

Delft University of Technology

Tolerating Disasters with Hierarchical Consensus

Yahyaoui, Wassim; Bruneau-Queyreix, Joachim; Völp, Marcus; Decouchant, Jérémie

DOI
10.1109/INFOCOM52122.2024.10621371
Publication date
2024
Document Version
Final published version
Published in
Proceedings of the IEEE INFOCOM 2024 - IEEE Conference on Computer Communications

Citation (APA)
Yahyaoui, W., Bruneau-Queyreix, J., Völp, M., & Decouchant, J. (2024). Tolerating Disasters with
Hierarchical Consensus. In Proceedings of the IEEE INFOCOM 2024 - IEEE Conference on Computer
Communications (pp. 1241-1250). IEEE. https://doi.org/10.1109/INFOCOM52122.2024.10621371

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/INFOCOM52122.2024.10621371
https://doi.org/10.1109/INFOCOM52122.2024.10621371

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Tolerating Disasters with Hierarchical Consensus
Wassim Yahyaoui∗, Joachim Bruneau-Queyreix†, Marcus Völp∗, Jérémie Decouchant‡

∗SnT - University of Luxembourg, †CNRS-LaBRI - Univ. Bordeaux - Bordeaux INP, ‡Delft University of Technology
wassim.yahyaoui@uni.lu, joachim.bruneau-queyreix@u-bordeaux.fr, marcus.voelp@uni.lu, j.decouchant@tudelft.nl

Abstract—Geo-replication provides disaster recovery after
catastrophic accidental failures or attacks, such as fires, blackouts
or denial-of-service attacks to a data center or region. Naturally
distributed data structures, such as Blockchains, when well
designed, are immune against such disruptions, but they also
benefit from leveraging locality. In this work, we consolidate
the performance of geo-replicated consensus by leveraging novel
insights about hierarchical consensus and a construction method-
ology that allows creating novel protocols from existing building
blocks. In particular we show that cluster confirmation, paired
with subgroup rotation, allows protocols to safely operate through
situations where all members of the global consensus group
are Byzantine. We demonstrate our compositional construction
by combining the recent HotStuff and Damysus protocols into
a hierarchical geo-replicated blockchain with global durability
guarantees. We present a compositionality proof and demon-
strate the correctness of our protocol, including its ability to
tolerate cluster crashes. Our protocol — ORION1 — achieves
a 20% higher throughput than GeoBFT, the latest hierarchical
Byzantine Fault-Tolerant (BFT) protocol.

Index Terms—Blockchain consensus, Byzantine fault and in-
trusion tolerance, clustered protocol

I. INTRODUCTION

Geo-replication provides disaster recovery by storing impor-
tant information geographically distributed to tolerate entire
sites crashing or becoming partitioned from the network. In
addition, cyberattacks and similar accidental or intentionally
malicious incidents may compromise individual replicas at
a site, causing replicas to act irrationally or possibly even
maliciously. To compensate, sites replicate nodes and run
Byzantine fault-tolerant consensus protocols to reach agree-
ment about the transactions they commit. In a geo-replicated
setting, such protocols are hierarchical with the low-layer
groups — called clusters — aiming for consensus among the
replicas of the same data center or region and a high-layer
replica group — the global group — striving for agreement
among data centers to ensure consistency across locations.

Several hierarchical consensus protocols have been pro-
posed [1]–[9]. However, these proposals grapple with high-
cost view-change protocols, often resulting in suboptimal
performance and hindering practical application, albeit with

This work is supported through FNR/FCT grant C18/IS/12694392
(ThreatAdapt). For the purpose of open access, and in fulfilment of the
obligations arising from the grant agreement, the author has applied a Creative
Commons Attribution 4.0 International (CC BY 4.0) license to any Author
Accepted Manuscript version arising from this submission.

1In the Greek mythology, Orion is a blind Giant that carried his servant
on his shoulders to see for him. Our protocol uses cluster-confirmation to lift
Damysus to the global level and use it for global consensus.

limited decentralization or consistency. For example, Stew-
ard [2] ensures global ordering and durability by considering
transactions of a single cluster at a time, GeoBFT [4] ensures
only durability, but not global ordering, which prevents clients
from interacting with information that is not maintained by
their local cluster, and HiBFT [3] only orders globally, but
not locally, which prevents local ahead-of-commit conflict
resolution for the majority of transactions that only affect
exclusively locally modified objects.

In this paper we present ORION, a hierarchical consensus
protocol that, in contrast to previous works, harnesses the
full potential of cluster parallelism and that proactively orders
requests locally to expedite conflict resolution and global
ordering, offering clients the flexibility to interact with all
objects as necessary. It accomplishes this while effectively
circumventing the pitfalls of expensive view-change protocols
that limit its predecessors.

ORION distinguishes itself from previous protocols designed
specifically for hierarchical consensus. This work leverages
a novel insight in the construction of BFT protocols that
was originally introduced in Steward: the construction of
hierarchical protocols from non-hierarchical building blocks.
More precisely, we found that cluster consensus can not only
constrain Byzantine replicas to behave like crashed ones,
but in fact cluster consensus can replace trusted-trustworthy
components as they are found in hybrid BFT protocols, such
as MinBFT [10] or Damysus [11], and used there to reduce
the required number of replicas and protocol steps2. Cluster
confirmation — i.e., the confirmation of all actions of global-
group replicas (or, in our case, of replicas that originate from
and represent the local cluster) through a majority of other
local replicas — thereby prevents Byzantine representatives
from jeopardizing the consistency of the blockchain, while a
cluster-global rotation scheme ensures liveness, even if tem-
porarily all representatives in the global group are Byzantine.

ORION exemplifies our generic construction method by
leveraging as building blocks a consistent broadcast protocol,
HotStuff [14] for early request-preordering and local conflict
resolution, and Damysus [11] as hybrid protocol for reaching
consensus in the global group. We achieve the latter by imple-
menting Damysus’ trusted-component services — checker and
accumulator — through cluster confirmation. ORION achieves
20% higher throughput than GeoBFT at a slight increase
in latency, measured in the time until the client receives

2See also Gupta et al. [12] and Bessani et al. [13] for a recent discussion
about hybrid BFT protocols.

979-8-3503-8350-8/24/$31.00 ©2024 IEEE 1241

IE
EE

 IN
FO

C
O

M
 2

02
4

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-8
35

0-
8/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
52

12
2.

20
24

.1
06

21
37

1

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:25:19 UTC from IEEE Xplore. Restrictions apply.

confirmation that its requests are durably stored and in a
manner that is robust to whole cluster crashes.

Specifically, ORION features the following key points.
• ORION leverages a local pre-ordering for conflict resolu-

tion locally at a cluster without global interaction
• It is the first hierarchical protocol based on HotStuff,

which avoids complex and costly view changes
• ORION combines a consistent broadcast protocol for

transaction dissemination before global ordering, and an
inter-cluster SMR protocol that utilizes the Damysus
hybrid BFT-SMR protocol to reduce the required number
of clusters and global communication phases.

• A key achievement of ORION is its novel composition-
ality, effectively integrating various building blocks into
a cohesive framework. This unique assembly not only
achieves scalability and high throughput but also signifi-
cant enhances the efficiency and robustness of Byzantine
fault-tolerant consensus protocols.

After discussing related work (in Sec. II) and our fault and
system models (in Sec. III), we introduce (in Sec. IV) ORION,
our approach to geo-replicated Byzantine fault-tolerant state
machine replication (BFT-SMR) and Blockchains. Sec. V
describes the ORION steps in detail. Our construction from
different base protocols is made possible by a novel composi-
tionality result, which we prove in Sec. VI. Sec. VII evaluates
our protocol and compares it to GeoBFT and non-hierarchical
baselines. Sec. VIII concludes this paper.

II. RELATED WORK

Classical and streamlined BFT consensus. Classical BFT
consensus algorithms assume partially synchronous networks,
tolerate up to f Byzantine replicas and require at least
3f + 1 replicas to guarantee both safety and liveness. These
algorithms include the seminal PBFT [15], BFT-SMaRt [16],
Zyzzyva [17], are leader-based and rely on a view-change
scheme. The quadratic message complexity of these protocols
typically result in low performance in geo-distributed settings.
Improving over PBFT’s performance, HotStuff [14] avoids
all-to-all communication patterns, by integrating view-change
procedure into the steady case, leading to linear message com-
plexity and increased throughput. In return Hotstuff requires
one additional communication phase. In this work, we use
Hotstuff pre-order requests within a cluster and extend its
rotation scheme to avoid view changes, locally and globally.

Trusted components. Another line of work aimed at lever-
aging trusted components inside BFT consensus algorithms
to reduce the number of replicas they require, and possibly
the number of communication phases they employ. Possible
trusted components have included trusted logs [18], attested
append-only memory (A2M) [19], and multiple trusted coun-
ters [20]. Following this line of work, MinBFT [10] builds on
PBFT and uses a trusted monotonic counter to make omissions
and equivocation detectable and reduce the number of replicas
to 2f+1 and the communication phases to two. Damysus [11]
identifies two trusted services for streamlined BFT protocols.
To ensure that replicas cannot fabricate information about the

most recently prepared blocks, these services record additional
block-related information. Damysus removes one communica-
tion phase (two network latencies) from HotStuff and also uses
2f+1 replicas. Although we do not use trusted components in
this work, we leverage Damysus at the global communication
level. More precisely, under our system model the quorum
certificate from a cluster in our protocol is assimilated as a
trusted component’s signature in Damysus.

Hierarchical BFT. Organizing replicas in a hierarchical
manner is another way to improve the performance of con-
sensus in wide-area networks [1]. Hierarchical protocols have
mostly relied on PBFT, while we leverage recent streamlined
protocols, and separate block dissemination from ordering to
obtain a higher throughput. In Steward [2], replicas rely on
PBFT inside clusters, and clusters use a two-phase commit
protocol to reach global consensus. Steward assumes that up
to one-third of a cluster’s replicas can be Byzantine, while
only a minority of the clusters can crash. HiBFT [3] uses
PBFT at both the local and the global consensus levels.
HiBFT processes one block per global consensus round, while
we allow the asynchronous dissemination of blocks and the
creation of superblocks by the global consensus layer. In
addition, HiBFT uses PBFT’s heavy view-change procedure,
while we build on HotStuff and Damysus, which integrate the
view-change procedure in the normal case. GeoBFT [4] relies
on PBFT within each cluster, and uses a representative per
cluster that shares a certified client request with other clusters.
Eventually all client requests for a given view are received by a
representative and deterministically ordered. GeoBFT employs
a complex and expensive remote view-change protocol.

Other hierarchical protocols based on PBFT include [5]–[9],
[21]. Some protocols build on different protocols in the two-
layer hierarchy [22], [23], while a few adopt a variable number
of layers [24], [25]. Regardless of the unique mechanisms they
employ, all these protocols grapple with the challenges associ-
ated with costly view-change operations and their throughput
is limited to a single cluster proposal per round.

Making BFT scale. We leverage several design paradigms
that have been described in previous works. First, we separate
block dissemination from their ordering, because blocks gen-
erated at the global level only contain the hashes of blocks
generated by clusters. A similar mechanism was used in
Narwhal/Tusk [26] and in Bullshark [27], which are DAG-
based [28]–[30]. The idea of assembling superblocks was
used in HoneyBadgerBFT [31] and RedBelly [32]. Other
methods that could be used to improve the performance of
BFT protocols include the use of multiple leaders, which Mir-
BFT [33] and Alder [34] pioneered. These protocols are built
around PBFT or Algorand [35] and are therefore not directly
applicable to HotStuff, which is the protocol we use. We do
not employ sharding techniques [36], [37] in ORION as their
performance depends on the actual workloads being executed
but they are fully compatible with its design.

Table I provides an overview of the BFT consensus proto-
cols that are most closely related to this work, and compares
them with ORION, our protocol. Note that ORION’s threat

1242Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:25:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I
KEY METRICS OF ORION AND RELATED WORKS

- n: # replicas per cluster - f : # faulty replicas in each cluster - c: # clusters - F : # faulty clusters -
Total Threat model Msg complexity Msg complexity Communication steps

Clusters # Replicas cluster/global of normal case of view change (+view change)
PBFT [15] 1 3f+1 BFT O(n²) O(n²) 3(+2)

HotStuff [14] 1 3f+1 BFT O(n) - 8
Steward [2] 2F+1 (3f+1)(2F+1) BFT/CFT O(cn²+c²) O(c²n²) 3(+4)
HiBFT [3] 3F + 1 n*c -/BFT O(cn+c²) O(c²n²) 3(+3)

GeoBFT [4] c (3f+1)c BFT/- O(cn²+c²) O(c²n²) 1(+3)
ORION 2F+1 (3f+1)(2F+1) BFT/*CFT O(cn+c²+c) - 6

(this work)

model is close to Steward’s but contains some noticeable
adjustments to more effectively manage potential faulty behav-
iors at the global level. In both Steward and ORION, clusters
may crash, however in ORION, up to F out of the N = 2F+1
representatives that form the global group can be Byzantine.

III. SYSTEM AND FAULT MODEL

Clusters and Replicas. We consider a static system that
implements a consensus service, used for example by a per-
missioned blockchain, in geo-replicated settings. The system
consists of N clusters C1, . . . CN . Each cluster Ci contains
ni = 3fi + 1 replicas of which up to fi replicas can be
arbitrarily faulty (i.e., Byzantine). We write ri,k for the kth

replica in cluster Ci and omit indices where they are clear
from the context. Clusters may crash, e.g., in case of fire in a
cluster, regional blackouts or network partition. In that case,
we say that a cluster has crashed. Our goal is to tolerate up to
fi Byzantine replicas in each cluster and up to F out of the
N = 2F + 1 crashed clusters.

Within each cluster, one replica is a local leader (denoted
riL) and is responsible for pre-ordering requests locally. Lead-
ers are rotated at each view change, which is a global event.
Replicas are able to identify who leads a cluster based on the
global view v (e.g., by choosing as leader riL of cluster Ci the
Lth replica where L = v mod ni).

Clients. Clients interact primarily with the cluster Ci that is
closest to them, but will be able to receive service from other
clusters should Ci crash. We call Ci the local cluster of such
a client. Any number of clients may be faulty.

Global Group. In addition to the cluster leaders, we dis-
tinguish a second replica in each cluster — the representative
Ri. Representatives form the global group. Leader and rep-
resentative might be the same replica, but, for load-balancing
reasons, choosing different replicas suggests itself. We achieve
this by rotating the representative on global view changes and
by adjusting local rotation to skip over selected representatives
when selecting the next local leader.

Notice that because representatives are cluster replicas,
some might belong in crashed clusters. All members of the
global group can be Byzantine. We tolerate these obstacles by
rotating out of these configurations and eventually reaching
one where at most F representatives originate from crashed
clusters or are Byzantine.

Communication and Synchrony. We assume communica-
tion among replicas of a given cluster to exhibit a much lower
latency and higher bandwidth on average than inter-cluster
communications. We build upon the partially synchronous
model [38]. That is, we assume that after an unknown global
stabilization time GST there exists a known bound ∆ such
that communication latency remains below ∆.

Cryptographic Primitives. We assume the cryptographic
functions we use to be secure, e.g., signatures cannot be
forged and hashing schemes are collision-resistant. Moreover,
we assume replicas to be deployed securely (e.g., using
authenticated boot) and healthy ones to not leak credentials.

IV. GEO-REPLICATED BFT-SMR AND BLOCKCHAINS

We first give an overview of our geo-replicated permis-
sioned blockchain, and of ORION, the hierarchical Byzantine-
fault-tolerant consensus protocol it uses.

In the absence of faults, clients communicate with their
preferred cluster to issue transactions that should be made
durable by placing them in the geo-replicated blockchain
before executing them. Clusters assemble client transactions
into blocks, disseminate them for other clusters to store them
durably, order them into the local chain, and request the global
group to include them into the blockchain. The global group in
turn assembles received blocks into a superblock and appends
it to the blockchain. Once appended, clusters resolve global
conflicts in a deterministic manner and, if required, execute
the contained transactions to update their state. Fig. 1 shows
the structure of our blockchain.

To minimize the amount of data that needs to be com-
municated across clusters, we limit the communication of

Fig. 1. Structure of our blockchain.

1243Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:25:19 UTC from IEEE Xplore. Restrictions apply.

HotStuff-based
local consensus

Execution from cluster 1

View v

......Chain of
superblocks

vv-1v-2v-3v-4

...

Add blocks to
pending list

HotStuff-based
local consensus

Execution from cluster N
...

Add blocks to
pending list

HotStuff-based
local consensus

Execution from cluster i
...

Add blocks to
pending list

Damysus- based
global consensus

Cluster
confirmation

Consistent
broadcast

Consistent
broadcast

Consistent
broadcast

Fig. 2. Overview of ORION and the interplay of its subcomponents

transactions to a block dissemination phase and reference
blocks using their secure hash during the remainder of the
protocol. Consequently, superblocks store hashes to blocks
plus one hash to connect to the last superblock already in
the chain. A superblock contains a maximum number k of
hashes of blocks proposed by the clusters and it is possible
that it contains more than one block from a given cluster. The
conditions for accepting a superblock are (1) that blocks from
a cluster are queued in a local-order preserving manner and
(2) stored durably in at least F + 1 clusters. Healthy global
leaders will further try to balance how many blocks are stored
from each cluster, a property which faulty global leaders may
of course try to jeopardize.

ORION combines elements from three standard protocols,
which we use as building blocks: the consensus protocols
Hotstuff [14] and Damysus [11], and a consistent broadcast
protocol [39], [40]. Fig. 2 depicts their interplay. Each replica
instantiates three processes: a local consensus protocol based
on HotStuff, which locally orders the transactions of each
cluster to form a block; a consistent broadcast protocol that
disseminates blocks to all clusters and tolerates the presence of
f faulty replicas in each cluster, and a global consensus pro-
tocol based on Damysus, which forms a superblock, reaches
agreement on it and includes it into the blockchain.

While Fig. 2 presents the primary steps of ORION in a
sequential manner, it is crucial to note that these steps actually
operate in a pipelined and asynchronous fashion. The local
protocol generates blocks of transactions while other blocks
are disseminated and global agreement on superblocks with
hashes of already disseminated blocks is reached.

An important characteristic of our protocol is that it can
handle scenarios where more than F of the replicas in the
global group are faulty (Byzantine or originating from crashed
clusters). In fact, the entire global group can become ma-
licious. To address this challenge, our protocol restricts the
global group’s role to simply relaying decisions made by the
clusters. To achieve this, we employ a mechanism called clus-
ter confirmation, which serves to gather and validate the infor-
mation that replicas in the global group must relay. Through
this confirmation mechanism, equivocation attempts are im-

r1

Leader

rn

new-view prepare

prepared locked execute

pre-commit commit decide

Fig. 3. Communication phases in HotStuff

mediately detected and will trigger a global view change.
This effectively transforms clusters into trusted components
that the global consensus protocol considers as entities that
may only fail by crashing. Upon detecting malicious behavior
or on timeout, our rotation mechanism replaces the replicas
in the global group until eventually a healthy configuration
with less than F faulty replicas is found. Cluster confirmation
ensures that ORION is safe and its rotation scheme eventually
and repeatedly returns to healthy configurations, which ensures
liveness after global stabilization.

Clusters replay disseminated blocks in case they were not
included in the latest superblock. In addition, clients re-
transmit transactions in case their local cluster crashes. In the
latter case, we ensure re-transmitted transactions conflict with
their original transaction to ensure only one becomes durable
and to avoid executing the same transaction twice.

V. PROTOCOL DETAILS

We now describe ORION’s sub-protocols in greater detail:
block formation through local consensus, block dissemination
through consistent broadcast and global agreement on a su-
perblock through Damysus-based global consensus.

A. HotStuff-based local consensus

Exploiting the physical proximity of clients to their pre-
ferred cluster and of replicas within a cluster is key to the
efficiency of hierarchical BFT-protocols. We leverage physical
proximity in two aspects: to agree on request blocks in local
clusters and thereby allow for early conflict resolution of
those transactions that only affect other local clients, and by
selecting a protocol — HotStuff — that has been optimized
for fast intra-cluster conditions.

HotStuff is a rotating-leader-based homogeneous consensus
protocol with linear communication complexity and capable
of tolerating up to f Byzantine replicas out of n = 3f +1. In
HotStuff, replicas agree on a single block in each view, which
we then pass to Damysus for inclusion into the superblock.
Our choice of HotStuff over PBFT is driven by its higher
throughput, in particular in data-center environments, as well
as by its leader rotation scheme, which avoids the costs and
complexities typically associated with view change, and its
lower message complexity.

1244Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:25:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 3 shows the protocol steps of HotStuff. After entering
a new view v, the rotated-in leader (here replica R2) proposes
a block (in prepare) and reaches consensus (in pre-commit
and commit). Normally the leader would then execute the
decide phase so that all replicas can execute the transaction.
In ORION, the actual execution is deferred until global con-
sensus ensures durability. Replicas can leverage this local pre-
ordering to asynchronously (to local ordering) resolve local
conflicts and disseminate blocks for later inclusion in the
superblock. This separation of local consensus, dissemination
and global consensus enables ORION to proceed through these
operations independently, with a positive impact on system
responsiveness and scalability.

We optimize ORION’s performance by distributing the roles
of local leader and cluster representative to different replicas to
avoid that a single replica has to handle coordinating consensus
within a cluster and managing block execution at global level.

B. Inter-cluster consistent broadcast

After executing an instance of the local consensus protocol
to lock a block, each correct cluster shares its local block
with the other clusters. Unlike other protocols, block dissem-
ination is asynchronous, which separates dissemination from
consensus and transaction execution. To do so, we utilize a
simple broadcast protocol to consistently disseminate local
blocks between clusters and their respective local replicas.
For this purpose, each cluster Ci incorporates a rotating
disseminator DCi

that initiates the broadcast of a block
of transactions previously locked through the HotSuff-based
consensus protocol. The approach we employ is low-cost
and effective if the disseminator is error-free. As a result,
we refrain from employing view change techniques notorious
for being complicated and heavy. The disseminator sends the
block to f+1 replicas in each cluster, ensuring that at least one
correct replica per cluster receives the block. Once a correct
replica receives the block, it relays it its peers in the local
cluster. Receiving such a block, correct replicas verify that it
was properly locked in the local consensus protocol of the
sending cluster before storing it in its local memory, ready to
be included in the chain of superblocks.

In the event of a faulty disseminator, the rotating mechanism
ensures that another healthy replica in the cluster eventually
takes over the role of disseminator. Additionally, we distribute
the role of disseminator within each cluster in a way that
avoids potential performance bottlenecks occurring from a
single replica handling the multiple responsibilities of coordi-
nating the local consensus, broadcasting blocks, and managing
the consensus protocol at the global level.

C. Damysus-based global consensus

Our system integrates a modified version of the Damysus
[11] consensus protocol aligning with wide-area network char-
acteristics for robust blockchain replication. The inter-cluster
global consensus protocol adopts a three-phase communica-
tion structure where local replicas communicate with cluster
representatives, which is illustrated in Fig. 4.

r1,1

r1,2

r1,3

r1,4/ R1

Global
Leader

RN
prepare pre-commitnew-view

cluster confirmation

Local
Cluster

Global
Group

SB

decide

execute

Fig. 4. Phases of the Damysus-based global consensus protocol

The global consensus layer comprises a shared overlay
network involving representatives from N clusters, which par-
ticipate in global consensus even when F clusters are faulty.
A clear distinction is made between local leaders for local
consensus and representatives for global consensus, balancing
replica load and minimizing faulty replica impact.

This consensus protocol is tailored for slow connectivity and
high latency, enabling representatives to reach consensus on
references (hashes) rather than transmitting large amounts of
transaction data or whole blocks. Coupled with asynchronous
block dissemination, this design optimizes consensus by or-
dering fixed-size references, ensuring independence of overall
and consensus throughput, while totally ordering blocks.

Unlike some hierarchical schemes [8], our global layer
eliminates competition for leadership in consensus rounds
through a leader rotation scheme. Global leaders generate
’superblock’ proposals containing references to local blocks,
resulting in a lightweight protocol. Instead of carrying full
block data, PREPARE messages from the global leader contain
metadata including cluster-ID, replica-ID, ViewNumber, IDs
of blocks, and the hash of the preceding superblock.

Clusters confirmations. A cluster confirmation, denoted
as ϕ and produced by clusters, can be expressed as
⟨h, v, h′, v′, ph, σ⃗n

c ⟩. This includes the hash values of su-
perblocks represented by h and h′, the view numbers depicted
by v and v′, a phase represented by ph can take on values from
the set {nv p, prep p, pcom p} (correspond to the new-view,
prepare, and pre-commit phases), and a collection of signatures
on the data (h, v, h′, v′, ph), indicated by σ⃗n

c = [σc1,...,σcn].
A cluster confirmation is referred to as an n-cluster confir-

mation if it encompasses N signatures from separate clusters.
We characterize C-combine as a function dedicated to the
generation of quorum certificates from the votes of various
clusters, also known as confirmations. On the other hand, C-
match validates whether a sufficient number of messages have
been received from different clusters during a specific phase.

Invoked functions. Cl-Prepare: This function generates a
cluster confirmation as an approval or preparation vote based
on the hash value of the proposed superblock from the global
leader and an extension to the latter. The extension, proposed
by the leader cluster, comes with a cluster signature certifying

1245Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:25:19 UTC from IEEE Xplore. Restrictions apply.

it as the highest superblock. This function only operates when
the extension is generated by the current leader cluster. Cl-
Pcom: Accepts confirmations from F + 1 clusters, checks
that a quorum of clusters prepared the superblock in the
current view, and produces a cluster confirmation signifying an
approval or pre-commit vote. CreateClusterSign: Consists of
three steps: First, the cluster leader broadcasts the message
to local replicas. Second, local replicas compute a partial
signature on the message. Finally, the leader combines these
into a cluster certificate, proving that 2fi + 1 replicas have
given their approval. ExtList: Selects the new view message
for the superblock prepared at the highest view among F + 1
clusters. It then certifies it as the highest by creating a cluster
signature on it. ClusterStart: After successfully verifying the
signatures of cluster confirmations from remote clusters, it sets
the Ext variable. The confirmation is then converted into Ext
as a qualified potential extension for the highest superblock.
ClusterIterate: Checks the remaining cluster confirmations for
a potential higher superblock and updates Ext accordingly.
ClusterFinalize: Takes a potential extension, verifies its signa-
tures, and then creates leader cluster signatures on it.

This lightweight global consensus protocol, encapsulated in
Alg. 1, comprises Prepare, Precommit, and Decide phases,
detailed in subsequent sections.

Prepare. In this phase, the global leader collects F+1 new-
view messages from remote clusters and their representatives
(Alg. 1, ln. 7). The leader selects the new-view message
corresponding to the highest-viewed superblock from all F+1
received messages, validating its superiority via 2f + 1 local
replica confirmation. Subsequently, the leader extends this
highest superblock with a new one, referred to as SB (Alg. 1
ln. 9). This superblock SB is prepared using Cl-Prepare
(Alg. 1 ln. 10), ensuring the transition to the next phase while
generating a signature for the newly proposed superblock, also
known as ”cluster prepare confirmation”. The global leader
then disseminates the new proposal SB, the extension Ext,
the cluster confirmation formed by the leader cluster to all
cluster representatives. Other clusters authenticate that SB
extends the superblock in Ext (Alg. 1 ln. 17) and prepare the
superblock proposed by the global leader through validation
from a quorum of inner-cluster replicas (Alg. 1 ln. 18).

Pre-commit. In this phase, the global leader assembles
F + 1 prepare cluster-confirmations from distant clusters and
dispatches a prepare (F+1)-cluster confirmation to every clus-
ter representative. The clusters invoke Cl-Pcom to store SB
and secure a cluster validation that attests the new superblock
SB is preserved in 2f+1 replicas. This process yields a cluster
signature, formulated via 2f + 1 local partial signatures from
the same phase, ensuring that a minimum of F + 1 clusters
will keep and transmit any executed superblocks in their new-
view messages. Due to the cluster confirmation functioning
as Damysus’s accumulator, clusters are not required to lock
blocks - a mechanism employed in HotStuff during the commit
phase. This locking is unnecessary in our case, as the virtual
accumulator, based on reliable cluster confirmation, guarantees
that the global leader only proposes superblocks that expand

Algorithm 1 ORION pseudocode
1: // Protocol Initialization
2: view ← 0 // Current view
3: c− pubs // Cluster public keys
4:
5: // Prepare phase
6: As a global leader:
7: wait for ϕ⃗ such that C-match ⟨ϕ⃗, F + 1,⊥, view, nv p⟩ from

representatives
8: Ext← ExtList (ϕ)
9: SB ← CreateLeaf (Ext.hash, list of blocks ids)

10: ϕprep ← Cl-Prepare (H(SB), Ext)
11: send ⟨SB,Ext, ϕprep.sign⟩ to f+1 representatives in each cluster
12:
13: As a representative:
14: wait for ⟨SB, (view, v′, h′, F + 1, σc), σ′

c⟩ from the global leader
15: Ext← ⟨view, v′, h′, F + 1, σc⟩
16: ϕprep p ← ⟨H(SB), view, h′, v′, prep p, σ′

c⟩
17: Abort if ¬(VERIFY (ϕprep p)c−pubs ∧ SB > h′)
18: send ϕ′ ← Cl-Prepare(H(SB), Ext) to global leader
19:
20: // Pre-commit phase
21: As a global leader:
22: wait for ϕ⃗ such that C-match (ϕ⃗, F+1, h,view,prep p) from represen-

tatives
23: send ϕ← C-combine(ϕ⃗) to f + 1 representatives in each cluster
24:
25: As a representative:
26: wait for ⟨h, view, h′, v′, prep p, σ⃗c

F+1⟩ from the global leader
27: send ϕ← Cl-Pcom (⟨h, view, h′, v′, prep p, σ⃗c

F+1⟩) to the global
leader

28:
29: // Decide phase
30: As a global leader:
31: wait for ϕ⃗ such that C-match (ϕ⃗,F+1, h,view,pcom p) from repre-

sentatives
32: send ϕ← C-combine(ϕ⃗) to f + 1 representatives in each cluster
33:
34: As a representative:
35: wait for ⟨h, view,⊥,⊥, pcom p, σ⃗c

F+1⟩ from the global leader
36: Multicast ⟨h, view,⊥,⊥, pcom p, σ⃗c

F+1⟩ to local replicas
37: Abort if ¬(VERIFY ⟨h, view,⊥,⊥, pcom p, σ⃗c

F+1⟩c−pubs)
38: Execute SB corresponding to h and reply to clients
39:
40: // NewView phase
41: For all replicas:
42: When executed or timeout:
43: (v, ph)← (view, prep p); view++
44: While (v, ph) ̸= (view, nv p) do
45: ϕ← ClusterSign(); (v, ph)← (ϕ.vprep, ϕ.phase)
46: End while
47: send ϕ to view’s leader

upon the highest prepared superblock.
Decide. In the decide phase, the global leader collects F+1

pre-commit clusters-confirmations from remote representa-
tives. Upon receiving these confirmations, the global leader
issues a pre-commit (F +1)-cluster-confirmation to all cluster
representatives. These representatives, in turn, broadcast the
cluster-confirmation to their respective local replicas. This
action initiates the execution of the superblock across all
clusters, effectively achieving consensus on the ordering of
the transactions contained within the superblock.

New-view. Each cluster utilizes timers, commencing at the
inception of each view, to transition to the subsequent global
view when the current one experiences delays, potentially due
to a faulty representative. The new-view phase comes into

1246Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:25:19 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Invoked Functions
1: function ExtList (ϕ⃗)
2: ϕ0 ← commitment ϕ ∈ ϕ⃗ with highest ϕVvjust
3: Ext← ClusterStart (ϕ0)
4: for ϕ ∈ {ϕ0} do Ext← ClusterIterate (Ext, ϕ)
5: return ClusterFinalize (Ext)
6:
7: function CreateClusterSign (h, h’, v’)
8: as a leader: request cluster signature on (h, view, h′, v′, phase) from

local replicas
9: as a replica: compute psig on (h, view, h′, v′, phase) where psig ←

SIGN (h, view, h′, v′, phase)
10: phase ++
11: as a leader: wait for (n − f) psig from different replicas,

then build a σc on (h, view, h′, v′, phase) where σc ← SIGNS
(h, view, h′, v′, phase)2fi+1

12: return ϕ← (h, view, h′, v′, phase, σc)
13:
14: function ClusterSign ()
15: return ϕ← CreateClusterSign (⊥, preph, prepv)
16:
17: function Cl-Prepare (h, Ext) where Ext is ⟨v, v′, h′, F + 1, σc⟩
18: If VERIFY (Ext)c-pubs ∧ view =v ∧ h ̸=⊥ then
19: return ϕ← CreateClusterSign (h,h’,v’)
20: end if
21:
22: function Cl-Pcom (ϕ) where ϕ is ⟨h, v, h′, v′, ph, σF+1

c ⟩
23: If VERIFY (ϕ)c-pubs ∧ view =v ∧ ph =prep then
24: preph← h ; preph← v ;
25: return ϕ′ ← CreateClusterSign (h,⊥,⊥)
26: end if
27:
28: function ClusterStart (ϕ) where ϕ is ⟨⊥, v, h′, v′, nv p, σc⟩
29: if VERIFY (ϕ)c-pubs then
30: σ′

c ← SIGN (v, v′, h′, [σc.clid])2f+1
31: return Ext← (v, v′, h′, [σ.clid], σ′

c)
32: end if
33:
34: function ClusterIterate (Ext, ϕ) where Ext is ⟨v1, v′1, h1, i⃗, σc⟩ and ϕ

is ⟨⊥, v2, h2, nv p, σc,2⟩

35: if
(

v1 = v2 ∧ v′1 ≥ v′2 ∧ σc,2.clid /∈ i⃗∧
V ERIFY (Ext)c-pubs ∧ V ERIFY (ϕ)c-pubs

)
then

36: σ′
c ← SIGN

(
v1, v′1, h1, i⃗@[σc.clid]

)
2fi+1

37: return Ext′ ← (v1, v′1, h1, i⃗@[σ.clid], σ′
c)

38: end if
39:
40: function ClusterFinalize (ext) where ext is ⟨v, v′, h, i⃗, σc⟩
41: If VERIFY (Ext)c-pubs then
42: return Ext ← (v, v′, h, |⃗i|, σc) where σc ← SIGN(

v, v′, h, |⃗i|
)
2fi+1

43: end if

play either post completion of the current view - implying
successful execution of the decide phase - or upon expiration
of the timer initiated at the view’s start. This mechanism is
activated under certain conditions, such as a representative’s
inability to gather sufficient votes to inaugurate a new view or
local replicas’ disagreement on the representative’s proposal,
causing a timeout and triggering the start of a new view. This
phase sees clusters progress their views and provide their votes
to the global leader of the new view.

VI. COMPOSITIONAL SAFETY AND LIVENESS

This section establishes the safety and liveness of ORION by
proving a more general compositionality result about hierar-
chical consensus with cluster confirmation and global rotation.

We assume the standard partial synchrony model and prove
liveness after GST (see Section III). More precisely, we will
show that if the subprotocols executed in the clusters are live
and safe, then the composition using cluster confirmation and
global rotation repeatedly returns the overall system into a
state where these properties extend to the global case.

We identify points of progress in the subprotocols (e.g.,
the dissemination of a message, reaching consensus about
a client request, or appending a block of transactions) and
consider subprotocols that advance to their respective next
progress point, provided they remain for a given amount of
time t in a configuration where such progress is possible.
Our proof then establishes that (1) Byzantine configuration
cannot jeopardize the state of subprotocols as a whole (i.e.,
they can only jeopardize the Byzantine replica’s state), and (2)
global rotation repeatedly returns subprotocols into sufficiently
healthy configurations (with at most f Byzantine replicas or
up to F representatives that may itself either be Byzantine
or that represent crashed clusters) and remains there for at
least time t. Then, because global rotation repeatedly returns
to such healthy state and configuration pairs where progress
is possible, the local properties of the protocol extend to the
system as a whole as far as safety and liveness are concerned.

Definition 1 (Local safety/liveness). We say clusters are
locally live/safe if the subprotocols they execute exhibit these
properties.

Definition 2 (t-live). A configuration of the protocol is t-live
if given a correct overall state it is capable of advancing to
the next progress point and correct overall state, provided the
protocol remains in this configuration for at least time t.

Definition 3 ((t-)rotation safe). We say a global group pro-
tocol is rotation safe if its rotation scheme eventually and
repeatedly returns to a configuration where at most F rep-
resentatives are faulty. It is t-rotation safe if it remains in such
a configuration for at least time t.

Notice that rotation safety implies that the rotation cannot
only be triggered by representatives, as they might be all faulty
and not trigger rotation. State transitions of a subprotocol
consist of delivery of a message, its analysis and possibly the
sending of further messages to trigger further state transitions.

Definition 4 (Cluster-confirmed state transition). State transi-
tions are executed under cluster confirmation if the delivered
message is accepted only if n− f replicas of the represented
cluster approve this message (e.g., by signing it).

To obtain cluster confirmation, representatives have to first
consult their clusters’ replicas, before they can send messages
that trigger the execution of state transitions under this confir-
mation. We require protocols to advance the state they plan to
change as part of obtaining such a confirmation. In particular,
we require cluster confirmation to be sequenced.

Lemma 1 (Cluster confirmation retains correct states). Exclu-
sively executing state transitions under cluster confirmation

1247Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:25:19 UTC from IEEE Xplore. Restrictions apply.

retains correct state in healthy replicas.

Proof. Let s be the state of a healthy replica, to confirm a
state-transition triggering message, representatives must pro-
vide the state to modify s′ and the message m to trigger the
transition from s′ to s′′. Case s = s′: In this case, the replica
is able to confirm immediately whether m is appropriate, by
checking the conditions of the protocol. Local safety then
ensures that s′′ is safe as well. Case s ̸= s′: In this case,
the replica accepts s′ only if n − f replicas confirmed the
transition that lead to s′. If so, it can approve m as in the
previous case. Otherwise, it refuses approval. Since n−f > f
approvals are required to confirm a state transition, no faulty
replica can jeopardize the state held by a healthy replica.

Theorem 1 (Compositional liveness). If a protocol is t-live if
at most F out of N of its group members are faulty, it remains
t-live if t-rotation safety is guaranteed.

Proof. After GST, a rotation safe protocol eventually reaches
a configuration with at most F faulty replicas and a t-rotation
safe protocol remains in that configuration for at least a time
t. Lemma 1 implies that the state of the at least N−F healthy
replicas is correct and t-liveness ensures progress. Rotation
safety reaches healthy configuration repeatedly and within a
bounded amount of time, which ensures liveness.

Theorem 2 (Compositional safety). If a protocol is safe
provided at most F out of N replicas are faulty, then it is also
safe in a t-rotation safe setting, provided all state transitions
are cluster confirmed.

Proof. Healthy replicas in the local cluster will approve state
transitions only if they have learned about all previous cluster
confirmations and only if the transition meets the protocol’s
safety condition. Since n−f > f , representatives only receive
confirmation if at least one healthy replica agrees. This is
equivalent to a trusted component that is exclusively connected
to the representative and that provides a token that cannot be
forged, stating that the protocol’s safety checks succeeded.

Since Byzantine replicas cannot jeopardize the state of
healthy replicas (Lemma 1) and since state transitions are
exclusively executed under cluster confirmation, no transition
can be made that would jeopardize the state of a healthy
replica. Healthy replicas therefore retain the healthy state of
the protocol, which ensures safety.

Notice that Byzantine representatives may still alter their
internal state and even reveal results to clients, but these rev-
elations did not receive cluster confirmation and can therefore
be detected by the client as possibly faulty.

There is one fundamental difference where cluster confirma-
tion diverges from trusted components. While the latter may
retain secrets (such as a symmetric key), this is only possible
by means of secret-sharing [41], [42], since Byzantine replicas
of a cluster might reveal any secrets they know.

ORION uses Damysus and Hotstuff as subprotocols. Their
safety and liveness follows from the proofs in Decouchant et
al. [11] and Yin et al. [14]. The extension to t-liveness is easy

to see given both protocols progress through a fixed number of
steps to commit a block and that transmission and computation
times are bounded after GST. The same holds for the broadcast
protocol we use. Our protocol rotates representatives either
after a block has been added (i.e., after progress is made) or
after the individual replicas in the clusters time out, triggering
a global viewchange and rotation of representatives. With a
timeout large enough to make progress after GST, our protocol
fulfills the pre-condition for t-rotation safety.

What remains to be seen is that our rotation scheme
eventually and repeatedly selects a configuration with at most
F faulty representatives. In a crashed cluster all replicas are
faulty, whereas in a non-crashed cluster at most f are (and
at least 2f + 1 are healthy). We can therefore pessimisti-
cally assume F clusters crashed. However, since our rotation
scheme iterates through all combinations of replicas from the
individual clusters it will also pass configurations where it
selects healthy replicas as representatives from all N−F non-
crashed clusters and repeatedly so. We can therefore conclude
that our protocol is safe and live.

VII. PERFORMANCE EVALUATION

We have evaluated ORION against hierarchical
(GeoBFT [4]) and non-hierarchical (PBFT [15], HotStuff [14])
state-of-the-art consensus protocols. Evaluations utilized AWS
EC2 replicas of different geographical regions and used a
single t2.xlarge instance at each replica. We consider replicas
of a region to form a cluster and associate this cluster as the
preferred one to clients of that region. We distribute clients
and replicas uniformly across regions. We report average
performance over ten repetitions, each executed for 30 views.

In all experiments, we collect 400 transactions to form a
block and use 32 Byte hashes to link blocks and to refer to
a block from a superblock. That is, the size of superblocks is
32B times the number of blocks it refers to plus one (to link
to the previous superblock). Experiments warm up for 60s.

A. Effects of Large-Scale Geographic Deployment

We start by investigating the effects of large-scale geo-
graphic deployment. For that, we scale the number F of
clusters we tolerate to crash and hence the number of clusters
N = 2F+1, while keeping their size fixed (to n = 3f+1 = 10
replicas, i.e., clusters can tolerate up to f = 3 Byzantine
replicas). Fig. 5 and 6 show the throughput and latency of
ORION relative to the baseline protocols. The x-axis denotes
the number of clusters N , which we distribute to North
Virginia, Ohio, North California, Mumbai, Singapore, Sydney,
Frankfurt, Ireland, London, Central Canada, and São Paulo.

ORION outperforms GeoBFT’s throughput (by 20% on
average), albeit at the cost of increasing the latency for
handling client requests until notification after the request is
durable (by 31% on average) and while outperforming non-
hierarchical protocols in both dimensions. This throughput-for-
latency tradeoff is achieved by distributing and reaching global
agreement independently from the local agreement. ORION

1248Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:25:19 UTC from IEEE Xplore. Restrictions apply.

3 5 7 9 11
Number of clusters (N = 2F+1)

0

2

4

Th
ro

ug
hp

ut
 (k

Op
s/

s) HotStuff
PBFT

GeoBFT
Orion

Fig. 5. Throughput depending on the number N of clusters (each cluster
contains 10 replicas, and tolerates f = 3 Byzantine replicas).

3 5 7 9 11
Number of clusters (N = 2F+1)

200

400

600

La
te

nc
y

(m
s)

HotStuff
PBFT

GeoBFT
Orion

Fig. 6. Latency depending on the number N of clusters (each cluster contains
10 replicas, and tolerates f = 3 Byzantine replicas).

outperforms GeoBFT in terms of throughput under faults as
it relies less on inter-cluster communications.

B. Influence of Increasing Local Clusters Size

In the second part of our analysis we focus on the per-
formance impact of increasing the size of local clusters. For
these experiments, we fix the number of clusters to N = 3
(i.e., we tolerate F = 1 cluster crash), distributed over
Ohio, Sydney, and London, while increasing the number of
Byzantine replicas that each cluster can tolerate from f = 1
to f = 5 and cluster sizes from n = 4 to n = 16.

Throughput and latency results are shown in Fig. 7 and 8,
respectively. Again, ORION outperforms GeoBFT in terms of
throughput (by 63% on average) and non-hierarchical proto-
cols in terms of both throughput and latency. However, as local
clusters grow in size, the latency advantage of GeoBFT drops
to 11% on average. ORION closes the gap to GeoBFT because
GeoBFT requires global messages proportional to f , while this
number remains constant in our protocol (independent of the
cluster sizes, as only one representative communicates glob-
ally). Additionally, every cluster has to disseminate certificates
to the associated f + 1 remote replicas, which grow as well
in size as f increases and hence n grows. Our protocol trades
performance improvements in global communication for a
slight increase in local communication, since each global step
requires reaching 2f+1 local replicas for cluster confirmation,
which explains the increase in latency seen in Fig. 8.

4 7 10 13 16
Number of replicas per cluster (n=3f+1)

2

4

6

Th
ro

ug
hp

ut
 (k

Op
s/

s) HotStuff
PBFT

GeoBFT
Orion

Fig. 7. Throughput as a function of the number of replicas in a cluster (with
N = 3 clusters).

4 7 10 13 16
Number of replicas per cluster (n=3f+1)

200

400

600

La
te

nc
y

(m
s)

HotStuff
PBFT

GeoBFT
Orion

Fig. 8. Latency depending on the number of replicas in a cluster (with N = 3
clusters).

Overall, ORION demonstrates that compositionally con-
structed protocols perform well and can sometimes even
outperform specific hierarchical protocols. Compositionally
also significantly reduces development costs.

VIII. CONCLUSION

We introduced ORION, a novel, compositionally-
constructed, hierarchical Byzantine fault-tolerant consensus
protocol that addresses the scalability and performance
challenges of blockchain systems. We demonstrated that
ORION achieves superior throughput compared to existing
protocols, like PBFT, HotStuff and GeoBFT, albeit by
marginally trading off latency. ORION is based on a novel
compositionality result, enabling the use of hybrid protocols
at global level without necessitating dedicated trusted
components. Looking ahead, we envisage further refinement
of ORION through expanded evaluations involving diverse
clusters, scenarios, and speculative execution to improve
latency. Our findings have broad implications for enhancing
blockchain and distributed systems’ performance, particularly
in geo-distributed clustered networks, paving the way for
more efficient and reliable distributed ledger technologies.

1249Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:25:19 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. Berger, S. Schwarz-Rüsch, A. Vogel, K. Bleeke, L. Jehl, H. P. Reiser,
and R. Kapitza, “Sok: Scalability techniques for BFT consensus,” arXiv
preprint arXiv:2303.11045, 2023.

[2] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Steward: Scaling byzantine fault-tolerant repli-
cation to wide area networks,” IEEE Transactions on Dependable and
Secure Computing, vol. 7, no. 1, pp. 80–93, 2008.

[3] Q. T. Thai, J.-C. Yim, T.-W. Yoo, H.-K. Yoo, J.-Y. Kwak, and S.-M.
Kim, “Hierarchical byzantine fault-tolerance protocol for permissioned
blockchain systems,” The Journal of Supercomputing, vol. 75, no. 11,
pp. 7337–7365, 2019.

[4] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “Resilientdb: Global
scale resilient blockchain fabric,” Proc. VLDB Endow., vol. 13, no. 6,
pp. 868–883, 2020.

[5] W. Jiang, X. Wu, M. Song, J. Qin, and Z. Jia, “A scalable byzantine fault
tolerance algorithm based on a tree topology network,” IEEE Access,
2023.

[6] L. Zhang and Q. Li, “Research on consensus efficiency based on practi-
cal byzantine fault tolerance,” in 2018 10th international conference on
modelling, identification and control (ICMIC). IEEE, 2018, pp. 1–6.

[7] L. Feng, H. Zhang, Y. Chen, and L. Lou, “Scalable dynamic multi-agent
practical byzantine fault-tolerant consensus in permissioned blockchain,”
Applied Sciences, vol. 8, no. 10, p. 1919, 2018.

[8] H. Qushtom, J. Mišić, V. B. Mišić, and X. Chang, “A high performance
two-layer consensus architecture for blockchain-based IoT systems,”
Peer-to-Peer Networking and Applications, pp. 1–13, 2022.

[9] Y. Li, L. Qiao, and Z. Lv, “An optimized byzantine fault tolerance
algorithm for consortium blockchain,” Peer-to-Peer Networking and
Applications, vol. 14, pp. 2826–2839, 2021.

[10] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo,
“Efficient byzantine fault-tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, 2011.

[11] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu, “DAMYSUS: stream-
lined BFT consensus leveraging trusted components,” in Proceedings of
the 17th European Conference on Computer Systems, 2022, pp. 1–16.

[12] S. Gupta, S. Rahnama, S. Pandey, N. Crooks, and M. Sadoghi, “Dis-
secting bft consensus: In trusted components we trust!” in Proceedings
of the 18th European Conference on Computer Systems, ser. EuroSys
’23, New York, NY, USA, 2023, p. 521–539.

[13] A. Bessani, M. Correia, T. Distler, R. Kapitza, P. Esteves-Verissimo, and
J. Yu, “Vivisecting the dissection: On the role of trusted components in
bft protocols,” 2023.

[14] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
Stuff: BFT consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[15] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[16] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication
for the masses with BFT-smart,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2014, pp. 355–362.

[17] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” in Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, 2007, pp.
45–58.

[18] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: Practical
accountability for distributed systems,” ACM SIGOPS operating systems
review, vol. 41, no. 6, pp. 175–188, 2007.

[19] B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested append-
only memory: making adversaries stick to their word,” 2007, pp. 189–
204.

[20] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc: Small
trusted hardware for large distributed systems,” 2009, pp. 1–14.

[21] X. Xu, D. Zhu, X. Yang, S. Wang, L. Qi, and W. Dou, “Concurrent prac-
tical byzantine fault tolerance for integration of blockchain and supply

[22] L.-e. Wang, Y. Bai, Q. Jiang, V. C. Leung, W. Cai, and X. Li, “Beh-raft-
chain: a behavior-based fast blockchain protocol for complex networks,”

chain,” ACM Transactions on Internet Technology (TOIT), vol. 21, no. 1,
pp. 1–17, 2021.
IEEE Transactions on Network Science and Engineering, vol. 8, no. 2,
pp. 1154–1166, 2020.

[23] F. Wen, L. Yang, W. Cai, and P. Zhou, “Dp-hybrid: a two-layer consensus
protocol for high scalability in permissioned blockchain,” in Blockchain
and Trustworthy Systems: Second International Conference, BlockSys
2020, Dali, China, August 6–7, 2020, Revised Selected Papers 2.
Springer, 2020, pp. 57–71.

[24] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. A. Imran, “A scalable
multi-layer PBFT consensus for blockchain,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 5, pp. 1146–1160, 2020.

[25] M. Javad Amiri, Z. Lai, L. Patel, B. Thau Loo, E. Lo, and W. Zhou,
“Saguaro: Efficient processing of transactions in wide area networks
using a hierarchical permissioned blockchain,” arXiv e-prints, pp. arXiv–
2101, 2021.

[26] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman, “Nar-
whal and tusk: a dag-based mempool and efficient BFT consensus,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, 2022, pp. 34–50.

[27] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: Dag BFT protocols made practical,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 2705–2718.

[28] L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast, byzan-
tine fault tolerance,” Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech.
Rep, vol. 34, 2016.

[29] A. Gagol, D. Lesniak, D. Straszak, and M. Swietek, “Aleph: Efficient
atomic broadcast in asynchronous networks with byzantine nodes,” in
Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, 2019, pp. 214–228.

[30] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in bitcoin,” in International conference on financial cryptography and
data security. Springer, 2015, pp. 507–527.

[31] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 31–42.

[32] T. Crain, C. Natoli, and V. Gramoli, “Red belly: a secure, fair and
scalable open blockchain,” in 2021 IEEE Symposium on Security and
Privacy (SP). IEEE, 2021, pp. 466–483.

[33] C. Stathakopoulou, T. David, and M. Vukolic, “Mir-BFT: High-
throughput BFT for blockchains,” arXiv preprint arXiv:1906.05552,
2019.

[34] K. Korkmaz, J. Bruneau-Queyreix, S. B. Mokhtar, and L. Réveillère,
“Alder: Unlocking blockchain performance by multiplexing consensus
protocols,” in 2022 IEEE 21st International Symposium on Network
Computing and Applications (NCA), vol. 21. IEEE, 2022, pp. 9–18.

[35] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th symposium on operating systems principles, 2017, pp. 51–68.

[36] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 17–30.

[37] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in CCS, 2018.

[38] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 1988.

[39] G. Bracha, “Asynchronous byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[40] S. Bonomi, J. Decouchant, G. Farina, V. Rahli, and S. Tixeuil, “Practical
byzantine reliable broadcast on partially connected networks,” in 2021
IEEE 41st International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2021, pp. 506–516.

[41] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[42] R. Vassantlal, E. Alchieri, B. Ferreira, and A. Bessani, “Cobra: Dynamic
proactive secret sharing for confidential BFT services,” in 2022 IEEE
symposium on security and privacy (SP). IEEE, 2022, pp. 1335–1353.

1250Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:25:19 UTC from IEEE Xplore. Restrictions apply.

