTs are similar to those presented in [36], and 

employed in molecular dynamics techniques. On the basis of these values, the 

experimental results for the nanocomposite materials were approximated. The 

calibration procedure started by testing values similar to those presented  in [36]. The 

values that gave the best approximation to the experimental results were those listed in 

Table 3. 

At the second step of the homogenization process, the elastic stiffness of the inclusion 

was calculated. It was assumed that the CNTs content is the 80% of the inclusion. The 

same parameter values, regarding the matrix and the CNTs, as in the first step were 

employed. The RVE of this step is illustrated in Figure 5. 
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Figure 5:   RVE of the inclusions  

 

 

The final RVE of the nanocomposite was hereafter modeled with the known elastic 

constants of the fictitious matrix and the inclusions. The RVE of this step is illustrated 

in Figure 6. The inclusions are considered to be spherical with diameters ranging 

between a minimum and a maximum value equal to 175 nm and 877 nm respectively, 

and were treated as orthotropic materials. The parameter values are presented in Table 

4, and the simulated elastic moduli of the LLDPE/CNT nanocomposites, designated as 

FEA-Inclusion Model,  are illustrated in Figures 7,8.    
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                 Table 4 

                 Engineering Constants of Inclusions. 

Engineering Constants zLLDPE/CNT mLLDPE/CNT 

Ε1 (GPa) 851 742 

Ε2 (GPa) 820 724 

Ε3 (GPa) 762 712 

G12 (GPa) 273 170 

G23 (GPa) 246 158 

G13 (GPa) 276 172 

v12 0.379 0.379 

v23 0.428 0.428 

v13 0.418 0.418 

 

 

 

 

 

 

 

 

 

 

Figure 6:   RVE of the nanocomposite, including the fictitious matrix and the 

inclusions  
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Figure 7: Variation of the Young’s modulus of the zLLDPE/CNT nanocomposites with 

CNTs volume fraction. Lines: FEA simulation. Points: Experimental data taken from 

Ref [6]. 
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      Figure 8: Variation of the Young’s modulus of the mLLDPE/CNT nanocomposites 

with CNTs volume fraction. Lines: FEA simulation. Points: Experimental data taken 

from Ref [6]. 

 

 

To further analyze the inclusion model’s capability, the LLDPE/CNT nanocomposites 

have been modeled as a matrix containing randomly dispersed CNTs. The whole system 

is now modeled in a similar way to that of the fictitious matrix, and the presence of 

CNTs agglomerates is not taken into account. The simulated results of this procedure, 

designated as FEA-Fictitious Matrix, are comparatively plotted with the FEA-Inclusion 
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Model, in Figures 7 and 8.   From these plots, it is extracted that the presence of the 

CNT inclusions further reinforce the Young’s modulus of the nanocomposites. In both 

Figures, a very good Young’s modulus prediction is obtained for the nanocomposites 

investigated.  

3.2  Three-phase model (Interphase) 

The concept of the interphase, which is treated as a thin interface layer usually covering 

the particles in conventional composites has been extensively studied [37, 10, 17]. 

Having a much smaller thickness than the filler’s size this layer may not greatly affect 

the overall properties of the composite. However, this is not the case for 

nanocomposites, where the nanofillers’ dimensions are of the same order of those of the 

interphase, and there is a large-surface area between them and the matrix. Particularly in 

CNT/nanocomposites, the interphase is an area in which van der Waals electromagnetic 

forces are exerted between the polymeric matrix and CNTs. Therefore, the interphase is 

expected to play an important role on the mechanical enhancement of the 

nanocomposites [38-41]. To this trend, Li and Seidel [42] studied the load transfer 

ability of the interphase in CNT/epoxy nanocomposites using molecular dynamics. In 

addition, some new models including the interphase have been developed [43]. The 

interphase areas can produce connected networks, which accelerate the mechanical 

percolation in polymer nanocomposites at a lower volume fraction of nanoparticles. 

Consequently, the interphase affects the percolating role of the nanoparticles in the 

nanocomposites besides the reinforcing efficiency [44]. 

In this section, a three-phase model is considered, consisting of the polymeric matrix, 

CNTs randomly distributed and an intermediate region around the CNTs, the so-called 
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interphase region. This model is illustrated in Figure 9, where Ri, Ro are the inner and 

outer radii of the CNTs and Rinter the interphase radius. The aim of this analysis is to 

study the effect of the interphase and its elastic properties on the elastic stiffness of the 

nanocomposite. In many articles such as [45, 46] the interphase was modeled as an 

isotropic material with high Poisson ratio, therefore, in the present work,  this region is 

modeled as an isotropic material with unknown properties, which are the model 

parameters. The polymeric matrix phase is considered an isotropic material with a 

Young’s modulus equal to the experimental one and a Poisson’s ratio equal to 0.42 

[6,7]. Τhe longitudinal modulus of the CNTs, is taken equal to 910 GPa, as in the 

previous sections. Following the analysis, presented in the previous paragraph, the 

calculation of the elastic constant 
RandomCNT

mE  of the randomly oriented CNTs has been 

performed. 
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Figure 9: Three-phase (interphase) model 

 

 

Following Figure 9, considering as α  the side length of the RVE and L the CNT length, 

we have: 

( )2 2CNT
f o i3

RVE

V π
V = = R -R L

V α                                                                                                                (14)

 

 

( )2 2inter
inter inter3

RVE

V π
V = = R -R L

V α
o

                                                                                                       (15)
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m inter fV =1-V -V
                                                                                                                                    (16)

 

 

The MWCNTs employed are of Ri=2.5 nm and Ro=5 nm. From the above equations 

(14) to (16) we have: 

 

2 2

int int

2 2

er er o

f o i

V R R

V R R

−
=

−
                                                                                                                              (17)

 

By selecting a proper value for Rinter, the interphase thickness is then evaluated. 

Considering that int 1

2

er

f

V

V
  it was found that Rinter<5.86 nm, therefore the interphase 

thickness tinter was less than or about equal to 0.86 nm. Hereafter, selecting the 

interphase Young’s modulus Einter = 1 GPa, and applying the following well known 

empirical equations, the Young’s modulus Ec of the nanocomposite can be extracted as: 

 

RandomCNT

m

c inter inter interE =E (1-V )+E V                                                                          (18) 

where         
RandomCNT

m eff

m m f fE =E V +E V                                                                               (19) 

with   eff

fE = 910 GPa, and   
int 1f m erV V V+ + =  

The interphase thickness will assume the values 0.2, 0.4, 0.6 and 0.8 nm. 

Τhe results of this analysis are shown in Figures 10 to 13 for both LLDPE/CNT 

nanocomposites and various model parameter values, in comparison with the 

experimental results. 
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Figure 10: Variation of the Young’s modulus of the zLLDPE/CNT nanocomposites 

with CNTs volume fraction. Dashed lines: Three-phase model simulation at various 

interphase thickness values, against FEA-Fictitious Matrix model. Points: Experimental 

data taken from Ref [6]. 
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Figure 11: Variation of the Young’s modulus of the mLLDPE/CNT nanocomposites 

with CNTs volume fraction. Dashed lines: Three-phase model simulation at various 

interphase thickness values, against FEA-Fictitious Matrix model.  Points: Experimental 

data taken from Ref [7]. 
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Figure 12:  Variation of the Young’s modulus of the zLLDPE/CNT nanocomposites 

with CNTs volume fraction. Dashed lines: Three-phase model simulation at various 

values of the interphase modulus. Points: Experimental data taken from Ref [6]. 
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Figure 13:  Variation of the Young’s modulus of the mLLDPE/CNT nanocomposites 

with CNTs volume fraction. Dashed lines: Three-phase model simulation at various 

values of the interphase modulus. Points: Experimental data taken from Ref [7]. 
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In Figures 10 to 13, a good approximation between model simulation and experimental 

data is obtained. Furthermore, with increasing Einter at the same interphase thickness the 

Young’s modulus increases. In addition, with increasing interphase thickness, at the 

same Einter value, the Young’s modulus increases. From the above results, it can be 

extracted that the best simulation is achieved with Einter=1 GPa  and tinter=0.5 nm.  

In Figures 10 and 11 the FEA-Fictitious Matrix model simulations, as presented in 

section 3.1, are comparatively depicted. From these comparative plots, it is obtained 

that this assumption leads to lower stiffness values, revealing the important role of the  

interphase in the mechanical enhancement. In particular, this effect is more clearly 

shown in Figure 11 for the mLLDPE/CNT nanocomposites, where the interphase model 

exhibits a better approximation to the experimental results than the FEA-Fictitious 

Matrix model.  

4. Conclusions 

In the present work, a new model is proposed for the prediction of the effective modulus 

of two types of polymer/CNT nanocomposites. On the basis of the inherent tendency of 

CNTs to agglomerate, the material is considered to be a two-phase system consisting of 

a fictitious matrix (itself consisting of the matrix and dispersed CNTs) and the 

inclusions, which are based on the CNTs agglomerates. To analyze the effective 

modulus of the fictitious matrix, Odegard’s method of the effective fiber is employed, 

therefore the proposed analysis incorporates both the inherent tendency of the CNTs  to 

agglomerate and the role of the interphase region around CNTs, given the large surface 

area between the matrix and the nanofillers.  The inclusions’ modulus is evaluated by an 

empirical model, including two aggregation parameters. Finally the effective modulus 
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of the nanocomposite is obtained by the Cox-Krenchel equation. The CNTs were 

treated as transversely isotropic, and the model simulations were in good agreement 

with the experimental data. According to the results, the CNTs agglomeration is 

unavoidable and decisive to the mechanical enhancement. The inclusion model was 

further analyzed through finite element analysis, and a comparison has been performed 

with the results obtained by considering random distribution of CNTs. It was found that 

the inclusion  model leads to higher stiffness values than those with the CNTs randomly 

distributed into the matrix, and closer to the experimental results. 

Given that the region between the CNTs and the matrix, the so-called interphase, is 

characterized by its own properties, and was proved to play a decisive role on the 

nanocomposites’ reinforcement, an additional analysis has been performed by a three-

phase model using finite element analysis. A parametric study has been made to 

examine the effect of the interphase thickness and stiffness on the mechanical 

performance of the nanocomposites. A good approximation with the experimental data 

has been obtained. The research findings of the present work reveal that the proposed 

analytical inclusion model is capable of predicting the elastic modulus of the polymer 

nanocomposites. In addition, FEA procedure based on the proposed analytical model 

leads to nearly identical results. The concept of the inclusion appears to be crucial for 

the description of the nanocomposites mechanical enhancement. 
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