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Abstract. The synergy between musculoskeletal and central nervous
systems empowers humans to achieve a high level of motor perfor-
mance, which is still unmatched in bio-inspired robotic systems. Lit-
erature already presents a wide range of robots that mimic the human
body. However, under a control point of view, substantial advancements
are still needed to fully exploit the new possibilities provided by these
systems. In this paper, we test experimentally that an Iterative Learn-
ing Control algorithm can be used to reproduce functionalities of the
human central nervous system - i.e. learning by repetition, after-effect
on known trajectories and anticipatory behavior - while controlling a
bio-mimetically actuated robotic arm.

Keywords: Motion and motor control - Natural machine motion -
Human-inspired control

1 Introduction

Natural and bio-inspired robot bodies are complex systems, characterized by an
unknown nonlinear dynamics and redundancy of degrees of freedom (DoF's). This
poses considerable challenges for standard control techniques. For this reason,
researchers started taking inspiration from the effective Central Nervous System
(CNS), when designing controllers for robots [4,5]. In this work, we test experi-
mentally a model-free controller intended for trajectory tracking with biomimetic
robots. We prove that the required tracking performances can be matched, while
presenting well-known characteristics of human motor control system, i.e. learn-
ing by repetition, mirror-image aftereffect, and anticipatory behavior. We do
that by presenting experiments on a robotic arm with two degrees of freedom,
each of which is actuated by means of a bio-mimetic mechanism replicating the
behavior of a pair of human muscles [7] (Fig. 1(a)).
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(a) Biomimetic mech. (b) Control architecture

Fig. 1. The synergy between human musculoskeletal system and the CNS can be imi-
tated by a bio-mimic robot and a proper controller mixing anticipatory (feedforward)
and reactive (feedback) actions.

2 From Motor Control to Motion Control

Taking inspiration from the human CNS, we aim at designing a controller able
to replicate the characteristics of paleokinetic level of Bernstein classification [2].
This provides reflex function and manages muscle tone, i.e. low level feedback and
dynamic inversion. We want to do that by reproducing salient features observed
in humans.

Learning by repetition [10] (behavior (i)) is the first feature we are interested
into. CNS is able to invert an unknown dynamics over a trajectory, just by
repeating it several times. This is clear in experiments where an unknown force
field is applied to a subject’s arm, and she or he is instructed to sequentially
reach to track a point in space. In every repetition the tracking is improved until
an almost perfect performance is recovered.

Anticipatory behavior [8] (behavior (ii)) is the second characteristic we want
to reproduce. The CNS can anticipate the necessary control action relying on
motor memory, rather than always reacting to sensory inputs. In control terms
this means relying more on feed-forward than on feedback. In humans this char-
acteristic tends to appear more strongly when the motor memory increases.

Finally, humans present aftereffect over a learned trajectory [9] (behavior
(iii)). By removing the force field, subjects exhibit deformations of the trajec-
tory specular to the initial deformation due to the force field introduction. This
behavior is called mirror-image aftereffect and is the third characteristic we aim
at reproducing.

Figure 1(b) shows the control architecture. We suppose no a priori knowledge
of system dynamics. We just read the joint evolution and velocity z € R?", and
we produce a motor action u € R™. The purpose of the controller is to perform
dynamic inversion of the system, i.e. computing the control action @ : [0,tf) —
R™ able to track a given desired trajectory Z : [0,#;) — R?". This has to be
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done by repeating several times the same task and performing it better each
time (learning by repetition). To implement this feature, we propose a control
law based on Iterative Learning Control (ILC) [3]: wiy1 = u; + I'vrpei(t) +
I'vra é,(t) + I'vBp €i41(t) + [rpa €i41(t). We call u; and e; £ 3 — x; the control
action and the error at the i—th repetition of the task. Ipp, € R™*27 and
TI'rra € R™*2" are the PD control gains of the iterative update while Irpp €
R™*2" and I'ppg € R™*2" are the PD feedback gains. We analyzed the theoretic
control implications of using similar algorithms in [1,6].
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Fig. 2. Experimental results. (a) shows the reference trajectory. (b) reports the evo-
lution of control input at joint 1. (c) shows the error over 40 iterations (behavior (i),

learning by repetition). (d) depicts the ratio between reactive and anticipatory actions
(behavior (ii)).

3 Experimental Results

The goal of the experiments is to prove that the considered ILC-based algorithm
can reproduce the discussed human-like behaviors when applied to a biomimetic
hardware. The algorithm is applied to a two degrees of freedom planar arm, with
bio-mimetic actuation. More specifically, the mechanism mimics a pair of human
muscles. The available control input u has been proven to be equivalent to the
corresponding signal in A—model of human muscles [7]. We consider the following
gains for the algorithm I'vp,, is blkdiag([1, 0.1],[1.25, 0.0375]), I'rra is blkdiag([0.1,
0.001},[0.0375,0.001]), I'rpp, is blkdiag([0.25, 0.025],[0.25, 0.025]), and Ippq is blk-
diag([0.025, 0.001],[0.025, 0.001]). The desired trajectory (same for both joints)
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is shown in Fig. 2(a). Note that this is a very challenging reference, having large
amplitudes and abrupt changes in velocities. For performance evaluation we use
norm 1 of the tracking error. The proposed algorithm learns the task by repeating
it 40 times achieving good performance. Figure 2(b) shows the joint 1 control evo-
lution for some meaningful iterations (similar results apply to joint 2). Figure 2(c)
proves that the system implements learning by repetition (behavior (i)), reducing
the error exponentially to 0 by repeating the same movement. Figure 2(d) depicts
the ratio between total feedforward and feedback action, over learning iterations.
This shows the predominance of anticipatory action at the growth of sensory-
-motor memory (behavior (ii)). It is worth to be noticed that feedback it is not
completely replaced by feedforward, which is coherent with many physiological
evidences (e.g. [10]).

To test the presence of mirror-image aftereffect (behavior (iii)) we introduced
an external force field after the above discussed learning process. This field was
generated as shown by Fig. 3(a), by two springs connected in parallel to the sec-
ond joint. Figure 3(b) shows the robot’s end effector evolution obtained before
(green) and after (red) spring introduction. The algorithm can recover the orig-
inal performance after few iterations (learning process not shown for the sake of
space). Finally the springs are removed, and the end-effector follows a trajectory
which is the mirror w.r.t. the nominal one, of the one obtained after field intro-
duction, therefore proving the ability of the proposed algorithm to reproduce
mirror-image aftereffect (behavior (iii)).
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Fig. 3. The proposed controller presents aftereffect (behavior (iii)). Panel (a) reports
the spring interconnection implementing the unknown force field, and Panel (b) end
effector evolutions. (Color figure online)
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4 Conclusions

In this work we proved experimentally that an ILC-based algorithm can repro-
duce - when applied to a biobimetic hardware - several behaviors observed when
the central nervous system controls the muscle-skeletal system - namely learning
by repetition, experience-driven shift towards anticipatory behavior, and after-
effect.
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