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Abstract—
Robustness of a concurrent program ensures that its behaviors

on a weak concurrency model are indistinguishable from those
on a stronger model. Enforcing robustness is particularly useful
when porting or migrating applications between architectures.
Existing tools mostly focus on ensuring sequential consistency
(SC) robustness which is a stronger condition and may result in
unnecessary fences.

To address this gap, we analyze and enforce robustness
between weak memory models, more specifically for two main-
stream architectures: x86 and ARM (versions 7 and 8). We iden-
tify robustness conditions and develop analysis techniques that
facilitate porting an application between these architectures. To
the best of our knowledge, this is the first approach that addresses
robustness between the hardware weak memory models.

We implement our robustness checking and enforcement
procedure as a compiler pass in LLVM and experiment on a
number of standard concurrent benchmarks. In almost all cases,
our procedure terminates instantaneously and insert significantly
less fences than the naive schemes that enforce SC-robustness.

I. INTRODUCTION

Robustness analysis checks whether a program running on a

weak memory consistency model demonstrates only the behav-

iors that are allowed by a stronger model. Robust programs can

therefore be seamlessly migrated from one model to another as

far as their concurrent behaviors are concerned. If a program

is not robust, we can insert fences to enforce robustness.

Robustness analysis is especially beneficial in porting ap-

plications [1, 2] where it is crucial to preserve the observable

behaviors of a running application. For instance, consider the

porting of an application written for x86 to ARM. Since the

x86 model is stronger than the ARM models (x86 exhibits

less behavior), x86-robustness abstracts the underlying ARM

machine specification to an outside observer. Consider the

following programs where initially X = Y = 0.

X = 1;
a = Y ;

Y = 1;
b = X;

(SB)
a = X;
Y = 1;

b = Y ;
X = 1;

(LB)

Both x86 and ARM allow same set of concurrent executions

in the SB program and hence indistinguishable on x86 and

ARM. Therefore SB can be ported seamlessly between these

architectures. Now consider the porting of the LB program

from x86 to ARM. x86 disallows a = b = 1 but ARM allows

the outcome. Hence the LB program in ARM is not x86-robust.

To enforce x86-robustness we insert fences in both threads and

restrict the a = b = 1 outcome.

Checking and enforcing robustness to a stronger but non-SC

model from a weaker model can play a key role in migrat-

ing programs between architectures having weak concurrency

models. Existing SC-robustness approaches may not provide

an optimal solution as they check a stronger constraint and

hence may introduce additional fences. For example, if we

use an SC-robustness checker for SB, it identifies that the

a = b = 0 outcome is allowed on ARM but disallowed in SC.

Hence the analyzer inserts two full fences (DMB in ARMv7 and

DMBFULL in ARMv8) between the memory accesses in both

threads which are unnecessary in this case.

To address this scenario we propose robustness analysis

and enforcement between weak memory models of two main-

stream architectures: x86 and ARM (version 8 and 7). As

ARMv8 is a stronger model than ARMv7, we also study

ARMv8-robustness for ARMv7 to enable application porting

between these ARM models. We also check SC-robustness in

x86, ARMv8, ARMv7 and restrict relaxed memory behaviors.

In this paper we propose M -K robustness where M is a

stronger model than K and M can also be a non-SC model

unlike existing approaches in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14]. We propose the M -K robustness conditions in §III and

prove their correctness [15]. Our proposed M -K robustness

conditions ensure that if a K-consistent execution satisfies the

M -K condition then the execution is also M -consistent. We

check if certain memory access pairs are appropriately ordered

in a K-consistent execution so that the execution shows no

weaker behavior. Otherwise we insert fences to enforce order

and restrict the weaker behaviors. However, as fences are

costly, we investigate if it is possible to weaken the robustness

constraints for the memory access pairs which are on same-

location or are ordered by dependencies. We observe that these

relations suffice in x86 and ARMv8, but the results in ARMv7

are counter-intuitive.

• We note that dependency based ordering preserved-

program-order (ppo) is not strong enough to ensure robust-

ness in ARMv7. Consider the following ARMv7 program.

a = T ;
X = a;

X = 2;
b = X;
Y = b;

c = Y ;
Z = c;

Z = 1;
d = Z;
T = d;

(WP)

The execution in Fig. 4 exhibits non-SC behavior though

all the memory access pairs result in ppo relations due to

data dependencies. Even an intermediate full fence in one

of these threads cannot restrict the relaxed behavior.

• We evaluate the role of same-location program-order rela-

tion in defining robustness conditions. On ARMv7, same-

location read-write access pair is unordered (see ARM-

Weak [16] example in Fig. 2). Yet if all external-program-

orders (see §III) are on same-location or have intermediate

fences then the program exhibits only SC behavior.
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In §IV we propose static analyses to check if a program is

M -K robust based on the respective conditions. Otherwise

we insert fences to enforce robustness. These analyses are

computed in polynomial time as shown in § IV-C unlike the

robustness checkers which explore program executions and are

of significantly higher computational complexity.

The robustness checking procedures analyze the programs

with thread functions. In these programs each thread func-

tion may result in any number of concurrent threads in an

execution. Thus our analysis is parameterized by the thread

functions and the analyses are applicable to all the programs

having same thread functions.

We have implemented the analyses procedures in a tool

called Fency based on LLVM [17] and have evaluated on

several well known concurrent programs [8, 14]. We compare

the SC-x86 robustness analysis of Fency to existing SC-

TSO robustness results of Trencher [8] that explore program

executions by model checkers. Yet, Fency is quite precise and

matches Trencher in most of the programs. Moreover, Fency

does not use external model checkers or SAT/SMT solvers and

therefore is significantly fast in most of the cases.

We also compare Fency to a naive fence insertion scheme

that do not use robustness analysis. Fency inserts significantly

fewer fences than the naive scheme in several benchmarks.

Moreover, empirical evaluations show that if a model W is

weaker than M then ensuring W -K robustness often requires

fewer fences than ensuring M -K robustness. Thus precise

robustness analysis is indeed beneficial for many cases instead

of using SC-robustness checkers.

Outline and Contributions. §II reviews the concurrency

models. §III proposes the M -K robustness conditions. §IV

explains our approach to check and enforce robustness. §V

examine the experimental results. §VI discusses the related

work and we conclude in §VII. The proofs and additional

details are in the supplementary material [15].

II. CONCURRENCY MODELS

In this section we review SC, x86, ARMv8, and ARMv7

concurrency. For all models we follow a common syntax.

E ::=r |v |E + E |E ∗ E |E ≤ E | · · ·

C ::=skip |C;C | t = E | t = X |X = E |RMW(X,E,E)

|Fence |RMW(X,E) |br label | br label label | · · ·

P ::=X = v; · · ·X = v; {C · · · C}

An expression E results from thread-local temporary (t), value

(v), and arithmetic operations (E). Command t = X returns

the value of a shared memory location X to a thread-local

register r and X = E writes the evaluation of expression E
to X . The RMW(X,Er, Ew) atomically compares the values

of X and Er; if equal then X is written to the value of

Ew and set r. If the value of X is not equal to the value

of Er then the RMW fails. Command RMW(X,Er) atomically

updates the value of X with the value of Er and returns the

value of X to r. A failed RMW performs only read access. A

fence orders certain memory accesses. We use conditional and

unconditional branches for program’s control flow. Finally, a

program consists of a set of initialization writes followed by

a parallel composition of thread commands. Unless otherwise

mentioned, the initializations set all memory locations to zero.

A. Program Semantics and Execution Graphs

We follow the axiomatic models for all architectures [18,

19, 20, 21, 22, 23, 24, 25, 26]. In these axiomatic models a

program’s semantics is defined by a set of consistent execu-

tions. An execution consists of a set of events and relations.

Event. An event 〈id, tid, lab〉 consists of unique identifier

id, thread identifier tid ∈ N, and a label lab based on the

respective executed memory or fence access. A label is of the

form 〈op, loc, val〉 where op, loc, and val are operation type,

location, and read or written value.

Preliminaries. Given a binary relation P on events, dom(P )
and codom(P ) are its domain and its range. P−1, P ?, P+,

and P ∗ are inverse, reflexive, transitive, and reflexive-transitive

closures of P respectively. Pℓ denotes P related event pairs

on same locations i.e. Pℓ , {(e, e
′) ∈ P | e.loc = e′.loc}

and P6=ℓ , P \ Pℓ denote the P related event pairs on

different locations. imm(P ) defines the immediate P relation,

i.e. imm(P ) , ∃a, b. P (a, b) ∧ ∄c. P (a, c) ∧ R(c, b). P ; S
is the relational composition of the binary relations P and S.

Finally, [A] is an identity relation on a set A.

R, W, and F are the set of read, write, and fence events. The

events are related by primitive relations: strict partial order

program-order (po) captures the syntactic order among the

events, reads-from (rf) relates a write event to a read event

that justifies its read value, and strict total order coherence-

order (co) relates same-location writes.

Execution. An execution is of the form X = 〈E, po, rf, co〉
where X.E is the set of events in X. The set of po, rf, and co

relations between the events in X.E are X.po, X.rf, and X.co.

Execution X is well-formed if X.po is total in each thread and

every read reads-from some write, i.e. X.R ⊆ codom(X.rf).
We derive a number of relations from these primitive

relations. Relation rmw ⊆ imm(po) ∩ ([R]× [W])
ℓ

denotes

atomic update where a read has an immediate po-successor

write on the same location. The non-rmw read and write events

are load (Ld) and store (St) events.

Ld , R \ dom(rmw) St ,W \ codom(rmw)

A successful RMW generates an rmw and a failed RMW generates

a Ld event. We use a ·b , [{a}]; imm(po); [{b}] to denote that

a and b are immediate po related events.

Relation WR denotes a write-read event pair on different

locations that does not have any intermediate rmw.

WR , ([W]; po 6=ℓ; [R]) \ (po; rmw; po)

The from-read (fr) relation relates a pair of same-location read

and write events r and w where r reads-from a write w′ which

is co-before w, that is, fr , rf−1; co. For example, in Fig. 1a

the R(X, 0) and W(X, 1) events are in fr relation.

We categorize the relations as external and internal based

on whether the events are also in po relation. Considering rf,
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co, and fr relations rfi, coi, fri and rfe, coe, fre denote the

internal and external relations respectively.

rfe ,rf \ po coe ,co \ po fre ,fr \ po

rfi ,rf ∩ po coi ,co ∩ po fri ,fr ∩ po

For example, the rf and fr edges in Fig. 1a edges are rfe

and fre edges respectively. Based on the rfe, coe, and fre

we define extended-coherence-order (eco) on same location

events: eco , (rfe ∪ coe ∪ fre)+.
Consistency Axioms. An axiomatic model is defined by a set

of axioms. An execution is consistent in a model if it satisfies

all its axioms. An axiom violation can be captured by a cycle

on the respective execution graph.

B. Formal Models

Now we move to the axiomatic definitions based on var-

ious relations. We elide some definitions here due to space

constraint which we discuss in the technical appendix [15].
In these models a store access writes value v on location

x and generates an event with label W(x, v). A load access

reads value v from x and generates an event with label R(x, v).
A successful RMW on x reads value v′ and writes value v to

generate a pair of R(x, v′) and W(x, v) events that are in rmw

relation. A failed RMW generates an R(x, v′) event. The full

fences in x86, ARMv8, and ARMv7 are MFENCE, DMBFULL,

and DMB respectively. A full fence generate an event with label

F. ARM architectures also provides ISB fence to order a pair

of reads. In ARMv7 an ISB access along with control (cmp)

and jump (bc) instructions generate cmp; bc; ISB that result in

ctrlISB between a pair of read events in an execution [19]. In

ARMv8 an ISB generates an ISB event.
ARMv8 Specific Accesses. In addition, ARMv8 has synchro-

nizing memory accesses such as release write, acquire read,

and acquirePC load which are denoted by events with label

L(x, v), A(x, v), and Q(x, v). ARMv8 also provide DMBLD

and DMBST fences that generate FLD, and FST events. Finally,

L ⊆ W, A ⊆ R, Q ⊆ Ld ⊆ R, and F, FLD, FST are the set of

release, acquire, acquirePC, and full, load, store fence events.
All these models satisfy coherence and atomicity properties.

Coherence. The property enforces SC per location i.e. in an

execution all accesses on same memory locations are totally

ordered. A complete execution graph X satisfies coherence if

X.poℓ ∪ X.rf ∪ X.co ∪ X.fr is acyclic.
Atomicity. An execution X violates atomicity if there is an

intermediate write on same location between rmw related read

and write events. In that case X.fre(r, w) and X.coe(w′, w)
hold where r and w are X.rmw-related events and w′ is another

write on the same location as r and w.

SC. An well-formed execution X is SC when:

• (X.po ∪ X.rf ∪ X.fr ∪ X.co) is acyclic (SC)

• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)

The executions in Fig. 1 are inconsistent in SC. For example,

the SB execution has po ∪ fr cycle. Note that coherence

constraint is included in (SC) axiom as poℓ ⊆ po holds

and therefore if (X.po ∪ X.rf ∪ X.fr ∪ X.co) is acyclic then

(X.poℓ ∪ X.rf ∪ X.fr ∪ X.co) is also acyclic.

[X = Y = 0]

W(X, 1)

R(Y, 0)

W(Y, 1)

R(X, 0)
fr

(a) SB

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)
rf

(b) LB

W(X[1], 1) W(Y [1], 1)

R(X[1], 1)

R(Y [1], 0)

R(Y [1], 1)

R(X[1], 0)

ppo ppo

(c) IRIW

Fig. 1: Distingushing executions: SB execution is disallowed

in SC but allowed in x86 and ARM. SC and x86 disallow

LB execution but ARM models allow it. IRIW execution is

disallowed in SC, x86, ARMv8, but allowed in ARMv7.

x86. Relation x86-preserved-program-order (xppo) orders

read-read, read-write, write-write access pairs. Relation

implied signifies that an intermediate rmw or F acts as a

full fence. Based on these relations x86 defines x86-happens-

before (xhb). Finally, x86 defines its consistency constraints

for a well-formed execution.

• X.poℓ ∪ X.rf ∪ X.fr ∪ X.co is acyclic (sc-per-loc)

• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)

• X.xhb is acyclic where (GHB)

– xhb , xppo ∪ implied ∪ rfe ∪ fr ∪ co where

– xppo , ((W ×W) ∪ (R×W) ∪ (R× R)) ∩ po

– implied , po; [dom(rmw)∪F]∪ [codom(rmw)∪F]; po

x86 satisfies coherence and atomicity by (sc-per-loc) and

(atomicity) axioms respectively. Axiom (GHB) ensures a

global order based on xhb relation. The model allows Fig. 1a

but disallows the executions in Figs. 1b and 1c.

ARMv8. In ARMv8 relation observed-by (obs ⊆ eco) re-

lates same-location external events. Relation atomic-ordered-

by (aob ⊆ poℓ) orders events based on rmw and acquire

or acquirePC events. The dependency-ordered-before (dob)

captures dependency based ordering between events e.g. data∪
addr ⊆ dob. Relation barrier-ordered-by (bob) orders events

by fences and stronger memory accesses as follows.

bob ,po; [F]; po ∪ [R]; po; [FLD]; po ∪ [W]; po; [FST]; po; [W]

∪ [L]; po; [A] ∪ po; [L] ∪ [A ∪ Q]; po ∪ po; [L]; coi

A full fence orders all accesses, a load fence orders a read

with its successors, and a store fence orders a pair of writes.

A release access is ordered with its predecessors and an

acquire or acquirePC is ordered with its successors. Release

and acquire accesses are ordered. Finally, (a, b) is ordered if

b is a write and there is an intermediate release store on the

same-location as b. Based on these relations ARMv8 defines

Ordered-before (ob) order: ob , (obs∪ dob∪ aob∪ bob)+. A

well-formed ARMv8 execution X is consistent when:

• X.poℓ ∪ X.rf ∪ X.co ∪ X.fr is acyclic (internal)

• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)

• X.ob is irreflexive (external)

These axioms allow the executions in Figs. 1a and 1b but

disallows the execution in Fig. 1c by the (external) axiom.
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a=X;
X=1;

Y =X; X=Y ;

(ARM-Weak)

R(X, 1)

W(X, 1)

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

poℓ ppo ppo

Fig. 2: Outcome a = 1 is allowed in ARMv7.

ARMv7. ARMv7 orders memory accesses in a thread by

preserved-program-order (ppo) based on dependencies or

fence ⊆ po; [F]; po relation. ARMv7 also defines happens-

before (ahb) and propagation (prop ⊆ R1; fence;R2) relations

that can order events across threads. Finally a well-formed

ARMv7 execution X is consistent when:

• (X.poℓ ∪ X.rf ∪ X.fr ∪ X.co) is acyclic. (sc-per-loc)

• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)

• X.fre;X.prop;X.ahb∗ is irreflexive. (observation)

• (X.co ∪ X.prop) is acyclic. (propagation)

• X.ahb is acyclic. (no-thin-air)

Axiom (observation) constrains the set of writes from which

reads may read-from; if a write w is in prop; ahb∗ relation

with a same-location read r then r does not read from w′

which is co-before w. (propagation) ensures that prop does

not contradict co and (no-thin-air) constrain causality cycle.

ARMv7 allows the executions in Fig. 1 including IRIW with

a = c = 1, b = d = 0 outcome in the following program.

X[1] = 1;
a = X[1];
b = Y [a];

c = Y [1];
d = X[c];

Y [1] = 1; (IRIW)

In addition read-write accesses on same-location can be un-

ordered in ARMv7. As a result, the ARM-Weak program in

Fig. 2 has an execution with a = 1 outcome.

III. ROBUSTNESS ANALYSIS AND ENFORCEMENT

In this section we first define M -K robustness and then

propose the M -K robustness conditions.

Definition 1. A program is M -K robust if all its K-consistent

executions are also M -consistent.

Suppose a K-consistent execution X violates an axiom from

M -consistency. The violation results in a cycle in X. If the

cycle contains no po edge then it is formed by rfe, fre, and

coe edges on same location events. The cycle also violates

coherence. This is not possible as execution X is K-consistent

and all K models we are considering satisfy coherence. So the

cycle consists of a set of po-edges along with the eco edges

between them. We define these po edges as external-program-

order (epo) i.e. epo , po ∩ (codom(eco)× dom(eco)).

a

b

c

d

· · ·

. . .

p

q

epo epo epo
eco eco

ecoeco

Thus we represent an axiom violation as a (epo; eco)+ cycle

where all the epo edges on the cycle are not sufficiently

ordered. To enforce order we insert fences to strengthen these

epo edges and restrict a cycle to enforce M -K robustness.

R

R W

fre
W

R W

coe
W R

W
coe

R WW

W
fre coe

Fig. 3: Coherence ensures eco; epoℓ ∪ epoℓ; eco ⊆ eco.

Theorem 1. A program P is M -K robust if in all its K-

consistent execution X, X.epo ⊆ X.R holds where R is defined

as M -K condition as follows.

(SC-x86) xppo ∪ poℓ ∪ implied; po?

(SC-ARMv8) poℓ ∪ (aob ∪ dob ∪ bob)+

(x86-ARMv8) poℓ ∪ (aob ∪ bob ∪ dob)+ ∪WR

(SC-ARMv7) poℓ ∪ fence

(x86-ARMv7) poℓ ∪ fence ∪WR

(ARMv8-ARMv7) poℓ ∪ [W]; po ∪ fence

Next, we explain the M -K conditions for the concurrency

models. The correctness proofs for these robustness conditions

are in the technical appendix [15].

A. Robustness of x86 Programs

From the SC-x86 condition in Theorem 1, relation xppo

orders read-read, read-write, and write-write pairs. So if an

x86 execution violates SC-x86 robustness then it contains a

(epo; eco)+ cycle with one or multiple epo edges that are

in WR relation. If it is on same location then there is an

alternative (eco; epo)+ cycle as shown in Fig. 3 that also

denote the violation. The implied; po? relation can order a

write-read pair by intermediate rmw or F.

Consider the SB execution from Fig. 1a in x86. The epo

edges do not satisfy SC-x86 condition and the execution is

non-SC. If we insert fences between the store-load pairs in

each thread then the program exhibits only SC behaviors.

B. Robustness of ARMv8 Programs

SC-ARMv8 Robustness. Suppose an ARMv8 execution con-

tains a (epo; eco)+ cycle that violates SC-ARMv8 robustness.

If an epoℓ edge is on the cycle then as shown in Fig. 3 there

is an alternative (epo; eco)+ cycle without the edge.

Now consider an (epo; eco)+ cycle where each epo on the

cycle is in (aob ∪ bob ∪ dob)+ relation. In that case ((aob ∪
bob ∪ dob)+; eco)+ cycle implies an ob cycle which is not

possible as an ARMv8 consistent execution satisfies (external).

The epo edges in SB and LB executions in Fig. 1 do not

satisfy the SC-ARMv8 condition. The executions are allowed

in ARMv8 but not in SC.

x86-ARMv8 Robustness. The x86-ARMv8 robustness con-

dition orders all epo relations except WR pairs as WR is also

unordered in x86. Hence an ARMv8 execution exhibits only

x86 behavior if the x86-ARMv8 condition holds. Consider the

SB execution from Fig. 1a in ARMv8; both the epo edges are

also in WR and the execution is x86 consistent.
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R(T, 1)

W(X, 1)

W(X, 2)

R(X, 2)

W(Y, 2)

R(Y, 2)

W(Z, 2)

W(Z, 1)

R(Z, 1)

W(T, 1)

Fig. 4: ARMv7 allows the execution of the WP program.

C. Robustness of ARMv7 Programs

SC-ARMv7 Robustness. The ARMv7 model uses poℓ and

fence relations to order epo edges for SC-ARMv7 robustness.

The ppo and poℓ do not guarantee SC-ARMv7 robustness

as shown in the execution in Fig. 2. If we insert fences in

the second and third threads the execution is disallowed in

ARMv7 and the resulting program is SC-ARMv7 robust.

Moreover, ppo relations in all epo edges do not ensure

SC behavior in an execution. For instance, the WP program

execution in Fig. 4 is non-SC even though the epo edges are

ppo-ordered. Note that, even if we insert an intermediate DMB

in one of the threads the cycle is still possible in ARMv7.

x86-ARMv7 Robustness. To ensure x86-robustness, ARMv7

orders all epo relations except write-read pairs. Consider the

SB program execution in Fig. 1a where the epo edges are WR

pairs and the execution is consistent in both ARMv7 and x86.

ARMv8-ARMv7 Robustness. ARMv8-ARMv7 robustness

requires to order all epo 6=ℓ relations except write-read and

write-write pairs. In this case also ppo relation cannot order

epo 6=ℓ edges. Hence the cycle in the ARMv7 execution in

Fig. 4 is disallowed in ARMv8 as it is an ob cycle.

IV. CHECKING AND ENFORCING ROBUSTNESS

In this section we lift the semantic notion of M -K ro-

bustness to the program syntax and propose static analyses

to check and enforce robustness in the following steps.

1) Identify program components which may run concurrently.

We consider fork-join parallelism and identify the thread

functions where each function may create multiple threads.

2) Memory-access pair graph construction. We identify the

memory accesses in thread functions and construct a

memory-access pair graph (MPG) that captures the poten-

tial epo and eco edges in the executions.

3) Checking robustness. If an MPG contains a cycle then we

check whether each access pair on the cycle is ordered. If

so then all K-consistent execution of the program preserve

M -K robustness condition and as a result all K consistent

executions of these programs are also M consistent.

4) Enforcing robustness. If the memory access pairs on the

cycle are not ordered we insert appropriate fences between

the memory access pairs. These fences disallow these cycle

in the executions in the K consistency model and in turn

enforce M -K robustness.

A. MPG Construction

Let {f1, f2, . . . , fn} be the set of thread functions in a

program that may run in parallel. Let C = 〈V , E〉 be a control

SB2(p){
1. if (a) X = 1;
2. else Y = 1;
3. a = Y ;
4. b = X; }

· · ·

1.W(X, -)

3.R(Y, -)

2.W(Y, -)

4.R(X, -)

3.R(Y, -)

4.R(X, -)

Fig. 5: Subgraph of SB2 MPG with potential epo and eco

edges. SB2(true) || SB2(false) violates SC-x86 robustness.

flow graph (CFG) of a thread function where C.V are the

instruction nodes and C.E are the set of control flow edges.

We analyze the thread functions’ CFGs to construct an MPG.

Helper Definitions. We define following helper conditions.

• CFG(f) returns the control-flow-graph of a function f .

• mayAA(i, j) checks if i and j may access same location.

• ac(C, A) returns the primitives in C which create A events

or rmw relations i.e. ac(C, A) , {i | [[i]] ∈ A}. In this case

ac(C, rmw) returns the accesses that create RMW primitives.

• P(C, i, j) checks if there is a path from i to j on the control

flow graph C i.e. P(C, i, j) , (i, j) ∈ [C.V ]; C.E+; [C.V ].
• MM(C) returns the set of memory access pairs in a control

flow graph C where the second access is reachable from the

first access. These pairs depict the potential epo edges i.e.

MM(C) , {(i, j) | i, j ∈ ac(C,W ∪ R) ∧ P(C, i, j)}.

Definition 2. An MPG is of the form G = 〈V,E〉 where G.V
is the set of shared memory access pairs and G.E denote the

set of edges between the nodes. An edge from (a, b) ∈ G.V to

(c, d) ∈ G.V implies that b and c may access same location.

Procedure BuildG in Fig. 6 constructs an MPG. In

BuildG line 2-4 appends the memory access pairs from

CFG(f1),CFG(f1), . . . ,CFG(fn) to V. Line 5-8 compute the

G.E edges. An edge between (a, b) and (c, d) denotes that

mayAA(b, c) holds. Note that we also create G.E edges be-

tween access pairs from the same thread function. It is because

multiple concurrent threads may execute same thread function

and access pairs from a function may result in events which are

concurrent in an execution. In this case we effectively analyze

all programs of the form f1 || · · · f1 || · · · || fn · · · || fn.

B. Checking robustness on MPG

A cycle in MPG G implies a potential (epo; eco)+ cycle in

an execution. Cy(G) returns the set of access pairs that may

create cycle(s) in the MPG G i.e.

Cy(G) ,{n | n ∈ G.V ∧ ∃m, o ∈ G.V.

m 6= n ∧ o 6= n ∧ G.E(m,n) ∧ G.E(n, o)}

We do create any self loop in G on n. A self loop on n implies

that n may create concurrent event pair (p, q) and (r, s) in an

execution where eco(q, r) or eco(p, s) holds which implies

(p, q), (r, s) ∈ poℓ. However, poℓ is included in all M -K
robustness condition and therefore multiple event pairs from

n does not create any new robustness violation.

If Cy(G) has any unordered access pair following respective

Ord condition then we report M -K robustness violation.
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example. Consider the SB2 function in Fig. 5. The program

SB2(true) || SB2(false) violates SC-x86 robustness due to an

execution where R(Y, 0) and R(X, 0) is possible in the first

and second threads respectively. We construct the MPG from

{1, 2, 3, 4} accesses. The subgraph in Fig. 5 contains a cycle

of (1, 3) and (2, 4) that depicts SC-x86 robustness violation.

1) Defining Ord Conditions

To define an Ord condition we use the following definitions.

• mustAA(i, j) checks if i and j always access same location.

• Procedure getG(i) returns the CFG C of instruction i.
• Pnf checks if there exist any path from i to j on the CFG C

without passing through a fence in F . Else in all executions

the events from i and j are ordered by a set of fences.

Pnf(C, i, j, F ) , P(〈C.V \ F, C.E \B〉, i, j)
where B = (G.V × F ) ∪ (F ×G.V)

• isW(i) and isR(i) check if the access i is write and read

respectively.

• isWR(C, i, j) checks if i and j are write-read pair which may

access different locations without any intermediate RMW. In

an execution i and j may create a WR relation.

isWR(C, i, j) ,isW(i) ∧ isR(j) ∧ ¬mustAA(i, j)

∧ ∃u (u ∈ ac(C, rmw)

∧ P(C, i, u) ∧ P(C, u, j))

x86. The Ord condition for SC-x86 robustness is as follows.

Ord(SC, x86, C, i, j) ,isR(i) ∨ isW(j) ∨mustAA(i, j)

∨ ¬Pnf(C, i, j, ac(C,F))

The isR(i) and isW(j) conditions ensure xppo relations be-

tween the events generated from i and j. mustAA(i, j) checks

if i and j generated events pairs are in epoℓ relation. The Pnf

condition checks if there are intermediate fences between i
and j generated events in all executions. The Ord condition is

satisfied in LB and IRIW but violated in the SB program.

In x86 a successful RMW results in rmw which acts as an

intermediate fence. But a failed RMW generates a read event

only and it does not act as a fence. Therefore an RMW operation

between a pair of memory access does not ensure that the

access pair is ordered in all execution. However, if an RMW

is used in an wait-loop where the loop terminates only when

the RMW is successful then the RMW in the wait-loop acts as a

fence in all x86 terminating executions. For these programs we

strengthen SC-x86 robustness checking condition as follows.

SOrd(SC, x86, i, j) ,isR(i) ∨ isW(j) ∨mustAA(i, j)

∨ ¬Pnf(C, i, j, ac(C,F ∪ rmw))

ARMv8(A8). isL(i), isA(i), isAQ(i) check if an access i is

a release, acquire, acquire/acquirePC respectively. isLA(i, j)
holds for a release, acquire access pair (i, j). Lcoi(i) re-

turns the set of release-writes that access same-location as

i. RA(C, i) returns the set of acquire-reads that is reachable

from i through some release-writes.

RA(C, i) ,{a | isA(a) ∧ ¬Pnf(C, i, a, ac(C, L))}

Lcoi(C, i) ,{w | isL(w) ∧mustAA(w, i)}

We now define the Ord condition for SC-ARMv8 robust-

ness where B , ac(C,F) ∪ RA(i). It results in BF =
po; [F]; po ∪ po; [L]; po[A]; po ⊆ bob that acts as a fence on

an epo. Moreover we define isRR(i, j) , isR(i) ∧ isR(j),
isRW(i, j) , isR(i) ∧ isW(j), isWW(i, j) , isW(i) ∧ isW(j).

Ord(SC,A8, C, i, j) , mustAA(i, j) (1)

∨(¬Pnf(C, i, j, B)) ∨ isLA(i, j) ∨ isAQ(i) ∨ isL(j) (2)

∨(isRR(i, j) ∧ ¬Pnf(C, i, j, B∪ac(C,FLD))) (3)

∨(isRW(i, j)∧¬Pnf(C, i, j, B∪ac(C,FLD)∪Lcoi(C, j))) (4)

∨(isWW(i, j)∧¬Pnf(C, i, j, B∪ac(C,FST)∪Lcoi(C, j))) (5)

The definition ensures that the generated events from i and

j are in (1) poℓ or in one of the following bob relations:

(2) BF ∪ [L]; po; [A] ∪ [A ∪ Q]; po ∪ po; [L], (3) BF ∪
[R]; po; [FLD]; po, (4) BF ∪ [R]; po; [FLD]; po ∪ po; [L]; coi, (5)

BF ∪[W]; po; [FST]; po; [W]∪po; [L]; coi. The overall condition

ensures SC-ARMv8 robustness. The condition is satisfied in

IRIW but violated in SB and LB.

The dob and aob relations also order memory accesses.

From the definition aob ⊆ poℓ which is already captured

by (1). We do not include dob in the Ord condition as

a dependency can be optimized away after the robustness

analysis which may result in a non-robust program even when

we report the original program to be robust.

Next, we define x86-ARMv8 robustness condition where an

(i, j) access pair is ordered or may generate a WR pair.

Ord(x86,A8, C, i, j) , Ord(SC,A8, C, i, j) ∨ isWR(C, i, j)

SB and IRIW satisfy the condition but LB violates it.

ARMv7(A7). We define the Ord condition to ensure the SC-

ARMv7 robustness condition in all ARMv7 executions. Then

we extend the Ord for SC-ARMv7 to define the Ord conditions

for x86-ARMv7 and ARMv8-ARMv7 robustness.

Ord(SC,A7, C, i, j) , mustAA(i, j)∨(¬Pnf(C, i, j, ac(C,F)))
Ord(x86,A7, C, i, j) , Ord(SC,A7, C, i, j)∨isWR(C, i, j)
Ord(A8,A7, C, i, j) , Ord(SC,A7, C, i, j)∨isW(i)

The memory access pairs in the LB program satisfies the

ARMv8-ARMv7, and the SB program satisfies the x86-

ARMv7, ARMv8-ARMv7 conditions.

2) Robustness Analysis and Enforcement Procedure

The MKRobust procedure in Fig. 6 checks M -K robustness

on an MPG G: (line 3) we first compute Cy(G). (line 4-7) if

an access pair (a, b) in Cy(G) is on a cycle then we check

if (a, b) is ordered by the Ord condition. (line 8) returns the

unordered memory access pairs O.

If O is empty then the program is M -K robust. Else Enforce

procedure insert appropriate fences to enforce robustness.

Procedure getF returns a fence based on the access type a and
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1: procedure BuildG({f1, . . . , fn})
2: for f ∈ {f1, . . . , fn} do

3: C ← CFG(f);
4: V← V ∪MM(C);

5: for (a, b) ∈ V do

6: for (c, d) ∈ V do

7: if mayAA(b, c) then

8: E← E∪{(a, b), (c, d)};

9: return 〈V,E〉;
10: end procedure

1: procedure MKRobust(M , K, G)

2: O ← ∅;
3: AB ← Cy(G);
4: for (a, b) ∈ AB do

5: C ← getG(b);
6: if ¬Ord(M,K, C, a, b) then

7: O ← O ∪ {(a, b)};

8: return O;

9: end procedure

1: procedure Enforce(K,O)

2: H ← ∅;
3: for (a, b) ∈ O do

4: if b /∈ H then

5: f ← getF(K, a, b);
6: insertF(getG(b), a, b, f );
7: H ← H ∪ {b};

8: end procedure

G← BuildG({f1, . . . , fn}); O ← MKRobust(M,K,G); Enforce(K,O);

Fig. 6: Static M -K robustness analysis and enforcement.

1: procedure getF(K, a, b)
2: if K == x86 then return new(MFENCE);

3: if K == A7 then return new(DMB);

4: if K == A8 then

5: if isW(a) ∧ isR(b) then return new(DMBFULL);

6: if isW(a) ∧ isW(b) then return new(DMBST);

7: if isR(a) then return new(DMBLD);

8: end procedure

1: procedure insertF(C, a, b, f )

2: V ′ ← C.V ∪ {f};
3: E1 ← C.E ∪ {(f, b)}
4: E ′ ← E1 ∪ {(e, f) |C.E

+(e, b)}∪{(f, e) |C.E+(b, e)}
5: return 〈V ′, E ′〉;
6: end procedure

Fig. 7: Procedure getF and insertF.

b in the memory model K. Procedure insertF inserts the fence

f between a and b. Note that one inserted fence may order

multiple access pairs. These methods are defined in Fig. 7. In

case of x86 and ARM programs we insert MFENCE and DMB

respectively. In ARMv8 we first insert DMBFULL followed by

DMBLD and then DMBST fences.

C. Complexity of Robustness

To analyze the complexity of the robustness algorithm we

analyze the main procedures: BuildG, MKRobust, and Enforce

which perform MM, Pnf , and Cy computations. Given a

program with n statements, the number of shared memory

accesses and control flow edges are bound by n and n2 re-

spectively. Hence MM contain maximum n2 elements and Pnf

computation is bound by traversing n2 edges. So procedure

BuildG constructs an MPG graph with maximum |MM |= n2

nodes and |MM |2= n4 edges. Hence Cy computation traverses

maximum n4 edges. In procedure MKRobust, for each node

in MPG, we check (i) if it is on the cycle by computing Cy (ii)

if yes then it performs Pnf computation for the memory access

pair. Hence MKRobust overall incurs n2∗(n4+n2) = n6+n4

computation. Next, procedure Enforce takes maximum n2

computation for each access pair in MM and for overall incurs

maximum n2∗ |MM |= n4 computation. Hence, the robustness

checking and enforcement computation is bounded by O(n6)
which is polynomial in terms of the program size.

V. EXPERIMENTAL EVALUATION

Implementation. We implement the robustness analysis and

enforcement techniques in Fency (for FENCe analYsis) as

LLVM compiler passes for x86, ARMv8, and ARMv7 pro-

grams. We leverage the existing analyses in LLVM. The CFG

analyses are used to define MM, Path, P , and Pnf conditions.

We define the mayAA and mustAA conditions using memory

operand type and alias analyses provided in LLVM.

We run the analyses on a MacOS machine having a 2.4GHz

8-Core Intel i9 processor with 64 GB RAM.

Benchmarks. We analyze a number of well-known concur-

rent algorithms and data structures [14, 27] including global

barrier (Barrier) construct, mutual exclusion algorithms (by

Dekker, Peterson, and Lamport), different lock algorithms

(e.g. Spinlock, Seqlock, Ticketlock), non-blocking write proto-

col (NBW), read-copy-update (RCU) programs, work-stealing

queue in Cilk, and ChaseLev dequeue. These programs

use C11 [28, 29] atomic accesses extensively. The release-

acquire(RA)/TSO/SC versions indicate the memory model for

which the respective version is developed. The number of lines

in the LLVM IR (.ll) files vary between 100-400 which indicate

the approximate size of an analyzed CFG.

Naive fence insertion scheme. We compare Fency to a naive

scheme which does not use robustness information in fence

insertion. The naive scheme works as follows.

• Eliminate existing fences in concurrent threads.

• Enforce robustness by fence insertion in concurrent threads.

– (x86) Insert MFENCE after load, store, and RMW accesses.

– (ARMv8) Insert DMBLD after non-acquire loads and

DMBFULL for other memory accesses.

– (ARMv7) Insert DMB after all memory accesses.

A. Experimental Results

In Figs. 8 and 9 we report the results of some benchmarks.

The full results are in the supplementary material [15]. For

comparison we also provide the number of fences required by

179



Prog.
SC-x86

result 〈sec

Trencher

result 〈sec

Barrier 6|0✗2 〈0.005 ✗2 〈0.004

Dekker-TSO 20|4✓0 〈0.002 ✓0 〈0.007

Peterson-SC 14|0✗2 〈0.004 ✗2 〈0.013

Lamport-SC 17|0✗4 〈0.019 ✗4 〈0.107

Spinlock 14|0✓0 〈0.004 ✓0 〈0.007

Ticketlock 12|0✓0 〈0.004 ✓0 〈0.006

Seqlock 7|0✓0 〈0.004 ✓0 〈0.582

RCU-offline 33|4✗3 〈0.038 ✗- 〈0.246

Cilk-TSO 22|2✓0 〈0.011 ✗0 〈2.039

Cilk-SC 22|0✓0 〈0.010 ✓2 〈6.322

Prog.
ARMv7

SC

result 〈sec

x86

result 〈sec

ARMv8

result 〈sec

Barrier 6|2✗2 〈0.012 6|2✓0 〈0.002 6|2✓0 〈0.002

Dekker-TSO 20|8✗6 〈0.003 20|8✗6 〈0.007 20|8✗6 〈0.009

Peterson-SC 14|0✗12 〈0.002 14|0✗10 〈0.002 14|0✗8 〈0.003

Lamport-SC 17|7✗10 〈1.699 17|7✗8 〈1.659 17|7✗5 〈1.698

Spinlock 18|12✓0 〈0.141 18|12 ✓0 〈0.133 18|12✓0 〈0.133

Ticketlock 14|8✓0 〈0.025 14|8✓0 〈0.022 14|8✓0 〈0.023

Seqlock 9|6✗2 〈0.006 9|6✗2 〈0.002 9|6✗2 〈0.002

RCU-offline 36|19✗17 〈0.335 36|19✗15 〈0.334 36|19✗10 〈0.339

Cilk-TSO 33|10✗6 〈2.455 33|10✗6 〈2.411 33|10✗6 〈2.427

Cilk-SC 33|8✗7 〈2.445 33|8✗7 〈2.410 33|8✗7 〈2.411

Fig. 8: Robustness analyses and enforcement for x86 and ARMv7 programs.

the naive schemes as well as the results from state-of-the-art

x86-robustness checker Trencher [8].

Intrpreting the Results. The (SC-K) entries in the tables are

of the form (a|b(✓/✗) c 〈 d) where

• ‘a’: number of fences required by naive scheme.

• ‘b’: number of existing fences in the program.

• ‘c’: number of fences inserted by proposed scheme.

• ‘✓/✗’ symbol denotes if a program is M -K robust or not.

• ‘d’: time taken by the robustness pass in seconds.

In ARMv8 we show total number of DMB(FULL/LD/ST)

fences. We use #(a-(b+c)) less fences than the naive schemes

e.g. from Fig. 8 the Barrier program requires 6-(0+2)=4 less

fences than the naive scheme to enforce SC-x86 robustness.

For Trencher we analyze the encoded programs taken from

[14]. We report if the program is SC-x86 robust (✓/✗), number

of inserted fences (i.e. ‘c’) and the execution time (i.e. ‘d’).

Trencher fence insertion does not terminate for RCU-offline.

1) Checking Robustness

x86 programs. We report the SC-x86 robustness analysis

results of Fency in Fig. 8 (and in [15]) and compare the results

from Trencher. on the corresponding programs.

The SC-x86 robustness analysis in Fency is quite precise and

agrees to Trencher in all cases except Lamport-RA, Lamport-

TSO, and Cilk-SC programs. Lamport-(RA/TSO) have un-

ordered write-read pairs that generate WR relations and hence

Fency report SC-robustness violation though these access pairs

never execute concurrently in any x86 execution. Moreover, in

most cases Fency insert same number of fences as Trencher.

We note a subtle case in Cillk-SC. It has an access sequence

a = RRLX(T );WRLX(T, a-1);RRLX(H). Trencher reports SC-

violation due to the WR pair. However, LLVM combines

the load and store of T and create an atomic fetch-and-sub:

a = RRLX(T );WRLX(T, a-1)  a = fsub(T, 1). Hence the

resulting x86 program ensures SC-robustness which Fency

reports correctly.

We also note the execution time of Fency and of Trencher.

Trencher incurs significantly more time for the Seqlock, Cilk-

Prog.
ARMv8

SC
result 〈sec

x86
result 〈sec

Barrier 6|2✗2 〈0.009 6|2✗0 〈0.007
Dekker-TSO 20|8✗4 〈0.007 20|8✗4 〈0.011
Peterson-SC 14|0✗11 〈0.001 14|0 ✗10 〈0.001
Lamport-SC 17|7✗9 〈0.007 17|7✗9 〈0.008

Spinlock 18|12✗4 〈0.017 18|12 ✗4 〈0.009
Ticketlock 14|8✗2 〈0.006 14|8✗2 〈0.007

Seqlock 9|6✗2 〈0.002 9|6 ✗2 〈0.005
RCU-offline 35|16✗17 〈0.157 35|16 ✗19 〈0.160

Cilk-TSO 33|10✗7 〈0.025 33|10 ✗7 〈0.024
Cilk-SC 33|8✗8 〈0.011 33|8✗8 〈0.012

Fig. 9: Robustness analyses & enforcement in ARMv8.

TSO, Cilk-SC programs and does not terminate for RCU-

offline fence insertion. Trencher exhibits comparable efficiency

in certain programs e.g. Spinlock, Ticketlock. However, in

these programs also if we increase the number of threads by

replicating the thread functions then Trencher incurs orders of

seconds to check and enforce robustness. At the same time

Trencher inserts more fences. On the other hand, the analyses

in Fency are parameterized by thread functions and therefore

are unaffected by the number of executing threads.

ARMv8 programs. In Fig. 9 (and in [15]) we report the

robustness results of the ARMv8 programs. The ARMv8

programs violate SC and x86 robustness as the programs

contain independent memory accesses on different locations

which are unordered in ARMv8.

As ARMv8 is weaker than x86, the programs (e.g. Barrier)

which violate SC-x86 robustness also violate SC-ARMv8

robustness. Moreover, there are programs which are SC-x86

robust but violates SC-ARMv8 robustness such as dekker-

TSO. These programs violate both SC-ARMv8 and x86-

ARMv8 robustness due to unordered accesses that result in

[R]; po 6=ℓ; [R] or [W]; po 6=ℓ; [W] relation in an execution. These

access pairs are ordered in x86 but not in ARMv8 and hence

violate x86-ARMv8 robustness.

180



Robustness of ARMv7 programs. In general the ARMv7

programs violate robustness when x86 or ARMv8 are not

robust as shown in Fig. 8 (and in [15]). However, C11

release/acquire/SC accesses which generate full fences in

ARMv7 and synchronizing accesses in ARMv8 which act as

half fences. As a result, in some programs the ARMv7 version

enforce stronger ordering than the ARMv8 version. Hence the

ARMv7 programs are robust unlike the ARMv8 programs. For

example, Consider the C11 event (without read/written values)

sequences from Spinlock and Ticketlock programs and their

C11 to ARMv8 and ARMv7 mappings [30].

R(X) ·WSC(Y ) · R(Z) 7→ R(X) · L(Y ) · R(Z) (C-v8)

R(X) ·WSC(Y ) · R(Z) 7→ R(X) · F ·W(Y ) · F · R(Z) (C-v7)

The reads are unordered in ARMv8 and may violate SC-

ARMv8. The ARMv7 event sequence is ordered by fences

that leads to SC-ARMv7 robustness.

The Barrier (and Peterson-RA-b) program violates SC-

ARMv7 due to unordered store-load pairs, but satisfies x86

and ARMv8 robustness. Some ARMv7 programs violate SC,

x86, ARMv8 robustness due to unordered read-read pairs.

2) Enforcing robustness.

In most of the programs enforcing weaker model requires less

number of inserted fences. However, certain ARMv8 programs

(e.g. lamport-SC) incur less fences to enforce SC-ARMv8 than

x86-ARMv8. Consider the ARMv8 sequence W(X) · R(X) ·
R(Y ) ·W(Y ) that may violate SC-ARMv8 and x86-ARMv8.

To ensure SC-ARMv8 we insert a DMBFULL that results in

W(X) · R(X) · F · R(Y ) · W(Y ) sequence. To ensure x86-

ARMv8 we insert a DMBLD and a DMBST to generate a W(X) ·
R(X) · FLD · R(Y ) · FST ·W(Y ) sequence.

3) Performance of Robustness Analyses

We have already compared the execution times of SC-x86

robustness analysis in Fency and Trencher. In case of ARM

program versions Fency incurs less than a second except

for ARMv7 Cilk-(TSO/SC) programs. The timings of Fency

analyses vary among different program versions. It is because

LLVM may optimize a program differently for different archi-

tectures. So the number of memory accesses (parameter ‘a’ in

Figs. 8 and 9) and the number of memory access pairs vary.

Moreover, the CFGs in different architectures also differ which

affect the Pnf and Cy computations.

VI. RELATED WORK

SC-robustness is studied against TSO [3, 4, 5, 6, 7, 8, 9, 10],

PSO [11, 12], POWER [13], and Release-Acquire [14] models

by exploring possible executions using model checking tools.

On the contrary, we analyze and transform programs as LLVM

passes without exploring program executions.

[8] check and enforce SC-robustness for parameterized

programs for any number of threads. It reduces the robustness

checking problem to parameterized reachability analysis on

possible executions. Instead, our approach is static and param-

eterized over the thread functions for any number of threads.

PORTHOS [31] checks portability of a program from one

model to another, particularly from POWER to TSO by

encoding models in SAT/SMT solvers. On the contrary, we

check robustness or portability of ARM models which are

different from POWER. In addition, our analysis enable fence

insertion to enforce robustness unlike PORTHOS.

A number of approaches [32, 8, 33, 34, 35, 18, 6, 11]

propose fence insertion to ensure SC. Among these fence

insertion schemes our approach is closer to static approaches

[34, 18, 35]. [18] use delay-set analysis to ensure SC for weak

memory programs. [35] proved that identifying minimal set of

fences is NP-hard and proposed minimal fence insertion based

on control flow analysis. Similar to [35], we analyze control

flow graph without exploring the executions.

[32] checks SC-robustness against x86 and POWER, and

restore SC by inserting lock-unlock or RMW constructs. [34]

proposed fence insertion in POWER to strengthen a program to

release/acquire semantics which has same ordering constraints

between memory accesses as TSO. On the contrary, we

propose M -K robustness; we define robustness conditions

for ARMv7 and ARMv8 programs and show that ppo is not

sufficient to enforce SC in ARMv7. Moreover, we analyze

parameterized programs unlike these approaches.

We extend abstract event graph (AEG) from [34] and pro-

pose memory pair graph in our analyses. An AEG captures the

possible execution graphs statically for a given set of threads

and statically detect possible robustness-violating cycles which

may occur in an execution. The proposed memory-access pair

graph (MPG) also considers that the program is parameterized

where each thread function may create multiple threads and

hence construct the event graph on all memory access pairs

from all threads. Then similar to AEG we statically detect

possible robustness-violating cycles on MPG. However, our

fence insertion may not be optimal; identifying optimal fence

insertion is an well studied problem [35, 18, 34] which we

will pursue in the context of M -K robustness.

VII. CONCLUSION AND FUTURE WORK

In this paper we identify robustness conditions for x86,

ARMv8, and ARMv7 relaxed memory models. Based on these

identified conditions we check M -K robustness. If robustness

is violated we insert appropriate fences to enforce robustness.

We implement our approach as LLVM compiler passes and

evaluate the efficiency on a number of well-known concurrent

algorithms and data structures.

Going forward we want to extend the analyses to other

concurrency features in x86 and ARM models [36]. We would

also like to extend these analyses to other architectures such

as RISC-V [37] and Power [38].
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