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Abstract
Few-shot learning presents the challenging problem of learning a task with only a few provided ex-
amples. Gradient-Based Meta-Learners (GBML) offer a solution for learning such few-shot problems.
These learners approach the few-shot problem by learning an initial parameterization that requires only
a few adaptation steps for new tasks. Although these GMBLs are well-studied with correct training data,
few have studied the impact of training them with noisy labels.

In this thesis, we show that GMBLs are negatively affected by label noise. We propose a train-
ing strategy (BatMan-CLR) leveraging a novel subsampling approach to address the impact of meta-
training with label noise. To train and evaluate the different GMBLs, we implement nmfw, a novel
framework for extensible training loop definition and few-shot data generation.

Our results show that BatMan-CLR is capable of learning few-shot classification models. We show
that our approach can effectively mitigate the impact of meta-training label noise. Even with 60% wrong
labels BatMan and Man can limit the meta- testing accuracy drop to 2.5, 9.4, and 1.1 percent points,
respectively, with existing meta-learners across the Omniglot, CifarFS, and MiniImagenet datasets.
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1
Introduction

Neural networks–especially large and deep ones–have shown that they can perform increasingly com-
plex tasks [18, 12]. They show an impressive capability to learn tasks as their complexity increases [12,
28, 43]. On the one hand, this comes at the cost of a–sometimes extreme–data hunger to properly train
such learners to achieve such impressive levels, requiring up to billions of samples [28, 43]. On the
other hand, humans often require significantly fewer examples to adapt to new scenarios. For example,
students require only a few instances a teacher provides to understand a new concept. Later, students
can rapidly adapt and apply these concepts to new unseen (similar) problems. Students in this setting
leverage their knowledge of related topics and apply it to new problems.

Few-shot learning poses this problem to learners, thus requiring a learner to quickly generalize to
adapt to new scenarios. Each few-shot problem only provides a few samples (shots) per class, with
which the learner must predict unknown samples. Ordinarily, in (supervised) classification learning–of
many-shot learning–a learner has access to a sizable training set to train on. It then predicts labels
of unseen samples of the same classes to estimate its prediction ability during the evaluation. Few-
shot learning requires the learner to learn to generalize, similar to humans. Data in few-shot learning
resembles ‘mini’ datasets containing a small ‘training’ and ‘testing’–or support and query set. The
support data provides the needed samples for the learner to generalize and the query to evaluate its
ability. From a high level, this is equivalent to the initial supervised setting but with the data split up into
mini-episodes.

Few-shot learning with label noise makes this problem even more challenging. Learning to gen-
eralize becomes difficult when the learner gets tasks with incorrectly labeled samples during training.
Due to the low number of samples per class, a task can become ambiguous with even a few incorrectly
provided examples. Tasks may become unclear as different classes may not contain samples from
other classes. Moreover, provided samples may lay outside of the intended class (out-of-task label
noise), making the concepts seemingly random. Due to the limited number of samples, overfitting to
the noisy samples can thus quickly occur, making it more challenging to learn to generalize.

An extensive collection of work exists on ‘learning to learn’ for few-shot learning. The closest related
to our work are metric learning and optimization-based learners. We provide a short overview of these
works. Metric Learners approach this problem by learning a model that learns a shared representation
space [53, 31, 57]. They approach the few-shot learning as a clustering problem, where related inputs
should be similar in the learned representation space, represented by a deep neural network. Training
these learners episodically incentivizes the learner to adapt rapidly, mimicking the few-shot testing
scenario during training.

More recently, however, large-scale embedding models–the many-shot metric learner–have also
shown to be performant few-shot learners [55, 35]. This latter approach treats the few-shot problem
as a ‘downstream task’, i.e., using the model’s representations as input to solve a related task. Opti-
mization Based Learners takes a different route; rather than optimizing ‘embeddings’, these aim at
optimizing parameterizations. [47] approaches this bymodeling the ‘learning to learn’ with an LSTM that
learns to predict a small network–or student. The LSTM then acts as the ‘meta-learner’, which learns to
predict a task-specific model in an episodic fashion. By this approach, the goal is to find an initialization,
such that it only requires a few adaptation steps–and thus samples–to generalize to unseen settings.

1



2 1. Introduction

Model Agnostic Meta-Learning [15] (MAML) is a seminal work that proposes an end-to-end differen-
tiable strategy. As a result, this allows a learner to learn its own initialization using gradient descent.
Although its formulation allows for an end-to-end learning strategy, its exact formulation does not scale
well as more samples, larger models, or long adaptation processes are used. Various works [41, 14,
40, 46, 45, 42] have been proposed to alleviate these issues.

However, limited work [34, 36, 38, 6, 26, 56] is done on few-shot learning with label noise, with
most [34, 36] addressing label noise at test time. As such, they assume that clean training data is
present to train the few-shot learner and label noise rejection mechanism.

This study concerns the impact of meta-training label noise on meta-learners’ ability to generalize.
To evaluate the experiments, we implement a flexible and extensible framework for meta-learning under
different few-shot scenarios. This developed tool, nmfw1, is part of the work towards this thesis, and is
planned to be opened up to the public.
The research questions that this work aims to answer are as follows:

1. How does meta-training with label noise affects a meta-learned model to adapt to new tasks
during meta-training?

2. Can existing meta-learners be adapted to mitigate the impact of label noise during meta-training?

3. What is the effect of label noise during meta-testing on meta-learned few-shot classifiers? Does
label-noise robust meta-training improvemeta-testing robustness against meta-testing label noise?

The remainder of this work is structured as follows. First, we provide the main findings of this work
in the format of a pre-print of the written paper in chapter 2. Second, we give additional background
information in chapter 3 on core concepts used throughout this work, leveraging visuals to provide
intuition behind these concepts. Third, we introduce the developed framework nmfw in chapter 4.
Fourth, in chapter 5, we discuss additional results from experiments not presented in the research
paper. Lastly, we conclude in chapter 6 and discuss directions for future work.

1Noisy Meta-learning Framework.
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BatMan-CLR: Making Few-shots Meta Learners
Resilient Against Label Noise

No Author Given

No Institute Given

Abstract The negative impact of label noise is well studied in classi-
cal supervised learning yet remains an open research question for meta-
learning. Meta-learners aim to adapt to unseen learning tasks by learn-
ing a good initial model in meta-training and consecutively fine-tuning
it according to new tasks during meta-testing. In this paper, we present
the first extensive analysis on state-of-the-art meta-learners, specifically
gradient-based N -way K-shot learners, under different levels of label
noise. We show that, in the presence of label noise in meta-training, the
accuracy of Reptile, iMAML, foMAML, drops by up to 42% on the Om-
niglot and CifarFS datasets. To strengthen the resilience against label
noise, we propose two sampling techniques, namely manifold (Man) and
batch manifold (BatMan), which transform the noisy supervised learners
into semi-supervised ones. We first construct manifold samples of N -way
2-contrastive-shot tasks through augmentation, learning the embedding
through a contrastive loss in meta-training, and then perform classifica-
tion through zeroing on the embedding in meta-testing. We show that
our approach can effectively mitigate the impact of meta-training label
noise. Even with 60% wrong labels BatMan and Man can limit the meta-
testing accuracy drop to 2.5, 9.4, 1.1 percent points, respectively, with
existing meta-learners across the Omniglot, CifarFS, and MiniImagenet
datasets.

1 Introduction

Few-Shot Learning (FSL) poses the problem where learners need to quickly adapt
to new unseen tasks by using only a low number of samples. Meta-learning [19,5]
emerged as a promising solution to this problem. Like humans, meta-learners
learn the information at a higher abstraction or meta-level, providing the induc-
tive bias to quickly adapt to new tasks. Among existing meta-learners, gradient-
based few-shot learners, e.g., iMAML [18] and foMAML(+ZO) [5,7], have been
shown effective to solve N -way K-shot (N, K) problems, which need to learn
N classes given only K samples each. Such few-shot learners are composed of
two stages, meta-training, and meta-testing, each with their own labeled support
and query data sets. Meta-training learns the initial meta-model using two opti-
mization loops. An inner loop adapts the model to a specific task via supervised
learning on the support set. Then, an outer loop updates the meta-model based
on the task-specific model and the labeled query set. Using a similar structure,
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meta-testing verifies how well the meta-model performs on new tasks. First, it
uses supervised learning to adapt the meta-model to an unseen task given by a
test support set. Then it compares the predicted and given labels of the testing
query set to measure the learner accuracy. Class labels are thus critical in both
meta-training and meta-testing.

Label noise is more a norm than a rarity and can degrade the performance of
supervised learners significantly [20]. Prior studies address label noise mainly in
classical supervised learners. In this context, samples hold labels different from
the underlying ground truth. In the context of FSL, label noise means that a
shot (example) may not correspond to the way (class) it was provided with. This
yields a degenerate N -wayK-shot problem where ways become indistinguishable
since they contain shots of the same ground truth. Such noise can appear in the
support set of the meta-training and meta-testing phases, as well as in the query
set of the meta-training.

Given the importance of labels in meta-training and meta-testing, only a
limited number of studies [14,12] address the challenge of noisy labels in FSL,
with a focus on label noise in the testing support set. As the number of sam-
ples per class is very limited, e.g., five to ten shots, the task adaptation can be
over-parameterized by label noise and lead to significant degradation. Such ap-
proaches are specific to meta testing, under a strong assumption that there is no
label noise in the training support and query sets. Unfortunately, label noise can
appear in meta-testing as well as meta-training and little is known on its impact
and resolution. Those methods of learning with noise require clean data to learn
a meta-objective. This is the case of [9], where to distill the impact of label noise,
it looks to learn which samples are noisy, by adding an additional meta-objective
on clean validation data. Also, TADAM [22] proposes task-aware scheduling to
learn to filter out noisy tasks but only considers corrupting a fraction of support
sets during training.

In this paper, we first answer the question of whether state-of-the-art FSL
methods are resilient to label noise present in the query and support sets in meta-
training. We empirically show that Reptile [17], Eigen-Reptile [4] iMAML [18],
and foMAML+ZO [7] are significantly affected by label noise in meta-training,
overfitting to noise and degrading the efficacy of any randomly initialized models.
To address the noisy labels in meta training, we propose BatMan, which turns
any supervised few shot learner into a semi-supervised one by a novel batch mani-
fold sampling and contrastive learning. We learn the embedding in meta-training
and then apply a zeroing strategy in meta-testing. Specifically, we turn a noisy
N -way K-shot problem into a self-cleansed N -way 2-contrastive shot problem.
We first augment the original shots and construct contrastive pairs, ensuring
the shots are from the same class. We then sample such pairs from the N ways,
termed manifold (Man) samples. To lower the probability to get noisy N -ways,
i.e., overlapping classes, we draw a batch of such Man samples, termed BatMan
sampling. Combining with Decoupled Contrastive Loss (DCL) [23], we can ef-
fectively learn the embedding of the initial model which can then be adapted in
meta-testing to a new N -way K-shot task.

5
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The specific contributions of this paper are:

1. A first-of-its-kind study on the impact of label noise in meta-training for
gradient-based meta-learners.

2. A generic and self-cleansing framework, BatMan-CLR, that turns meta-
learners into semi-supervised ones by (batch) manifold sampling N -way 2-
contrastive shots.

3. Extensive evaluation on four meta learners, Reptile, EigenReptile, iMAML,
foMAML, showing nearly no performance degradation under the presence of
up to 60% label noise.
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Figure 1: High-level comparison of meta-learning (left) and meta-testing (right)
with Gradient-based Meta-Learners. During each meta-epochs’ t inner-loop, the
meta-model θt is adapted in few steps s to task-specific ϕ, leveraging (Xs, Ys) ∈
Dsupport. The meta-model θt+1 is then learned by relating ϕ’s loss on (Xq, Yq) ∈
Dquery back to θt. Meta-testing evaluates the capability of a trained meta-model
θ∗ to adapt to new tasks using query data. For simplicity, the details pertaining
drawing tasks (Dsupport,Dquery) = T is left away.

2 Preliminary and Related work

Preliminary on FSL. FSL considers the setting where a learned model must
adapt to new settings leveraging only few samples. In this setting meta-learning
has emerged as a promising research direction. Gradient-based meta-learners
aim to find a meta-model, with parameters θ, capable of quickly adapting into
a task specific parameterization ϕ. We consider the N -way K-shot classification
problem, which consists of a family of tasks, made up of N classes, each with K
samples, simply labeled (N,K)-FSL. We explicitly focus on gradient-based meta-
learners which aim to find θ iteratively using a two-step meta-training algorithm

6 2. Research Paper



4 No Author Given

(see Figure 1a). At the beginning of each meta-epoch, the learner selects a task
T and samples two task-specific sets, support Dsupport and query Dquery, from
the training data Dtrain. More formally a task T is a tuple of support and query
data T = (Dsupport,Dquery), defined as sets of inputs x and targets (labels) y:

Dsupport =
N⋃
i=1

{(xi
j , y

i
j)}Kj=1, Dquery =

N⋃
i=1

{(xi
j , y

i
j)}

Q
j=1.

Next, step one transforms θt using the features and labels (Xs, Ys) ∈ Dsupport

and a supervised loss function Lsup in task-specific parameters ϕ. Then, step
two uses ϕ, the data (Xq, Yq) ∈ Dquery, and Lsup to update θt+1 for the next
iteration. Note that while the support set Dsupport is used during an inner loop
to train for a specific task, the query set Dquery is used in an outer loop to learn
the meta-model. During meta-training, the support set for a single task is built
by randomly selecting N classes, each with K samples, from the training set
Dtr. For the query set we select Q additional samples for each class included in
a task.

Figure 1b shows the steps performed during meta-testing. Meta-testing aims
to evaluate the ability of the learned meta-model θ∗ to adapt to new tasks.
Analogous to meta-training, first a support set (Xs, Ys) ∈ Dsupport is sampled
from test data Dtest to perform an adaptation step. The adaptation step trans-
forms the generic meta-model with parameters θ∗ into the task-specific model
with parameters ϕ∗, which is then tested on the query set (Xq, Yq) ∈ Dquery by

comparing its predictions Ŷq against known labels Yq.

Examples of gradient-based meta learners include MAML [5], iMAML [18],
foMAML(+ZO) [7] and Reptile [17]. MAML updates the meta-model via gra-
dient descent through gradient descent [5]. As this operation is both computa-
tionally and memory intensive [5,18,16] many works proposed approximations.
iMAML [18] and foMAML (With the zero-ing trick as proposed in [7]) approx-
imate ∇θtLDquery

(ϕs) by leveraging ∇ϕs
LDquery

(ϕs), dropping the need for gra-
dient descent through gradient descent altogether. Whereas foMAML directly
assumes that the higher-order components of the meta-gradient can be ignored
altogether, iMAML enforces that it can exactly calculate the meta-gradient
through more adaptation steps s and weight regularization. Reptile [17] learn-
ers drops Dquery completely during meta-training and approximate the meta-
gradient as θt−ϕs, effectively stepping towards the inner-loop parameterization.
Eigen Reptile [4] builds on this by decomposing the inner-optimization path
[θt, ϕ1, . . . , ϕs] and stepping towards the direction with the largest variance.

Label noise in FSL. Considering label noise poses a major challenge to meta-
learners, especially in the absence of a clean data set that can be used as ground
truth during the training phase. Although a large collection of work exists on
robust supervised learning [21,11,24], these are not directly applicable to meta-
learners due to the limited number of samples available during each adaptation
process. Recognizing the presence of label noise, related studies [22,13,9,12,15,12]
mainly focus on distilling the label noise appearing in meta-testing by explicitly
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studying the noise patterns [22,12,13], using soft-relabeling [15] through clus-
tering or re-weighting suspicious samples [9] based on additional ground truth
of clean data. To our best knowledge, Eigen Reptile [4] is the only study that
addresses noisy training data in FSL by updating the inner loop only along the
direction of highest variance. However such an approach can only be applied on
Reptile, lacking generalization to other state-of-the-art meta learners.

Table 1: Meta-test accuracies on clean meta-test data, following training on
varying levels of meta-train noise. Each learner was validated with 2048 (5, 5)-
FSL new meta-test tasks with transductive inference, using a query size of 15.
‘+ZO’ indicates trained with Zero-ing trick [7].

Alg. ϵ = 0.0 ϵ = 0.3 ϵ = 0.6

Reptile 65.5±0.241 58.6±0.258 51.8±0.253

foMAML+ZO 69.5±0.255 65.2±0.265 40.3±0.207

iMAML 64.0±0.242 55.9±0.257 46.3±0.243

Eigen Reptile 65.3±0.243 58.1±0.272 52.7±0.241

(a) CifarFS results.

ϵ = 0.0 ϵ = 0.3 ϵ = 0.6

92.5±0.125 79.7±0.214 71.5±0.240

99.3±0.037 97.7±0.067 90.3±0.148

96.9±0.110 91.0±0.176 82.6±0.192

93.6±0.122 83.6±0.189 73.4±0.235

(b) Omniglot results.

The impact of label noise Here we start with an empirical study to motivate
the need of noise resilience in FSL. We investigate the effect of label noise on two
representative datasets, CifarFS [2] and Omniglot [10], in a (5, 5)-FSL setting
with a query set of 15 samples per class. The details of the datasets and experi-
ments can be found in Section 4.1. We train re-implementations of four different
meta-learners, Eigen-Reptile (ER) [4], Reptile [17], first order MAML with Zero
Out (foMAML+ZO) [7], and implicit MAML (iMAML) [18], using comparable
hyper-parameters. We consider a symmetric label noise setting, where for each
class i, a fraction ϵ of its samples are corrupted with a label j ̸= i with uniform
probability across all other classes.

Table 1 shows the meta-test accuracy obtained by each meta-learner un-
der varying degrees of corrupted training labels, ϵ = [0.0, 0.3, 0.6]. Note that
ϵ = 0.0 means no noise, i.e., all clean labels. Reported results are the aver-
age across three runs with the standard deviation. For both datasets and all
meta-learners, one can clearly see a significant performance degradation as the
noise ratio increases. On the CifarFS dataset, accuracy drops across all meta-
learners on average by 10.1% and 27.4% under 30% and 60% corrupted labels,
respectively. The Omniglot dataset shows similar trends but more limited in
amplitude, with 8.1% and 17.0% average degradation. This is due to the fact
that the Omniglot dataset is easier to learn. Indeed, all meta-learners obtain an
accuracy score above 90% under zero noise. Interestingly, although ER is the
sole meta-learner that explicitly tries to counter noise, it is not always the most
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robust one. Under moderate noise, i.e. 30%, foMAML+ZO is the least affected
with accuracy drops of 6.2% and 1.6% for CifarFS and Omniglot, respectively.
Only under heavy noise, i.e. 60%, on the CifarFS dataset ER is the least affected
(accuracy drop of 19.3%) and able to beat the others by 0.9 percentage points
in higher accuracy. More in general, Reptile, ER and iMAML show a higher but
almost linear impact of noise, while foMAML+ZO degrades less with 30% noise
but gets much worse under 60% noise. Overall, the results underline the need
for better noise resilience across all meta-learners.

Algorithm 1 Pseudocode for Man
Sampling. BatMan is achieved through
multiple Man samples.

1: function ManSampling(D, N)
Require: Augment feature augment func-

tion.
2: Dsamp = {}
3: for i ∈ N do
4: x← rand ((x, y) ∈ D : y = i)
5: a1 ← Augment(x)
6: a2 ← Augment(x)
7: Dsamp ← Dsamp∪{(a1, i), (a2, i)}
8: end for
9: return Dsamp

10: end function

Algorithm 2 General Inner-loop struc-
ture with BatMan-CLR for MAML style
learners.

Require: α inner-loop learning rate.
1: function (Bat)Man-CLR(ϕ, task, s, v)
2: Ds,Dq = task
3: Xs, Ys = Ds

4: Xq, Yq = Dq

5: for Ii ∈ [BatMan(Ds)]
s
i=1 do

6: ϕ← ϕ− α
s
∇ϕ

∑
Ij∈Ii

Lcon(ϕ(Ii)))

7: end for
8: Iouter = BatManouter(Dq)
9: Louter =

∑
Ij∈Iouter

Lcon(ϕ(Ij))

10: return ϕ,Louter

11: end function

3 Proposed method

The core challenge of dealing with noise in meta-(or few shots) learning is that
labels lose meaning and a standard supervised approach can be misguided by the
wrongly labeled samples. This challenge is amplified in the FSL setting as the
limited number of samples (shots) in each class (way) makes it harder to isolate
the noise from the signal in each class. In other words, the few clean samples–
those corresponding to the class they were provided as–may not be enough to
appropriately guide the gradient descent algorithm in the correct direction of the
class label due to the significant presence of samples with corrupted labels. Thus,
our approach aims at building clean ways and shots–such that each becomes more
likely to be a unique one–through re-sampling. Specifically, the Man sampling
described below ensures that each class consists of clean shots, as these are
created via augmentation, guaranteeing positive samples for individual shots,
rather than leveraging other shots provided with an equal label. We further
introduce batches, with BatMan sampling, to increase the likelihood of observing
all N classes in a single inner-loop step. In this section we go over the three
main components of our proposed method, namely, i) Man and BatMan re-

9
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sampling, ii) ‘semi’-supervised meta-training with a contrastive loss, and iii)
classification of new tasks (meta-testing) leveraging a zeroing trick. Together
these components can be incorporated into existing meta-learning algorithms to
achieve label noise robustness. In section 4 we provide results for both Man and
BatMan re-sampling, where both integrate the two latter steps and differ only
in the type of sampling performed. Figure 2 provides a graphical depiction of
our proposed method applied on a noisy (3, 2)-FSL task.

g

Aug(X1,1) Aug(X1,1) Aug(X1,2) Aug(X1,2)

Aug(X2,1) Aug(X2,1) Aug(X2,2) Aug(X2,2)
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Figure 2: Overview label learning with BatMan-CLR on a noisy 3-way 2-shot
(3, 2)-Few-Shot (FS), colors represent ground truth classes, lightning bolts indi-
cate noisy samples (shots 1 way 1, shot 2 way 3). i. For each sample independent
random augmentations are made through Aug; ii. (3, 2)-FSL semi-supervised
sub-tasks are created through Man sampling (Algorithm 1); iii. semi-supervised
samples in each sub-task are fed into a contrastive loss, to be jointly optimized.

Man and BatMan re-sampling. We start with an (N,K)-FSL problem with
noisy labels and observe that we can re-frame it as an (N, 2)-FSL problem by
sampling 1 data point from each class, assuming each corresponds to a unique
class, and creating one more sample for each class by means of augmentation.
Thus, we end up with two clean shots for each of the N classes in the sampled
task. Since we sample N observations from all NK in Dtest, we end up with up
to N actual classes, as some classes may end up contributing more than one ob-
servation to a sub-sampled task. In this manner, many potential (N, 2) sub-tasks
can be created, each corresponding to a different task ‘manifold’ [17] due to noisy
labels. We coin this sampling approach Manifold’ (Man) sampling, described as
pseudo-code in Algorithm 1. Note that to avoid introducing a bias towards the
original image, for each shot we use Aug draw two random augmentations. As
a simple extension of Man sampling, we propose a Batched Manifold sampling,
BatMan, where several Man samples are batched together to employ more sam-
ples in a single step. By grouping a batch of Man samples together, we can jointly
optimize multiple ‘sub-problems’. Additionally, this increases the likelihood of
considering all query classes together in the calculation of meta-gradients.

10 2. Research Paper
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This process is illustrated in Figure 2, with a 3-way 2-shot FSL setting, where
each row index represents an FSL-class and each column an instance. The classes
are illustrated with different colors, where initially there are 2 shots of each of
the green, purple and yellow classes. Noise has caused the class of the first shot
in the green class to have a red class label, and the second shot of the yellow class
to have a purple class label. A pool of Man samples are generated by sampling
1 shot from each of 3 classes, and augmenting it twice to have an (N, 2) FSL
task. A batch of such tasks is generated to perform a meta-training step through
gradient descent.

In the presence of noise, the process of cleaning up the classes is necessary
as samples from two apparently different classes may actually come from the
same class. In the simplest case with 2 classes and a probability p that a sample
has a ground truth label, the classes resulting from the Man sampling process
belong to different classes with probability p2 + (1 − p)2, as either both lack
noise or both are noisy. On the contrary, the 2 samples selected actually belong
to the same class with probability 2p(1 − p). In general, with N classes there
are N ! combinations in which the Man samples actually correspond to the N
different classes while there are NN combinations to select the N samples, with
replacement. Let us consider the case of symmetric noise where a sample has
a ground truth label i with probability p and that the sample mislabeled as a
different class j ̸= i with probability (1−p)/(K−1). The probability of obtaining
a clean selection of classes can be then posed as the probability of obtaining one
of the N ! combinations in which this occurs. To represent each possible selection
we employ permutation matrices. Let P i

N be the N×N i-th permutation matrix
out of the N ! such matrices. For instance, in the N = 3 case, we have 6 different
permutation matrices, i.e.,1 0 0

0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 ,

0 0 1
0 1 0
1 0 0

 .

Let us also define the N × N matrix Q with entries qij such that qii = p and
qij = (1 − p)/(N − 1) for i ̸= j. The probability of obtaining one of these valid
permutations under Man sampling can thus be obtained as the trace of the
matrix P i

NQ. As a result, the probability of obtaining a clean selection of ways
can be expressed as

N !∑
i=1

trace(P i
NQ),

considering all the possible valid selection of samples that lead to a set of N dif-
ferent classes in the sample. As this probability becomes smaller with increasing
label noise p, BatMan sampling helps by introducing additional samples that
increase the likelihood of observing all N classes in a single inner loop.

‘Semi’-supervised meta-training with contrastive loss. Although re-
sampling allows for likely valid (N, 2) sub-tasks, which classes they contain re-
mains unknown. As such these sub-tasks can be considered as semi-supervised,

11
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as there are now at most N classes1. To aid this we incorporate a contrastive loss
to allow for joint optimization of semantically misaligned sub-tasks. Note that
from the sampled augmentations obtained in step 1 of Figure 2, we artificially
build positive and negative pairs. These positive and negative pairs can then
be optimized under a contrastive learning strategy. Here we use the Decoupled
Contrastive Loss (DCL) [23], which has shown to be particularly well-suited for
small data sets, although it can be easily replaced by alternative contrastive
losses. As shown in Figure 2 with the 3-way 2-shot FSL setting, once samples
are augmented and the BatMan sampling applied, the batches are used in a
meta-training step where the embeddings z are computed and contrasted using
a contrastive loss.

Classification of new tasks. The trained meta-model θ∗ using the con-
trastive loss produces embeddings not classes as output. To solve this we ap-
pend an additional fully connected layer c0 = (W , b) with W = 0 and b = 0
to the model. This approach decouples the embedding learning from the classi-
fication task. Similar to [7], this allows to treat the model as a semi-supervised
meta-learned backbone that can rapidly adapt to different tasks. The resulting
θ∗ can then be treated as a semi-supervised embedding space, on which the fully
connected layer can be adapted. To train this layer we employ the Zeroing Out
trick [7] in which the weights are initialized as zero. We found that applying
the Zeroing Out trick on the classification layer greatly impacts the learners’
performance because it allows leveraging the optimized embedding from the
pre-trained meta-model θ∗. This is because the stochastic gradient descent will
directly use the embeddings as activations, without noise introduced caused by
random weights and biases.

4 Evaluation Results

In this section, we present the effectiveness of BatMan-CLR in enhancing the
noise resilience for state-of-the-art meta-learners, namely Reptile, iMAML, and
foMAML+ZO, under the presence of different noise levels. We further include
EigenReptile, a noise-aware FSL as one of the baselines.

4.1 Setup

We consider three data sets in a (5, 5)-FSL setting: Omniglot, Cifar Few-Shot
(CifarFS), and miniImagenet. To emulate the label noise, we add symmetric
random noise according to a specified label noise percentage of 30 and 60% to
the meta-training split of each dataset. For instance, for experiments with 60%
noise, we randomly select 60% samples of each class in the meta-train split,
and assign them to a different class within the same train split. As such, both
the support and query sets have an expected noise percentage of 60%. Reported
meta-test results are on clean data, to evaluate the learners under a base-case

1 As opposed to N ×K in the worst case with noise.

12 2. Research Paper



10 No Author Given

scenario. The support set is of size 5 (15), and query set 15 (Reptile learners),
as in [5].

We incorporate Man and BatMan sampling into Reptile (Rep.), EigenReptile
(ER.), iMAML (iM.) and foMAML with Zeroing-trick (fM.). Each learner uses a
ConvNet-4 architecture with 64 filters, and a linear layer with output dimension
R128. We use proximal weight decay2 on iMAML, and foMAML+ZO resets its
final layer to zero at the beginning of each inner-loop. The learners were trained
with the hyper-parameters provided in the original paper, except the following
changes. We use a fixed learning rate of 0.001 for both the inner-and outer-loop
(Reptile). Eigen-Reptile and Reptile run with 7 inner-loop steps, iMAML with
12 (16 for Omniglot), and foMAML with 5. iMAML’s proximal decay was set to
0.5 (2 for Omniglot). Each learner was meta-tested after 5K, 15K (10K), 15K
(10K), training outer-loop steps (iMAML) respectively for Omniglot, CifarFS
and MiniImagenet. For augmentations on CifarFS and MiniImagenet we use
the augmentations proposed in [1]. For Omniglot, we follow [3], applying one
of random crop, affine transform or perspective transform. During meta-testing
the learned meta-model model is further trained with 10 steps on Omniglot and
CifarFS, and 20 steps on MiniImagenet for task-specific adaptation.

When applying BatMan-CLR on those meta learners, we keep the same
model sizes with the addition of a larger ‘decision’ head R128 rather than R5.
The batch size of BatMan is set to 5 for all inner-loop adaptations3, and 15
for the meta-gradient calculation of iMAML and foMAML. For each support
sample 5 augmentations are created, whereas each query sample is augmented
twice, allowing the inner-loop to sample more diverse tasks. The final reported
testing accuracy is averaged over 3 testing runs, using 2048 tasks sampled from
the test split.

4.2 Testing accuracy

The results of BatMan-CLR on noisy CifarFS, Omniglot, and MiniImagenet are
summarized in Table 2 and Table 3, respectively. We report testing accuracy
with both Man and BatMan for CifarFS and Omniglot. Prior to analyzing the
results, we highlight all of these learners face significant degradation under label
noise, as shown in Section 2.

BatMan-CLR clearly strengthens the resilience of all FSL on all three datasets,
showing a marginal decrease in the testing accuracy. On Omniglot, when encoun-
tering the label noise in meta-training, all learners can still learn effective initial
models for task adaptation, reaching an accuracy of around 96%. In fact, all
learners are able to display a performance under label noise similar to that with-
out noise. As for CifarFS, we observe similar results to Omniglot, with most
learners reaching a test accuracy between 62-64%, except when applying Man
sampling on Eigen-Reptile. These results strongly validate the effectiveness of

2 Weight decay centered around θt, as per [18].
3 For Reptile style learners this then yields ‘minibatches’, as only 5 of 15 shots are
used each adaptation step.
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Table 2: (clean) Meta-test results with 95th Confidence Interval (acc± CI95) of
Meta-Pretrained models (5, 5)-FSL with different noise levels ϵ during training.

Alg. Sampler ϵ=0.0 ϵ=0.3 ϵ=0.6

Reptile
BatMan 66.5±0.168 65.0±0.170 64.1±0.170

Man 61.8±0.176 62.0±0.175 61.4±0.173

Eigen Reptile
BatMan 66.3±0.171 64.4±0.170 63.8±0.176

Man 61.7±0.170 55.8±0.378 52.3±0.365

foMAML
BatMan 66.6±0.167 65.2±0.169 64.8±0.164

Man 66.2±0.164 64.8±0.165 64.0±0.165

iMAML
BatMan 64.2±0.185 62.7±0.250 62.9±0.203

Man 62.8±0.172 62.6±0.168 61.7±0.169

(a) CifarFS results

ϵ=0.0 ϵ=0.3 ϵ=0.6

97.9±0.070 97.3±0.078 96.2±0.100

97.8±0.068 97.8±0.068 97.7±0.070

92.6±0.128 93.0±0.119 93.2±0.117

93.7±0.116 93.9±0.114 94.0±0.111

98.2±0.066 98.2±0.063 98.0±0.067

98.1±0.062 98.1±0.062 98.1±0.061

97.5±0.078 98.1±0.069 98.3±0.063

97.8±0.076 98.2±0.074 98.2±0.064

(b) Omniglot results.

BatMan, which self-cleanses the ‘shots’ by creating contrastive pairs and ‘ways’
by batching Man samples.

In terms of comparison between BatMan and Man, there is a visible advan-
tage of using BatMan, especially on a more difficult CifarFS. This suggests that
taking steps with more information, as in BatMan, provides greater benefits than
taking a larger number of simpler steps, as in Man. Zooming into the perfor-
mance of different learners on CifarFS, the difference in testing accuracy between
Man and BatMan on CifarFS is smaller with foMAML and iMAML, compared
to Reptile and EigenReptile. This can be explained by the fact that in our exper-
iments, the MAML style learners utilize BatMan to calculate the meta-gradient,
resulting in more informative updates. As Reptile learners do not calculate their
meta-gradients utilizing the query data, but the inner-optimization process.

An observation worth mentioning is that Eigen Reptile paired with Man,
deteriorates under noise on CifarFS. We speculate that this is due to the fact that
in Eigen Reptile the meta-gradient approximation is performed by selecting the
optimization direction with the highest variance. However, a high level of noise
introduces a high variance into the optimization directions, making it harder
to select an appropriate direction even with the use of Man. By employing the
less noisy BatMan estimation strategy, the learner is able to better select an
optimization direction and achieves a performance comparable to Reptile.

MiniImagenet.We further evaluate BatMan-CLR on MiniImagenet, a more
difficult dataset consisting of more diverse classes and larger inputs, and sum-
marize the results in Table 3. Under BatMan-CLR, the testing accuracy of most
meta learners has minor drops, i.e., ranging between .5 to 1%.
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Table 3: (clean) Meta-test accuracy with 95th Confidence Interval (acc± CI95) Bat-
Man on (5, 5)-FSL MiniImagenet with different noise levels (ϵ). White columns
correspond to supervised learners, grey columns to BatMan-CLR.

Alg. ϵ=0.0 ϵ=0.3 ϵ=0.6

Reptile 54.2±0.206 53.2±0.163 27.8±0.141 52.8±0.145 24.6±0.143 52.1±0.147

Eigen Reptile 58.7±0.250 50.9±0.146 44.8±0.200 50.5±0.148 24.8±0.140 50.5±0.144

foMAML 52.2±0.217 51.5±0.216 37.1±0.179 51.2±0.218 28.2±0.145 51.5±0.217

iMAML 53.9±0.215 50.4±0.218 45.5±0.211 50.5±0.221 20.0±0.076 50.4±0.212

4.3 Ablations

First, we consider the impact of supervised task generation by training meta-
learners in an unsupervised setting. Similar to UMTRA [8] and CACTUS [6] we
construct (5, 5/15)-FSL tasks (MAML/Reptile) by drawing 5 random images–
irrespective of their provided label. To construct shots, K + Q augmentations
are created to provide the necessary support and query shots, |Dsupport| =
K, |Dquery| = Q sets. The Table 4 shows the results on Omniglot and CifarFS
in the first row (SSL). The hyper-parameters and loss function were kept the
same as BatMan-CLR, with the meta-batch size increased to 25. Although this
approach shows similar performance to BatMan-CLR on Omniglot, on CifarFS
a considerable performance gap of 13.8-11% points compared to BatMan-CLR
(gray rows). Indicating that BatMan-CLR profits from seeing more unique sam-
ples during the inner-loop adaptation.

Second, we replace BatMan with a random manifold sampler (RanMan) to
investigate the impact of the BatMan sampler. Results are shown in ??. We
pair RanMan with BatMan in different configurations for the inner and outer
loop, again evaluated on Omniglot and CifarFS. Note that as Reptile and Eigen
Reptile do not leverage the query set, we only consider replacing its inner-loop
sampler. We keep hyper-parameters equivalent to those used in the correspond-
ing BatMan-CLR setting.

In general, the learners trained with RanMan in the outer loop show an
uplift in accuracy as the noise level increases. Learners show an increase in
accuracy of around 2-8% and 2-3% on Omniglot and CifarFS, comparing noise-
less with ϵ = 0.6, whereas BatMan-CLR sees a slight drop while staying ahead of
RanMan across the board. Showing that BatMan has the capability ‘self’ clean.
An interesting exception is present on Omniglot combined with Eigen Reptile
when increasing the noise level to 0.3 from 0(Table 4a). This is expected, as
with an increased noise level, we expect more unique classes in a constructed
task, resulting in Robin samples being more likely to be consistent. When only
replacing either inner or outer loop sampler for for iMAML and foMAML with
RanMan, we see that the contribution of the inner loop is less significant than
the outer loop. Showing that BatMan-CLR is also an effective strategy when
replacing only the outer-loop (R/B).
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Table 4: (clean) Meta-test accuracy with confidence intervals (acc± CI95), meta-
trained with different Inner/Outer samplers on (5, 5)-FSL tasks with different
noise levels (ϵ). Sampler indicates applied Inner/Outer loop sampler; Random
(batched) Manifold ‘(R)anMan’, Batched Manifold ‘(B)atMan’. SLL represents a
meta-learned model trained in an unsupervised few-shot learning strategy. Gray
rows are reprinted results of Table 2.

(ϵ) Sampler Reptile E. Reptile foMAML iMAML

SSL default 96.0±0.098 95.1±0.134 94.7±0.119 97.0±0.090

0.0

R/R 65.3±0.287 82.5±0.207 94.5±0.120 94.5±0.119

R/B - - 98.3±0.048 98.1±0.071

B/R - - 94.1±0.123 94.9±0.114

B/B 97.9±0.070 92.6±0.128 98.2±0.066 97.5±0.078

0.3

R/R 69.5±0.271 71.9±0.270 96.7±0.091 96.7±0.091

R/B - - 98.4±0.047 98.3±0.066

B/R - - 96.9±0.089 96.5±0.097

B/B 97.3±0.078 93.0±0.119 98.2±0.063 98.1±0.069

0.6

R/R 73.1±0.272 73.5±0.259 98.0±0.073 97.9±0.073

R/B - - 98.4±0.047 98.2±0.068

B/R - - 97.9±0.072 97.8±0.075

B/B 96.2±0.100 93.2±0.117 98.0±0.067 98.3±0.063

(a) Omniglot results.

Reptile E. Reptile foMAML iMAML

55.0±0.167 54.5±0.164 52.8±0.158 54.5±0.236

53.9±0.220 57.2±0.272 58.0±0.236 56.9±0.288

- - 62.0±0.234 60.9±0.296

- - 58.4±0.236 58.0±0.238

66.5±0.168 66.3±0.171 66.6±0.167 64.2±0.185

55.3±0.219 57.8±0.227 59.7±0.233 58.3±0.287

- - 61.8±0.236 60.3±0.234

- - 59.7±0.232 59.2±0.240

65.0±0.170 64.4±0.170 65.2±0.169 62.7±0.250

56.4±0.221 58.8±0.227 60.5±0.243 60.0±0.289

- - 61.1±0.237 60.3±0.286

- - 60.5±0.235 59.7±0.238

64.1±0.170 63.8±0.176 64.8±0.164 62.9±0.203

(b) CifarFS results.

5 Conclusion

Motivated by the ubiquitous presence of label noise, we empirically unveil the
impact of label noise on existing few-shots meta learners, with a particular focus
on noise in meta-training. As the number of shots per class is low, the label noise
can be exceedingly detrimental to meta learners and extremely challenging to
address. To enhance the resilience against label noise for few-shots learners, we
propose BatMan–a generic approach that turns supervised FS tasks into semi-
supervised ones. BatMan is capable of self-cleansing the noisy N -way K shots
instance by (i) batch manifold sampling that re-constructs N -way 2-contrastive-
shots via augmentation, and (ii) introducing DCL contrastive loss. Our results
on three datasets, Omniglot, CifarFS and MiniImagenet, show that BatMan
can maintain the effectiveness of few-shot learners independent of the presence
of label noise levels, i.e., reserving almost 30% accuracy degradation. In terms
of future work, we will extend BatMan on label noise present in meta testing,
different contrastive losses, as well as class awareness.
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3
Background

Before we continue with the details in the rest of this work, we provide a primer on the three core
concepts used in this work. We provide visual representations to help strengthen the understanding of
these concepts.

First, we introduce the few-shot learning problem more formally. Additionally, we further detail the
different types of few-shot learning settings considered in this work–with noisy labels and unsuper-
vised. Second, we discuss gradient-based meta-learning more in-depth and provide its conceptual
pseudocode. Lastly, we discuss representation learning focusing on contrastive style learning as is
used in our proposed BatMan-CLR.

3.1. Few-shot learning (FSL)
Few-shot learning challenges a learner to predict (a property of) unseen classes, e.g., labels, based
on a small set of supporting data. Contrary to typical supervised learning, which learns a fixed set of
classes to predict properties of unseen instances of the same classes. This section provides a more
formal definition of the few-shot problems. Afterward, we discuss the generation of few-shot learning
tasks from existing datasets and provide a short overview of classification benchmarks used in this
work. We conclude by introducing label noisy few-shot learning.

C1 CN C? C?

Support data
(Dsupport)

Query data
(Dquery)

... ...

K

N

Q

N

'Meta'-Learner Task-Specific
Learner Predictions

Figure 3.1: General 𝑁-way-𝑘-shot instance. For each of the 𝑁 ‘classes’ (ways), there are 𝑘 support samples (shots) provided
in 𝒟support including their labels. The corresponding query set 𝒟query contains ‘evaluation’ samples a learner must predict given
𝒟support.

Figure 3.2 shows how a (single) few-shot task is used. Solid colors represent samples for which
labels are provided (support), and those with a gradient represent unlabeled the unlabeled query data.
We note that during the training phase of meta-learners, the query sample labels are provided to learn
to generalize. The general recipe is as follows. First, a few-shot learner uses the support samples to
adapt to the task. After generalizing, the task-specific learner predicts the query’s labels. Each few-
shot problem effectively forms its own independent (supervised) dataset, similar to regular training in
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supervised learning. These few-shot tasks each provide a small set of support data 𝒟support, generally
𝑁 different classes with 𝐾 samples each, and challenge a few-shot learner to classify query samples.
Let us more formally define N-way K-shot1 (N, K) few-shot tasks as follows,

𝒟support =
𝑁

⋃
𝑖=1
{(𝑥𝑖𝑗 , 𝑦𝑖𝑗)}𝐾𝑗=1, 𝒟query =

𝑁

⋃
𝑖=1
{(𝑥𝑖𝑗 , 𝑦𝑖𝑗)}

𝑄
𝑗=1. (3.1)

Although this provides the recipe for few-shot task creations, a key ingredient is missing to create
few-shot tasks from existing datasets. Simply taking a few samples from an existing dataset to construct
such tasks, e.g., ‘lion’ and ‘zebra’, would allow the learner to learn a general classification learner.
Moreover, this would disallow the learner to predict new classes, which a few-shot should be capable
of. To address this, the samples’ original labels are re-labeled such that 𝑦𝑖∗ ∈ [0, 𝑁)2. Randomly
assigning labels to classes in few-shot tasks ensures that a few-shot learner is incentivized to learn to
generalize, as labels do not provide useful information across tasks.
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Figure 3.2: Meta-learning instance. Themeta train set consists of a collection of few-shot instances, see Figure 3.1, characterized
by a function 𝑝 ∶ 𝒟 ↦ 𝒯 The meta-test set is constructed similarly, so no samples co-occur in the meta-training and meta-test
sets. The learner uses the support sets to ‘generalize’ to the query set during meta-testing. Hence only meta-train, and no
meta-test, data is used for the final model.

We can construct few-shot tasks using existing datasets with this few-shot task recipe. For image
classification tasks, as considered in this work, a task distribution 𝑝 is defined, allowing a learner to
sample from, i.e., 𝒯 ∼ 𝑝(𝒟). Figure 3.2 shows a conceptual overview of the layout of few-shot learning
datasets. Although not shown, samples in each data-split, e.g., meta-training split, may occur inmultiple
few-shot tasks. Conceptually, 𝑝 achieves this by selecting 𝑁 classes (ways) and taking 𝐾+𝑄 samples
for each (shots)–both for the support and query set. Afterward, as discussed before, 𝑝 remaps the
labels to ensure that the tasks’ labels leak no original label information. Otherwise, a few-shot learner
could exploit the label information and learn a general classification model.

By providing different data splits, sampling 𝑝 allows us to obtain tasks to train, test or validate few-
shot learners. Each of these data splits is assumed to be disjoint. As a result, it allows us to evaluate a
learner’s ability to adapt to new unseen classes with few samples. For image classification tasks, this
makes that combinatorially many few-shot tasks can be created.

1Or classes and samples, respectively.
2Generally, a (random) mapping function maps each sample to its new label. For example, in the three-way setting,
𝑐𝑎𝑡, 𝑑𝑜𝑔,𝑚𝑜𝑢𝑠𝑒, such a mapping function could be; 𝑐𝑎𝑡 ↦ 2, 𝑑𝑜𝑔 ↦ 0,𝑚𝑜𝑢𝑠𝑒 ↦ 1.
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Remark 1

To prevent confusion with ‘training’ and ‘testing’ data offered by𝒟support and𝒟train, and𝒟query and
𝒟test, we introduce terms to differentiate between the two. In Figure 3.2 provides a visualization
for the proposed terms. We refer to the underlying data splits–i.e., train, validation, and test–
as meta-training, meta-validation, and meta-testing data. For a specific task’s ‘train’ and ‘test’
(𝒟support, 𝒟query) we refer to as training (support) or testing (query) data as shown in the dotted
boxes in Figure 3.2.

3.1.1. Benchmarks
Image classification datasets are commonly used to evaluate few-shot learners. These vary in image
size, number and granularity of categories, and the number of images per category, providing different
levels of challenge for few-shot learning tasks. Here we provide a short overview of common bench-
marks also utilized in this work.

Omniglot [29] provides a small-scale few-shot learning dataset that contains images of hand-
written characters from 50 different alphabets. Each alphabet contains multiple characters and
is provided with 20 images for each. All samples consist of a gray-scale image of 28x28 pixels.

CIFAR-FS [3] (CifarFS) is a variation of the CIFAR-100 dataset, where each category has only
600 images. As in CIFAR-100, the images are full-color with dimensions 32x32. For the split of
the train, validation, and test data, we follow [3]’s suggested data splits.

FC100 [56] (Few-shot Classification with 100 Categories), similar to CIFAR-FS, is a CIFAR-100-
based few-shot dataset. In its design, care is taken to minimize the semantic overlap between
the data splits. As such, related classes are grouped in the validation, testing, and training split,
thus posing a more challenging setting than CIFAR-FS.

Mini-ImageNet [54] is a simplified few-shot dataset based on the ImageNet [11] dataset, with 100
with 600 images per category. Each sample is a downsampled RGB image of 84x84 pixels, down
from the original 224x224 pixels. Its larger input size and increased visual complexity make it a
more challenging benchmark to adapt to.

3.1.2. Few-shot Learning Variations
Generally, few-shot learning assumes that clean data is provided, i.e., samples and their provided
labels are correct. More recently, however, research has studied settings where this assumption is
alleviated. We identified two main categories; few-shot learning with label corruption [34, 26, 6, 56, 38]
and semi- and unsupervised few-shot learning [24, 1, 57, 32, 30]. In a noisy label setting, a fraction
of the data provided to the learner is corrupted. Due to the construction of few-shot tasks, label noise
generation can occur at two stages; the underlying data splits [6, 26], or at task-level [34, 56, 36].
Regardless of the type of label noise, only a few works consider meta-training with noise [56, 26, 6,
36]. Most of these works assume clean meta-training data is present, allowing them to provide ground-
truth labels to learn a noise rejection mechanism. An exception is TADAM [56], which models label
noise at task-level for a fraction of the tasks available tasks3. A limited number of works consider
corrupted meta-training datasets, similar to this work. To the best of our knowledge, only Re-Weight-
MAML [26] (RW-MAML) and Eigen Reptile [6] evaluate in this scenario. RW-MAML proposes a meta-
objective to learn to filter noisy samples using a clean validation set. Eigen Reptiles proposes a robust
meta-optimizer for Reptile [41] style learners by stepping towards the direction of the inner-optimization
process with the highest variance.

3Hence, no image occurs in more than one task during training
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Remark 2

Due to the construction of few-shot tasks from existing classification datasets, the label noise
can occur at two levels; dataset level and task level. We refer to data(set) level noise if the
underlying datasplit, i.e., training split, is corrupted. As such, a fraction (𝜖) in the original dataset
gets its labels re-assigned and remains fixed afterward. We refer to task-level noise if label noise
is (dynamically) injected into an initially uncorrupted task, as such samples may be corrupt in
one task but correctly labeled in another. This latter noise approach is more suitable for meta-
testing or learning a noise rejection mechanism–in which case the correct label is also provided
to the learner. In this work, we generally perform training with dataset level noise and evaluate
with task level noise (during experiments with label noise).

Semi-supervised [30, 32] and unsupervised learning [24, 21, 1] few-shot learning have shown
promising results as approaches toward few-shot learning. These works assume that some or even
all labels are unavailable. As a result, these works generally construct artificial tasks using unlabeled
data. They then leverage augmentation techniques to create more ‘shots’ for the constructed tasks.
Our proposed BatMan-CLR technique is related to these works in its sub-sampling technique and use
of contrastive learning.

3.2. Gradient Based Meta-Learners
With the few-shot problem discussed, we continue with details of Gradient-Based Meta-Learning. First,
we relate meta-learning of few-shot tasks to ordinary classification learning. Second, a more formal
introduction of gradient-based meta-learners is given, leveraging a graphical perspective to help build
intuition. Last, we introduce first-order meta-learners, which address common problems with exact
(second-order) meta-learners.

Gradient-based meta-learners [15] approach few-shot learners by learning a model4 that is trained
to generalize with few samples. The idea is that a meta-learner learns the models’ parameterization 𝜃,
such that it lays close to a good task-specific one. As such, few adaptation steps (and consequently
samples) are required to adapt. To achieve this, the training objective is made to match that of meta-
testing. First, let us recall the general objective of typical classification learners,

𝜃∗ = argmax
𝜃

𝔼
(𝑥,𝑦)∈𝒟

[𝑃𝜃(𝑦|𝑥)], (3.2)

where 𝑃𝜃 expresses the probability of models parameterized by 𝜃 on predicting the label 𝑦 given
input 𝑥. Through this formulation, the training objective (Equation 3.2) reflects what needs to be done
during evaluation, predict unseen samples of known classes. GMBLs, however, require the notion of
tasks 𝒯 = (𝒟support, 𝒟query) and an adaptation process. Let us define 𝑔𝜙(𝜃, 𝒟support) as the adaptation
process from an initial model 𝜃 using a task’s support data. Then the objective becomes,

𝜃∗ = argmax
𝜃

𝔼
(𝒟support ,𝒟query)∈𝒟

[ 𝔼
(𝑥,𝑦)∈𝒟query

[𝑃𝑔𝜙(𝜃,𝒟support)(𝑦|𝑥)]]. (3.3)

As a result, this objective imposes that the found meta-model 𝜃∗ should be capable of rapidly adapt-
ing. To achieve this without the task-adaptation process–rewriting Equation 3.3 to mimic the structure
of Equation 3.2–requires the learner to have seen all tasks beforehand, defeating the purpose of few-
shot learning altogether5.

GMBLs use a two-stage approach to optimize their objective, i.e., to ‘learn to learn’. Before introduc-
ing the formal definition, we provide the geometric interpretation in Figure 3.3, showing a GMBLs’ meta-
learning process in parameter space. At the interrupted point, we find meta-learner 𝜃 at meta-epoch
𝑡, where the inner-loop process [𝜃, 𝜙1, … , 𝜙𝑠 is shown (thin solid black arrow). First, a tasks-specific
model 𝜙 is adapted from 𝜃 using 𝒟support, i.e. 𝑔𝜙(𝜃, 𝒟support) in Equation 3.3. Afterward, the gradient
of 𝜙𝑠 on the query data is computed (purple dashed arrow) and back-propagated back to its start at 𝜃
4Parameterized by a deep neural network.
5Although outside the scope of this work, multi-task learning can be seen as an in-between of few-shot learning and ordinary
‘many’-shot learning.
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Figure 3.3: Geometric interpretation of MAML [15] in parameter-space. The bold (black) arrow shows the optimization path of
the meta-model 𝜃. We show the steps performed at each meta-epoch for a single train task, 𝜃 is adapted to task-specific 𝜙𝑠 are
trained using support data (curved thin black arrow). Each 𝜙𝑠 query loss (purple) is related through the inner-adaptation process
(dashed blue arrow) back to 𝜃 to calculate its meta-gradient (straight thin black arrow). A meta-batch consisting of multiple
tasks (not shown) allows us better to estimate the meta-optimization direction (orange arrow). At the end of meta-training, the
adaptation on meta-test tasks requires only a single adaptation step to find a good task-specific model 𝜙∗𝜏.

(blue dashed arrow). This operation then yields the tasks’ meta-gradient (thin solid black arrow) for the
next meta-iteration. Although only one task adaptation process at meta-epoch 𝑡 is shown, generally
a collection of tasks are jointly optimized at each step for more informative updates. Combining mul-
tiple updates from different tasks determines the meta-optimizer’s next optimization direction (orange
arrow), towards which the meta-optimizer steps. This meta-optimization process generally uses stan-
dard optimizers such as SGD or Adam [27]. The same steps are repeated to evaluate the model using
meta-testing data, but drop the gradient descent through the gradient descent step (blue arrow), i.e., 𝜃
remains fixed after meta-training.

Let us formally introduce the optimization of these learners as proposed by Model Agnostic Meta-
Learning [15] (MAML). First, a task-specific model optimized through 𝑠 (stochastic) gradient descent
(SGD) steps to find task-specific 𝜙𝑠,

�⃗�𝑖+1 = �⃗�𝑖 + 𝛼∇�⃗�ℒ(𝑓�⃗�𝑖), (3.4)

where 𝜙0 = 𝜃, and ℒ is a loss function, e.g., Cross Entropy loss. We drop the meta-epoch 𝑡 in our
notation here for convenience. To then optimize the meta-model 𝜃, the error of tasks-specific models’
on the query data is related to its initial parameterization,

𝜃𝑡+1 = 𝜃𝑡 + 𝛽∇𝜃ℒ(𝜙𝑠)
= 𝜃𝑡 + 𝛽∇𝜙𝑠ℒ(𝜙𝑠)(∇𝜙𝑠−1𝜙𝑠)… (∇𝜙0𝜙1)(∇𝜃𝜃)

= 𝜃𝑡 + 𝛽∇𝜙𝑠ℒ(𝜙𝑠)
𝑠

∏
𝑖=1
(∇𝜙𝑖−1𝜙𝑖)

= 𝜃𝑡 + 𝛽∇𝜙𝑠ℒ(𝜙𝑠)
𝑠

∏
𝑖=1
(∇𝜙𝑖−1(𝜙𝑖−1 − 𝛼∇𝜃ℒ(𝜙𝑖−1)))

= 𝜃𝑡 + 𝛽∇𝜙𝑠ℒ(𝜙𝑠)
𝑠

∏
𝑖=1
(𝕀 − 𝛼∇𝜙𝑖−1∇𝜃ℒ(𝜙𝑖−1)).

(3.5)

This bi-level optimization scheme then requires the gradients and model parameters of each inter-
mediate step 𝜙∗ to be retained to calculate meta-gradients. Thereby resulting that the meta-gradient
computation growing linearly in space and time, as the query set loss from 𝜙𝑠 is related to 𝜃𝑡 requiring
𝑠 Hessian vector computations.

Using this formal definition of these meta-learners, we provide the canonical pseudo-code that most
implementations leverage. It models the task adaptation and meta-generalization through an inner
(Equation 3.4) and outer-loop Algorithm 2.
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Algorithm 1 Typical outer-loop of GBML, dropping
meta-batches for convenience.
Require: 𝛽 meta-learning rate.

Require: 𝑝 ∶ 𝒟 ↦ 𝑇 Task generation

Require: 𝒟train, 𝒟test
1: 𝜃 is randomly initialized.
2: � Perform meta-training
3: for 𝑖 ∈ [0, … , 𝑒𝑝𝑜𝑐ℎ𝑠) do
4: (𝒟support, 𝒟query) ∼ 𝑝(𝒟train)
5: 𝜙𝑖 ← InnerLoop(𝜃, 𝒟support)
6: 𝜃 ← 𝜃 − 𝛽ℒ𝒟query(𝜙𝑖)
7: � Perform meta-testing
8: for 𝑖 ∈ [0, … , 𝑒𝑝𝑜𝑐ℎ𝑠) do
9: (𝒟support, 𝒟query) ∼ 𝑝(𝒟test)

10: 𝜙𝑖 ← InnerLoop(𝜃, 𝒟support)
11: Evaluate on 𝒟query

Algorithm 2 Typical inner-loop structure of GMBL
meta-learners.
Require: 𝛼 adaptation learning rate.

Require: 𝒟support task support set.
1: 𝜙 ← 𝜃
2: � Perform task adaptation
3: for 𝑖 ∈ [0, 𝑠𝑡𝑒𝑝𝑠) do
4: 𝜙 ← 𝜙 − 𝛼∇ℒ𝒟support(𝜙)
5: return 𝜙

3.2.1. Approximating the outer-loop
As mentioned before, the exact computation of meta-gradients incurs significant memory and compu-
tational overhead as the number of inner-loop steps increases 𝑠. To address this, various approaches
have been proposed to address this computational burden. Most of these works consider approximat-
ing the 2nd gradient calculation, i.e., the blue arrow in Figure 3.3. Thereby generally requiring only the
calculation of ‘first order’ gradients, dropping the back-propagation through the inner loop.

The so-called first-order meta-learners learners aim to approximate the exact meta-gradient. A large
section of work approaches this under the assumption that the direction of the meta-gradient is mainly
influenced by the first-order component, i.e., ∇�⃗�𝑠ℒ(�⃗�𝑠). Approaches such as first-order MAML [15] and
sign-MAML [14] directly realize this by equating the hessian vector product (Equation 3.5) to the identity
matrix 𝕀 through an (implicit) stop-gradient6 function. As a result, it eliminates the need for calculating
higher-order meta-gradients. Reptile [41], on the other hand, approximates the meta-gradient using
only support data. Contrary to other GMBLs, Reptile learners sub-sample the few-shot task in the
inner-loop7. They effectively simulate slight variations of the provided few-shot task in each inner loop
step. To approximate the meta-gradient, Reptile steps in the direction of 𝜙𝑠8. Note that this thus drops
the need for 𝒟query during meta-training. Eigen Reptile [6] builds on this by decomposing the inner
loops optimization path and stepping only in the direction with the highest variance. Implicit MAML [46]
(iMAML) enforces that its meta-gradient can be exactly computed using only the final task-specific
model 𝜙𝑠. IMAML uses weight regularization and a longer inner-loop adaptation process to achieve
this.

3.3. Representation Learning
Part of our proposed method BatMan-CLR–the Contrastive Learning (CLR) component–leverages rep-
resentation9 learning. The general idea is to learn a mapping of input (images) to a representation
(embedding) such that similar inputs have similar representations. Contrastive learning is a type of
representation learning for images, also used in our proposed BatMan-CLR. In this section, we provide
additional information on contrastive learning.

Contrastive learning’s goal is that visually similar samples (images) should be embedded to close
points in the embedding space. This is generally achieved by using related inputs and unrelated inputs–
positive and negative samples. Different formulations allow for contrastive objectives to be learned in
supervised [25] as well as unsupervised/self-supervised [7, 49, 31] fashion. Especially the latter has
6A conceptual function, that detaches the computational graph, making that differentiating w.r.t 𝜃 becomes equal to differentiating
w.r.t. 𝜙𝑠.

7I.e., leveraging all samples in the support set for each inner-loop step.
8Equivalently setting the meta-gradient to 𝜃 −𝜙𝑠, as then the optimization step becomes 𝜃′ = 𝜃 − 𝛽(𝜃 −𝜙𝑠) = 𝜃 + 𝛽(𝜙𝑠 − 𝜃).
9Or equivalently embedding learning, we will use these terms interchangeably.
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Figure 3.4: Pipeline for infoNCE [7]-style learning. First, samples (3) are individually augmented twice. The embedding learner-
generated embeddings 𝑧∗, to ‘pull’ positives (green arrows) closer and ‘push’ negative samples (red arrows) further away. The
abstract ‘Augment’ box represents the domain-specific implementation to generate unique augmentations. The embedding
learner generally has an architecture that leverages a convolutional (𝑔) and fully connected (ℎ) component.

shown to be capable of rivaling or even exceeding supervised learners in classification settings [7, 58].

In this work, we make use of an unsupervised visual contrastive learning strategy. Different ap-
proaches have been proposed, ranging from requiring positive and negative views such as Bootstrap
Your Own Latent [17] (BYOL), SimCLR [7], and Momentum Contrastive [19] (MoCo) learning, to ones
that require only positive examples such as Simple Siamese (SimSam) Representation Learning [8].
In our evaluations of BatMan-CLR, we use a loss related to SimCLR [7]. By design, it allows for easy
incorporation into the episodic style of learning leveraged by meta-learners, as it only requires samples,
without needing a memory queue, or altered network architecture.

SimCLR [7] style learning leverages the NX-Xent (normalized contrastive temperature-scaled cross-
entropy loss) loss or infoNCE (noise contrasting estimation) loss. Conceptually, SimCLR approaches
the representation learning problem by ‘pulling’ positive samples closer in embedding space and ‘push-
ing’ negative samples further away. We show the general pipeline of this learning style in Figure 3.4.
First, the original samples are augmented. Consecutively, each augmentation is embedded using a
deep neural network 𝑓 = ℎ ∘ 𝑔, consisting of a convolutional (𝑔) and fully connected part ℎ. Before we
define the actual objective, we define what 1) negative and positive (samples) are and 2) a notion of
distance (or similarity) to realize ‘pulling’ and ‘pushing’. First, positives (and negatives) are generated
through augmenting the original samples. Here each sample is thus assumed to be a unique class.
By applying transformation–e.g., (color) distortion, shearing, cropping, etc.–on original images, varia-
tions can be generated10, which are then treated as the learners’ input. Augmentations from the same
‘source’ image are treated as positive examples (green arrows in Figure 3.4). In contrast, embeddings
from all other samples are treated as negatives (red arrows Figure 3.4), forming 𝑁𝑎𝑢𝑔𝑁(𝑁−1) negative
pairs with 𝑁𝑎𝑢𝑔 augmentations and 𝑁 ‘original’ samples. Then to make that samples can be pulled or
pushed, a metric is a function to express (dis)similarity. For this, infoNCE uses the cosine similarity on
embedding vectors 𝑧𝑎 , 𝑧𝑏 computed by 𝑓,

𝑠(𝑧𝑎 , 𝑧𝑏) =
𝑧⊤𝑎 ⋅ 𝑧𝑏

||𝑧𝑎||||𝑧𝑏||
. (3.6)

We will use the short-hand bra-ket notation ⟨𝑧𝑎|𝑧𝑏⟩ to denote this similarity–assuming embeddings are
𝐿2 normalized.

The infoNCE loss utilizes all pair-wise cosine-similarities between positive and negative samples11.
We then write the objective from the perspective of each sample’s first augmentation 𝑧(1)𝑖 , with a total

10Generally, each augmentation is generated independent of other augmentations
11Except embeddings’ self-similarity, as embedding is generally really close to itself.
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of 2 augmentations per sample,

ℒinfoNCE = −
1
𝑁

𝑁

∑
𝑖=1

log ( exp(⟨𝑧(1)𝑖 |𝑧(2)𝑖 ⟩)
∑2𝑁𝑗=1 𝟙[𝑖 ≠ 𝑗] exp(⟨𝑧

(1)
𝑖 |𝑧𝑗⟩)

)

ℒinfoNCE = −
1
𝑁

𝑁

∑
𝑖=1

log ( exp(⟨𝑧(1)𝑖 |𝑧(2)𝑖 ⟩)
exp(⟨𝑧(1)𝑖 |𝑧(2)𝑖 ⟩) + ∑2𝑁𝑗=1 𝟙[𝑧𝑗 ∉ {𝑧

(1)
𝑖 , 𝑧(2)𝑖 }] exp(⟨𝑧(1)𝑖 |𝑧𝑗⟩)

) (3.7)

We drop the temperature scaling coefficient (𝜏) for notational convenience. Via symmetry, this can
be extended to include the second augmentation by changing the order of augmentations. Simi-
larly, adding a summation of positive views in the first term allows for incorporating additional posi-
tive augmentations. Generally, this loss is used with large batch sizes, allowing many negative pairs
(𝑁𝑎𝑢𝑔 ⋅ 𝑁(𝑁 − 1)) to be constructed.

Remark 3

Although this style of contrastive learning does not impose that images of the same class are
embedded close in feature space, empirical evaluations show that this does happen [7]. How-
ever, this strongly depends on the type of augmentations used [7], which are domain-specific
and introduce additional hyper-parameters. Different augmentations have been proposed on
the input and the embedding level. In this work, we focus on standard input-level embeddings.

In our work, we leverage the Decoupled Contrastive Loss [58], an adaptation of the infoNCE loss.
Rather than summing over all pair-wise similarities in the denominator, it proposes to take out ⟨𝑧(1)𝑖 |𝑧(2)𝑖 ⟩).
This change is motivated by the fact that the ‘repel’ force is negatively affected by 𝑧(1)𝑖 when 𝑧(2)𝑖 lies
close [58], and vice versa. As a result, DCL performs better with smaller batch sizes, which is favorable
in a few-shot scenario. The contrastive loss then becomes,

ℒDCL = −
1
𝑁

𝑁

∑
𝑖=1

log ( exp(⟨𝑧(1)𝑖 |𝑧(2)𝑖 ⟩)
∑2𝑁𝑗=1 𝟙[𝑧𝑗 ∉ {𝑧

(1)
𝑖 , 𝑧(2)𝑖 }] exp(⟨𝑧(1)𝑖 |𝑧𝑗⟩)

). (3.8)

z11 z12 z13 z21 z22 z23

z11 1 1

z12 1 1

z13 1 1

z21 1 1

z22 1 1

z23 1 1

infoNCE

DCL

DCL

Figure 3.5: Example of the (inverted) selection masks for in infoNCE’s [7] (Equation 3.7) and DCL’s [58] (Equation 3.8) de-
nominator. Each sample’s 𝑖 features 𝑧(1,2)𝑖 are assigned the same ‘class’ represented by color. The top index 𝑧𝑗∗ indicates the
augmentation index corresponding to a sample’s augmented embedding 𝑧𝑗𝑖 . Note that DCL’s mask consists of the union of the
DCL and infoNCE. mask.



3.3. Representation Learning 27

Remark 4

Generally, data is differently collated in actual implementations as represented in Figure 3.4.
Rather than having different augmentations of the same image in consecutive indices, samples
are in order of sample (𝑋1, 𝑋2, … ) and then in order of ‘augmentation’ (𝐴1, 𝐴2, …). As such, se-
lecting the samples can be easily done using masks to select positives and negatives for the
computation. We provide a small visual example of how (the inverse) of such a selection mask
looks like for computing the denominator of the infoNCE (Equation 3.7) and DCL (Equation 3.8)
loss in Figure 3.5 in a (3,3)-FSL setting with two augmentations. Note that DCL’s mask consists
of the union of the DCL and infoNCE. This selection mask is then used to select values from
a similarity matrix of feature embeddings. Note that the different embeddings corresponding to
the original samples are in order of shot firsts and then ordered by the view.





4
nmfw Framework

We develop a framework for meta-learning under different few-shot settings: nmfw1. nmfw provides
a set of extensible tools to implement meta-learning training loops efficiently. Moreover, it provides
utilities to experiments in few-shot scenarios that currently are not supported by related works: (i) few-
shot learning with train and test label noise, and (ii) unsupervised few-shot learning. One of the key
features of nmfw is its decoupled implementation for meta-learners and the training loop, which makes
it compatible with existing meta-learning libraries.

First, we present a common issue found in available meta-learning implementations, coined the
‘coupling problem’ Second, we provide an overview of existing meta-learning frameworks. Third, we
introduce our frameworks’ which address the coupling issue using a ‘Learner’ and ‘Algorithm’ abstrac-
tion. Forth, we detail nmfw’s approach towards extensible few-shot data generation. Last, we perform
a case study to highlight the benefit of nmfw, analyzing the run-time of meta-learners.

4.1. Learning: ‘Algorithm’ and Meta-‘Learner’

This section presents a more detailed depiction of the pseudo-code for meta-learning algorithms, with
additional details for improved understanding. We analyze its structure and note that its canonical form
leads to a coupling between the meta-learner and training algorithm when implemented. Lastly, we
propose a solution to this problem, which lays the foundation for the developed frameworks’ design.

1Noisy Meta-learning Framework.
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Algorithm 3 Typical outer-loop of GBML, with the
added notion of meta-batches.
Require: 𝛽 meta-learning rate.

Require: 𝑝 ∶ 𝒟 ↦ 𝒯 Task generation

Require: 𝒟train, 𝒟test

Require: 𝐵 Meta-Batch size.

Require: 𝑇 Evaluation size.
1: 𝜃 is randomly initialized.
2: � Perform meta-training
3: for 𝑖 ∈ [0, … , 𝑒𝑝𝑜𝑐ℎ𝑠) do
4: for (𝒟support, 𝒟query) ∈ [𝑝(𝒟train)]𝐵𝑖=1 do
5: 𝜙𝑖 ← InnerLoop(𝜃, 𝒟support)
6: 𝜃 ← 𝜃 − 𝑁

𝐵 ∑
𝐵
𝑖=1 ∇𝜃ℒ𝒟query(𝜙𝑖)

7: � Perform meta-testing
8: for (𝒟support, 𝒟query) ∈ [𝑝(𝒟train)]𝑇𝑖=1 do
9: 𝜙𝑖 ← InnerLoop(𝜃, 𝒟support)

10: Evaluate on 𝒟query

Algorithm 4 Typical inner-loop structure of GMBL
meta-learners, with (implicit) resampling.
Require: 𝛼 adaptation learning rate.

Require: 𝑠𝑡𝑒𝑝𝑠 Adaptation steps.

Require: 𝒟support task support set.

Require: ReSample intra-task resampler.
1: 𝜙 ← 𝜃
2: � Perform task adaptation
3: for 𝑖 ∈ [0, 𝑠𝑡𝑒𝑝𝑠) do
4: � Take a subset of samples in the inner loop,

e.g., mini batching.
5: 𝒟𝑖support ← ReSample(𝒟support)
6: 𝜙 ← 𝜙 − 𝛼∇ℒ

𝒟𝑖support
(𝜙)

7: return 𝜙

Let us first re-print the canonical pseudo-code (Algorithm 3 and Algorithm 4). In lines 4-6 of the
outer-loop (Algorithm 3), we introduce meta-batches2. Meta-batches, introduced in lines 4-6 of the
outer loop, reduce noise in the estimated meta-gradient, similar to batching in Stochastic Gradient
Descent. Additionally, resampling, also known as ‘mini-batching’ [41], in line 5 of the inner loop, plays
a crucial role in Reptile-like learners. While this resampling step is often assumed to be implicit, we
highlight its importance in the context of Reptile-like learners [41, 6].

This high-level depiction of the meta-learning loop provides an intuitive two-level abstraction, trans-
lating to a straightforward nested implementation. The outer-loop Algorithm 3 performs the meta-level
generalization, and the inner loop Algorithm 4 performs the task-specific adaptation. However, when
translating it to an actual implementation, the nested optimization handles that part of themeta-learners’
responsibility in the outer loop. Specifically, the computation of meta-gradients (Line 6) becomes part
of the outer loop–which conceptually should bemeta-learner specific. On the meta-learners’ side, data
management of support and query data and sub-sampling3 (Line 6) gets handled by the meta-learner.
Hence, each meta-learner requires re-implementation of most of the training loop.

Ideally, a clear separation of concerns should exist, thereby decoupling the training loop and meta-
learner. To address this coupling between the meta-learner and training algorithm, we propose a clear
separation between the training ‘Algorithm’ and a meta-‘Learner’. In this abstraction, the Algorithm
should concern itself with the general structure of the inner- and outer loop, i.e., data management,
validation, and testing. The Learner should provide interfaces to the Algorithm to perform the task-
adaptation steps and outer-loop gradient calculations, separating their respective concerns. When
using this decomposition, evaluating a learner in different settings only requires swapping the Algorithm
or used dataset. For example, whenmoving from (clean) supervised learning to noisy testing or learning
a meta-learner in an unsupervised fashion. Additionally, this allows for features of different meta-
learners to become re-usable, e.g., sub-sampling [41] and regularization [46, 59, 23].

4.2. Meta-Learning Libraries
At the time of writing, a collection of related works are available. Although these provide (part of) the
necessary tools to implement Gradient Based Meta Learners (GMBL) few-shot learners–training loop,
higher order differentiation, and few-shot shot data generation–these lack desirable features for re-

2For the keen reader, we remark that generally line 6 in Algorithm 3 is computed directly in the loop of lines 4-5, using the meta-
model itself to accumulate gradients. Consecutively, this allows for directly freeing a task’s required memory after calculating
its meta-gradient. However, we keep such optimization details out of the discussion for conceptual clarity.

3Most works [2, 33] load support and query data into a single data-tensor. As such, the meta-learner needs to know whether
samples are support or query.
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producible and comparative studies. Namely a decoupled implementation of meta-learner and training
loop, and flexible few-shot data generation. We consider the works that leverage the PyTorch [44] Deep
Learning Library. In no particular order; higher [16], Learn2Learn [2], TorchMeta [10], TorchOpt [48],
EasyFSL, LibFewShot [33], and PaddleFSL [50].

In this section, we compare the different related frameworks for meta-learning. We conclude with
common issues found in the reviewed libraries4; a lack of separation of concerns and no support for
(extensible) few-shot data generation beyond supervised learning.

4.2.1. Overview
higher [16] provides a lightweight library with the tools to implement differentiable optimizers easily.
By design, higher provides the core components to compute higher-order gradients for PyTorch [44]
optimizers, such as SGD, Adam [27], RMSProp [20], etc., as well as user-provided optimizers. In
turn, making the higher-order gradient calculations straightforward for second-order meta-learners like
MAML [15]. This allows for straightforward implementation of meta-learning algorithms through its
provided wrappers for existing as well as custom Torch optimizers5 to become differentiable. This lat-
ter is needed, as by default, Torch’s autograd frees memory after each optimization step6. Higher
achieves this by monkey-patching7 calls to PyTorch. In its approach, higher transforms the stateful
Torch Modules–which provide concrete implementations of neural network (components)–into state-
less ones, treating model parameters as first-class citizens. Combined with a context manager–which
tracks the required gradients and intermediate parameters–it provides a lightweight wrapper to imple-
ment higher-order meta-learning algorithms.

TorchOpt [48] provides a collection of differentiable optimizers. Moreover, it provides a suite of
tools to visualize computational graphs and perform distributed training. Similar to higher’s approach,
this recasts the implementation of GMBL meta-learners as differentiable optimizers. However, they
provide both a functional and an object-oriented interface, similar to PyTorch’s object-oriented syntax.
Additionally, it provides native support for distributed learning, allowing for learning at scale. It provides
a collection of common differentiation types; exact, implicit, and zero-order differentiation. Similar to
higher, it does not provide functionality to for few-shot data generation.

Learn2learn [2] is closest related to our framework. Similar to the previous works, it provides tools
to implement meta-learning algorithms. Learn2Learn provides example implementations of seminal
meta-learning works such as Reptile and MAML. Moreover, Learn2Learn provides few-shot bench-
marks ranging from regression and classification tasks to reinforcement learning environments. In
their examples, Learn2Learn leverages the inner- and outer-loop abstraction (Algorithm 4 and Algo-
rithm 3). This results in a tight coupling between the meta-learners and the training loop, as discussed
in section 4.1, requiring the re-implementation of most of the training loop for each meta-learner.

PaddleFSL [50] provides a PaddlePaddle [4] like implementation for FSL learning. It provides a
collection of few-shot benchmarks and meta-learner implementations. However, each learner’s imple-
mentation requires the implementation of most of the inner- and outer loops. Moreover, PaddleFSL
requires a dataset-specific implementation before it can be used for few-shot data generation. This
approach entails that each type of few-shot learning–such as unsupervised–would require a parallel
implementation, limiting its extensibility to different few-shot learning settings. These latter two factors
thereby limit PaddleFSL’s value for experimenting in different settings outside those provided.

TorchMeta [10], contrary to the other works, focuses on providing commonly used datasets. In
addition, it provides a wrapper to implement MAML, which currently supports a subset of PyTorch’s
Module’s. Although TorchMeta provides a large collection of few-shot datasets, it requires a custom
wrapper per dataset. As such, it is less suited for explorative research with new data, as we will discuss
in section 4.4.

EasyFSL8 and LibFewShot [33] are two frameworks more tailored towards the more general few-
shot learning, contrary to other related works. While EasyFSL does not provide meta-learner reference
4And by extension, reference implementations that leverage these.
5Optimizers in PyTorch handle the application of gradients of parameters in an in-place fashion, which makes that each opti-
mization step overwrites a models parameterization.

6Generally, this is beneficial as otherwise the cached data–gradients and activations–would require explicit managing after taking
an optimization step.

7Monkey-patches dynamically change the behavior, allowing to capture and alter calls to specific (library) functions. As Python
is a dynamic language, this allows for adding functionality using flexible ‘hooks’ that implement the required functionality.

8https://github.com/sicara/easy-few-shot-learning
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implementations, LibFewShot provides a complete set of seminal meta-learners. However, these works
offer a relatively restrictive pipeline to create few-shot datasets. We note that LibFewShot uses a
conceptually similar architecture design as nmfw, as we will discuss in section 4.3, it does not decouple
the meta-learners’ implementation from the general training loop.

4.2.2. Remarks
To the best of our knowledge, these works lack support outside supervised few-shot learning. Hence,
exploring different settings–e.g., with label-noise, semi- or unsupervised, etc.–requires custom imple-
mentations, making a fair comparison between related works difficult. Indeed we found that works that
provide public implementations [24, 21, 34, 6] all utilize custom data-loading. As a result, this makes
a fair comparison between these works more difficult. Addressing this through a flexible and extensi-
ble data-loading pipeline would improve the reproducibility of future label noisy and semi/unsupervised
meta-learning research.

Generally, the examples provided by works show a tight coupling between the learners and their re-
spective training loops. Conceptually, each meta-learner defines how to adapt given support or query
data, requiring it to have little knowledge of ‘the rest’ of the training loop. We hypothesize that this
originates from the direct translation of the canonical inner and outer loop to code, as discussed in
section 4.1. Moreover, we found the used data loaders were often inflexible, without support for la-
bel noisy or unsupervised few-shot learning. Making it less straightforward to make fair comparisons
between different works in similar settings, as they must each implement this functionality differently.
For example, small details in the noise generation make it difficult to compare such results one to one.
Combined, these two points that implementations provided by libraries and reference implementations
are difficult to compare.

Dataset

loop

train()

pre_process_meta_batch()

next()

task_adaptation()

merge_grad()

loop
[meta_batches]

loop

perform_meta_batch()

[task]

[inner_steps]

if
[training]

if
[training]

Algorithm

meta_update()

clone()

Learner

adapt()

Figure 4.1: High-level sequence diagram of nmfw’s core components and interaction for meta-training. Additional details such
as optimizers, validation, and testing are kept out in favor of conceptual clarity. Note that we use the syntax as is provided by
our framework, which uses this abstraction.

4.3. Framework Architecture
This section reviews the design details of the developed nmfw (subsection 4.2.2). It aims to provide an
extensible basis for upcoming research directions, such as unsupervised [21, 1, 57] and noisy few-shot
learning [34, 38, 6].

This section is structured as follows. First, we provide a high-level overview of the meta-learners by
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BaseLearner

+ meta_model: Model

+ adapt()

+ clone()

+ merge_grad()

OptimizerLearner

+ accum: Tensor

+ merge_grad()

+ clone()

+ scale()

+ adapt(loss, optimizer)

GBMLLearner
+ adapt()

+ clone()

+ merge_grad()

MAML ANILBOIL

iMAML
+ merge_grad()

FoMAML
+ merge_grad()

EigenReptile
+ adaptation: Tensor

+ merge_grad()

+ adapt()Reptile
+ merge_grad()

Figure 4.2: Overview of nmfw’s Learner design.

showing the interaction of the ‘Learner’ and ‘Algorithm’ components. Second, we highlight the ‘Learner’
component, which encapsulates the meta-learners’ responsibilities, and provides interfaces for the
‘Algorithm’. Third, we provide the ‘Algorithm’ component design, providing the general ‘training loop’.
Last, we motive how nmfw’s design–leveraging the Learner and Algorithm components–addresses the
coupling problem as sketched before.

4.3.1. A birds-eye view
Before we discuss the more specific details of nmfw, we provide an overview of nmfw’s proposed
training loop in Figure 4.1. This provides insight into how nmfw structures the conceptual pseudo-
code in its implementation. Although Figure 4.1 depicts the overview for meta-training, meta-testing,
and validation follow a similar structure9. After training starts, the Algorithm directs the overall training
process and manages the data. It then delegates meta-gradient and adaptation calculations to the
Learner through its clone, adapt, and merge_grad interfaces. From a high level, three nested loops
are present from the outer- to the inner-most level the meta-epoch level, the task level, and the inner-
loop level. The outer-most loop handles the general training loop, tracking and logging statistics, saving
checkpoints, etc., and interacts with the Dataset to get meta-batches. The Algorithm pre-processes
the meta-batch and processes the tasks sequentially. The adaptation process starts by requesting
a task-specific copy of the Learner through a call to clone. Upon return, the Algorithm computes
the adaptation loss (not shown) and requests the task-specific Learner to adapt given the loss. Upon
completing the inner-loop adaptation, the Algorithm requests the Learner to compute the meta-gradient
via merge_grad. Note that the meta-model performs this last action using the adapted model and its
loss on the query set.

4.3.2. Learner
Starting with the ‘Learner’ abstraction, we expand on the structure proposed by Learn2Learn [2]. We
provide a graphical overview of its structure in Figure 4.2. Learn2Learn proposes the usage of adapt
and clone methods. This former function provides an inner-loop step interface, i.e., at Line 6. The
latter, clone, provides an interface to create a task-specific learner from the meta-learned model.
Thereby responsible for handling how the task-specific meta-learners’ computational graph should be
constructed. For exact meta-learners, this is important, as a complete computational graph is required
to calculate the meta-gradient. We extend this with the merge_grad method. This last method pro-
vides a transparent interface to calculate and apply the meta-gradients to the meta-learner10.

As shown in Figure 4.2, we utilize two categories for the provided meta-learners; GBMLLearner
and OptimizerLearner. This former provides an implementation leveraging Learn2Learn’s meta-
learners for exact 2nd order GBML learners11, e.g., BOIL [42], ANIL [45], and MAML [15]. The Opti-

9Generally, while testing the meta-batch size is fixed to 1, and the conditional blocks on training are skipped.
10We note that the scale_grad of the ‘Learner’ appears superfluous. However, separating the scaling from the calculation of
the meta-gradient–with the meta-batch size–makes the ‘Learner’ only requires a single during adaptation.

11These are provided as a starting point for experiments and a baseline for implementations.
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mizerLearner allows for the generic implementation of meta-learners through ordinary optimizers.
Moreover, this allows for implementations leveraging other meta-learning frameworks’ optimizers to be
incorporated. For example, integrating an exact meta-learner using higher’s differentiable optimizer
is achieved through extending OptimizerLearner to handle interacting with higher components12

Although we currently provide implementations for four first-order algorithms: iMAML [46], Rep-
tile [41], first-order MAML [15], and Eigen Reptile [6], these can be used as guides to extend Opti-
mizerLearner to incorporate different meta-learners. Opening up the implementation to the public
allows for extension through collaboration.

4.3.3. Algorithm
We continue with the Algorithm component of nmfw. This module handles the general ‘learning loop’,
i.e., data management, validation, and testing. Figure 4.3 shows the currently provided Algorithms
provided by nmfw. Here AbstractAlgorithm provides a general interface, and BaseAlgorithm
provides a general training loop for supervised training and training with label noise.

AbstractAlgorithm

+ learner: Learner
+ train_data: MetaDataLoader
+ test_data: MetaDataLoader
+ validation_data: MetaDataLoader
+ subsampler: SubSampler

+ train()
+ test()
+ validate()
+ pre_process_meta_batch()
+ perform_backward()
+ meta_update()

BaseAlgorithm

+ train()
+ test()
+ validate()
+ perform_meta_batch()
+ task_adaptation()

UnsupervisedBaseAlgorithm

+ perform_meta_batch()

Figure 4.3: High-level overview of Algorithm abstraction of nmfw.

To allow for an extensible approach, we decompose the canonical algorithm into four steps; pre_-
process_meta_batch, perform_meta_batch (line 4-6 in Algorithm 4), task_adaptation Al-
gorithm 4, perform_backward and meta_update (line 6 in Algorithm 4). This achieves that the
logic for data-management (pre_process_meta_batch), can be seperated from the overall loop
(perform_meta_batch, task_adaptation, from deferring calls to the meta-learners (perform-
_backward and meta_update). Moreover, pre_process_meta_batch allows a straightforward
way to extend nmfw to incorporate different styles of few-shot learning. For example, for unsupervised
meta-learning, rather than rewriting the entire training loop, only the pre_process_meta_batch re-
quired re-definition to organize features (inputs) appropriately.

4.4. Few-Shot Data Generation
We conclude this chapter with the design motivations of nmfw’s data-loading utilities. Data loading for
(exploratory) research into few-shot learning is paramount. For these experiments, this should both be
flexible and reproducible–to easily explore new directions and validate new ideas. First, we compare
two commonly applied major libraries used in meta-learning implementations; inflexibility to different
few-shot settings. Our implementation provides a flexible set of tools to implement different few-shot
learning experiments quickly.

4.4.1. Related Work
Regarding few-shot data loading, we found that two general approaches are taken to construct tasks;
using wrapper or indices. Here we use TorchMeta’s and Learn2Learn’s syntax as representatives for
these methods. In Algorithm 5 and Algorithm 6, we provide a Python-like pseudocode showing their
data managing approaches using TorchMeta and Learn2Learn.

12This would consist of making a call to higher.innerloop_ctx in the Learner’s clone method.
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Algorithm 5 Dataloading example in TorchMeta-
style.
Require: 𝑁 number of ‘ways’ (classes)

Require: 𝐾 number of support ‘shots’ (samples)

Require: 𝑄 number of query ‘shots’
1: �Get dataset-specific ‘wrapper’ to create ways.
2: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = DatasetWrapper(𝑁)
3: � Create (N, K)-FSL dataset.
4: 𝑑𝑎𝑡𝑠𝑒𝑡 = ClassSplitter(𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑁, 𝐾, 𝑄)

Algorithm 6 Dataloading example in Learn2Learn
style.
Require: 𝑁 number of ‘ways’ (classes)

Require: 𝐾 number of support ‘shots’ (samples)

Require: 𝑄 number of query ‘shots’
1: � Using any Torch-compatible dataset.
2: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = MetaDataset(Dataset())
3: 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑠 = [
4: NWays(𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑁), � Define ways.
5: KShots(𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝐾), � Define shots.
6: LoadData(𝑑𝑎𝑡𝑎𝑠𝑒𝑡),
7: …� Augmentations, etc.
8: ]
9: � Create (N, K)-FSL dataset.

10: 𝑡𝑎𝑠𝑘𝑠𝑒𝑡 = TaskDataset(𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑠)
Wrapper based approaches (Algorithm 5, using TorchMeta as an example) leverage a straightfor-

ward approach for task generation. Most few-shot frameworks use this strategy to generate few-shot
tasks. The first step requires a dataset-specific wrapper that organizes the dataset’s data, providing
splits based on sample data. The second stage leverages these splits to draw support and query
samples, realized in TorchMeta through the ClassSplitter module. Although this lightweight ap-
proach allows for fast data generation, it requires a definition of a Wrapper for each new dataset. As
a result, a DatasetWrapper implementation per dataset for each few-shot learning setting needs to
be provided–e.g., training or with label noise, or unsupervised meta-learning. Moreover, due to its
coarse control over the data flow during task creation, it is less suited for an extension to different
types of noisy few-shot learning. For example, to implement with out-of-task noise13 would require an
additional wrapper per noise type.

Index-based approaches, on the other hand, make use of two indices to find samples per class
and an inverse mapping. To our knowledge, Learn2Learn is the only related library that leverages this
approach. Although this introduces additional overhead–to compute and store the indices–this is a one-
time cost and allows for fine-grained data control during the generation of tasks. Learn2Learn leverages
these lookup tables in its TaskTransforms, which implement parts of the few-shot task data pipeline.
As shown in Algorithm 6, multiple transforms are combined to define the creation of few-shot data
generation. By design, each of these transforms allows direct access to the indices through the provided
MetaDataset object. Under the hood, Learn2Learn leverages a symbolic DataDescription object,
which represents the different ‘shot’ and ‘samples’ until the actual data is loaded.

4.4.2. Flexible (label noisy) Few-Shot Data
Motivated by Learn2Learn’s fine-grained control, nmfw extends its functionality to support different
types of few-shot learning settings. It provides necessary utilities to generate noisy MetaDatasets as
well as corrupted tasks. Moreover, nmfw provides a set of Transforms that allow for experimenting
with unsupervised few-shot learning. Like Learn2Learn, nmfw achieves this through task and data set
level transformation functions, making few shot task generation flexible and extensible.

First, we discuss the design considerations for meta-learning with noisy label datasets, i.e., few-shot
learning with a corrupted dataset label noise. Last, we detail the task-level utilities provided by nmfw,
providing an extensible pipeline for few-shot learning and testing with corrupted tasks and unsupervised
task generation.

Training with noise: NoisyMetaDataset
We extend Learn2Learn’s MetaDataset through a NoisyMetaDataset class to perform training and
testing with label noise. This ‘noisy’ counterpart of MetaDataset provides a generic interface to cre-
ate a noisy dataset of any MetaDataset–thereby making it compatible with every Torch-compatible
13Where samples are replaced in a task 𝒯 with samples from classes outside of 𝒯
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MetaDataset

+ dataset: Dataset

+ labels_to_indices: Dict[T, List[int]]

+ indices_to_labels: Dict[int, T]

+ create_bookkeeping()

+ serialize_bookkeeping()

NoisyMetaDataset

+ dataset: MetaDataset

+ labels_to_indices: Dict[T, List[int]]

+ indices_to_labels: Dict[int, T]

+ clean_labels_to_indices: Dict[T, List[int]]

+ clean_indices_to_labels: Dict[int, T]

+ transformation: LabelNoiseTransform

LabelNoiseTransform

+ noise_level: float

+ transform()

SymmetricNoiseTransform

+ noise_level: float

+ transform()

UnsupervisedNoiseTransform

+ noise_level: float

+ transform()

Figure 4.4: Overview of core components provided for training on noisy few-shot datasets through decorating Learn2Learn’s
MetaDataset, as provided in nmfw.

dataset. An LabelNoiseTransform performs the label corruption by providing corrupted indices to
the NoisyMetaDataset. Its design leverages the decorator design pattern, which makes the cor-
rupted indices transparently available to existing TaskTransform, making it a drop-in replacement
for MetaDatasets.

Figure 4.4 provides an overview of the NoisyMetaDataset’s core components. The NoisyMeta-
Dataset creates updated indices so that the NoisyMetaDataset can provide samples with corrupted
labels. These ‘noisy’ indices are concrete implementations of the LabelNoiseTransform, which acts
as a wrapper for MetaDatasets to inject noise.

Currently, nmfw provides a concrete implementation for symmetric dataset level noise through a
user-provided LabelNoiseTransform. In addition, we provide a UnsupervisedNoiseTrans-
form, which acts as a basis for unsupervised few-shot learning experiments. Unlike its supervised
counterparts, it randomly selects 𝑁 samples regardless of their labels–as these are assumed to be
unavailable. This latter transform14, provides support for unsupervised few-shot learning settings.
Thereby re-casting the unsupervised few-shot learning setting as noisy label learning with dynamic
noise. We plan on adding more common noise types nmfw after its initial release.

Augmenting Tasks
To complete the data-generation pipeline, nmfw provides a set of TaskTransforms. When combined
with the appropriate (Noisy)MetaDataset, varied few-shot learning settings are quickly realized.
Figure 4.5 provides an overview of the introduced transformations, grouped into three categories; dy-
namic noise generation, noisy label management, and input augmentation transform. Here we will set
the three categories of transformations apart.

Dynamic noise generation introduces the support for generating noise at a per-task instance.
NoisyFusedNWayKshotTransform provides this functionality which levereges SamplerTrans-
form that corrupts labels (or samples). This approach provides a basis for meta-training with
supervised noise15 and meta-testing under different label noise scenarios.
From a high level, the NoisyFusedNWayKshotTransform samples a clean few-shot task and
selects which samples to corrupt. The fused transform provides the indices to corrupt to the
SamplerTransform, which implements a concrete type of label noise–similar to the Label-
NoiseTransform.
As the specific noise provided by the SamplerTransform may re-assign labels to samples
per task, a notion of ‘intended’ class (or way) is needed. Hence, the NoisyFusedNWayKShot-

14Combined with the appropriate task-level transforms, as will be discussed next
15Where the learner has access to dirty and clean label information
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TaskTransform

+ dataset: Dataset

+ apply()

+ create_task()

RemapNoisyLabels

+ shuffle: bool

+ apply()

+ remap()

NoisyFusedNWayKShotTransform

+ ways: int

+ support_samples: int

+ support_noise: bool

+ query_samples: int

+ query_noise: bool

+ transform: SamplerTransform

+ apply()

+ new_task()

ContrastiveTaskTransform

+ transform: bool

+ apply()

+ remap()

ContrastiveTransform

+transforms: torch.nn.Module

+augmentations: int

+ apply()

RemapNoisyLabelsGT

+ apply()

+ remap()

OmniglotTransform ImagenetTransform CifarTransform

SamplerTransform

+ apply()

SymmetricSwapTransform

+ generate_derangement()

+ apply()

Figure 4.5: Schematic overview of task level transformations provided by nmfw.

Transform uses a NoisyDataDescription (not shown)–rather than Learn2Learn’s DataDe-
scription. Through this data object, the task generation process can keep track of each se-
lected sample’s ‘intended’ class, thus ensuring that noisy and ground truth labels are correct.

Noisy label management handles the assignment of correct labels to clean and noisy samples,
providing a mapping from sample indices to their intended and ground-truth label. For experi-
ments leveraging a NoisyMetaDataset, RemapNoisyLabels provides using the NoisyMeta-
Datasets’ indices. Experiments with dynamic noise, i.e., generated at task level with Noisy-
FusedNWayKshotTransform, are required to use the RemapNoisyLabelGT transform. Remap-
NoisyLabelGT uses a NoisyDataDescription to provide a shots’ index and its intended
class. Thereby, SamplerTransforms can dynamically re-assign class labels to selected shots
while remaining compatible with existing transformations.

Lastly, Input augmentation transformations, for which nmfw currently provides a Contrastive-
TaskTransform for few-shot learning with contrastive losses and unsupervised meta-learning.
As shown in Figure 4.5, the ContrastiveTaskTransform uses a ContrastiveTransform
which provides the augmentation implementation. nmfw provides a set of such contrastive trans-
formations for CIFAR, ImageNet, and Omniglot-based datasets. For the RBG image-based
datasets, we provide standard [7] using rescale cropping, color jittering, grayscale, and horizontal
flips. Omniglot contains grayscale images of hand-written characters, so we provide augmenta-
tions following [5]. These transformations use standard Torch Vision [37] transformations, but the
ContrsativeTaskTransform supports any Torch-compatible module.

Remark 5

To provide users with a way to get started with these tools, nmfw provides high-level utilities to in-
stantiate standard benchmarks. These make for easy creation of datasets for meta-training and
testing in unsupervised and labeled noisy few-shot settings. Currently, nmfw provides such in-
terfaces for Omniglot, FC100, CifarFS, andMiniImagenet, with more planned for future releases.
Moreover, we provide example implementations of unsupervised/noisy few-shot meta-learning
and meta-testing in different configurations.
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4.5. Performance evaluation
As a small case study of nmfw’s utility, we perform a small performance evaluation experiment. We
compare the impact of different experiment configurations on the meta-epoch train, indicative of a meta-
learners’ training time. We consider the impact of the number of shots and inner-loop adaptation steps
for two deep learning models commonly used in few-shot learning.

Table 4.1: Experiment parameters and levels considered in performance evaluation on MiniImagenet [54].

Parameter Levels

Meta-Learner iMAML, foMAML, Reptile, Eigen Reptile
Shots 5, 10, 15
Inner loop steps 5, 15, 25
Models Conv4 [47], ResNet12 [18]

We summarize the considered levels of the evaluated parameters in Table 4.1. Four meta-learners
are considered, iMAML [46], foMAML [15], Reptile [41], and Eigen Reptile [6]. Note that we set the
mini batching parameter for Reptile and Eigen Reptile ‘mini batching’ to the number of shots in an
experiment. For all experiments, we fix the meta-batch size to 5. After training each meta-learner for
100 meta-epochs, we report the average meta-epoch time from three runs. Three threads were used
for data-loading, with a pre_fetch factor of 15 (meta-batches). We evaluate the experiments on a
system equipped with an AMD Ryzen 5900X (12c/24t), 32GB memory, and an Nvidia RTX 3090 (24
GB VRAM).
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Figure 4.6: Graph showing the increase in meta-epoch duration per iteration (y-axis) under different configurations of inner-
loop adaptation steps (x-axis) and the number of shots (hue). Shaded areas show 95th confidence intervals. Evaluated on
MiniImageNet [54] with a Conv4 [53] and ResNet12 [18] architectures. The Meta epoch duration (y-axis) is scaled per row.

Figure 4.6 shows the results from the performance evaluation study. We see a stark difference be-
tween the Reptile and MAML style learners across both models. Due to Reptile learners’ subsampling
strategy, these learners require considerably fewer computations per adaptation step. foMAML and
iMAML show a steeper incline as the number of shots increases, as these learners use all samples
for each inner-loop step. Although iMAML and foMAML have the same inner-loop complexity, the off-
sets between the curves are significantly larger with iMAML. This results from the Conjugate Gradient
method used by iMAML to compute its meta-gradient, which is a computationally heavy operation.

Comparing the average meta-epoch time between the Conv4 and ResNet12 model (the two rows in
Figure 4.6), we note that Resnet12 experiments have considerably longer meta-epoch times. Looking
at the different architectures of the models, we see that the ResNet12 architecture is much more com-
plex than the Conv4 one. Where the Conv4 model has 121, 093 trainable parameters with 97.40million
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multiplication-addition (mult-add) operations, ResNet12 has 12, 427, 525 parameters with 3.48 billion
mult-add operations. This 10-fold increase in parameters and a 30-fold increase in mult-add explains
the larger differences between the Conv4 and ResNet12 models.





5
Additional results

Here we provide additional results obtained during the work outside those presented in the research
paper in chapter 2.
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Figure 5.1: Proposed Meta-Baseline [9] style classification learner. Before adaptation, each classes 𝑖’s (normalized) centroids
are computed �̄�𝑖 (Equation 5.1). Consecutively these centroids are used to initialize an additional fully-connected layer. The new
layer is placed in between a Normalization and Softmax non-linearity. This constructs a (softmax) cosine-similarity classification
output per-class probability scores (Equation 5.2).

5.1. Constructing Classification Model
Generally, the zero-ing trick was used to create a classification for meta-learners trained with BatMan-
CLR. We also perform meta-testing with a classification model adapted from Meta Baseline [9]. A
visualization in Figure 5.1 shows how such a classifier is constructed from a pre-trained model on a (3,
3)-FSL task support set. Rather than appending themodel with a zero-ed out layer, themodel appended
with a module consisting of a normalization, fully connected, and softmax layer. The fully-connected
layer is initialized before adaptation with a support sets’ normalized centroids, i.e.,

�̄�𝑖 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(
1
𝐾

𝐾

∑
𝑖=𝑗
ℎ(𝑓(𝑋𝑖,𝑗))), (5.1)

with 𝑋𝑖,𝑗 being class 𝑖’s 𝑗th support shot, assuming that each class is provided with 𝐾 shots. Here 𝑓
represents the embed(ing) layer and ℎ the proj(ection) layer as depicted in Figure 5.1, i.e., the convolu-
tional and fully connected part of the BatMan-CLR trained model. Using the added module, the model
is mapped to a cosine-similarity classification model, between embeddings and class centroids. By
construction, this implements a (softmax scaled) cosine similarity-based classification, as a samples
similarity with a class 𝑖’s centroid �̄�𝑖 is expressed as,

𝑠cos(�̄�𝑖 , 𝑧𝑖,𝑗) = ⟨�̄�𝑖|𝑧𝑖,𝑗⟩ =
�̄�⊤𝑖 𝑧𝑖,𝑗
||𝑧𝑖,𝑗||

= �̄�⊤𝑖 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(ℎ(𝑓(𝑋𝑖,𝑗)). (5.2)
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As such, each of the classifiers’ outputs represents the (softmax scaled) embeddings’ similarity with a
specific different few-shot class centroid. Contrary to [9], we only set the weights of the classification
layer once, after which the learner’s inner optimizer optimizes it. The construction of this classifier
was made to attempt to maximize the objective between the contrastive meta-training and supervised
meta-testing and evaluate the meta-learned model’s ability to adapt its embeddings.

Table 5.1: (clean) Meta-test accuracy with 95th Confidence Interval (𝑎𝑐𝑐± CI95) of Supervisedmeta-learners on (5, 5)-FSLOmniglot
and CifarFS with different meta-training noise levels (𝜖). Comparing the performance of Meta-Baseline [9] (MB) and (reprinted)
zeroing-trick [23] (ZO) performance with BatMan-CLR meta-trained models.

𝜖 = 0.0 𝜖 = 0.3 𝜖 = 0.6
Alg. Sampler MB ZO MB ZO MB ZO

Reptile BatMan 55.3±0.174 66.5±0.168 54.8±0.169 65.0±0.170 54.9±0.174 64.1±0.170

Man 44.8±0.175 61.8±0.176 44.7±0.168 62.0±0.175 44.6±0.173 61.4±0.173

Eigen Reptile BatMan 55.5±0.181 66.3±0.171 55.1±0.175 64.4±0.170 55.2±0.174 63.8±0.176

Man 49.5±0.171 61.7±0.170 49.5±0.173 55.8±0.378 49.3±0.169 52.3±0.365

foMAML BatMan 20.0±0.142 66.6±0.167 20.0±0.130 65.2±0.169 20.1±0.123 64.8±0.164

Man 20.2±0.130 66.2±0.164 20.1±0.130 64.8±0.165 20.1±0.130 64.0±0.165

iMAML BatMan 21.3±0.142 64.2±0.185 21.4±0.138 62.7±0.250 21.3±0.123 62.9±0.203

Man 21.1±0.139 62.8±0.172 21.1±0.137 62.6±0.168 21.0±0.127 61.7±0.169

(a) CifarFS results.

𝜖 = 0.0 𝜖 = 0.3 𝜖 = 0.6
Alg. Sampler MB ZO MB ZO MB ZO

Reptile BatMan 89.0±0.195 97.9±0.070 89.3±0.188 97.3±0.078 86.8±0.218 96.2±0.100

Man 84.4±0.226 97.8±0.068 84.4±0.219 97.8±0.068 83.6±0.235 97.7±0.070

Eigen Reptile BatMan 66.8±0.332 92.6±0.128 66.7±0.326 93.0±0.119 66.2±0.332 93.2±0.117

Man 53.4±0.390 93.7±0.116 52.5±0.370 93.9±0.114 52.3±0.377 94.0±0.111

foMAML BatMan 20.1±0.293 98.2±0.066 20.2±0.264 98.2±0.063 20.2±0.273 98.0±0.067

Man 20.3±0.298 98.1±0.062 20.2±0.224 98.1±0.062 20.0±0.256 98.1±0.061

iMAML BatMan 20.7±0.315 97.5±0.078 20.7±0.294 98.1±0.069 20.7±0.277 98.3±0.063

Man 20.6±0.312 97.8±0.076 20.4±0.234 98.1±0.061 20.8±0.285 98.2±0.064

(b) Omniglot results.

Weevaluate theMeta-Baseline (MB) and Zero-ing Trick (ZO) classifier using BatMan-CLR andMan-
CLR meta-trained on CifarFS and Omniglot. In , we provide an overview of these experiments. The
grey columns represent re-printed results from chapter 2. The classifier constructed with the zero-ing
trick achieves higher meta-testing accuracy, regardless of the training noise level. Moreover, the MAML
style learners deteriorate to random label prediction under the Meta-Baseline (MB) style classification.
The performance gap between MO and ZO is smaller for the Reptile style learners. Reptile and Eigen
Reptile paired with BatMan on Omniglot sees a performance decrease of ∼ 11%, with a slightly larger
gap with Man sampling. On Omniglot, however, only Reptile shows the same pattern, decreasing ∼ 9%
and ∼ 13%) for BatMan and Man respectively. On the other hand, Eigen Reptile shows between ZO
and MB a considerably larger performance gap of ∼ 26% and 44% between BatMan and Man.

5.2. Contrastive Loss and Embedding Size
The utilized contrastive loss (DCL) and the embedding layer size are essential components of our
proposed method. The embedding layer is characterized by a single fully-connected layer that maps
the outputs of the convolutional backbone to an embedding vector in ℝ128. To evaluate the impact of
the embedding size and contrastive loss, we evaluate both at different levels. We consider the DCL
and simCLR losses with embedding sizes of 5 and 128 paired trained with a Reptile meta-learner.
In addition, we evaluate an Oracle variant of DCL (O-DCL) to act as a ‘skyline’ in this setting. O-
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DCL is allowed access to ground-truth labels, ensuring that no false-negative pairs are used in DCL’s
(Equation 3.8) denominator. As a baseline, we train supervised meta-learners under the same levels
of training noise noise Table 5.2 with the same model architecture.

Table 5.2: (clean) Meta-test accuracy with 95th Confidence Interval (𝑎𝑐𝑐± stdev) of Supervised meta-learners on (5, 5)-FSL
FC100 with different noise levels (𝜖).

Learner 𝜖 = 0.0 𝜖 = 0.3 𝜖 = 0.6
Eigen Reptile 44.6±4.0 41.9±3.9 39.7±3.8

Reptile 44.5±4.1 42.6±3.9 39.9±3.7
foMAML 42.6±4.0 39.0±4.5 32.1±4.9
iMAML 45.2±4.1 41.8±3.9 31.9±4.7

Table 5.3: (clean) Meta-test accuracy with 95th Confidence Interval (𝑎𝑐𝑐 ± stdev) of meta-learners trained with different con-
trastive losses in the inner-loop on (5, 5)-FSL FC100 with different noise levels (𝜖).

Loss 𝜖 = 0.0 𝜖 = 0.3 𝜖 = 0.6
O-DCL 44.3±1.6 44.0±1.8 44.0±1.6

simCLR 41.5±1.6 41.5±1.5 41.5±1.5
DCL 41.5±1.5 41.8±1.6 41.4±1.5

(a) Embedding dimension of 128.

𝜖 = 0.0 𝜖 = 0.3 𝜖 = 0.6
37.7±1.4 37.6±1.5 37.2±15

36.2±1.5 36.2±1.5 36.4±15
36.2±1.4 36.3±1.4 36.2±15

(b) Embedding dimension of 5.

Table 5.3 provides the results of meta-learners trained with different contrastive losses on FC100.
Table 5.2 summarizes the results of meta-learners trained with supervised losses on the same dataset.
We see a relatively low accuracy of around 44/45% at zero noise, indicating that the trained model
did not generalize well. We hypothesize that this is due to the model architecture being insufficient
to learn to generalize in this setting. Nonetheless, these results allow us to draw some conclusions.
Moreover, compared to its supervised counterpart in Table 5.2 with clean training data, a performance
gap is shown of about 3%. However, as training noise increases, the supervised learners deteriorate
by up to 14.6%, while the contrastive learned models remain largely unaffected.

Between the different contrastive configurations, we see two remarkable patterns in Table 5.3a
and Table 5.3b. As the embedding dimension decreases, we see an accuracy drop of around 4%.
Moreover, we see a noticeable difference between O-DCL and DCL trained without noise (𝜖 = 0.0).
Showing that the false-negative constructed by DCL (from samples of the same class) hurt the learners’
performance.

5.3. Meta-test noise
Besides investigating meta-training noise, we also study the effect of meta-testing with label noise.
First, we provide results of supervised meta-learners with task-level symmetric label noise during train-
ing and testing. Afterward, we provide results on the baseline and BatMan-CLR learned models under
different trained with a noisy meta-dataset and asymmetric label noise during testing.

5.3.1. Symmetric Task-level Noise
Initial experiments were trained and tested with task-level symmetric label noise. These tasks were
constructed by sampling clean tasks and then reassigning the labels to classes from the same task for
a fraction (𝜖). In this setting, samples can be provided with a correct or corrupted label in different few-
shot tasks. Supervised meta-learners were trained and tested under different levels of meta-training
noise (𝜖 ∈ [0.0, 0.3, 0.6]) and meta-testing noise (𝜖 ∈ [0.0, 0.15, 0.3, 0.45, 0.6]). The meta-learners were
trained on the CifarFS and FC100 datasets.

Figure 5.2 shows the results on the CIFAR-derived datasets. Two negative trends are visible in
Figure 5.2 as the noise levels increase. First, as the meta-training noise increases, the meta-test
performance drops. However, the Reptile style learners–Reptile and Eig(en)Reptile–are seemingly
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Figure 5.2: Meta-test performance comparison of supervised meta-trained on (5, 5)-FSL tasks, with different training and testing
noise levels. Showing results from training under varying levels of task-level label noise during meta-training (𝜖 ∈ {0.0, 0.3, 0.6})
and meta-testing (𝜖 ∈ {0.0, 0.15, 0.3, 0.45, 0.6}).

less affected by the meta-training noise, as the spread of the accuracy curves is narrower compared to
iMAML and foMAML. Second, as the meta-test noise increases, all learners are negatively impacted by
the noise, indicating that they overfit to meta-testing noise. This impact, however, is more pronounced
than the impact of meta-training noise. Compared with the impact of training noise, this accuracy drop
is more severe, showing that under 𝜖 = 0.6, the few-shot learners deteriorate to random guessing–
regardless of the training noise.

Figure 5.3: Example of task-level corrupted (5, 5)-FSL tasks’ support set with asymmetric task level label noise. The samples
are ordered per row with the label they were provided with. Can you spot the incorrectly labeled samples1? Original images
courtesy of (Mini)Imagenet [11].

5.3.2. Meta-testing with Asymmetric Label Noise
Lastly, we consider the impact of meta-testing noise on supervised and BatMan-CLR meta-learned
models. During the meta-train time, the noise is generated at the dataset level and during meta-testing

1 Row1:3(row3),Row2:1(row4),Row3:4(row4),Row4:2(1strow),Row5:1(row2).
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at the task level. Note that query data during testing is not corrupted. Figure 5.3 shows a corrupted sup-
port set of a (5, 5)-FSL task with asymmetric label noise (𝜖 = 0.2); samples for each class are grouped
together per row. During meta-testing, the noise is created by creating one-directional mappings for
classes, so no class gets mapped to itself. Afterward, a fraction (𝜖) of each class’s shots get corrupted
according to the created mappings. Thereby assigning a fraction of each class to another, modeling
class confusion. Here we evaluate the impact of meta test-noise under supervised and BatMan-CLR
The results are plotted in Figure 5.4.
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Figure 5.4: Meta-test performance comparison of supervised and BatMan-CLRmeta-trainedmodels with different meta-learners,
training, and testing noise levels. Showing results from training with dataset-level symmetric label noise (𝜖 ∈ {0.0, 0.3, 0.6}) and
asymmetric task-level meta-testing label noise (𝜖 ∈ {0.0, 0.2, 0.4}). Note that the accuracy axes (y-axes) are scaled per dataset
(row).

Generally, Figure 5.4 shows a negative trend as the meta-train and meta-test noise increases.
Overall we see that the spread of the supervised accuracy curves is higher for supervised learners
than for BatMan-CLR trained models, corresponding with their resistance against meta-training label
noise. Except for Reptile+BatMan-CLR with 𝜖 = 0.6 meta-training noise. In this configuration, the
Reptile learners’ performance degrades to the level of its supervised counterpart at 𝜖 = 0.3 training
noise.

On CifarFS and especially (Omniglot) (top rows in Figure 5.4), the BatMan-CLR meta-learned mod-
els show a less pronounced impact as meta-test noise increases meta-testing, compared to the su-
pervised results. On these datasets, we see an improvement across all meta-learners at 𝜖 = 0.2 of
2.1 − 5.7% (4.5 − 16.0%) and 4.6 − 5.5% (6.1 − 25.6%) at 𝜖 = 0.4, over supervised results. Nonethe-
less, the BatMan-CLR learners see a degradation as the meta-testing noise increases, of 5.5 − 6.6%
(0.5−31.1%) at 𝜖 = 0.2 and 18.6−19.7% (12.6−45.0%) with 𝜖 = 0.4. MiniImagenet results (bottom row
in Figure 5.4) show that the BatMan-CLR meta-learned models under test noise performs equivalent
to the cleanly pre-trained meta-learner. Supervised models trained with label noise on MiniImagenet
show a drastic deterioration in performance,

In general, comparing the BatMan-CLR with the supervised results, the supervised model models
show a larger spread of the accuracy curves. Meanwhile, the BatMan-CLR curves show a relatively
small spread, excluding the abovementioned exception. Lastly, we remark on an unexpected pattern
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of supervised learners on MiniImagenet. Where some learners see a slight uplift (∼ 2.7 − 6.9%) uplift
at 𝜖 = 0.3 training noise as the meta-testing noise increases.



6
Conclusion and Future Work

This chapter aims to answer the research questions posed in chapter 1. Afterward, we discuss potential
directions for future work.

6.1. Conclusions
Following the results as presented in the research paper in chapter 2 and chapter 5 we can shine some
light on the research questions as posed in chapter 1.

1. How does meta-training with label noise affect a meta-learned model to adapt to new
tasks during meta-training?

As discussed in the paper in chapter 2, we evaluate four different meta-learners, Reptile, Eigen
Reptile, foMAML, and iMAML, on three few-shot benchmarks, Omniglot, CifarFS, and MiniImagenet.
These configurations are meta-learned with varying degrees of symmetric label noise 𝜖 ∈ [0.0, 0.3, 0.6]
on the underlying meta-train data split.

The Reptile, iMAML, and foMAML meta-learners show a degradation in meta-test performance up
to 42% on the Omniglot and CifarFS datasets. Additionally, we consider the Eigen Reptile meta-learner,
which aims to regularize the meta-gradient calculation to improve label noise robustness. Eigen Reptile
shows an improved label noise robustness over Reptile of 4.9% and (17.7%) with 𝜖 = 0.3 and 1.8%
(0.2%) with 𝜖 = 0.6 for Omniglot and (MiniImagenet) respectively. However, it still performs markedly
worse than its noise-free trained counterpart with degradation of 10% and 13.9% for Omniglot and
MiniImagenet compared to the noiseless their noiseless counterpart at 𝜖 = 0.3, degrading further with
higher levels of noise. On the more challenging MiniImagenet, all supervised meta-learners’ deteriorate
close to random guessing (28.1 − 20.0%) at a training noise level of 60%. As such, this provides
evidence that meta-training with label noise negatively impacts the learned models’ ability to adapt to
new tasks in few-shot learning.

2. How can existing meta-learners be adapted to mitigate the impact of label noise during
meta-training?

We have implemented two novel sub-sampling techniques Man and BatMan. These samplers allow
semi-supervised manifold samples to be constructed from noisy few-shot learning instances. We pair
these samplers with a contrastive loss (DCL), which allows for meta-learning with the manifold samples.
Consecutively, we train meta-learners equipped with Man and BatMan with the same datasets, meta-
learners, and noise levels as in the abovementioned experiments.

We show that meta-learners trained with contrastive losses paired with BatMan-CLR and (Man-
CLR) on Omniglot and CifarFS can generalize regardless of the label noise during meta-testing. Show-
ing a small performance degradation on CifarFS and Omniglot of 1.3−2.5% (0.4−9.4%) and−0.8−1.7%
(−0.4 − 0.2%) as the meta-training label noise increases from 0 to 0.6, respectively. On MiniImagenet,
we see that BatMan-CLR trained meta-learners see an accuracy decrease of ∼ 0 − 1.1% across all
meta-learners.
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As a result, showing that BatMan-CLR andMan-CLR provideWe show that under the same configu-
rations of the supervised learners, the Man-CLR and BatMan-CLR learned meta-learners are minimally
impacted by label noise. Thereby showing that the objective function used during meta-training can
help mitigate the impact of label noise.

3. How does label noise affect meta-learned few-shot classifiers during meta-testing? Does
label-noise robust meta-training improve meta-testing robustness against meta-testing la-
bel noise?

Lastly, in chapter 5, we consider the impact of two types of meta-testing noise. We evaluate the
four meta-learners with two types of task-level noise during meta-testing. First, we evaluate super-
vised meta-learners with symmetric task-level noise during meta-testing. Second, we consider the
supervised and BatMan-CLR meta-learned few-shot learners and subject them to asymmetric task-
level noise (𝜖 ∈ [0.0, 0.2, 0.4]). These results agree with related works on meta-testing with label noise
few-shot learners and do not inherently provide label noise robustness.

The symmetric meta-testing results indicate that supervised meta-learners tend to overfit to label
noise. Similarly, when evaluating meta-learners, we observed that the meta-learned few-shot models
do not generalize well as the test noise increases. The robust meta-trained BatMan-CLR few-shot
models show a slightly improved meta-test robustness compared to their supervised counterparts on
CifarFS and Omniglot under noise levels of 0.2 and (0.4). Showing a gain of 2.1-5.7% (3.0-5.5%) for
CifarFS and 4.5-16.0% (5.1-25.6%). OnMiniImagenet, however, this difference is considerably smaller,
with differences of -1.5-0.6% (-0.5%-0.9%). As such, this indicates that training with a BatMan-CLR
does not necessarily translate to a label noise robust few-shot learning model during meta-testing.

6.2. Future work
This work focuses on meta-training with label noise. We focus on symmetric label noise in the meta-
data training data. Extending this to different types of label noise would be valuable to gain additional
insight into the effect of label noise on meta-learners. For example, introducing out-of-domain samples
or considering a fixed set of tasks, similar to [56].

Although we perform ablations on meta-testing with label noise, this could be further explored. This
work focuses mainly on intra-task types and noise types in these studies. Extending this to out-of-task
types of label noise, would be of interest.

Besides exploring different types of meta-testing noise, adapting BatMan sampling to be used dur-
ing meta-testing is a natural future extension of this work. Although preliminary experiments were per-
formed (see Appendix A), we consider that BatMan or an adaptation thereof could allow for improved
meta-testing performance with label noise. Using BatMan-CLR or combined with a self-paced (intro-
spective) learning strategy could improve label noise robustness during evaluation. Moreover, such
strategies could be explored for fine-tuning a BatMan-CLR meta-learned few-shot learner on noisy
meta-training data.

Currently, we consider a limited set of (contrastive) losses and a single (cosine similarity) metric
function. Recent works [31, 39] have shown that the Prototypical losses [53] are well suited for few-
shot contrastive learning. We consider learning BatMan-CLR under different losses and metrics could
be interesting to explore further.

We have not extensively explored filtering or correcting noisily labeled samples during our work.
Although samples are noisy, further exploiting the relations between samples can be beneficial. For
example, noisy samples may correspond to another class in a task, or multiple out-of-task samples
may be of the same class. Further leveraging such approaches could further improve the performance
of meta-learners trained with label noise. We consider that incorporating a representation rectification
approach, as considered in unsupervised few-shot learning [51, 52], could be a promising avenue to
explore. Moreover, such techniques could provide a means to leverage such a rectification module to
combat meta-testing noise, akin to [36, 34], without the need for clean training data.

Finally, regarding the developed framework nmfw. Its current feature set for few-shot data gener-
ation and meta-learners leaves room for extension. We plan on improving its feature set for few-shot
learning (and testing) with more noise types. Additionally, some examples for using different meta-
learning libraries, such as TorchOpt and higher, are planned to be included. Additionally, more meta-
learners and other few-shot learners would be valuable to add to the toolkit.



A
Unsuccessful directions

Analysis of inner-loop generalization process. This direction regarded collecting and analyzing the
inner-loop statistics during the meta-learning training loop. This approach was motivated by noise-
robust learning, which uses early stopping as regularization against noise. These works leverage a
deep learners’ ability first to learn ‘easy’ patterns, represented by samples with clean labels. After
fitting to the ‘easy’ samples, these learners tend to overfit to noisy samples, effectively memorizing
them. However, we did not observe this behavior in few-shot meta-learners due to the limited data
available in each few-shot task.

Modeling GMBLs as recurrent networks. By implementing an optimizer that treats the model
updates as ‘hidden states’, the gradient descent through gradient descent could be more configurable.
However, we discarded this idea in favor of a less complicated approach.

Approximating MAML with random paths. MAML and foMAML represent an ‘all-or-nothing’ ap-
proach for back-propagating through the inner loop. Leveraging Hessian Free-MAML [13], the idea is
to approximate the gradient descent through stepping through randomly sampled inner-loop steps.

Stochastic Weighted Averaging inner-loop. As an extension of the previous, the idea was to
create a Stochastic Weight Averaging [22] (SWA) optimizer for gradient-based meta-learners. Initially,
to leverage its ability to learn more generalized models through its averaging approach. Consecu-
tively, SWA’s averaging coefficient would become a hyper-parameter to be tuned/optimized by the
meta-learner. They were motivated by the observation that earlier steps of inner-loop adaptation would
improve meta-learners’ resilience against noise. However, this did not yield improvements after eval-
uating a basic before the step towards ‘learning not to overfit to label noise’ was made.

Meta-Lottery tickets was explored to combine the lottery-ticket hypothesis [60]. This hypothesis
states that in a randomly initialized (deep) neural network, subnetworks–winning ‘lottery tickets’–are
capable of achieving high accuracy on a given task when trained in isolation. These winning tickets can
be identified through pruning the network, which iteratively extracts these tickets. The idea being that
during meta-learning, the meta-networks could be pruned to find a smaller meta-lottery ticket. Given
that such networks have less trainable weights, these could be used to meta-learn a model capable of
resisting overfitting on label noise, due to its ‘memory’ constraint. However, this avenue was dropped
to explore a label noise-robust optimization strategy for the inner and/or outer loop of meta-learners.

Robust per-sample gradient decomposition optimizer. From the perspective of gradients, label
noise introduces gradients that point in the ‘wrong’ optimization direction. Then by exploiting per-sample
gradients, the idea was to find updated directions both per provided class and overall through KRUM
andmulti-KRUM inspired decomposition. This would allow for a drop-in replacement that could be used
for all meta-learners. This, however, did not translate into improved testing performance.

Robust inner-optimizer. A natural extension of the Eigen-Reptile outer-loop decomposition rule
would be to (iteratively) apply it in the inner loop of meta-learner. As a result, reducing the impact
of label noise would by ‘filtering out’ the impact of the label noise component of the inner adaptation
process. However, this approach did not positively improve meta-testing performance in the explorative
experiments. As such, this idea was dropped in favor of exploring contrastive learning.

Introspective regularization term. The idea was that as the training process of BatMan-CLR
continued, false negatives would become more aparent, as these would lie close to their true class
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embeddings. As such, samples with a different provided label, but high similarity would likely be a
false negative. We considered different techniques to find such false negatives, random walks over
similarity matrices, and clustering based on similarity metrics (cosine similarity and reciprocal Jaccard
similarity). Although small-scale testing seemed to have promising results, these did not translate into
improvements when applied to noisy meta-testing or meta-training.

BatMan-CLR during noisymeta-testing. As an extension of BatMan-CLR for meta-training, meta-
testing with BatMan-CLR was considered as well. Adding a BatMan (-CLR) loss term in the inner-loop
adaptation process could help prevent overfitting to samples with incorrect labels. However, small-
scale evaluations showed that the few-shot learners did not improve from an additive contrastive loss
term during testing. Due to time constraints, it was chosen not to explore this avenue further.

Label noise implementation with TorchMeta. TorchMeta was the initial library that nmfw utilized
for (noisy) data generation in nmfw. However, as the work shifted from task-level corruption to meta-
training noise, it became apparent that Learn2Learn provided a more suitable abstraction for few-shot
learning with label noise. These ‘results’ have contributed to the discussion in chapter 4.
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