
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Master Thesis
Graph-Based Deep Reinforcement Learning for
Maintenance-Conditioned Wind Farm Wake
Steering Control

ME54035: Master Thesis
Bas van Berkel

Master Thesis
Graph-Based Deep Reinforcement Learning for

Maintenance-Conditioned Wind Farm Wake
Steering Control

by

Bas van Berkel

ME54035: Master Thesis

in partial fulfilment of the requirements for the degree of

Master of Science
in Mechanical Engineering

at the Department Maritime and Transport Technology,
Faculty Mechanical, Maritime and Materials Engineering,

Delft University of Technology

To be defended publicly on Monday, October 14th, 2024, at 10:00 AM

Student number: 4916778
MSc Track: Multi-Machine Engineering
Report Number: 2024.MME.8990.pdf
Project duration: February 12, 2024 – August 16, 2024
Supervision: Prof. dr. X. Jiang, TU Delft

Prof. dr. E. Chatzi, ETH Zürich
Dr. P.G. Dominguez, TU Delft
Ir. G. Duthé, ETH Zürich
Ir. G. Arcieri ETH Zürich

Cover: Condensation in the wake-affected Horns Rev wind farm. Photo
by Christian Steiness; courtesy of Vattenfall under CC BY-NC 2.0
(Modified)

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Wind energy is growing to be an essential part of the transition towards sustainable energy sources. To
facilitate this, it is crucial that wind farm operators can offer competitive energy prices compared to fossil
fuel sources; effective and efficient wind farm operations are therefore imperative. However, many full-
scale wind farms deal with wake effects, e.g. the disturbed air that travels downstream of a turbine and
potentially ends up in other neighbouring turbines. The result of this lower-velocity, higher-turbulence
flow field is both decreased power production and increased fatigue loads. One proposed solution for
this problem comes in the form of ’wake steering’: the yawing (rotating) of upstream turbines’ nacelles
to facilitate a degree of control over the deflection of wakes. By doing so, the problematic disturbed
flow fields can be strategically guided between downstream turbines to maximise collective power pro-
duction. However, the yawing action itself brings some adverse effects: the upstream turbines, now
no longer directly facing the wind, feel decreased power production and increased fatigue loads them-
selves. These fatigue effects, accumulating over time, can eventually cause increased maintenance
costs and nullification of any revenue gains through power optimisation. The problem thus becomes
a farm-wide collective revenue optimisation task. This thesis investigates how long-term revenue in
wind farms can be maximised, considering both profits through power optimisation and maintenance
costs through fatigue-induced component failures due to wake steering control. First, a realistic wind
farm simulation environment is constructed, based on a Graph Neural Network (GNN) surrogate wind
farm simulation model, to facilitate efficient reinforcement learning training. Next, the environment is
used to train fully centralised reinforcement learning agents based on a GNN architecture, resulting in
agents that can generalise across all wind conditions and unseen wind farm layouts. Ultimately, the
results show that an ’informed’ agent that considers all profits and costs involved manages to signifi-
cantly reduce the cost of energy compared to ’greedy’ (power optimisation only), ’risk-averse’ (damage
minimisation only) and ’baseline’ (zero-yaw) policies, furthermore considerably maximising long-term
wind farm revenue by as much as 20%. Altogether, this thesis shows promising results in using graph-
based reinforcement learning to train maintenance-conditioned, inflow-agnostic, and layout-agnostic
wake steering controllers for wind farm revenue optimisation.

All code for this thesis can be found in the accompanying GitHub Repositories for the IEA37 3.4MW
turbine surrogate1, the GNN-based farm-level simulation surrogate2, the simulation environment Wake-
WISE3 and the wake steering controllers4.

1https://github.com/bdvanberkel/IEA37_Surrogates
2https://github.com/gduthe/windfarm-gnn/tree/yaw-control-extension
3https://github.com/bdvanberkel/WakeWISE
4https://github.com/bdvanberkel/WakeWISEControllers

i

https://github.com/bdvanberkel/IEA37_Surrogates
https://github.com/gduthe/windfarm-gnn/tree/yaw-control-extension
https://github.com/bdvanberkel/WakeWISE
https://github.com/bdvanberkel/WakeWISEControllers

Preface

What a journey it has been! Spending six months working at the Structural Mechanics and Monitoring
(SMM) group at ETH Zürich has been a true privilege. It has been incredible to work alongside so
many intelligent and high-performing individuals. Their work - often truly excellent and state-of-the-art
research - has been incredibly motivating, pushing me to get the most out of myself. I sincerely enjoyed
the many interesting discussions during lunch or group meetings, sparking new ideas and inspirations
that guided me towards my final results. Working on this thesis in Zürich has taught me a lot, from
hard skills in distributed computing and wind farm modelling to working with Graph Neural Networks
and Reinforcement Learning. I am always looking to learn new things, and working on this thesis has
provided me with that and so much more. I could not have thought of a better way to conclude my
academic career - the cherry on the cake if you will - than what the last seven months have been. I feel
proud of what I delivered and I am happy with the final results, which will hopefully spark new ideas
and concepts that others can build on. I look forward to seeing what the future brings, both to me as
well as to wind farm research. There is so much left to discover, it is a matter of time until we see the
rest of the endless possibilities and techniques. Looking back at my work - all of the bachelor, my year
at the TU Delft Hydro Motion Team, the master and this thesis - I find that I always aimed to get the
most out of myself. I therefore find the following Latin phrase very fitting to conclude this preface:

Nil satis nisi optimum
Nothing but the best is good enough

Bas van Berkel
Delft, September 2024

ii

Acknowledgements

I would like to express my gratitude to many individuals who have been instrumental during the making
of this thesis. They deserve to be acknowledged by name for their contributions and supervision they
have so kindly provided me during the process. Without them, I would not have been able to get to
where I am now, for which I am very grateful.

First of all, I would like to express my gratitude to Gregory Duthé and Giacomo Arcieri, who have
provided me with excellent daily supervision during my stay at ETH Zürich. From the weekly update
meetings, cracking our brains over the (in-)variance of reward functions to optimisation horizons, to
troubleshooting the endless woes of RL training. My research was verymuch inspired by their incredible
work on surrogate modelling and reinforcement learning. When talking about daily supervision, I must
also mention Pablo Morato Dominguez, who was there for many of the weekly meetings to provide
his thoughts and feedback and who participated in many interesting discussions. Similarly, I would
like to thank Xiaoli Jiang for the supervision from Delft, and the excellent feedback she has given me
throughout the thesis. Of course, my time at ETH Zürich would never have been possible without
Prof. Eleni Chatzi who kindly hosted me at the Structural Mechanics and Monitoring (SMM) group. I
am grateful for her hospitality in allowing me to work with her group, and for providing me with very
excellent feedback during our update sessions. Then there are also the many incredibly intelligent and
friendly people of the SMM group, which I would like to thank for the amazing Friday afternoon soccer
games, the lunchtime get-togethers and their fascinating research which sparked many interesting
discussions. I also want to mention Imad Abdallah who, together with Gregory, I got in touch with first
for the proposed thesis. Finally, I would like to thank Kyriakos Chondrogiannis and Iasonas Soukas -
my officemates at ETH, along with Giacomo - for the great banter during the many hours spent working
alongside each other.

Of course, a special appreciation goes to my parents, without whom my six-month stay in Zürich
would not have been possible. From the moment I mentioned a potential stay abroad to the conclusion
of the thesis, they were nothing but supportive and enthusiastic. Furthermore, I would like to express
my appreciation for the Justus and Louise van Effen Research Grant which I was kindly given by the TU
Delft. Finally, my appreciation goes to the great maintenance team of the ETH Zürich Euler computing
cluster for providing me with the computing power required for my research. I could not have done my
research without it.

All of you - even those not explicitly mentioned by name - have contributed to this final product in
some shape or form. I sincerely appreciate it!

Bas van Berkel
Delft, September 2024

iii

Contents

Abstract i

Preface ii

Acknowledgements iii

Nomenclature x

1 Introduction 1
1.1 Problem Statement . 2
1.2 Approach . 2
1.3 Research Questions . 3
1.4 Contribution . 4

2 Background 5
2.1 Damage Equivalent Load (DEL) . 5
2.2 Graph Neural Networks . 7
2.3 (Multi-Agent) Reinforcement Learning . 7
2.4 Literature Review: Wake Steering . 8
2.5 Research Gap . 10
2.6 Chapter Recap . 11

3 Modelling of Turbines and Farms 12
3.1 Model Choice . 12

3.1.1 Farm-Level . 12
3.1.2 Turbine-Level . 14

3.2 Approach . 15
3.3 Turbine-Level Model . 16

3.3.1 Dataset Generation . 17
3.3.1.1 Inflow Sampling . 18
3.3.1.2 OpenFAST Model Setup . 20
3.3.1.3 Postprocessing . 21

3.3.2 Surrogate Model . 22
3.3.2.1 Architecture & Hyperparameters . 22
3.3.2.2 Evaluation . 23

3.4 Farm-Level Model . 24
3.4.1 Dataset Generation . 24

3.4.1.1 Inflow & Layout Sampling . 24
3.4.1.2 PyWake Model Setup . 26
3.4.1.3 Postprocessing . 26

3.4.2 Surrogate Model . 27
3.4.2.1 Architecture & Hyperparameters . 27
3.4.2.2 Evaluation . 28

3.5 Chapter Recap . 29

4 Fatigue Modelling 34
4.1 Damage Accumulation Theory . 34
4.2 Fatigue Curve Parameters . 34

4.2.1 Numerical Fitting of Fatigue Curve Parameters 35
4.3 Chapter Recap . 37

5 Simulation Environment 38
5.1 Main setup . 38

iv

Contents v

5.2 Time Keeping . 38
5.3 Inflow Conditions . 38

5.3.1 Model Choice . 39
5.3.2 Model Fitting . 40
5.3.3 Model Evaluation . 41

5.4 Electricity Price . 44
5.4.1 Model Choice . 44
5.4.2 Model Fitting . 44

5.5 Maintenance Costs . 45
5.6 Fatigue Accumulation . 48
5.7 Reward Function . 49
5.8 Observation Space . 49
5.9 Chapter Recap . 50

6 Multi-Agent Reinforcement Learning 51
6.1 Control Problem Formulation . 51
6.2 Algorithm Selection . 51

6.2.1 Agents . 52
6.2.2 Agent Architecture . 53

6.3 Baseline removal . 54
6.4 Training . 54

6.4.1 Training Technique Ablation Study . 54
6.5 Chapter Recap . 55

7 Policy Analysis 56
7.1 Key Performance Indicators (KPI) . 56
7.2 Layouts . 56
7.3 Results . 56

7.3.1 Finite vs Infinite Horizon . 57
7.3.2 Infinite Horizon . 58

7.3.2.1 16-turbine Case . 58
7.3.2.2 Lillgrund Case . 65
7.3.2.3 Horns Rev Case . 67
7.3.2.4 Generalisability . 68
7.3.2.5 Comparison with literature . 71

7.3.3 Finite Horizon . 72

8 Discussion 76
8.1 Reflection & Limitations . 76
8.2 Future Work . 78

8.2.1 Decentralised Learning . 80
8.2.2 Combined Pitch & Yaw Control . 81

9 Conclusion 82

A Scientific Paper 90

B ’Master’ DEL Convergence Analysis 116

C Fatigue curve fitting with gradient descent 118

D Convergence study of simulation length vs DEL 120

List of Figures

1.1 Flow map of a three-turbine wind farm without wake steering. 2
1.2 Flow map of a three-turbine wind farm with wake steering. 2

2.1 Example of the GNN process; the input embedding is fed through n in-place message
passing blocks to obtain the output embedding. 7

2.2 Single-agent training: a single agent interacts with the environment through one policy. 8
2.3 CTCE training: all agents are included in one policy. 8
2.4 CTDE training: each agent has their own policy; information is shared. 8
2.5 DTDE training: each agent has their own policy; no information is shared. 8

3.1 Comparison of several available farm-level simulation models. 13
3.2 Comparison of several available turbine-level simulation models. 15
3.3 Conventions for the five turbine DELs. 17
3.4 Distribution of input variables obtained using SOBOL sampling 20
3.8 Steps of generating the rectangular domain of randomly perturbed points. 25
3.9 Process of masking the rectangular grid with different shape masks. 25
3.10 Graph embedding of dataset . 27
3.11 Overview of farm-level GNN surrogate, with the encode-process-decode paradigm. . . 28
3.12 Training curves of the farm-level GNN Surrogate. 29
3.5 Outputs versus Wind Speed . 31
3.6 Outputs versus Yaw Angle . 31
3.7 Output analysis of the trained turbine-level surrogate . 32
3.13 Output analysis of the trained farm-level surrogate on the test set. 33

5.1 Comparison of the four options for inflow sampling. 40
5.2 Digitisation, or ’binning’, of wind direction and speed values. 41
5.3 A sample of synthetic wind direction data versus the dataset. 42
5.4 A sample of synthetic wind speed data versus the dataset. 42
5.5 A sample synthetic wind signal’s 2D density plot versus that of the real signal. 42
5.6 A sample synthetic wind signal’s wind direction density plot versus that of the real signal. 42
5.7 A sample synthetic wind signal’s polar 2D density plot versus that of the real signal. . . 43
5.8 A sample synthetic wind signal’s polar wind direction density plot versus that of the real

signal. 43
5.9 Autocorrelation plot of a sample synthetic signal versus that of a real signal. 43
5.10 Power Spectral Density (PSD) plot of a sample synthetic signal versus that of a real signal. 43
5.11 Comparison of the three options for electricity price sampling. 44
5.12 Dataset analysis of spot prices. 45
5.13 Dense maintenance costs . 45
5.14 Sparse maintenance costs . 45
5.15 Examples of the non-linear cost function ecD − p with different parameters for c. 48
5.16 Examples of the non-linear cost function ecD − 1 with different parameters for c. 48
5.17 Embedding of observation of the environment on a graph, reusing edge features and

connectivity from the farm-level surrogate. 50

6.1 Diagram of the Markov Decision Process . 51
6.2 Overview of the agent’s GNN architecture. 53
6.3 Training curves of runs with and without training techniques. 55

7.1 16-turbine grid-aligned wind farm layout. 57

vi

List of Figures vii

7.2 Layout based on the Lillgrund wind farm. 57
7.3 Layout based on the Horns Rev wind farm. 57
7.4 Training curve(s) of the naive agent with a one standard deviation confidence interval. . 59
7.5 Training curve(s) of the informed agent with a one standard deviation confidence interval. 59
7.6 Training curve(s) of the risk-averse agent with a one standard deviation confidence interval. 59
7.7 Per-turbine average power relative to baseline (zero-yaw). 60
7.8 Per-turbine average total maintenance cost relative to baseline (zero-yaw). 60
7.9 Per-turbine average total reward relative to baseline (zero-yaw). 60
7.10 Average cost of energy. 60
7.11 MTBF as a result of different control policies. 61
7.12 Yaw policies versus wind direction at I = 0.1 and α = 0.1 with Vm = 8.0 m/s (solid) and

Vm = 12.0 m/s (dashed). 62
7.13 Power and loads versus yaw angle at Vm = 8.0 m/s, I = 0.1 and α = 0.1. 63
7.14 Yaw angles under Eastern, with Vm = 8.0 m/s, I = 0.1 and α = 0.1. 63
7.15 Yaw angles under Western wind, with Vm = 8.0 m/s, I = 0.1 and α = 0.1. 63
7.16 Power versus wind speed; colouring is based on yaw angle. 64
7.17 Power improvement vs wind direction, at Vw = 7 m/s, I = 0.1 and α = 0.1. 64
7.18 Power improvement vs wind direction, at Vw = 10 m/s, I = 0.1 and α = 0.1. 64
7.19 Power improvement vs wind direction, at Vw = 14 m/s, I = 0.1 and α = 0.1. 64
7.20 Flow map at Vm = 8 m/s, I = 0.1 and α = 0.1. 64
7.21 Flow map at Vm = 16 m/s, I = 0.1 and α = 0.1. 64
7.22 Average yaw angle versus the price of electricity. 65
7.23 Yaw angle versus wind direction at Vm = 8.0m/s, I = 0.1 and α = 0.1, at various damage

states. The damage state is equal for all components in all turbines. 66
7.24 Training curves for the Lillgrund agents. 66
7.25 Lillgrund per-turbine average power relative to baseline (zero-yaw). 67
7.26 Lillgrund per-turbine average total maintenance cost relative to baseline (zero-yaw). . . 67
7.27 Lillgrund per-turbine average total reward relative to baseline (zero-yaw). 67
7.28 Lillgrund average cost of energy. 67
7.29 Training curves for the Horns Rev agents. 68
7.30 Horns Rev per-turbine average power relative to baseline (zero-yaw). 69
7.31 Horns Rev per-turbine average total maintenance cost relative to baseline (zero-yaw). . 69
7.32 Horns Rev per-turbine average total reward relative to baseline (zero-yaw). 69
7.33 Horns Rev average cost of energy. 69
7.34 Per-turbine average power: the transferred 16-turbine agent vs the Lillgrund agent. . . . 70
7.35 Per-turbine average cost: the transferred 16-turbine agent vs the Lillgrund agent. 70
7.36 Per-turbine average reward: the transferred 16-turbine agent vs the Lillgrund agent. . . 70
7.37 Average cost of energy: the transferred 16-turbine agent vs the Lillgrund agent. 70
7.38 Per-turbine average power: the transferred 16-turbine agent vs the Horns Rev agent. . 71
7.39 Per-turbine average cost: the transferred 16-turbine agent vs the Horns Rev agent. . . 71
7.40 Per-turbine average reward: the transferred 16-turbine agent vs the Horns Rev agent. . 71
7.41 Average cost of energy: the transferred 16-turbine agent vs the Horns Rev agent. . . . 71
7.42 Yaw angles and improvements relative to baseline for the transferred greedy agent on

the Lillgrund farm with a wind direction of 45 degrees (aligned with gridlines). 72
7.43 Yaw angles and improvements relative to baseline for the transferred greedy agent on

the Lillgrund farm with a wind direction of 122 degrees (aligned with gridlines). 72
7.44 Yaw angles and improvements relative to baseline for the transferred greedy agent on

the Horns Rev farm with a wind direction of 353 degrees (aligned with gridlines). 72
7.45 Yaw angles and improvements relative to baseline for the transferred greedy agent on

the Horns Rev farm with a wind direction of 90 degrees (aligned with gridlines). 72
7.46 Samples of random 16-turbine layouts. 73
7.47 Training curves of the agents trained on random 16-turbine layouts 73
7.48 Farm layouts to test with the 16T and 16R agents. 74
7.49 16T vs 16R agents on Wieringermeer. 74
7.50 16T vs 16R agents on Middelgrunden. 74
7.51 16T vs 16R agents on Kriegers Flak. 74

List of Figures viii

7.52 16T vs 16R agents on Anholt. 74
7.53 40-year analysis of the cumulative profits generated by each policy. 75

8.1 Methods of adjusting tower loads: combining (left) and projecting into a world-fixed frame
of reference (right). 77

8.2 Diagram of the Partially Observable Markov Decision Process 80
8.3 CTDE architecture suggestion for training on large farms. 81

B.1 Convergence analysis of ’master’ lifetime DEL; data comes from 25-year-long simulated
time series, of four simulations with 16 turbines each. 117

C.1 ’Training’ curves of Nelder-Mead gradient descent for finding the mean and standard
deviation of the DELu distributions; values fitted for a target lifetime of 22 years with
standard deviation of 1 year. 119

D.1 Convergence study of simulation time versus the calculated DEL. Four different simula-
tions were run for 600 seconds each and the DEL was calculated for increasing fractions
of the total simulation data. Power and thrust coefficient are also shown. 121

List of Tables

2.1 Overview of reviewed literature . 10

3.1 Overview of distributions of input variables . 19
3.2 TurbSim parameters . 19
3.3 ElastoDyn output parameters . 21
3.4 Dataset description for turbine-level surrogate . 22
3.5 Overview of model architecture and hyperparameters for the turbine-level surrogates. . 23
3.6 Performance metrics for all seven surrogates averaged over all operating regions. . . . 23
3.7 Overview of bounds of input parameters . 24
3.8 Overview of model architecture and hyperparameters for the farm-level GNN surrogate. 28
3.9 Performance metrics for the farm-level GNN Surrogate model on the test set; subscripts

l indicate that wind speed Vw and TI are the ones local to the turbines, e.g. with wake
effects. Relative errors are omitted due to value explosions when ground truth values
approach zero. 29

4.1 Fitted fatigue curve parameters. 37

5.1 Costs and downtime for replacement of each component. 46

7.1 Overview of model architecture and hyperparameters for infinite-horizon reinforcement
learning. 58

7.2 Power increases of ’greedy’ agents trained in literature. 75

ix

Nomenclature

Abbreviations

Abbreviation Definition

AEP Annual Energy Production
ATC Average Turbine Cost
ATP Average Turbine Power
ATR Average Turbine Reward
AYC Active Yaw Control
BR Baseline Removal
COE Cost Of Energy
CTCE Centralised Training with Centralised Execution
CTDE Centralised Training with Decentralised Execution
DDPG Deep Deterministic Policy Gradient
DEL Damage Equivalent Load
DOF Degree Of Freedom
DRL Deep Reinforcement Learning
DTDE Decentralised Training with Decentralised Execution
DTMC Discrete-Time Markov Chain
DWM Dynamic Wake Meandering
FEM Finite Element Method
GAN Generative Adversarial Network
GD Gradient Descent
GEN GENeralized graph convolution
GNN Graph Neural Network
GS Grid Search
GT Game Theory
HAWC2 Horizontal Axis Wind turbine simulation Code 2nd generation
HRL Hierarchical Reinforcement Learning
IEA International Energy Agency
KPI Key Performance Indicator
LCOE Levelized Cost Of Energy
LDEL Lifetime Damage Equivalent Load
LES Large Eddy Simulation
LUT Look Up Table
LSTM Long Short-Term Memory
MAE Mean Average Error
MAPE Mean Average Percentage Error
MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process
MLP Multi-Layer Perceptron
MSE Mean Squared Error
MTBF Mean Time Between Failures
NREL National Renewable Energy Laboratory
NTM Normal Turbulence Model
OpEx Operational Expenditure
PAR Probabilistic Auto-Regressive
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimisation

x

List of Tables xi

Abbreviation Definition

PSD Power Spectral Density
RANS Reynolds-Averaged Navier-Stokes
RL Reinforcement Learning
RMSE Root Mean Squared Error
RMSPE Root Mean Squared Percentage Error
ROSCO Reference OpenSource Controller
WakeWISE Wakesteering Windfarm Interactive Simulation Environment

1
Introduction

As the world is transitioning to the usage of sustainable energy sources in an attempt to tackle climate
change, wind energy is growing to be an essential area of energy production. In a recent report by the
International Energy Agency (IEA), they forecast that by 2028, as much as 12.1% of all energy will come
from wind energy alone, making up more than a quarter of all sustainable energy produced (IEA, 2024).
This indicates a growth of nearly 9% per year on average. Additionally, the IEA found that the majority of
newly installed wind energy sources can provide competitive Levelized Cost Of Energy (LCOE) prices
compared to fossil fuel sources, often even outperforming them entirely. It is thus evident that wind
energy will play a vital role in the energy transition and that effective and cost-efficient operations are
essential to replace the current fossil fuel energy system.

Wind farms often deal with the effects of wakes, e.g. the disturbed air that flows downstream of a
wind turbine. In the process of generating energy out of the atmospheric boundary layer, wind turbines
leave behind more turbulent and lower-velocity wind, which consequently propagates downstream and
possibly ends up in neighbouring turbines. This tends to be a significant problem, as these velocity
deficits cause decreased performance of downstream turbines and, thereby, reduced power produc-
tion for the wind farm as a whole (Wu and Porté-Agel, 2015; Barthelmie et al., 2007). This problem
often worsens as wind farm size increases due to an increasing number of turbines being aligned
relative to the wind direction. Despite wind farm operators’ best efforts to ensure the most optimal
wake-effect-mitigating wind farm layouts under dominant wind directions, many wind conditions will still
yield wake problems and, consequently, sub-optimal wind farm performance. Wake effects in wind
farms can cause as much as a 40% efficiency loss in cases where turbines are aligned relative to the
wind (Barthelmie et al., 2009). Additionally, the increased flow field turbulence in wakes can cause
significant increases in aeroelastic loads in the downstream turbines (Lee et al., 2018). Naturally, this
called for the development of methods to mitigate these effects, barring adjustments to the wind farm
layout, which is assumed to be fixed.

In recent years, one proposed solution to this problem came in the form of wake steering. Re-
searchers realised that the turbines’ yawing capability, e.g. rotating the nacelle relative to the tower,
could be used to adjust the propagation direction of the produced wakes. Under default circumstances,
where turbines are yawed to face the incoming wind directly, the wakes propagate parallel to the wind
direction. However, assigning a yaw offset relative to the wind to upstream turbines facilitated a degree
of control over the direction in which the wakes propagated through the farm. Using this wake steering
technique, problematic wakes can be steered away from downstream turbines, thereby mitigating the
velocity deficit and increased turbulence effects, which would have otherwise resulted in significant
adverse effects downstream. Despite the yawing action causing sub-optimal power production for the
upstream turbines, the improved performance of downstream turbines collectively ensured a net benefit
for the wind farm. Wake steering techniques facilitated several per cent performance increases com-
pared to the naive wake-affected ’do-nothing’ zero-yaw policy typically used in wind farms (Kadoche
et al., 2023). Figure 1.1 and Figure 1.2 show the flow field and Annual Energy Production (AEP) effects
of the do-nothing and optimised strategy, respectively.

However, wind energy engineers quickly pointed out that the yaw misalignment in wake steering led
to undesired secondary effects. Generally designed for zero-yaw operating conditions, turbines can

1

1.1. Problem Statement 2

Figure 1.1: Flow map of a three-turbine wind farm without
wake steering.

Figure 1.2: Flow map of a three-turbine wind farm with wake
steering.

experience increased loads due to the yawing action (Damiani et al., 2018). What initially seems like
beneficial performance through power optimisation with wake steering turns out to be more nuanced.
The resulting increased loads, cyclic in nature, lead to accelerated fatigue degradation of wind turbine
components. Fatigue failure, typically the dominating factor in turbine lifetime design, comes with sig-
nificant maintenance costs, often requiring the complete replacement of components. What is more,
the acceleration of fatigue accumulation only becomes visible in the long term when components start
to fail, which can be as much as 20 years after the commissioning of the wind farm. The positive conse-
quences of wake steering are instantaneous, whereas the adverse effects can linger in the background
unnoticed for many years, after which they can cause significant monetary losses.

The problem of revenue optimisation thus becomes twofold. On the one hand, instantaneous power
optimisation throughwake steering allows immediate increases in energy production and, thereby, profit
through energy sales. On the other hand, long-term fatigue effects coupled with wake steering for power
optimisation cannot be ignored as they can potentially eventually nullify any revenue gains obtained.
To keep the cost of energy low and to optimise the yield of sustainable energy sources, the typical wake
steering controllers must be adjusted to account for all effects involved. This thesis will explore and
further investigate this to find a suitable and effectivemethod of constructing amaintenance-conditioned
wake steering controller that accounts for both power optimisation and maintenance costs. Such a
controller might then be used by wind farm operators to maximise the revenue they extract from a
given farm, which ultimately translates to the electricity price presented to the customer. By ensuring a
more cost-effective operation of the farm, wind energy will continue to provide competitive energy prices
compared to fossil fuel sources and thereby facilitate a faster transition towards sustainable energy.

1.1. Problem Statement
Wake steering offers a feasible solution to tackle performance deterioration in wind farms due to wake
effects. By introducing a yaw misalignment to various upstream turbines, the problem of downstream-
propagating velocity deficits and turbulence increases ending up in downstream turbines can be partially
mitigated. This facilitates nearly instantaneous increases in power production and, thereby, in short-
term profit. However, as a result of wake steering actions, the accumulation of fatigue damage in
turbines can be accelerated, causing long-term effects unaccounted for in power-only optimisation. If
these effects are not considered, the instantaneous revenue gains can eventually be nullified by the
introduction of more component replacements due to fatigue failure. The problem at hand is thus to
develop an automated controller that determines the optimal set of yaw angles for the turbines in a wind
farm, considering both the tasks of immediate power optimisation as well as the effects of long-term
fatigue degradation, to optimise long-term revenue effectively.

1.2. Approach
The goal of this thesis is to design a wake steering controller that can determine the optimal set of yaw
angles given the instantaneous environmental conditions. This work will cover the usage of Reinforce-
ment Learning to obtain the controller with the desired behaviour. Through the usage of RL, a controller
can be trained automatically without providing it with any ground truth knowledge. This method has
several benefits. One is its ability to obtain a neural network controller that during inference takes mere
milliseconds to run, which is ideal in a wind farm environment under constantly changing environmen-
tal conditions. Additionally, it can enjoy certain adaptability properties facilitating generalizability under
changing environments, as will become evident later in this thesis. Furthermore, it paves the way for
other variants of optimisation under long-term effects, a problemwhich is only effectively solved through
RL optimisation techniques. To design the perceived wake steering controller, a two-step process is

1.3. Research Questions 3

used, as outlined below. For the perceived application of wind farm control, training of the controller
happens a priori, ensuring the majority of computation time can be done outside real-time operation.
Then, inference of the controller happens in real-time, taking only milliseconds to obtain the ideal set
of yaw angles.

1. Step one is constructing a realistic simulation environment for the reinforcement learning agent to
train in. Since reinforcement learning typically requiresmanymillions of timesteps to be evaluated,
a real-life wind farm is infeasible for it to learn efficiently. Instead, a virtual environment that mimics
a realistic wind farm must be created. This environment must include and model wake effects,
environmental conditions, component degradation, profits and costs.

2. Step two is to train the perceived reinforcement learning agent in the constructed environment.
This requires careful construction and tuning of the agent, its architecture and the training algo-
rithm to ensure it learns optimal maintenance-informed behaviour properly.

chapter 3, chapter 4, and chapter 5 will cover the first step of this process by covering the simula-
tion model, fatigue theory and the construction of the environment, respectively. Next, chapter 6 and
chapter 7 cover the training and evaluation of the trained agents in the environment, respectively. With
this two-step process then concluded, chapter 8 and chapter 9 will discuss and conclude the work in
this thesis. Central to the first part of the thesis is thus the creation of the environment. This requires
several modelling choices for each of its modules. To ensure that these design choices align with the
goals of the environment, a set of design criteria is formed by which the available options shall be
judged. These will form the foundational principles upon which the environment is constructed and are
listed below in no particular order.

• Speed - Sample efficiency is crucial as the environment will be used to train reinforcement learn-
ing models. As such, any choices concerning modules to be included in the environment should
explicitly consider the required runtime. To ensure training feasibility, the step duration of the
environment shall not exceed the order of milliseconds.

• Accuracy - A common problem in designing software in virtual simulation environments for later
use in practice is the simulation-to-reality gap. To deal with this as best as possible, any choices
concerning modules to be included in the environment should explicitly consider their accuracy.
To ensure an accurate environment that models reality as closely as possible, accuracies should
ideally be high in the ninety per cent.

• Realistic - To ensure any produced results (i.e. trained controllers) are judged fairly and realis-
tically, the environment itself should be as realistic as possible. Aside from numerical accuracy,
environmental behaviour should follow realistic trends. Consequently, any choices made con-
cerning modules to be included in the environment should produce realistic inputs and follow
real-life behaviour as closely as possible.

1.3. Research Questions
In this thesis, the following main research question will be investigated:

How can long-term profit be optimised in a wind farm by using Deep Reinforcement
Learning for Wake Steering?

To answer this main research question, it is broken up into several smaller sub-questions, each
concerning a unique part of the thesis. Each of these makes up one chapter in this report. This means
that it is structured as follows:

• chapter 3 on How can the impact of wake steering on power production and fatigue loads be
efficiently modelled in the context of a multi-turbine wind farm? - Choosing and developing a suit-
able model that can determine both farm-level and turbine-level effects, for usage in a simulation
environment.

• chapter 4 on How can fatigue loads experienced by turbine components be mapped to accumu-
lated lifetime consumption? - Choosing and developing a method by which instantaneous fatigue
loads can be converted to a contribution to long-term degradation effects.

1.4. Contribution 4

• chapter 5 on How can the environment be constructed in which the reinforcement learning agent
is trained, to accurately represent a realistic wind farm? - Development of the simulation envi-
ronment to accurately and realistically represent a real-life wind farm, allowing the reinforcement
learning algorithm to learn quickly and effectively.

• chapter 6 on How can the architecture of the reinforcement learning agent be designed for ef-
fective wind farm control, and what methodologies should be used in training to ensure efficient
learning? - Setup and tuning of the reinforcement learning architecture and algorithm and the
development of methodologies to facilitate training.

• chapter 7 on To what extent does the performance of the trained reinforcement learning agent sur-
pass or differ from that of various baseline controllers, and what insights can be gained from these
comparative analyses? - Performance comparison and evaluation of the trained controller(s) with
baseline behaviour.

1.4. Contribution
This report is about several main contributions that made up the thesis project, each contributing to the
final results. These contributions are as follows:

• IEA Turbine-Level Load surrogates - Development of power, thrust coefficient and load sur-
rogates for the NREL-developed 3.4MW reference wind turbine, considering operating regions,
operating modes, wind conditions and yaw angles.

• Graph Neural Network Farm-Level Surrogates - Development of an all-in-one combined layout-
agnostic wind farm simulation surrogate, considering operating modes, wake effects and local
power & loads, extending the work by Duthé et al. (2023).

• WakeWISE Environment - Development of a fast, efficient and realistic simulation environment
for training wind farm wake steering controllers using reinforcement learning.

• Wind Farm Wake Steering Controllers - Development of generalisable graph-based wind farm
wake steering controllers to optimise power, maintenance or a combination of both.

2
Background

In this initial chapter, first, some essential background knowledge is provided which will be at the centre
of many chapters in this thesis. Section 2.1 covers key information about Damage Equivalent Loads
(DELs) which form the basis of load and fatigue modelling within the simulation environment of this
work. Next, section 2.2 covers Graph Neural Networks (GNNs), key to both surrogate modelling of
wind farm mechanics and construction of the reinforcement learning agents in the latter half of this
thesis. Finally, section 2.3 covers (Multi-Agent) Reinforcement Learning, theory which is essential for
the latter half of the thesis regarding the training of wake steering controllers. Additionally, this chapter
covers a review of wake steering literature and subsequently concludes with a summary of research
gaps this work will cover.

2.1. Damage Equivalent Load (DEL)
The Damage Equivalent Load (DEL) is a measure often used in the context of wind turbines to quantify
cyclic (fatigue) loads. Wind turbines deal with varying load cycles during operation, contributing to an
accumulation of fatigue damage over time. In general, accumulated fatigue damage is assessed by
investigating the load history of an area under interest and carefully bookkeeping the various number
of cycles and respective load magnitudes. A typical method of consistently differentiating between
different load cycles is, for example, the Rainflow Counting method T et al. (1974). These cycles
can then be fed through an (often) empirically derived equation to determine the added damage each
cycle has on the total accumulated lifetime fatigue. Though this serves well to perform a detailed
load analysis, it is often hard to distinguish between the consequences of two load histories without
tediously performing the aforementioned cycle counting and fatigue damage conversion. This gave
rise to the defining of the DEL values, effectively summarising entire load histories into a single, more
representable number.

The DEL effectively provides a hypothetical load magnitude that, when applied at a specific refer-
ence frequency over the same time period, results in an equal accumulation of fatigue damage as the
original cyclic load time series it was based on. In other words, it represents the often complex and
varying load spectrum as an equivalent single frequency single magnitude load. Doing so facilitates
a direct comparison between two-time series loads without tediously investigating the load cycles in-
volved and helps quantify fatigue effects over longer time intervals. In the wind turbine industry, the
DEL is often calculated over a 10-minute load time series to effectively quantify the fatigue effects un-
der certain wind conditions in a single representable number. A higher DEL means a higher degree
of damage accumulation and, thus, very fast turbine degradation under the given circumstances. The
DEL is thus often used during the design phase of a wind turbine with regard to fatigue analysis.

The theory behind the calculation of the DEL is based on Palmgren-Miner’s linear fatigue damage
accumulation rule (Miner, 1945) and the fatigue curve relations. The fatigue curves relate a given
magnitude of a cyclic load to the number of cycles which would lead to failure. Typically, these curves
are expressed in terms of stress, but in the field of wind energy, they are generally expressed in terms
of loads or moments. Logically, there exists some load magnitude that would lead to direct failure at
the first load cycle. This is the ultimate strength of the component or material in question. On the other

5

2.1. Damage Equivalent Load (DEL) 6

end, however, there exists some cyclic load magnitude that can essentially exert an endless number
of load cycles without ever causing the component or material to break due to fatigue failure. This
is typically called the fatigue limit or endurance limit. Anyhow, using this relation between cycles-to-
failure, a given cyclic load magnitude and the number of cycles endured under that load, the increase
in fatigue damage∆D can be determined using Palmgren-Miner’s linear damage accumulation rule. It
states that the fraction of the number of cycles till failure endured is the added damage∆D and that the
fatigue damage effects of multiple cyclic loads can be linearly added together. Given the fatigue curve
relation N(DELi) mapping load magnitudes DELi to the number of cycles till failure and the number
of cycles endured at each load ni, the added fatigue damage is:

∆D =
∑
i

ni

N(DELi)
(2.1)

Furthermore, going by the definition of N(DELi) derived from work by Freebury and Musial (2000)
and NREL, it can be determined using the Wöhler exponentm characterising the gradient of the fatigue
curve and the ultimate material strength DELu, as follows:

DELi = DELu ·N(DELi)
− 1

m (2.2)
DELi

DELu
= N(DELi)

− 1
m (2.3)(

DELi

DELu

)−m

= N(DELi) (2.4)(
DELu

DELi

)m

= N(DELi) (2.5)

This can be merged with Palmgren-Miner’s linear damage accumulation rule from earlier:

∆D =
∑
i

ni(
DELu

DELi

)m (2.6)

∆D =
∑
i

ni ·
(
DELi

DELu

)m

(2.7)

This damageD, accumulated for each component individually based on their load history, measures
how much of the fatigue lifetime has been consumed so far. Per Miner’s rule, the component will
experience fatigue failure when this damage state D reaches or exceeds a value of 1, indicating a
complete consumption of available fatigue lifetime. What remains is to define how a time series cyclic
load signal is converted and summarised to a single DEL value to be used in the above computations.
Realising that any isolated constant amplitude cyclic load is effectively a DEL for the same number of
cycles and that the DEL should result in an equivalent amount of damage:

feqTs

(
DEL

DELu

)m

=
∑
i

ni

(
Li

DELu

)m

(2.8)

feqTsDELm =
∑
i

niL
m
i (2.9)

DELm =

∑
i niL

m
i

feqTs
(2.10)

DEL = m

√∑
i niLm

i

feqTs
(2.11)

Where feq is the reference frequency of the DEL signal to be calculated (often set to 1Hz), Ts is the
length (in seconds) of the signal that is being converted, ni & Li the cycle count and amplitude of each

2.2. Graph Neural Networks 7

cycle in the original signal and m & DELu the Wöhler exponent and ultimate load of the component
subject to the loads. Given this theory, any time series cyclic load signal can be converted to a DEL to
summarise the effects of fatigue effectively.

2.2. Graph Neural Networks
Graph Neural Networks (GNNs) (Scarselli et al., 2009) extend the properties of neural-network-based
machine learning to graphs. Graphs are defined using a set of nodes V and a set of edges E connecting
them, using the G = (V, E) notation. Graphs typically have an adjacency matrix A of shape |V| × |V|
indicating with a value of 1 at index (i, j) if node i and j are connected. Consequently, edges can
be unidirectional or bidirectional; in the latter case, A is symmetrical as edges exist in both directions.
Additionally, each node in V and edge in E can have a feature vector xi ∈ X and eij ∈ E respectively.
Finally, a graph might have a global feature vector U that holds global graph features. Altogether, a
graph with k = |V| nodes, l = |E| edges, n node features, m edge features and o global features can
be represented as G = (V, E ,A, X,E, U) where A ∈ Rk×k, X ∈ Rk×n, E ∈ Rl×m and U ∈ Ro×1.

GNNs implement the feed-forward step of traditional neural networks on graphs through themessage-
passing paradigm. Rather than feeding values forward through succeeding network layers, it is propa-
gated in place over the graph between connecting nodes. The input embedding of nodes and edges
is thereby transformed into a different output embedding on a similar, if not identical, graph structure.
Inherently, this means that graph topology plays a vital role in how and where information is shared over
the graph. This dependency of information sharing on topology facilitates important prior information
and dependencies to be implicitly encoded in the network architecture. In recent years, this powerful
method of dealing with problems containing a high degree of variable or topology interdependency
has seen numerous applications in novel research. Examples come in the form of learning physical
processes on graphs (Duthé et al., 2023), performing anomaly detection in multivariate signals (Qian
et al., 2023) and predicting relationships between social networks as part of recommender systems
(Fan et al., 2019).

Figure 2.1: Example of the GNN process; the input embedding is fed through n in-place message passing blocks to obtain the
output embedding.

Figure 2.1 shows the typical process of a GNN. An input embedding in the form of a graph with
nodes, edges, node features and edge features is fed through one or multiple message-passing blocks.
These blocks propagate information (features, values) between nodes, thereby updating all nodes on
the graph. The output embedding of message-passing layer κ produces a graph embedding with
hidden states hκ

i of the nodes, which is consequently used as the input for layer κ+ 1. The messages
(values) being passed between nodes can be a function of the node features, edge features, global
features or a combination thereof. This differs between the various message-passing techniques that
can be found in literature. The aggregation of messages during the propagation step can be done using
various methods, such as taking the mean or sum. A review of GNN architectures and techniques can
be found in Zhou et al. (2021).

2.3. (Multi-Agent) Reinforcement Learning
Reinforcement Learning (RL) is the machine learning paradigm concerned with finding a decision-
making policy for an agent to take actions in an environment and maximising the cumulative reward. It

2.4. Literature Review: Wake Steering 8

does this by learning a decision-making policy π(st) to infer an action at ∈ A at each timestep t based
on the environment’s state st ∈ S. The environment then transitions to a new state st+1 depending on
the state transition function P (st, at). Each timestep, the agent observes a reward rt+1 based on its
behaviour and the state st. Favourable decisions are rewarded with higher rewards; bad decisions are
penalised with lower rewards. The agent’s training is done by letting it interact with the environment
and discover which actions under which circumstances result in favourable returns. More formally, a
reinforcement learning problem has a set of states S, a set of actions A and a reward function R(st, at).
The goal is to maximise the cumulative reward Rt from timestep t and onwards:

Rt =

T∑
τ=1

rt+τ (2.12)

In finite-horizon problems, this sum of rewards will be bounded. However, in infinite-horizon prob-
lems, this is not necessarily the case. To deal with these cases, a discount factor γ can be added
that discounts future rewards, or more simply said, ensures short-term rewards hold more value than
long-term rewards. Adding this ensures convergence of the sum of values:

Rt =

T∑
τ=t

γτrt+τ (2.13)

Multi-Agent Reinforcement Learning (MARL) extends the paradigm of reinforcement learning to
deal with environments that include multiple agents. Broadly speaking, there are three types of MARL:
Centralized Training with Centralized Execution (CTCE), Centralized Training with Decentralized Exe-
cution (CTDE) and Decentralized Training with Decentralized Execution (DTDE). Furthermore, MARL
problems can be cooperative or competitive in nature, depending on whether the agents share a com-
mon goal or not. The main differences with the single-agent case are that the state transition function
P is now dependent on the joint action of all agents, there can be an action space A for all agents indi-
vidually, and the reward could provide individual rewards for each agent depending on the formulation
of the problem. In CTCE, one policy is trained to control all agents jointly, e.g., there is a single policy
mapping (a collection of) observations to a joint action space. In CTDE, each agent holds their own
policy, but training is done in a centralized way, allowing information to be shared between agents. This
sharing of information is then omitted during testing time. In DTDE, each agent is trained and tested
fully individually, meaning each agent learns completely independently.

Figure 2.2: Single-agent
training: a single agent

interacts with the environment
through one policy. Figure 2.3: CTCE training: all

agents are included in one
policy.

Figure 2.4: CTDE training:
each agent has their own

policy; information is shared.

Figure 2.5: DTDE training:
each agent has their own
policy; no information is

shared.

2.4. Literature Review: Wake Steering
At its core, the concept of leveraging wake steering for power optimisation in wind farms has been cov-
ered extensively in the literature. Over the last few years, various algorithms, methods and modelling
principles have been applied for this purpose. Given the increased demand for sustainable energy

2.4. Literature Review: Wake Steering 9

and the quest for efficiency as a result thereof, this field of research has become increasingly popular.
Early work in wake steering can be traced back to 2005, in research by Medici (2005) investigating the
effects of Active Yaw Control (AYC). More recently, Howland et al. (2019) conducted experiments on
a six-turbine in-line wind farm, using analytic gradient ascent methods to optimise their yaw strategy.
Using a custom-developed and calibrated analytical model for farm-level interactions, they employed
the gradient descent search to find optimal set points. For selected wind directions, they showed that
performance increases in power yield of the range 7− 12% are feasible. These results align well with
earlier work highlighting experimental results from field tests using controllers trained in simulations
(Fleming et al., 2017, 2019), showing performance gains of several per cent. In both cases, they devel-
oped wake-steering optimised yaw angle lookup tables using gradient descent and FLORIS (National
Renewable Energy Laboratory (NREL), a) as a simulation model. Zong and Porté-Agel (2021) aimed
to reproduce these aforementioned results in a controlled wind tunnel environment, measuring stream-
wise velocity deficits and turbine power outputs. Their results show agreement with prior research and
experiments. Furthermore, they continued by calibrating analytical wake models to match experimental
results, facilitating future work on active yaw control optimisation. Other examples of wake steering op-
timisation include the usage of Game Theory (Gebraad et al., 2016) and SNOPT, an optimiser for highly
nonlinear, constrained problems (Gebraad et al., 2017). However, an inherent problem with simulation-
based optimisation approaches that need transferring to real-life applications is the agreement between
reality and simulation, or sometimes rather the lack thereof. Gori et al. (2023) investigate this sensitivity
of simulation model choices on resulting optimal yaw strategies, highlighting a high degree of variability
in output strategies. Furthermore, they find additional sensitivity concerning the employed optimisa-
tion algorithm. It is thus evident that care must be taken when using simulation-based optimisation
strategies and picking optimisation algorithms.

With the increased popularity of reinforcement learning being applied to optimisation in the decision-
making domain, wake steering has also seen ample RL-based research in recent years. Stanfel et al.
(2020) employed decentralised multi-agent Q-learning for power optimisation in a three-turbine wind
farm under a fixed wind condition, using FLORIS (National Renewable Energy Laboratory (NREL),
a) as a steady-state flow simulation environment. They argue that wake steering based on Look Up
Tables (LUTs) suffers from irregularities that are hard to model and promote the idea of using model-free
control methods, such as Reinforcement Learning. In their environment, they explicitly account for time
delays in wake propagation by ’locking’ turbine yaw angles in place until wakes have propagated. They
argue that this essentially solves the credit assignment problem in multi-turbine systems. Under the
single wind condition they considered, they achieved a clear increase in wind farm power production.
Similarly, Bui et al. (2020) grouped a 15-turbine wind farm in clusters of size three for information
sharing and solved the optimisation problem using decentralised Double-DeepQ Learning. Rather than
using a pre-made wake simulation environment, they calculated wake effects and power production
using analytical and empirical relations. Using their MA-DRL approach under specific wind conditions,
they achieved a power increase ranging from 1.99% to 4.11% depending on the layout of the three-
turbine cluster. Dong et al. (2021), on the other hand, chose to make use of high-fidelity Large Eddy
Simulations (LES) using SOWFA (National Renewable Energy Laboratory (NREL), b) to optimise power
production in a six-turbine wind farm. Using Deep Deterministic Policy Gradient (DDPG), they found a
15% increase in power compared to a zero-yaw baseline under a fixed flow field. The works mentioned
above typically only train their algorithms with small-sized wind farms, which are far from realistic; in
real life, most wind farms will have many more turbines. Kadoche et al. (2023) and Padullaparthi et al.
(2022), on the other hand, extend this to work with as many as 151 turbines. Both works use multi-
agent RL, using either PyWake or FLORIS as wind farm simulators, and find power increases as high as
several per cent depending on the farm size. In contrast to other work, Kadoche et al. (2023) train their
algorithm on an environment with (limited) dynamic wind conditions rather than the fixed conditions the
majority of other papers in this section made use of. Additionally, Padullaparthi et al. (2022) extend their
simulation to include a measure of fatigue to effectively find a trade-off between power optimisation and
component longevity. They include this in the reward function employing an arbitrarily chosen weighted
sum between power production and fatigue loads.

The trade-off between power optimisation and fatigue loads can also be seen in several other papers
from recent years. This is an important factor to consider, as yawing action can significantly impact
fatigue loads on components (Damiani et al., 2018). Interestingly, yaw control itself can be used to
minimise fatigue loads on the turbine (Kragh and Hansen, 2014; Fleming et al., 2015; Shen et al.,

2.5. Research Gap 10

2011). However, Ke et al. (2018) and Jeong et al. (2013) also show that applying yaw offsets to wind
turbines can lead to detrimental effects, such as significantly decreasing fatigue lifetime. These effects
can thus not simply be neglected in favour of immediate power optimisation. Lin and Porté-Agel (2020)
investigated the trade-off between fatigue loads and power optimisation through wake steering and
found that in some cases, the benefits of power production increase are neglected by the increased
loads’ negative effects. In the same way that Padullaparthi et al. (2022) modelled the trade-off between
loads and power in their reward function, work by Ennis et al. (2018), Bossanyi (2018) and van Dijk
et al. (2017) attempted to solve the problem as a multi-objective optimisation problem by giving relative
importance to power optimisation and load minimisation. In many of these papers, only a single DEL
(fatigue load) is considered. Ennis et al. (2018), for example, solely consider flapwise loads, whereas
Bossanyi (2018) only incorporate tower base loads in their objective function. To address this issue,
He et al. (2023) consider a total of five different fatigue loads to characterise the wake-fatigue effects
as well as possible. However, all of these works addressing the trade-off between power and load treat
the problem as a multi-objective optimisation problem, neglecting the true monetary losses resulting
from maintenance due to fatigue degradation.

Environment Degradation Solution
Paper Farm Size Random Wind Included Components Objective Method

Howland et al. (2019) 6 ≈ × - Power GD
Fleming et al. (2017) 6

√
× - Power GD

Fleming et al. (2019) 5
√

× - Power GD
Zong and Porté-Agel (2021) 3-80

√
× - Power GD

Gebraad et al. (2016) 6 × × - Power GT
Gebraad et al. (2017) 60

√
× - Power GD

Stanfel et al. (2020) 3 × × - Power RL
Bui et al. (2020) 15 × × - Power MARL
Dong et al. (2021) 6 × × - Power RL
Kadoche et al. (2023) 4-151 ≈ × - Power MARL
Padullaparthi et al. (2022) 21 ×

√
1 Power+Damage MARL

Lin and Porté-Agel (2020) 3 ×
√

1 Power+Damage GS
Bossanyi (2018) 6 ≈

√
2 Power+Damage GS

van Dijk et al. (2017) 9
√ √

2 Power+Damage GD
He et al. (2023) 2 ×

√
5 Power+Damage GD

GD: Gradient Descent, GT: Game Theory, (MA)RL: (Multi-Agent) Reinforcement Learning, GS: Grid Search

Table 2.1: Overview of reviewed literature

2.5. Research Gap
Following the literature review, some research gaps can be identified that need to be addressed in
future research. These gaps allow innovation to proceed and answer questions that were left from
prior research. The following gaps can be identified:

• Maintenance & Long-term effects - A significant gap that can be identified in the current re-
search landscape is the evident gap in explicitly addressing monetary losses due to maintenance
effects. Applying yaw angles to wind turbines causes (often significant) changes in load conditions
and, therefore, in fatigue-induced component failure rates. These effects are either not accounted
for or only included through some multi-objective optimisation goal with arbitrary coefficients of
importance. Considering these effects when employing wake steering strategies is essential to
avoid unexpected long-term revenue decreases whilst power production is seemingly optimised
in the short term. Padullaparthi et al. (2022) attempt to address this but rely on arbitrarily chosen
weights to quantify the ’cost’ of fatigue loads. Instead, long-term effects must be expressed in
a way that they can be jointly optimised with energy yield, making no arbitrary assumptions on
relative importance.

• Large layouts - Very few papers have addressed the problem of wake steering optimisation in
large-scale wind farms, i.e. with more than a handful of turbines. Clearly, the majority of works
discussed in section 2.4 considered scenarios with only a few turbines, often in straightforward
layouts such as single rows. When it comes to papers that apply reinforcement learning to the

2.6. Chapter Recap 11

problem, larger layouts are seenmore frequently. Still, there is plenty of room for research towards
wake steering in wind farms with a more realistic number of turbines.

• Generalisable Controllers - Many discussed works in section 2.4 consider only a single wind
condition and a fixed layout in their research. This effectively means that the controller is trained
on very specific and fixed wind conditions, lacking any generalizability towards arbitrary inflow
conditions. In other words, it likely strongly overfits the conditions it is provided with. When it
comes to applying trained wake steering controllers in real life, it is of significant importance to
have inflow-agnostic controllers, e.g. controllers that are not constrained to particular conditions.
In more recent work by Kadoche et al. (2023) and Padullaparthi et al. (2022), this is already
partially addressed by training on a small but more diverse set of wind conditions. Still, there
is yet plenty of room for more research. Additionally, the trained controller only works on the
specific layout it was trained on; being able to transfer such a controller would make it much more
practical and applicable. The latter concerns the creation of layout-agnostic controllers and too
constitutes an open area of research.

Given this information, there seems to be a big opportunity in research towards maintenance-
informed wake steering controllers for long-term revenue optimisation in large wind farms, robust to
varying inflow conditions and wind farm layouts. As such, this work will attempt to cover this research
gap and explore its possibilities.

2.6. Chapter Recap
This chapter covered some essential background knowledge on the topics of DELs, GNNs and MARL.
These topics will be used extensively throughout this thesis and thus were given a separate initial
introduction. Next, a literature review on work and publications in the field of wind farm wake steering
was done to investigate the current research landscape. From this, three main research gaps became
evident: modelling of maintenance & long-term effects, dealing with large layouts and generalising
controllers across farm topologies and wind conditions. With this knowledge of essential topics and
research gaps, the next chapter can proceed with the initial steps towards constructing the simulation
environment as required for step one of this thesis.

3
Modelling of Turbines and Farms

An essential property of the simulation environment is its ability to accurately represent the farm-wide
wake interactions and their impacts on local loads and power production. Inherently this means that a
model capable of such calculations should be at the heart of this environment. A suitable model must
thus be chosen that explicitly considers these effects and calculates them for any arbitrary multi-turbine
wind farm layout, given any arbitrary global wind inflow condition and any arbitrary set of yaw angles.
In this chapter, several options for such a model are explored, compared and contrasted in section 3.1.
Next, based on the fundamental design criteria, an informed choice is made and further developed for
usage inside the simulation environment in sections 3.3 and 3.4.

3.1. Model Choice
There are a variety of models available for farm-level modelling of wake effects, as well as for modelling
turbine-level loads and power as a function of local wind conditions. Fundamentally, the available
options differ in their levels of approximation/fidelity and, therefore, in the accuracy of calculated results.
Choosing which model to use generally boils down to comparing the specific characteristics of each
model and determining which aligns best with the environment objectives. As such, in the following
section, different categories of models are compared and contrasted by their characteristics to make
an informed decision effectively. An important distinction is the difference between models capable of
determining farm-level effects and those solely capable of modelling local (turbine-level) effects. As
will be evident in the following subsection, these will have to be treated individually and later merged
together. As such, both of these categories are covered separately.

3.1.1. Farm-Level
The primary goal of modelling farm-level effects is quantifying the interactions between turbines result-
ing from produced wakes. The accuracy of these calculations is directly related to the methods with
which they are done, which typically scale with model fidelity. Several research institutes and individual
developers have released (open-source) software packages for these farm-level simulations, as high-
lighted in Figure 3.1. As mentioned, as model fidelity (and thus accuracy) increases, the computational
effort (and hence runtime) also increases. Additionally to the a priori available software packages, a fifth
option Custom Surrogate is added to the list. This is a proxy for a surrogate model yet to be trained,
consisting of some neural network setup trained on a dataset generated by one or more farm-level
simulators.

The first category of comprehensive models encapsulates both FLORIS (National Renewable En-
ergy Laboratory (NREL), a) and PyWake (Pedersen et al., 2023), two packages developed by different
developing teams but almost identical in their methods. These low-fidelity models are based on em-
pirical relations and fitted formulas, calculating wake effects through wake deficit and wake deflection
models derived from literature. The power of these relatively simple models is precisely their simplic-
ity, as they inherently run much faster than the higher-fidelity models, e.g. in the order of fractions of
a second. However, their simplicity might also have implications for the accuracy of the results they

12

3.1. Model Choice 13

Figure 3.1: Comparison of several available farm-level simulation models.

produce. Nonetheless, as is evident from comparisons by Meyer Forsting et al. (2023); Fischereit et al.
(2022); PyWake Development Team (2024), PyWake can yield satisfactory results for engineering ap-
plications. Similarly, FLORIS has shown good agreement with field results (Fleming et al., 2021) and
wind tunnel tests (Campagnolo et al., 2022). Both models in their standard form, however, have limited
native support for calculating turbine-level loads in their simulation and thus likely need additional local
load computing modules.

The second category contains higher-fidelity models, considering additional mechanisms and me-
chanics compared to low-fidelity models like FLORIS and PyWake. The first of these, FAST.FARM
(National Renewable Energy Laboratory (NREL), 2024b), uses Dynamic Wake Meandering (DWM)
models to compute farm-level wake effects. Additionally, it includes an OpenFAST turbine-level aeroe-
lastic simulation module to calculate local effects like power and loads. In essence, FAST.FARM has
increased fidelity in flow physics, as well as the addition of a comprehensive aerodynamic and structural
calculation module for each of the individual turbines involved. Aside from being able to compute influ-
ences on power production as a result of wakes, it facilitates comprehensive load analysis. Due to its
trade-off between relatively simple flow physics and comprehensive turbine-level analysis, FAST.FARM
can run in the order of seconds over multiple computing cores. Its farm-level DWM wake calculations
have shown excellent agreement with Large Eddy Simulations (LES) as shown by Rivera-Arreba et al.
(2023) and Jonkman et al. (2018), as well as good agreement in structural loads with real-life experi-
ments (Kretschmer et al., 2021).

The last two models, NREL’s WindSE (National Renewable Energy Laboratory (NREL), 2024a) and
SOWFA (National Renewable Energy Laboratory (NREL), b), rely on (un-)steady Reynolds-Averaged
Navier-Stokes (RANS) and Large Eddy Simulations (LES) simulations respectively. These two models
determine farm-level wake effects through comprehensive high-fidelity aerodynamic calculations. It
is important to note that WindSE does not have native support for turbine-level load calculations and
thus needs additional modules; SOWFA, on the other hand, has a version of OpenFAST embedded
for this purpose. WindSE can still be run with limited hardware, albeit with a significant runtime in the
order of minutes. SOWFA, on the other hand, requires many more computing cores and can take up to
several hours to simulate. Their results, however, align well with experimental real-life measurements
(Churchfield et al., 2015; Shaler et al., 2023), though performance increase seems to be relatively lim-
ited compared to models like FAST.FARM or PyWake/FLORIS, especially for engineering applications.

Given these options, usage of the higher-fidelity category of comprehensive models already seems
infeasible due to their relatively long runtime requirements and required computational effort, violating
the environment’s speed objective. Besides, it is unlikely such highly detailed levels of flow physics,
such as RANS or LES, are required from an engineering perspective, as is the case in the environ-
ment. Additionally, the lack of load calculations in SOWFA requires augmenting it with additional mod-

3.1. Model Choice 14

els, further increasing its complexity. This leaves three options from a farm-level perspective: PyWake,
FLORIS, or a self-trained surrogate model. Given the environment design objectives, specifically the
speed requirement, both PyWake and FLORIS seem unsuitable, as they will undoubtedly function out-
side the millisecond order of magnitude. Fortunately, prior research has shown that PyWake’s calcula-
tions can be successfully imitated by means of a Graph Neural Network surrogate, retaining accuracy
whilst drastically reducing model runtime (Duthé et al., 2023). Its ability to infer results within millisec-
onds whilst retaining the satisfactory accuracy that PyWake provides makes a GNN-based custom-
trained surrogate ideal for inferring farm-level results. The most suitable and feasible option is thus to
develop a custom surrogate model that models the farm-level effects with limited runtime.

3.1.2. Turbine-Level
Similarly to farm-level models, the research community has provided several turbine-level models for
computing local effects like power and loads. The available options are summarised in Figure 3.2.
Interestingly, PyWake has initial experimental support for turbine-level power, thrust coefficient and
load determination in the form of surrogate models. These surrogate models consist of Multi-Layer
Perceptrons receiving local flow conditions as input and determining local variables for each turbine.
PyWake has divided each of these surrogates into three separate networks, one for each operating
region of below cut-in, regular operation and above cut-off. This was done as input-output relations
differ significantly between regions, and training them separately yields a higher overall output accuracy.
However, investigating the metadata of the model files reveals that these surrogates may perhaps not
be very accurate. For one, most of the networks consist of a single hidden layer with only 15 nodes,
which is seemingly insufficient to model complex relations. Furthermore, these surrogates were trained
on as little as 2000 samples over all three operating regions combined; for comparison, Haghi and
Crawford (2023) used a dataset consisting of 32768 samples, further using a three-hidden-layerMLP for
training. Finally, none of PyWake’s surrogates considers yaw misalignment, meaning the effects of yaw
misalignment with the oncoming wind are not modelled. Since yaw misalignments are explicitly part of
the trade-off in the environment, these surrogates are seemingly unsuitable without further adjustment.

Another two options are OpenFAST (National Renewable Energy Laboratory (NREL), 2024b) and
HAWC2 (DTU Wind, Technical University of Denmark), developed by NREL and DTU respectively.
Both are similar in their computations and capabilities and can model the turbine response to an in-
coming flow field. OpenFAST is open source and freely available on their GitHub repository, whereas
HAWC2 is commercial software for which a license must be obtained. Both perform comprehensive
aerodynamic and structural computations and do not rely on underlying surrogates or rough approxi-
mations to infer their results. This means they are significantly more accurate than the aforementioned
experimental surrogates implemented in PyWake. However, their runtime is generally in the order of
minutes in order to simulate a time-series response, as is required for DEL calculations. CCBlade
(NREL, 2024b) is another comprehensive aerodynamic and structural computation model focused on
blade calculations only. It was also developed by NREL, mainly for gradient-based airfoil optimisation.
However, importantly, it cannot simulate blade responses under complete turbulence fields and does
not support providing turbulence intensities as inputs, which is an essential part of wake calculations.
Furthermore, its inability to simulate time-series turbulence fields makes it unsuitable for DEL calcula-
tions.

Additionally, there is the option of developing custom surrogates for this purpose. Similarly to the
custom surrogate option in the farm-level case, this is a proxy for a surrogate model yet to be trained.
Such a model would require a dataset generated by some more comprehensive model such that it
can learn to imitate its calculations. Prior research has shown that MLP-based surrogates are excel-
lent function approximators to imitate the calculations of comprehensive aerodynamic and structural
solvers, as is evident in work by Haghi and Crawford (2023) and Dimitrov et al. (2018) using training
sets generated by OpenFAST and HAWC2 respectively. These papers show that MLP-based surro-
gates can achieve excellent accuracies whilst operating with inference speeds no more than a few
milliseconds.

Given these options, it becomes apparent that no readily available model satisfies the environment
design objectives when it comes to inference speed. Both OpenFAST and HAWC2 significantly exceed
the runtime design requirement by several orders of magnitude, and CCBlade is incapable of process-
ing time series and unsuitable for tower load analysis. However, it is still possible to incorporate the
power and load dynamics directly in the farm-level model; this would mean that, at runtime, only the

3.2. Approach 15

Figure 3.2: Comparison of several available turbine-level simulation models.

inference speed of the GNN surrogate would be relevant. During dataset generation, inference speed
would be less critical, as that can all be done beforehand. For dataset generation of the farm-level sur-
rogate, a turbine-level simulation must be done for each turbine in the farm layout. Given that several
thousand setups must be run to generate the training dataset, as mentioned by Duthé et al. (2023),
individually running comprehensive turbine-level simulations for each of the turbines in each sample
farm becomes yet again infeasible. From a practical perspective, it is thus preferred to use a model with
fast inference speeds, being the aforementioned custom turbine-level surrogates. This surrogate can
be trained a priori on a set of arbitrary comprehensive simulation results and then jointly applied with
PyWake to the dataset generation for the combined farm-level and turbine-level GNN surrogate. This
means that turbine-level calculations are initially decoupled from farm-wide calculations for dataset gen-
eration. Afterwards, they are combined to form a dataset, from which the farm-level surrogate learns
both simultaneously. Note that this is where the approach in this thesis deviates from Duthé et al.
(2023), as they used the turbine-level surrogates present in PyWake itself. Instead, this thesis chooses
to develop custom surrogates to deal with the issues outlined earlier this section.

3.2. Approach
From the previous sections, it has become clear that a custom GNN-based surrogate that simultane-
ously takes care of both farm-level and turbine-level calculations seems most suitable for the environ-
ment. To train this surrogate, first a comprehensive and elaborate dataset must be generated that
includes ground truth calculations for various wind farm layouts, yaw angles and inflow conditions. For
this, PyWake will be used to model farm-level effects combined with a custom turbine-level surrogate
for turbine-level effects. This turbine-level surrogate, in turn, is to be trained on a dataset of its own.
For this, OpenFAST will be used, as it is a free, open-source and relatively fast comprehensive wind
turbine calculation tool capable of processing time-series data. First, the following assumption shall be
made about the modelling of turbine-level variables:

Assumption 1 Turbine power, thrust coefficient and loads can be modelled as a function of local wind
conditions (disk-average wind speed, turbulence intensity, shear exponent) and yaw angle, i.e. as
f(Vw, I, α, γ)

This assumption allows the turbine-level surrogates to accept single values for each input variable.
By doing so, the effects of half-waked conditions are only partially accounted for, though it benefits from

3.3. Turbine-Level Model 16

significantly simplifying the creation of the surrogate model. The approach to creating the final wind
farm surrogate model is thus as follows:

1. Turbine-Level Dataset Generation - Use OpenFAST to simulate a wind turbine under various
wind conditions and yaw angles to create a dataset for training the turbine-level surrogate.

2. Turbine-Level Surrogate Training - Create a surrogate model framework and train it on the
previously generated dataset, and evaluate its performance.

3. Farm-Level Dataset Generation - Use the previously trained turbine-level surrogate model in
combination with PyWake to simulate various wind farm layouts under various inflow conditions
and with various yaw angles to create a dataset for training the farm-level surrogate.

4. Farm-Level Surrogate Training - Create a surrogate model framework and train it on the previ-
ously generated dataset, and evaluate its performance.

Each of the surrogates, being farm-level and turbine-level, will be created according to the following
steps:

1. Determine which variables are included as inputs, determine their interdependencies and define
their lower- and upper bounds.

2. Generate samples that cover the input space sufficiently.
3. Determine the correct setup for the simulation software.
4. Run simulations for each of the input samples.
5. Post-process the results, if necessary.
6. Determine the architecture of the surrogate model.
7. Train the surrogate to predict the outputs given the input samples.
8. Evaluate the performance of the trained surrogate.

In the following sections, each of these steps is discussed and - where necessary - further subdivided
into multiple subsections.

3.3. Turbine-Level Model
The turbine-level model’s main purpose is to map inflow conditions and yaw angles to corresponding
power, thrust coefficient, and load values at each turbine. However, some design requirements must
first be formed to guide the surrogate creation process. As such, this initial section will discuss the
requirements that are put on the model.

First, a specific turbine type must be chosen around which the surrogate model is built. Since
the dataset generation will require simulations to be run in OpenFAST, sufficient and proper model
files must be readily available to avoid unnecessary preparatory work. For this purpose, the reference
wind turbines developed by IEA Wind Task 37 are very suitable as they provide ready-to-use Open-
FAST model files combined with a turbine-level controller. They provide three wind turbine models:
the 3.4MW, 10MW and 15MW versions. However, it has been recognised by the developers of Open-
FAST that there exists an inexplicable edgewise instability in the 10 and 15MW turbines at certain high
yaw angles (Jonkman, 2019), making simulating them with OpenFAST notoriously tricky. The 3.4MW
turbine does not seem to suffer from this issue and is thus the more reliable turbine to deal with. The
first requirement is, therefore, that the model shall be valid for this 3.4MW turbine. Next, since the
environment shall be as realistic as possible, a wide range of wind conditions might occur. It is thus
essential that the model shall function outside rated operating conditions as well; this forms the second
requirement. Similarly, given that maintenance might occur every now and then, the model must be
able to simulate a ’parked’ turbine, e.g., a turbine that is out of operation and thus has a standstill rotor.

Regarding input variables, the allowable yaw angles must cover a sufficient range to allow for
enough wake steering freedom. Since this is impossible to quantify a priori, a range of [−30,+30]
is chosen as a requirement. Additionally, this requirement agrees with the findings of Zong and Porté-
Agel (2021), highlighting the maximum optimal yaw angles they computed in their setup. For the inflow
variables, however, the IEC standard on design requirements for wind energy systems can be followed.
This standard prescribes operating conditions under which turbines must be designed; as part of this,
it defines the inflow conditions and relations among them. As such, following these inflow conditions

3.3. Turbine-Level Model 17

Figure 3.3: Conventions for the five turbine DELs.

is an additional requirement. Furthermore, since fatigue modelling requires Damage Equivalent Load
(DEL) values, the model must output DEL values from post-processed time-series data. One final ques-
tion that remains is of which components the DEL loads shall be predicted. Given the environment’s
purpose of modelling the fatigue effects of wake steering, three components are likely to be affected:
the tower base, yaw system and blades. All of these three components are subject to alternating bend-
ing loads due to aerodynamic loading. Carroll et al. (2016) and Dao et al. (2019), furthermore, find
that these are the structural components that are most often subject to fatigue failure. Additionally, the
IEA37 3.4MW design paper highlights these areas in their fatigue study as well, indicating they were
likely bottlenecks in the turbine design. As such, the model should consider tower base loads both
from side-to-side and fore-aft, the loads on the yaw system and the edgewise and flapwise loads on
the blade root. Each of these loads is a moment, and their conventions and locations are highlighted in
Figure 3.3. The local power production and thrust coefficient must then complement the loads as output
values to facilitate power production analysis and wake computations in PyWake. This summarises the
following set of requirements:

1. The model shall be valid for the IEA37 3.4MW Reference Turbine
2. The model must be able to work in all three operating regions, e.g. below cut-in, at rated and

above cut-out.
3. The model must be able to model ’parked’ conditions
4. The model must be able to accept yaw angles in the range [−30,+30]

5. The input variables must comply with the IEC 61400-1 standard on design requirements for wind
energy systems

6. The model must output DEL values for the tower base side-to-side and fore-aft, yaw system
torsional and blade root edgewise and flapwise loads.

7. The model must output local (i.e. for each turbine) produced power and thrust coefficient.

3.3.1. Dataset Generation
The dataset must comprise pairs of inflow conditions and output variables from which the surrogate
model can learn. The sampling of inflow conditions is first covered in subsubsection 3.3.1.1. Next, sub-
subsection 3.3.1.2 covers how OpenFAST, the comprehensive aerodynamic and structural calculation
tool, should be set up correctly to calculate the turbine-level loads necessary for the dataset. Finally,
subsubsection 3.3.1.3 covers what post-processing steps are required to obtain the final ground truth
target values for the dataset.

3.3. Turbine-Level Model 18

3.3.1.1. Inflow Sampling
A full-field turbulence file must be generated to simulate the aerodynamic and structural response of
a wind turbine in OpenFAST. This file contains the variations and turbulence of the wind in a 3D grid,
where the x-axis essentially corresponds to the time dimension. OpenFAST will then translate this field
over the wind turbine during the simulation to obtain the right time-dependent wind conditions at each
point of the turbine. NREL provides a tool for generating such turbulence fields in the form of TurbSim
(National Renewable Energy Laboratory (NREL), 2024b). Looking at the IEC 61400-1 standard and
the TurbSim documentation, the three input variables needed to characterise inflow conditions are as
follows:

• Mean Wind Speed Vm - The average over a given time-series of wind speeds.
• Turbulence Intensity I - The turbulence intensity, in fractions of the mean wind speed, of a given
time series of wind speeds. Defined as I = σw

Vw
, where σw is the standard deviation of wind speeds

over the time series.
• Shear Exponent α - The exponent of the wind profile power law u

ur
=

(
z
zr

)α

, relating wind speed
ur at a reference height zr to the wind speed at any height z.

Note that wind direction does not yet play a role, as that can be characterised by the final input
variable of Yaw Misalignment γ, the yaw angle of the turbine relative to the incoming wind.

For the Mean Wind Speed Vm, a uniform distribution over the range [0, 30] is chosen. The IEA
61400-1 standard does not explicitly mention a range of wind speeds to be modelled; however, the
selected range covers regions well outside the typical operating region of the IEA37 3.4MW turbine
([5, 25]) and should cover the vast majority of wind speeds that a regular wind farm will ever encounter
in its lifetime. The reference height of Vm is the 3.4MW turbine’s hub height. Next, for the Turbulence
Intensity I, the 61400-1 standard prescribes, according to the Normal Turbulence Model (NTM), the
relation σ1 = Iref (0.75Vhub + b), where b = 5.6m/s and Iref is a parameter dependent on the wind
turbulence characteristics, independent of wind turbine class. To enable the most extensive range of
turbulence intensities to create the most robust model possible, the largest value (class A+ turbulence)
of 0.18 is chosen. The relation defines σ1, or the 90% quantile of wind speed standard deviations, and
thus provides an upper bound for turbulence intensities. To obtain the intensity as a fraction, the relation
can be divided by Vhub to obtain I = Iref (0.75+

b
Vhub

). Note that since the mean wind speed Vw above
is defined at hub height, Vhub = Vm. Wind speed must be sampled prior to turbulence intensity, as one
is dependent on the other. Following Haghi and Crawford (2023), a lower bound of 0.04 is set to ensure
no perfectly smooth wind conditions occur, which would be unrealistic to begin with. Additionally, an
upper limit of 0.5 is imposed, as the given relation’s output will explode when approaching very low wind
speeds.

Finally, the IEC 61400-1 standard prescribes a fixed and constant Shear Exponent α value of 0.2.
However, since most loads depend on wind speeds at different heights above ground, the power law
distribution of wind speeds significantly impacts results. As such, fixing α results in a surrogate model
that is hardly robust to changes in wind shear. Instead, it is chosen to adopt the lower- and upper
bounds defined by (Dimitrov, 2019), as they cover a wider range. Additional constraints are added
in the form of a lower bound of −0.3 and an upper bound of 2.5 to tackle exploding values as wind
speeds approach zero. Similar to turbulence intensity, the shear exponent is a function of the mean
wind speed and must be sampled afterwards. The Yaw Angles γ are chosen uniformly in the range
[−30,+30]. This is in accordance with the findings by Zong and Porté-Agel (2021), quoting maximum
wake steering yaw angles to be about 30 degrees. Finally, since random turbulence fields must be
generated using TurbSim, an additional seed value must be chosen. This seed value determines the
random state of the processes within TurbSim. Its lower and upper bounds will be set to 0 and 216,
respectively. An overview of the distributions of input variables is shown in Table 3.1.

A quasi-random SOBOL sequence is used to ensure that the samples are uniformly distributed
throughout the input space and no bias is accidentally introduced. This allows for a better distribu-
tion of sample points over the input domain, eventually aiding in faster convergence during surrogate
training. SOBOL sequences generate sets of values in the range [0 − 1] for each variable to be sam-
pled; together, these sets of values provide a proper distribution over the sample space. Since the input
variables are being sampled uniformly between their lower and upper bounds, these SOBOL samples’

3.3. Turbine-Level Model 19

Symbol Name Lower Bound Upper Bound
Vm Mean Wind Speed 0 30

I Turbulence Intensity 0.04 min
(
0.5, Iref

(
0.75 + b

Vhub

))
α Shear Exponent max

(
−0.3, αref,LB − 0.23

(
Vmax

Vhub

)(
1−

(
0.4logR

z

)2))
min

(
2.5, αref,UB + 0.4

(
R
z

) (
Vmax

Vhub

))
γ Yaw Misalignment −30 30
ζ Seed 0 216

Notes:
Iref = 0.18 and b = 5.6, according to IEA61400-1 standard
αref,LB and αref.UB are 0.23 and 0.40 respectively, following (Dimitrov, 2019)
Vhub and Vmax are hub-height and maximum possible wind speed respectively
R and z are rotor diameter and hub height in meters, and 130 & 110 for the 3.4MW turbine respectively.
All samples are chosen uniformly between lower- and upper bounds

Table 3.1: Overview of distributions of input variables

values can be applied according to xi,lb + si(xi,ub − xi,lb), where xi,lb, xi,ub and si are the lower bound,
upper bound and SOBOL sample value for variable i respectively. SOBOL sampling maintains its
uniform properties as long as the number of samples being drawn is a power of 2; as such, taking inspi-
ration from the convergence study by Haghi and Crawford (2023), 215 = 32768 samples are generated.
The input variables’ distribution, bounds and relations are shown in Figure 3.4.

Given the sampled input parameters, turbulence fields can now be generated using TurbSim. For
the output variables of local wind speed, turbulence intensity and power, average values of any time-
series length can be used. For the DEL values, however, the time series length is an important param-
eter to pick. Usually, the DEL is determined based on a 10-minute time-series load history. However,
given the large number of simulations and turbulence files that must be generated, it is chosen to
limit the simulations to five minutes. This will save a significant amount of time and disk space when
generating the dataset. This leads to the following assumption:

Assumption 2 Damage Equivalent Loads (DELs) can be determined from 5-minute time-series calcu-
lations instead of 10-minute calculations without significantly compromising accuracy.

In Appendix D the influence of running shorter time-series simulations is investigated through a
small DEL-calculation convergence study over four different runs. From this quick study, it seems rea-
sonable to assume that five-minute simulations to calculate the DEL will produce very similar results as
running 10-minute simulations, and the assumption, therefore, seems acceptable. Anyhow, to remove
any transient conditions at the start of the simulation, the first 20 seconds of all results are discarded,
requiring an increased simulation time of 320 seconds. Several other parameters that were set in the
TurbSim model are shown in Table 3.2. These stem from either the definitions outlined earlier, or from
the simulation files provided by IEA Wind Task 37. A Python script was used to automatically and sys-
tematically run all sampled input parameter sets through TurbSim, using multiprocessing on 64 CPU
cores. This process took approximately 12 hours and yielded 0.9TB of binary turbulence field files
ready for processing in OpenFAST. With this, all input sampling has been done for the simulation step.

Parameter Value Description

Fi
xe
d

WrADTWR True Whether tower time-series data points are created. Necessary for tower loads.
NumGrid_Z 24 Vertical grid-point matrix dimension. Trade-off between generation time and resolution.
NumGrid_Y 24 Horizontal grid-point matrix dimension. Trade-off between generation time and resolution.
AnalysisTime 320 Length of time series in seconds, 300s (5min) plus 20 seconds of run-in period.
HubHt 110 Turbine hub height in meters, 110 for the 3.4MW turbine.
GridHeight 150 Grid height in meters, must be larger than the rotor diameter (130m).
GridWidth 150 Grid width in meters, must be larger than the rotor diameter (130m).
TurbModel IECKAI Turbulence model to use; Kaiman turbulence model according to IEC 61400-1
IEC_WindType NTM Turbulence type to use; Normal Turbulence Model according to IEC 61400-1
WindProfileType IEC Wind profile type to use; power law on rotor disk and log law elsewhere, according to IEC 61400-1
RefHt 110 Reference height for mean wind speed; at hub height, as per aforementioned definition.

Va
ria

bl
e RandSeed1 ζ Random seed to use

IECTurb I · 100 Turbulence intensity, in percent
URef Vw Mean wind speed at reference height
PLExp α Power law exponent

Table 3.2: TurbSim parameters

3.3. Turbine-Level Model 20

Figure 3.4: Distribution of input variables obtained using SOBOL sampling

3.3.1.2. OpenFAST Model Setup
The next step is to ensure a correct, accurate and proper working setup of the OpenFAST model.
Fortunately, the files provided by Wind Task 37 are already set up correctly for running them through
OpenFAST. Note that the IEA37 repository mentions that OpenFAST version 3.5.1 should be used, as
will be done in the following section. The files provided in the wind turbine repository are the same
files used to do the structural load studies for the design of the turbine itself and can be assumed to be
accurate and realistic. However, a few things were changed or double-checked to ensure an accurate
model.

First of all, a wind turbine controller is required to ensure the turbine’s efficient operation. Typically,
this is done through pitch control of the turbine blades to ensure that the turbine operates as closely to
the ideal operating curve as possible. Fortunately, such a controller is readily available for OpenFAST in
the form of ROSCO (NREL, 2024a), and the authors of the IEA37 3.4MW turbine have provided tuned
parameters for said controller. ROSCO version 2.7.0 is used for the simulations as it is the supported
version for the tuned parameters provided. All that remains is to provide the correct path to the ROSCO
binary file in the IEA-3.4-130-RWT_ServoDyn.dat file.

As for the IEA-3.4-130-RWT_ElastoDyn.dat file, multiple changes were made. First of all, all three
blade Degrees Of Freedom (DOF) were enabled to allow for the most realistic simulations. Next, the
initial pitch angles for all three blades were set to 8 degrees. In the initial stages of the simulation, this
might lead to some transient behaviour, but that will be removed by the initial 20-second window of
data that is thrown away before postprocessing. Similarly, the initial rotor speed is set to 11.5 RPM.
Both values were chosen arbitrarily to be in the middle of the limits of operation; ideally, both values
would be set close to the steady-state values specific to the simulation conditions, but that is difficult
to know beforehand. Instead, some transient behaviour is allowed at the beginning, which will balance

3.3. Turbine-Level Model 21

out towards steady state behaviour as the simulation proceeds. Finally, the file allows the provision of
a list of output parameters that should be stored in a file after simulation. Here, it is crucial to provide all
variables that could be of interest for load or power calculations. Note that a complete list of available
output parameters and corresponding descriptions can be found in the OpenFAST documentation. The
most important output parameters that were used and their descriptions are shown in Table 3.3. Note
that the loads are still time-series values and thus need postprocessing to obtain the DELs.

Parameter Description Unit
RotPwr Rotor Power [kW]
HSShftPwr High-speed shaft power [kW]
RootMxb1 Blade 1 blade root edgewise moment [kNm]
RootMxb2 Blade 2 blade root edgewise moment [kNm]
RootMxb3 Blade 3 blade root edgewise moment [kNm]
RootMyb1 Blade 1 blade root flapwise moment [kNm]
RootMyb2 Blade 2 blade root flapwise moment [kNm]
RootMyb3 Blade 3 blade root flapwise moment [kNm]
YawBrMzn Tower-top (yaw bearing) yaw moment [kNm]
TwrBsMyt Tower-base pitching (fore-aft) moment [kNm]
TwrBsMxt Tower-base roll (side-to-side) moment [kNm]

Table 3.3: ElastoDyn output parameters

One small change was made in the main simulation input file IEA-3.4-130-RWT.fst. The runtime of
the simulation, TMax, was set to 320 seconds to correctly match the length of the time-series turbulence
field input file. Finally, some other minor changes that were made included the addition of the RtAe-
roCt output parameter in the IEA-3.4-130-RWT_AeroDyn15.dat file to capture the thrust coefficient and
setting the TurbSim binary output file type as the correct input in IEA-3.4-130-RWT_InflowFile.dat.
All other files and parameters were kept identical to the ones provided in the official IEA37 3.4MW
reference wind turbine repository.

Now, to simulate all cases generated earlier, sets of input files and TurbSim turbulence files must
be coupled together, and the correct file paths and parameters must be set. The openfast-toolbox
Python package was used to do this automatically. For each case, and therefore each TurbSim tur-
bulence file, a copy of the input files was made and adapted accordingly. Changes made to these input
files weremainly ensuring the parameter for the turbulence field input file in IEA-3.4-130-RWT_InflowFile.dat
pointed to the correct TurbSim file and that the correct turbine yaw angle (NacYaw) was set in the file
IEA-3.4-130-RWT_ElastoDyn.dat. Furthermore, outside the regular operating region (4 to 25 m

s wind
speed), several additional parameters were changed. First of all, the pitch control, variable-speed con-
trol, generator and generator DOF were turned off to simulate parked conditions. Secondly, for parked
conditions and wind speeds higher than 25 m

s , the blade pitch was set to ’fully feathered’, e.g. 90
degrees, as is customary during such conditions to protect the turbine. Finally, below cut-in speed (4
m
s), the blade pitch was set to zero. openfast-toolbox generates and adjusts all input files where
necessary and places them in a separate folder. All cases were simulated using OpenFAST version
3.5.1 using the terminal command openfast <case_file_name>.fst, running 64 processes in parallel.
This took about 24 hours and yielded several gigabytes of binary output data containing all time-series
outputs for each of the 32.768 simulations.

3.3.1.3. Postprocessing
The obtained time-series values of the simulations now need post-processing to turn them into a set
of usable ground truth values for surrogate training. Looking back at the requirements, DEL values
for five different locations on the turbine must be determined. These DEL values are derived from the
time-series load values and can thus be seen as a summary of the history of load cycles. Generally,
this involves using rainflow counting to determine the number of cycles and their respective magnitudes.
Fortunately, the openfast-toolbox Python package mentioned earlier provides functions that can per-
form this rainflow counting and DEL calculation. First of all, as mentioned earlier, the first 20 seconds
of the simulation are discarded to remove any transient startup effects. This leaves 300 seconds, or
five minutes of time-series data to be analysed. The inflow conditions and yaw angle are derived from
the input data and filenames; these will form the input vector X, which needs no further processing.

The second part of the dataset is the ground truth outputs, denoted as Y . For power production, the
mean power over the entire time series is considered the best way to obtain a singular representative

3.3. Turbine-Level Model 22

value. The same method is also applied to the thrust coefficient for the same reason. For the DELs,
openfast-toolbox’s equivalent_load function is used. The function takes the time-series load data
together with the Wöhler exponent m as input. The Wöhler exponent is typically a material parameter
and is related to how steep the fatigue curve is. A typical Wöhler exponent for steel materials is 4;
for composite materials, this value is 10. As such, for the tower-base side-to-side and fore-aft DELs,
m = 4 is used; for the blade root edgewise and flapwise DELs, m = 10 is used instead. For the tower
top yaw bearing, however, a value ofm = 7 is used. Further explanation for the choice of these values
can be found in chapter 4. Finally, since DELs are always defined at some reference cyclic speed, the
default value of 1Hz is used as such. This means the output DEL indicates a load magnitude that,
when applied at 1Hz, applies the same amount of damage as the entire load history over that period.
Since there are three blades, the DEL value is calculated for each of their load time series separately;
the three resulting values are then averaged. All in all, there are seven output values: the power, thrust
coefficient and DEL values for each of the five (sub-)components. This is summarised in Table 3.4.

Variable Unit Description

In
pu

t(
X
) Vw [m/s] Mean wind speed over 5-minute window

I [-] Turbulence intensity
α [−] Shear exponent of power-law wind speed distribution
γ [◦] Yaw angle of the turbine relative to the wind

O
ut
pu

t(
Y
)

P [kW] Mean turbine power over 5-minute window
Ct [−] Mean thrust coefficient over 5-minute window
DELbr,ew [kNm] Three-blade mean blade root edgewise DEL
DELbr,fw [kNm] Three-blade mean blade root flapwise DEL
DELtt,yaw [kNm] Tower top yaw DEL
DELtb,ss [kNm] Tower base side-to-side DEL
DELtb,fa [kNm] Tower base fore-aft DEL

Table 3.4: Dataset description for turbine-level surrogate

All postprocessed outputs are shown in Figure 3.5 and Figure 3.6, plotted against wind speed and
yaw angle, respectively. Note that power and thrust coefficient values are only valid inside the operating
region; outside of this, the turbine is either parked or standing still, resulting in no power production.
Indeed, the dependency on the yaw angle clearly shows that certain loads can increase or decrease
as the yaw angle changes.

3.3.2. Surrogate Model
Now that the dataset is ready the architecture and training of the surrogate model itself must be defined.
Both of these are essential to facilitate effective training and yield accurate models. As such, subsub-
section 3.3.2.1 will first cover the architecture chosen for the surrogate model and the accompanying
hyperparameters used in the training process. Finally, following training using the chosen architec-
ture and parameters, subsubsection 3.3.2.2 covers evaluation metrics highlighting the accuracy of the
trained surrogate model.

3.3.2.1. Architecture & Hyperparameters
The neural network architecture follows the typical architecture of a fully connected MLP, consisting
of several hidden layers with multiple hidden nodes with activation functions. The network has three
hidden layers with 32, 64 and 32 nodes, respectively. There are four input nodes corresponding to the
four input parameters highlighted in Table 3.4; furthermore, there is one output node. This means that
each variable has its own network, rather than all outputs sharing a common network. The activation
function used in the nodes is the LeakyReLu function. The output layer does not have an activation
function and is, therefore, linear. Furthermore, three networks are trained for each variable: one for the
below cut-in wind speeds, one for the operating region’s wind speeds, and one for parked conditions.
The latter is shared between the above cut-out wind speeds and ’true’ parked conditions where the
turbine is shut off for maintenance. These last cases share the same OpenFAST model setup and can,
therefore, be inferred from the same surrogate model.

All input and output values are first normalised using min-max scaling, meaning they are mapped
and, therefore, scaled to the region [0, 1]. The dataset is split into a training and validation set, with

3.3. Turbine-Level Model 23

20% of the data points going towards the validation split. Mean Squared Error (MSE) loss is used as
a loss function, combined with Adam as optimiser. All training is done using PyTorch. The learning
rate is set to 0.001, and the training is left to run for 3000 epochs. The network is saved if and only if
the validation loss decreases, preventing overfitting on the training dataset. All hyperparameters are
shown in Table 3.5; the number of hidden nodes, the activation function, the learning rate and training
epochs were tuned manually to obtain the lowest training loss. The loss function, min-max scaling and
optimiser were chosen as the typical default options for PyTorch neural networks. The training of the
surrogates takes approximately one minute on an RTX A100 laptop GPU.

Parameter Value
Number of input nodes 4
Number of hidden layers 3
Number of nodes in hidden layers [32, 64, 32]
Number of output nodes 1
Activation function LeakyReLu
Input/Output transform Min-Max Scaling
Train / Validation Split 80% / 20%
Learning Rate 1e-3
Loss function MSE
Optimiser Adam
Framework PyTorch
Epochs 3000
Learnable Parameters 4385
Early Stopping Validation loss

Table 3.5: Overview of model architecture and hyperparameters for the turbine-level surrogates.

3.3.2.2. Evaluation
After training, the turbine-level surrogate is used for inference on the entire input dataset to investigate
its performance visually; this is shown in Figure 3.7. It is evident that the plots showing the relations
between the output variables and wind speed or yaw angle match those plotted from the input dataset
in Figure 3.5 and Figure 3.6 nicely. Furthermore, the figures plotting the ground truth values versus the
predictions indicate a close match with the y = x line, which indicates good performance; this is further
proven by the calculated r2 values shown in the plots. Furthermore, the distributions of absolute errors
are centred around zero and show low absolute errors.

To properly quantify the performance of the trained surrogates, some performance metrics are cal-
culated in Table 3.6. The surrogates for power and thrust coefficient score very well, with Mean Average
Percentage Errors (MAPE) of only two per cent. Generally, the surrogates have more trouble predicting
the DEL values, as these evidently show higher relative errors. However, judging by the low magni-
tude of the Mean Average Error (MAE), most of the contribution of the relative errors comes from cases
where the ground truth value approaches zero, and any non-zero prediction will cause an explosion
of the respective relative error. Nevertheless, their performance seems quite reasonable and aligns
with work by Dimitrov (2019). The trained turbine-level surrogates are now suitable for inclusion in the
dataset generation for the farm-level surrogate.

Model r2 score RMSPE RMSE MAPE MAE
P 0.998 0.067 50.388 0.020 25.787
Ct 0.999 0.030 0.008 0.022 0.005
DELbr,ew 0.992 0.144 43.483 0.053 27.002
DELbr,fw 0.981 0.230 256.816 0.092 167.69
DELtt,yaw 0.974 0.350 219.263 0.134 122.06
DELtb,ss 0.960 0.178 1631.687 0.117 924.066
DELtb,fa 0.943 0.139 2299.924 0.093 1093.924

Table 3.6: Performance metrics for all seven surrogates averaged over all operating regions.

3.4. Farm-Level Model 24

3.4. Farm-Level Model
Now that a suitable turbine-level surrogate has been trained, it can be combined with the farm-level
model (PyWake) to generate a dataset to train the farm-level surrogate. Similar to the turbine-level
surrogate, some requirements are first defined:

1. The model shall be valid for the same inflow conditions as the turbine-level surrogate
2. The model must work in all three operating regions, e.g. below cut-in, at rated and above cut-out.
3. The model must be able to model ’parked’ conditions
4. The model must be able to accept yaw angles in the range [−30,+30]

5. The model must generalise to any wind farm layout

3.4.1. Dataset Generation
Following the same process from the turbine-level surrogate, first, the inflow conditions and input farm
layouts are generated in subsubsection 3.4.1.1. Next, in subsubsection 3.4.1.2, the correct model
setup for PyWake is chosen to produce the most accurate and realistic results. Finally, in subsubsec-
tion 3.4.1.3, the outputs from the simulations are then cast into the right input and output format for
learning on graphs.

3.4.1.1. Inflow & Layout Sampling
Dataset generation for the farm-level surrogate requires sampling both inflow conditions and farm lay-
outs. Fortunately, inflow sampling can use the same method as prescribed in subsubsection 3.3.1.1,
meaning a new set of inflow conditions can be generated relatively quickly. The major difference with
before is that, in this case, no turbulence files need to be generated, and the three-variable inflow infor-
mation is sufficient as-is. The focus in this section is, therefore, on the generation of the random farm
layouts.

A large variety of wind farm layouts must be generated for the training dataset to ensure a robust
and layout-agnostic farm surrogate model. This ensures that the model generalises as best as possible
to any farm layout. To do so, it must consist of various shapes, numbers of turbines, inter-turbine
spacing and arrangement. Furthermore, some constraints that enforce, for example, a minimum inter-
turbine spacing and/or a minimum number of turbines per layout must be imposed. Layout generation
begins by randomly sampling several parameters that will be used in the layout-building process; these
parameters and their bounds are shown in Table 3.7. These values are inspired by the values chosen
by Duthé et al. (2023) and based on typical values for real-life wind farms. Similarly to inflow generation,
sampling uses uniform sampling with SOBOL sequences to ensure an even spread over the available
input domain.

Symbol Name Lower Bound Upper Bound
np Number of candidate turbines to spawn 25 100
Dmin Minimum turbine spacing, expressed in rotor diameters 2 8
rlw Length-over-width ratio for candidate turbine field generation 0.5 4
Notes:
Since Dmin is expressed in rotor diameters, the actual spacing is Dmin ·R m
All samples are chosen uniformly between lower- and upper bounds

Table 3.7: Overview of bounds of input parameters

3.4. Farm-Level Model 25

Figure 3.8: Steps of generating the rectangular domain of randomly perturbed points.

Layout generation proceeds by initialising n candidate turbines over a rectangular domain char-
acterised by a length-over-width ratio rlw. This will create evenly spaced points that are placed three
times theminimum turbine spacing apart along vertical and horizontal lines over the rectangular domain.
Next, the previously generated points are perturbed to a position within a radius of Dmin uniformly at
random around their original position. To enforce the minimum turbine spacing, the ratio r = dmin

Dmin
is

calculated, where dmin is the actual closest distance between any two points in the perturbed rectan-
gular candidate turbine field. All coordinates are then scaled by this factor r to ensure dmin matches
Dmin exactly. The entire grid of points is then rotated by some random angle β, sampled randomly
from the range [−45, 45]. All previous steps combined yield a rotated grid of perturbed points; this grid
is, however, still relatively even and rectangular. To introduce more random shapes into the dataset,
this grid is then masked using three types of masks: a ’circles’ mask, an elliptical mask and a triangular
mask. The ’circles’ mask consists of three circles at different positions and radii; the triangular mask
consists of a single triangle at some random position with random size and rotation, and the elliptical
mask of an ellipse at a random position with random rotation and size. Masking the previously gen-
erated points with these masks then provides three different layouts. The grid generation process is
shown in Figure 3.8; the masking process in Figure 3.9.

Figure 3.9: Process of masking the rectangular grid with different shape masks.

Now that the layout has been generated, each of the turbines in the layout can be given a yaw angle.
Additionally, each turbine is given an operating mode, being either in operation or parked to simulate
maintenance. Yaw angles, similarly to inflow sampling in subsubsection 3.3.1.1, are sampled uniformly
using SOBOL sequences from the range [−30,+30]. Operating modes, however, are sampled using a
categorical distribution with probabilities. For this layout generation, the probability of any turbine being
parked is set to 5%, meaning, on average, 5% of all turbines are parked. This operating mode will
cause the turbine to generate no wakes, generate no power and have loads associated with a parked
turbine when the mode is set to non-operating. This allows the surrogate to learn the effects of one
or more turbines being turned off, allowing it to simulate turbines under maintenance in the simulation
environment. Using these settings and methods, 5000 different layouts are generated with ten inflow
conditions each, yielding 50,000 different training cases. Similarly, 15,000 cases are generated for the
test, and the validation is set separately.

3.4. Farm-Level Model 26

3.4.1.2. PyWake Model Setup
The next step is to find the correct model setup for PyWake. Unlike the case for the turbine-level
simulations using OpenFAST, no ready-to-use setups are available for this specific case. Instead, these
must be chosen based on the aforementioned requirements and constraints. There are essentially four
setup choices that have to be made: the wake deficit model, the deflection model, the superposition
model and the turbulence model. Each of these modules has a variety of options to choose from;
internally, in PyWake, they are used to model the wake effects in the farm.

The deficit model calculates the deficit in wind speed within the wake effects, and PyWake offers a
wide variety of models to choose from. Fortunately, the same IEA Wind Task 37 project that produced
the 3.4MW reference turbine also conducted research into farm-wide power optimisation (Quaeghe-
beur et al., 2021), which can be consulted for their wake modelling choices. In their work, they made
use of the wake deficit model proposed by Bastankhah and Porté-Agel (2014), which happens to be
implemented and available in PyWake as the BastankahGaussianDeficit module. For the turbulence
model, four options are available. From these options, the CrespoHernandez module, implemented
according to Crespo and Herna´ndez (1996), is chosen, following Duthé et al. (2023). Furthermore,
the superposition model adds up the overlapping wake effects of multiple turbines. For this, PyWake’s
SquaredSum module is chosen.

The wake deflection module determines the deflection of the wake effects due to yaw angles. This
module is vital for the simulation, as these deflections are precisely what wake steering is based on.
PyWake offers three different wake deflection models, of which two have citations referring to the work
according to which they were implemented. Since the underlying relations must be valid across the
entire proposed region of available yaw angles [−30,+30], the underlying assumptions and regions
of validity must be studied. This already eliminates the FugaDeflection model, as the PyWake doc-
umentation provides no citation to the underlying paper. Judging from the papers behind the other
two options, Larsen et al. (2020) and Jiménez et al. (2010), it becomes apparent that the former
(GCLHillDeflection in PyWake) was only derived from experiments with a maximum yaw angle of
17.5. The latter, JimenezWakeDeflection, was derived from experiments with maximum yaw angles
of 30 degrees. The only suitable wake deflection module is thus PyWake’s JimenezWakeDeflection.

Furthermore, PyWake’s internal experimental surrogate load models are replaced by the turbine-
level surrogates created in section 3.3. PyWake’s default turbine model was replaced by a custom
one, with an additional ’operating mode’ option to facilitate the simulation of parked conditions. Since
PyWake’s original surrogates already had support for a three-region surrogate, minimal adjustment was
necessary to support the newly trained surrogates. All 80,000 generated cases can now be simulated
using the PyWake model. Using parallel processing over 8 CPU cores, this process takes several
minutes. This yields as output the local power, wind speed, turbulence intensity and the five fatigue
loads for each turbine in the farm, considering wake effects and free-stream wind conditions. This data
can now be post-processed to obtain the training dataset for the farm-level surrogate.

3.4.1.3. Postprocessing
The GNN is trained on graphs, but the previously generated data is not yet represented as such. The
inputs and outputs must, therefore, be represented as an input graph and an output graph. To do
so, each turbine is represented as a node on a fully connected graph. Multiple connectivity types are
possible, but the fully connected type will likely propagate wake effects over the graph the best, at the
cost of more network parameters. For the input graph, each node is given a feature vector consisting of
its yaw angle, operating mode and the free-stream inflow conditions characterised by wind speed, wind
direction, turbulence intensity and shear exponent. For the output graph, each node is given a feature
vector consisting of the local power, wind speed, turbulence intensity and the five fatigue loads. The
edges between nodes of the input graph each get a feature vector containing a polar representation
of the vector between them (e.g. angle and distance) and the angle of the wind direction relative to
the angle from the polar representation. For more information on this edge representation, the work by
Duthé et al. (2023) on which this GNN surrogate is based can be consulted. Note that this thesis adds
additional node features in the form of yaw angle and operating mode, and thus deviates slightly from
their work. Since no edge features need to be predicted by the GNN, output graph edge features are
irrelevant and, therefore, omitted. What results is a dataset consisting of input graphs with node- and
edge features and output graphs with only node features, ready for training.

3.4. Farm-Level Model 27

Figure 3.10: Graph embedding of dataset

3.4.2. Surrogate Model
With the farm-level dataset now generated and embedded in the form of graphs, all is ready for the
training of the farm-level surrogate model. First, the architecture and hyperparameters for the model
are chosen and defined in subsubsection 3.4.2.1. Following training using the provided architecture and
parameters, subsubsection 3.4.2.2 covers the evaluation of the trained surrogate through evaluation
metrics highlighting its accuracy.

3.4.2.1. Architecture & Hyperparameters
Following the architecture from work by (Duthé et al., 2023) that the surrogate is based on, the network
architecture is built upon an encode-process-decode principle. Node and edge features are encoded
into a higher-dimensional latent space, better suited for graph aggregation, using MLP-based encoders.
Next, several layers of a graph convolution block propagate features over the graph using message-
passing techniques. Finally, a node decoder decodes the resulting output latent space back into an
interpretable node feature vector.

The node encoder consists of a LeakyReLu-activated 3-hidden-layer MLP with 256, 512 and 256
hidden nodes, encoding node features onto a latent vector of length 256. This node encoder is based
on the turbine-level surrogates developed earlier in this chapter, as they are likely to largely perform the
same type of calculations. It is, therefore, logical to employ a similar architecture. The edge encoder
consists of a ReLu-activated 2-hidden layer MLP with 256 hidden nodes in each layer, encoding edge
features onto a latent vector of length 256. Once the latent state has been encoded on the graph, four
layers of GENeralized Graph Convolution (GEN, Li et al. (2020)) with SoftMax aggregation propagate
features over the graph using message passing. Finally, a ReLu-activated node decoder MLP with two
hidden layers of size 256 decodes the latent state into the output vector of size 8.

Furthermore, all inputs (node and edge features) are standardised using mean-standard deviation
standardisation. The mean and standard deviation are calculated over the entire training dataset. The
learning rate is set at 0.0005 initially but is adjusted using Cosine Annealing over 100 training iterations,
after which it stays fixed. 150 training epochs (iterations) are done, with a batch size of 100. The Adam
optimiser is used to update the network parameters using a Mean Squared Error (MSE) loss function.
All hyperparameters are summarised in Table 3.8. All hyperparameters were chosen according to
Duthé et al. (2023) and further manually tuned to achieve the lowest validation loss.

3.4. Farm-Level Model 28

Parameter Value
Node feature dimension 2
Node encoder hidden layers 3
Node encoder layer dimensions [256, 512, 256]
Node encoder activation function LeakyReLu
Node latent dimension 256
Edge feature dimension 3
Edge encoder hidden layers 2
Edge encoder layer dimensions [256, 256]
Edge encoder activation function ReLu
Edge latent dimension 256
GNN layer type GEN
GNN layer aggregation SoftMax
Number of GNN layers 4
Node decoder hidden layers 2
Node decoder layer dimensions [256, 256]
Node decoder activation function ReLu
Node output dimension 8
Input/Output transform Mean-Std Standardisation
Number of graphs in train set 50000
Number of graphs in test set 15000
Number of graphs in validation set 15000
Initial learning rate 0.0005
Learning rate scheduler Cosine Annealing
Learning rate scheduler stop 100 epochs
Loss function MSE
Optimiser Adam
Framework TorchGeometric+PyTorch
Epochs 150
Learnable parameters 1,650,440
Early Stopping Validation loss

Table 3.8: Overview of model architecture and hyperparameters for the farm-level GNN surrogate.

Figure 3.11: Overview of farm-level GNN surrogate, with the encode-process-decode paradigm.

3.4.2.2. Evaluation
Training the farm-level GNN surrogate takes about six hours running on an RTX4090 GPU with 24GB
of RAM. The training curves, both training loss and validation loss, can be found in Figure 3.12.

3.5. Chapter Recap 29

Figure 3.12: Training curves of the farm-level GNN Surrogate.

Following the same performance analysis from section 3.3, all predictions on the test set can be
plotted for each output variable. This is shown in Figure 3.13. Note that all of the output variables are
local to the turbines, e.g., they include wake effects from other turbines. Each point in these graphs is
a value for a single turbine under a single wind condition in a single farm layout. For the most part, the
same shape of the graphs can be seen that was also present for the turbine-level surrogate outputs.
This is logical, as the surrogate still has to predict the same turbine structural loads; the only difference
is the local flow condition inputs, which have to be implicitly determined due to wake effects. One
interesting behaviour, though, is the behaviour around discontinuous sections. Around the cut-in and
cut-out wind speeds of 4 and 25 m/s, respectively, the surrogate has difficulty modelling the immediate
changes in structural behaviour due to the turbine transitioning to parked behaviour. It essentially fits a
continuous curve on a discontinuity, causing some data points in the sudden transition to be predicted
in the middle of the discontinuity.

This same behaviour can also be seen in the third column of figures, showing the predictions versus
the ground truths. Furthermore, there is some noise in the training set, which gets smoothed out by
the surrogate, causing several data points (which are outliers in the training set) to be predicted closer
towards the majority of data points. Still, the excellent values for r2 indicate that this merely concerns
some outliers and that the vast majority of data points are still correctly inferred. A summary of the r2

score, RMSE and MAE values is shown for all output variables in Table 3.9. Note that, unlike Table 3.6,
the relative scores (e.g., percentages RMSPE and MAPE) are omitted here. This is due to the fact that,
in data points where the ground truth is zero or approaches zero, the relative error tends to explode
towards infinity. This yields mean relative errors that significantly misrepresent the true performance of
the surrogate, as they overpower the ’true’ relative errors of the rest of the dataset.

Variable r2 score RMSE MAE
P 0.996 25.957 21.929
VW,l 0.995 0.121 0.104
TIl 0.980 0.006 0.005
DELbr,ew 0.995 47.463 39.760
DELbr,fw 0.986 191.774 157.324
DELtt,yaw 0.986 103.754 85.778
DELtb,ss 0.975 601.581 464.686
DELtb,fa 0.984 902.543 722.481

Table 3.9: Performance metrics for the farm-level GNN Surrogate model on the test set; subscripts l indicate that wind speed
Vw and TI are the ones local to the turbines, e.g. with wake effects. Relative errors are omitted due to value explosions when

ground truth values approach zero.

3.5. Chapter Recap
In this chapter, a model to simulate entire wind farms under varying wind and yaw conditions was
developed. To enjoy inference speeds that abide by the design objectives of the environment, a custom
GNN-based surrogate model was developed. This model was trained using a dataset of various wind
farm layouts under various inflow and yaw conditions, containing flow conditions as inputs and local
turbine variables such as power and loads as output. To create this dataset, PyWake (for farm-level
wake effects) was combined with a custom surrogate (for turbine-level power and load effects). This

3.5. Chapter Recap 30

custom turbine-level surrogate was trained using a dataset of various local flow conditions and yaw
angles obtained by running the IEA37 3.4MW reference turbine through OpenFAST along with various
flow fields. The result of this chapter is a fast and accurate GNN-based surrogate model that can
hereafter be implemented in the environment to infer the effects of a given yawing strategy. As such, to
answer the sub-question How can the impact of wake steering on power production and fatigue loads
be efficiently modelled in the context of a multi-turbine wind farm: using a surrogate GNN farm-level
model trained using a dataset constructed by a combination of PyWake and a custom turbine-level
surrogate. Using the fatigue loads that can be determined using the surrogate model, the next chapter
can proceed with the defining of a fatigue accumulation model.

3.5. Chapter Recap 31

Figure 3.5: Outputs versus Wind Speed Figure 3.6: Outputs versus Yaw Angle

3.5. Chapter Recap 32

Figure 3.7: Output analysis of the trained turbine-level surrogate

3.5. Chapter Recap 33

Figure 3.13: Output analysis of the trained farm-level surrogate on the test set.

4
Fatigue Modelling

Before the environment can be constructed, the method by which fatigue is modelled must first be
determined. The surrogate model developed in the previous chapter provides as output the Damage
Equivalent Load (DEL) for each of the five considered areas, given the local flow conditions around the
turbine. The task at hand now is tomap this ’fatigue load’ to long-term effects in the form of accumulation
of effects leading to component failure. In this chapter, section 4.1 will cover the theory used for the
damage accumulation method, after which section 4.2 will describe the process of finding the required
parameters to characterise the accumulation process.

4.1. Damage Accumulation Theory
For methods on how to accumulate fatigue damage, the IEC 61400-1 standard on wind turbine design
requirements (International Energy Agency (IEA), 2019) can be consulted. The standard dictates that
Palmgren-Miner’s linear damage accumulation rule, or Miner’s rule in short, can be used for fatigue
analysis. Miner’s rule can be used to determine the accumulation of ’damage’ of a component; when
this damage value reaches the limit state of 1, the component is assumed to have failed. This ac-
cumulation of damage is calculated in fractions, where each period of load cycles contributes to an
increment of damage. Increments are dependent on both the magnitude of the cyclic load and the
number of cycles.

Miner’s rule can be formally defined as
∑

i
1

N(Si)
, where Si indicates the load range for a single load

cycle i; N() indicates the number of cycles to failure for a given constant amplitude loading with the
range given by the argument. Miner’s rule is typically expressed in terms of stress rather than loads.
However, given that the previously created surrogates provide cyclic loads as output, Miner’s rule can
be rewritten to work with loads instead:

∑
i

1
N(DELi)

. As the DELs from previous chapters were defined
as 10-minute equivalent loads at 1 Hz, sections of 600 cycles can be converted directly. More generally,
this means that n cycles of a DELi can be converted as

∑
i

n
N(DELi)

.
What remains is to determine the parameter(s) of the function N() that determines, for any given

DEL, the number of cycles which would lead to failure. In prior research by NREL (Freebury and Musial,
2000), this issue was addressed by fitting a function of the formMa = Mu ·N

−1
m to fatigue testing data.

Here,Ma is the amplitude moment of the load cycle, Mu the ultimate moment (e.g., the moment which
would result in instant failure), N the allowable cycles to failure and m the Wöhler exponent. Since
the DELs from the surrogate are defined as moments, this function is valid for DEL-based fatigue
calculations as well. Indeed, this is what NREL implemented in their tool for fatigue analysis called
MLife (NREL). MLife uses fatigue analysis rules outlined by the IEC 61400-1 standard, the same as
referred to above. What remains is thus to determine what values for DELu (ultimate moment) and m
to use for each component to characterise the fatigue curves fully.

4.2. Fatigue Curve Parameters
In the appendix of the design paper of the IEA37 3.4MW reference turbine (International Energy Agency
(IEA), 2016) the results of several fatigue calculations can be found. Usually, with these values, the

34

4.2. Fatigue Curve Parameters 35

parameters of the fatigue curves can be inferred by solving simple equations. However, closer inspec-
tion of the corresponding GitHub repository with up-to-date files and calculations reveals that they have
done updated calculations, significantly increasing the load envelope. This is likely due to changes in
the design or updated structural simulations with improved model setups. Consequently, any fatigue
calculations found in the design paper use outdated values. In fact, the load envelope in the design
paper seems to be an order of magnitude smaller in certain places compared to the updated values
in the repository. Consequently, this means that the fatigue lifetimes and loads reported in the doc-
ument’s appendix are no longer valid and will, combined with determined turbine-level fatigue loads,
result in unrealistic failure rates. It is thus evident that these fatigue values cannot be used to infer the
parameters of the fatigue curve. However, one parameter that can still be taken from the design paper
is the value for the Wöhler exponent m. This is fixed and set to 10 for blade-related fatigue loads and
4 for tower-related fatigue loads. Only the tower top yaw system Wöhler exponent is not listed; this is
set to 7 to be consistent with the tower top torsional surrogate originally implemented in PyWake.

Assumption 3 The Wöhler exponents for blade root flapwise and edgewise DELs is 10, that of tower
top yaw system 7 and that of tower base fore-aft and side-side 4.

Analytically determining the DELu parameters would mean that exact material properties and ge-
ometries should be known. FEM software can be used to numerically determine the load, moment
or stress limits of the cross sections of interest. Modelling this would be a project on its own and is
certainly outside the scope of this thesis. Instead, the curve parameters can be tuned automatically
such that they result in realistic failure rates given typical operating conditions and strategies. Wind
turbine components are typically designed for a fatigue lifetime that exceeds the desired operational
lifetime of the farm. As such, this lifetime can be tuned to be approximately 22 years, assuming the
wind farm is to operate for 20 years. Tuning these parameters thus comes down to determining what
curve parameters will result in component breakdowns after approximately 22 years. This essentially
performs fatigue lifetime ’backwards’ without explicitly calculating material or fatigue properties. This
will, however, suffice for this environment; after all, these values can be updated with more accurate
ones if the environment is ever to be applied to training real-life controllers. This method of inferring
fatigue curve parameters is very similar to work by Leonetti et al. (2017) and Allaix and Gijsbers (2016),
who used Bayesian inference on real-life observations to find the best fitting curve parameters.

4.2.1. Numerical Fitting of Fatigue Curve Parameters
For fatigue curve fitting, several zero-yaw, 25-year-long simulations can be run in the environment. This
represents the ’default’ operation of a wind farm and serves as an approximation of the fatigue loads
that the turbines will endure during their lifetime. All fatigue loads (e.g. DELs) during this simulation
are recorded as an N -dimensional time series of length T , where N is the number of turbines, and T
is the number of time steps. Next, an optimisation algorithm can be used that evaluates the lifetimes
of all components given a set of curve parameters and tunes them accordingly to achieve the desired
22-year lifetime. For this, a simple gradient descent algorithm can be employed that aims to centre the
distribution of lifetimes of all components in the turbine to be around 22 years.

To enable gradient descent to work, an objective function must first be defined. This function must
align with the goal of the optimisation problem, being the alignment of the mean component lifetime with
the target of 22 years. A simple objective function to use is the Mean Squared Error (MSE), measuring
the average of squared residuals. Given a ’guess’ of ultimate moment DELu, the objective function
calculates the time step at which failure occurs for all turbines in the dataset. Next, the difference be-
tween these calculated ’failure’ time steps (or ’lifetimes’) and the desired 22 years of lifetime converted
to time steps is squared and averaged over all values. The task at hand for the optimisation algorithm
is thus to minimise this MSE given the freedom to adjust DELu.

One more thing to consider is that materials (and thus components) might not always be produced
perfectly, and some variation in material parameters is thus likely to occur. This could affect the fatigue
properties of components, where some components might last longer than others. To effectively model
this, the fatigue curve parameter DELu can be modelled as a stochastic variable with a normal distri-
bution, where for each component DELu is sampled from this distribution. The component maintains
this sampled value throughout its lifetime and re-samples upon replacement. In this case of stochas-
tic variables, the objective function must be adjusted. Instead of optimising for a single fixed value of
component lifetime, it should instead optimise to match a distribution of lifetimes. From component

4.2. Fatigue Curve Parameters 36

lifetime analyses by several authors (El-Naggar et al., 2021; Carroll et al., 2016; Dao et al., 2019), it
is evident that the distribution of lifetimes can often be several years around the mean expected value.
These studies make no distinction between failures caused by fatigue and failures caused by other
factors, such as rain erosion or wear. As such, a reasonable choice to make is to model the distribution
as a normal distribution centred around 22 years, with a standard deviation of 1 year. The objective
function can then, given the mean and standard deviation of DELu, determine component lifetimes by
sampling from the parameter distribution and processing the time-series fatigue load data. Since the
mean is already known from the deterministic optimisation, only the standard deviation of the normal
distribution needs tuning. The objective function can thus be defined as the MSE loss between the
target and fitted standard deviation of the resulting lifetimes.

Tomake iterations a whole lot faster and to prevent caching unnecessary time series data in memory,
a trick can be used to capture the entire time-series load history in a single value. Remembering that
DELs are inherently already defined as a ’summary’ of load cycles, a time series of DEL values itself
can further be compressed into a single ’master’ DEL that incurs the same damage over the load history.
Instead of having to evaluate the entire time series for each gradient descent iteration, only the single
master DEL needs evaluation with a number of cycles equal to the original time series. This ’master’
DEL, or more formally the lifetime damage equivalent load (LDEL), can be calculated as follows:

i · n
(
LDEL

DELu

)m

=
∑
i

n

(
DELi

DELu

)m

(4.1)

i

(
LDEL

DELu

)m

=
∑
i

(
DELi

DELu

)m

(4.2)

LDEL

DELu
= m

√
1

i

∑
i

(
DELi

DELu

)m

(4.3)

LDEL = m

√
1

i

∑
i

DELm
i (4.4)

This means that this lifetime DEL can be calculated without knowing DELu and can thus be used
to compress the full load history into a single DEL for use in the gradient descent objective function.
However, before doing so, it must be validated whether this LDEL can be used as an accurate approx-
imation for the LDEL for any fraction of the time series. This convergence study is done in Appendix B.
From this study, the following assumption can be safely made:

Assumption 4 The full load history of a 25-year-long horizon can be compressed into a single DEL
value, called the ’master’ DEL or LDEL. Furthermore, this LDEL value is assumed to be equally valid
when used to determine lifetimes for horizons shorter than the original 25 years with which it was
calculated.

Now, with this LDEL and a guess from the minimisation algorithm, the expected component lifetime
in days nd can be easily calculated given a guess for DELu. Realising that, since the LDEL is defined
at 1Hz, the number of cycles per day is nd · 60 · 60 · 24 = 86400nd:

86400nd

(
LDEL

DELu

)m

= 1 (4.5)

nd =
1

86400
(

LDEL
DELu

)m (4.6)

The optimisation algorithm employed is Nelder-Mead, as implemented in Scipy’s Minimize method.
The Nelder-Mead algorithm aims to minimise a function f(x), in this case the objective function de-
scribed in the previous paragraph, using the variable(s) x within a given box constraint. Since DELu

can only be positive, the box constraint is only bounded on the bottom edge, e.g. with a lower limit of
0, and has no upper bound. Similarly, in the case of optimising for the stochastic version, the standard

4.3. Chapter Recap 37

deviation of DELu is also bounded below by 0, as the standard deviation can never be smaller than
0. Using this gradient descent algorithm, it only takes a few seconds to find value(s) for DELu (and
the standard deviation thereof) that minimises the objective functions. The loss curves of the gradient
descent process can be found in Appendix C. The final mean and standard deviation values can be
found in Table 4.1. Fitted values for two- and three-year target lifetime standard deviations are also
provided.

Mean 1-year STD 2-year STD 3-year STD
DEL Wöhler Exponent m µDELu

[kNm] σDELu
[kNm] σDELu

[kNm] σDELu
[kNm]

Blade Root Edgewise 10 35634.785 148.750 310.000 477.163
Blade Root Flapwise 10 55370.247 0.000 421.245 697.891
Tower Top Yaw 7 63581.925 0.000 655.042 1127.499
Tower Base Side-to-Side 4 1962407.473 13526.565 41078.125 63800.537
Tower Base Fore-Aft 4 6163272.492 62470.703 137500.000 205311.889

Table 4.1: Fitted fatigue curve parameters.

One last note to make is that technically the tower base fore-aft and side-to-side loads are from the
perspective of the rotating nacelle’s frame of reference and are thus not fixed in the world’s frame of
reference. This means that if a world-fixed frame fore-aft and side-to-side damage value D were to be
defined, the nacelle-rotating DELs must be projected onto the world frame first before damage can be
accumulated. This is also the reason why the side-to-side DELu is significantly lower than the fore-
aft DELu, whereas in reality, the tower base is often symmetric and would have identical values. For
simplicity, in this environment, it is assumed that fore-aft and side-to-sideDs exist in the nacelle-rotating
reference frame.

Assumption 5 The tower base fore-aft and side-to-side fatigue damage can be modelled in the na-
celle’s rotating reference frame, using asymmetrical fatigue properties, without projecting them back
into the world-fixed frame of reference.

4.3. Chapter Recap
This chapter covered the modelling of component degradation due to fatigue. Taking inspiration from
the IEA61400-1 standard on wind turbine design, damage accumulation was quantified as Palmgren-
Miner’s linear accumulation of damages due to load cycles each timestep. The DELs, as calculated
using the farm-level surrogate, are used to determine ∆D for each timestep. ∆D is calculated accord-
ing to fatigue curves, relating the DEL fatigue load to the number of cycles which would lead to failure.
Gradient descent is used to determine the parameters that characterise these curves and find the set of
parameters that result in 22-year design lifetimes under simulated zero-yaw conditions in a wind farm.
The Wöhler exponents are assumed to be fixed for each of the five types of components. Gradient de-
scent then provided the remaining parameter, DELu, thereby fully defining the curves. Furthermore,
to possibly deal with stochasticity in material parameters, standard deviations were also fitted to obtain
normal distributions of the parameterDELu to match a distribution in observed lifetimes. To answer the
sub-question How can fatigue loads experienced by turbine components be mapped to accumulated
lifetime consumption?: using Palmgren-Miner’s rule and fatigue curves with parameters fitted based
on average load histories. With the fatigue accumulation model finalised and the surrogate farm-level
model ready, the next chapter can proceed to construct some remaining modules and complete the
simulation environment.

5
Simulation Environment

This chapter will cover the further development of the simulation environment that will enable the train-
ing of the reinforcement learning controller. At the core of the environment is the simulation model
developed in chapter 3; however, it requires many other modules that each model some aspect of the
environment. As such, this chapter defines all other modules that collectively make up ’WakeWISE’
(Wakesteering Windfarm Interactive Simulation Environment).

5.1. Main setup
The environment is implemented in Python according to the Gymnasium framework (Towers et al.,
2023), a popular and well-known framework for building reinforcement learning environments. It im-
plements a standardised way for a reinforcement learning algorithm to interact with the environment
by exchanging rewards, actions and observations. This reward function and observation space are
covered in section 5.7 and section 5.8 respectively. The action space consists of the yaw angles for
each of the n turbines, implemented as a ’Box’ space of dimension n with bounds [−30,+30]. Since the
environment works with timesteps ∆t of 10 minutes, the problem is constructed as a discrete control
problem with ten-minute intervals. As the environment transitions from timestep t to t+∆t, the following
assumption is made on the transition behaviour:

Assumption 6 All sampled environment variables, originating from random processes, are assumed
to remain constant between t and t + ∆T . The same goes for the yaw angles, which are too kept
constant.

5.2. Time Keeping
Among the main design objectives for the simulation environment is the requirement for it to be as
realistic as possible. This means that the modules embedded in it should present behaviour that mimics
reality as closely as possible. Many real-life processes can have daily, seasonal or even yearly cycles
or dependencies, and modelling such behaviour thus means explicitly considering the evolution of time
during the simulation. As such, a timekeeping module will be included to keep track of and progress
the simulated time. Other modules can then refer to this module to adapt their behaviour accordingly.
The timekeeping module is implemented as a simple counter, keeping track of minutes, hours, days,
months and years. Each timestep advances its counters by the configured timestep duration, cycling
back to zero where necessary. Finally, each time the environment is reset, it takes a randomly sampled
time state as an initial condition; this promotes more diverse trajectories during reinforcement learning
training.

5.3. Inflow Conditions
A vital aspect of the simulation environment is the sampling of synthetic inflow conditions, e.g. the free-
streamwind state around the wind farm. Thewind conditions can considerably impact wake interactions
in the farm and are precisely one of the main drivers behind the need for wake steering. For the

38

5.3. Inflow Conditions 39

environment, a suitable inflow condition sampler should be chosen that can provide the environment
with a new state every timestep as the episodes progress. Several options are available for sampling
such conditions, but as always the environment design objectives should be satisfied. In this section,
several options for wind samplers are compared and contrasted, and a suitable module type is chosen
for embedding inside the environment.

5.3.1. Model Choice
A relatively simple but often utilised method of sampling inflow conditions is to choose simple distri-
butions for each variable to be sampled. For each timestep, the module simply samples from each
distribution to obtain a new wind state. Weibull distributions for wind speed and uniform distributions
for wind direction are often used for this purpose. Though this method of sampling enjoys an extremely
fast inference speed, often in the sub-millisecond range, its simplicity causes there to be no tempo-
ral coherency in the generated time series. Furthermore, it is unlikely that real-life wind conditions
match perfect statistical distributions. On top of that, when univariate distributions are used, there is
no coupling between the different variables; this seems unrealistic, as certain wind directions might
bring stronger winds. Finally, the lack of seasonal or daily effects brings yet another factor to decrease
realisticity as there is no coupling between time and behaviour. However, this can be partly overcome
by conditioning the distribution parameters on time.

The aforementioned relatively simple approach can be expanded in the form of a Markov Chain. A
Markov Chain models a finite set of states and the transition probabilities between them; in other words,
given a state si of set with indices i ∈ N , it models the transition probabilities P (sj |si) ∀ j ∈ N . This
adds an element of temporal coherence to the model, as the probability of transitioning to the next state
depends on the previous state. Effectively, this means that when these probabilities are tuned accord-
ing to real-life data, probable transitions will occur more often, according to reality. Furthermore, the
probability of transitioning to different states can depend on time by determining transition matrices for
different timeframes. All in all, this brings both temporal coherency and time dependency. Furthermore,
joint distributions can be modelled by conditioning state transitions on other variables. Markov Chain
models only require some parameter lookups and simple categorical sampling, meaning their runtime
is effectively no slower than that of the simple distribution sampling mentioned earlier. Examples of
Markov-Chain modelling of synthetic wind time-series can be found in work by Shamshad et al. (2005)
and Sahin and Sen (2001). Similarly, Scholz et al. (2013) extended the Markov-Chain framework in the
domain of wind turbine power production, modelling transition probabilities as Bernstein polynomials.

Deep learning can also provide ways of generating time-series data. One method of forecasting or
generating such data would be to train an MLP based on a training dataset of real-life measured wind
conditions. Simple supervised learning would be sufficient to obtain a model that can predict future
trends given previous values. However, one major downside to this method is that the model overfits
significantly on the provided dataset, learning to replicate the time series it was trained on. The inherent
lack of stochasticity and randomness means the model is entirely deterministic, leading to a lack of
unique time series outputs. Possible positive aspects, though, can be that its inputs can be augmented
with additional variables like time or other wind parameters on which it should be conditioned. Models
based on MLP will typically have inference speeds of around 1 to 2 milliseconds.

Generative Adversarial Networks (GANs) or Probabilistic Auto-Regressive (PAR) models can be
used to overcome the issue of deterministic outcomes and lack of stochasticity in the generated signals.
Both models consist of neural networks that are trained to imitate the time series in a dataset as closely
as possible without exactly repeating it. Examples of such models are TimeGAN (Yoon et al., 2019)
and PARNN (Panja et al., 2024), both of which can be used to generate synthetic time-series data.
Both methods have shown excellent performance in imitating a variety of time series signal datasets
whilst retaining the distributional properties of the input signal. However, their impressive performance
comes with a runtime in the millisecond range; this typically is not a big deal unless inference speed is
of importance, as is the case in this environment.

From these options, summarised in Figure 5.1, it is evident that the runtime becomes infeasible
for the environment as soon as deep learning is used as part of the sampling process. Given that the
surrogate model itself already runs in the millisecond range, adding an additional significant amount
of runtime each step will cause a violation of the first design objective. Despite their accuracy and
realisticity in imitating real-life conditions, the deterministic and probabilistic deep learning approaches
are unsuited for this environment. Besides, the autoregressivity of signals is better learned by a Markov

5.3. Inflow Conditions 40

Figure 5.1: Comparison of the four options for inflow sampling.

Chain than through deep learning models. Given the fact that a Markov Chain improves on temporal
coherence and time-dependency compared to the simple distribution sampling approach whilst not
significantly increasing inference time, it seems like the best approach for the environment.

5.3.2. Model Fitting
The next step is thus fitting Markov Chain parameters to a dataset. For this, a Discrete-Time Markov
Chain (DTMC) is used, consisting of a set of finite states S = x1, x2, ..., xn and transition probabilities
Pij = P{Xt+1 = xj |Xt = xi}, where i, j ∈ n and Xt indicates the state of the system at time t. The
Markov property dictates that the probability of moving from state Xt to Xt+1 is only dependent on the
stateXt, and not on any of the statesX0...Xt−1 preceding it. This means that it has a probability matrix
P of shape n× n, where

∑
j∈S Pij = 1 ∀i ∈ n.

A suitable dataset can be found on the website of Danish wind energy company Ørsted. They offer,
free and publicly available, a 2-year dataset of meteorological measurements of their Anholt offshore
wind farm (Ørsted). This dataset includes wind speed and direction measurements at a 10-minute
temporal resolution. Since the dataset contains measurements at ten different points in the farm, they
are first averaged during pre-processing. This leaves, for every measurement time, a single (averaged)
value for both the wind speed and wind direction. Additionally, invalid numbers (such as missing values)
are replaced by interpolations of the data points around them. This data is now ready to infer the Markov
Chain matrix from.

Since the Markov Chain works with discrete states, the wind direction and wind speed must first
be digitised into a set of discrete values. The wind direction is discretized into Nwd = 18 bins of 20
degrees width, with the first bin centred around zero. The resulting discretised wind rose can be found
in Figure 5.2. Wind speed is discretized into Nws = 40 bins between 0 and 40 m/s and can also be
found in Figure 5.2. Furthermore, note the definition of the number of months equals M .

The first tensor to cover is the transition tensor for wind directions. To enable temporal coherency in
the synthetic time series, sampled wind directions must depend on previously sampled points. As these
transitions are modelled according to a first-order Markov chain, the first dimension of size Nwd of the
transition tensor is indexed by the previous wind state. Furthermore, to include a dependency on the
month of the year for seasonal effects, another dimension of sizeM must be included along the second
axis for indexing by month. The third dimension then becomes the vector of transition probabilities of
size Nwd, one probability of transitioning to any of the possible wind direction states. In total, this will
produce a tensor of shape Nwd × M × Nwd. The tensor is populated by iterating over each month,
then iterating over each wind state and performing simple frequency counting of transitions between
that state and any other state. These frequencies are then divided by the total number of transitions
between that state and any other state to obtain the transition probabilities. By doing so, the transition
probabilities are both conditioned on the current month of the year as well as the previous wind direction
state.

The second tensor to cover is the transition tensor for wind speeds. Temporal coherency herein is

5.3. Inflow Conditions 41

Figure 5.2: Digitisation, or ’binning’, of wind direction and speed values.

achieved by the samemethod as was the case for wind directions, by indexing along the first dimension
of size Nws with the wind speed state. The second dimension, of size M , is used for indexing using
the wind direction state. This allows the wind speed to depend on the wind direction; this adds to
realisticity, as certain wind directions generally carry higher wind speeds. The final dimension of size
Nws becomes the vector of transition probabilities, one probability of transitioning to any of the possible
wind speed states. In total, this will produce a tensor of shape Nws ×Nwd ×Nws. Here, too, the tensor
is populated by looping over wind directions, then over all wind speed states and performing frequency
counting of transitions between states. The probabilities are obtained by dividing by the total number of
transitions. The result of both Markov-Chain inference steps are two matrices, shaped Nwd×M ×Nwd

and Nws ×Nwd ×Nws, for determining transition probabilities between wind direction and wind speed
states respectively.

To now start generating synthetic time series wind direction and speed, the sequences must first
be primed using initial states. These states can be chosen uniformly among all possible wind direction
and wind speed states. Next, the wind direction transition tensor can be indexed along its first and
second dimensions using the previous wind direction state and current month of the year, respectively.
This yields a 1 × Nwd vector of transition probabilities. Using categorical sampling with probabilities,
the next wind direction state can then be sampled quickly. For the wind speed sampling, a similar
process applies; here, the first two dimensions of the transition tensor are indexed by previous wind
speed and current (newly) sampled wind direction. The result is two discrete states for both variables;
this is, however, a very non-smooth output. To tackle this, uniform noise between the boundaries of
[−10,+10] and [−0.5,+0.5] can be added to wind direction and wind speed states, respectively. This
process then repeats for as long as necessary to fill the synthetic time series.

5.3.3. Model Evaluation
In Figure 5.3 and Figure 5.4, a randomly generated sample of wind conditions is compared with a
sample of respective wind direction and wind speed measurements in the dataset. Note that the goal
is not to replicate the original signal but rather to imitate it. The synthetic signal seems to behave very
similarly to the measurements in the dataset and exhibits similar behaviour over time. Also note that
the jumps in wind direction, which can be seen in Figure 5.3, result from the continuity of the discretized
wind direction bins, which loop around from 0 to 17 when the wind crosses 360 degrees. Though these
discontinuities in the plot might seem unrealistic, they are perfectly normal when thought of in a radial

5.3. Inflow Conditions 42

Figure 5.3: A sample of synthetic wind direction data versus the dataset.

Figure 5.4: A sample of synthetic wind speed data versus the dataset.

sense. As is evident from these plots, the Markov Chain seems to produce realistic time series that
exhibit realistic behaviour. Furthermore, the generation of these 4000 timesteps took 60 milliseconds,
resulting in a per-timestep latency of only 15 microseconds.

More qualitative and quantitative analysis can be done to analyse the module’s performance further
and assess its accuracy compared to the input dataset. Figure 5.5 and Figure 5.6 plot the probability
density plots of wind speed versus wind direction and wind direction only, respectively. As is evident
from these figures, the distributions of different wind conditions show a good match with the actual
measured data. Furthermore, the probabilities of each wind direction occurring match very well. Since
the wind direction effectively loops around back to 0 when it exceeds 360, Figure 5.7 and Figure 5.8
cast aforementioned figures into a polar projection. Here, too, it is evident that distributions match well,
or at least well enough, for applications where approximations are sufficient, such as this environment.

Figure 5.5: A sample synthetic wind signal’s 2D density plot
versus that of the real signal.

Figure 5.6: A sample synthetic wind signal’s wind direction
density plot versus that of the real signal.

5.3. Inflow Conditions 43

Figure 5.7: A sample synthetic wind signal’s polar 2D density
plot versus that of the real signal.

Figure 5.8: A sample synthetic wind signal’s polar wind
direction density plot versus that of the real signal.

Some more quantitative analysis can be done by using the specific values of each of the time
signals. In Figure 5.9 and Figure 5.10, the auto-correlation and Power Spectral Density (PSD) of a
synthetically generated signal and the real signal are shown. Overall, they show good agreement,
indicating that the synthetically generated signal is reasonably realistic. The real signal tends to have a
few deviating auto-correlation lag periods compared to the synthetic signal, but generally, they follow a
similar shape. Regarding the PSD, there seems to be a larger discrepancy between the two signals. For
lower frequencies, the signals match more closely; this can be attributed to the Markov chain process.
The higher frequencies - which seemingly show more discrepancy - could result from the uniform noise
added to the discretized states to obtain a smoother signal. This uniform noise likely has a higher noise
frequency, as the random samples have no temporal coherency. All in all, for use in the environment,
the wind direction and wind speed sampling module using the Markov Chain process has been shown
to be a suitable and feasible choice.

Figure 5.9: Autocorrelation plot of a sample synthetic signal
versus that of a real signal.

Figure 5.10: Power Spectral Density (PSD) plot of a sample
synthetic signal versus that of a real signal.

Two more variables need sampling to complete the inflow sampling module: turbulence intensity
and shear exponent. For the turbulence intensity, the method as outlined by the IEC 61400-1 stan-
dard on wind turbine design can be consulted. This was discussed earlier in subsubsection 3.3.1.1
and involves sampling from a uniform distribution between a lower and wind-speed dependent upper
bound. Similarly, the shear exponent sampling derived from Dimitrov (2019), also discussed in subsub-
section 3.3.1.1, can be reused. The free-stream wind conditions can be fully characterised using the
Markov Chain process for wind direction and speed, combined with the aforementioned turbulence in-
tensity and shear exponent sampling. Furthermore, the wind direction and speed are time-dependent,
temporally coherent and have fast inference speeds, thereby satisfying all three environment design
objectives.

5.4. Electricity Price 44

5.4. Electricity Price
Another parameter that can be an essential input for wake steering policies is the current price at which
electricity is sold on the market. A higher electricity price might justify a more extreme yawing policy,
as the net gain in profit could significantly exceed the increased damage incurred as a result. The
prices might have a significant impact on what policy to follow and are thus not to be neglected in
the environment. This means that a sufficient module that models these prices is to be chosen. In
this section, options for this module are compared and contrasted, and an informed decision is made
based on the environment design objectives.

5.4.1. Model Choice
In the simplest case, a fixed value is chosen to model the electricity price. A time-based average or an
arbitrary value that seems most realistic can be picked. Modelling electricity prices this way incurs a
negligible increase in runtime and is undoubtedly the fastest way to implement such a module. How-
ever, using such a fixed value removes the trained agents’ ability to deal with fluctuating electricity
prices entirely, significantly impacting their ability to be used in practice. Instead, to add a bit more
complexity, a probability distribution can be fitted on historical data of electricity prices. At execution
time, samples can be drawn from this distribution at random. This allows the agent to encounter a
broader range of electricity prices and thus be more robust against possible fluctuations it might en-
counter in practice. Sampling from simple distributions incurs a negligible time loss compared to the
fixed value case, so that is not a problem. However, in both aforementioned cases, one relation is still
not explicitly considered: the dependence on time. Oftentimes, the electricity price is heavily coupled
with the time of day or seasons of the year. For example, in the summer, electricity demand might be
lower, leading to an abundance in supply and, thus, lower overall prices. To address this, fixed values
can be fitted based on both the time of day and month of the year. Sampling then comes down to
finding the value corresponding to a given time in a large lookup table, indexed by hour and month.
Once again, the increase in runtime is negligible, but it is much more realistic. All three options are
summarised in Figure 5.11.

Figure 5.11: Comparison of the three options for electricity price sampling.

Given the design objectives for the environment, the third option seems to be the best fit. All three
options have almost identical runtimes, being in the order of microseconds, meaning runtime plays no
role in this decision. When it comes to accuracy, all three can be fitted based on real-life data with high
accuracy. However, only the third onemimics realistic behaviour when it comes to the objective of being
realistic. The first two options ignore seasonal or hourly effects, thereby lacking some coherent and
time-dependent behaviour, making them somewhat unrealistic. The most suitable option is, therefore,
the third option.

5.4.2. Model Fitting
The next step is to find a suitable dataset of electricity prices on which the model can be fitted. For
this, the day-ahead prices of the Scandinavian energy market can be used; this data comes from
the Nordpool spot market, which is a joint market between Norway, Sweden, Finland, Denmark and
Germany. It is freely and openly available on Nord Pool Group and Energinet. From here, historical
hourly data from the past years can be downloaded. Since 2020-2021 was heavily influenced by the

5.5. Maintenance Costs 45

Figure 5.12: Dataset analysis of spot prices.

COVID-19 Pandemic and the period 2022-2023 by the conflict in Ukraine, only the spot prices for 2023-
2024 were downloaded. Furthermore, the ’SYSTEM’ price category is of interest, as it serves as a
(stable) reference price for the whole market system.

To correctly model seasonal and hourly behaviour, prices in the dataset must be grouped by hour
and month. This yields 12 · 24 = 288 sets of data points characterising the electricity prices at each
hour and month. For each of these groups, the mean is calculated and stored in a 12 × 24 matrix.
Figure 5.12 shows an analysis of the time-dependency. From this analysis, it is evident that both
seasonal effects and hourly effects play an essential role in the determination of energy prices. In this
data, it is, for example, visible that in winter, prices tend to be significantly higher and that in the morning
and evening hours, the peak energy demand is likely to increase prices as well.

To proceed, the electricity price matrix must be fitted on this data. For this, the data as shown in the
leftmost plot of Figure 5.12 is used. This data is averaged hourly for each month of the year. This is
sufficient to construct the 12× 24 matrix of average electricity prices, indexing the price by month and
hour along the first and second dimensions, respectively.

5.5. Maintenance Costs
Maintenance costs form an essential part of the reward with which the performance of a wake steering
policy can be assessed. In the environment, this cost is related to wind turbine components’ degradation
and breaking down and is therefore linked to maintenance actions. It is thus essential to define a
model with which these maintenance costs are calculated given the (changes in) different states of the
environment.

In essence, there are two ways of modelling these maintenance costs in the environment: using
sparse costs and using dense costs. In the sparse case, maintenance costs are incurred exactly when
components break down or require maintenance. This would, in fact, be the most realistic way of
modelling it, as maintenance is generally paid for when it is necessary. Dense costs, on the other hand,
spread these costs out over the component’s lifetime. In the end, both models amount to the same
total cost; they differ only in at which point(s) in time these costs are incurred. Numerical examples of
both are shown in Figure 5.13 and Figure 5.14.

Figure 5.13: Dense maintenance costs Figure 5.14: Sparse maintenance costs

For the dense cost case, the change in accumulated fatigue damage D, called ∆D, is used. ∆D
directly indicates the ’consumption’ of fatigue lifetime of a component in the current timestep and is,

5.5. Maintenance Costs 46

therefore, an ideal way of measuring the continuous and momentary usage of a component. Since the
component is to break down when a failure limit Df is reached, which without a safety factor defaults
to 1, all maintenance costs for replacement must be incurred over its lifetime. The costs incurred can
thus be simply and directly derived from ∆D multiplied by the replacement cost.

cti = ∆Dt
iCi (5.1)

Where cti is the dense maintenance cost for component i at time t, ∆Dt
i the change in accumulated

fatigue damage of component i at time t and Ci the total cost of replacement for component i. If a
safety factor is applied to the component’s failure limit, e.g. instead of 1 its failure limit is 1

fs
, the dense

cost formula can be easily adjusted:

cti = ∆Di,tCifs (5.2)

The sparse maintenance cost case works differently and is in fact much simpler. Instead of looking
at changes inDi, the actual damage stateDi itself dictates the cost. In all timesteps whereDi does not
exceed the failure limit, cti is zero; in the timestep that does exceed this limit, cti is the full replacement
cost Ci. In fact, this can be thought of as a subset of dense costs, where the function is essentially a
Dirac-Delta function at 1 (or 1

fs
in the case a safety factor is applied):

cti = δ(Di −
1

fs
)Ci (5.3)

This formulation assumes that the damage state Di will at some point directly match 1
fs

for the
Dirac-Delta function to work correctly. In practice, however, Di will likely jump over this value between
timesteps. The formulation in code is, therefore, rather an exceedance check every timestep.

The actual maintenance costs Ci remain to be defined. Fortunately, the IEA37 3.4MW reference tur-
bine repository (IEAWind Task 37) can once again be consulted. In the Excel file xlsxIEAonshore.xlsx,
the authors of the turbine design provide the computed costs for each of the components in the turbine.
From here, costs for the replacement of blades, tower and yaw system can be taken. One additional
aspect to consider is the downtime of a turbine as a result of maintenance; to ensure realistic main-
tenance behaviour in the environment, this too should be modelled. Unfortunately, this downtime is
unavailable in any of the IEA37 3.4MW documents. Instead, inspiration can be taken from wind tur-
bine reliability studies by Dao et al. (2019) and Carroll et al. (2016) and supplementing their findings
with additional downtime for unaccounted aspects, such as travel and lead times. The final values are
shown in Table 5.1.

DEL Component Cost (Euros) Downtime (Hours)
Blade Root Edgewise Blade 120901.57 300Blade Root Flapwise
Tower Top Yaw Yaw System 125013.75 150
Tower Base Side-to-Side Tower 829755.28 600Tower Base Fore-Aft

Table 5.1: Costs and downtime for replacement of each component.

Both versions, dense and sparse, have their upsides and downsides. Sparse costs, for example,
are the more realistic case. Dense costs, on the other hand, provide much more information each
timestep, which can benefit reinforcement learning. This begs the question of whether there is a version
of modelling maintenance costs that sits somewhere between dense and sparse costs. A necessary
property for such a cost distribution must at least be that the total cost over the entire component lifetime
must be the total replacement cost. For this, it is easiest to relate the change in damage ∆D to some
cost cti for that timestep, similar to what was done for the dense cost case. Each ∆D shall then be
used to calculate a cost factor f t

i which is multiplied with Ci to obtain cti. To start, a generic exponential
function can be picked with a variable that can be adjusted to adjust the distribution of costs over the
component lifetime. The following sections discuss two versions of these unevenly distributed cost
functions.

5.5. Maintenance Costs 47

In the first case, the simple formula ecD−p can be used. Here, c is an adjustable parameter, and p is
a fixed parameter dependent on c. To ensure the area under the curve between 0 and 1 (e.g. the entire
component lifetime) equals 1 (e.g. total replacement cost), the correct value of p must be calculated.
To do so, the general integral must be calculated and set to 1:

∫ 1

0

ecD − p = 1 (5.4)[
1

c
ecD − pD

]1
0

= 1 (5.5)(
1

c
ec − p

)
−
(
1

c

)
= 1 (5.6)

ec − cp− 1 = c (5.7)
ec − c− 1 = cp (5.8)
ec − c− 1

c
= p (5.9)

However, this only holds true if c <= 1.25, as beyond that, the function will intersect with the D-axis
(x-axis) within the region of [0, 1]. In that case, the intersection of ecD − p with the D-axis must first be
determined in order to find the lower bound for the integral:

ecD − p = 0 (5.10)
ecD = p (5.11)
cD = ln p (5.12)

D =
ln p
c

(5.13)

Repeating the general integral function and equating it to 1, similar to what was done before, yields:

∫ 1

ln p
c

ecD − p = 1 (5.14)[
1

c
ecD − pD

]1
ln p
c

= 1 (5.15)(
1

c
ec − p

)
−
(
1

c
e

c ln p
c − p

ln p
c

)
= 1 (5.16)

1

c
ec − p− 1

c
eln p + p

ln p
c

= 1 (5.17)

1

c
ec − p− 1

c
p+ p

ln p
c

= 1 (5.18)

ec − cp− p+ p ln p = c (5.19)
ec − c = cp+ p− p ln p (5.20)
ec − c = (c+ 1)p− p ln p (5.21)

eW [c−ec

ec+1] + c+ 1 = p (5.22)

Where W [] is the real part of the Lambert-W function. Now that p is defined for both regions c <=
1.25 and c > 1.25 given a specified value for exponent c, the cost factor f t

i can be determined. This
factor is nothing less than the integral of the curve between Dt−1

i (the fatigue damage at the previous
timestep) andDt

i (the fatigue damage at the current timestep), whereDi,t−Dt−1
i = ∆Dt. By adjusting

the exponent value c, both dense costs (c → 0) and sparse costs (c → ∞) can be achieved, as well
as anything in between (c ∈ [0,∞]). Four examples of the function with different parameters for c are
shown in Figure 5.15.

5.6. Fatigue Accumulation 48

Figure 5.15: Examples of the non-linear cost function ecD − p with different parameters for c.

A second way of modelling these unevenly distributed costs is to employ a different version of the
formula, being ecD−1. Here, it is not the parameter p that needs adjusting to ensure the area under the
curve remains 1. Instead, the function is left as-is, and the calculated cost factors f t

i are simply scaled
by the true area under the curve. To do so, first, this ’true’ area under the curve must be calculated:

∫ 1

0

ecD − 1 = (5.23)[
1

c
ecD −D

]1
0

= (5.24)(
1

c
ec − 1

)
−

(
1

c

)
= (5.25)

ec − c− 1 = A (5.26)
(5.27)

When calculating the area under the curve ecD−1 for determining the cost factor f t
i , all that remains

is to divide the obtained area by the ’true’ area A. By doing so, the calculated cost factors are scaled
such that they sum up to 1, as they should. Here, too, by adjusting the exponent value c, both dense
costs (c → 0) and sparse costs (c → ∞) can be achieved, as well as anything in between (c ∈ [0,∞]).
Four examples of the function with different parameters for c are shown in Figure 5.16.

Figure 5.16: Examples of the non-linear cost function ecD − 1 with different parameters for c.

5.6. Fatigue Accumulation
The fatigue damage calculation is done according to the methods dictated by the IEA61400-1 standard,
e.g. using Palmgren-Miner’s linear damage accumulation rule. This was discussed in chapter 4; here,
too, the curve parameters, m and DELu, defining the fatigue curves, were determined. In this section,
the calculation rules for determining fatigue damage and accumulation are briefly and explicitly repeated
for completeness.

The surrogate in the environment infers, given inflow conditions and yaw angles, the five DEL loads
for each of the components j for each of the turbines i. This DEL is defined at 1Hz; together with a
timestep of 10 minutes, this means 600 cycles of the given DEL load are added as fatigue damage.
Each timestep t, for each component j in each turbine i, the following calculations are done:

5.7. Reward Function 49

N(DELt
i,j) =

1(
DELt

i,j

DELuj

)mj
(5.28)

∆Dt
i,j =

600

N(DELt
i,j)

(5.29)

Dt
i,j = Dt−1

i,j +∆Dt
i,j (5.30)

Furthermore, when a component is in the process of being replaced, no damage is accumulated
for said component. Note that in the case stochastic variables are used for DELuj , it is sampled from
a distribution at the beginning of each new replacement for component j.

5.7. Reward Function
The reward function encapsulates both the money earned through energy production as well as the
costs incurred due to maintenance. The maintenance costs cti,j at each timestep t for component j in
turbine i were already defined in section 5.5. What’s left is to define the money earned through energy
production each timestep.

The GNN surrogate provides for each timestep t and each turbine i the power produced, P t
i . How-

ever, to calculate the profit due to energy production, the energy yield in MWh needs to be determined;
after all, the electricity prices are defined as units per MWh. To determine the amount of energy that
turbine i has produced in timestep t, its power must be multiplied by 1000 to convert it toW and further
multiplied by 600 (number of seconds each timestep). Finally, it must be divided by 3.6e9 to obtain the
energy yield in MWh. This can be simplified to the following formula:

Et
i =

P t
i

6.0e3
(5.31)

To then determine the profit due to energy production, it can simply be multiplied by the electricity
price per MWh at timestep t, Rt. This yields, for all turbines i at timestep t, the profit pti. Given the
profit per turbine pti and the maintenance cost per component, per turbine cti,j , the reward function then
becomes:

rt =
∑
i

pti −∑
j

cti,j

 (5.32)

5.8. Observation Space
The observation space dictates what variables the agent observes and can be used for decision-making.
The state sti is defined for each turbine i ∈ 0, 1, ..., N − 1 at each timestep t ∈ 0, 1, ..., T − 1. For
reinforcement learning, it is essential to provide enough information in the observation for the agent
to make well-informed decisions. Since maintenance is explicitly considered in the environment, the
damage states Dt

i,j of component j are part of the observation. Note that perfect knowledge of these
damage states would be unrealistic; this will be discussed in chapter 8. Furthermore, the free-stream
wind conditions (wind speed V t

m, wind direction ϕt, turbulence intensity It and shear exponent αt) are
required to infer the wake effects present in the farm. Additionally, the price of electricityRt is important,
as high prices could justify more risky yawing strategies. Finally, since the end goal is to model the
environment with a finite horizon, the fraction ηt of the time horizon that passed is also important. This
means that there are 11 variables for each turbine, yielding a total observation of size 11×N . A single
vector sti of that matrix, e.g. for a single turbine, is as follows:

5.9. Chapter Recap 50

sti =

V t
m

ϕt

It

αt

Rt

ηt

Dt
i,br,fw

Dt
i,br,ew

Dt
i,tt,yaw

Dt
i,tb,ss

Dt
i,tb,fa

(5.33)

Since the wind farm can inherently be represented as a graph, such as the case for the farm-level
GNN surrogate, it also makes sense to include a graph-like observation of the environment. Especially
when wake effects are present, the topology of the farm has a significant impact on how wake effects
propagate through the farm and how individual turbines influence each other. It is thus very logical
that this geometrical information might benefit the agent’s decision-making process. This opens up
the possibility of using GNN-based agents in reinforcement learning. Constructing this graph-like ob-
servation actually allows many of the features of the surrogate’s graph to be reused. To start with the
graph observation, the farm-level surrogate’s nodes, edges (connectivity) and edge features can be
directly copied. This yields a fully connected graph with edge features already present. All that’s left
is to encode the observation space defined earlier to the nodes; this is simply done by extracting each
turbine’s state vector and adding it as a feature vector for the respective node on the graph. Similar to
the input embedding in Figure 3.10 used in the farm-level surrogate, the observation embedding then
becomes as shown in Figure 5.17.

Figure 5.17: Embedding of observation of the environment on a graph, reusing edge features and connectivity from the
farm-level surrogate.

5.9. Chapter Recap
This chapter covered the construction of modules that will work alongside the farm-level surrogate
model to form the wind farm simulation environment. Suitable techniques and datasets were chosen
to obtain models for the sampling of wind conditions and electricity prices in sections 5.3 and 5.4,
respectively. Furthermore, a maintenance model was constructed that maps the damage states of
components, or increments thereof, to maintenance costs. The accumulation of fatigue damage was
formalised given the fatigue theory covered in the previous chapter. Finally, the defining of the reward
function and observation space concluded this chapter. To answer the sub-question How can the
environment be constructed in which the reinforcement learning agent is trained, to accurately represent
a realistic wind farm?: through Markov-Chains for wind sampling, time-based values for electricity
prices, fatigue accumulation with Palmgren-Miner’s rule and maintenance costs based on damage.
With the environment now done and ready, the next chapter can proceed with the second stage of this
thesis: the training of controllers using reinforcement learning within the environment.

6
Multi-Agent Reinforcement Learning

Now that the environment is constructed, this chapter will proceed towards the next stage of this thesis.
First, the control problem is formulated in section 6.1. Next, section 6.2 covers the selection of a suitable
RL algorithm and corresponding model architecture. section 6.3 then covers baseline removal, an
essential technique used to ensure stable learning of the agents. Finally, section 6.4 highlights some
other techniques used in the training process and provides an ablation study to show how each of the
applied techniques, including baseline removal, contributes to observed performance.

6.1. Control Problem Formulation
The reinforcement learning algorithm is concerned with the optimisation of the cumulative reward R
over each episode. Based on the state st of the environment at timestep t, the agent takes an action
at containing the yaw angles for all turbines in the environment, according to a policy π. It receives a
reward rt, based on a combination of costs ct and profits pt:

Figure 6.1: Diagram of the Markov Decision Process

The agent must learn to find the (near) optimal set of parameters θ for π, such that the policy π∗
θ

maximises the expected cumulative reward R over each episode of length T . The discount factor γ
discounts future rewards.

π∗ = argmax
π

E

[
T∑

t=0

γtrt

]
(6.1)

The RL problem is therefore defined as the tuple ⟨S,A,R, P, γ⟩ with the state-space S, action space
A, reward function R, transition function P implemented by the environment and discount factor γ.

6.2. Algorithm Selection
When it comes to reinforcement learning, there are many frameworks and algorithms from which to
choose. Given the continuous nature of both inputs and outputs, an algorithm capable of inferring con-
tinuous actionsmust be chosen. Proximal Policy Optimisation (PPO) has historically proven to be a very
capable algorithm that can deal with continuous action spaces (Mahmood et al., 2018; De La Fuente

51

6.2. Algorithm Selection 52

and Guerra, 2024); furthermore, it is one of the most widely used algorithms for RL optimisation. Given
the multi-agent nature of the problem, the next major decision to make is the training and execution
paradigm. Multi-agent reinforcement learning allows both centralised and decentralised training and/or
execution, fundamentally differing in how the agent(s) are designed. These training paradigms are
explained in section 2.3. In general, the argument against using a CTCE paradigm is the algorithm’s
scalability with regard to the growing joint action space of all the agents combined. Furthermore, some-
times it can be impractical in reality to perform the decision-making through a central controller, as would
be the case with CTCE. Instead, many works propose using the CTDE paradigm, moving execution to
the individual agents whilst retaining the power of centralised learning. In this environment, however,
a reasonable assumption is that centralised execution would not be a constraint as wind farms are
already generally centrally controlled. Theoretically, CTCE should lead to higher performance, given
the fact that information is perfectly shared through the network. As such, the CTCE paradigm will be
used initially on a smaller farm with a reasonable amount of turbines, and scalability shall be judged
later on to determine whether CTDE-based agents are required to scale it to larger farms.

PPO uses two distinct architecture parts: a policy network and a value network. The policy network
transforms the state observation into an action, essentially forming the decision-making part of the
algorithm. A policy clipping function is added to ensure that the policy network’s subsequent updates
will not result in wildly varying policy behaviours. As the name suggests, updates to the policy are kept
within some proximity of the previous behaviour to ensure more stable updates. The value network,
on the other hand, is used in the advantage function; the latter attempts to answer the question of
whether taking one action is better than taking another. The advantage function is calculated based on
subtracting a baseline estimate V from the discounted sum of rewards Q: V is the output of the value
function, whereasQ follows from experience collected by the agent. The value function V is essentially
the expected sum of rewards when starting at the current state st. An advantage value greater than
zero is indicative of the action resulting in an expected higher cumulative return. The PPO architecture
thus consists of two networks that need to be constructed: the policy network and the value network.
subsection 6.2.2 will cover the design of the agent’s deep learning architecture, which includes this
policy and value network.

6.2.1. Agents
In this thesis, five different agents (or ’policies’) will be constructed and compared with each other.
Three of these will be trained using Reinforcement Learning, whereas the other two are simple heuristic
policies. The following five agents will be constructed and compared:

1. The zero-yaw (baseline) agent - The zero-yaw agent essentially has a policy of π(st) = 0,
thereby always giving a yaw offset of zero to all turbines. It can be considered the ’do-nothing’
policy and serves as an example of what most wind farms nowadays will use.

2. The random agent - The random agent chooses a random yaw angle in the range [−30,+30]
for each of the turbines at each timestep. It serves as a simple reference of what random actions
would mean for the farm’s performance.

3. The greedy agent - The greedy agent optimises for power only; the ’greedy’ part comes from the
fact that it ignores component degradation due to loads and, therefore, only greedily optimises
power. It effectively removes the cost ct from the reward function defined in section 5.7. The
majority of papers covered in section 2.4 used this ’greedy’ technique of power optimisation.

4. The risk-averse agent - The risk-averse agent does not think about power at all and only consid-
ers component degradation. It attempts to minimise the degradation of components at all costs
to ensure longer fatigue lifetimes. It removes the energy production profit pt from the reward func-
tion defined in section 5.7 and uses the standard evenly distributed dense costs from section 5.5
to model degradation.

5. The informed agent - The informed agent optimises for power but also includes the cost of
degradation in the reward. This is the default case highlighted in section 5.7, where both profits
through energy production and costs due to fatigue degradation are included. It uses the evenly
distributed dense costs from section 5.5. It is an adaptation of the works in the last section of
section 2.4, replacing the arbitrary weights for power and loads with both terms expressed in
monetary value as outlined in section 5.7. This agent effectively optimises long-term wind farm
profit by considering all factors involved.

6.2. Algorithm Selection 53

6.2.2. Agent Architecture
Architectures typically employed in RL are based on conventional neural networks or built on transformer-
based models. However, given the importance of farm topology and its relation to the incoming wind,
a GNN-based architecture makes much sense in this problem. Recently, the usage of such a graph-
based architecture was demonstrated by Sheehan et al. (2024), indicating initial promising results. By
explicitly encoding farm topology in the input of the architecture, it no longer needs to implicitly learn
these relations as part of its training process. This can essentially boost training efficiency and shift the
’focus’ of learning more to directly optimising actions. In section 5.8, a graph variant of the observation
was already defined and derived, meaning it can directly be incorporated into a possible GNN inside the
agent. The question then becomes how node and edge features are encoded, how graph convolution
takes place and how actions are inferred from the output embedding of the graph.

Taking inspiration from the GNN surrogate developed in chapter 3, an encode-process-decode
paradigm can be used. The problem at hand is very similar to the physical variable inference problem,
requiring implicit modelling of the wake interactions between the turbines given the inflow conditions.
As such, node and edge features are encoded on the graph using a 2-layer MLP encoder. The same
GNN-type block, GEN, is used for graph convolution to process and propagate information over the
graph. This creates a new graph embedding, yielding a new latent vector for each node on the graph.
This combined encoding and processing step can be thought of as a state encoder and can potentially
be shared between the value function and policy. The final part of the architecture is the transformation
of the obtained hidden encoded state into the required outputs, being the parameters characterising
the action distributions and the state-value function output.

To obtain the vector of actions, each node’s latent vector is fed through a 2-layer MLP decoder, each
outputting a mean and standard deviation of a normal distribution. During training, actions are sampled
from these distributions to facilitate exploration; during inference, solely the mean is taken. All actions
are then stacked to obtain the final action vector. For the value function, node pooling is used to obtain
a single-vector graph representation by taking the mean along the node dimension. This is fed through
a 2-layer MLP decoder to obtain a single-value function output. The former is called the policy head of
the architecture, and the latter is the value head. The architecture is shown in Figure 6.2. Note that the
first two steps, node & edge encoding and message passing, can be shared between the policy head
and value head as a shared state encoder.

Figure 6.2: Overview of the agent’s GNN architecture.

6.3. Baseline removal 54

6.3. Baseline removal
The random processes in the environment, such as sampling wind conditions or electricity prices, in-
troduce a lot of variance to the episodes encountered by the reinforcement learning agent. A single
policy might, under various random circumstances in the environment, obtain rewards with a very high
variance. Consequently, similar behaviour can result in very dissimilar rewards: the value of rt does not
strictly reflect the performance of a policy π, as it is also dependent on other processes in the environ-
ment. Such high variance in both environment and obtained rewards can destabilise training updates
as the value function has a hard time correctly predicting future rewards, furthermore causing unstable
policy updates. Dong et al. (2021) found similar problems in their work on RL for wind farm control,
arguing that it is a significant training problem. The question then becomes how this variance can be
reduced in order to stabilise training without introducing a bias that would change the underlying optimi-
sation problem. Historically, this has been the topic of variance reduction techniques in reinforcement
learning (Greensmith et al., 2001; Mao et al., 2019).

In order to reduce this variance, a baseline value can be removed from the reward obtained at
each timestep. More specifically, a state-dependent baseline b(st) can be removed (Schulman et al.,
2018). Interestingly, subtracting such a state-dependent baseline from the reward function does not
introduce a bias whilst significantly decreasing variance, as long as it is not a function of the action at
taken (Seita, 2017). A logical choice for a baseline is the zero-yaw policy, which brings the additional
benefit of ensuring the reward signal directly indicates how much better the trained policy is compared
to the default policy. The baseline value b(st), therefore, becomes the reward rt the zero-yaw policy
would have achieved during the same timestep. Since the stochasticity due to random processes in
the environment affects the baseline as much as it would the agent, the reward signal gives a measure
of relative performance, which can be assumed to have significantly less variance. Given the original
reward from the environment r(st) and the baseline reward at the same timestep b(st), the transformed
reward with baseline removal becomes as shown in Equation 6.2. The effectiveness of this technique
will be investigated and discussed in subsection 6.4.1.

r′(st) = r(st)− b(st) (6.2)

6.4. Training
Aside from baseline removal, several more techniques can be applied to ensure a more stable training
process. Similarly to baseline removal, their effectiveness will be investigated in subsection 6.4.1. The
following three adjustments are made:

1. Observation normalisation - All observations are normalised before being fed into the agent’s
network(s). Similar to supervised learning, networks perform better if the relative magnitudes of
all input parameters are in the same range. Therefore, each variable v in the observation space is
normalised according to v−vmin

vmax−vmin
, where vmax and vmin are the maximum and minimum values

of v respectively. This ensures each variable in the observation space is in the range of [0, 1].
2. Action normalisation - The same principle applies to the output of the policy, e.g. the action

space. All yaw angles, being between [−30,+30], are normalised to a range [0, 1]. They are
transformed back into the ’true’ range when they are returned to the environment.

3. Reward scaling - Reinforcement Learning works better if the episode-wise rewards are not ex-
cessively big; this can cause unstable updates to the policy or value networks. As such, all
rewards are scaled such that the per-episode sum of rewards is close to 1. For the 16-turbine
farm case in subsubsection 7.3.2.1, all rewards are scaled by a factor 3840.

6.4.1. Training Technique Ablation Study
The aforementioned techniques in section 6.3 and section 6.4 all contribute to a stable and efficient
training process. An ablation study is performed in this section to highlight the importance of each of
these techniques. The training curves of various setups are shown in Figure 6.3. Each curve presents
the mean and standard deviation range of three runs at the given setup. All runs were done using
the ’greedy’ objective, e.g. with only power optimisation as the goal. The abbreviation MLP stands
for the usage of a regular Multi-Layer Perceptron architecture, whereas GNN indicates the usage of a

6.5. Chapter Recap 55

Graph Neural Network architecture. Furthermore, BR indicates the usage of Baseline Removal and
NORM indicates observation, action and reward normalisation. Note that runs without baseline removal
and normalisation had their rewards adjusted in post-processing to match the range of the other runs;
this transformation simply involved removing the baseline reward and normalising it like it would have
done in the other runs.

From the figure, it becomes evident that baseline removal is essential for the correct functioning of
the algorithm. In fact, the runs without using baseline removal seem to not learn at all and likely stay
stuck with the original randomly initialised weights of the MLP network. This network is initialised such
that the outputs are centred around zero, meaning it tends to choose actions very close to the baseline
zero-yaw policy. In some cases, it might thus slightly outperform the baseline, whereas in others, it
under-performs. The rewards returned by the environment are too noisy to update the network correctly,
and as such, training performance deteriorates, resulting in a total lack of learning. This also aligns
with the hypothesis by Dong et al. (2021).

Introducing baseline removal ensures that learning at least starts to happen, albeit slowly and with
a lower performance ceiling compared to the MLP+BR+NORM and GNN+BR+NORM runs. Further introduc-
ing the normalisation step allows the agents to achieve a greater performance. Finally, introducing
the GNN architecture ensures faster convergence, as certain geometrical relations do not have to be
learned implicitly inside the network but are encoded explicitly in the input. Note that the GNN ar-
chitecture runs, over the same 24-hour runtime, could only run for two-thirds of the timesteps due to
computational constraints. Both the MLP+BR+NORM and GNN+BR+NORM converge to the same final training
reward. However, as will become evident later, the GNN architecture has some benefits compared to
the MLP architecture. This will be discussed in subsubsection 7.3.2.4. All in all, baseline removal is
especially essential for effective learning; normalisation significantly increases performance, and the
GNN architecture allows for more efficient timestep-wise learning.

Figure 6.3: Training curves of runs with and without training techniques.

6.5. Chapter Recap
This chapter covered the setup of the reinforcement learning problem. First, the problem was formu-
lated and a suitable RL algorithm was chosen. Next, a suitable model architecture for the agent was
picked and constructed. Several techniques to improve learning were then presented, including a vari-
ance reduction technique called baseline removal. Finally, an ablation study was done to highlight the
performance improvements that each training technique brings. Important is to note that from here on,
agent refers to individual fully centralised controllers, e.g. neural network controllers. The multi-agent
system, with multiple turbines (’agents’), is controlled by a single actor or agent. To answer the sub-
question How can the architecture of the reinforcement learning agent be designed for effective wind
farm control, and what methodologies should be used in training to ensure efficient learning?: using
PPO with a graph-based architecture for the agent, and using variance reduction and normalisation
techniques for reward signals. Now that the training setup is ready and training runs efficiently and
effectively, the next chapter can proceed to evaluate the performance of the trained agents.

7
Policy Analysis

This chapter presents the evaluation of the agents trained using the Reinforcement Learning setup de-
fined in the previous chapter. First, some Key Performance Indicators (KPIs) are defined in section 7.1;
these are used to summarise the performance of the agents. Next, section 7.3 highlights the results
of training and showcases various analyses of the performance of the trained agents. This includes
an analysis of both an infinite horizon, as well as a finite horizon case; the difference between these
two is highlighted in subsection 7.3.1. Furthermore, a generalizability study is performed to investigate
whether the trained agents can generalise across farm topologies.

7.1. Key Performance Indicators (KPI)
To assess the performance of the trained agents, it is useful to define some KPIs. KPIs provide a single
value with which the performance of several policies can be easily compared. For this, the following
KPIs are defined:

• Average Turbine Power (ATP) - The average power produced by a turbine in the farm over a
given time period. A higher value indicates better energy production.

• Average Turbine Cost (ATC) - The average maintenance cost for a turbine in the farm over a
given time period. A lower value indicates fewer turbine costs.

• Average Turbine Reward (ATR) - The total sum of profit obtained through power production
minus the maintenance costs incurred. It is the ’true’ financial balance. A higher value indicates
a better net profit.

• Cost Of Energy (COE) - Defined as the total maintenance cost divided by the total amount of
kWh energy produced over the same period. It can be thought of as the price paid to generate
each kWh. A lower value indicates better financial performance.

• Mean Time Between Failures (MTBF) - Defined as the mean time between failures of each
component. In this environment, given the maintenance policies run components to failure, it is
equal to the mean lifetime of each component. A higher value means longer lifetimes.

7.2. Layouts
Three different layouts will be used during training and evaluation; these are shown in Figure 7.1,
Figure 7.2 and Figure 7.3. The Lillgrund and Horns Rev layouts are based on real-life wind farms.

7.3. Results
In this section, the results of training and evaluating the various agents in the environment are presented
and discussed. Two cases will be discussed: the ’infinite’ horizon case, and the ’finite’ horizon case.
The difference between these two will first be discussed in subsection 7.3.1. Next, subsection 7.3.2
encapsulates all training and evaluation done on an environment with effectively an infinite horizon.
This includes investigating RL training and evaluation on the 16-turbine farm in subsubsection 7.3.2.1,

56

7.3. Results 57

Figure 7.1: 16-turbine grid-aligned wind
farm layout.

Figure 7.2: Layout based on the
Lillgrund wind farm.

Figure 7.3: Layout based on the Horns
Rev wind farm.

the Lillgrund farm in subsubsection 7.3.2.2 and the Horns Rev farm in subsubsection 7.3.2.3. Further-
more, in subsubsection 7.3.2.4, the ability of the trained agents to generalise to other farm layouts is
investigated and evaluated. Finally, subsection 7.3.3 investigates the effect of evaluating the agents
on a more realistic finite horizon environment with sparse costs.

7.3.1. Finite vs Infinite Horizon
There are two assumptions that can be made about the optimisation horizon of the reinforcement learn-
ing problem. The first case that will be covered is the infinite horizon case. It is concerned with optimis-
ing an objective function without explicitly considering a limited farm lifetime, essentially optimising for
optimal static wind farm control. In the case of an infinite horizon, the expectation of the sum of sparse
(realistic) costs is the same as the expectation of dense costs. As the time horizon approaches infinity,
the costs incurred under either cost model within the same timeframe will be approximately identical.
This is because the fraction of cost incurred under the final component replacement, which might only
be utilised for a small time period, is insignificant compared to the rest of the simulation time. Conse-
quently, the difference between the sparse cost model (not yet incurring cost for the final component)
and the dense cost model (already incurring cost based on usage) is comparably small. This assump-
tion can be further analytically proven by examining the worst-case scenario of deviation between dense
and sparse costs, where a component is just on the end of the nth fatigue lifetime at the end of the hori-
zon. The sparse cost model would have ensured that n− 1 replacements have been paid for, whereas
the dense cost model would have ensured that (approximately) n full replacements have been paid
for. The difference between the two would be one component replacement cost; however, the relative
difference between the total costs of both models is cdense−csparse

csparse
=

(n)·Creplace−(n−1)·Creplace

(n−1)·Creplace
= 1

n−1 .
Furthermore, limn→∞

1
n−1 = 0. In this case, modelling the costs as dense costs hardly changes the

underlying problem. It is thus safe to assume that the infinite horizon case can effectively be mod-
elled as a short-term optimisation using dense costs, finding the optimal trade-off between component
degradation and power optimisation. The policy is static with reference to wind farm age. This has the
additional benefit of ensuring more frequent feedback for the agent, ultimately causing more stable and
simpler learning of the optimal policy.

Assumption 7 For the infinite-horizon case, the maintenance costs can be modelled as a dense, pay-
per-use function based on fatigue damage accumulation without changing the underlying optimisation
problem compared to sparse, pay-per-breakdown costs.

When moving to a finite horizon case, the optimisation horizon is fixed at a certain length. This can
be, for example, a 30-year window in which the farm is expected to be in use before full replacement.
In this case, the dense cost model does not provide the discrete steps in maintenance costs which
would otherwise allow for strategic planning of component failures. This could mean moving entire
replacements just outside the optimisation horizon to save on large amounts of maintenance costs.
Here, the sparse cost model would be the only realistic model and the assumption made above would
no longer hold. In this thesis, the infinite horizon case is investigated and solved to obtain a static policy
that maximises revenue regardless of the optimisation horizon. Note that the fixed episode lengths do

7.3. Results 58

not change the infinite horizon assumption, as the inherently static policy means optimising for a shorter
episode is equally as optimal as optimising till infinity. It is essentially optimising as if each episode was
placed in sequence. The number of episodes used during training is there to improve diversity in
encountered environmental conditions. The infinite horizon case is investigated later by evaluating the
finite-horizon agents in it. Anyhow, in the following section the infinite horizon case with the dense cost
model is investigated first.

7.3.2. Infinite Horizon
The infinite horizon optimisation problem is solved in this subsection for several objective functions.
Each episode during training is 1000 timesteps long or approximately one week of simulated time.
Each episode is assumed to be terminal, e.g. the agent learns to optimise for the one-week horizon;
due to the assumption that wasmade earlier, this should not change the problem at hand. Each episode
is initialised at a random point in the year to promote seasonal diversity and, thereby, variability in the
encountered wind conditions and electricity prices. Table 7.1 highlights the hyperparameters used for
the reinforcement learning algorithm. Since episodes are finite, a discount factor of 1 is chosen. A low
entropy coefficient is picked to introduce exploration, without destabilising training. The learning rate,
batch size, clip parameter and architecture hyperparameters were tuned manually to yield the highest
average reward at the end of training.

Parameter Value
Shared value/policy encoder False
Node feature dimension 11
Node encoder layer dimensions [64, 64]
Node encoder activation function Tanh
Node latent dimension 64
Edge feature dimension 3
Edge encoder layer dimensions [64, 64]
Edge encoder activation function Tanh
Edge latent dimension 64
GNN layer type GEN
GNN layer aggregation SoftMax
Number of GNN layers 3
Policy head hidden layers [64, 64]
Policy head activation function Tanh
Policy head output dimension 2
Value head pooling method Mean
Value head hidden layers [64, 64]
Value head activation function ReLu
Value head output dimension 1
Learnable Parameters 152,003
Learning rate 0.0001
Batch size (timesteps) 10000
Episode length (timesteps) 1000
Minibatch size (timesteps) 1000
Gradient descent iterations 20
Policy clip parameter 0.1
Entropy coefficient 0.001
GAE Lambda coefficient 0.1
Discount factor 1.0

Table 7.1: Overview of model architecture and hyperparameters for infinite-horizon reinforcement learning.

7.3.2.1. 16-turbine Case
In these first runs, the environment uses the 16-turbine layout as the wind farm to optimise for. Each
of the agents was trained five times with different seeds; the training curves are shown in Figure 7.4,
Figure 7.5 and Figure 7.6. Out of these five runs, the best agent is taken for each objective to use
for evaluation. Evaluation takes place over 200 randomly initialised episodes, all five agents running
with the same 200 different seeds. Each episode is 1000 timesteps long and runs with the dense cost
model to provide cost statistics for the infinite horizon case, which - as was assumed earlier - can be
modelled as such. The financially-oriented KPIs - ATP, ATC, ATR and COE - are shown in Figure 7.7,
Figure 7.8, Figure 7.9 and Figure 7.10 respectively.

7.3. Results 59

Figure 7.4: Training curve(s) of the
naive agent with a one standard
deviation confidence interval.

Figure 7.5: Training curve(s) of the
informed agent with a one standard

deviation confidence interval.

Figure 7.6: Training curve(s) of the
risk-averse agent with a one standard

deviation confidence interval.

Economic Analysis From these figures, it is evident that the random policy underperforms in power
production compared to the zero-yaw baseline, with a relative difference in the order of a few per
cent. To explain the relatively low loss in power production, it is essential to consider the conditions
under which the surrogate models were developed. In section 3.3, the turbine-level model was de-
veloped based on OpenFAST simulations that inherently included an automatic pitch controller. This
pitch controller aims to control blade pitch to ensure the turbine operates as closely to ideal conditions
as possible, thereby extracting the most power out of the wind as possible. Under yawed conditions,
this controller can increase pitch angles in an attempt to counteract the decreased wind velocity and
swept area due to projection on a misaligned turbine. As such, it can mitigate a significant amount of
the yaw losses that would have otherwise occurred without using a pitch controller. Despite what may
seem like a disastrous policy - setting yaw angles at random - the pitch controller helps to minimise the
losses, resulting in only a few per cent of power loss. These mitigating pitch actions combined with the
yaw misaligned do, however, result in a significant increase in fatigue degradation, which is reflected
in the nearly 60 per cent increase in maintenance costs. Consequently, both the total reward and cost
of energy suffer from this.

The power optimisation agent performs excellently in power production, achieving a nearly 1.5 per
cent increase in power on average. Furthermore, power production increased by as much as five per
cent in some episodes. However, similar to the case with the random agent, a significant increase in
component degradation is visible. Compared to the random agent, however, it is able to extract more
energy out of the farm, at least counteracting the increased damage costs to a certain extent. Still, look-
ing at the sum of profits and expenses, the power optimisation agent underperforms compared to the
zero-yaw baseline. The net result is effectively an increase in the cost of energy and a decrease in rev-
enue. The informed agent, however, aims to minimise this cost of energy directly or, more specifically,
maximise the average turbine reward. Whilst doing so, it seems to lose out on some power production
in favour of minimising damage. It seems like certain yaw angles, which are effectively not beneficial
for wake steering and power optimisation, are instead very beneficial for damage minimisation. This
is indeed reflected in the maintenance costs, which it is able to decrease by as much as fifty per cent.
This, in turn, increases the average return and, likewise, decreases the cost of energy. Interestingly,
the risk-averse agent achieves very similar results compared to the informed agent. Though the in-
formed agent sees a slightly higher power production, which in both cases still lacks compared to the
zero-yaw baseline, the risk-averse agent does marginally better in cost minimisation. The net result is
a lower turbine reward but an almost identical cost of energy. Despite similar CoE, the informed agent
simply produces more energy and, consequently, yields a higher revenue.

Lifetime Analysis Furthermore, the average lifetime of each component can be assessed with the
Mean Time Between Failures (MTBF) statistic. This is shown in Figure 7.11. Effectively, this should
reflect the changes in maintenance cost shown in Figure 7.8, as the cost is linearly related to damage.
Indeed, an approximately 22-year lifespan for all components of the zero-yaw baseline agent can be
observed. This is logical, as the fatigue degradation parameters were tuned in chapter 4 to match
22 years on average. The random agent sees very similar blade-area lifetimes but also significant
differences in tower-area lifetimes. The yaw system seems to experience fewer loads due to a different
distribution of aerodynamic loads on the blades. When it comes to tower loads, a large discrepancy
can be seen in both fore-aft and side-to-side loads. Yawing the turbine causes the distribution of loads
to change, as yawing essentially causes the direction of the loads on the tower top to change. Whereas
under zero-yaw conditions, the tower experiences mainly fore-aft moments, many of these moments

7.3. Results 60

Figure 7.7: Per-turbine average power relative to baseline
(zero-yaw).

Figure 7.8: Per-turbine average total maintenance cost
relative to baseline (zero-yaw).

Figure 7.9: Per-turbine average total reward relative to
baseline (zero-yaw).

Figure 7.10: Average cost of energy.

are now offset with the yaw angles in yawed conditions. This causes a prolonged fore-aft lifetime
and a shortened side-to-side lifetime due to their fatigue parameters, which were tuned on zero-yaw
conditions.

The greedy agent, whilst optimising for power, seems to incur more flapwise and edgewisemoments.
Interestingly, the yaw system lifetime is prolonged, which contrasts with the observations from the
random policy. The tower loads, however, show similar behaviour compared to the random policy: more
yaw misalignments cause a shift in the distribution of fore-aft and side-to-side tower loads, leading to
faster side-to-side failure and slower fore-aft failure. The informed agent incurs more flapwise loads but
seems to manage to keep loads about equal edgewise. The ’sacrifice’ of the relatively cheap flapwise
components might be a trade-off to significantly prolong the fore-aft lifetime, as tower components are
substantially more expensive to replace. Different behaviour, however, can be seen for the risk-averse
agent: due to it not considering power production in any way, it does not feel the need to minimise power
loss. This can result in being more conservative with the blades, thereby prolonging their lifetime and
reducing cost. Still, the side-to-side lifetime has decreased, as has the yaw system lifetime. It is worth
noting, also, that both the informed agent and risk-averse agent showed very similar performance in
reducing costs despite having very different MTBF distributions, as is evident from Figure 7.11.

Policy Analysis - Yaw Angles versusWind Direction There are several ways to inspect the agents’
policy for their wake steering control. In Figure 7.12, the yaw angles for three turbines in the 16-turbine
farm under varying wind directions are shown. Interestingly, the risk-averse agent generally chooses
much higher yaw angles than the greedy and informed agents. To explain this behaviour, the load-yaw
relations in Figure 7.13 can be studied. Here, it becomes evident that several loads have a tendency to

7.3. Results 61

Figure 7.11: MTBF as a result of different control policies.

decrease as the yaw angle gets more positive. Given the damage-minimising nature of the risk-averse
agent, it is only logical it tends to look for these global minima and yaw the turbines such that they
operate in this region. The power-yaw curve, which degrades fast as yaw angles increase, plays no role
here as profit (and therefore power) optimisation is not part of the risk-averse agent’s objective function.
Yawing the turbines within this low-load region effectively minimises both loads and significantly steers
wakes, further helping reduce downstream turbulence and, therefore, downstream loads.

Both the greedy and informed agents use smaller yaw angles. Since in both their objective functions,
power plays a role, high yaw angles would quickly lead to a large decrease in profit and therefore in
observed reward. In other words, they are dealing with a more balanced trade-off between yawing for
farm-level optimality and not yawing for turbine-level optimality. Here, the informed agent tends to take
slightly smaller yaw angles in most cases, which matches the idea of certain loads increasing as yaw
angles increase, such as the tower and yaw loads. Interestingly, both agents never choose a yaw angle
of zero, which should seem optimal given that yaw misalignments generally lead to power decreases if
the effects of wake steering are otherwise minimal. To explain this, the power-yaw curve in Figure 7.13
can once again be observed. From this curve, it is evident that the curve flattens out significantly
around a zero-yaw angle. In other words, relatively small yaw angles can be applied without causing a
significant change in power production. This flattening of the curve around the zero-yaw angle results
from the pitch controller’s attempt to minimise the losses of yaw misalignment by adjusting the pitch
angles of the blades. This way, it can effectively, but to a certain extent, minimise the adverse effects of
yaw misalignment at the cost of slightly higher loads. Having a slight yaw angle at all times thus means
two things: an always-present wake steering effect and no significant reduction in produced power.

As for the yaw behaviour relative to the wind direction, there seems to be a discontinuity at zero
degrees. This likely follows from the fact that the angles are represented on a linear scale from 0 to
360, whereas in reality, they would loop around at the end. This cyclic nature of angles is not captured
on a linear scale, and the optimisation problem likely does not provide enough feedback to force the
yaw angles to meet up at either end. There are no clear peaks in yaw angle for each cardinal direction
in which turbines would typically line up relative to the wind, and wakes would be worst. Likely, this is
because the turbines, as mentioned before, already have a few degrees of misalignment on average,
which already ensures a certain degree of wake steering.

7.3. Results 62

Figure 7.12: Yaw policies versus wind direction at I = 0.1 and α = 0.1 with Vm = 8.0 m/s (solid) and Vm = 12.0 m/s (dashed).

Greedy Policy Analysis - Yaw Angles Farm-Wide The yaw angles and power improvements rela-
tive to baseline throughout the wind farm can also be inspected. The yaw angles for the 16-turbine farm
subject to Eastern and Western wind can be found in Figure 7.14 and Figure 7.15, respectively. Note
that the wind directions are slightly offset as the cardinal directions themselves are local minima for
power production, as will be discussed in the paragraph on power improvements versus wind direction.
Generally, a gradient of yaw angles can be discovered that goes from high (upstream) to low (down-
stream). This is logical, as the upstream turbines typically have more downstream turbines where their
wakes will end up. As such, yawing the upstream turbines can have a tremendous impact on total farm
performance. The more downstream the turbine is, the less positive effect a yaw misalignment will
have and, thus, the lower the chosen yaw angles are. These gradients are what would typically make
sense in a wake steering policy, and these observations align with the conclusions drawn by Zong and
Porté-Agel (2021). Furthermore, it is evident that the front turbines suffer a power loss compared to
the baseline, which is then compensated by the improvement of downstream turbines’ performance
to obtain a net farm-wide improvement. The lack of zero-yaw angles, similar to what was discussed
before, is likely due to the power curve flattening out significantly around zero due to the pitch controller

7.3. Results 63

Figure 7.13: Power and loads versus yaw angle at Vm = 8.0 m/s, I = 0.1 and α = 0.1.

adjusting for the effects of yaw misalignment.

Figure 7.14: Yaw angles under Eastern, with Vm = 8.0 m/s,
I = 0.1 and α = 0.1.

Figure 7.15: Yaw angles under Western wind, with Vm = 8.0
m/s, I = 0.1 and α = 0.1.

Greedy Policy Analysis - Power Increase versusWind Direction Furthermore, the power improve-
ment relative to baseline (zero-yaw) can be plotted as a function of the wind direction. This is done
for Vm = 7, Vm = 10 and Vm = 14 m/s in Figure 7.17, Figure 7.18 and Figure 7.19 respectively. It is
evident that the biggest increases in power production happen when the wind comes from any of the
four cardinal directions or any of the diagonals. This can be explained by looking at the farm layout,
where most turbines will sit behind each other in each of those directions. The baseline policy thus
suffers most in these directions, and the biggest power increases are achievable. Interestingly, the
major improvements are shifted a few degrees relative to the aforementioned directions. Instead of the
(expected) improvement at 90 degrees, it rather happens at around 95. This is because if the turbines
line up perfectly, a rather large deflection of the produced wake is necessary to move a portion of the
wake away from downstream turbines. In other words, it takes a large sacrifice (yaw misalignment)
of the upstream turbine to deflect the wake sufficiently out of the way of downstream turbines. Under
’perfectly aligned’ conditions, this relatively large yaw angle might cause a performance decrease that
is too big for the upstream turbine to be balanced out by farm-level gains. Zong and Porté-Agel (2021),
in their research, came to the same conclusion, arguing that full-wake conditions (e.g. direct alignment
of turbines) cause ineffectiveness in wake steering and that the best performance increases are found
in partial-wake conditions.

Another interesting behaviour to note is the decrease in power improvements as wind speed in-
creases. In Figure 7.18 the relative improvements have already begun to decrease significantly, and in
Figure 7.19 they are even gone completely. To explain this behaviour, the wake steering effect under
high wind speeds must be investigated. This is shown for a relatively low wind speed (Vm = 8 m/s) in
Figure 7.20 and high wind speed (Vm = 16 m/s) in Figure 7.21. From these figures, it becomes clear
that at higher wind speeds, the deflection due to yaw misalignments, which form the basis of the wake
steering concept, decreases. In other words, as wind speed decreases, wake steering becomes less
effective and requires higher yaw angles. This is reflected in the results, where wake steering becomes
less and less effective as wind speed increases. However, there is one more reason why wake steer-
ing becomes less effective at higher wind speeds. By inspecting the power-versus-windspeed curve
in Figure 7.16, it becomes evident that above Vm = 12 m/s the power does not change as wind speed
changes. This is the effect of the turbine controller adjusting pitch angles to ensure the turbine operates
at rated power. This effectively means that even if upstream turbines cause a wind speed deficit in the
produced wake, it might still be enough to ’saturate’ the turbine, e.g. the change in wind speed does

7.3. Results 64

not affect produced power. As such, wake steering will provide no benefit, as there is plenty of wind
speed throughout the whole farm despite the wake effects.

Figure 7.16: Power versus wind speed; colouring is based on yaw angle.

Figure 7.17: Power improvement vs
wind direction, at Vw = 7 m/s, I = 0.1

and α = 0.1.

Figure 7.18: Power improvement vs
wind direction, at Vw = 10 m/s, I = 0.1

and α = 0.1.

Figure 7.19: Power improvement vs
wind direction, at Vw = 14 m/s, I = 0.1

and α = 0.1.

Figure 7.20: Flow map at Vm = 8 m/s, I = 0.1 and α = 0.1. Figure 7.21: Flow map at Vm = 16 m/s, I = 0.1 and α = 0.1.

Informed Policy Analysis - Yaw Angles versus Electricity Price The electricity price is part of the
agent’s observation and might be especially relevant for the informed agent. Since the informed agent
acts to optimise the balance between profit through energy production and cost through component
degradation, the price of electricity is explicitly part of the trade-off. To investigate to which extent the
informed agent considers this price, the average yaw angle versus the electricity price can be plotted,
as is done in Figure 7.22. Two interesting behaviours can be derived from these results. On the one
hand, all yaw angles tend to zero as wind speed increases; this is consistent with the conclusion that
was drawn before, where wake steering becomes ineffective at high wind speeds. Thus, having yaw
angles provides no benefit with regard to power production whilst also increasing the loads due to the
yaw misalignment. On the other hand, when wake steering is effective (e.g. at wind speeds around
8 m/s), an increase in electricity price yields an increase in average yaw angles used throughout the
farm. This makes sense, as higher prices mean more benefit from wake steering whilst costs remain
as usual, making it more attractive to use wake steering. As such, higher yaw angles that exploit the

7.3. Results 65

bigger benefits of using yaw misalignments can be observed. Another interesting behaviour to notice
is the tendency of the average yaw versus price curves at 7 and 8 m/s to drop below zero at low prices.
This can have two causes. One option is that at low electricity prices, the policy is to go into damage
minimisation mode as electricity is worth very little compared to the damage the generation causes. As
such, the policy looks for a local minimum for the turbine loads, which might, under certain waked wind
conditions, be at a slight negative yaw angle. The second option is that, since electricity prices are
sampled from a categorical distribution based on real-life data, low prices are very rare, and the agent
has seen very few of them during training. This is further supported by the analysis of prices shown in
Figure 5.12, where electricity prices as low as 10 or 20 rarely occur on average. This effectively means
that during evaluation, the policy could be tested out of the distribution it has seen during training.
Behaviour at such low rates might thus not be entirely realistic and would, in general, rarely occur.

Figure 7.22: Average yaw angle versus the price of electricity.

Informed Policy Analysis - Yaw Angles versus Damage State The damage state D of all compo-
nents of each turbine is part of the observation. However, the damage state itself in the infinite-horizon
case should not affect the policy as it does not directly influence the reward. The cost at each timestep
is determined using ∆D, invariant to the current instantaneous state D. The agent should thus ignore
the damage state during the decision-making process. To investigate this, the yaw angles of each of
the turbines under consideration in Figure 7.12 can be plotted as a function of both wind direction and
damage state in Figure 7.23. Indeed, the policy remains unchanged under changing damage states,
indicating the policy is invariant to the damage state of the turbines in the environment. This is logical,
as there is no reason to change behaviour if the turbine is near failure - the component will be replaced
’free of cost’. All the agent observes is a component which is paid for based on usage, regardless
of the number of replacements. Still, the replacement will ensure a certain downtime of the turbine;
the agent could still attempt to use wake steering strategically to minimise the number of downtimes.
However, the influence these downtimes have on the policy is so minimal that they are not considered,
as is evident from its damage-invariant behaviour. This damage-invariant property is also present in
greedy and risk-averse policies.

7.3.2.2. Lillgrund Case
To investigate training and execution performance on a larger wind farm, the above steps and some
analyses are repeated on the Lillgrund wind farm with 48 turbines. Due to computational memory
constraints, the minibatch size was set to 500. Furthermore, to discourage divergence of the policy
due to it preferring to increase entropy instead, the entropy coefficient was set to 0. All runs were
stopped after 24 hours of runtime, applying the same constraint as was the case for the 16-turbine

7.3. Results 66

Figure 7.23: Yaw angle versus wind direction at Vm = 8.0 m/s, I = 0.1 and α = 0.1, at various damage states. The damage
state is equal for all components in all turbines.

runs. The training curves can be found in Figure 7.24. Note that the training episode reward does not
accurately reflect the true performance of the agent during evaluation, as it might still include exploration
and has not yet converged to a low-entropy (low-variance) policy within the training time.

Figure 7.24: Training curves for the Lillgrund agents.

A very similar trend in results, compared to the 16-turbine case, can be seen in the evaluation
statistics. Figure 7.25 still indicates the greedy agent optimises power by about 0.7%, but causes sig-
nificantly more damage and thereby cost in Figure 7.26. The informed and risk-averse agents manage
to bring down costs, as expected, and reduce the cost of energy. However, what becomes evident by
inspecting the results is that the relative performance increases for each of the agents are not as high
as they were for the 16-turbine case. Despite what one might expect, there is, for example, a lower
power increase. Similarly, the cost of energy in Figure 7.28 is relatively high compared to the perfor-
mance of the informed and risk-averse agents in Figure 7.10. One might expect, however, that these
relative performance increases could be of higher magnitude due to there being more wake effects and
a larger number of downstream turbines at all times.

To explain why this is the case, multiple characteristics and statistics must be inspected. For one,
there seems not to have been a complete and proper convergence of the informed agent during training,
as is evident from the corresponding training curve in Figure 7.24. This observation is the result of a
bigger underlying challenge, which is the difficulty of fully centralised multi-agent controllers to deal
with systems including many agents. As the number of agents grows, the combined observation and
action spaces grow exponentially. This issue is commonly referred to as the ’curse of dimensionality’.
In the 16-turbine case, the agent was able to explore this action space quite reasonably and could
eventually converge to a single policy within a reasonable time. In the Lillgrund case, with 48 turbines
and, therefore, an equal amount of ’agents’, the fully centralised learning paradigm has trouble finding
the optimal policy. This behaviour is commonly seen in fully centralised multi-agent controllers and
proves to be an issue as the number of agents scales. Yet, despite the training issues, each of the
agents is able to improve compared to the baseline in each of their respective objective functions.

7.3. Results 67

Figure 7.25: Lillgrund per-turbine average power relative to
baseline (zero-yaw).

Figure 7.26: Lillgrund per-turbine average total maintenance
cost relative to baseline (zero-yaw).

Figure 7.27: Lillgrund per-turbine average total reward
relative to baseline (zero-yaw).

Figure 7.28: Lillgrund average cost of energy.

7.3.2.3. Horns Rev Case
Similarly to the Lillgrund case, the agents can be trained on the Horns Rev farm with as many as 80
turbines. Here, too, due to computational memory constraints, the minibatch size had to be set to
250. Furthermore, the entropy coefficient was set to 0 to encourage convergence during training.
All runs were stopped after 24 hours of runtime, identical to the training runs for the 16-turbine and
Lillgrund cases. The training curves can be found in Figure 7.29.

From the training curves, it becomes evident that the algorithm has stopped, to some degree, with
learning near the end of the training progress. Reward increases seem to stagnate, and the curves
flatten out. All three curves seem to stagnate at a training reward below that of baseline, though the
training reward does not accurately represent the true agent performance. Looking at the evaluation
statistics for each of the agents, again, very similar trends can be seen compared to the 16-turbine
and Lillgrund cases. The greedy agent is able to optimise power in Figure 7.30 and the informed
and risk-averse agents are able to minimise costs and therefore the cost of energy in Figure 7.31 and
Figure 7.33 respectively. However, it becomes evident that these performances are even worse than
that of the 16-turbine and Lillgrund cases. In fact, there is a downward trend in all these results as the
number of turbines increases. Despite the agent being able to optimise the rewards to some extent,
the more turbines the system has, the harder it gets to explore the joint action space effectively and
find the best policy. There is effectively a growing scalability challenge with the centralised learning
paradigm, where the larger the system becomes, the lower the relative performance increases get.

7.3. Results 68

Figure 7.29: Training curves for the Horns Rev agents.

7.3.2.4. Generalisability
During the construction of the RL agent’s deep learning architecture, no assumptions were made on
the number of turbines and, therefore, on the graph topology. In fact, in theory, the architecture would
function just fine on any number of connected turbines in any topology and connectivity. The question
is, however, whether in the context of wind farm control, using such trained graph-based agents enjoys
the same topology-agnostic properties as the architecture it is built on. In other words, whether the
trained agent generalises to wind farm topologies it has not yet encountered during training. This would
effectively mean that the problems with centralised learning can be circumvented by leveraging the
convergence property in small farms whilst still enjoying performance improvements when transferred
to larger farms. To investigate this, an agent trained on one layout can be transferred to control another
layout, and its performance can be assessed.

In the first experiment, the 16-turbine case controllers are applied to the Lillgrund farm layout. Its
performance under the various objective functions can be seen relative to the zero-yaw policy’s perfor-
mance. Furthermore, the performance of the controllers trained on the Lillgrund layout directly can also
be found in the same figure. Interestingly, these statistics indicate that the 16-turbine controller seems
to generalise quite nicely to the Lillgrund wind farm, confidently outperforming the zero-yaw policy. In
fact, it is even able to outperform the controller specifically trained on the Lillgrund farm. This likely
stems from the fact that the fully centralised multi-agent training paradigm has trouble exploring and
converging to a policy under the larger amount of turbines, as discussed in subsubsection 7.3.2.2. The
16-turbine case did not suffer from this issue and was thus able to converge to a policy just fine. All in
all, the 16-turbine agents are able to achieve nearly the same performance increase as they did on the
16-turbine farm.

Similarly, the 16-turbine controller can be applied to the Horns Rev wind farm layout. Both zero-
yaw and ’Horns Rev’ policies are shown alongside the performance of the 16-turbine policy. Again,
the 16-turbine controller seems to outperform the zero-yaw policy confidently. As was the case in
the generalisability experiment for the Lillgrund farm, the 16-turbine again outperforms the controller
trained specifically on the Horns Rev farm for the same reason as before. The performance increases
are nearly identical for all three wind farms, despite their topologies and number of turbines varying
wildly.

This property of the trained agent to generalise to other farms comes from its graph-based structure.
In the architecture, there is no notion of absolute turbine locations in the farm; instead, all turbine
positions are treated as relative to others. This property is embedded in the edge features, which
indicate relative positions and headings between each other and the wind. As such, the network learns
to determine which relative positions require which actions to optimise the environment reward. When
presented with new and unseen farm layouts, it can apply these rules it has learned no matter the
number of turbines or their positions. As long as relative positions are known, the wake effects are
implicitly considered in the network, and the right actions can be inferred. To investigate the behaviour
of the agents on the new farm topologies, the yaw angles and power improvements of the Greedy agent
under various wind directions can be plotted for both the Lillgrund and Horns Rev farms. In Figure 7.42
and Figure 7.43, the actions taken under the two extreme cases of full-wake conditions are shown. In
both cases, the front row suffers a power loss compared to the baseline, but the turbines downstream
show a power improvement due to the deflected wakes. Furthermore, a gradient of yaw angles is

7.3. Results 69

Figure 7.30: Horns Rev per-turbine average power relative to
baseline (zero-yaw).

Figure 7.31: Horns Rev per-turbine average total
maintenance cost relative to baseline (zero-yaw).

Figure 7.32: Horns Rev per-turbine average total reward
relative to baseline (zero-yaw).

Figure 7.33: Horns Rev average cost of energy.

visible in the farm with upstream turbines typically showing higher yaw angles. The same behaviour
can be seen in Figure 7.45 and Figure 7.44 for the Horns Rev wind farm. There is clearly a trend of
upstream turbines yawing more to cause more wake deflection, thereby sacrificing their own power
production in favour of the production downstream. All cases showed a farm-wide power improvement
of several per cent compared to the zero-yaw baseline.

The question now becomes whether training on smaller farms, which ensures better converging
during training, can be adjusted to better generalise to larger farms. In other words, what can be
changed about the training setup to allow it to generalise better to unseen farms, e.g. make it more
layout-agnostic? How can the generalisability property be leveraged to enable convergence during
training but high performance during inference? One problem that could emerge in training on smaller
farms is the overfitting on the edge features that are present in the farm. The 16-turbine farm presents
very geometrically perfect angles and distances, ones which are unlikely to be seen in more complex
farm layouts. Furthermore, it trains on a farm with nice grid-like layouts, which were also present at
the evaluation. During training, all the agent sees is this single set of edges, and there is no guarantee
that it will extrapolate its behaviour nicely to more diverse graph structures. To tackle this, inspiration
can be taken from training the farm-level surrogate in section 3.4; here, layouts were randomised in
the training dataset. To apply this technique to RL training, the layouts can be randomised after each
episode. To ensure consistency in observation and action spaces, the number of turbines should be
fixed, but the way in which they are arranged can be arbitrary. Note that this is only possible because
the graph-based architecture does not learn policies for absolute turbine locations but rather for relative
locations. This ultimately allows the layout to shift in whatever way, as long as relative positions are
known the right actions can be inferred. Furthermore, the number of turbines is kept at 16 to ensure

7.3. Results 70

Figure 7.34: Per-turbine average power: the transferred
16-turbine agent vs the Lillgrund agent.

Figure 7.35: Per-turbine average cost: the transferred
16-turbine agent vs the Lillgrund agent.

Figure 7.36: Per-turbine average reward: the transferred
16-turbine agent vs the Lillgrund agent.

Figure 7.37: Average cost of energy: the transferred
16-turbine agent vs the Lillgrund agent.

that the convergence of the policies still happens and that the limitations of fully centralised learning do
not constrain the agent. Eight samples of possible wind farms the agent might encounter in its episodes
of training are shown in Figure 7.46.

As can be derived from the training curves in Figure 7.47, all agents still seem to converge to a final
solution. This indicates that the introduction of the random layouts has not destabilised training and
that generalizability, even during training, is very much present. Next, both the agents trained on the
fixed 16-turbine farm, which is denoted 16T, can be compared with the agents trained on the random
16-turbine farms, 16R. This will be done on four new layouts, each of which is purposely chosen to
not explicitly have a perfect grid-like layout and to include some features which might be hard for the
16T agent to generalise to. These layouts are illustrated in Figure 7.48. Evaluation is done in the
same way as was the case before, except each agent is only evaluated on the objective function it
optimised for during training. Furthermore, the COE KPI is shown for all agents. In all cases, the agent
trained on the random 16-turbine layouts outperforms the previous 16-turbine agent when it comes to
power production. It generalises better to wind farm layouts with different turbine spacings and relative
angles. Regarding informed and risk-averse policies, all agents seem to operate very similarly with
negligible differences. In fact, the COE of all these agents is nearly identical. The inability of the 16R
agents to improve on these metrics likely stems from the fact that these policies’ performance increases
are primarily dominated by a reduction in costs, which mostly happens on a local turbine level. The
cost reduction for both the risk-averse and informed 16R policies is slightly worse than that of the 16T
ones. For power optimisation, wind farm topology and relative locations become especially important,
hence the noticeable power increase of the 16R agent which seems to generalise better. The informed
and risk-averse agents, however, benefit mostly from damage-mitigating behaviour at the turbine level,

7.3. Results 71

Figure 7.38: Per-turbine average power: the transferred
16-turbine agent vs the Horns Rev agent.

Figure 7.39: Per-turbine average cost: the transferred
16-turbine agent vs the Horns Rev agent.

Figure 7.40: Per-turbine average reward: the transferred
16-turbine agent vs the Horns Rev agent.

Figure 7.41: Average cost of energy: the transferred
16-turbine agent vs the Horns Rev agent.

which is not as dependent on farm topology. It is thus evident that training on random layouts mainly
helps the power optimisation agent generalise better. However, as evident from the data, due to the
slightly worse cost minimisation, the overall revenue of the informed policy suffers.

7.3.2.5. Comparison with literature
In this subsection, the performance of the agents constructed and trained in this thesis will be com-
pared with the available literature on wake steering and wind farms. This should provide an overview
of whether the produced results align with earlier work and whether they agree on the gains that wake
steering can bring. Since the majority of wake steering literature, of which many are covered in sec-
tion 2.4, solely considers power optimisation, the Greedy agent will first be compared and contrasted
with previous results.

Firstly, it is essential to note that many of the covered papers in the literature review only considered
a very select few wind directions, often only one, which presents the worst-case wake scenario(s)
for the farm. The performance increases quoted in these works are thus only valid for the specific
condition under consideration, which might only occur during a fraction of the year. Anyhow, all works
that explicitly presented statistics on wake steering performance are shown in Table 7.2. Looking at
the statistics valid for selected wind directions (which can be assumed to be the peak performances
for wake steering), the results seem to align well with results found in Figure 7.17. The greedy agent
trained in this thesis was, under conditions that saw aligned turbines and therefore presented the worst
conditions wake-wise, able to see power optimisations in the range of 20%. This aligns well with work by
Dong et al. (2021) and Zong and Porté-Agel (2021). Furthermore, looking at works that quote annual
performance increases like Howland et al. (2019), Gebraad et al. (2017) and Zong and Porté-Agel

7.3. Results 72

Figure 7.42: Yaw angles and improvements relative to
baseline for the transferred greedy agent on the Lillgrund farm
with a wind direction of 45 degrees (aligned with gridlines).

Figure 7.43: Yaw angles and improvements relative to
baseline for the transferred greedy agent on the Lillgrund farm
with a wind direction of 122 degrees (aligned with gridlines).

Figure 7.44: Yaw angles and improvements relative to
baseline for the transferred greedy agent on the Horns Rev
farm with a wind direction of 353 degrees (aligned with

gridlines).

Figure 7.45: Yaw angles and improvements relative to
baseline for the transferred greedy agent on the Horns Rev

farm with a wind direction of 90 degrees (aligned with
gridlines).

(2021), this thesis’ results of 1.5% AEP improvement on average agree very well.
To investigate how realistic the Cost Of Energy (COE) metrics in Figure 7.10, Figure 7.28 and

Figure 7.33 are, they can be compared with some real-life numbers. In research by NREL regarding
the cost of energy of wind energy in 2022 (Stehly et al., 2023), they found that typical commercial-scale
wind turbines in large-scale distributed projects have a COE of around 78 dollars per MWh, of which
11.8 can be attributed to operational expenditure (OpEx). Converted into EUR per kWh, this is a COE
of 0.0108 EUR/kWh. This is very close to the values that followed from the evaluation runs performed
in this chapter. The calculated values here are slightly lower, but that can be explained by 1) the fact
that these numbers only reflect the pure component cost for replacements, and 2) the fact that they are
optimised by the Informed and Risk-Averse agents. Any other operation or maintenance costs have
not yet been considered, which also contributes to the discrepency. All in all, the values are in the same
order of magnitude and are, therefore, seemingly realistic.

7.3.3. Finite Horizon
As mentioned before, the finite horizon case significantly differs from the infinite horizon case. Optimis-
ing for, say, a 20-year wind farm lifetime under realistic costs brings a completely different optimisation
problem compared to finding the best trade-off between component utilisation and power production.
This can be explained by the fact that moving from one component to a new replacement will immedi-
ately incur the complete replacement cost. In contrast, the dense cost model will only penalise based
on usage. In the realistic case, components are paid for in advance rather than based on usage, and
thus, there is a sizeable difference between both cost models. It might, for example, be beneficial to
ensure components fail just outside the considered time horizon, optimising power as much as pos-
sible without causing an additional replacement due to the yawing behaviour. Cost can thus only be
modelled using the sparse cost model, ensuring the step-wise costs allow for strategic influencing of
component lifetime.

It is thus quite interesting to investigate how certain policies perform compared to each other in
these more realistic conditions. The agents trained in the previous section, e.g. the ’infinite horizon’-
agents, can be evaluated on a sparse-cost finite-horizon environment. Each agent is evaluated on the

7.3. Results 73

Figure 7.46: Samples of random 16-turbine layouts.

Figure 7.47: Training curves of the agents trained on random 16-turbine layouts

16-turbine farm for a total period of 40 years, plotting their accumulated total balance of profits and
costs as a function of time. Each agent is evaluated 20 times on the same 20 seeds, and the mean
of the 20 runs is plotted in Figure 7.53. Below the figures is a timeline indicating which of the agents
would obtain the highest cumulative profit if the wind farm were only to be considered up until that
year. Furthermore, the right plot subtracts the cumulative profit of the baseline ’zero-yaw’ agent from
all curves.

As would be expected, the greedy agent quickly surpasses all other agents due to the immediate
effect of power optimisation which is reflected in the resulting profit. Since the impact of fatigue degra-
dation is not yet felt, the greedy agent quickly finds a sizeable lead compared to the others. However, at
around year 10, the components start to fail one by one due to the increased loads caused by the wake
steering actions. Here, it quickly loses its lead and eventually drops below all others. The informed
agent, though initially losing out on profit due to the conservative strategy, enjoys longer component
lifetimes and thus lower costs compared to the greedy agent and baseline. Especially around the time
the baseline’s components start reaching their 22-year design lifetime, the informed agent sees a large
lead over the baseline policy. Interestingly, once the baseline has caught up with the greedy agent in
the first ’cycle’ of breakdowns, the greedy agent sees another lead over the baseline agent. This is due
to both policies having experienced a full breakdown of all components, but the greedy agent having
produced more energy in the meantime. This lead then quickly disappears again as another cycle of
components starts to break down.

The risk-averse agent loses out on profit from day one due to a significantly lower power production.
It is never the most optimal policy to choose as it never surpasses the other policies, at least not within
the 40 years under analysis. However, should the wind farm be in operation for long enough, the risk-
averse policy will eventually lag behind in enough breakdowns to catch up to all the other policies except
for the informed policy. This is due to the fact that the risk-averse policy is optimal for infinite horizon
cases, where the difference between dense and sparse costs can be considered negligible. The same
goes for the informed policy: eventually, it will lag behind in failures, which will end up making enough

7.3. Results 74

Figure 7.48: Farm layouts to test with the 16T and 16R agents.

Figure 7.49: 16T vs 16R agents on Wieringermeer. Figure 7.50: 16T vs 16R agents on Middelgrunden.

Figure 7.51: 16T vs 16R agents on Kriegers Flak. Figure 7.52: 16T vs 16R agents on Anholt.

of an impact to counteract the power loss due to sub-optimal yaw misalignments.
Looking at the timeline of which policies are optimal given what time horizon, it is evident that there

is quite some diversity. As expected, initially, the greedy policy is optimal as all effects of fatigue and
failure can essentially be ignored. However, the baseline policy quickly becomes the best policy for
choosing between lifetimes of 9 to 22 years. At the 22-year mark, its own components start to break
down, whereas the informed policy manages to yet prevent this from happening. In fact, it can go all
the way to approximately 34 years without having accumulated enough failures to once again drop
below the baseline performance. Essentially, in the region just beyond the design lifetime of the turbine
components, a policy that preserves components can manage to postpone failure costs as much as
possible and thereby maximise profit. This will not always be optimal, though; an example is the risk-
averse policy, which also minimises damage but is never the optimal policy. This is because it does not
consider power production and, therefore, loses out on too much energy production. However, in very
long term, both risk-averse and informed policies will once again surpass all other policies once they
lag behind in enough failures. Ultimately, the informed policy will find the best balance between profits
and costs and thereby maximise wind farm net profit.

7.3. Results 75

Paper Power Increase (approx.) Random Wind Farm Size
Howland et al. (2019) 7% (0.3%1) ≈ 6
Fleming et al. (2019) 4%2 √

5
Zong and Porté-Agel (2021) 15.7%2 (1.8%1)

√
3-80

Gebraad et al. (2016) 13%2 × 6
Gebraad et al. (2017) 3.7%1 √

60
Bui et al. (2020) 2-4%2,3 × 15
Dong et al. (2021) 15%2 × 6
Kadoche et al. (2023) 1-6%2,3 ≈ 4-151

1annual average, 2on selected wind directions, 3depending on layout

Table 7.2: Power increases of ’greedy’ agents trained in literature.

Figure 7.53: 40-year analysis of the cumulative profits generated by each policy.

8
Discussion

Following the work in previous chapters, this chapter presents a reflection and discussion on the ob-
tained results in section 8.1. Furthermore, several future research opportunities are presented in sec-
tion 8.2 that can extend the research conducted in this thesis.

8.1. Reflection & Limitations
Optimality Judging from the agents’ behaviour, the yaw angles as a function of wind direction seem
to be relatively smooth lines. Furthermore, the farm-wide behaviour that they show regarding yaw
angles throughout the farm does not perfectly align with results from papers like that from Zong and
Porté-Agel (2021). There, they find that, typically, a perfect gradient of yaw angles in the stream-wise
direction going downstream exists. The results in this work, however, show that this generally is the
case to a certain degree, but not always. In fact, some wind directions show that certain areas of the
farm generally exhibit higher yaw angles. The question thus becomes whether the learned policy is,
in fact, optimal or whether it is some local optimum. What likely seems to be the case is that, due to
there being so many input parameters and layouts it has to generalise, it has to average out in some
areas due to limits in the expressivity of the deep learning architecture. With the number of changing
wind conditions, electricity prices, relative turbine positions and wake effects depending on the wind
direction, it seems very hard to generalise to every condition while maintaining optimality. Generalising
over such a large domain inevitably means compromising on optimality under specific environmental
conditions.

Though each of the agents does see significant improvements in their relative expertise, even when
averaging out over all the input parameters, it is impossible to judge whether they have truly achieved
optimal behaviour. In the previous chapter, the results obtained were compared to those in the literature,
which showed comparable results despite using a different technique and using more randomised and
realistic environmental conditions. The results are promising regardless of this optimality, but knowing
whether a better policy can be learnt can help to determine their relative performance better. One way
of doing this could be to use a gradient descent (or any other optimisation algorithm) to perform one-
step optimisation for the same conditions as the agents and compare their improvements relative to
the baseline. Given enough time, the optimisation algorithm should be able to find the most optimal
action given the current state, which can be assumed to be an upper limit of performance. This is
only possible due to the fact that the infinite horizon problem at hand can be further simplified towards
a single-step optimisation problem. Making this comparison should help shed some light on the true
performance of the trained agents and allow assessment of RL performance.

Loads & Wear The yawing action itself (e.g. the physical movement of the yaw system) can carry a
form of degradation that is not yet modelled in the current environment. Active yaw control for wake
steering requires constant yaw angle adjustment given the changing flow conditions, meaning constant
wear on parts of the yaw system itself. Right now only the fatigue loads on the yaw system are mod-
elled as a result of loads on the tower, but the yawing movement itself might introduce additional fatigue
or even simply wearing down of bearings and/or gears. Traditional wind farms might maintain some

76

8.1. Reflection & Limitations 77

yaw angle set-point based on averaged wind conditions to minimise yaw movement, and as such, this
thesis’ yaw control policies might cause premature failure of certain components. Furthermore, the
environment assumes that any yaw angle can be reached within the timestep, e.g. there is no con-
straint on the speed at which the yaw angle changes between timesteps. Typically, there might be
some maximum rated rate or rotation which must be respected and can, therefore, not be exceeded.
Introducing both of these factors (yaw wear and yaw constraints) to the environment can cause the
agent to take drastically different actions and exhibit much more conservative behaviour. Minimising
yaw wear can encourage the agent to choose slightly suboptimal yaw angles if that ensures less move-
ment is required in total, and constraints on yaw speed might cause the agent to anticipate changes
in wind direction. This would play well with the temporally coherent wind conditions already present in
the environment.

Continuing on the topic of non-modelled sources of wear, the blades do not account for typical types
of erosion, such as that caused by wind or rain. Fatigue failure is not the only cause of premature blade
failures in wind turbines; leading edge erosion also sees a large portion of failure cases (Mishnaevsky,
2022) and cannot be ignored in a complete simulation. The combined effects of erosion and fatigue
cracking might result in an even faster degradation of the blades during operation. It is effectively
reasonably unrealistic to assume the component lifetimes are only dependent on fatigue loads due to
yaw control. In contrast, wake steering might also have an effect on the rate of leading edge erosion.
Adding this to the environment should help make it more realistic with regard to the impact caused by
wake steering.

Furthermore, in chapter 4, the assumption was made that the tower loads (e.g. fore-aft and side-
to-side) could be treated as separate components with individual damage accumulations. Of course,
in real life, these two loads are only truly defined in the rotating frame of reference of the nacelle. The
full tower itself does not rotate as the nacelle does; thus, the fore-aft and side-to-side loads will act in a
rotating frame compared to the tower base. This can be made more realistic by either 1) projecting the
determined loads back into two separate tower-base fixed load directions or 2) combining the two loads
into a single load acting on a single component ’tower base’. In the first case, both directional tower-
base fixed components would have identical fatigue parameters, whereas in the second case, only a
single ’component’ needs tuning. Both options for combining tower base loads are shown in Figure 8.1.
It is important to note that this does not apply to the blade root, as the frame of reference for those
loads is always the same regardless of the nacelle’s yaw angle. Making this change to the tower-base
loads could potentially change the agent’s behaviour with regard to minimising tower damage, possibly
allowing it to act more aggressively towards power optimisation.

Figure 8.1: Methods of adjusting tower loads: combining (left) and projecting into a world-fixed frame of reference (right).

Discontinuity in Wind Direction In the observation given to the agent, the current wind direction is
presented directly as an angle. The same applies to the relative angles encoded in the edges between
the nodes of the graph. Consequently, there exists a discontinuity in the behaviour exhibited by the
agents between 0 and 359 degrees, despite them being close in a polar sense. This behaviour seems
unlogical and somewhat strange, as neighbouring wind directions should cause similar behaviour from
the agents. In order to tackle this, the wind directions and angles provided to the agent should inherently
already include the cyclic characteristic of directions. This can be done by encoding the wind direction
(and any other direction sense) as its corresponding sine and cosine values, which are already cyclic
in nature. Any policy the agent learns will, therefore, also become smooth and cyclic with respect to
the wind direction input. Consequently, any of the observed discontinuities will likely disappear, and
the behaviour at zero degrees will be (nearly) identical to the behaviour at 359 degrees.

8.2. Future Work 78

8.2. Future Work
Finite-Horizon Optimisation In subsection 7.3.3, the implications of using each trained policy on a
finite-horizon problem were investigated. It became evident that certain policies would be optimal for
certain fixed horizons, meaning there was no one best policy that would be, economically speaking,
the best choice. This was a result of the combination of dense profits (e.g. power production delivering
immediate profits) and sparse costs (e.g. replacement costs needing payment solely when a failure
occurs). The sparse cost aspect allows the agent to employ a strategic policy that accounts for the
long-term sparse effects that result from yawing behaviour throughout its lifetime. For example, using
a slightly more conservative yawing policy might ensure components will not end up breaking before
the finite horizon is reached. However, the optimal policy could also be using the most aggressive wake
steering behaviour for power optimisation if that means the increased profit exceeds the additional re-
placement costs that result from it. It is thus safe to assume that an optimal policy exists that maximises
the total net profit for a given time horizon, finding the perfect trade-off between power maximisation
and component breakdowns. This is effectively different from the dense-cost, infinite-horizon case as
costs are no longer pay-per-use but pay-ahead.

Future work could thus include the optimisation for a given time horizon, potentially given some initial
state. This could be applicable in cases where the lifetime of a wind farm is known beforehand, say 25
years, and the operator seeks to maximise the net profit over those 25 years. This effectively comes
down to finding the control policy that considers both short-term effects (immediate power production
optimisation) and long-term effects (postponing breakdowns or increasing them if the resulting power
benefit exceeds the costs). What’s more is that an operator that has been using a wind farm for, say,
25 years can choose to find a policy that optimises for the final lifetime extension of 5 years, given
an estimate of the current fatigue damage states of all turbines. In either case, it is unlikely a ’default’
policy such as Greedy or Informed will yield the best net profit; instead, an agent must be trained to
optimise for the given time horizon and initial condition specifically. Furthermore, it is no longer solvable
with single-step optimisation methods, as optimising for each timestep will ignore the long-term effects
if sparse costs are employed. Power maximisation might no longer be the most optimal policy.

However, one problem that will arise with long time horizons of, say, 20 years is the vast time dif-
ference between cause and effect. Fatigue degradation happens throughout the entire turbine lifetime
and is a result of all actions taken up until the point of failure. It can be tough for an agent to learn that
actions taken at timestep one can have an effect on the costs suddenly incurred by 1 million 10-minute
timesteps later in year 20. This introduces a large credit assignment problem. One way learning can
possibly be made slightly easier is to make use of curriculum learning, making the problem harder as
training progresses. For this, the environment can start with any of the two exponential cost functions
with a parameter c that causes the damage distribution to be evenly distributed. As training progresses,
the environment can then shift the costs towards the end of the component lifetimes by increasing c.
Eventually, the agent should learn that higher damage states cause higher costs, thereby guiding the
agent from the simpler problem (dense costs) to the final problem (sparse costs). Another solution
might come in the form of potential-based reward shaping Ng et al. (1999) or reward redistribution of
sparse and delayed rewards using RUDDER (Arjona-Medina et al., 2019). Furthermore, there is a
clear clash of interests between what is, in effect, immediate rewards of profit through power maximi-
sation and delayed penalties due to component degradation. On the one hand, the ’tactical’ part of the
agent will seek to optimise immediate rewards, whereas the ’strategic’ part of the agent will seek to
explicitly consider when the relatively large replacement costs will occur. Both of these aspects, being
the extremely long time horizon and the clash between tactical and strategic decision-making, make
the problem very hard to solve.

One solution to this problem might come in the form of Hierarchical Reinforcement Learning (HRL).
HRL decomposes a problem into smaller sub-problems which are then composed together using a
composition strategy. More specifically, in this case, the temporal abstraction techniques of HRL can be
leveraged to decompose the complete problem into a tactical agent and a strategic level. The tactical
level has short-term goals in maximising power output, as that provides immediate positive reward.
The strategic level, however, has long-term goals and looks at the long-term effects of component
degradation. Using HRL, both hierarchical levels can then be merged together to optimise for the
combined goals. In the field of multi-agent reinforcement learning, HRL has already seen applications
in cooperative tasks (Ghavamzadeh et al., 2006). Furthermore, recently, Tang et al. (2019) investigated
the use of HRL with temporal abstractions to tackle multi-agent cooperative systems with sparse and

8.2. Future Work 79

delayed rewards. They decompose the problem into a hierarchy of two time scales, where the higher
level considers long-term goals and the lower level attempts to reach these goals. In the context of
the wind farm environment, the high-level metacontroller outputs sub-goals to the lower-level controller,
e.g. to use conservative, aggressive or balanced wake steering strategies. It makes these decisions
based on accumulated damage or projected costs. The lower-level controller then acts based on the
provided goals, applying yaw actions accordingly.

There remain some more difficulties in finite-horizon optimisation. One of them is the baseline
removal, for which a different technique must be invented. In the case of the infinite horizon problem
with dense costs, the cost (and therefore reward) of the baseline policy is immediately known and can
be inferred directly. However, in the case of a finite horizon with sparse costs, this cost cannot be
directly inferred. There is no way to infer from a single timestep what cost should be associated with its
behaviour. This problem is not present for the power production part, as nothing changes with regard
to the baseline removal in the finite horizon case. Still, baseline removal needs a technique to infer the
cost the baseline policy would incur at each timestep in order to work effectively. It cannot be omitted
either, as performing baseline removal on power but not on damage introduces a bias to the reward, as
power becomes relative and damage absolute. Neither can a separate damage stateD be maintained
for the baseline policy as the episode progresses, as it then no longer becomes a state-dependent
baseline because it also depends on all the states preceding it. The difficulty is, therefore, in defining
what baseline cost to subtract from the reward.

Observability In the definition of the environment and its observation space in section 5.8, the as-
sumption was made that the environment is fully observable. This means that all variables that are
provided to the agent for its decision-making process are perfectly known and can be measured as
such. For most of the variables, this is a reasonable assumption to make, for example, for the wind
speed or wind direction. However, it is unrealistic to assume these can be observed for other variables
like the damage states D. In fact, they are not even a measurable physical variable but rather a virtual
approximation of the fatigue state. Yet, the agent observes this variable in its inference process. The
environment should thus not provide the damage states D directly and explicitly as part of the obser-
vation. For the infinite-horizon agents, this will not directly have any impact as they are invariant to it.
Still, finite-horizon optimisation, as discussed in section 8.2, will need some observation of the current
damage state to operate strategically. This can be solved by casting the Fully Observable Markov
Decision Process into a Partially Observable Markov Decision Process (POMDP).

In a POMDP, not all environment states can be directly observed by the agent. Instead, the agent
makes other observations from which the true system state can potentially be inferred. In fact, the
agent constructs a belief state b(st) of the environment based on its best guess of the true system
state. Since it is reasonable to assume that all system states except for the damage state D can be
observed with high accuracy, onlyD needs belief state inference. For this, the agent requires a variable
which can be measured to some extent and from which the damage state can be inferred over time. It is
reasonable to assume that the fatigue damages (DELs) can be approximated, calculated or measured
to some extent. For example, strain sensors can be placed on the blades, or a numerical model can
be used to calculate structural loads based on the local flow conditions. In the environment, this can
be emulated by constructing a probability distribution around the ’true’ calculated DELs, sampling from
that and providing that as an observation for the agent to construct its belief state. In the environment,
the calculated DELs are assumed to be the ’ground truth’ values as they would exactly be in a real-life
system. The sampling from the distributions would be the measurement or approximation uncertainty
of the tools used in practice. The agent can then, for example using an LSTM model, determine the
accumulated damage state D over time. If the fatigue parameters are unknown, the LSTM model can
be trained on the load history of other turbines which have operated till failure before. It can then learn
to approximate the damage accumulation based on the provided measurements of the DELs.

Using this, the agent obtains a combination of state variables (e.g. wind conditions, electricity price,
etc.), and the belief states b(st). Since the belief state will include some uncertainty as it remains an
approximation, the agent will then learn to deal with this uncertainty whilst maximising the wind farm
profit. The problem, now a POMDP, is summarised in the diagram shown in Figure 8.2. Observations
zt from the environment are used to infer a belief state bt, which is kept over time; bt is used to decide on
an action at, which is fed back to the environment. Rather than using the state st directly (as was done
before), only the observations zt are available to the agent. Furthermore, zt can include the fatigue

8.2. Future Work 80

loads that are required to infer the belief state bt and the other variables which were fully observable to
begin with.

Figure 8.2: Diagram of the Partially Observable Markov Decision Process

Gradient-Based optimisation An interesting property of the farm-level surrogate used in the envi-
ronment is that it provides a fully differentiable function for the wind farm simulation. Using PyTorch’s
Autograd capabilities, the gradient of the output with respect to the inputs is known directly. What
this effectively means is that the gradient of power production with respect to the input yaw angles
is known, and gradient descent can be used directly without a point-based approximation of the lo-
cal gradient. Gradient descent can be used on the model directly to find the instantaneous optimal
yaw angle distribution throughout the wind farm with relatively little computational effort compared to
gradient descent methods that have to approximate the gradient at each step. Furthermore, both risk-
averse and informed optimisation can too be solved in a similar way by using PyTorch to calculate
the derivative of the full objective function with respect to the input parameters. It can, therefore, be
interesting to investigate the performance of gradient-based optimisation and the performance of the
trained RL agents to examine whether they are able to achieve similar results. Furthermore, it allows
to investigate whether the RL agents that are transferred from smaller farms to bigger farms through
the generalizability property are anywhere close to optimal behaviour in the larger farm or not.

Furthermore, the GNN-based surrogates themselves can be used outside of the environment for
set point optimisation in real-life wind farms. In fact, the pre-trained surrogates can be fine-tuned using
real-life measured data from wind farms to make their outputs match reality as closely as possible.
Next, gradient-based optimisation can be used to directly optimise the yaw angles in the wind farm.
Quite possibly the observed measurements as a result of its behaviour can then be used to update the
surrogate itself, making it more accurate in the progress. It is then possible to create a wake steering
controller that can make itself more accurate as time progresses. Important to note, however, that
this is indeed single-step optimisation and does not include the limited-horizon optimality that would be
found using the limited-horizon controller.

8.2.1. Decentralised Learning
As became evident when moving from the 16-turbine farm to the 48-turbine Lillgrund and 80-turbine
Horns Rev farm, the fully centralised learning paradigm runs into scalability issues. The exploding
joint action space of all agents combined means the agent has trouble exploring and converging to an
optimal policy. This could be partially overcome by training on small farms, where proper convergence
is known to happen, and transferring the obtained agents to larger farms. Despite their impressive
generalizability, the achieved performance on the larger farms, which was almost as good as on the
16-turbine farm but not quite, indicated that more performance could still be extracted. Effectively, this
means that training on the large farms is likely the only way of truly extracting optimal performance
from each of the agents. Given the scalability constraints of centralised learning, a different training

8.2. Future Work 81

paradigm is necessary.
This is where decentralised multi-agent learning could offer a solution. By training using the CTDE

scheme, information sharing and collaborative training are still achieved whilst keeping action spaces
low for each agent. To still benefit from the graph-based architecture and explicitly encoded topological
relations, a shared state encoder can be shared across agents. More specifically, the state-encoder
section of the agent, including the encode and process steps, performs initial processing, after which
each agent branches off individually. Information sharing can be achieved in two ways: on the one
hand, through the shared encoder, and on the other hand, through a shared critic network. As such,
only a single critic network head branches off the state encoder, whereas each agent branches off with
their own policy head. The architecture would look like what is depicted in Figure 8.3. Since each
agent is no longer working with a large joint action space, exploration should become simpler and the
algorithm could converge to a solution (faster).

Figure 8.3: CTDE architecture suggestion for training on large farms.

8.2.2. Combined Pitch & Yaw Control
Yaw control for wake steering, as covered in this thesis, is not the only way of mitigating the effects of
wakes in wind farms. Other methods include the use of Pitch Control (Lee et al., 2013; Dilip and Porté-
Agel, 2017; Frederik et al., 2020) and Tilt Control (Fleming et al., 2014; Weipao et al., 2016). Pitch
control, which is easily implemented due to the pitching actuators already present in most turbines,
could be combined with yaw control to achieve an even higher degree of wake-mitigating action. It is
thus worthwhile to study whether a wind farm control agent can make use of both pitch and yaw control
to obtain even better farm-wide performance increases. For this, the turbine-level surrogates need
adjusting such that they support pitch angle as input, and consequently theOpenFAST simulations need
to be run without an active controller. After adjusting the farm-level surrogate to include pitch angles
for all turbines and adding pitch angles in the action space, the RL agent can learn to jointly optimise
yaw and pitch angles throughout the farm. This would effectively mean that the turbine pitch control
works in harmony with the yaw control to achieve both the best local and global performance. Certain
combinations of pitch and yaw angles may allow for both a load decrease, as well as wake deflection.
Consequently, the trade-off between power and loads changes and entirely different behaviour might
emerge.

9
Conclusion

This thesis investigated the applicability of graph-based deep reinforcement learning to trainmaintenance-
conditioned wake steering controllers. In the first part of the thesis, a fast, realistic and accurate wind
farm simulation environment was constructed. At the heart of this environment is a fast GNN-based
wind farm simulation surrogate model, building on the work by Duthé et al. (2023), that infers both
wake-affected farm-level and turbine-level effects as a result of the control policy and free-stream wind
conditions. The environment was then augmented with a synthetic wind condition generator based on
Discrete Markov Chains, an electricity price model, a fatigue degradation model based on Palmgren-
Miner’s linear damage accumulation rule, and a maintenance model to determine the costs of compo-
nent degradation. Together, all these components make up the wind farm simulation environment that
models both wake-affected power production and turbine loads. A 10-minute timestep was chosen, and
the assumption was made that all variables in the environment were kept constant within the timestep.
The action space consists of the yaw angles for each turbine, and the graph-embedded observation
space includes wind conditions, electricity price, calendar time and damages for each turbine.

Reinforcement learning is done using the Centralized Training with Centralized Execution (CTCE)
framework, using Proximal Policy Optimisation (PPO) and a graph-based agent architecture. Addi-
tionally, state-dependent baseline removal was added to tackle the high degree of variance in the
environment. Stable learning was further facilitated by action and observation normalisation as well
as reward scaling. An ablation study pointed out that especially baseline removal was a necessary
requirement for stable learning, but all other techniques did help in performance increases too. Next,
five different agents were defined: the zero-yaw baseline (do-nothing) and random policies, and the
Greedy, Risk-averse and Informed policies for power, damage and combined optimisation.

Training started on the 16-turbine wind farm using an infinite horizon assumption, showing good con-
vergence of all three Reinforcement Learning agents. The results showed that the greedy agent can
improve power production by 1.5% on average compared to the zero-yaw policy, with peak improve-
ments of up to 20%. However, due to increased maintenance costs, it experiences a large decrease in
net revenue. Both informed and risk-averse agents decreased costs by as much as 50%. The informed
agent, whilst doing so, also managed to keep power losses low compared to the zero-yaw policy. Both
informed and risk-averse policies manage to reduce the cost of energy significantly from 0.0061 to
0.0025 EUR/kWh. However, the informed agent produces more energy overall, ultimately yielding the
highest total revenue at an increase of up to 20% compared to zero-yaw. Additionally, it is evident
that each policy sees wildly different lifetimes for each component, indicating different behaviours are
used to achieve different objectives. When analysing the greedy policies’ performance under different
wind directions, clear increases in the cardinal and diagonal directions are visible. This is logical, given
the largest adverse effects of wakes under these conditions. Interestingly, the directions of the largest
improvement are offset from the cardinal and diagonal directions by a few degrees. This is due to
full-wake conditions being most infeasible and therefore challenging to steer wakes in. Furthermore,
higher wind speeds result in a decrease in wake steering power improvements due to 1) the diminish-
ing effects of wake steering and 2) the high wind speeds available throughout the farm despite velocity
deficits. When analysing the informed policy, it becomes evident that higher electricity prices cause
the agent to choose higher yaws for better wake steering, as electricity gets of higher value.

82

83

When training on larger farms like Lillgrund (48 turbines) and Horns Rev (80 turbines), the fully
centralised training technique starts to run into scalability issues. While the agents are still able to
improve in their respective objectives compared to baseline, performance decreases as wind farm size
increases. This is due to the difficulty of a centralised agent to explore the joint action space effectively
and converge on an optimal solution. Instead, the 16-turbine controller was transferred to the Lillgrund
and Horns Rev farms to inspect the generalizability of the trained controllers. Indeed, they seem to
generalise very well to unseen farms, indicating the agent learns policies based on relative positions of
turbines in a farm. The transferred 16-turbine agent, despite being trained on a smaller farm, surpasses
the performance of the agents specifically trained on the larger farms. Finally, the 16-turbine agent
was trained on randomised 16-turbine layouts to investigate whether this improved generalizability. As
it turns out, by evaluating both 16-turbine agents on four new farms, the randomised-layout training
scheme improves power production on unseen farms. The other agents - informed and risk-averse
- however, see similar performance but due to decreased cost minimisation also a decrease in total
revenue. Their cost of energy remains nearly identical.

A comparison of the agents’ performancewith results published in the literature shows that they align
very well. Indeed, improvements quoted in the literature on Annual Energy Production (AEP) of 1.5 to
2.5% align very well with the average improvements that were found in this thesis. Additionally, the
peak performance of the greedy agent (up to 20% power improvement) aligns very well with previous
work on power optimisation studies in worst-case wake conditions. Finally, all policies were run for 40
simulation years to investigate which policy is optimal at which point. For the first ten years, the greedy
agent achieves the highest wind farm profit by optimising power production. However, components
quickly start to fail and the baseline policy comes out on top. After the baseline policies’ components
start failing as well, the informed agent, having preserved components, becomes the optimal policy.
When considering the true infinite horizon, the informed agent will start to lag behind in component
failures and permanently become the best policy of all. However, as most wind farms generally operate
with shorter lifetimes, the infinite horizon assumption made for the environment does not hold as dense
costs deviate from sparse costs significantly, requiring explicit sparse cost finite-horizon optimisation.

Some points of discussion are left to be addressed. For one, the optimality of the trained agents
is unknown. Given the high degree of generalizability to various wind conditions, electricity prices and
farm layouts would probably mean the agent has to compromise on some optimality. As for loads and
wear in the environment, the yawing movement itself is not considered in the degradation model despite
being an important source of component wear. This applies to other types of blade erosion too, which
could change as part of the yawing policy. Furthermore, the tower base loads likely need adjustment to
account for the mismatch between nacelle-fixed and world-fixed frames of reference. When it comes
to observed policy behaviour, there seems to be a discontinuity in yaw angles between 0 and 359
degrees despite them being close together in a polar sense. This is unlogical but likely caused by
the linear angle representation in observations and can be addressed by providing sine and cosine
angle representations. Finally, some future work was proposed. This includes the aforementioned
finite-horizon optimisation with which policies specific to certain horizon lengths can be trained to find
the truly best policy that maximises profit. This type of optimisation has many difficulties, for which
some potential solutions were provided. Next, the observability of the environment was discussed. Not
all variables can realistically be assumed to be observable, such as the damage states D. Instead,
casting the problem into a Partially Observable Markov Decision Process (POMDP) was proposed as
a solution. Furthermore, gradient-based yaw angle optimisation is proposed as the derivative of the
simulationmodel can be computed directly. Additionally, to tackle the scalability issue of fully centralized
training, a decentralised training approach with a shared state encoder is proposed as well. Finally, the
idea of combined pitch and yaw control for more wake steering authority is discussed.

To conclude, graph-based deep reinforcement learning can be used to make a wind condition-
agnostic, layout-agnostic wake steering controller. This can be done for power optimisation, damage
minimisation and combined optimisation as an objective. The informed policy is the ideal revenue-
maximising policy in the long run but does not surpass the baseline policy for horizons shorter than the
turbine component design lifetime. The generalisability of the greedy agent is improved by training on
random 16-turbine layouts. Ultimately, the informed agent is best at maximising long-term wind farm
net profit, considering both power production and maintenance costs. Such a controller can be used by
wind farm operators to maximise revenue and provide lower energy prices to the customer. However,
optimising for fixed time horizons with realistic sparse costs remains an open area of research.

Bibliography

Allaix, D.L., Gijsbers, F.B.J., 2016. Bayesian estimation of characteristic S-N curves for reinforcement
bars and proposal for the national annex of NEN-EN1992-1-1. Technical Report.

Arjona-Medina, J.A., Gillhofer, M., Widrich, M., Unterthiner, T., Brandstetter, J., Hochreiter, S., 2019.
RUDDER: Return Decomposition for Delayed Rewards. URL: http://arxiv.org/abs/1806.07857,
http://dx.doi.org/10.48550/arXiv.1806.07857.

Barthelmie, R.J., Frandsen, S.T., Nielsen, M.N., Pryor, S.C., Rethore, P.E., Jørgensen, H.E., 2007.
Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at
Middelgrunden offshore wind farm. Wind Energy 10, 517–528. http://dx.doi.org/10.1002/we.
238.

Barthelmie, R.J., Hansen, K., Frandsen, S.T., Rathmann, O., Schepers, J.G., Schlez, W., Phillips, J.,
Rados, K., Zervos, A., Politis, E.S., Chaviaropoulos, P.K., 2009. Modelling and measuring flow and
wind turbine wakes in large wind farms offshore. Wind Energy 12, 431–444. http://dx.doi.org/
10.1002/we.348.

Bastankhah, M., Porté-Agel, F., 2014. A new analytical model for wind-turbine wakes. Renewable
Energy 70, 116–123. http://dx.doi.org/10.1016/j.renene.2014.01.002.

Bossanyi, E., 2018. Combining induction control and wake steering for wind farm energy and fatigue
loads optimisation. Journal of Physics: Conference Series 1037, 032011. http://dx.doi.org/10.
1088/1742-6596/1037/3/032011.

Bui, V.H., Nguyen, T.T., Kim, H.M., 2020. Distributed Operation of Wind Farm for Maximizing Output
Power: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Access 8, 173136–173146.
http://dx.doi.org/10.1109/ACCESS.2020.3022890.

Campagnolo, F., Imširović, L., Braunbehrens, R., Bottasso, C.L., 2022. Further calibration and val-
idation of FLORIS with wind tunnel data. Journal of Physics: Conference Series 2265, 022019.
http://dx.doi.org/10.1088/1742-6596/2265/2/022019.

Carroll, J., McDonald, A., McMillan, D., 2016. Failure rate, repair time and unscheduled O&M cost
analysis of offshore wind turbines. Wind Energy 19, 1107–1119. http://dx.doi.org/10.1002/we.
1887.

Churchfield, M.J., Lee, S., Moriarty, P.J., Hao, Y., Lackner, M.A., Barthelmie, R., Lundquist, J.K., Oxley,
G., 2015. A Comparison of the Dynamic Wake Meandering Model, Large-Eddy Simulation, and Field
Data at the Egmond aan Zee Offshore Wind Plant, in: 33rd Wind Energy Symposium, American
Institute of Aeronautics and Astronautics. http://dx.doi.org/10.2514/6.2015-0724.

Crespo, A., Herna´ndez, J., 1996. Turbulence characteristics in wind-turbine wakes. Journal of Wind
Engineering and Industrial Aerodynamics 61, 71–85. http://dx.doi.org/10.1016/0167-6105(95)
00033-X.

Damiani, R., Dana, S., Annoni, J., Fleming, P., Roadman, J., van Dam, J., Dykes, K., 2018. Assessment
of wind turbine component loads under yaw-offset conditions. Wind Energy Science 3, 173–189.
http://dx.doi.org/10.5194/wes-3-173-2018.

Dao, C., Kazemtabrizi, B., Crabtree, C., 2019. Wind turbine reliability data review and impacts on
levelised cost of energy. Wind Energy 22, 1848–1871. http://dx.doi.org/10.1002/we.2404.

De La Fuente, N., Guerra, D.A.V., 2024. A Comparative Study of Deep Reinforcement LearningModels:
DQN vs PPO vs A2C. URL: http://arxiv.org/abs/2407.14151, http://dx.doi.org/10.48550/
arXiv.2407.14151.

84

http://arxiv.org/abs/1806.07857
http://dx.doi.org/10.48550/arXiv.1806.07857
http://dx.doi.org/10.1002/we.238
http://dx.doi.org/10.1002/we.238
http://dx.doi.org/10.1002/we.348
http://dx.doi.org/10.1002/we.348
http://dx.doi.org/10.1016/j.renene.2014.01.002
http://dx.doi.org/10.1088/1742-6596/1037/3/032011
http://dx.doi.org/10.1088/1742-6596/1037/3/032011
http://dx.doi.org/10.1109/ACCESS.2020.3022890
http://dx.doi.org/10.1088/1742-6596/2265/2/022019
http://dx.doi.org/10.1002/we.1887
http://dx.doi.org/10.1002/we.1887
http://dx.doi.org/10.2514/6.2015-0724
http://dx.doi.org/10.1016/0167-6105(95)00033-X
http://dx.doi.org/10.1016/0167-6105(95)00033-X
http://dx.doi.org/10.5194/wes-3-173-2018
http://dx.doi.org/10.1002/we.2404
http://arxiv.org/abs/2407.14151
http://dx.doi.org/10.48550/arXiv.2407.14151
http://dx.doi.org/10.48550/arXiv.2407.14151

Bibliography 85

van Dijk, M.T., van Wingerden, J.W., Ashuri, T., Li, Y., 2017. Wind farm multi-objective wake redirection
for optimizing power production and loads. Energy 121, 561–569. http://dx.doi.org/10.1016/j.
energy.2017.01.051.

Dilip, D., Porté-Agel, F., 2017. Wind Turbine Wake Mitigation through Blade Pitch Offset. Energies 10,
757. http://dx.doi.org/10.3390/en10060757.

Dimitrov, N., 2019. Surrogate models for parameterized representation of wake-induced loads in wind
farms. Wind Energy 22, 1371–1389. http://dx.doi.org/10.1002/we.2362.

Dimitrov, N., Kelly, M.C., Vignaroli, A., Berg, J., 2018. From wind to loads: wind turbine site-specific
load estimation with surrogate models trained on high-fidelity load databases. Wind Energy Science
3, 767–790. http://dx.doi.org/10.5194/wes-3-767-2018.

Dong, H., Zhang, J., Zhao, X., 2021. Intelligent wind farm control via deep reinforcement learning and
high-fidelity simulations. Applied Energy 292, 116928. http://dx.doi.org/10.1016/j.apenergy.
2021.116928.

DTU Wind, Technical University of Denmark, . HAWC2. URL: https://www.hawc2.dk/.

Duthé, G., Santos, F.d.N., Abdallah, I., Réthore, P.�., Weijtjens, W., Chatzi, E., Devriendt, C., 2023.
Local flow and loads estimation on wake-affected wind turbines using graph neural networks and
PyWake. Journal of Physics: Conference Series 2505, 012014. http://dx.doi.org/10.1088/
1742-6596/2505/1/012014.

El-Naggar, M.F., Abdelhamid, A.S., Elshahed, M.A., El-Shimy Mahmoud Bekhet, M., 2021. Ranking
Subassemblies of Wind Energy Conversion Systems Concerning Their Impact on the Overall Relia-
bility. IEEE Access 9, 53754–53768. http://dx.doi.org/10.1109/ACCESS.2021.3070533.

Energinet, . Home. URL: https://www.energidataservice.dk/tso-electricity/Elspotprices.

Ennis, B.L., White, J.R., Paquette, J.A., 2018. Wind turbine blade load characterization under yaw
offset at the SWiFT facility. Journal of Physics: Conference Series 1037, 052001. http://dx.doi.
org/10.1088/1742-6596/1037/5/052001.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D., 2019. Graph Neural Networks for Social
Recommendation, in: The World Wide Web Conference, Association for Computing Machinery, New
York, NY, USA. pp. 417–426. http://dx.doi.org/10.1145/3308558.3313488.

Fischereit, J., Schaldemose Hansen, K., Larsén, X.G., van der Laan, M.P., Réthoré, P.E., Murcia Leon,
J.P., 2022. Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale
and high-resolution wake models. Wind Energy Science 7, 1069–1091. http://dx.doi.org/10.
5194/wes-7-1069-2022.

Fleming, P., Annoni, J., Shah, J.J., Wang, L., Ananthan, S., Zhang, Z., Hutchings, K., Wang, P., Chen,
W., Chen, L., 2017. Field test of wake steering at an offshore wind farm. Wind Energy Science 2,
229–239. http://dx.doi.org/10.5194/wes-2-229-2017.

Fleming, P., Gebraad, P.M., Lee, S., van Wingerden, J.W., Johnson, K., Churchfield, M., Michalakes,
J., Spalart, P., Moriarty, P., 2015. Simulation comparison of wake mitigation control strategies for a
two-turbine case. Wind Energy 18, 2135–2143. http://dx.doi.org/10.1002/we.1810.

Fleming, P., King, J., Dykes, K., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J.K.,
Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Lopez, H., Skopek, J., Scott, M., Ryan,
B., Guernsey, C., Brake, D., 2019. Initial results from a field campaign of wake steering applied at a
commercial wind farm – Part 1. Wind Energy Science 4, 273–285. http://dx.doi.org/10.5194/
wes-4-273-2019.

Fleming, P., Sinner, M., Young, T., Lannic, M., King, J., Simley, E., Doekemeijer, B., 2021. Experimental
results of wake steering using fixed angles. Wind Energy Science 6, 1521–1531. http://dx.doi.
org/10.5194/wes-6-1521-2021.

http://dx.doi.org/10.1016/j.energy.2017.01.051
http://dx.doi.org/10.1016/j.energy.2017.01.051
http://dx.doi.org/10.3390/en10060757
http://dx.doi.org/10.1002/we.2362
http://dx.doi.org/10.5194/wes-3-767-2018
http://dx.doi.org/10.1016/j.apenergy.2021.116928
http://dx.doi.org/10.1016/j.apenergy.2021.116928
https://www.hawc2.dk/
http://dx.doi.org/10.1088/1742-6596/2505/1/012014
http://dx.doi.org/10.1088/1742-6596/2505/1/012014
http://dx.doi.org/10.1109/ACCESS.2021.3070533
https://www.energidataservice.dk/tso-electricity/Elspotprices
http://dx.doi.org/10.1088/1742-6596/1037/5/052001
http://dx.doi.org/10.1088/1742-6596/1037/5/052001
http://dx.doi.org/10.1145/3308558.3313488
http://dx.doi.org/10.5194/wes-7-1069-2022
http://dx.doi.org/10.5194/wes-7-1069-2022
http://dx.doi.org/10.5194/wes-2-229-2017
http://dx.doi.org/10.1002/we.1810
http://dx.doi.org/10.5194/wes-4-273-2019
http://dx.doi.org/10.5194/wes-4-273-2019
http://dx.doi.org/10.5194/wes-6-1521-2021
http://dx.doi.org/10.5194/wes-6-1521-2021

Bibliography 86

Fleming, P.A., Gebraad, P.M.O., Lee, S., van Wingerden, J.W., Johnson, K., Churchfield, M., Micha-
lakes, J., Spalart, P., Moriarty, P., 2014. Evaluating techniques for redirecting turbine wakes using
SOWFA. Renewable Energy 70, 211–218. http://dx.doi.org/10.1016/j.renene.2014.02.015.

Frederik, J.A., Doekemeijer, B.M., Mulders, S.P., van Wingerden, J.W., 2020. The helix approach:
Using dynamic individual pitch control to enhance wake mixing in wind farms. Wind Energy 23,
1739–1751. http://dx.doi.org/10.1002/we.2513.

Freebury, G., Musial, W., 2000. Determining equivalent damage loading for full-scale wind turbine
blade fatigue tests, in: 2000 ASME Wind Energy Symposium, American Institute of Aeronautics and
Astronautics. http://dx.doi.org/10.2514/6.2000-50.

Gebraad, P., Thomas, J.J., Ning, A., Fleming, P., Dykes, K., 2017. Maximization of the annual energy
production of wind power plants by optimization of layout and yaw-based wake control. Wind Energy
20, 97–107. http://dx.doi.org/10.1002/we.1993.

Gebraad, P.M.O., Teeuwisse, F.W., van Wingerden, J.W., Fleming, P.A., Ruben, S.D., Marden, J.R.,
Pao, L.Y., 2016. Wind plant power optimization through yaw control using a parametric model for
wake effects—a CFD simulation study. Wind Energy 19, 95–114. http://dx.doi.org/10.1002/we.
1822.

Ghavamzadeh, M., Mahadevan, S., Makar, R., 2006. Hierarchical multi-agent reinforcement learn-
ing. Autonomous Agents and Multi-Agent Systems 13, 197–229. http://dx.doi.org/10.1007/
s10458-006-7035-4.

Gori, F., Laizet, S., Wynn, A., 2023. Sensitivity analysis of wake steering optimisation for wind
farm power maximisation. Wind Energy Science 8, 1425–1451. http://dx.doi.org/10.5194/
wes-8-1425-2023.

Greensmith, E., Bartlett, P., Baxter, J., 2001. Variance Reduction Techniques for Gradient Estimates
in Reinforcement Learning, in: Advances in Neural Information Processing Systems, MIT Press.

Haghi, R., Crawford, C., 2023. Data-driven surrogate model for wind turbine damage equivalent load.
Wind Energy Science Discussions , 1–34http://dx.doi.org/10.5194/wes-2023-157.

He, R., Yang, H., Lu, L., 2023. Optimal yaw strategy and fatigue analysis of wind turbines under the
combined effects of wake and yaw control. Applied Energy 337, 120878. http://dx.doi.org/10.
1016/j.apenergy.2023.120878.

Howland, M.F., Lele, S.K., Dabiri, J.O., 2019. Wind farm power optimization through wake steering. Pro-
ceedings of the National Academy of Sciences 116, 14495–14500. http://dx.doi.org/10.1073/
pnas.1903680116.

IEA, 2024. Renewables 2023 – Analysis. URL: https://www.iea.org/reports/renewables-2023.

IEA Wind Task 37, . IEAWindTask37/IEA-3.4-130-RWT. URL: https://github.com/IEAWindTask37/
IEA-3.4-130-RWT.

International Energy Agency (IEA), 2016. IEA Wind TCP Task 37. URL: https://iea-wind.org/
task37/.

International Energy Agency (IEA), 2019. Wind energy generation systems - Part 3-1: Design require-
ments for fixed offshore wind turbines.

Jeong, M.S., Kim, S.W., Lee, I., Yoo, S.J., Park, K.C., 2013. The impact of yaw error on aeroelastic
characteristics of a horizontal axis wind turbine blade. Renewable Energy 60, 256–268. http://dx.
doi.org/10.1016/j.renene.2013.05.014.

Jiménez, �., Crespo, A., Migoya, E., 2010. Application of a LES technique to characterize the wake
deflection of a wind turbine in yaw. Wind Energy 13, 559–572. http://dx.doi.org/10.1002/we.380.

Jonkman, J., 2019. Designing for yaw errors using FAST - Wind & Water / Structural Analysis. URL:
https://forums.nrel.gov/t/designing-for-yaw-errors-using-fast/1051/7.

http://dx.doi.org/10.1016/j.renene.2014.02.015
http://dx.doi.org/10.1002/we.2513
http://dx.doi.org/10.2514/6.2000-50
http://dx.doi.org/10.1002/we.1993
http://dx.doi.org/10.1002/we.1822
http://dx.doi.org/10.1002/we.1822
http://dx.doi.org/10.1007/s10458-006-7035-4
http://dx.doi.org/10.1007/s10458-006-7035-4
http://dx.doi.org/10.5194/wes-8-1425-2023
http://dx.doi.org/10.5194/wes-8-1425-2023
http://dx.doi.org/10.5194/wes-2023-157
http://dx.doi.org/10.1016/j.apenergy.2023.120878
http://dx.doi.org/10.1016/j.apenergy.2023.120878
http://dx.doi.org/10.1073/pnas.1903680116
http://dx.doi.org/10.1073/pnas.1903680116
https://www.iea.org/reports/renewables-2023
https://github.com/IEAWindTask37/IEA-3.4-130-RWT
https://github.com/IEAWindTask37/IEA-3.4-130-RWT
https://iea-wind.org/task37/
https://iea-wind.org/task37/
http://dx.doi.org/10.1016/j.renene.2013.05.014
http://dx.doi.org/10.1016/j.renene.2013.05.014
http://dx.doi.org/10.1002/we.380
https://forums.nrel.gov/t/designing-for-yaw-errors-using-fast/1051/7

Bibliography 87

Jonkman, J., Doubrawa, P., Hamilton, N., Annoni, J., Fleming, P., 2018. Validation of FAST.Farm
Against Large-Eddy Simulations. Journal of Physics: Conference Series 1037, 062005. http://dx.
doi.org/10.1088/1742-6596/1037/6/062005.

Kadoche, E., Gourvénec, S., Pallud, M., Levent, T., 2023. MARLYC: Multi-Agent Reinforcement Learn-
ing Yaw Control. Renewable Energy 217, 119129. http://dx.doi.org/10.1016/j.renene.2023.
119129.

Ke, S., Wang, T., Ge, Y., Wang, H., 2018. Wind-induced fatigue of large HAWT coupled tower–blade
structures considering aeroelastic and yaw effects. The Structural Design of Tall and Special Build-
ings 27, e1467. http://dx.doi.org/10.1002/tal.1467.

Kragh, K.A., Hansen, M.H., 2014. Load alleviation of wind turbines by yaw misalignment. Wind Energy
17, 971–982. http://dx.doi.org/10.1002/we.1612.

Kretschmer, M., Jonkman, J., Pettas, V., Cheng, P.W., 2021. FAST.Farm load validation for single
wake situations at alpha ventus. Wind Energy Science 6, 1247–1262. http://dx.doi.org/10.
5194/wes-6-1247-2021.

Larsen, G.C., Ott, S., Liew, J., Laan, M.P.v.d., Simon, E., Thorsen, G.R., Jacobs, P., 2020. Yaw induced
wake deflection-a full-scale validation study. Journal of Physics: Conference Series 1618, 062047.
http://dx.doi.org/10.1088/1742-6596/1618/6/062047.

Lee, J., Son, E., Hwang, B., Lee, S., 2013. Blade pitch angle control for aerodynamic performance opti-
mization of a wind farm. Renewable Energy 54, 124–130. http://dx.doi.org/10.1016/j.renene.
2012.08.048.

Lee, S., Churchfield, M., Driscoll, F., Sirnivas, S., Jonkman, J., Moriarty, P., Skaare, B., Nielsen, F.G.,
Byklum, E., 2018. Load Estimation of Offshore Wind Turbines. Energies 11, 1895. http://dx.doi.
org/10.3390/en11071895.

Leonetti, D., Maljaars, J., Snijder, H.H.B., 2017. Fitting fatigue test data with a novel S-N curve using
frequentist and Bayesian inference. International Journal of Fatigue 105, 128–143. http://dx.doi.
org/10.1016/j.ijfatigue.2017.08.024.

Li, G., Xiong, C., Thabet, A., Ghanem, B., 2020. DeeperGCN: All You Need to Train Deeper GCNs.
URL: http://arxiv.org/abs/2006.07739, http://dx.doi.org/10.48550/arXiv.2006.07739.

Lin, M., Porté-Agel, F., 2020. Power Maximization and Fatigue-Load Mitigation in a Wind-turbine Array
by Active Yaw Control: an LES Study. Journal of Physics: Conference Series 1618, 042036. http:
//dx.doi.org/10.1088/1742-6596/1618/4/042036.

Mahmood, A.R., Korenkevych, D., Vasan, G., Ma, W., Bergstra, J., 2018. Benchmarking Reinforce-
ment Learning Algorithms on Real-World Robots, in: Proceedings of The 2nd Conference on Robot
Learning, PMLR. pp. 561–591.

Mao, H., Venkatakrishnan, S.B., Schwarzkopf, M., Alizadeh, M., 2019. Variance Reduction for Re-
inforcement Learning in Input-Driven Environments. URL: http://arxiv.org/abs/1807.02264,
http://dx.doi.org/10.48550/arXiv.1807.02264.

Medici, D., 2005. Experimental studies of wind turbine wakes : power optimisation and meandering.
Ph.D. thesis. KTH Royal Institute of Technology.

Meyer Forsting, A.R., Navarro Diaz, G.P., Segalini, A., Andersen, S.J., Ivanell, S., 2023. On the accu-
racy of predicting wind-farm blockage. Renewable Energy 214, 114–129. http://dx.doi.org/10.
1016/j.renene.2023.05.129.

Miner, M.A., 1945. Cumulative Damage in Fatigue. Journal of Applied Mechanics 12, A159–A164.
http://dx.doi.org/10.1115/1.4009458.

Mishnaevsky, L., 2022. Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview.
Materials 15, 2959. http://dx.doi.org/10.3390/ma15092959.

http://dx.doi.org/10.1088/1742-6596/1037/6/062005
http://dx.doi.org/10.1088/1742-6596/1037/6/062005
http://dx.doi.org/10.1016/j.renene.2023.119129
http://dx.doi.org/10.1016/j.renene.2023.119129
http://dx.doi.org/10.1002/tal.1467
http://dx.doi.org/10.1002/we.1612
http://dx.doi.org/10.5194/wes-6-1247-2021
http://dx.doi.org/10.5194/wes-6-1247-2021
http://dx.doi.org/10.1088/1742-6596/1618/6/062047
http://dx.doi.org/10.1016/j.renene.2012.08.048
http://dx.doi.org/10.1016/j.renene.2012.08.048
http://dx.doi.org/10.3390/en11071895
http://dx.doi.org/10.3390/en11071895
http://dx.doi.org/10.1016/j.ijfatigue.2017.08.024
http://dx.doi.org/10.1016/j.ijfatigue.2017.08.024
http://arxiv.org/abs/2006.07739
http://dx.doi.org/10.48550/arXiv.2006.07739
http://dx.doi.org/10.1088/1742-6596/1618/4/042036
http://dx.doi.org/10.1088/1742-6596/1618/4/042036
http://arxiv.org/abs/1807.02264
http://dx.doi.org/10.48550/arXiv.1807.02264
http://dx.doi.org/10.1016/j.renene.2023.05.129
http://dx.doi.org/10.1016/j.renene.2023.05.129
http://dx.doi.org/10.1115/1.4009458
http://dx.doi.org/10.3390/ma15092959

Bibliography 88

National Renewable Energy Laboratory (NREL), a. FLORIS: FLOwRedirection and Induction in Steady
State. URL: https://www.nrel.gov/wind/floris.html.

National Renewable Energy Laboratory (NREL), b. SOWFA: Simulator fOr Wind Farm Applications.
URL: https://www.nrel.gov/wind/nwtc/sowfa.html.

National Renewable Energy Laboratory (NREL), 2024a. NREL/WindSE. URL: https://github.com/
NREL/WindSE. original-date: 2019-04-26T21:00:20Z.

National Renewable Energy Laboratory (NREL), 2024b. OpenFAST/openfast. URL: https://github.
com/OpenFAST/openfast. original-date: 2016-08-31T20:07:10Z.

Ng, A.Y., Harada, D., Russell, S.J., 1999. Policy Invariance Under Reward Transformations: Theory
and Application to Reward Shaping, in: Proceedings of the Sixteenth International Conference on
Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. pp. 278–287.

Nord Pool Group, . Nord Pool | Day-ahead prices. URL: https://data.nordpoolgroup.com/auction/
day-ahead/prices?deliveryDate=latest¤cy=EUR&aggregation=Hourly&deliveryAreas=
AT.

NREL, . MLife. URL: https://www.nrel.gov/wind/nwtc/mlife.html.

NREL, 2024a. ROSCO. URL: https://github.com/NREL/ROSCO. original-date: 2019-11-
08T15:47:14Z.

NREL, 2024b. WISDEM/CCBlade. URL: https://github.com/WISDEM/CCBlade. original-date: 2013-
09-12T13:15:11Z.

Padullaparthi, V.R., Nagarathinam, S., Vasan, A., Menon, V., Sudarsanam, D., 2022. FALCON- FArm
Level CONtrol for wind turbines using multi-agent deep reinforcement learning. Renewable Energy
181, 445–456. http://dx.doi.org/10.1016/j.renene.2021.09.023.

Panja, M., Chakraborty, T., Kumar, U., Hadid, A., 2024. Probabilistic AutoRegressive Neural Networks
for Accurate Long-range Forecasting, in: arXiv. volume 1967, pp. 457–477.

Pedersen, M.M., Forsting, A.M., Laan, P.v.d., Riva, R., Romàn, L.A.A., Risco, J.C., Friis-Møller, M.,
Quick, J., Christiansen, J.P.S., Rodrigues, R.V., Olsen, B.T., Réthoré, P.E., 2023. PyWake 2.5.0: An
open-source wind farm simulation tool. DTU Wind, Technical University of Denmark .

PyWake Development Team, 2024. Automated validation report for PyWake. Technical Report. DTU
Wind, Technical University of Denmark.

Qian, Q., Ma, P., Wang, N., Zhang, H., Wang, C., Li, X., 2023. Research on Industrial Process Fault
Diagnosis Based on Deep Spatio-Temporal Fusion Graph Convolutional Network. URL: https://
papers.ssrn.com/abstract=4651621, http://dx.doi.org/10.2139/ssrn.4651621.

Quaeghebeur, E., Bos, R., Zaaijer, M.B., 2021. Wind farm layout optimization using pseudo-gradients.
Wind Energy Science 6, 815–839. http://dx.doi.org/10.5194/wes-6-815-2021.

Rivera-Arreba, I., Li, Z., Yang, X., Bachynski-Polić, E.E., 2023. Validation of the dynamic wake mean-
dering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes.
URL: http://arxiv.org/abs/2308.01004, http://dx.doi.org/10.48550/arXiv.2308.01004.

Sahin, A.D., Sen, Z., 2001. First-order Markov chain approach to wind speed modelling. Journal
of Wind Engineering and Industrial Aerodynamics 89, 263–269. http://dx.doi.org/10.1016/
S0167-6105(00)00081-7.

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G., 2009. The Graph Neural Network
Model. IEEE Transactions on Neural Networks 20, 61–80. http://dx.doi.org/10.1109/TNN.2008.
2005605.

https://www.nrel.gov/wind/floris.html
https://www.nrel.gov/wind/nwtc/sowfa.html
https://github.com/NREL/WindSE
https://github.com/NREL/WindSE
https://github.com/OpenFAST/openfast
https://github.com/OpenFAST/openfast
https://data.nordpoolgroup.com/auction/day-ahead/prices?deliveryDate=latest¤cy=EUR&aggregation=Hourly&deliveryAreas=AT
https://data.nordpoolgroup.com/auction/day-ahead/prices?deliveryDate=latest¤cy=EUR&aggregation=Hourly&deliveryAreas=AT
https://data.nordpoolgroup.com/auction/day-ahead/prices?deliveryDate=latest¤cy=EUR&aggregation=Hourly&deliveryAreas=AT
https://www.nrel.gov/wind/nwtc/mlife.html
https://github.com/NREL/ROSCO
https://github.com/WISDEM/CCBlade
http://dx.doi.org/10.1016/j.renene.2021.09.023
https://papers.ssrn.com/abstract=4651621
https://papers.ssrn.com/abstract=4651621
http://dx.doi.org/10.2139/ssrn.4651621
http://dx.doi.org/10.5194/wes-6-815-2021
http://arxiv.org/abs/2308.01004
http://dx.doi.org/10.48550/arXiv.2308.01004
http://dx.doi.org/10.1016/S0167-6105(00)00081-7
http://dx.doi.org/10.1016/S0167-6105(00)00081-7
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005605

Bibliography 89

Scholz, T., Lopes, V.V., Estanqueiro, A., 2013. A cyclic time-dependent Markov process to model
daily patterns in wind turbine power production. URL: http://arxiv.org/abs/1310.3073, http:
//dx.doi.org/10.48550/arXiv.1310.3073.

Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P., 2018. High-Dimensional Continu-
ous Control Using Generalized Advantage Estimation. URL: http://arxiv.org/abs/1506.02438,
http://dx.doi.org/10.48550/arXiv.1506.02438.

Seita, D., 2017. Going Deeper Into Reinforcement Learning: Fundamentals
of Policy Gradients. URL: https://danieltakeshi.github.io/2017/03/28/
going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/.

Shaler, K., Quon, E., Ivanov, H., Jonkman, J., 2023. Wind Farm Structural Response andWake Dynam-
ics for an Evolving Stable Boundary Layer: Computational and Experimental Comparisons. Wind
Energy Science Discussions , 1–18http://dx.doi.org/10.5194/wes-2023-138.

Shamshad, A., Bawadi, M.A., Wan Hussin, W.M.A., Majid, T.A., Sanusi, S.A.M., 2005. First and second
order Markov chain models for synthetic generation of wind speed time series. Energy 30, 693–708.
http://dx.doi.org/10.1016/j.energy.2004.05.026.

Sheehan, H., Poole, D., Filho, T.S., Bossanyi, E., Landberg, L., 2024. Graph-based Deep Reinforce-
ment Learning for Wind Farm Set-Point Optimisation. Journal of Physics: Conference Series 2767,
092028. http://dx.doi.org/10.1088/1742-6596/2767/9/092028.

Shen, X., Zhu, X., Du, Z., 2011. Wind turbine aerodynamics and loads control in wind shear flow.
Energy 36, 1424–1434. http://dx.doi.org/10.1016/j.energy.2011.01.028.

Stanfel, P., Johnson, K., Bay, C., King, J., 2020. A Distributed Reinforcement Learning Yaw Control
Approach for Wind Farm Energy Capture Maximization: Preprint.

Stehly, T., Duffy, P., Hernando, D.M., 2023. 2022 Cost of Wind Energy Review http://dx.doi.org/
10.2172/2278805.

T, E., K, M., K, T., K, K., M, M., 1974. Damage evaluation of metals for random or varying loading -
Three aspects of rain flow method. Symp Mech Behav Mater , 371–380.

Tang, H., Hao, J., Lv, T., Chen, Y., Zhang, Z., Jia, H., Ren, C., Zheng, Y., Meng, Z., Fan, C., Wang,
L., 2019. Hierarchical Deep Multiagent Reinforcement Learning with Temporal Abstraction. URL:
http://arxiv.org/abs/1809.09332, http://dx.doi.org/10.48550/arXiv.1809.09332.

Towers, M., Terry, J.K., Kwiatkowski, A., Balis, J.U., Cola, G.d., Deleu, T., Goulão, M., Kallinteris, A.,
KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff, S., Tai, J.J., Shen, A.T.J., Younis, O.G.,
2023. Gymnasium. URL: https://zenodo.org/record/8127025.

Weipao, M., Chun, L., Jun, Y., Yang, Y., Xiaoyun, X., 2016. Numerical Investigation of Wake Control
Strategies for Maximizing the Power Generation of Wind Farm. Journal of Solar Energy Engineering
138. http://dx.doi.org/10.1115/1.4033110.

Wu, Y.T., Porté-Agel, F., 2015. Modeling turbine wakes and power losses within a wind farm using
LES: An application to the Horns Rev offshore wind farm. Renewable Energy 75, 945–955. http:
//dx.doi.org/10.1016/j.renene.2014.06.019.

Yoon, J., Jarrett, D., van der Schaar, M., 2019. Time-series Generative Adversarial Networks, in:
Advances in Neural Information Processing Systems, Curran Associates, Inc.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M., 2021. Graph Neural
Networks: A Review of Methods and Applications. URL: http://arxiv.org/abs/1812.08434, http:
//dx.doi.org/10.48550/arXiv.1812.08434.

Zong, H., Porté-Agel, F., 2021. Experimental investigation and analytical modelling of active yaw control
for wind farm power optimization. Renewable Energy 170, 1228–1244. http://dx.doi.org/10.
1016/j.renene.2021.02.059.

Ørsted, . Offshore wind data. URL: https://orsted.com/en/what-we-do/
renewable-energy-solutions/offshore-wind/offshore-wind-data.

http://arxiv.org/abs/1310.3073
http://dx.doi.org/10.48550/arXiv.1310.3073
http://dx.doi.org/10.48550/arXiv.1310.3073
http://arxiv.org/abs/1506.02438
http://dx.doi.org/10.48550/arXiv.1506.02438
https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
http://dx.doi.org/10.5194/wes-2023-138
http://dx.doi.org/10.1016/j.energy.2004.05.026
http://dx.doi.org/10.1088/1742-6596/2767/9/092028
http://dx.doi.org/10.1016/j.energy.2011.01.028
http://dx.doi.org/10.2172/2278805
http://dx.doi.org/10.2172/2278805
http://arxiv.org/abs/1809.09332
http://dx.doi.org/10.48550/arXiv.1809.09332
https://zenodo.org/record/8127025
http://dx.doi.org/10.1115/1.4033110
http://dx.doi.org/10.1016/j.renene.2014.06.019
http://dx.doi.org/10.1016/j.renene.2014.06.019
http://arxiv.org/abs/1812.08434
http://dx.doi.org/10.48550/arXiv.1812.08434
http://dx.doi.org/10.48550/arXiv.1812.08434
http://dx.doi.org/10.1016/j.renene.2021.02.059
http://dx.doi.org/10.1016/j.renene.2021.02.059
https://orsted.com/en/what-we-do/renewable-energy-solutions/offshore-wind/offshore-wind-data
https://orsted.com/en/what-we-do/renewable-energy-solutions/offshore-wind/offshore-wind-data

A
Scientific Paper

90

Graph-based Deep Reinforcement Learning for
Maintenance-Conditioned Wind Farm Wake Steering Control

Bas van Berkel
Delft University of Technology

B.D.vanBerkel@student.tudelft.nl

Gregory Duthé
ETH Zürich

duthe@ibk.baug.ethz.ch

Giacomo Arcieri
ETH Zürich

giacomo.arcieri@ibk.baug.ethz.ch

Pablo G. Morato
Delft University of Technology

p.g.moratodominguez@tudelft.nl

Xiaoli Jiang
Delft University of Technology

X.Jiang@tudelft.nl

Eleni Chatzi
ETH Zürich

chatzi@ibk.baug.ethz.ch

Abstract
We investigate how long-term revenue in wind farms can be maximised, consid-
ering both profits through power optimisation and maintenance costs through
fatigue-induced component failures due to wake steering control. First, we con-
struct a realistic wind farm simulation environment, based on a Graph Neural
Network (GNN) surrogate wind farm simulation model, to facilitate efficient
reinforcement learning training. Next, we use that to train reinforcement learning
agents based on a GNN architecture, resulting in agents that can generalise across
all wind conditions and unseen wind farm layouts. We find that an ’informed’
agent that considers all profits and costs involved manages to significantly reduce
the cost of energy compared to ’greedy’ (power optimisation only), ’risk-averse’
(damage minimisation only) and ’baseline’ (zero-yaw) policies, furthermore
considerably maximising long-term wind farm profit by as much as 20%.

1 Introduction

As the world is transitioning to the usage of sustainable energy sources in an attempt to tackle climate
change, wind energy is growing to be an essential area of energy production. In a recent report by the
International Energy Agency (IEA), they forecast that by 2028, as much as 12.1% of all energy will
come from wind energy alone, making up more than a quarter of all sustainable energy produced
[1]. This indicates a growth of nearly 9% per year on average. Additionally, the IEA found that
the majority of newly installed wind energy sources can provide competitive Levelized Cost Of
Energy (LCOE) prices compared to fossil fuel sources, often even outperforming them entirely. It
is thus evident that wind energy will play a vital role in the energy transition and that effective and
cost-efficient operations are essential to replace the current fossil fuel energy system.

Wind farms often deal with the effects of wakes, e.g. the disturbed air that flows downstream of
a wind turbine. In the process of generating energy out of the atmospheric boundary layer, wind
turbines leave behind more turbulent and lower-velocity wind. This tends to be a significant problem,
as these velocity deficits cause decreased performance of downstream turbines and, thereby, reduced
power production for the wind farm as a whole [2, 3]. This problem often worsens as wind farm
size increases due to an increasing number of turbines being aligned relative to the wind direction.
Despite wind farm operators’ best efforts to ensure the most optimal wake-effect-mitigating wind farm
layouts under dominant wind directions, many wind conditions will still yield wake problems and,
consequently, sub-optimal wind farm performance. Wake effects in wind farms can cause as much as
a 40% efficiency loss in cases where turbines are aligned relative to the wind [4]. Additionally, the

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

increased flow field turbulence in wakes can cause significant increases in aeroelastic loads in the
downstream turbines [5].

In recent years, one proposed solution to this problem came in the form of wake steering. Using the
turbines’ yawing capability, e.g. rotating the nacelle relative to the tower, the propagation direction of
the produced wakes can be adjusted. Under default circumstances, where turbines are yawed to face
the incoming wind directly, the wakes propagate parallel to the wind direction. However, assigning
a yaw misalignment to upstream turbines facilitates a degree of control over the direction in which
the wakes propagate through the farm. Using this wake steering technique, problematic wakes can
be steered away from downstream turbines, thereby mitigating the velocity deficit and increased
turbulence effects, which would have otherwise resulted in significant adverse effects downstream.
Despite the yawing action causing sub-optimal power production for the upstream turbines, the
improved performance of downstream turbines collectively ensures a net benefit for the wind farm.
Wake steering techniques facilitate several per cent performance increases compared to the naive
wake-affected ’do-nothing’ zero-yaw policy typically used in wind farms [6]. Figure 1 and Figure 2
show the flow field and Annual Energy Production (AEP) effects of the do-nothing and optimised
strategy, respectively.

Figure 1: Flow map of a three-turbine wind farm
without wake steering.

Figure 2: Flow map of a three-turbine wind farm
with wake steering.

However, the yaw misalignment in wake steering leads to undesired secondary effects. Generally
designed for zero-yaw operating conditions, turbines can experience increased loads due to the
yawing action [7]. What initially seems beneficial performance through power optimisation with
wake steering is more nuanced. The resulting increased loads, cyclic in nature, lead to accelerated
fatigue degradation of wind turbine components. Fatigue failure, typically the dominating factor
in turbine lifetime design, comes with significant maintenance costs, often requiring the complete
replacement of components. What is more, the acceleration of fatigue accumulation only becomes
visible in the long term when components start to fail, which can be as much as 20 years after the
commissioning of the wind farm. The positive consequences of wake steering are instantaneous,
whereas the adverse effects can linger in the background unnoticed for many years, after which they
can cause significant monetary losses.

The problem of revenue optimisation thus becomes twofold. On the one hand, instantaneous power
optimisation through wake steering allows immediate increases in energy production and, thereby,
profit through energy sales. On the other hand, long-term fatigue effects coupled with wake steering
for power optimisation cannot be ignored as they can potentially eventually nullify any revenue gains
obtained. To keep the cost of energy low and to optimise the yield of sustainable energy sources, the
typical wake steering controllers must be adjusted to account for all effects involved. In this paper,
we show how a centralised reinforcement learning controller can be used to solve the optimisation
problem at hand. We develop a simulation environment that can model the power and damage effects
of wake steering in a wind farm to allow fast and efficient reinforcement learning. Next, we develop
graph-based reinforcement learning agents using PPO and train them to find the optimal yaw angle
strategy under varying wind conditions. We show the influence of the objective function on several
performance indicators and show the agents’ performance on three different farm layouts. Finally, we
investigate the ability of the agents to generalise to unseen farm layouts.

The following contributions are made in this paper:

• IEA37 3.4MW Turbine-Level Load surrogate - Development of power, thrust coefficient and
load surrogates for the NREL-developed 3.4MW reference wind turbine, considering operating
regions, operating modes, wind conditions and yaw angles.

• Graph Neural Network Farm-Level Surrogates - Development of an all-in-one combined
layout-agnostic wind farm simulation surrogate, considering operating modes, wake effects and
local power & loads.

2

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

• WakeWISE Environment - Development of a fast, efficient and realistic simulation environ-
ment for training wind farm wake steering controllers using reinforcement learning.

• Wind Farm Wake Steering Controllers - Development of generalisable graph-based wind
farm wake steering controllers to optimise for power, maintenance or a combination of both.

This paper is structured as follows. section 3 shows how we model damage accumulation in the form
of fatigue. Next, section 4 describes how we developed a fast and efficient simulation environment
to accurately and realistically mimic a real wind farm. section 5 describes how we constructed the
reinforcement learning agent and how the training was done. Finally, section 6 provides an analysis
of the performance of the trained agents. The results of this paper are discussed in section 7 and
concluded in section 8.

2 Related Work
Early work in wake steering can be traced back to 2005, in research by Medici [8] investigating the
effects of Active Yaw Control (AYC). More recently, Howland et al. [9] conducted experiments on a
six-turbine in-line wind farm, using analytic gradient ascent methods to optimise yaw setpoints. For
selected wind directions, they showed that performance increases in power yield of the range 7−12%
are feasible. These results align well with earlier work highlighting experimental results from field
tests using controllers trained in simulations [10, 11], showing performance gains of several per
cent. In both cases, they developed wake-steering optimised yaw angle lookup tables using gradient
descent and FLORIS [12] as a simulation model. Zong and Porté-Agel [13] aimed to reproduce these
aforementioned results in a controlled wind tunnel environment, measuring stream-wise velocity
deficits and turbine power outputs. Their results show agreement with prior research and experiments.
Other examples of wake steering optimisation include the usage of Game Theory [14] and SNOPT,
an optimiser for highly nonlinear, constrained problems [15].

In contrast, Stanfel et al. [16] employed decentralised multi-agent Q-learning for power optimisation
instead in a three-turbine wind farm under a fixed wind condition. Under the single wind condition
they considered, they achieved a clear increase in wind farm power production. Similarly, Bui
et al. [17] grouped a 15-turbine wind farm in clusters of size three for information sharing and
solved the optimisation problem using decentralised Double-Deep Q Learning. Using their MA-DRL
approach under specific wind conditions, they achieved a power increase ranging from 1.99% to
4.11% depending on the layout of the three-turbine cluster. Dong et al. [18], on the other hand, chose
to make use of high-fidelity Large Eddy Simulations (LES) using SOWFA [19] to optimise power
production in a six-turbine wind farm. Using Deep Deterministic Policy Gradient (DDPG), they found
a 15% increase in power compared to a zero-yaw baseline under a fixed flow field. Kadoche et al.
[6] and Padullaparthi et al. [20] extend this to work with as many as 151 turbines. Both works use
multi-agent RL, using either PyWake or FLORIS as wind farm simulators, and find power increases
as high as several per cent depending on the farm size. In contrast to other work, Kadoche et al. [6]
train their algorithm on an environment with (limited) dynamic wind conditions rather than the fixed
conditions the majority of other papers in this section made use of. Additionally, Padullaparthi et al.
[20] extend their simulation to include a measure of fatigue to effectively find a trade-off between
power optimisation and component longevity. They include this in the reward function employing an
arbitrarily chosen weighted sum between power production and fatigue loads.

This trade-off between power optimisation and fatigue loads is an important factor, as yawing action
can significantly impact fatigue loads on components [7]. Interestingly, yaw control can minimise
fatigue loads on the turbine [21–23]. However, Ke et al. [24] and Jeong et al. [25] also show that
applying yaw offsets to wind turbines can lead to detrimental effects, such as significantly decreasing
fatigue lifetime. These effects can thus not simply be neglected in favour of immediate power
optimisation. Lin and Porté-Agel [26] investigated this trade-off through wake steering and found
that in some cases, the benefits of power production increase are neglected by the increased loads’
negative effects. In the same way that Padullaparthi et al. [20] modelled the trade-off between loads
and power in their reward function, work by Ennis et al. [27], Bossanyi [28] and van Dijk et al.
[29] attempted to solve the problem as a multi-objective optimisation problem by giving relative
importance to power optimisation and load minimisation. Many of these works consider only a single
DEL (fatigue load) in the objective function, such as Ennis et al. [27] (flapwise loads) and Bossanyi
[28] (tower base loads). To address this issue, He et al. [30] consider five different fatigue loads to
characterise the wake-fatigue effects as well as possible. However, all of these works addressing

3

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

the trade-off between power and load treat the problem as a multi-objective optimisation problem,
neglecting the true monetary losses resulting from maintenance due to fatigue degradation.

Our work focuses on maintenance-conditioned wake steering for wind farm revenue optimisation
without making any explicit assumptions on the relative importance of damage minimisation versus
power maximisation. Additionally, we train and evaluate a wide variety of wind directions to ensure
the controllers remain wind-condition-agnostic. Finally, we develop our agents in such a way that
they are layout-agnostic and able to generalise to larger, more realistic wind farm topologies.

3 Fatigue Modelling
To ensure the agent receives feedback concerning the loads incurred by the turbines as a result of the
yaw angles, some type of damage penalty must be designed. Fortunately, the IEC 61400-1 standard
on wind turbine design [31] provides some guidance on this topic. Wind turbines are generally limited
by their fatigue lifetime resulting from cyclic loads during operation. This fatigue degradation can be
modelled as an accumulation of damages caused by individual load cycles. A typical measure for
fatigue load is the Damage Equivalent Load (DEL); the DEL allows the fatigue damage contribution
of various load cycles of different magnitudes to be summarised into a single cyclic load. This load,
when applied over the same period, would result in an equivalent contribution to fatigue degradation.
Individual load cycles i can be converted to damage contributions ∆D using Equation 1.

∆D =
∑
i

niLi

N(Li)
(1)

Where Li is the magnitude of the cyclic load, ni is the number of cycles at that load and N(Li) is
the number of cycles at load Li, which would result in failure. According to Palmgren-Miner’s rule,
these individual contributions ∆D can then be summed linearly to obtain the total fatigue damage

accumulation D. N(Li) is often modelled as an exponential curve of the form
(

Li

Lu

)−m

, where Lu

is the ultimate load and m is a parameter called the Wöhler exponent. An arbitrary series of load
cycles Li with cycle counts ni can be transformed into a DEL by equating their damage contributions.
This requires the DEL to be defined at some reference frequency feq over the total time period Ts of
the original to-be-transformed signal.

feqTs

(
DEL

Lu

)m

=
∑
i

ni

(
Li

Lu

)m

(2)

feqTsDELm =
∑
i

niL
m
i (3)

DEL = m

√∑
i niLm

i

feqTs
(4)

The damage contributions of multiple series of load cycles can thus be computed by using their
respective DEL loads with Equation 1, replacing ni by feqTs and Li by the DEL-value. Palmgren-
Miner’s rule dictates that fatigue failure occurs upon reaching a damage-state D of 1. In this paper,
we investigate the contributions of five different fatigue loads: the blade-root edgewise and flapwise
moments, the tower base side-to-side and fore-aft moments and the tower top yaw moment. We
choose these loads specifically as prior research by Carroll et al. [32] and Dao et al. [33] has shown
that these are typically and often subject to fatigue failure. The conventions for each of these moments
are shown in Figure 3.

4 Environment
4.1 Problem Formulation

Wake steering offers a feasible solution to tackle performance deterioration in wind farms due to
wake effects. By introducing a yaw misalignment to various upstream turbines, the problem of

4

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

Figure 3: Conventions for the fatigue loads under investigation.

downstream-propagating velocity deficits and turbulence increases ending up in downstream turbines
can be partially mitigated. This facilitates nearly instantaneous increases in power production and,
thereby, in short-term profit. However, as a result of wake steering actions, the accumulation of
fatigue damage in turbines can be accelerated, causing degradation effects that are unaccounted for
in power-only optimisation. If these effects are not considered, the instantaneous revenue gains can
eventually be nullified by the introduction of more component replacements due to fatigue failure.
The problem at hand is thus to construct and train a wake steering controller that can explicitly
account for all these effects and find the policy that maximises wind farm profit.

The reinforcement learning agent is concerned with the optimisation of the cumulative reward R over
each episode. Based on the state st of the environment at timestep t, the agent takes an action at
containing the yaw angles for all turbines in the environment, according to a policy π. It receives a
reward rt, based on a combination of costs ct and profits pt:

Figure 4: Diagram of the Markov Decision Process

The profits are dependent on power production, whereas the cost is dependent on maintenance costs;
these will be introduced later. The agent must learn to find the (near) optimal set of parameters θ for
π, such that the policy π∗

θ maximises the expected cumulative reward R over each episode of length
T . The discount factor γ discounts future rewards.

π∗ = argmax
π

E

[
T∑

t=0

γtrt

]
(5)

The RL problem is therefore defined as the tuple ⟨S,A,R, P, γ⟩ with the state-space S, action space
A, reward function R, transition function P implemented by the environment and discount factor γ.
We use 10-minute timesteps in the environment and further assume all conditions are fixed during the
timestep.

4.2 Simulation

To model the power- and load effects of the turbines given input yaw actions, a farm-wide simula-
tion model is required to determine wake interactions and local physical variables at each turbine.
Typical numerical solvers that account for wake interactions in wind farms, such as PyWake [34],
FAST.FARM [35] or SOWFA [19] require runtimes in the order of seconds up to minutes. Training an

5

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

RL agent in the environment will require simulating millions of timesteps to find a well-performing
policy for which millisecond inference is desirable. However, the models mentioned above are
order(s) of magnitude too slow. Furthermore, they might require additional models to determine the
local turbine-level effects on top of the farm-level effects to obtain power outputs and aeroelastic loads.
Instead, we use a surrogate model that can simultaneously simulate farm-level wake interactions and
turbine-level physical variables with inference speeds in the order of milliseconds. This is inspired
by previous work by Duthé et al. [36], which has shown that surrogate modelling of wake-affected
turbines using Graph Neural Networks is feasible, efficient and reasonably accurate.

Training such a GNN-based surrogate requires a dataset of input-output pairs of simulation results.
Here, the inputs are the free-stream wind flow conditions around the farm combined with yaw angles
for each of the turbines; the outputs consist of the local flow conditions, thrust coefficient, power
level and fatigue loads at each turbine. To generate this dataset, we use PyWake, as it offers an
efficient model with a Python interface to facilitate fast dataset generation. PyWake can model
wake interactions in the wind farm but cannot determine turbine-level physical variables under yaw
misalignments and waked conditions. To tackle this, we train another model to supplement PyWake
in the form of a turbine-level surrogate that infers local thrust coefficient, power and fatigue loads
given the local flow conditions. In essence, PyWake and the surrogate will work together; PyWake
computes the wake interactions and provides the local wake-affected flow conditions at each turbine,
after which the turbine-level surrogates will determine the physical variables. Development of the
GNN-based complete surrogate is thus a two-stage process: first, developing a turbine-level surrogate
to complement PyWake, and then developing the GNN-based complete surrogate itself.

The turbine-level surrogate itself, too, needs a dataset of input-output sets. We use OpenFAST
as a simulator for the turbine to compute numerically the desired physical variables. OpenFAST
requires 1) a model of the turbine to be modelled and 2) a flow field to which the turbine is subject.
For the turbine model, we make use of the 3.4MW full-scale reference turbines developed by the
International Energy Agency (IEA) [37]. It offers a well-documented turbine with, most importantly,
pre-configured model files and settings for simulating with OpenFAST. Additionally, they provide
tuned settings for the ROSCO controller [38], which can be combined with the turbine. With the
turbine files ready, what remains is the generation of the flow fields to be used in the simulation.
These should cover a wide range of inflow conditions to ensure the trained surrogates generalise as
well as possible. We do this using TurbSim [35], a turbulence field generation tool by NREL. Three
variables are required to characterise the flow field: mean wind speed Vm, turbulence intensity I
and shear exponent α. To cover a wide range of conditions extending beyond the operating region
of the turbine, we choose [−30,+30] as the boundaries of the sampled wind speeds. Following the
IEC61400-1 standard on wind turbine design [31], we set the upper bound of turbulence intensity
as I = Iref

(
0.75 + b

Vhub

)
, where Iref = 0.16, b = 5.6, Vhub = Vm and I = σ

Vm
with σ as the

standard deviation of wind speed fluctuations. Furthermore, following Haghi and Crawford [39], a
fixed lower- and upper bound of 0.04 and 0.5 are enforced to prevent extreme values. For the shear
exponent α, we follow the definition by Dimitrov [40] with added hard constraints of [−0.3, 2.5] to
tackle exploding values due to low wind speeds extending beyond their use-case. Finally, TurbSim
uses seeds to prime the random flow field generation process; for this, we set the bounds as [0, 216] to
provide a wide range of seeds to sample from. Similarly, for the simulation process in OpenFAST
later on, random yaw angles need to be sampled. Following work by Zong and Porté-Agel [13],
we limit the yaw angles between [−30,+30] as they found the most optimal yaw angles for wake
steering to be within that region. All bounds of the distributions are shown in Table 1. To sample from
the distribution, we make use of quasi-random SOBOL sampling to obtain an unbiased distribution
of samples over the input space; the sampled variables are shown in Figure 5.

Since SOBOL sampling only maintains its distributional properties if the number of samples is a
power of 2, furthermore taking inspiration from Haghi and Crawford [39], we produce 215 turbulence
files with TurbSim. We used a 24x24 grid resolution with the Kaiman turbulence model as outlined
by the IEC61400-1 standard. Furthermore, each turbulence field allows 320 seconds of simulation
time. Next, for the simulation in OpenFAST, nearly all default settings found in the model files of the
3.4MW reference turbine are kept. Adjustments we made were enabling all blade DOFs, setting initial
pitch angles to 8 degrees and setting the initial rotor RPM to 11.5. Furthermore, in simulation cases
outside the regular operating region (wind speed between 4 and 25), pitch control, generator control
and generator DOF were turned off. Additionally, for parked (disabled) turbines and cases where the
wind speed exceeds 25, the blades were feathered (e.g. pitch angle of 90 degrees). All simulations

6

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

Symbol Name Lower Bound Upper Bound
Vm Mean Wind Speed 0 30

I Turbulence Intensity 0.04 min
(
0.5, Iref

(
0.75 + b

Vhub

))
α Shear Exponent max

(
−0.3, αref,LB − 0.23

(
Vmax

Vhub

)(
1−

(
0.4logR

z

)2))
min

(
2.5, αref,UB + 0.4

(
R
z

) (
Vmax

Vhub

))
γ Yaw Misalignment −30 30
ζ Seed 0 216

Notes:
Iref = 0.18 and b = 5.6, according to IEA61400-1 standard [31]; αref,LB and αref.UB are 0.23 and 0.40 respectively, following [40]
Vhub and Vmax are hub-height and maximum possible wind speed respectively
R and z are rotor diameter and hub height in meters, and 130 & 110 for the 3.4MW turbine respectively.
All samples are chosen uniformly between lower- and upper bounds

Table 1: Overview of distributions of input variables

Figure 5: Input variables obtained using SOBOL-sampling

were then carried out using the openfast-toolbox Python package, which automatically adjusts
the simulation settings to include the correct turbulence files.

Next, all outputs are postprocessed using the same openfast-toolbox library. The first 20 seconds
of the simulation are discarded to remove transient start-up behaviour, leaving 300 seconds of time
series data for analysis. Both thrust coefficient and power are averaged over the entire series. The
DEL values are computed using openfast-toolbox’s equivalent_load function by feeding it
the individual time series along with their respective Wöhler exponents found in Table 4. What results
is a set of input variables indicating the wind speed Vm, turbulence intensity I , shear exponent α and
yaw angle γ together with a set of output variables indicating the local thrust coefficient ct, power P
and the five DEL loads. We now use this dataset to train the turbine-level surrogate model. To do so,
we train a separate model for each of the three operating regions: below cut-in wind speed, within
the operating window and above cut-out wind speed. We do this as input-output relations can differ
wildly depending on whether the turbine is active or not. We construct a three-layer MLP for each
output variable separately, consisting of [32, 64, 32] hidden nodes with LeakyReLu activation. The
dataset is split into a training set (80%) and a validation set (20%). Furthermore, all input and output
variables are scaled using min-max scaling. We use the ADAM optimiser with a learning rate of
0.0001, Mean Squared Error (MSE) loss function, 3000 learning epochs and early stopping based on
validation loss. This yields 21 networks, three regions for each output variable. Note that the region
above cut-off and the parked condition are modelled using the same network, as they exhibit the same
turbine settings. Table 2 shows the evaluation metrics of the trained surrogates.

Model r2 score RMSPE RMSE MAPE MAE
P 0.998 0.067 50.388 0.020 25.787
Ct 0.999 0.030 0.008 0.022 0.005
DELbr,ew 0.992 0.144 43.483 0.053 27.002
DELbr,fw 0.981 0.230 256.816 0.092 167.69
DELtt,yaw 0.974 0.350 219.263 0.134 122.06
DELtb,ss 0.960 0.178 1631.687 0.117 924.066
DELtb,fa 0.943 0.139 2299.924 0.093 1093.924

Table 2: Performance metrics for all seven surrogates averaged over all operating regions.

Next, we combine these surrogates with PyWake to obtain the dataset for the farm-level surrogate
training. Here, too, inflow conditions need to be generated. We use the same sampling process as
before. Additionally, we introduce a binary ’operating mode’ variable that indicates whether a turbine
is in operation or parked, for example, due to maintenance work. With a 5% probability, we turn

7

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

turbines off, meaning they produce no power or wake and are subject to the turbine-level surrogate
conditioned on parked conditions. Finally, we sample random wind farm layouts for the simulation
process to ensure the surrogate generalises as well as possible over different topologies. We use a
random layout generation process shown in Figure 6 to do this. First, an even grid is generated and
randomly perturbed. Next, all coordinates are scaled such that the minimum distance between any
two turbines is exactly Dmin, which we set as 3D ≈ 500. Finally, after rotating the grid, we mask
the farm with different shapes to obtain various sets of turbines, making up a variety of farm layouts.
We generate three datasets: a training set with 5000 layouts, a validation set with 1500 layouts and
a test set with 1500 layouts. Each layout is combined with ten inflow conditions, yielding 50000,
15000 and 15000 simulation cases, respectively.

Figure 6: Random wind farm layout generation process.

We configure PyWake as follows. For the wake deficit modelling, we make use of the
BastankhahGaussianDeficit module, implemented according to Bastankhah and Porté-Agel
[41] and used by the authors of the IEA37 reference turbine in their wake studies [42]. Following the
work this surrogate modelling is based on [36], we use the CrespoHernandez module for calculating
turbulence in wakes. We use PyWake’s SquaredSum module for superpositioning of multiple wakes.
Next, for the wake deflection model, we make use of the JiminezWakeDeflection module, as it is
the only available option that is valid and tested for yaw angles up to thirty degrees [43]. Finally, the
custom turbine-level surrogate models developed earlier are injected into the PyWake logic to infer
local physical variables. All 80000 cases are then simulated using PyWake to obtain the input-output
dataset required for farm-level surrogate training.

Before training the GNN surrogate, we first transform the dataset into graphs that can be fed into the
graph-based architecture. To do so, each turbine is represented by a node on a fully connected graph.
Each node gets a feature vector for the input graph consisting of the respective turbine’s yaw angle,
operating mode and global wind conditions. Edge features are constructed by calculating the pairwise
polar representation of their difference vector and are bidirectional. Furthermore, the edge features
are supplemented with the relative angle between the wind direction and the polar angle of each edge.
This is in accordance with work by Duthé et al. [36]. The output graphs are constructed by giving
each node a feature vector containing the local wake-affected power, wind speed, turbulence intensity
and each of the five fatigue loads. The graph construction process is shown in Figure 7.

The farm-level surrogate’s GNN architecture is based on the encode-process-decode paradigm, where
each input embedding is first encoded, then propagated on the graph and finally decoded again. Each
node feature vector is fed through a node encoder with hidden layers of size [256, 512, 256] with
LeakyReLu activation; similarly, each edge feature vector is fed through an edge encoder with hidden
layers of size [256, 256] with ReLu activation. Both encoders transform the inputs into a latent space
with 256 dimensions. Next, four layers of GENeralized Graph Convolution (GEN, Li et al. [44])

Figure 7: Graph embedding of the farm-level simulation dataset.

8

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

with softmax aggregation perform the message passing over the graph. Finally, a node decoder with
hidden layers of size [256, 256] with ReLu activation transforms the hidden output graph embedding
back into the 8-dimensional output vector. The architecture is visualised in Figure 8. All input and
output embeddings are standardised using mean-standard deviation standardisation. The learning rate
is set at 0.0005 with a cosine annealing scheduler; 150 epochs of training with the ADAM optimiser
and MSE loss are used with training. Furthermore, early stopping based on validation loss is used as
well. The evaluation metrics on the test set are shown in Table 3. With this, the full combined wake,
power and load simulation model is ready for inference in the environment.

Figure 8: Overview of the architecture of the GNN-based farm-level surrogate.

Variable r2 score RMSE MAE
P 0.996 25.957 21.929
VW,l 0.995 0.121 0.104
TIl 0.980 0.006 0.005
DELbr,ew 0.995 47.463 39.760
DELbr,fw 0.986 191.774 157.324
DELtt,yaw 0.986 103.754 85.778
DELtb,ss 0.975 601.581 464.686
DELtb,fa 0.984 902.543 722.481

Table 3: Performance metrics for the farm-level GNN Surrogate model on the test set; subscripts l

indicate that wind speed Vw and TI are the ones local to the turbines, e.g. with wake effects. Relative
errors are omitted due to value explosions when ground truth values approach zero.

4.3 Wind Sampling

We model the wind in our environment as a Discrete Time Markov Chain (DTMC) to include
temporal coherency in the generated wind signal. Both wind direction and wind speed are modelled
as DTMCs. A DTMC consists of a finite set of states S = x1, x2, ..., xn and transition probabilities
Pij = P{Xt+1 = xj |Xt = xi} where i, j ∈ n and Xt indicates the state of the system at time t.
The Markov property of a DTMC dictates that the probability of moving from state Xt to Xt+1 is
only dependent on the state Xt and not on any of the states X0, X1, ..., Xt−1 preceding it. We thus
require a matrix of transition probabilities of shape n× n, where

∑
j∈S Pij = 1. To construct the

transition matrices for wind direction and wind speed, we first obtain a dataset of wind conditions
from Ørsted [45], which includes two years of measured wind conditions with a ten-minute resolution.
We discretise the wind direction into Nwd = 18 bins of 20 degrees width, and the wind speed into
Nws = 40 bins of width 1. We extend the DTMC with an extra dimension for indexing by the M -th
month of the year to introduce seasonal effects, thus requiring the inference of a M ×Nwd ×Nwd

matrix of transition probabilities. Using frequency counting of transitions, conditioned on the month
of the year, we populate the matrix before dividing it by the total number of transitions. Similarly, for
the wind speed, we add an extra dimension to its matrix to account for the current wind direction; this
allows the conditioning of wind speed on wind direction. We populate its Nwd ×Nws ×Nws matrix
the same way we populated the transition matrix for wind directions. Given an initial wind direction
state, wind speed state and month of the year, the DTMCs can be used to sample a temporally
coherent sequence of states with distributional properties similar to that of the input dataset. Finally,
to remove the effects of discretisation, we add uniform noise between [−10,+10] and [−0.5,+0.5] to
wind direction and wind speed, respectively. To complete the wind sampling, we add the turbulence
intensity I and shear exponent α by uniform sampling from the same distributions as from Table 1.

9

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

4.4 Electricity Rate

We model the electricity prices using a lookup table conditioned on the month of the year and the
hour of the day to account for seasonal and hourly effects. The time kept by the simulation is used to
index a 12× 24 matrix of electricity prices; this matrix is inferred from real-life historical electricity
prices published by the NordPool energy exchange [46]. The data of electricity market spot prices -
which is recorded hourly - is grouped by hour and month and then averaged. For our case, we make
use of the ’SYSTEM’ price category, which provides a stable reference baseline price. Figure 9
shows an analysis of the used dataset, showing clear signs of seasonal and hourly effects.

Figure 9: Electricity market spot prices of the NordPool market.

4.5 Damage Accumulation

We model the accumulation of fatigue damage using the methods outlined by the IEC61400-1
standard on wind turbine design, covered in section 3. The GNN-based simulation model outputs,
for each turbine in the farm, the DEL values for each of the five locations under consideration. We
use Palmgren-Miner’s linear damage accumulation rule and maintain separate damage values D
for each component for each turbine separately. For each timestep, given the DELs provided by
the simulation model, we update the damage state D of each component by adding ∆D computed
through Equation 1. We find the parameters required to characterise the exponential N(Li) curve by
first setting 10, 7 and 4 as the Wöhler exponents m for the blade, yaw system, and tower base related
DEL loads, respectively. Next, we tune DELu with the simulation model to ensure an average
22-year design lifetime under zero-yaw conditions for each component to mimic the process through
which turbine components would generally be designed. The obtained fitted parameters, determined
with gradient descent, are shown in Table 4.

DEL Location Component m[−] DELu[kNm] Cost[EUR] Downtime[Hours]
Blade Root Edgewise Blade 10 35634.785 120901.57 300
Blade Root Flapwise Blade 10 55370.247 120901.57 300
Tower Top Yaw Yaw System 7 63581.925 125013.75 150
Tower Base Side-to-Side Tower 4 1962407.473 829755.28 600
Tower Base Fore-Aft Tower 4 6163272.492 829755.28 600

Table 4: Fitted fatigue curve parameters, replacement costs and downtime duration.

4.6 Maintenance Cost

We introduce two methods of modelling maintenance costs: one ’dense’ method and one ’sparse’
method. We define the dense method as a model under which the usage of components is directly
penalised through a per-per-usage paradigm, linearly relating fatigue damage fractions to fractions of
replacement cost incurred. Conversely, the sparse model only incurs cost as soon as a component’s
damage state D equals or surpasses the damage limit of 1, thereby providing more sparse costs. More
formally, given a ∆D of a component during a timestep, the dense cost is modelled as ∆D ·C, where
C is the total replacement cost. In the end, this sums up to the same value as the sparse case, which
instantly returns the total cost C when D surpasses 1, essentially modelling a direct delta function
δ(D − 1) · C. Examples of how the dense and sparse cost models relate to the damage accumulation

10

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

Figure 10: The dense cost model. Figure 11: The sparse cost model.

Figure 12: The graph observation of the environment.

are shown in Figure 10 and Figure 11, respectively. Replacement costs are taken from the IEA37
reference turbine design paper [47]. Furthermore, the downtime of turbines due to maintenance
upon component failure is based on reviews by Dao et al. [33] and Carroll et al. [32]. All cost and
maintenance parameters can be found in Table 4.

4.7 Action & Observation Space

We define the action space as the joint action space of all turbines, e.g. a vector of n dimensions for
n turbines containing the yaw angles in the range [−30,+30]. Given the graph-like nature through
which wind farm effects can be modelled, we believe using a graph-based agent architecture makes
sense. As such, we define the observation space as a graph. Coincidentally, we can copy the nodes,
graph connectivity and edge features directly from the GNN model embedded in the environment.
Next, we supplement this with different node features containing global and local information for
each turbine. More specifically, we include the wind conditions (wind speed V t

m, wind direction ϕt,
turbulence intensity It and shear exponent αt), electricity rate Rt, the fraction of windfarm lifetime
that has elapsed so far ηt and the damage states Dt

i,j for each of the components. Figure 12.

4.8 Reward Function

We define the reward function of the environment as the balance between profit obtained through
energy production minus cost incurred through maintenance, e.g. damage through usage. The profit
of turbine i is determined using the electricity rate Rt and power P t

i at timestep t, through the relation
pt = RtEt

i where Et
i =

P t
i

6.0e3 converts the power to energy production over the 10 minutes that
passed during the timestep. The cost cti,j of component j of turbine i is modelled using either dense
or sparse costs. In total, the reward function becomes:

rt =
∑
i

pti −∑
j

cti,j

 (6)

4.9 Baseline Removal

The reward returned from the environment as-is will include a lot of variance due to the random
processes (e.g. wind and electricity prices), adding a high degree of stochasticity. Similar policies

11

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

evaluated under random conditions might thus yield very dissimilar rewards. Actions that typically
result in improvement might seem negative due to the high reward variance, and vice versa. In other
words, the reward rt does not always truly reflect the true performance of a policy π. Ideally, this
variance would be removed from the environment to get a less noisy signal. This can be achieved
through variance reduction techniques, such as baseline removal [48]. We can remove a state-
dependent baseline from the reward at each timestep. By choosing the right action-independent
baseline, we can decrease the reward variance without introducing a bias [49]. A logical choice as a
baseline is the rewards obtained through a zero-yaw policy, meaning the baseline b(st) reflects the
reward the environment would have returned under the same conditions if all turbines were set with
zero-yaw misalignment. Removing this baseline from the reward at each timestep provides a more
stable reward signal, with the added benefit of directly seeing the agent’s relative performance of the
agent compared to the ’default’ behaviour. We thus replace the reward rt with rt − bt.

5 Reinforcement Learning

For the RL algorithm, we use Proximal Policy Optimisation (PPO), as it is a commonly used algorithm
for optimisation with continuous action spaces, and it has historically shown high performance on
many tasks. [50, 51]. Given the multi-agent nature of the problem combined with the high importance
of farm topology in the decision-making process, we employ a Graph Neural Network based Deep
Reinforcement Learning (DRL) architecture. It, therefore, makes sense to build the agent around a
fully centralised single-actor framework, Centralised Training with Centralised Execution (CTCE),
by representing each agent (turbine) as a node on a fully connected graph. This allows us to represent
the RL agent as a single actor that simultaneously infers the actions for all turbines based on the
full graph-like observation from Figure 12. Going forward, we use agent to refer to the individual
fully centralised controller, rather than a turbine in the multi-agent system. We make use of the same
encode-process-decode paradigm as was used for the farm-level surrogate model. All node and edge
features are encoded onto the graph into a 64-dimension latent space using 2-layer Tanh-activated
MLP encoders with [64, 64] hidden nodes. Three layers of GEN graph propagation with SoftMax
aggregation then perform the message passing step. We call the architecture up until this point the
state encoder, yielding a hidden graph representation with hidden latent vectors for each node. Each
hidden node embedding is then fed through a 2-layer Tanh-activated MLP with [64, 64] hidden nodes;
each node embedding hereby produces the mean and standard deviation of its action distribution. For
the value network, node-wise graph mean pooling is used to obtain a single-vector representation
of the graph state and consequently fed through a 2-layer ReLu-activated MLP with [64, 64] hidden
nodes to yield a single state value. An overview of the network is given in Figure 13. In our
implementation, the policy and value networks do not share an encoder, the learning rate is set to
0.0001, each learning batch contains 10 episodes of 1000 timesteps, 20 gradient descent iterations are
done, the PPO clip parameter is 0.1, the entropy coefficient is 0.001, the GAE lambda parameter is
0.1, and the discount factor is 1. The training uses the PPO implementation by RLLib. Furthermore,
the seasonal in-simulation time is random at the start of each episode to promote diverse seasonal
conditions. The agent architecture was constructed by choosing a similar structure as the farm-level
surrogate and tuning it to increase average reward at the end of training. All other hyperparameters
were tuned in the same way.

Aside from the baseline removal discussed in subsection 4.9, three more techniques are used to
ensure stable learning. All observations are normalised to the range [0, 1] based on their respective
minimum and maximum attainable values; similarly, all actions are normalised to the range [0, 1]
but transformed back to the original range when fed to the environment. Finally, reward scaling
is used to ensure the episode-wise accumulated reward is in the order of magnitude of 1. An
ablation study regarding the use of a MLP versus GNN based architecture, Baseline Removal and
Normalisation is available in Figure 14. It is evident that without baseline removal, the agents
exhibit no learning and that the GNN-based architecture ensures faster convergence due to topological
relations already being explicitly provided.

We define five agents for comparison, three of which are trained through the above reinforcement
learning algorithm:

1. The random agent - The random agent has a policy of π(st) = random([−30,+30]) for all
turbines.

12

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

Figure 13: Overview of the architecture of the GNN-based CTCE agent.

Figure 14: Ablation study for MLP/GNN architecture, baseline removal and normalisation.

2. The zero-yaw (baseline) agent - The zero-yaw, ’do-nothing’ agent essentially has a policy of
π(st) = 0, thereby always giving a yaw offset of zero to all turbines.

3. The greedy agent - The greedy agent optimises for power only; maintenance cost is removed
from the reward function.

4. The risk-averse agent - The risk-averse agent optimises for maintenance cost only; electricity
revenue is removed from the reward function.

5. The informed agent - The informed agent optimises for power, but also includes the cost of
degradation in the reward. It uses the complete reward function.

We define four Key Performance Indicators (KPIs) to investigate the performance of all the agents:

• Average Turbine Power (ATP) - The average power produced by any turbine in the farm.
• Average Turbine Cost (ATC) - The average maintenance cost for any turbine in the farm.
• Average Turbine Reward (ATR) - The net sum of profit obtained through power production

minus the maintenance costs incurred.
• Cost Of Energy (COE) - The total maintenance cost divided by the total amount of kWh energy

produced over the same period.

Finally, we train the agents on three different wind farm layouts, varying in topology and number of
turbines:

6 Results
The optimisation is done based on an infinite horizon assumption. This has everything to do with the
usage of dense costs. Dense costs ensure stable and effective learning for the agent due to frequent
feedback on degradation but lack the cost sparsity that would otherwise allow for strategic degradation
control to manage failures within a finite horizon. In other words, in the case of sparse (realistic)

13

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

Figure 15: 16-turbine Figure 16: Lillgrund Figure 17: Horns Rev

costs, the agent can ensure subsequent component failures happen outside the finite horizon, should
that consequently mean optimal cumulative rewards. In a finite horizon case, dense and sparse costs
will present different total costs. However, given an infinite horizon, the expected cost of both the
dense and sparse model approach the same value and relative differences are small. As such, we
present our optimisation on an infinite horizon and later investigate the effects of using such policies
on a finite horizon. Note that the infinite horizon assumption yields a static time-invariant policy,
allowing training to happen on episodes with fixed lengths despite the optimisation horizon being
infinite. The optimisation horizon does not refer to the length of episodes; episode-wise optimality
equals infinite-horizon optimality under a static policy.

6.1 Infinite Horizon

Starting with the 16-turbine layout, its training curves for each of the three agents can be found
in Figure 18. Each agent, including baseline and random, was evaluated on 200 1000-timestep
randomly initialised episodes using the same 200 seeds. The four financially oriented KPIs are shown
in Figure 19. ATP, ATC and ATR are expressed in per cent improvement compared to baseline; COE
is expressed in absolute terms. ATP, ATC, and ATR/COE correspond to the objectives optimised by
the Greedy, Informed and Risk-Averse agents.

Figure 18: Training curves of the Greedy, Informed and Risk-Averse agents, based on 5 runs each.

Figure 19: KPIs of the 16-turbine agent compared to baseline.

14

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

KPI Analysis. As is evident from the KPIs, each agent can improve their respective objective
relative to the baseline. Interestingly, power loss under the random agent is only a few per cent.
This results from mitigating actions by the turbine yaw controller, preventing excessive power losses.
Pitch control, as was present in dataset generation for the simulation’s surrogates, can significantly
reduce yaw misalignment losses [52]. The greedy controller can increase power production by 1.5%
on average at the cost of increased component fatigue degradation. Both the informed and risk-
averse controllers significantly reduce maintenance costs, though the informed controller manages
to minimise power losses, whereas the risk-averse controller suffers power losses similar to those
of the random policy. Overall, the reduced maintenance costs cause the informed and risk-averse
controllers to see a significant reduction in COE. The informed controller, however, produces more
energy and thereby obtains a higher total revenue.

Peak Power Increase Analysis. The above statistics highlight the average performance of the
agents over 200 100-timestep evaluation episodes. These episodes contain a variety of wind conditions,
and as such, all metrics show the performance on average. To highlight the peak performance of
the agent under high-wake conditions, we plot the power improvement versus wind direction for the
greedy controller in Figure 20, Figure 21 and Figure 22. As is expected, the peak power improvements
happen in the wind directions where turbines align relative to the wind, e.g., in the cardinal directions
and their diagonals. These directions cause the highest power losses for the zero-yaw controller.
Notable is the few-degree offset of the highest performance gains with the aforementioned high-wake
wind directions. This has to do with the inherent difficulty of wake steering in full-wake conditions,
where it becomes impossible to deflect a wake sufficiently without significantly compromising
upstream power production [13]. Partial-wake conditions thus present the cases where the highest
performance is achieved, with relative power increases up to twenty per cent. As wind speed increases,
two effects come into play. On the one hand, wake deflection effects due to wake steering are reduced
and become increasingly ineffective. On the other hand, wake velocity deficits at high wind speeds
might still present decreased wind speeds that are high enough to satisfy downstream turbines without
noticeable power loss. Indeed, at a wind speed of 14 m/s wake steering becomes entirely ineffective.

Figure 20: Power improvement
vs wind direction, at Vw = 7
m/s, I = 0.1 and α = 0.1.

Figure 21: Power improvement
vs wind direction, at Vw = 10
m/s, I = 0.1 and α = 0.1.

Figure 22: Power improvement
vs wind direction, at Vw = 14
m/s, I = 0.1 and α = 0.1.

Electricity Price Dependency. The informed agent balances power production with component
degradation. This trade-off comes down to a financial balance between profit through energy sales
and costs through maintenance. As such, the price of electricity plays a vital role in this trade-off.
Figure 23 illustrates the average yaw angle of each of the 16 turbines throughout all wind directions
at various wind speeds and electricity prices. At wind speeds where wake steering is most effective
(7 and 8 m/s), there is a noticeable increase in average yaw angle as prices increase. In other words,
as improving power production through wake steering becomes more valuable and higher yaw angles
are used, the controller can also allow component degradation to increase as its adverse effects are
offset by the profits from energy sales. At higher wind speeds, wake steering becomes ineffective,
and the damage under yaw misalignments becomes sufficiently large that the controller refuses to
employ any wake steering strategy. Interestingly, the yaw angle tends to drop below zero at low
electricity prices at 7 and 8 m/s wind speed. The most likely explanation is that the controller goes
into ’damage minimisation’ mode as it finds a local minimum of turbine loads at a slight negative

15

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

Figure 23: Average yaw angles versus electricity
price at various wind speeds; I = 0.1 and α = 0.1.

Figure 24: Farm layouts used
for the 16T vs 16R study.

yaw misalignment. The subtle power improvement of staying at zero yaw seemingly does not offset
the increase in turbine loads due to moving away from the local minimum.

Lillgrund & Horns Rev. We apply the same RL training setup on the Lillgrund and Horns Rev
wind farms. Figures 25 and 26 show the relative improvements for each agent. Note that in these
figures, each agent is only evaluated based on its optimised objective. Despite all agents improving
compared to baseline, their relative improvements are significantly lower than the performances in the
16-turbine farm. We find two possible explanations for this phenomenon. Training might require more
iterations, possibly extending up to 48 or 72 hours of runtime, to converge to a solution. However,
that is only if they will ever converge to a (sub)optimal solution. Lillgrund and Horns Rev include
48 and 80 turbines, meaning an equal amount of agents has to be optimised for in the multi-agent
system. Here, we run into the limitations of fully centralised training, which seemingly has trouble
exploring and converging to an optimal policy. This theory is further supported by the fact that the
agents trained on the Horns Rev farm perform even worse than the Lillgrund agents, indicating a
negative trend as farm size increases. Even though all agents still manage to find improvements, the
performances are all but impressive.

Figure 25: Performance metrics of the Lillgrund
agents.

Figure 26: Performance metrics of the Horns Rev
agents.

Generalisability. The excellent performance of the 16-turbine agents compared to the Lillgrund
and Horns Rev agents naturally spawns the question of whether the learned policies can be transferred
to circumvent the limitations of centralised learning. During the construction of the RL agent’s deep
learning architecture, no assumptions were made on the number of turbines and, therefore, on the
graph topology. In theory, the architecture would function just fine on any number of connected
turbines in any topology and connectivity. The question is, however, whether in the context of wind
farm control, using such trained graph-based agents enjoys the same topology-agnostic properties
as the architecture it is built on. In other words, whether the trained agent generalises to wind farm
topologies it has not yet encountered during training. This would effectively mean that the problems
with centralised learning can be circumvented by leveraging the convergence property in small farms
whilst still enjoying performance improvements when transferred to larger farms. To investigate this,
we transfer the agent trained on the 16-turbine farm to both the Lillgrund and Horns Rev farms and
evaluate its performance. The KPIs are compared in figures 27 and 28.

16

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

Figure 27: Performance metrics of the 16T and
Lillgrund agents on the Lillgrund farm.

Figure 28: Performance metrics of the 16T and
Horns Rev agents on the Horns Rev farm.

Indeed, the 16-turbine agents manage to exceed the performance of the agents specifically trained
on the farms themselves. In fact, they manage to nearly equal their respective performances on the
16-turbine farm. This indicates that the trained agents infer actions based on relative positions in the
farm and do not condition a policy on absolute positions in the farm like an MLP-based architecture
would. This property stems from the edge encoding in the input graph, which enables the agents
to learn which relative positions require what actions to mitigate wake effects. When presented
with unseen layouts, the agent can apply these rules as long as relative positions within the farm are
available. Figures 29 and 30 depict the yaw angles and power improvement of the 16-turbine greedy
agent during the worst-case wind directions, indeed showing sensible and consistent actions.

Figure 29: Policy on Lillgrund under worst-case
wind direction; I = α = 0.1.

Figure 30: Policy on Horns Rev under worst-case
wind direction; I = α = 0.1.

The agent only encounters the same grid-like layout during training with fixed relative positions. The
question is thus whether it can genuinely generalise well to layouts with different turbine spacings or
grid structures. To investigate this, we re-run the training on the 16-turbine farm but randomise the
layout upon each environment reset. This is only possible due to the generalizability property we
discovered earlier, allowing the agent to learn even under changing wind farm layouts. Ideally, the
increased heterogeneity in edge features will allow the trained agents to generalise to various wind
farm topologies better. We repeat training for all agents on the 16-turbine randomised (16R) farms
and evaluate agents from both training methods on four new wind farms illustrated in Figure 24.

As is evident from these results, the greedy 16R agent can improve power production slightly
compared to the 16T greedy agent. It seemingly exhibits better generalizability regarding wake
effects in various farm topologies. As for the other agents, however, performance is essentially
equal, and no performance improvements are noticeable. The likely cause for this invariance to
the training setup stems from the fact that most performance improvements for the informed and
risk-averse agents come from reducing loads on a turbine level. These changes can primarily be
made regardless of farm topology, barring effects which might occur as part of (partial) wakes. As
such, generalizability hardly improves when the agent is trained on more heterogeneous edges. This
theory is further supported by the nearly identical cost reduction achieved by the 16T informed and
risk-averse agents on both the 16-turbine, Lillgrund and Horns Rev farms. Altogether, training on
randomised layouts mainly improves wake steering ability, which is reflected in its increase in greedy
power production.

17

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

Figure 31: KPIs on the Wieringermeer farm. Figure 32: KPIs on the Middelgrunden farm.

Figure 33: KPIs on the Kriegers Flak farm. Figure 34: KPIs on the Anholt farm.

6.2 Finite Horizon

Optimising for a fixed and finite wind farm lifetime under realistic sparse costs can bring a completely
different optimisation problem compared to finding the best trade-off between component utilisation
and power production. Strategic control of component degradation can move entire replacement costs
outside the horizon, something which is impossible in the dense cost case. It might, for example, be
beneficial to ensure components fail just outside the considered time horizon, optimising power as
much as possible without causing an additional replacement due to the yawing behaviour. As such,
we investigate the performance of the ’infinite-horizon’ agents from the previous section under the
more realistic finite-horizon, sparse-cost case. Each agent is evaluated on the 16-turbine farm for a
total period of 40 years, plotting their accumulated total balance of profits and costs as a function of
time. Each agent is evaluated 20 times on the same 20 seeds, and the mean of the 20 runs is plotted in
Figure 35. Below the figures is a timeline indicating which of the agents would obtain the highest
cumulative profit if the wind farm were only to be considered up until that point. Furthermore, the
right plot subtracts the cumulative profit of the baseline ’zero-yaw’ agent from all curves.

Figure 35: 40-year analysis of the cumulative profits generated by each policy.

18

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

All things considered, the greedy policy initially is optimal as all effects of fatigue and failure can
essentially be ignored. It maximises power production profit at the cost of increased component
degradation. However, the baseline policy quickly becomes the best for choosing between lifetimes
of 9 to 22 years as the greedy agent’s components fail. At the 22-year mark, its own components start
to break down, whereas the informed policy manages to yet prevent this from happening. Despite
initially losing out on power production profit through a more conservative yaw strategy, it can go
all the way to approximately 34 years without having accumulated enough failures to once again
drop below the baseline performance. At this point, its failure cycle has caught up with that of the
baseline policy, and the effects of reduced power production once again emerge. Essentially, in the
region just beyond the design lifetime of the turbine components, a policy that preserves components
can manage to postpone failure costs as much as possible and thereby maximise profit. This will
not always be optimal, though; an example is the risk-averse policy, which minimises damage but is
never optimal. This is because it does not consider power production and, therefore, loses out on too
much energy production. However, in very long term, risk-averse and informed policies will again
surpass all other policies once they lag behind in enough failure cycles despite their conservative
power production strategy. Ultimately, the informed policy will find the best balance between profits
and costs, thereby maximising wind farm net profit.

7 Discussion

Some aspects of the environment and/or agents require some discussion. Firstly, despite the agents’
ability to improve on their respective objective functions compared to the baseline, it is difficult
to judge whether they have truly found optimal wake steering behaviour or they have found a
local minimum. The agents’ ability to generalise to a large variety of input parameters, e.g. wind
conditions, electricity prices and farm layouts, likely means they have to compromise on some
optimality. Comparing their results with that of a single-step gradient descent algorithm, which
should, given enough time, be able to find optimal actions, should help shed some light on their
relative performance. Furthermore, some effects related to the yawing movement itself, e.g. wear
due to rotation, transient yawing loads or a limit on rotation speed, were not considered in this
environment. Including these effects can potentially cause the agents to be more conservative in their
yaw movements or anticipate future wind conditions. Additionally, both tower-base loads (fore-aft
and side-to-side) were considered individually; in reality, they act in the nacelle’s rotating frame of
reference, which would cause these loads to act in different directions in the world-fixed frame. This
can be solved by either projecting both loads back into a world-fixed frame at all times or combining
both into a single load value acting on a single tower-base component.

Following the results of this work, we propose four concrete future research opportunities. First of
all, the RL training can be adjusted to account for fixed and finite horizons using the sparse-cost
maintenance model. This would mean optimising for a given time horizon, possibly given some initial
system state. This effectively comes down to finding the control policy that considers both short-term
effects (immediate power production optimisation) and long-term effects (postponing breakdowns or
increasing them if the resulting power benefit exceeds the costs). Agents trained through this method
would likely perform better for the specific horizon under consideration. However, we identify
three primary challenges in this type of optimisation. One is the presence of a credit assignment
problem spawned by the extremely sparse and delayed costs, which can depend on as many as one
million actions throughout the horizon. Potential solutions to this can come in the form of curriculum
learning (gradually moving from dense to sparse costs during training), reward redistribution using
frameworks like RUDDER [53] or potential-based reward shaping [54]. Problem two is the baseline
removal trick which needs adjustment to work with sparse costs. Immediate costs are no longer
known, making it difficult to provide a state-dependent baseline for costs. As we saw, baseline
removal is vital for a stable learning process. The third problem is the clash between short-term,
’tactical’ optimisation for power and long-term, ’strategic’ optimisation of component degradation
(costs). We propose using temporal abstraction techniques of Hierarchical Reinforcement Learning
(HRL) to tackle this problem. HRL has already seen promising applications in cooperative tasks [55]
and multi-agent cooperative systems with delayed rewards [56]. HRL would involve decomposing
the agent into a lower-level tactical and a higher-level strategic meta-controller level. The strategic
level decides on which wake steering strategy (conservative, balanced, aggressive, ...) the tactical
level should use.

19

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

Secondly, we propose casting the problem into a Partially Observable Markov Decision Process
(POMDP) framework, as we argue that knowing the full system state is unrealistic. More specifically,
the damage states D are impossible to measure in real life as they are not physical variables. Instead,
we propose inferring a belief state over the damage states D using some measurement of the fatigue
loads. These fatigue loads could, in real life, be either approximated using numerical models or
measured using strain sensors. An LSTM, for example, can be used for belief state inference based
on observed DEL values sampled from distributions around the simulation’s true values to simulate
measurement uncertainty or noise. Thirdly, we propose decoupling pitch control from the turbine-
level surrogates and adding pitch angles as an additional action for the agent. This would enable it
to use joint pitch and yaw control on all turbines, allowing for more control over produced wakes
and experienced loads. Prior research has shown that pitch control can contribute to wake control
[57–59], providing the agent with more authority to achieve optimal results. Finally, we propose
transitioning from a fully centralised learning paradigm to a Centralised Training with Decentralised
Execution (CTDE) paradigm to tackle the former’s inability to tackle exploding action spaces. This
might ultimately enable training on larger farms to achieve better performance that will likely surpass
that of the generalised 16-turbine agents. The agent architecture in this work can be easily adjusted
to facilitate this by keeping the state encoder but having separate policy decoder networks for each
of the agents involved. The value network will remain the same and needs no adjustment, thereby
providing information sharing through the shared critic (value) function.

8 conclusion

We investigated the applicability of graph-based deep reinforcement learning to train maintenance-
informed wake steering controllers. We use a Centralized Training with Centralized Execution
(CTCE) RL framework with PPO and an agent architecture consisting of a Graph Neural Network
with encoders and decoders. Our ’greedy ’ agent is able to improve power production by 1.5% on
average, with peak improvements of up to 20%, though it achieved worse net profit due to increased
component failure costs. Both informed and risk-averse agents decreased costs by as much as 50%.
The informed agent, whilst doing so, also managed to keep power losses low compared to the baseline
policy. Both informed and risk-averse policies reduce the cost of energy from 0.0061 to 0.0025
EUR/kWh, leading to better long-term wind farm profit compared to baseline, random and greedy
policies. The informed agent, having produced more energy overall, achieves the highest revenue
with increases up to 20%, and is thus the best-performing revenue optimisation controller.

When training on larger farms like Lillgrund (48 turbines) and Horns Rev (80 turbines), the fully
centralised training technique starts to run into scalability issues. While the agents can still improve
in their respective objectives compared to the baseline, performance decreases as wind farm size
increases. However, the 16-turbine agents generalise very well to unseen farms, indicating the agent
learns policies based on relative positions of turbines in a farm. Despite being trained on a smaller
farm, they surpass the performance of the agents specifically trained on the larger farms. Finally, the
randomised layout training scheme improves power production on unseen farms. The other agents -
informed and risk-averse - however, see nearly identical performance and thus no changes.

The optimality of the trained agents, however, is difficult to judge. Given the high degree of generaliz-
ability to various wind conditions, electricity prices and farm layouts, it likely compromises on some
level of optimality. Furthermore, the yawing movement itself is not considered in the degradation
model despite being an important source of component wear and action constraints. Similarly, the
tower base loads likely need adjustment to account for the mismatch between nacelle-fixed and
world-fixed frames of reference. We propose future work, including finite-horizon optimisation,
partial observability of the environment, decentralised training to tackle scalability issues and the
idea of combined pitch and yaw control for more wake steering authority.

In conclusion, we constructed graph-based, maintenance-informed, wind condition-agnostic and
topology-agnostic wake steering controllers. Using a reward function that considers both profits
through power production and costs through maintenance due to component degradation, we trained
an informed agent that maximises long-term wind farm profit and generalises to unseen farm layouts.
However, there is room for optimisation in finite-horizon problems.

20

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

References
[1] IEA. Renewables 2023 – Analysis, January 2024. URL https://www.iea.org/reports/

renewables-2023. 1

[2] Yu-Ting Wu and Fernando Porté-Agel. Modeling turbine wakes and power losses within
a wind farm using LES: An application to the Horns Rev offshore wind farm. Renewable
Energy, 75:945–955, March 2015. ISSN 0960-1481. doi: 10.1016/j.renene.2014.06.019. URL
https://www.sciencedirect.com/science/article/pii/S0960148114003590. 1

[3] R. J. Barthelmie, S. T. Frandsen, M. N. Nielsen, S. C. Pryor, P.-E. Rethore, and H. E. Jørgensen.
Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at
Middelgrunden offshore wind farm. Wind Energy, 10(6):517–528, 2007. ISSN 1099-1824. doi:
10.1002/we.238. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/we.238.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.238. 1

[4] R. J. Barthelmie, K. Hansen, S. T. Frandsen, O. Rathmann, J. G. Schepers, W. Schlez, J. Phillips,
K. Rados, A. Zervos, E. S. Politis, and P. K. Chaviaropoulos. Modelling and measuring flow
and wind turbine wakes in large wind farms offshore. Wind Energy, 12(5):431–444, 2009. ISSN
1099-1824. doi: 10.1002/we.348. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/we.348. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.348. 1

[5] Sang Lee, Matthew Churchfield, Frederick Driscoll, Senu Sirnivas, Jason Jonkman, Patrick Mo-
riarty, Bjorn Skaare, Finn Gunnar Nielsen, and Erik Byklum. Load Estimation of Offshore Wind
Turbines. Energies, 11(7):1895, July 2018. ISSN 1996-1073. doi: 10.3390/en11071895. URL
https://www.mdpi.com/1996-1073/11/7/1895. Number: 7 Publisher: Multidisciplinary
Digital Publishing Institute. 2

[6] Elie Kadoche, Sébastien Gourvénec, Maxime Pallud, and Tanguy Levent. MARLYC: Multi-
Agent Reinforcement Learning Yaw Control. Renewable Energy, 217:119129, November 2023.
ISSN 0960-1481. doi: 10.1016/j.renene.2023.119129. URL https://www.sciencedirect.
com/science/article/pii/S0960148123010431. 2, 3

[7] Rick Damiani, Scott Dana, Jennifer Annoni, Paul Fleming, Jason Roadman, Jeroen van
Dam, and Katherine Dykes. Assessment of wind turbine component loads under yaw-
offset conditions. Wind Energy Science, 3(1):173–189, April 2018. ISSN 2366-7443. doi:
10.5194/wes-3-173-2018. URL https://wes.copernicus.org/articles/3/173/2018/.
Publisher: Copernicus GmbH. 2, 3

[8] Davide Medici. Experimental studies of wind turbine wakes : power optimisation and mean-
dering. PhD thesis, KTH Royal Institute of Technology, 2005. URL https://urn.kb.se/
resolve?urn=urn:nbn:se:kth:diva-598. Publisher: KTH. 3

[9] Michael F. Howland, Sanjiva K. Lele, and John O. Dabiri. Wind farm power optimization
through wake steering. Proceedings of the National Academy of Sciences, 116(29):14495–14500,
July 2019. doi: 10.1073/pnas.1903680116. URL https://www.pnas.org/doi/full/10.
1073/pnas.1903680116. Publisher: Proceedings of the National Academy of Sciences. 3

[10] Paul Fleming, Jennifer Annoni, Jigar J. Shah, Linpeng Wang, Shreyas Ananthan, Zhijun Zhang,
Kyle Hutchings, Peng Wang, Weiguo Chen, and Lin Chen. Field test of wake steering at an
offshore wind farm. Wind Energy Science, 2(1):229–239, May 2017. ISSN 2366-7443. doi:
10.5194/wes-2-229-2017. URL https://wes.copernicus.org/articles/2/229/2017/.
Publisher: Copernicus GmbH. 3

[11] Paul Fleming, Jennifer King, Katherine Dykes, Eric Simley, Jason Roadman, Andrew Schol-
brock, Patrick Murphy, Julie K. Lundquist, Patrick Moriarty, Katherine Fleming, Jeroen
van Dam, Christopher Bay, Rafael Mudafort, Hector Lopez, Jason Skopek, Michael Scott,
Brady Ryan, Charles Guernsey, and Dan Brake. Initial results from a field campaign of
wake steering applied at a commercial wind farm – Part 1. Wind Energy Science, 4(2):
273–285, May 2019. ISSN 2366-7443. doi: 10.5194/wes-4-273-2019. URL https:
//wes.copernicus.org/articles/4/273/2019/. Publisher: Copernicus GmbH. 3

[12] National Renewable Energy Laboratory (NREL). FLORIS: FLOw Redirection and Induction in
Steady State, . URL https://www.nrel.gov/wind/floris.html. 3

[13] Haohua Zong and Fernando Porté-Agel. Experimental investigation and analytical mod-
elling of active yaw control for wind farm power optimization. Renewable Energy, 170:

21

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

1228–1244, June 2021. ISSN 0960-1481. doi: 10.1016/j.renene.2021.02.059. URL
https://www.sciencedirect.com/science/article/pii/S0960148121002275. 3, 6,
15

[14] P. M. O. Gebraad, F. W. Teeuwisse, J. W. van Wingerden, P. A. Fleming, S. D. Ruben, J. R.
Marden, and L. Y. Pao. Wind plant power optimization through yaw control using a parametric
model for wake effects—a CFD simulation study. Wind Energy, 19(1):95–114, 2016. ISSN
1099-1824. doi: 10.1002/we.1822. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/we.1822. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.1822. 3

[15] Pieter Gebraad, Jared J. Thomas, Andrew Ning, Paul Fleming, and Katherine Dykes. Maxi-
mization of the annual energy production of wind power plants by optimization of layout and
yaw-based wake control. Wind Energy, 20(1):97–107, 2017. ISSN 1099-1824. doi: 10.1002/we.
1993. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1993. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.1993. 3

[16] Paul Stanfel, Kathryn Johnson, Christopher Bay, and Jennifer King. A Distributed Re-
inforcement Learning Yaw Control Approach for Wind Farm Energy Capture Maximiza-
tion: Preprint. 2020. URL https://research-hub.nrel.gov/en/publications/
a-distributed-reinforcement-learning-yaw-control-approach-for-win-2. 3

[17] Van-Hai Bui, Thai-Thanh Nguyen, and Hak-Man Kim. Distributed Operation of Wind Farm for
Maximizing Output Power: A Multi-Agent Deep Reinforcement Learning Approach. IEEE
Access, 8:173136–173146, 2020. ISSN 2169-3536. doi: 10.1109/ACCESS.2020.3022890. URL
https://ieeexplore.ieee.org/document/9189872. Conference Name: IEEE Access. 3

[18] Hongyang Dong, Jincheng Zhang, and Xiaowei Zhao. Intelligent wind farm control via
deep reinforcement learning and high-fidelity simulations. Applied Energy, 292:116928,
June 2021. ISSN 0306-2619. doi: 10.1016/j.apenergy.2021.116928. URL https://www.
sciencedirect.com/science/article/pii/S0306261921004086. 3

[19] National Renewable Energy Laboratory (NREL). SOWFA: Simulator fOr Wind Farm Applica-
tions, . URL https://www.nrel.gov/wind/nwtc/sowfa.html. 3, 5

[20] Venkata Ramakrishna Padullaparthi, Srinarayana Nagarathinam, Arunchandar Vasan, Vishnu
Menon, and Depak Sudarsanam. FALCON- FArm Level CONtrol for wind turbines using
multi-agent deep reinforcement learning. Renewable Energy, 181:445–456, January 2022. ISSN
0960-1481. doi: 10.1016/j.renene.2021.09.023. URL https://www.sciencedirect.com/
science/article/pii/S0960148121013227. 3

[21] Knud A. Kragh and Morten H. Hansen. Load alleviation of wind turbines by yaw mis-
alignment. Wind Energy, 17(7):971–982, 2014. ISSN 1099-1824. doi: 10.1002/we.
1612. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1612. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.1612. 3

[22] Paul Fleming, Pieter M.O. Gebraad, Sang Lee, Jan-Willem van Wingerden, Kathryn
Johnson, Matt Churchfield, John Michalakes, Philippe Spalart, and Patrick Mori-
arty. Simulation comparison of wake mitigation control strategies for a two-turbine
case. Wind Energy, 18(12):2135–2143, 2015. ISSN 1099-1824. doi: 10.1002/we.
1810. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1810. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.1810.

[23] Xin Shen, Xiaocheng Zhu, and Zhaohui Du. Wind turbine aerodynamics and loads control
in wind shear flow. Energy, 36(3):1424–1434, March 2011. ISSN 0360-5442. doi: 10.1016/
j.energy.2011.01.028. URL https://www.sciencedirect.com/science/article/pii/
S0360544211000296. 3

[24] Shitang Ke, Tongguang Wang, Yaojun Ge, and Hao Wang. Wind-induced fatigue of large
HAWT coupled tower–blade structures considering aeroelastic and yaw effects. The Structural
Design of Tall and Special Buildings, 27(9):e1467, 2018. ISSN 1541-7808. doi: 10.1002/tal.
1467. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/tal.1467. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/tal.1467. 3

[25] Min-Soo Jeong, Sang-Woo Kim, In Lee, Seung-Jae Yoo, and K. C. Park. The impact of yaw
error on aeroelastic characteristics of a horizontal axis wind turbine blade. Renewable Energy,
60:256–268, December 2013. ISSN 0960-1481. doi: 10.1016/j.renene.2013.05.014. URL
https://www.sciencedirect.com/science/article/pii/S0960148113002590. 3

22

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

[26] Mou Lin and Fernando Porté-Agel. Power Maximization and Fatigue-Load Mitigation in a
Wind-turbine Array by Active Yaw Control: an LES Study. Journal of Physics: Conference
Series, 1618(4):042036, September 2020. ISSN 1742-6596. doi: 10.1088/1742-6596/1618/
4/042036. URL https://dx.doi.org/10.1088/1742-6596/1618/4/042036. Publisher:
IOP Publishing. 3

[27] Brandon L. Ennis, Jonathan R. White, and Joshua A. Paquette. Wind turbine blade load
characterization under yaw offset at the SWiFT facility. Journal of Physics: Conference Series,
1037(5):052001, June 2018. ISSN 1742-6596. doi: 10.1088/1742-6596/1037/5/052001. URL
https://dx.doi.org/10.1088/1742-6596/1037/5/052001. Publisher: IOP Publishing.
3

[28] Ervin Bossanyi. Combining induction control and wake steering for wind farm energy and
fatigue loads optimisation. Journal of Physics: Conference Series, 1037(3):032011, June 2018.
ISSN 1742-6596. doi: 10.1088/1742-6596/1037/3/032011. URL https://dx.doi.org/10.
1088/1742-6596/1037/3/032011. Publisher: IOP Publishing. 3

[29] Mike T. van Dijk, Jan-Willem van Wingerden, Turaj Ashuri, and Yaoyu Li. Wind farm
multi-objective wake redirection for optimizing power production and loads. Energy, 121:
561–569, February 2017. ISSN 0360-5442. doi: 10.1016/j.energy.2017.01.051. URL https:
//www.sciencedirect.com/science/article/pii/S0360544217300518. 3

[30] Ruiyang He, Hongxing Yang, and Lin Lu. Optimal yaw strategy and fatigue analysis of
wind turbines under the combined effects of wake and yaw control. Applied Energy, 337:
120878, May 2023. ISSN 0306-2619. doi: 10.1016/j.apenergy.2023.120878. URL https:
//www.sciencedirect.com/science/article/pii/S0306261923002428. 3

[31] International Energy Agency (IEA). Wind energy generation systems - Part 3-1: Design
requirements for fixed offshore wind turbines, October 2019. 4, 6, 7

[32] James Carroll, Alasdair McDonald, and David McMillan. Failure rate, repair time and unsched-
uled O&M cost analysis of offshore wind turbines. Wind Energy, 19(6):1107–1119, 2016. ISSN
1099-1824. doi: 10.1002/we.1887. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/we.1887. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.1887. 4, 11

[33] Cuong Dao, Behzad Kazemtabrizi, and Christopher Crabtree. Wind turbine reliability data
review and impacts on levelised cost of energy. Wind Energy, 22(12):1848–1871, 2019. ISSN
1099-1824. doi: 10.1002/we.2404. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/we.2404. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2404. 4, 11

[34] Mads M. Pedersen, Alexander Meyer Forsting, Paul van der Laan, Riccardo Riva, Leonardo
A. Alcayaga Romàn, Javier Criado Risco, Mikkel Friis-Møller, Julian Quick, Jens Peter Schøler
Christiansen, Rafael Valotta Rodrigues, Bjarke Tobias Olsen, and Pierre-Elouan Réthoré. Py-
Wake 2.5.0: An open-source wind farm simulation tool. DTU Wind, Technical University of
Denmark, February 2023. URL https://gitlab.windenergy.dtu.dk/TOPFARM/PyWake.
5

[35] National Renewable Energy Laboratory (NREL). OpenFAST/openfast, June 2024. URL
https://github.com/OpenFAST/openfast. original-date: 2016-08-31T20:07:10Z. 5, 6

[36] Gregory Duthé, Francisco de Nolasco Santos, Imad Abdallah, Pierre-Élouan Réthore, Wout Wei-
jtjens, Eleni Chatzi, and Christof Devriendt. Local flow and loads estimation on wake-affected
wind turbines using graph neural networks and PyWake. Journal of Physics: Conference Series,
2505(1):012014, May 2023. ISSN 1742-6596. doi: 10.1088/1742-6596/2505/1/012014. URL
https://dx.doi.org/10.1088/1742-6596/2505/1/012014. Publisher: IOP Publishing.
6, 8

[37] IEA Wind Task 37. IEAWindTask37/IEA-3.4-130-RWT. URL https://github.com/
IEAWindTask37/IEA-3.4-130-RWT. 6

[38] NREL. ROSCO, June 2024. URL https://github.com/NREL/ROSCO. original-date: 2019-
11-08T15:47:14Z. 6

[39] Rad Haghi and Curran Crawford. Data-driven surrogate model for wind turbine damage
equivalent load. Wind Energy Science Discussions, pages 1–34, December 2023. doi: 10.
5194/wes-2023-157. URL https://wes.copernicus.org/preprints/wes-2023-157/.
Publisher: Copernicus GmbH. 6

23

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

[40] Nikolay Dimitrov. Surrogate models for parameterized representation of wake-induced loads
in wind farms. Wind Energy, 22(10):1371–1389, 2019. ISSN 1099-1824. doi: 10.1002/we.
2362. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2362. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2362. 6, 7

[41] Majid Bastankhah and Fernando Porté-Agel. A new analytical model for wind-turbine
wakes. Renewable Energy, 70:116–123, October 2014. ISSN 0960-1481. doi: 10.1016/
j.renene.2014.01.002. URL https://www.sciencedirect.com/science/article/pii/
S0960148114000317. 8

[42] Erik Quaeghebeur, René Bos, and Michiel B. Zaaijer. Wind farm layout optimization using
pseudo-gradients. Wind Energy Science, 6(3):815–839, June 2021. ISSN 2366-7443. doi:
10.5194/wes-6-815-2021. URL https://wes.copernicus.org/articles/6/815/2021/.
Publisher: Copernicus GmbH. 8

[43] Ángel Jiménez, Antonio Crespo, and Emilio Migoya. Application of a LES technique to
characterize the wake deflection of a wind turbine in yaw. Wind Energy, 13(6):559–572, 2010.
ISSN 1099-1824. doi: 10.1002/we.380. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/we.380. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.380. 8

[44] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. DeeperGCN: All You
Need to Train Deeper GCNs, June 2020. URL http://arxiv.org/abs/2006.07739.
arXiv:2006.07739 [cs, stat]. 8

[45] Ørsted. Offshore wind data. URL https://orsted.com/en/what-we-do/
renewable-energy-solutions/offshore-wind/offshore-wind-data. 9

[46] Nord Pool Group. Nord Pool | Day-ahead prices. URL https://data.nordpoolgroup.com/
auction/day-ahead/prices?deliveryDate=latest¤cy=EUR&aggregation=
Hourly&deliveryAreas=AT. 10

[47] International Energy Agency (IEA). IEA Wind TCP Task 37, 2016. URL https://iea-wind.
org/task37/. 11

[48] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
Dimensional Continuous Control Using Generalized Advantage Estimation, October 2018.
URL http://arxiv.org/abs/1506.02438. arXiv:1506.02438 [cs]. 12

[49] Daniel Seita. Going Deeper Into Reinforcement Learning: Fundamentals of Policy
Gradients, March 2017. URL https://danieltakeshi.github.io/2017/03/28/
going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/.
12

[50] A. Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
Benchmarking Reinforcement Learning Algorithms on Real-World Robots. In Proceedings
of The 2nd Conference on Robot Learning, pages 561–591. PMLR, October 2018. URL
https://proceedings.mlr.press/v87/mahmood18a.html. ISSN: 2640-3498. 12

[51] Neil De La Fuente and Daniel A. Vidal Guerra. A Comparative Study of Deep Reinforcement
Learning Models: DQN vs PPO vs A2C, July 2024. URL http://arxiv.org/abs/2407.
14151. arXiv:2407.14151 [cs]. 12

[52] Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso. On the power and control of a
misaligned rotor – beyond the cosine law. Wind Energy Science, 9(7):1547–1575, July 2024.
ISSN 2366-7443. doi: 10.5194/wes-9-1547-2024. URL https://wes.copernicus.org/
articles/9/1547/2024/. Publisher: Copernicus GmbH. 15

[53] Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes
Brandstetter, and Sepp Hochreiter. RUDDER: Return Decomposition for Delayed Rewards,
September 2019. URL http://arxiv.org/abs/1806.07857. arXiv:1806.07857 [cs, math,
stat]. 19

[54] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy Invariance Under Reward Trans-
formations: Theory and Application to Reward Shaping. In Proceedings of the Sixteenth
International Conference on Machine Learning, ICML ’99, pages 278–287, San Francisco, CA,
USA, June 1999. Morgan Kaufmann Publishers Inc. ISBN 978-1-55860-612-8. 19

24

Graph-based Deep Reinforcement Learning for Maintenance-Conditioned Wind Farm Wake Steering Control

[55] Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. Hierarchical multi-
agent reinforcement learning. Autonomous Agents and Multi-Agent Systems, 13(2):197–
229, September 2006. ISSN 1573-7454. doi: 10.1007/s10458-006-7035-4. URL https:
//doi.org/10.1007/s10458-006-7035-4. 19

[56] Hongyao Tang, Jianye Hao, Tangjie Lv, Yingfeng Chen, Zongzhang Zhang, Hangtian Jia,
Chunxu Ren, Yan Zheng, Zhaopeng Meng, Changjie Fan, and Li Wang. Hierarchical Deep
Multiagent Reinforcement Learning with Temporal Abstraction, July 2019. URL http://
arxiv.org/abs/1809.09332. arXiv:1809.09332 [cs]. 19

[57] Jaejoon Lee, Eunkuk Son, Byungho Hwang, and Soogab Lee. Blade pitch angle con-
trol for aerodynamic performance optimization of a wind farm. Renewable Energy, 54:
124–130, June 2013. ISSN 0960-1481. doi: 10.1016/j.renene.2012.08.048. URL https:
//www.sciencedirect.com/science/article/pii/S0960148112005186. 20

[58] Deepu Dilip and Fernando Porté-Agel. Wind Turbine Wake Mitigation through Blade Pitch
Offset. Energies, 10(6):757, June 2017. ISSN 1996-1073. doi: 10.3390/en10060757. URL
https://www.mdpi.com/1996-1073/10/6/757. Number: 6 Publisher: Multidisciplinary
Digital Publishing Institute.

[59] Joeri A. Frederik, Bart M. Doekemeijer, Sebastiaan P. Mulders, and Jan-Willem van Winger-
den. The helix approach: Using dynamic individual pitch control to enhance wake mixing
in wind farms. Wind Energy, 23(8):1739–1751, 2020. ISSN 1099-1824. doi: 10.1002/we.
2513. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2513. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2513. 20

25

B
'Master' DEL Convergence Analysis

116

117

Figure B.1: Convergence analysis of ’master’ lifetime DEL; data comes from 25-year-long simulated time series, of four
simulations with 16 turbines each.

C
Fatigue curve fitting with gradient

descent

118

119

Figure C.1: ’Training’ curves of Nelder-Mead gradient descent for finding the mean and standard deviation of the DELu

distributions; values fitted for a target lifetime of 22 years with standard deviation of 1 year.

D
Convergence study of simulation

length vs DEL

120

121

Figure D.1: Convergence study of simulation time versus the calculated DEL. Four different simulations were run for 600
seconds each and the DEL was calculated for increasing fractions of the total simulation data. Power and thrust coefficient are

also shown.

	Abstract
	Preface
	Acknowledgements
	Nomenclature
	Introduction
	Problem Statement
	Approach
	Research Questions
	Contribution

	Background
	Damage Equivalent Load (DEL)
	Graph Neural Networks
	(Multi-Agent) Reinforcement Learning
	Literature Review: Wake Steering
	Research Gap
	Chapter Recap

	Modelling of Turbines and Farms
	Model Choice
	Farm-Level
	Turbine-Level

	Approach
	Turbine-Level Model
	Dataset Generation
	Inflow Sampling
	OpenFAST Model Setup
	Postprocessing

	Surrogate Model
	Architecture & Hyperparameters
	Evaluation

	Farm-Level Model
	Dataset Generation
	Inflow & Layout Sampling
	PyWake Model Setup
	Postprocessing

	Surrogate Model
	Architecture & Hyperparameters
	Evaluation

	Chapter Recap

	Fatigue Modelling
	Damage Accumulation Theory
	Fatigue Curve Parameters
	Numerical Fitting of Fatigue Curve Parameters

	Chapter Recap

	Simulation Environment
	Main setup
	Time Keeping
	Inflow Conditions
	Model Choice
	Model Fitting
	Model Evaluation

	Electricity Price
	Model Choice
	Model Fitting

	Maintenance Costs
	Fatigue Accumulation
	Reward Function
	Observation Space
	Chapter Recap

	Multi-Agent Reinforcement Learning
	Control Problem Formulation
	Algorithm Selection
	Agents
	Agent Architecture

	Baseline removal
	Training
	Training Technique Ablation Study

	Chapter Recap

	Policy Analysis
	Key Performance Indicators (KPI)
	Layouts
	Results
	Finite vs Infinite Horizon
	Infinite Horizon
	16-turbine Case
	Lillgrund Case
	Horns Rev Case
	Generalisability
	Comparison with literature

	Finite Horizon

	Discussion
	Reflection & Limitations
	Future Work
	Decentralised Learning
	Combined Pitch & Yaw Control

	Conclusion
	Scientific Paper
	'Master' DEL Convergence Analysis
	Fatigue curve fitting with gradient descent
	Convergence study of simulation length vs DEL

