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During the long-term operating period, the mechanical parameters of hydraulic structures and foundation deteriorated gradually
because of the environmental factors. In order to evaluate the overall safety and durability, these parameters should be calculated
by some accurate analysis methods, which are hindered by slow computational efficiency and optimization performance. 0e
improved deep Q-network (DQN) algorithm combined with the deep neural network (DNN) surrogate model was proposed in
this paper to ameliorate the above problems. 0rough the study cases of different zoning in the dam body and the actual
engineering foundation, it is shown that the improved DQN algorithm has a good application effect on inversion analysis of
material mechanical parameters in this paper.

1. Introduction

0e premier task is to monitor the safe status of structures
during the operating period.0ere have been catastrophes of
engineer crash from time to time around the world due to
the lack of overall monitoring methods and the low analysis
accuracy of calculating methods. A disastrous example is
that the dam Edenville broke, and the leaking flood shattered
both Smallwood dam and Sanford dam subsequently in the
downstream position, which caused serious damage to
surrounding cities.

0e hydraulic project crashes happen mainly because of
the collapse of the dam body and the sliding of the foun-
dation or abutment. During the operating term, the concrete
dam is affected by environmental factors obviously. At the
microlevel, there are physical and chemical reactions in the
parameters of the dam body material and foundation ma-
terial, so their mechanical parameters deteriorated gradually,
leading to the increase of structure displacement or leakage
at the macrolevel. Both the deformation of the dam body or
foundation and the leakage of the concrete structure are key
monitoring targets. 0e deformation monitoring includes

forward analysis and inversion analysis. 0e former is to
map the linear or nonlinear relation between environmental
loads and displacement by establishing a regress model
[7–9], whose target is predicting the status of the engineering
and environment nearby in the future. 0e latter is to check
the strength and the stability according to the mechanical
parameters of structures or foundations by calculating the
data of structural operating state combined with the data of
the environmental variation [10].

Because the constitutive models of practical engineering
are all nonlinear, it is impossible to work out the problems
directly. By calculating the maximum or minimum value of
target functions, the heuristic algorithms became the main
methods to optimize parameters in the feasible region.
Particle swarm optimization (PSO) algorithm and genetic
algorithm were applied to optimize the structural parame-
ters in the early time [11]. Kang introduced the artificial bee
algorithm in 2013 [12]. And he optimized the models by
combining heuristic algorithm with machine learning al-
gorithm in 2016 [13–15]. After that, he improved firework
algorithm and obtained better effect in identifying param-
eters [16]. Besides, Lin carried out inversion calculation with
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wolf pack algorithm, and the resultant accuracy was higher
than whale optimization algorithm.

0ere are two main problems existing in the inversion
analysis of hydraulic structures. 0e first one is that the
current displacement inversion method is based on the finite
element method (FEM). Under the combination of different
mechanical parameters and environmental loads, the nodes’
displacements are calculated by the finite element model.
With the growing number of parameters, the calculating
dimensions rise synchronously. Besides, the time complexity
of the finite element model increases sharply with more
grids. 0e two factors could lead to the result that the
calculating convergence time is so long that the feasibility of
application in the practical project is low. 0e second one is
that although so many heuristic algorithms provide the
possibility to implement global search in the feasible region,
these methods calculate and compare the target values after
sampling practical points in the parameter space, so they
could not guarantee the best consequence in the multidi-
mensional parameter space and have poor convergence in
practice.

Recently, machine learning algorithm with a positive
developing trend includes three parts, which are supervised
learning, unsupervised learning, and reinforcement learning
(RL) [17]. As the cutting-edge branch, RL differs from the
other ones. It is a learning algorithm with delay effect,
seeking the best policy with dynamic programming [17].0e
core idea is that the agent tries different policies to select
corresponding actions under diverse state from the envi-
ronment during the interactive process between the agent
and the environment, so the agent could find the best action
to maximize the reward when facing different states after the
learning stage [18]. RL adopts the way of exploring from the
beginning time and then utilizing the exploratory experience
to complete the trail-and-error process [19]. Bellman pro-
posed a dynamic method to deal with the value function
based on the information from the systematic state [20], but
the curse of dimensionality occurred when the method was
applied, which was solved effectively by Mes and Rivera [21].
Some scholars introduced the function approximation
method to access the value when the state and action were
consecutive, such as the linear function and artificial neural
network [23, 24]. With the gradual development of RL
theory, these relative technologies had made great progress
in the industry. Zhiang Zhang et al. reduced the indoor
energy consumption by 16.7% by optimizing the HVAC
system with deep reinforced learning algorithm [25]. Zhe
Wang and Hong discussed the contribution and current
obstacles when RL was adopted in controlling buildings [26].
0e industry of robot employed RL to control the me-
chanical action accurately [27–30]. Fangyuan Chang et al.
achieved the goal of reducing cost in the charging battery by
combining RL and LSTM [31].

To improve two inversion problems with machine
learning mentioned above in the paper, the DNN surrogate
model and reinforcement learning are introduced into the
structural inversion calculation for the first time. 0e deep
neural network completes the learning stage with training
samples which are the calculating results from the FEM,

which makes the DNN model replace the finite element
model to map the target points’ displacements approxi-
mately and improve the convergence efficiency greatly under
the premise of ensuring the calculating accuracy. 0e basic
theory of reinforcement learning guarantees the conver-
gence of the algorithm. 0e inversion calculation of struc-
tural material parameters with monitoring data is a Markov
process. Its core is working out the best value of a nonlinear
function in the global parameter space. Taking the moni-
toring data as a part of the observable environmental state,
the inversion calculation and optimization of structural
material parameters can be realized through reinforcement
learning combined with the engineering’s deep learning
surrogate model. 0is paper adopts the punitive idea which
is a negative reinforcement mode to form deep reinforce-
ment learning algorithm by combining the target of in-
version calculation and the DNN surrogate model with
reinforcement learning. Besides, the interactive mode of
information between the agent and the environment is
improved to adapt to the optimization of material param-
eters of engineering structures and the surrounding foun-
dation. 0e last part is to employ a new mode to express the
displacement relativity among different monitoring points
from the same structural sections to make the deep rein-
forcement learning algorithm adapt to the inversion cal-
culation of multiple zones, to ensure the coordination
among the parameters among all zones in the same section,
so that this algorithm could get a wider application to in-
troduce a new mode for the hydraulic inversion analysis.

2. Theory

2.1. 0e Inversion 0eory of Mechanical Parameters. 0e
elastic modulus is calculated inversely by the relation be-
tween the monitoring data of dam deformation and those of
the environment. According to the monitoring theory [32],
the displacement along the river of the dam body, disp,
consists of the water pressure component δH, time-de-
pendent component δT, and temperature component δθ.

0e water pressure component δH is strongly related to
the upstream water head, mechanical parameters of the
structure and foundation, and the coordinates of target
points. 0e constitutive model of the concrete dam reads

uc � F(E,H, x, y), (1)

E � E1, E2, . . . , En􏼂 􏼃. (2)

F maps the relation between the displacements of finite
element nodes and the state combined by different material
parameters and environmental loads. E is a vector consisting
of different material parameters in every zone from the finite
element model. H is the water head. (x, y) is a group of
nodes’ coordinate. uc is the displacement of target finite
element nodes calculated by the constitutive model F with
the target mechanical parameter E when facing different
environmental loads.

0e inversion analysis is to seek the suitable mechanical
parameters to minimize the error fe which is produced by
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the displacement series of target nodes and water pressure
component δH separated from displacement monitored by
measuring instruments. 0e error fe reads

fe � uc − δH

����
����
2
2. (3)

2.2.DNNSurrogateModel. A three-layer network structure
with a suitable activation function could approximate any
function infinitely in theory with reasonable number of
iterative epochs [33]. According to equation (1), the factors
affecting the displacement of nodes uc are the material
mechanical parameters E, water level H, and the coordi-
nate of nodes (x, y), so the form of the sample is
[E, H, x, y⋮uc], which indicates that the input vector is [E,
H, x, y]. and the calculating target of output node O is uc,
shown in Figure 1 and equation (4). f represents the
mapping relation between input data and output data.
After the input layer and output layer are determined, the
number of layers and nodes in the hidden layer need to be
determined by trail calculation according to the specific
demand. 0e output error J results from equations (4) and
(5). W and b are weights and biases, respectively, con-
necting these layers.

O � f(E, H, x, y), (4)

J(E, H, x, y, W, b) �
1
2

uc − O
����

����
2
2. (5)

0e neural network adopts the gradient descent method
to minimize the output error J and upgrade the network
parameters W and b. By selecting reasonable number of
samples each time, the minibatch gradient descent method
could not only ensure the representativeness of each group
of samples to reduce the negative impact of noise points on
network and ensure the convergence but also prompt the
velocity of network convergence to reach a better learning
model, so this method meets the requirements of this paper.

0e process of producing DNN samples needs the fol-
lowing steps:

Input: constitutive model F, m groups of material
mechanical parameters E, and n groups of reasonable
water level H
Output: sample of finite element node displacement
[E, H, x, y⋮uc]

start:
for i� 1 to m:

for j� 1 to n:
calculate displacement of nodes by

model F
uc � F(E, H, x, y)

store sample [E, H, x, y⋮uc]

output all samples.
end

0e process of constructing the DNN surrogate model is
shown in the following steps:

Input: the number of network layers, the node number
of each layer, activation function, loss function, the
maximum epoch N, and m samples from each batch
Output: DNNmodel with fixed weights W and biases b

start:
initialize the weight coefficient matrix W and bias
vector b randomly
for iter� 1 to N:

input vector [E,H, x, y] into nodes of input layer
forward propagation calculation

O � f(E, H, x, y)

calculating the loss
J(E, H, x, y, W, b) � (1/2)‖uc − O‖22

back propagation calculation according to the loss of
the last step

upgrade weight matrix W and bias vector b

output the DNN model with fixed network structure
and parameters
end

0e fixed DNN model could map the relation between
input nodes and output nodes in a very short time which
overcomes the problem that the calculating velocity of the
finite element model is too slow, so replacing the constitutive
model with the network is reasonable for inversion analysis.

2.3. OptimizationCapability of DQN. According to Figure 2,
the framework of reinforcement learning consists of five
parts: agent, environment, state, action, and reward (the
abbreviations are Agent, Env, s, a, and r). Env provides a
current state s as an input of the agent. Agent selects action a
corresponding to s according to policy π. Env accepts and
assesses a to calculate the reward r and then produces the
next state (state′ in Figure 2). 0e value of policy π in the
current Env is determined by accumulating r of all time steps
in each epoch. 0e calculating formulas are shown as
follows:

Gt � rt+1 + crt+2 + c
2
rt+3 + · · · � 􏽘

T

i�0
c

i
rt+i+1, (t<T),

Vπ(S) � Eπ Gt|stt � ns􏼂 􏼃,

qπ(s, a) � Eπ Gt|stt � nsq, hat�xa􏼂 􏼃.

(6)

c is the discounted factor for the reward of future time
steps, whose range is [0, 1]. Vπ(S) is the value function of the
state, and qπ(s, a) is the value function of state-action.

0e target of reinforcement learning is to seek the best
policy π∗ when facing different states in Env. Under the
guidance of the best policy π∗, the accumulative reward Gt

reaches the highest value. 0e corresponding value function
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of state-action is the optimal one q∗(s, a). S is the collection
of s, and A is the collection of a.

q∗(s, a) � max
π

qπ(s, a), (s ∈ S, a ∈ A). (7)

Q-learning is mainly adopted to work out qπ(s, a), which
was proved that the convergence can be guaranteed in theory
by Watkins in 1992 [34]. It is a value-based method,
upgrading qπ(s, a) between different time steps with the
time difference method in one epoch. 0e calculating
method is shown in the following under a certain policy π:

qt(s, a) � qt(s, a) + α r + cmaxa′qt+1 s′, a′( 􏼁 − qt(s, a)( 􏼁,

(8)

where maxa′qt+1 (s′, a′) means the value corresponding to
a′, which maximizes the q value among the optional actions,
under the state s′ in t+ 1th time step. α is the learning rate,
which is used to control the update rate of each time step.

Agent selects a from A using two contradictory ways
named exploitation and exploration. 0e former selects a
by exploiting the past experience to solve the current state s,
while the latter abandons the past experience and selects a
at random to extend the action space A when facing the
current state s. If RL only carries out the exploitation policy,
the optimization would usually fall into local extremum
because of the lack of full exploration in the action space.
However, if RL gives up the exploitation policy, a thorough
exploration process would make the algorithm lose the

definite objective and fail to search for a better policy π.
Two search means are balanced by the ε − greedy method,
whose flowchart is shown in Figure 3, where the range of
the threshold ε0 is [0, 1].

0e main idea of the ε − greedy method is that, in the
initial period, exploring the action space A is the first choice
because of short of experience. After being trained with
suitable time steps, the model learned how to select better
actions to accumulate experience when facing different
states. 0e past memory is gradually used to promote the
total reward. During this process, the model transits from
the exploration stage to the exploitation stage by degrees,
which means that the probability of random selection action
shrinks correspondingly, shown with equation (9). tstep
indicates the current time step.

ε � max 0.01,
ε0/2( 􏼁

tstep
􏼠 􏼡. (9)

0eoriginal reinforcement learning usually adopts linear
transformation or look-up table method, which could not
solve multidimension or nonlinear problems. DQN algo-
rithm that combines deep learning algorithm and rein-
forcement learning not only obtains excellent
characterization capability of deep learning to transform the
data features into the state as the input of the Agent but also
selects the proper action a by calculating all feasible state-
action values qt(s, a). In the past, Env demanded relevance

E

x
O

Input Hidden Output

L

H

y

L1

...

...

Ln–1

...

...

Ln

Figure 1: 0e structure of the DNN surrogate model.

Agent

Env

ActionRewardState State Ď

Figure 2: 0e framework of reinforcement learning.
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between two successive time steps to a certain degree, which
did not meet the demand for independence among samples
when deep learning was applied. In 2013, Mnih proposed
experience replay technology to deal with this obstacle, with
another advantage that data could be used repeatedly to
effectively increase the input samples. 0is method con-
tained two main steps [23]:

(1) Storage: store the past data [st, at, rt, st+1] in the
memory zone as samples

(2) Sample and replay: extract multiple samples [st, at, rt,
st+1] from each batch as the input data of the deep
network

During the iterative process of Q-learning, the param-
eters of the state-action value function operating in the t time
step are the same as those operating in the t+ 1 time step,
which results in synchronous ups and downs of the q value
in two time steps, enhancing the probability of model di-
vergence. So, the actor-critic framework was introduced.0e
actor is expressed as q (s, a, θ), and the critic is expressed as
q (s, a, θ− ), which indicate that two models share the same
structure with different network parameters. 0e former is
used to assess value of the current state. 0e latter is applied
in the next sate to evaluate the result of the current network
and guides the update of the actor network. 0e update
mode of the q value is shown in equation (10). θ of actor is
copied to θ− of critic at a certain interval of time steps.

qt(s, a, θ) � qt(s, a, θ) + α r + cmaxa′q s′, a′, θ−
( 􏼁 − qt(s, a, θ)( 􏼁.

(10)

2.4. Combination of the Improved DQN and Inversion
Calculation. 0e target of mainstream RL is to develop the
best policy to guide Agent to select proper a when facing
different states from Env and obtain the highest accumulated
reward, while the task of inversion calculation is to select an
elastic modulus that is suitable for the deformation of the
engineering structure and foundation. So, the interactive
mode of information between Agent and Env is improved:
after Agent selects a proper action a according to state s, Env
assesses this a, and in the meantime, this a improves the
parameters of the state to search the best material me-
chanical parameters.

2.4.1. Construction of the Inversion Agent. 0e DNN sur-
rogate model, established according to Section 2.2, is used to
calculate the agent displacement ucal, as one part of Agent.
Subtract ucal from the displacement of target samples utrue,
and the difference guides Agent to select a. After that, the
corresponding state-action value would be evaluated. 0e
flowchart is shown in Figure 4, where p (a) means the
probability of action a.

2.4.2. Improvement of the Interactive Mode between Agent
and Env. How the reward r is produced by Env assessing the
action a from Agent is shown in equations (11) and (12):

error � ucal − utrue, (11)

r � − |error|. (12)

0e target of DQN is to seek a proper elastic modulus E.
0e less the absolute value of reward r is, the closer the
calculated elastic modulus is to the actual parameter in Env,
which indicates that E in state s ceaselessly approaches the
real value in Env during the iteration process.

0e improvement of the interactive mode between
Agent and Env in the DQN framework is that the action a
selected by Agent adjusts the parameters in Env. 0e dif-
ference error has positive or negative states. Based on this,
two kinds of action, 0 and 1, are adopted. 0e former in-
dicates that E in state s is smaller than the actual one, so the
positive increment ΔE could enlarge E in state s. 0e latter
indicates that E in state s is bigger, so the negative increment
ΔE could shrink E in state s. And there is a linear relation, to
a certain extent, between the degree of shrinkage and ex-
pansion and the absolute value of reward r, so the mode that
different actions adjust E in the state is shown with equations
(13) and (14):

ΔE � − r∗Estep ∗ (a − 0.5), (13)

E � E + ΔE, (14)

where Estep is an adjustment factor, controlling the degree of
adjusting E and ensuring the model could converge.

0e overall process is presented as follows:

Current state
st

Random number
ε ∈ (0, 1)

ε > ε0

Exploitation
argmax q (s, a, θ)a

Exploration
selects random a

No Yes

Env assess a

Next state
st+1

Figure 3: 0e flowchart of ε − greedy.
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Initialize memory zone D, the maximum epochs, dis-
counted factor c, adjustment factor Estep, and random
probability ε0
Initialize the actor network parameter θ, the critic
network parameter θ− � θ

for epoch� 1 to epochs:
initialize state s and the corresponding water

pressure component dispt

for t� 1 to T:
select action at from A randomly or

actor network according to ε − greedy
update the random probability

ε � max( 0.01, (ε0/2)/t )

Env evaluate at and get rt

update E in Env:
E � E − rt ∗Estep ∗ (at − 0.5)

get st+1, dispt+1 from Env
store data [st, dispt, at, rt, st+1, dispt+1]

in memory zone D as the sample
extract a batch of samples frommemory

zone D
Actor calculates q(st , dispt, at , θ)

Critic calculates
maxat+1

q(st+1, dispt+1, at+1 , θ− )

output� if t ≥ T − 1 then rt else
rt + c∗maxat+1

q(st+1, dispt+1, at+1 , θ− )

calculate
loss � (q(st , dispt, at , θ) − output)2

optimize actor network parameter θ
with Adam algorithm

copy θ to θ− every N time steps
output: the optimum E in Env

0e DQN framework is shown in Figure 5.
In summary, this paper adopts the improved DQN al-

gorithm embedded with the DNN surrogate model. Agent
completes the task to adjust E in the state from Env to
minimize the absolute error (maximize the reward) calcu-
lated by agent ucal from Agent and actual displacement utrue
from the target sample, which could evaluate the quality of
the optimizing result.

2.4.3. Relation of Inversion in Multizones. In different zones
in the dam section, relevance among the displacements of
nodes, to a certain degree, exists without causality. So, it is
unsuitable to adopt equation (16) to adjust parameters in all
zones by identical adjustment extent, and it is also unrea-
sonable to adjust the parameter only in one zone corre-
sponding to the current sample, ignoring the relevance
among deformation of all zones. With the action of up-
stream water pressure, the whole section of the dam body
demands for the deformation coordination. For example, in
Figure 6, the displacement of node PA in the upper zone is
related to not only themechanical parameters in zoneΩ1 but
also those in zone Ω2. 0e relevance is expressed with the
following equation:

Eother � Eother − rt ∗ at − 0.5( 􏼁∗ randnum∗ 0.1∗Estep + 0.01􏼐 􏼑.

(15)

When a sample adjusts the mechanical parameters in
other zones, the adjustment factor is
(randnum∗ 0.1∗Estep + 0.01), where randnum is a random
number belonging to (0, 1). 0e random number is used to
control the adjustment amplitude. Besides, 0.01 is added into
equation (18) to ensure that the relevance is positive. On the
contrary, when the sample adjusts the parameter in its own
zone, the adjustment increment is still calculated by
equation (13).

3. Case Study

3.1. Inversion Calculation of the Single Dam Zone: Case A.
0is case A is to minimize the cumulative absolute error of
the agent displacement ucal and the sample displacement
utrue to optimize the DQN model and search an elastic
modulus suitable for the whole dam section. 0e target
displacement utrue is the displacement of target node uc

calculated by the constitutive model.
Step 1: establish the finite element model. 0e finite

element model is shown in Figure 7, containing two com-
ponents, dam and foundation. 0e horizontal direction x is
along the river, and the vertical direction y is the elevation.
0e dam height is 107.5m, the length of dam bottom is 88m,
and the length and width of the dam foundation are 488m
and 300m, respectively. All mechanical parameters of the
model are listed in Table 1. EA indicates the elastic modulus

[E, H, x, y]

DNN model

Agent value
ucal

Target value
utrue

Assess p (a) of
each a

Calculate q (s, a)

Figure 4: 0e structure of Agent.
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Env Actor Critic 

Memory zone

s

(s, a) s′

(s, a, r, s′)

Loss function of DQN

Loss
gradient q (s ,a, θ) max q (s′, a′, θ–)

aʹ

r

argmax q (s, a, θ) (ε ≥ ε0)
a

Random a (ε < ε0) 
a

θ– = θ by N time step

Figure 5: 0e framework of DQN.

PA

PB

Ω1

Ω2

Figure 6: 0e diagram of multiple zones in the dam section.

D C

y

x

Figure 7: 0e finite element model of case A.
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of the dam section.0e nodes of foundation bottom are fixed
in the horizontal and vertical direction, and the nodes at
both sides of the foundation are fixed in the vertical
direction.

Step 2: select the sample. 259 different water levels were
extracted randomly from 86.5m to 104.3m, and 200 dif-
ferent elastic moduli EA were randomly extracted from
5GPa to 20 GPa evenly, not containing 10.3 GPa (the target
parameter). 0ere were 51,800 groups of combination
states of mechanical parameter and water pressure. 0e
model was calculated using software GeHoMadrid devel-
oped by Hohai University and Universidad Politécnica de
Madrid to get the node displacement of all states. 0e result
[E, H, x, y, utrue] was stored as samples to train and verify
the DNN model.

Step 3: construct the DNN surrogate model. 0e model
had four layers, established by Keras. 0e first layer had four
input nodes, named input-EHXY, and the form of the input
vector is [EA, H, x, y]. 0e second and third layers were fully
connected layers, named Sec-layer and 0ird-layer, with 8
and 10 nodes, respectively. 0e fourth layer was the output
layer named dispout with 1 node, and the calculating target
was utrue.0e specific structure is shown in Figure 8.0e loss
function was “mean_squared_error,” optimized by Adam.
0e learning rate was 0.001, the maximum iterative epoch
was 1000, and the activation function of all nodes adopted
“relu.”

0e samples from step 2 were shuffled randomly, and all
data were normalized to [0, 1] according to the data features.
Training samples occupied 80%, and the rest were verifying
samples. 0e changing horizontal section and deformable
foundation have an effect on the displacement in the dam.
And the increase of altitude weakens the nonlinear effect.
0e location of node C is in the lower zone and near the
foundation, so this zone could illustrate nonlinear defor-
mation more clearly than those nodes in the higher area.
Besides, the closer the node is to the foundation, the smaller
the displacement is, so node C was selected. 0e predicting
samples were the displacement along the river of node C in
Figure 7 calculated under the state that the elastic modulus
was 10.3 GPa with 259 water levels above.

0e iterative process of the training error and verifying
error is shown in Figure 9, where it indicated that, during the
former 100 epochs, the two errors decreased sharply to the
level close to 0. After 200 epochs, the network parameters
were nearly stable. When the training stage was completed,
the fixed DNN model was stored to replace the finite model
in the later steps.

0e displacement of different nodes is related to water
level elevation and the elastic modulus of the dam body.
According to the monitoring theory [32], utrue could be

calculated by the multivariable linear regression (MLR)
model shown in the following equation:

utrue � 􏽘
3

i�1
βiH

i
+ β4E + β5 x + β6y + τ. (16)

Training samples and predicting samples are the same as
those of the DNN model. 0e calculating results of pre-
dicting samples are shown in Table 2.

From Table 2, the mean relative errors of DNN andMLR
were lower than 3%. Furthermore, the accuracy of the DNN
model in both mean relative error and maximum relative
error was an order of magnitude higher than that of theMLP
model. 0e possible reason was that the MLP model con-
structed regression factors based on the plane cross-section
assumption and complete elastomer assumption, but node C
was near the dam foundation, which meant during the
calculation, the deformation of the dam body and foun-
dation did not meet the first assumption. 0e displacement
of node C was not completely linear. DNN model was
nonlinear, which represented that the neural network could
map the relation between environmental load and dis-
placement more efficiently. 0e maximum relative error was
lower than 2%. From this, it was reasonable for the DNN,
after being well trained, to replace the finite element model.

Step 4: construct Agent. 0e Agent included three parts.
0e first one was the DNN model stored in step 3, which
received the state s, [EA, H, x, y] and produced agent dis-
placement ucal; the second part was the target displacement
utrue corresponding to the current state, named disp_value;
the third part was two optional actions, named action-
s_input. ucal minus utrue in the layer named subtrac_1 was
the error, which was used to select action a, combining the
layer actions_input to calculate the state-action value q. 0e
specific structure is shown in Figure 10.

Step 5: calculation with the DQN algorithm. 0e pre-
dicting samples normalized in step 3 were target samples in
this step.0is maximum number of epoch was 100, and each
epoch had 100 time steps. 0e initial value of probability ε0
was determined as 0.2. With the increase of time step t , ε
decreased with a linear trend and would be stable at 0.01
eventually. 0e sample volume of the memory zone was 512,
the discounted factor c was 0.5, the learning rate α was 0.5,
the adjustment factor Estep was 0.01, and the replay size of
samples in each time step was 32. 0e initial modulus could
be selected randomly, whose range was from 5GPa to
20GPa. 0e target displacement was the value of node C
calculated by FEM with 259 water levels when the elastic
modulus was 10.3GPa. 0e iterative process and result are
shown in the following.

3.1.1. Process Analysis. Figures 11 and 12 show that, in the
initial period, the model was in the exploration stage,
selecting actions randomly, resulting in the fluctuation of the
reward. 0en, the DQN model moved into the exploitation
stage, with the increase of epoch and selecting the right
action when facing different states. 0e absolute value of the
reward decreased smoothly, and the searching parameters

Table 1: 0e mechanical parameters of case A.

Component Density (kg/m3) Elastic modulus
(GPa) Poisson’s ratio

Dam body 2400 EA 0.167
Foundation 2400 9 0.167

8 Mathematical Problems in Engineering



kept approaching the target value in the former 40 epochs
before the model was generally stable.0e result of inversion
calculation reached the optimal status of the model.

3.1.2. Result Analysis. Figure 13 shows that the blue line that
represented the agent displacement calculated by Agent
almost coincided with the orange line that represented the
actual displacement, which indicated that the values of two
lines were very close in the same water level. Figure 14 shows
the absolute error between two displacement lines, where the
mean absolute error was 0.015mm, and the standard de-
viation (SD) was 0.0085mm. 0e error values were mainly
concentrated in (0, 0.02)mm.0us, the error value remained
at a low level.

When the interactive process between Agent and Env
was completed, the eventual elastic modulus EA was
10.3187GPa, and the actual target was 10.3GPa. So, the
absolute error was 0.0187GPa, and the relative error was
0.18%. Two possible reasons of the error were as follows: the

first one was that the DNN surrogate model had a mean
error of 0.372% relative to the finite element model, and its
accuracy could determine the accuracy of DQN; the second
reason was that the search method of DQN was not perfect.
0e error level indicated that the inversion consequence
calculated by DQN algorithm was very close to the actual
value in case A, which meant the method of this paper had a
fine effect on the inversion analysis of the whole dam section.

3.2. Inversion Calculation of Double Dam Zones: Case B.
0is case B is to minimize the cumulative absolute error of
the agent displacement ucal and the sample displacement
utrue to optimize the DQN model and search two elastic
moduli suitable for the upper and lower dam zones. 0e
target displacement utrue is the displacement of target node
uc calculated by the constitutive model.

Step 1: establish the finite element model. 0e finite
element model is shown in Figure 15, containing three
components: two zones in the dam section and foundation.
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Figure 9: 0e iterative process of the model error in case A.

input–EHXY: InputLayer
Input: (None, 4)

Output: (None, 4)

Sec-layer: Dense
Input: (None, 4)

Output: (None, 10)

�ird–layer: Dense
Input: (None, 10)

Output: (None, 8)

dispout: Dense
Input: (None, 8)

Output: (None, 1)

Figure 8: Structure of the DNN model in case A.

Mathematical Problems in Engineering 9



0e horizontal direction x is along the river, and the vertical
direction y is the elevation.0e dam height is 50m, the width
of the dam crest is 5m, the length of dam bottom is 5m, and

the length and width of the dam foundation are 190m and
100m, respectively. All mechanical parameters of the model
are listed in Table 3. EB1 indicates the elastic modulus of the

–14

–12

–10

–8

–6

–4

–2

0

0 20 40 60 80 100 120

M
ea

n 
sc

or
e

Epoch

Figure 11: 0e iterative process of the reward in case A.

input–EHXY: InputLayer
Input: (None, 4)

Output: (None, 4)

Sec–layer: Dense
Input: (None, 4)

Output: (None, 10)

�ird–layer: Dense
Input: (None, 10)

Output: (None, 8)

dispout: Dense
Input: (None, 8)

Output: (None, 1)
disp_value: InputLayer

Input: (None, 1)

Output: (None, 1)

subtract_1: Subtract
Input: [(None, 1),(None, 1)]

Output: (None, 1)

q_action: Dense
Input: (None, 1)

Output: (None, 2)
actions_input: InputLayer

Input: (None, 2)

Output: (None, 2)

multiply_1: Multiply
Input: [(None, 2),(None, 2)]

Output: (None, 2)

q_value: Lambda
Input: (None, 2)

Output: (None, 1)

Figure 10: 0e structure of Agent in case A.

Table 2: Error of predicting samples in 10.3GPa.

Relative error (%) DNN MLR
Mean 0.372 2.723
Maximum 1.833 16.212
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upper zone, and EB2 indicates the elastic modulus of the
lower zone. 0e nodes of foundation bottom are fixed in the
horizontal and vertical direction, and the nodes at both sides
of the foundation are fixed in the vertical direction.

Step 2: select the sample. 140 different water levels were
extracted randomly from 36.0m to 50.0m, and 230 groups of
different combinations of elastic moduli, EB1 and EB2, were
randomly extracted. 0e range of modulus in the upper zone,
EB1, was 9.5GPa∼22.5GPa, not containing 18.0GPa, while that
in the lower zone, EB2, was 15GPa∼25GPa, not containing
22.0GPa because the elastic module in the lower zone was
larger than that in the upper zone in order to reduce the
engineering cost. During the calculation of the finite element

model, the elastic modulus in the green zone including node A
remained smaller than that in the yellow zone including node
B. 0ere were 32,200 groups of combination states of the
mechanical parameter and water pressure. 0e model was
calculated using software GeHoMadrid to get the node dis-
placement of all states. 0e result [EB1, EB2, H, x, y, utrue] was
stored as samples to train and verify the DNN model.

Step 3: construct the DNN surrogate model. Different
from case A, the input layer of the DNN surrogate model
in case B had 5 nodes, and the input vector was [EB1, EB2,
H, x, y]. 0e rest of the hyperparameters were identical to
those of the DNN model in case A. 0e specific structure
of the DNN model in case B is shown in Figure 16.
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0e samples from step 2 were shuffled randomly, and all
data were normalized to [0, 1] according to the data features,
where the first independent variable EB1 and the second one
EB2 were normalized with the same scale. Training samples
occupied 80%, and the rest were verifying samples. 0e
predicting samples were the displacements along the river of
nodesA and B in Figure 15 calculated under the state that the
upper elastic modulus was 18.0 GPa and the lower one was
22.0GPa with 140 water levels above.

0e iterative process of the training error and verifying
error is shown in Figure 17, where it indicated that, during
the former 100 epochs, the two errors decreased sharply to
the level close to 0. After the former 200 epochs, the network
parameters were nearly stable. After the training stage, the
DNN model was stored to replace the finite model in the
later steps.

0e maximum relative error was 3.56%, and the mean
relative error was 0.59%, which indicated that the overall
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Figure 15: 0e finite element model of case B.

Table 3: 0e mechanical parameters of case B.

Component Density (kg/m3) Elastic modulus (GPa) Poisson’s ratio
Upper zone 2400 EB1 0.167
Lower zone 2400 EB2 0.167
Foundation 2400 5 0.167
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relative error was low. It was reasonable for DNN, after being
well trained, to replace the finite element model according to
the accuracy.

Step 4: construct Agent. 0e structure and parameters in
Agent were the same as those in case A except that the input
layer of the fixed DNN model had 5 nodes.

Step 5: calculation with DQN algorithm.0e predicting
samples normalized in step 3 were calculated as target
samples in this step. 0is maximum number of epoch was
200, and each epoch had 100 time steps. 0e variation of
random probability ε was identical to that in case A. 0e
sample volume of the memory zone was 512, the dis-
counted factor c was 0.5, the learning rate α was 0.5, the
adjustment factor Estep was 0.03, and the replay size of
samples in each time step was 64.0e initial modulus could
be selected randomly in a reasonable range. In case B, the
initial values in both the green zone and in the yellow part
were determined to be 25 GPa. 0e target displacements

were the values of node C calculated by FEM with 140
water levels when the elastic moduli were 22.0 GPa and
18.0 GPa. 0e iterative process and result are shown in the
following.

3.2.1. Process Analysis. Different from Figure 11, Figure 18
shows that the zoning reward had been increasing with
constant fluctuation during the negative reinforcement
stage and then was stable in (− 0.2∼0), which indicated that
the change of one zone would lead to the fluctuation of
another zone. As a result, the agent displacement could not
remain steady completely, but the overall trend was in-
creasing, representing that the absolute value of the reward
was decreasing, which meant that the penalty from Env was
lower and lower and got stable in a certain range. Figure 19
shows the searching parameters kept approaching the
target parameters and then tended to be stable.0e result of
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Figure 17: 0e iterative process of the model error in case B.

input–EHXY: InputLayer
Input: (None, 5)

Output: (None, 5)

Sec–layer: Dense
Input: (None, 5)

Output: (None, 10)

�ird–layer: Dense
Input: (None, 10)

Output: (None, 8)

dispout: Dense
Input: (None, 8)

Output: (None, 1)

Figure 16: Structure of the DNN model in case B.
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inversion calculation reached the optimal status of the
model.

3.2.2. Result Analysis. 0e results of the absolute error are
shown in Figures 20 and 21. Both value and distribution of
the error related to node A were better than those of node B.
0e possible reason was that node A was near the dam crest,
so the water level elevation had a stronger effect on its
displacement, and the foundation had a weaker influence on
node A, which represented the deformation of node A had a
better regularity.

0e calculating result of DQN algorithm is listed in
Table 4, which showed the relative error in the upper zone
was 1.29%, and the other one in the lower zone was slightly
smaller, 0.86%. 0e error level indicated that the inversion
consequence calculated by DQN algorithm was very close to
the actual parameter values in case B, meaning themethod of
this paper had a fine effect on the inversion analysis of the
dam with multiple zones.

3.3. Verification with Actual Engineering: Case C. 0e en-
gineering is a RCC dam on the main stream of a river in
Cambodia, with 10 dam sections. 0e elevation of the dam
crest is at 153.00m, and the bottom surface is at 41.00m,
with a maximum dam height of 112.00m. 0e width of the
dam crest is 6.00m.0e top elevation of the upstream break
slope is 84.0m, and the slope is 1 : 0.3, and the downstream
slope is 1 : 0.75. 0e mechanical parameters of the rock in
the dam foundation are shown in Table 5. Under the long-
term action of dam gravity and groundwater, the dis-
placement along the river of the project showed a slow
upward trend during the operating period, so the material
parameters of the dam foundation should be paid attention
to. 0e target of case C is the elastic modulus of the
foundation of the project.

Step 1: establish the finite element model. 0is case
selected one section of the dam, where the foundation was at
45.5m, and the dam height was 107.5m. 0e length of the
dam foundation was 88.0m, and the size of the dam
foundation was 488m ∗ 300m. Some scholars [35, 36]
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proposed that the mechanical parameters of the layer be-
tween structure and foundation were inferior to those of the
surrounding rock mass because of the excavation technology
or earthquake. However, the calculating model is based on
the static load. Besides, the calculating depth of the foun-
dation in this model is 300m, so the weak layer is so thin to
be ignored to reduce the complexity of this model. 0e finite
element model was identical to the one in case A. 0e

monitoring displacement series, 221 data along the river
from July 25, 2014, to Oct 31, 2019, came from the inverted
plumb line, node D in Figure 7, located near the upstream
side of the dam body. Mechanical parameters of the model
are listed in Table 6. EC indicated the elastic modulus of the
foundation. Because the gravity dam is usually built on the
fresh base rock, the main foundational material is quartz
sandstone.
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Figure 20: 0e distribution of the absolute error of node A.
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Figure 21: 0e distribution of the absolute error of node B.

Table 4: 0e result of inversion calculation in two zones.

Zone Upper Lower
Target (GPa) 18.0 22.0
Result (GPa) 18.2325 22.1893
Absolute error (GPa) 0.2325 0.1893
Relative error (%) 1.29 0.86
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Step 2: select the sample. 221 water-level data, from
125.33m to 145.96m, were selected on the dates when the
inverted plumb line measured displacement. Because of the
unknown actual parameter in the dam foundation, in order

to make the training samples contain the possible target, 200
different elastic moduli EC were selected from 3GPa to
10GPa according to the values in Table 5. 0ere were 44,200
groups of combination states of the mechanical parameter
and water pressure.0emodel was calculated using software
GeHoMadrid to get the node displacement of all states. 0e
result [EC, H, x, y, uc] was stored as samples to train and
verify the DNN model in step 4.

Step 3: withdraw the water pressure component. 0e
multivariable linear regression model is shown in the fol-
lowing equation:

disp � 􏽘
3

i�1
βiH

i
+ 􏽘

2

j�1
β1j sin

2πjt

365
+ β2j cos

2πjt

365
􏼒 􏼓 + C1D + C2 ln(1 + D) + C3

D

D + 1
+ C4 1 − e

− D
􏼐 􏼑 + τ, (17)

D �
t − t0( 􏼁

100
. (18)

β and C are regression coefficients. H is the water level,
while H0 is the initial value. τ is the random error. t rep-
resents the current monitoring date, and t0 represents the
initial monitoring date. 0e water pressure component δH

calculated by the MLP model above is the orange line in
Figure 22. And it was used as the target displacement utrue in
the samples calculated in DQN, [EC, H, x, y, δH], where the
initial value of E was determined randomly,H was the actual
water level, and (x, y) was the coordinate of node D.

Step 4: construct the DNN surrogate model. 0e
structure and parameters were the same as those of the DNN
model in case A. 0e samples from step 2 were shuffled
randomly, and all data were normalized to [0, 1] according
to the data features. After that, training samples occupied
70%, 15% of samples were used to verify the DNN model,
and the rest were predicting samples.

0e iterative process of the training error and verifying
error is shown in Figure 23, where it indicated that, during the
former 100 epochs, the two errors decreased sharply to the
level close to 0. After the 200 epochs, the network parameters
were nearly stable. After the training stage, the DNN model
was stored to replace the finite elementmodel in the later steps.

Step 5: construct Agent. 0e structure and parameters in
Agent were the same as those in case A.

Step 6: the calculating target was searching the elastic
modulus of the dam foundation to minimize the difference

between the inversion result and the actual water pressure
component. 0is maximum number of epoch was 200, and
each epoch had 100 time steps. 0e variation of random
probability ε was identical to that in case A. 0e sample
volume of the memory zone was 400, the discounted factor c

was 0.5, the learning rate αwas 0.5, the adjustment factor Estep
was 0.02, and the replay size of samples in each time step was
32. 10GPa which was selected as the initial modulus. 0e
iterative process and result are shown in the following.

3.3.1. Process Analysis. Figures 24 and 25 show that, in the
initial period, the model was in the exploration stage,
selecting actions randomly, resulting in the fluctuation of the
reward. After that, the DQN model moved into the ex-
ploitation stage. With the increase of epoch and selecting the
right action when facing different states, the absolute value
of the reward was decreasing consistently, and the searching
parameters kept approaching the target from the initial value
10GPa in the former 50 epochs before the model was
generally stable.

3.3.2. Result Analysis. After the interactive process between
Agent and Env, the elastic modulus EC of the dam foun-
dation was 5.1549GPa. All calculating results are shown in
Figures 22 and 26. 0e former displayed that the blue line

Table 5: 0e mechanical parameters of the rock in the dam foundation.

Rock type Young’s modulus (GPa) Poisson’s ratio Shearing strength Compressive strength (MPa) Bulk density (kg/m3)

Quartz sandstone 5∼10 0.15∼0.23 C� 4.7∼8.4MPa
φ� 38.2°∼45.5° 60∼80 2520

Fine sandstone 7∼8 0.18∼0.25 C� 3∼5MPa
φ� 35°∼45° 45∼55 2510

Silty mudstone 2∼3 0.28∼0.30 C� 0.8∼1.0MPa
φ� 35°∼38° 10∼20 2530

Mudstone 1∼2 0.30∼0.35 C� 0.6∼0.8MPa
φ� 30°∼35° 1∼3 2350

Table 6: 0e mechanical parameters of the actual project.

Component Density (kg/m3) Elastic modulus
(GPa) Poisson’s ratio

Dam body 2400 25 0.167
Foundation 2520 EC 0.200

16 Mathematical Problems in Engineering



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250

D
isp

la
ce

m
en

t (
m

m
)

Line one
Line two

Figure 22: 0e contradiction between inversion displacement (blue) and water pressure component (orange).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 200 400 600 800 1000

Lo
ss

Epoch

Train_loss
Val_loss

Figure 23: 0e iterative process of the model error of the engineering model.

–14

–12

–10

–8

–6

–4

–2

0

0 20 40 60 80 100 120 140 160 180 200

M
ea

n 
sc

or
e

Epoch

Figure 24: 0e iterative process of the reward in actual engineering.
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indicating the inversion displacement series fitted well with
the orange line representing the water pressure component,
except a few points with obvious errors, which meant that
the displacement values of two lines were close at the same
water level on the whole. 0e latter was the distribution of
the absolute error calculated by two displacement series,
whose mean value was 0.0712mm and standard deviation
was 0.0985mm. 0ese errors were mainly concentrated on
0mm∼0.1mm. A few values reached 0.3mm∼0.4mm. 0e
error level was low in the mass, which indicated that this
method in the paper was suitable to be applied in actual
engineering.

4. Conclusion

0e accurate calculation of mechanical parameters in the
engineering structure and foundation is dependent on de-
tailed monitoring data of the structure and environment,
reasonable constitutive model, and excellent searching al-
gorithm. In this paper, the DNN model with a suitable
structure replaced the finite element model and was em-
bedded in the agent of the reinforcement algorithm to form
the DQN, which was used to optimize the mechanical pa-
rameters in engineering in the global space. 0e conclusions
are as follows:

(1) According to the mechanical parameters and envi-
ronmental loads of engineering, the corresponding
DNN surrogate model was established to replace the
finite element model. After the network model was
verified, the mean relative error of predicting sam-
ples calculated by the DNN model with suitable
hyperparameters and a regular training stage was
lower than 1%, and the calculating efficiency of the
DNN was much higher than that of the constitutive
model, which indicated that it was advantageous for
a reasonable DNN model to map the relation be-
tween the target displacement and the state of dif-
ferent mechanical parameters combining with
variable environmental loads.

(2) 0e DNQ algorithm improving the interactive mode
between Env and Agent combined with the DNN
surrogate model completed the inversion calculation
of the structural mechanical parameter. After the
improved framework calculated target values in
examples, the maximum relative error and the
minimum one of the elastic moduli after searching
process were 1.29% and 0.18%, respectively. After the
improved algorithm was used in actual engineering,
the inversion displacement series fitted well with the
water pressure component on the whole. 0us, the
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DQN algorithm had a good effect in the inversion
analysis of mechanical parameters in the hydraulic
structure.

(3) 0e method to express the displacement relation
among different dam zones was introduced to ensure
the relevance and coordination during the process of
optimizing parameters from multizones. 0is im-
provement extended the FEM from a single region in
case A to a double region in case B, providing a new
path for inversion analysis in multiple structural
zones.

(4) 0e research focus is to combine the DNN surrogate
model and the improved DQN algorithm and then
apply the new model to the inversion calculation of
mechanical parameters in the hydraulic structure
and foundation with single or multiple zones. In
future, the framework could be developed to im-
prove the optimization method applied to inversion
analysis in multiple monitoring points and several
kinds of mechanical parameters.
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