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a b s t r a c t

Carbon capture and storage (CCS) networks are expected to grow from small demonstration projects
with few emitters to large-scale networks of dedicated carbon dioxide (CO2) pipelines over the next
few decades. Conventional design practices focus on implementing incremental expansions based on
deterministic requirements resulting in rigid networks. The design approaches do not proactively recog-
nize future uncertainties in design requirements and operating environments. In this study, we present a
design method based on real options, graph theory and Monte Carlo techniques that reckons future uncer-
tainties. The proposed method assesses initial design architectures and provides insights into potential
real options and sets of strategies for implementing future expansions. We apply the method to a hypo-
thetical CCS network design. The results reveal that this method helps to appraise the flexibility created
by redundant pipe capacity and length in an uncertain future. It also shows that embedding real options
in expanding CCS networks could result in more emission reduction by encouraging other emitters to
participate.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon dioxide capture and storage (CCS) is widely promoted
as a promising climate mitigation technology that can significantly
reduce carbon dioxide (CO2) emissions in the transition from a
fossil-based economy to a low-carbon future (IEA, 2010). The tech-
nology involves capturing CO2 at large industrial sources, such as
coal-based power plants, transporting it in dedicated pipelines and
storing it in geological reservoirs, such as depleted oilfields and
saline aquifers. Recent projection shows that more than one-sixth
of the desired CO2 emission reduction over the 2015–2050 period
can be realised with CCS (IEA, 2014). To achieve this target, large-
scale demonstration projects are being initiated and early planning
of how the CO2 pipeline network may be designed in the long term
will help to control the total social costs (Austell et al., 2011).

CO2 pipeline networks, like other large-scale infrastructure
networks, are developed in stages. They start with individual CO2
sources and point-to-point pipeline connections. They expand by
adding new sources and over time, a complex pipeline network
emerges. In many countries, small-scale demonstration projects
are considered starting points for a large-scale CCS. For example,

∗ Corresponding author. Tel.: +34631327121.
E-mail address: Y.G.Melese@tudelft.nl (Y.G. Melese).

CCS demonstration projects in the Rotterdam area, the Netherlands,
are being built for supplying CO2 to greenhouses (RCI, 2011). These
demonstration projects are seen as the essential first steps in the
full-scale deployment of the technology.

Conventional CO2 pipeline-configuration design methods are
based on deterministic forecasts and assumptions of fixed design
parameters (Flyvjberg et al., 2005; de Neufville and Scholtes, 2011).
Designers use the most likely scenarios to generate design con-
cepts and select design parameters that enable the network to
perform optimally under those scenarios. Then standard economic
evaluation techniques, such as discounted cash flow analysis, opti-
misation and scenario planning are applied to achieve the best
optimal design (de Neufville and Scholtes, 2011).

However, in the real world, this may not provide a design that
performs best. First, it does not capture the range of technical,
economic, regulatory and social uncertainties that will ultimately
affect the effectiveness of CCS networks (Koelbl et al., 2014; IEA,
2012; van Os et al., 2014). A network that is designed to be
optimal in future achieves the expected performance only when
the predicted scenario is realized. Besides, network expansion
is inherently path-dependent (Silver and de Weck, 2007). Path-
dependency refers to the notion that the state of an infrastructure at
any given point depends on its development path until then. If the
predictions used in the design decisions do not realize, it may result
in rigid networks that cannot adapt to changing requirements.

http://dx.doi.org/10.1016/j.ijggc.2015.07.016
1750-5836/© 2015 Elsevier Ltd. All rights reserved.



130

Y.G. Melese et al. / International Journal of Greenhouse Gas Control 42 (2015) 16–25 17

This situation could create ‘lock-ins’ in pipeline networks like CCS.
Lock-in occurs when the cost of modification of an existing con-
figuration exceeds the expected benefit1. Therefore, to mitigate
lock-ins and sub-optimal performance of CCS networks, one needs
a design approach that deals proactively with uncertainty.

In the field of systems engineering, a flexible systems design
offers one way to deal proactively with uncertainty (de Neufville
and Scholtes, 2011; Silver and de Weck, 2007). Such a design con-
cept provides an engineering system like CCS with the ability to
adapt, change and be reconfigured (Cardin, 2014). It involves hav-
ing a set of strategies on designing the engineering system with
the capability to adapt to changing circumstances; and on inte-
grating a set of flexibility enablers into the physical design. Such a
design approach, which considers flexibility strategies and flexibil-
ity enablers, is called the real options approach (Cardin, 2014; Ling
and Ngah, 2009). It offers engineering system designers valuable
clues about which flexible design elements are worth the cost (de
Neufville, 2003). It thus provides a good rationale for specific types
of flexibilities to be designed in a system. However, the core issue
in design flexibility, especially in infrastructure networks like CCS,
is how to identify the most desirable sources of flexibility enablers
(here after also called real options).

This paper aims to provide a useful design method for identify-
ing valuable real options in the conceptual design of CCS networks.
The method uses an exploratory uncertainty analysis on a graph
theoretical network simulation model. The method allows an easy
and quick assessment of low-regret design options and identifica-
tion of real options that could provide opportunities for flexibility.

The rest of the paper is organised as follows. The next section
presents a review of CCS network design methods. Section 3 intro-
duces real options theory and real options-based design strategies
that we consider contextually relevant to the understanding of this
paper. It also establishes the source of the real options identifica-
tion problem in the case of CCS networks. The proposed method is
presented in Section 4. And in Section 5, the methodology is demon-
strated for a hypothetical pipeline-based CCS network. Section 6
concludes the paper.

2. Review of CCS network planning models

In recent years, CO2 pipeline transport planning methods have
become more sophisticated. In a decade, they have evolved from
modelling just single pipeline connections to spatially and tem-
porally complex networks. Modelling techniques include simple
to complex families of mathematical algorithms, such as linear
optimisation, non-linear optimisation and mixed-integer optimisa-
tion. Kobos et al. (2007) developed an analytical model to optimise
simple networks with multi-stop pipelines using a simple linear
optimisation algorithm. It begins with a source and constructs a
pipeline of sufficient diameter to carry the entire CO2 volume to
the nearest reservoir. It then finds the next sink nearest to the
first reservoir and constructs a pipeline sufficient to carry the
remaining CO2 to it and so on, creating a ‘string of pearls’. Most
recently, Knoope et al. (2014) have presented an economic opti-
misation model to design simple networks. This model minimises
the cost of pipeline configurations, taking into account inlet and
outlet pressure, pipeline length, steel grade and nature of the ter-
rain. The planning models presented in the studies discussed above
are applicable for single source-to-sink connections and simple
networks. They also assume static situations and, therefore, do not
address expansion in time.

1 In addition to economic reasons, CCS networks could be locked-in due to exter-
nalities (due to their externally bounded interface with other sectors) (Economides,
1996).

A compressive and scalable CCS infrastructure model called
SimCCS was presented by Middleton et al. (2007) and Middleton
and Bielicki (2009). It is a geo-spatial economic-engineering model
that simultaneously optimises all components of CCS infrastruc-
ture, based on a mixed-integer linear programming algorithm. The
model allows pipelines to branch and join to avoid duplication and
take advantage of economies of scale by creating trunk lines. It also
allows for less than 100% of CO2 to be captured from CO2 sources
and less than 100% of injection capacity to be used at CO2 sinks if
that can reduce costs elsewhere in the system. SimCCS was further
expanded to integrate multiple independent decisions by Keating
et al. (2011). However, SimCCS is a static model as it assumes the
entire CCS infrastructure network is built all at once and that the
amount of CO2 being managed is constant over time.

Recently, CCS network models have been expanded to take into
account expansions over time. Mendelevitch et al. (2010) extended
the SimCCS model to allow for CCS infrastructure network devel-
opment decisions over time. van der Broek et al. (2010) has an
improved model that takes into account the temporal component
of CCS infrastructure development, based on a linear optimisation
algorithm. Klokk et al. (2010) introduced a temporal CCS model
for delivering CO2 for enhanced oil recovery. Middleton et al.
(2012) introduced an advanced model called SimCCSTime, which is
an improved version of SimCCS. SimCCSTime optimises the deploy-
ment of CCS infrastructure across multiple periods. Both SimCCS
and SimCCSTime are part of the ‘top-down’ optimisation approaches
that rely on a global optimisation algorithm of some kind and
use complete information about the system to find a global opti-
mum. However, the model assumes a pre-defined pattern of future
emissions and CO2 management targets. The model also becomes
computationally cumbersome as the number of sources and sinks
increase.

A network model based on graph theory technique has been
proposed by Heijnen et al. (2014). The model conceptualises, on an
abstract level, the design of a physical CCS structure as a network of
links and nodes housing a certain flow that moves through the links
and is processed/consumed in the nodes. The model helps to find
a minimum cost network layout by taking into account pipeline
length and capacity. However, the method considers deterministic
and discrete scenarios of uncertainty parameters and finds an opti-
mal network configuration for each pre-defined scenario. It does
not fully address the stochastic and dynamic nature of uncertain-
ties. It also does not address the issues of flexibility, of real options
identification integration as the network expands over time. In a
preliminary work, Melese et al. (2014) presented a simple simula-
tion framework based on a combination of Monte Carlo simulation
and graph theory to design architecturally flexible networks under
capacity uncertainty. The framework uses a simplified flow uncer-
tainty model to generate design alternatives and does not use the
concept of real options. Similar to the works by Heijnen et al. (2014)
and Melese et al. (2014) this paper uses graph theory to model CCS
networks. Stochastic process is used to model current and future
flow uncertainty of existing sources and multiple scenarios are used
to model the timing of future sources. Moreover, this paper uses
the concept of real options to appraise the flexibility created by
redundant pipe capacity and length in an uncertain future.

3. Using real options to deal with uncertainty in CCS
network planning

The technical concept of an option is a right, but not an obli-
gation, to do something at a certain cost within or at a specific
period of time (Myers, 1984). From this definition, it follows that
the key feature is exercising the ‘option’ of using one’s right to do
an action, and the involvement of a cost that is somehow defined
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in advance. It is in this sense that an ‘option’ has value and this fea-
ture distinguishes it from a ‘choice’ or an ‘alternative’. The concept
first appeared in a field of finance called financial options, and has
entered the field of engineering systems in the modelling of design
flexibility in realistic uncertain environments.

In engineering systems the term flexibility is widely used and
real options are a way to define the basic elements of flexibility
(de Neufville et al., 2010; Wang, 2005). Options that involve tech-
nical design features are referred to as real options ‘in’ engineering
systems. On the other hand, options that involve financial deci-
sions on engineering projects are referred to as real options ‘on’
engineering systems (Wang, 2005). Real options ‘on’ engineering
systems refer to managerial flexibility. Both real options ‘in’ and ‘on’
engineering systems provide embedded flexibility and enable net-
work developers to minimise downside risks and gain from upside
opportunities (de Neufville and Scholtes, 2011; de Neufville et al.,
2006; de Weck et al., 2004). However, flexibility capabilities have to
be made possible by designers making intentional choices during
the conceptual design stage (de Neufville et al., 2010). At this stage,
network designers have more freedom to address proactively the
varying technical, economic and institutional dynamics.

The core question is: How to identify real options that could
enable cost effective expansion of CCS pipeline networks as future
capacity requirement increases? There are two key difficulties
involved. First, there are the myriad design variables and param-
eters that make real options identification and valuation difficult.
Second, real options in engineering systems often exhibit complex
path-dependencies and interdependencies that standard options
theory does not deal with de Neufville et al. (2010). They need an
appropriate analytical framework. Existing options analysis meth-
ods have to be adapted to the special features of real options in
pipeline networks like CCS. To the authors’ knowledge, there is no
previous work on real options based design of CO2 transportation
networks.

4. Methodology

In this paper, we propose a method for identifying valuable
real options when designing CCS networks under uncertainty. It
builds on existing design methods by giving designers some kind
of model for estimating designs benefits and costs in some metric
(such as capital expenditure and net present value). The objective
is to provide a systematic method for fast and easy assessment of
network design options under uncertainty and screen promising
designs that could provide cost effective expansion. The method
could also provide network designers with important insights so
that they can systematically identify flexibility enablers and flexible
strategies to mitigate lock-ins.

4.1. Step 1: Specification of the key sources of uncertainty

The first step in the design process is to identify key sources of
uncertainties. It includes a comprehensive accounting of all poten-
tial sources of uncertainties that, over time, could affect the value
of the design. Major uncertainties can be identified through expert
judgment and a preliminary sensitivity analysis.

4.2. Step 2: Definition of likely future states over several stages

In this step, the evolutionary behaviour of selected uncertain-
ties is defined. It includes defining the states of uncertain variables
over several stages. Stages, in this context, could refer to a suitable
planning period and depend on the type of system. For example,
in the case of CCS networks, the stages could be long time periods
(e.g. five years).

The future states can take continuous or discrete behaviour. To
model continuous behaviour, stochastic processes such as Geo-
metric Brownian Motion (GBM) and Wiener processes are often
used (Ibe, 2013). To model discrete behaviour, lattice model can be
used (Albanese and Campolieti, 2006). An example of a continu-
ous behaviour is the flow rate of CO2 from power plants with CO2
capture units that vary power production because of the variability
of electricity demand and the increasing use of renewable energy
sources in the electricity grid (Cohen et al., 2012; Domenichinia
et al., 2013). During variable power production, the amount of CO2
captured and pumped through pipelines could vary within shorter
time periods (hours and days). In addition, emitters could plan their
capture targets to increase step by step over a long period of time
(years). These scenarios have to be explored in detail.

4.3. Step 3: Explorative uncertainty analysis

The objective in this step is to identify elements of the network
that seem most promising for flexibility. This requires employing
some kind of network model to generate design concepts. In this
study, we employ a graph theoretical network model (explained
in Section 5.4.1). Scenarios of the selected uncertain variables are
used as inputs to simulate the network model. The outputs of the
model include network configurations and their economic perfor-
mance parameters (e.g. NPV and investment cost) for each set of the
uncertainty scenarios. Design elements that vary across these sets
of uncertain scenarios are those that may be good as real options.
Conversely, those design elements that are insensitive to uncer-
tainty do not present interesting real options.

This step is a preliminary stage for the identification of the best
opportunities for flexibility. The search for a valuable design could
involve many thousands of possibilities. For a proper search of the
promising configurations of the network, it is necessary to use low-
fidelity models that can be run much faster than detailed, high-
fidelity models.

4.4. Step 4: Identification and valuation of the real options

The goal here is to map real options to the sources of uncer-
tainty, based on the results of the exploratory analysis. There are
several real options strategies that might lead to flexibility. Some
of the strategies relevant in the context of CCS networks include
option to expand, option to defer, option to abandon, and option to
switch. Analysis of design alternatives is required to assess the
above-mentioned strategies.

The focus in this work is not to price the options. The focus is
on the improved design; i.e. determining which parts of the net-
work should be configured to provide the real options that will
give the network operators/designers the ‘right, but not the obliga-
tion’ to change the size of the network. Such an analysis can aid
network designers in making rational (though optional) decisions
as to which flexible design elements can be incorporated into the
design. It can also help designers and decision makers to determine
the relative cost of incorporating such flexible design element into
networks.

5. Application

Our case study concerns the development of a hypothetical
pipeline-based CCS network. The hypothetical network is inspired
by a CCS project in the Rotterdam area, The Netherlands. The Rotter-
dam CCS project is part of the national goal to reduce CO2 emission
from the port and other industrial activities. An effective and com-
prehensive method to achieve this goal is to develop a large-scale
pipeline network that connects spatially distributed emitters and
store CO2 in depleted offshore oil-and-gas fields in the Northern
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Fig. 1. Layout of our hypothetical field.

Sea (RCI, 2011). However, the CCS project faces a range of tech-
nical, economic, regulatory and social uncertainties resulting in
slow progress. The current practice is to encourage demonstration
projects with few emitters and gradually evolve to a full-scale CCS
network. For example, E.ON Benelux and GDF SUEZ Energie Neder-
land are installing a CO2 capture unit at a new coal fired power plant
worth millions of Euros and are in process of building a pipeline to
the Northern Sea as part of the CCS demonstration project (Read
et al., 2014). However, the installed capture unit is only sufficient
for 25% of the total CO2 emission. If new environmental policies are
introduced regarding the CO2 limit, additional capture units may
have to be installed, requiring building new pipelines.

The problem with staged CCS developments, as is common
with other similar networks, is that every incremental develop-
ment is being optimised based on a set of currently conceived
design parameters. Experiences from oil, gas and water distribution
developments shows that such designs often result in sub–optimal
networks as a result of lock-ins (Lin, 2008; Marques et al., 2014).
This study aims to provide a systematic method to mitigate path-
dependency and lock-in effects by identifying the most potential
flexibility enablers at the conceptual design stage.

5.1. The design problem

The hypothetical field for this demonstration has three sources,
S1, S2 and S3, and one sink, S0. It is a multi-source, single-sink net-
work design problem. Fig. 1 shows the position of the three sources
and the sink on a 60 by 60 km field. The plan is to transport CO2 from
the three sources through links, such as pipes and compressor sta-
tions, to the sink. By demonstrating the proposed method in the
context of the hypothetical case, this study answers the following
basic design decisions:

• What is the most cost-effective strategy for phasing a CCS net-
work to meet increasing capture targets from emitters?

• How can the network be strategically designed so that it is able to
coordinate the capacities of capture facilities, pipelines and the
sink as the network expands over time?

• Does it make economic sense to overbuild capacities, with large-
diameter pipelines, early in the design in order to have flexible
networks later, when volumes increase?

• Is it worth waiting for a new capture-ready source to come
online?

• Is having bigger pipeline capacities that collect from several
sources better than having smaller pipelines that connect each
source to a sink?

To answer these questions, we narrow the problem by looking
at a situation where S2 and S3 take the initiative to start developing
the network and S1 joins at some time in the future. The rest of the
case study applies step-by-step the methodology developed previ-
ously to identify potential real options that could mitigate future
lock-ins.

5.2. Step 1: Specification of the key sources of uncertainty

During the design exploration stage, designers and managers
need to identify and incorporate major uncertainties into the design
decisions. The uncertainties present during CCS network develop-
ment include, among other things, the number of emitters who
will partake of the CCS venture, the capacity required by each
participant, the cost per unit capacity (e.g. for material and dig-
ging) and the regulatory policy regarding CO2 emissions, including
the CO2 price. In this work, we focus on two major uncertainties:
(1) the uncertainty with respect to new participants who could
join the network, and the capacity they may require—hereafter
called participant uncertainty; and (2) uncertainty in the capac-
ity requirements of all existing sources over time—hereafter called
capacity uncertainty. Participant uncertainty represents the time a
new source may join the network and the capacity it may require
from then. Capacity uncertainty represents the changes in future
capacity requirements of existing sources, for example, when the
capture target by emitters increases.

5.3. Step 2: Definition of likely future states over several stages

In this step stochastic capacity uncertainty and participant
uncertainty models are developed using analytical approaches.

5.3.1. Capacity uncertainty
Capacity uncertainty is modelled using an analytical approach

based on some initial assumptions of the flow behaviour from
sources (i.e. types of distribution, speed of convergence) to gen-
erate the full characteristics. The initial flow estimates are then
transformed into normal distribution curves. Initial flow estimate
parameters for the two sources in this case study are as follows:

• S2 (mean = 350,000 tCO2/year and standard deviation
= 40,000 tCO2/year).

• S3 (mean = 400,000 tCO2/year and standard deviation
= 50,000 tCO2/year).

The situation is hypothetical and the numbers used are stand-
ins to permit calculation. The next step is to generate an ensemble
of future trajectories of flow over several stages or design periods in
the future. A 20-year planning period is chosen for this demonstra-
tion. Within this period, flow from a given source could increase
due to increasing capture targets over time, or remain the same.
There are cases where the flow from a given source could decrease
due to changes in the internal operation of the emitting source or
even a shutdown of the emitting source is possible. In this study, the
Geometric Brownian Motion process is used to model future flow
evolutionary paths using similar drift rate = 1%, volatility = 30%. In
a given scenario one floe path is generated for each source and it
contains yearly flow rate data over 20 years period. Fig. 2 shows a
normal distribution model of the initial flow behaviours of S2 and
S3 and three instances of their future flow evolution.
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Fig. 2. Capacity uncertainty model of S1 and S2; (a) initial flow estimate model of sources; and (b) three instances of the evolution of flow from S2 and S3 over a 20-year
period.

5.3.2. Participant uncertainty
To account for the uncertainty in the timing that S1 will join

the network, we choose four scenarios over a 20-year investment
period: Year 4, Year 8, Year 12 and Year 16. In this case study, we
choose four years as a reasonable time for an emitter to install
capture units and be ready for connection. Similar to S2 and S3,
the initial flow estimate of S1 is modelled as a normal distribu-
tion based on an initial estimate (mean = 300,000 tCO2/year and
standard deviation = 50,000 tCO2/year), as shown in Fig. 3a. The
future evolution of CO2 flow from S1 is modelled using the GBM
process with the same drift rate = 1% and volatility = 30%, see Fig. 3b.

Similar to S2 and S3, the future flow of S1 could increase,
decrease, remain the same, or present a combination of all three.
Multiple scenario representations of uncertain variables over time
allow one to generate and analyse multiple design possibilities and
can help arrive at a better decision.

5.4. Step 3: Explorative uncertainty analysis

To perform an exploratory analysis, the selected uncertain vari-
ables have to be simulated using a network optimisation model.
In this paper, we employ a network optimisation model based on
graph theory (Heijnen et al., 2014). The main inputs for the model
are flow rates from sources and the spatial positions of sources
and sink nodes. The model generates minimum-cost tree-shaped
network configurations connecting the sources to the sink. The
resulting networks are edge-weighted Steiner minimal trees. An
edge-weighted Steiner minimal tree network is a minimal cost net-
work that takes into account the influence on the cost of both the
capacity and the length of the pipeline. Next, the core concepts of
the model are presented.

5.4.1. Graph theoretical network model
In a graph theoretical representation of networks, the sources

and sinks are nodes (e.g. emitters) and their connections are edges
(e.g. pipelines). To generate an edge-weighted Steiner minimal net-
work, the network algorithm uses the following cost function of
edges.

Ce = 1eqˇ
e (1)

In Eq. (1), le is the length and qe is the capacity of an edge e.
ˇ is the cost exponent for the capacity with 0 ≤ ˇ ≤ 1 If ˇ=0, the
capacity of the pipelines has no influence on the cost. If ˇ=1, build-
ing two pipelines of capacity 1 is just as expensive as building one
pipeline of capacity 2. A value of ˇ=0.6 is commonly used (Heijnen
et al., 2014), indicating that there are cost advantages to building
high-capacity pipelines. Then, the total investment cost C(T) of a

network T is the sum of all connection (pipeline) costs as given in
the following equation:

C(T) =
∑

∀e∈E(T)

leqˇ
e (2)

where E(T) is the set of all edges in a network tree T.
In addition to cost, it is also necessary to calculate the expected

income of the network. A revenue model that calculates the
expected income as a linear function of capacity is used. The
assumption is that the network developer generates income by
charging a certain fee per unit capacity. The expected income (EI)
from a network T is then given as

EI(T) = ˛
∑

i∈V(T)/{s}
qi (3)

In Eq. (3), qi is the used capacity by a source i in a network T,
V(T) is the set of all nodes in the network T, s is the sink and ˛ is the
constant coefficient representing a constant price charged per unit
capacity of pipeline. In this demonstration, we assume ˛=1.

The total income from a given network in its lifetime is calcu-
lated as a summation of discounted (using a certain interest rate, r)
yearly income flows over a certain investment period. The summa-
tion of discounted future cash flows (revenues) gives the present
value of income (PVI), see the following equation:

PVI(T) =
n∑

t=0

∑
EI(T)

(1 + r)t
(4)

The Net Present Value (NPV) is used to evaluate the lifetime
performance of a network under a given scenario of uncertain
parameters as shown in the following equation:

NPV(T) = PVI(T) − C(T) (5)

5.4.2. Simulation outputs
In this step the network model is simulated using different

uncertain future scenarios. In one scenario 20 network configu-
rations are generated (based on 20 yearly flow rate inputs from
each source). Fig. 4a shows a density diagram consisting of 20 dif-
ferent edge-weighted Steiner minimal network layouts. It shows
the layout of the network in phase 1. In phase 1 only S2 and S3
are available to develop the CCS network. Fig. 4b shows network
layouts if all the sources are available at the beginning. However,
since S1 joins the network later S1. Each network layout represents
the lowest cost connection between the sources and the sink. The
capacities and the lengths of the edges and the points of connection
(Steiner points) between edges is different for each layout.
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Fig. 3. Flow model of S1: (a) initial flow estimate model of S1, (b) instances of evolutionary flow model of S1 over time. Each line indicates one instance of S1 flow path under
the four scenarios (Y stands for Year).

Fig. 4. Optimal network layouts of the CCS network in phase 1 (a) and phase 2 (b).

To determine the optimal network out of several design
alternatives in a given scenario, the Present Worth Ratio (PWR)
metric is used, see Eq. (6). PWR is the ratio of the expected revenue
of the network to the initial outlay required for it. It illustrates the
efficiency in the invested capital.

PWR = Expected Revenue − Investment cost
Investment cost

(6)

Out of the 20 network layouts in each scenario, the layout with
the maximum PWR is selected. To generate multiple scenarios,
Monte Carlo simulation is carried out. By simulating the network
model with several scenarios multiple layouts are generated for
both phase 1 and phase 2. We limit the number of simulation runs
to 200. 200 simulation runs result in 200 network configurations
with their corresponding maximum PWR values. In phase 1, the
PWR values follow a lognormal distribution with a mean of 2.7 and
standard deviation of 0.3. Similarly, in phase 2, the PWR values
follow a lognormal distribution with a mean of 3.5 and standard
deviation of 0.4. During the conceptual design stage, Monte Carlo
simulation enables designers and decision makers to explore sev-
eral scenarios and generate several design candidates. Therefore,
the exploratory uncertainty analysis step serves a screening step
to identify promising network design concepts for the detail design
stage. In the next step, the network with a maximum PWR, 2.7 in
phase 1 and 3.5 in phase 2, are selected to identify best opportuni-
ties for flexibility.

5.5. Step 4: Identification and valuation of real options

The objectives in this step are (1) to map uncertainties to part of
the network that should be configured to provide network design-
ers the ‘right, but not the obligation’ to change the network in
the future; (2) to calculate the value of having real options in the
network.

Based on the simulation outputs in the previous stage, the fol-
lowing two design strategies are identified.

• Design strategy 1, (the baseline strategy). Under this strategy the
network will be developed by connecting S2 and S3 without tak-
ing into account the future connection of S1. Expected capacity
estimates of S2 and S3 are used to design the network.

• Design strategy 2. Under this strategy the network will be devel-
oped after taking into account the possibility that S1 will join in
the future.

Fig. 5 shows design concepts based on design strategy 1 and
design strategy 2.

In both design strategies the decision makers analyze two major
options: the option to defer (wait) and the options to expand.
Table 1 shows the different types of uncertainties and the real
options to mitigate their effect for both design strategies.

Developing the network based on design strategy 1 represents
an investment opportunity. Therefore, it is a real option by itself. If
a manager decided to invest, then the option is exercised by com-
mitting to an initial cost in exchange for a real asset that may pay a
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Fig. 5. Network layout concepts based on design strategy 1 (a) and design strategy 2 (b).

Table 1
Mapping sources of uncertainty to real options strategies.

Uncertainty type Option to defer Options to expand

Design strategy 1 Design strategy 2 Design strategy 1 Design strategy 2

Participant uncertainty Yes (default) Yes No Yes
Capacity uncertainty Yes (default) Yes No Yes

stream of future cash flows. In the case of design strategy 2, there
is a freedom to exercise both real options. Similar to design strat-
egy 1 the deferral option can be exercised in phase 1 and phase 2.
In phase 2, if the investment opportunity of connecting S1 is not
worthy, then it can be deferred.

As can be seen in Table 1 the major difference between the two
design strategies is the expansion option. The expansion option is
made possible by embedding real options in the initial network
design. Real options require extra cost but could provide the net-
work manager the right to accommodate S1 at lower overall cost.
One real option can be embedded in the network by committing
large-size pipes between nodes S0 and J2. Another real option can
be embedded by laying out pipeline J1–J2–S2 instead of J2–S2. This
option requires extra pipe capacity on line J2–J1 and extra length
(i.e. the difference between J2–J1–S2 and J2–S2). Real options can
also be considered in edge S2–J1 and edge S3–J2 by having extra
capacity.

5.5.1. Real options valuation
To value the expansion option both design strategies are simu-

lated using multiple scenarios of uncertain variables. The analysis
takes the perspective of a network developer who invests in devel-
oping the CCS network for a profit. NPV is used to measure the
performance of both design strategies. As shown in Eq. (5), NPV
depends on the flow from each source and the total cost of the net-
work. The present value of revenue is calculated using Eq. (4). It
is a function of the total flow rate of CO2 which is uncertain. The
total flow model is obtained by adding the distribution of the three
sources defined in step 2 (as shown in Figs. 2 and 3). Let St represent
the distribution of the total flow. Since the sum of the independent
normal distributions is again a normal distribution, St has normal
distribution. The mean �t and variance vart of St are given as

�t = 1
n

n∑
i=1

�i and vart = 1
n2

n∑
i=1

vari, i ∈ (1, 2, 3) (7)

Fig. 6. Flow paths of St for the four scenarios (S1 joins at Year 4, Year 8, Year 12, or
Year 16).

n=2 in phase 1 and n=2 in phase 2. Fig. 6 shows simulation of paths
of St (out of 200 paths, single sample paths are shown for clarity).

In phase 1, the total cost of the worth maximizing networks
of both design strategies is calculated using Eq. (2). In phase 2, if
the deferral option is not exercised, additional costs are made to
connect S1 to the network. Let Ct1 represent the cost of the worth
maximizing network in phase 1 and Cs1 represent the present value
of the cost made to connect S1. Then, the total cost of the network
in phase 2, CTt2 is calculated as

CTt2 = Ct1 + (C31)Y , Y ∈ (4, 8, 12, 16) (8)

In design strategy 1, C31 is the cost of edge S1–S0 and in design
strategy 2, C31 is the cost of S1–J1 (the dotted line). The value of C31
depends on the year (Y) in which S1 is connected to the network.

The two design strategies are evaluated by simulating the net-
work model using different scenarios of St. Both design strategies
were simulated for 200 times. We sorted the 200 NPV results of each
design strategy and plotted them as cumulative probability distri-
bution curve, see Fig. 7. For this analysis we assume connection cost



136

Y.G. Melese et al. / International Journal of Greenhouse Gas Control 42 (2015) 16–25 23

80 90 10 0 110 120 130 14 0 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NPV of Design Statergies (% of ENPV  of DS1 @Y16)

Fr
eq

ue
nc

y

DS1 @Y8
DS2 @Y8
DS1 @Y12
DS2 @Y12
DS1 @Y4
DS2 @Y16
DS1 @Y16
DS2 @Y4

Fig. 7. Cumulative probability distribution curve of NPVs (Y stands for Year, DS1 and DS2 stands for design strategy 1 and design strategy 2, respectively. For example,
DS1@Y4 mean design strategy 1 and S1 join the network at Year 4)

Table 2
ENPVs of design strategies 1 and 2 and EVRO (in 103 Euros) under the four time
scenarios.

Year 4 Year 8 Year 12 Year 16

ENPV design strategy 2 126 ± 8 115 ± 7 106 ± 6 101 ± 3
ENPV design strategy 1 103 ± 4 102 ± 5 101 ± 4 100 ± 3
EVRO 23 ± 9 13 ± 8 5 ± 7 1 ± 3

of ˛ = 1 D /t and a real (i.e. excluding inflation) discount rate of 7%, a
figure commonly used by the World Bank (Blanchard, 1993). From
the distribution of NPVs, the expected NPV (ENPV) is calculated.
The ENPV based valuation technique adjusts for uncertainty by cal-
culating NPVs under different scenarios and probability-weighting
them to get the most likely NPV. For the purpose of comparison the
NPVs of the two designs are normalized against the expected net
present value (ENPV) of design strategy 1 at year 16.

The expected value of the real options (EVRO) is calculated using
Eq. (9). It is defined as the difference between the ENPV of design
strategy 2 and the ENPV of design strategy 1. Table 2 shows the
normalized ENPVs of the two design strategies and the expected
value of real options.

EVRO = ENPVdesign strategy 2 − ENPVdesign strategy 1 (9)

From Table 2 and Fig. 7, it can be seen that the ENPV (fre-
quency = 0.5) of design strategy 2 is higher than design strategy
1 in each of the four scenarios. This indicates that embedding
real options in the physical design enables cost effective expan-
sion as future capacity requirement increases. The real options are
the redundant pipe capacities in the edges and their extra lengths
which enable cheaper expansion. However, the difference between
the two strategies decreases if S1 is connected later. For example,
the EVRO decreases from 23 ± 9 at year 4 to 5 ± 7 at year 12. The
decrease suggests that the economic value of those real options
diminish with time. Embedding extra capacity and length at the
beginning to connect S1 after 12 years becomes less worthy and
even could result to a loss. As the time horizon for considering
extra capacity requirement increases, the opportunity of cost of
the real options investment (the premium) increases exceeding the
expected return.

In Fig. 7, it can be seen that the difference between the two
design strategies increases when we move up from the expected

value. Since NPV is directly related to flow rate, the increasing
difference suggests that the value of the real options increases if
flow from sources is higher than expected. The lower part of the
curves shows that the difference between the two strategies con-
tinues to decrease when flow is lower than expected. When flow
rate is lower than expected there will be unused physical capac-
ity and that decreases the value of the real options. In such cases,
a valuable decision could be to decrease the size of extra capac-
ity or deferring the investment. Waiting until better information is
available about the future flow of existing sources and the timing
of new sources could be worthy. However, it is also important to
mention that the value of waiting could be at odds with the value of
early strategic commitment. Decision makers also take into account
other strategic advantages in addition to the distribution of NPVs.
For example, by investing in demonstration projects, ‘early movers’
could take a strategic advantage on future opportunities related to
CCS technology compared with ‘late comers’, even though ENPV
tells otherwise.

The expected values of real options in Table 2 provide some
insight with regard to having expansion option decision without
regrets. In commercial CO2 pipeline design the ‘no-regrets-period’
of 10 years is used as a bench mark (Austell et al., 2011). Table 2
shows that the ‘no-regrets-period’ could be between 8 and 12 years.
However, this study considers only uncertainty in future capacity
requirements while other uncertain factors (e.g. discounting rate)
are assumed as constant. If other uncertain factors, in addition to
flow, are considered the ‘no-regrets-period’ is expected to decrease.
On the contrary, the ‘no-regrets-period’ could increase, for exam-
ple, if favourable governmental policy is in place and the cost of
CCS technology reduces in the future.

So far, the value of having real options is measured using eco-
nomic metrics, which is commonly used by project managers.
However, the flexibility value of a CCS network can be more than
its economic benefit to a single project owner. There can be added
benefits for other subordinate stakeholders. For example, a flexi-
ble CCS network that is able to accommodate future emitters could
mean less costly connections for the new emitters. In the case of
design strategy 2, when S2 and S3 design the pipeline S0–J2–J1 with
extra capacity to accommodate future flow increases, it reduces the
cost to connect S1 to the sink. At the same time, the real option
built into the network (i.e. the extra pipe capacity) will encour-
age the participation of new emitters like S1 by reducing some of
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the barriers, such as obtaining land permits for an independent
pipeline. The participation of more emitters in the CCS network
can be considered an added value for an environmental agency like
the Rotterdam Climate Initiative whose objective is to reduce CO2
emissions by creating a large-scale CCS network. If more emitters
participate in the CCS network, it will lead to a reduction in the total
CO2 emissions.

6. Conclusions

The main aim of this paper is to provide a systematic design
method to explore valuable real options in CCS networks to miti-
gate the effects of lock-ins as they expand over time. By referencing
relevant literature, we show that the typical design and planning
approach tends to focus on pre-defined requirements and often
leads to inflexible and sub-optimal networks. This paper argues
that one way to deal with less inflexible CCS networks is to adopt
a real options-based design approach. In order to explore valuable
real options, the paper presents an exploratory uncertainty anal-
ysis of network design architectures using a graph theory-based
network model. This model provides easy and fast generation and
assessment of various network design architectures under different
uncertain scenarios. This is an advantage over most of the CCS net-
work planning models, as were presented in Section 2 of this paper.
This aspect of the network model is very helpful when designers
have to assess thousands of design concepts under a combination
of uncertain design parameters.

The proposed method helps to identify design elements and
design strategies most likely to provide worthwhile flexibilities to
mitigate path-dependencies and lock-in effects. Using a hypotheti-
cal CCS network for demonstration purposes, the method provides
valuable insights to designers and decision makers on how to
design CCS networks under capacity and participant uncertainty.
It also helps to identify a need for extra capacity to accommo-
date future increases in capture targets by emitters. In our specific
case study, we found out that building higher pipe capacity is
valuable if there is an increase in future capture by emitters. Our
analysis also shows that the method proposed could provide valu-
able insight into which parts of the network should include real
options to accommodate future emitters. Physically built-in capa-
bilities, such as extra pipe capacities and length, provide easy and
cost-effective expansion option of the network when compared
with a deterministic design approach (baseline). Another conclu-
sion is that the value of identifying and imbedding real options
in expanding CCS networks could extend beyond an improvement
in an economic metric (e.g. an environmental value, by encour-
aging more emission reduction) and beyond a single stakeholder
(i.e. not only to initial developers of the network but also to future
participants).

The framework and methods introduced in this study can be
generalized to the application of other pipeline-based network
design problems such as gas pipeline networks, water distribution
networks and district heating networks. These different networks
are subject to distinct costs and benefits and faced with their
respective sources of uncertainties; as a result, details of modelling
and computation may need to be adjusted to suit the particular
network at hand.

The network model could be expanded at the moment to accom-
modate multi-source, multi-sink CCS network design problems. In
large CCS networks, multiple storage sites could be used, i.e. CO2
could be stored in abandoned oil fields, consumed for enhanced oil
recovery and consumed for agricultural and industrial purposes.
Moreover, the utility of the network model can be improved by
including CO2 and pipeline properties, and taking into consider-
ation no-go areas such as parks and residential areas.
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Abstract Energy and industrial networks such as pipeline-based carbon capture and
storage infrastructures and (bio)gas infrastructures are designed and developed in the
presence of major uncertainties. Conventional design methods are based on determin-
istic forecasts of most likely scenarios and produce networks that are optimal under
those scenarios. However, future design requirements and operational environments are
uncertain and networks designed based on deterministic forecasts provide sub-optimal
performance. This study introduces a method based on the flexible design approach and
the concept of real options to deal with uncertainties during conceptual design of
networks. The proposed method uses a graph theoretical network model and Monte
Carlo simulations to explore candidate designs, and identify and integrate flexibility
enablers to pro-actively deal with uncertainties. Applying the method on a hypothetical
network, it is found that integrating flexibility enablers (real options) such as redundant
capacity and length can help to enhance the long term performance of networks. When
compared to deterministic rigid designs, the flexible design enables cost effective
expansions as uncertainty unfolds in the future.

Keywords Energy and industrial networks . Uncertaintymodeling . Flexibility . Real
options . Graph theory

1 Introduction

Networked energy and industrial infrastructures, such as district heating systems,
pipeline-based carbon capture and storage infrastructures and LNG distribution
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networks, are often characterized by their long life span and huge societal impact as
they are intended to provide essential goods and services for society. They transport a
commodity (in this case liquid and/or gas) from one or several sources to one or several
sinks. In some cases there are several sources and sinks involved and finding a
configuration that maximizes value (e.g. lower cost) for developers is very difficult.
In addition, during design exploration stage, not all participating sources and sinks nor
the capacities they require are fully known. On the other hand, important decisions such
as network architecture have to be made at the early stage and the presence of
uncertainties makes this task very challenging.

When designing infrastructure networks under uncertain situations, there are two
major systems engineering approaches: robust design and flexible design (de Neufville
2004). The robust design approach is a set of design methods intended to improve the
consistency of an engineering system function across a wide range of conditions. One
of these methods is robust optimization which aims at finding a solution that is robust
or insensitive to the uncertainty considered and is thus an efficient solution practice
(Mulvey et al. 1995; Ordóñez and Zhao 2007; Chung et al. 2011). The focus of robust
optimization is to search for an optimal network that satisfies a fixed set of objectives
such as shortest path and minimum cost (Desai and Sen 2010; Roy 2010; Chen et al.
2013; Tarhini and Bish 2015; Li et al. 2011). The method is widely applied to design
infrastructure networks such as pipeline networks (Heijnen et al. 2014; van der Broek
et al. 2010) and road networks (Szeto et al. 2013; Li et al. 2015). While optimization for
cost is a required objective, a solution that is optimized based on fixed requirements is
often found to be rigid and does not perform well when uncertainty is high (Goel et al.
2006; Zhao et al. 2015). On one hand, if future uncertainty turns out to be favorable, it
will be difficult to easily expand and modify point-optimized solutions, which will
amount to a lost opportunity. On the other hand, if the future turns out to be unfavor-
able, point-optimized solutions cannot easily be reduced in scale, which will amount to
a waste of capital.

Another approach that recognizes and embraces the effect of uncertainty is flexible
design (de Neufville and Scholtes 2011). Flexible design approach is a design concept
that provides an engineering system with the ability to adapt, change and be
reconfigured, if needed, in light of uncertainty realizations. The concept could be of
help in the design of networks with the capability to pro-actively deal with uncer-
tainties. In such sense, the concept of flexibility is similar to the concept of real options,
which is defined as Bthe right, but not the obligation, to change a project in the face of
uncertainty^ (de Neufville 2003). Real options are flexibility enablers that provide
capabilities to operationalize flexibility. When real options are embedded in the phys-
ical design of the network, they enable network developers to adapt the network in the
face of uncertainty by utilizing the upside opportunities and minimizing the downside
risks (de Neufville et al. 2006; de Neufville and Scholtes 2011). Moreover, (Cardin et
al. 2015) real options analysis provides analytical tools to quantitatively assess the
value of flexibility by allowing for objective evaluation of design concepts (de
Neufville 2003). Therefore, unlike the robust design approach, which de-sensitizes
design to future fluctuations and inherently encourages a reactive response, the flexible
design approach is characterized by considering a wide range of possible future
scenarios and by taking pro-active actions to mitigate and exploit uncertainty. There
are several examples on applications of the flexible design approach in large-scale
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infrastructure systems (Babajide et al. 2009; Buurman et al. 2009; Deng et al. 2013; Lin
et al. 2013; Cardin et al. 2015), thus demonstrating that incorporating flexibility
considerably improves life cycle performance of engineering systems.

While the flexible design approach using the concept of real options is philosoph-
ically appealing and has been applied to various engineering systems, an efficient and
effective flexible design generation and evaluation method is not apparent or readily
available in the case of energy and industrial infrastructure networks. Networks have a
special character in that they develop in stages and grow from simple to complex
networks over several years. Therefore, network development is inherently path de-
pendent. To this end, this article presents a method to systematically integrate flexibility
in energy and industrial infrastructure networks based on the real options perspective.
The method proposed involves three steps: exploratory uncertainty analysis, design
flexibility analysis and sensitivity analysis. The three steps are based on simulation of a
graph theoretical network model. The proposed method should be able to provide
designers and decision makers with insights, early in the conceptual design stage, into
how to design better (in economic value) networks in the face of uncertainty.

The rest of the paper is organized as follows. Section 2 discusses the motivation for
applying the real options perspective to design flexible networks by reviewing the
relevant literature. Section 3 presents the details of the proposed methodology. In
section 4 the proposed methodology is demonstrated on a hypothetical pipeline-based
network. Section 5 concludes the paper.

2 Literature Review

2.1 The Real Options Framework for Enabling Flexibility

As pointed out in the introduction section, energy and industrial networks have
long life time and the future is more uncertain and difficult to forecast in long-
term projects. On one hand, forecasts on long-term projects are ‘always wrong’ in
that actual design requirements and the future environment will always vary from
what has been anticipated (Flyvjberg et al. 2005). On the other hand, develop-
ment activities that last long time give network developers considerable scope to
decide on the size and timing of investments and to thus optimize and increase
the targeted value of the project. The real options concept is based on a rationale
that when the future is uncertain there is a value in having the Bright, but not the
obligation^ to adapt future changes without making deterministic early commit-
ments (de Neufville 2003). It provides a systematic framework for designers to
make rational (though optional) decisions as to which flexible design elements
and specific or combined flexibility types can be incorporated into the engineer-
ing system. (Zhao and Tseng 2003) apply the real options concept to the size the
foundation of a parking garage when future demand is uncertain. The value of the
parking garage with extra sizing includes not only its present value, but also the
value associated with the option to add the extra floors (Wang 2006) used the real
options concept to define the basic elements of flexibility in hydropower design
(de Neufville et al. 2008) used the real options framework to increase the value of
transportation systems.
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Designing for flexibility involves defining a strategy and an enabler in design and
management (Cardin 2014). A strategy represents aspects of the design concept that
captures flexibility, or how the network is designed to adapt to changing circumstances.
An enabler represents what is done to the physical infrastructure design and manage-
ment to provide and use the flexibility in operations. In the context of engineering
systems enablers are the real options. There are two major types of real options (Wang
2006). Options that involve technical design features are referred to as real options ‘in’
engineering systems and options that involve financial decisions on engineering pro-
jects are referred to as real options ‘on’ engineering systems (Wang 2006).

2.2 Identifying Valuable Real Options

Multiple sources of flexibilities (real options) exist in the design and management of
infrastructure networks. These real options should be integrated into the network at the
early stage of the design process to enhance the value of the network. The task of
identification and integration of real options requires exploring and evaluating large
sets of potential design configurations by generating different scenarios of uncertain
variables. Depending on the scenarios, huge number of design alternatives can be
generated. In networks, the temporal and spatial dimensions of future scenarios produce
a large number of possibilities of designing the network and implementing flexibility
decisions. Therefore, a method that enables designers to generate several initial design
architectures before the final detailed design is required.

A set of procedures has been proposed in relation to designing and evaluating
flexibility from real options perspectives (Ajah and Herder 2005) presented the adop-
tion of the real options approach in the conceptual design stage of energy and industrial
infrastructures, and provided a systematic procedure for real options integration.
However, the paper does not provide a clear method on how to identify and screen
the real options and how to define the added value of flexibility (Hassan and de
Neufville 2006) presented a practical procedure for using real options valuation in
the design optimization of multi-field offshore oil development under oil price uncer-
tainty. To manage the large number of possible combinations and fine the optimal
configuration a Genetic Algorithm is used. However, the procedure results in an
optimal design, which tends to be robust for uncertainties and focuses very much on
the value (price) of the options to select designs and only a little on how to identify and
integrate the options.

A two-step procedure for identifying real options for offshore multi-oilfield devel-
opment is presented by (Lin 2008). The procedure involves developing a screening
model and a simulation model. The screening model is a non-linear programming, low
fidelity model for identifying the elements of the system that seem most promising for
options. The simulation model tests the candidate designs from runs of the screening
model. It is a high fidelity model whose main purpose is to examine candidate designs
under technical and economic uncertainties, the robustness and reliability of the
designs, and their expected benefits. Both ways of identifying real options are meant
simplifying the task of an early search for the most promising flexible design. More
pertinent to our work, in terms of their approach for integrating flexibility, are the
methods proposed by (Deng et al. 2013) for urban waste management system and for
on-shore LNG production design. At the center of the proposed methods by the two
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papers is a design flexibility analysis procedure to improve the lifecycle performance of
the design under uncertainty. However, both works deal with design problems that do
not have network characteristics and do not provide enough insight for the kinds of
problems that have spatial and temporal characteristics.

A method for addressing the problem of design under uncertainty for energy and
industrial networks is presented by (Heijnen et al. 2014). The method proposed is a
novel combination of graph theory and concepts of exploratory modelling for the
analysis of most likely paths that maximizes the value of network designs. The method
conceptualizes the design as a network problem by which the physical infrastructure is
abstracted as consisting of nodes (e.g. producers and/or consumers) and links (e.g.
pipelines). It takes into account uncertainty about the participants (participating or not),
the location of participants and the capacity they require. The most important utility of
the method is that it allows easy and fast assessment of low-regret options and quick re-
assessment of these options should new information arrive that narrows down or
expands these options. However, the method considers deterministic and discrete
scenarios of uncertainty parameters and finds an optimal network configuration for
each pre-defined scenario. Moreover, the method does not fully address the stochastic
and dynamic nature of uncertainties and most importantly does not address the issue of
flexibility: i.e. defining flexible strategies and identifying flexibility enablers.

In summary, a systematic methodology to integrate flexibility based on the concept
of real options is missing in network design and management. Building on the network
model developed by (Heijnen et al. 2014), this paper expands it by adding a more
sophisticated uncertainty analysis and a design flexibility analysis procedures. The
details of the method are presented in the next section.

3 Methodology

This paper introduces a method to integrate flexibility in the design of energy and
industrial networks. The procedure consists of three concrete steps: exploratory uncer-
tainty analysis, design flexibility analysis and sensitivity analysis. The objective of the
proposed method is to enhance the value of networks by identifying and integrating
valuable flexibility elements. Figure 1 shows the proposed method.

3.1 Step 1: Exploratory Uncertainty Analysis

This step consists of characterization of major uncertainties, modelling and simulation
the network, and design analysis.

Exploratory uncertainty analysis 

• Characterization of major uncertainties 
• Network modelling  
• Monte Carlo simulation and design 

analysis 

Multiple runs   

Sensitivity analysis 

• Evaluation of selected designs 
to changes in major 

assumptions 

Design Flexibility Analysis

• Define flexible strategy 
• Identify and integrate real options 
• Design evaluation  

Fig. 1 Proposed method for flexible design of networks
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3.1.1 Characterization of Major Uncertain Variables

The objective of uncertainty characterization is to model initial distributions and
future trajectories of selected uncertain variables. In order to define initial distri-
butions of selected uncertain variables two approaches are often employed: data-
driven and an analytical. Data-driven approach requires large quantity of historical
data and applies statistical methods (e.g. regression) to fit the empirical model.
The analytical approach is more useful in the absence or limitation of full
historical data the analytical. It requires making initial estimations on the behavior
of uncertain variables (i.e. types of distribution and speed of convergence). The
initial estimates are then transformed to a probability distribution, such as a
normal distribution, characterized by a vector containing the moments of the
distribution (means and variances).

Modelling the future trajectories of uncertain variables requires defining their states
over a planning period of the network. The future states can take continuous or discrete
behavior. To model continuous behavior, stochastic processes such as Geometric
Brownian Motion (GBM) and Wiener processes are often used (Ibe 2013). To model
discrete behavior, lattice model can be used (Albanese and Campolieti 2006).

3.1.2 Network Modeling, Simulation and Design Analysis

To generate network design concepts a network model is developed and explor-
atory simulations of uncertain variables are carried out. In this study a graph
theoretical network model (Heijnen et al. 2014) is employed. The model is
effective in conceptualizing energy and industrial infrastructures as networks
consisting of nodes (e.g. production and/or consumption sites) and links (e.g.
pipelines). Monte Carlo simulation of uncertain variables over the network model
is carried out to generate multiple network design concepts. The main inputs of
the model are the spatial positions of source and sink nodes and flow rate from
sources. The outputs of the simulation are minimum-cost tree-shaped network
configurations. The resulting network configurations are edge-weighted Steiner
minimal tree-shaped networks. An edge-weighted Steiner minimal tree network is
a minimum cost network that takes into account the effect on the cost of both the
capacity and the length of edges. The details of the graph theoretical network
model employed are explained in section 4.2.2.

3.2 Step 2: Design Flexibility Analysis

In this step the concept of flexibility is employed to improve the life cycle performance
of network designs selected in step 1. It involves defining flexible strategies, identifying
real options to enable these flexible strategies and evaluating designs. Flexible strate-
gies are the actions decision makers can take when a particular path of uncertainties is
realized (e.g. expand the capacity of a network if a new participant joins the network in
future) (Jablonowski et al. 2011). The actions of decision makers are defined as
decisions rules in the network model. The decision rules are triggering mechanisms
or Bif^ statements that specify clearly when flexible strategies will be exercised
depending uncertainty realizations (Cardin et al. 2013).
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To enable flexible strategies, it is necessary to identify and integrate valuable real
options. There are several real options that might lead to flexibility. We listed some of
the real options relevant in the context of networks.

& Option to expand/contract: the option to expand/contract seems useful vis-à-vis
the flexibility needs of infrastructure networks as they are often developed in
phases. For example, overbuilding the capacity of a large-diameter pipeline in
earlier period in order to have the flexibility to accommodate increasing capacity
requirements in later period.

& Option to defer: in the presence of irresolvable uncertainty (at least within the
decision time frame) it could be interesting to wait and invest later. This is a typical
(wait and see) real option which projects managers exercise often when information
about important uncertain variable(s) is not well known.

& Options to abandon: is it at any point in time possible to abandon the investment?
This includes options not to commit further assets.

& Options to switch: What are the main inputs and outputs of this project? Is it
possible to accommodate multiple inputs or outputs so that it is possible to switch
later? For example, is the pipeline material able to handle liquid and gas phase
substances as required?

The final activity in this step is to evaluate designs with real options. The evaluation
helps to determine the cost of implementing real options for the desired flexibility and
to decide the appropriate time to exercise the real options. In literature, different kinds
of methods are proposed to evaluate real options (de Weck et al. 2004) applied binomial
tree approach to obtain the value of real options in stage deployment of communication
satellites (Babajide et al. 2009) used decision tree method to evaluate the value of
flexibility in oil deployment projects. The binomial approach has limitations in that it
assumes path-independency which does not hold in engineering systems and decision
tree analysis suffers from intractable computations as the number of decision-making
periods and states increases. Recently, simulation based methods are being adopted for
valuing flexibility in oil field developments (Lin 2008; Jablonowski et al. 2011), and
water management systems (Deng et al. 2013). In this work a simulation approach is
adopted as it can be more generally applied, since it has fewer restrictions on the
number of time periods and the distribution of uncertainties. Besides, the simulation
approach considers decision rules as explicit variables in the modelling framework, so
that the model itself can be more easily modified to capture more diverse design
configurations.

3.3 Step 3: Sensitivity Analysis

In this step, sensitivity analysis is performed in order to examine how the results
obtained following the above steps respond to changes in underlying assumptions.
This step can be seen as a way to test the robustness of the design alternatives in
response to the variation that may happen to the assumptions. There are standard
mathematical (Czitrom 1999), statistical (Saltelli et al. 2000) and graphical (Canon
and McKendry 2002) methods to perform sensitivity analysis. These sensitivity anal-
ysis methods can be carried out on global or local variables. One-factor-at-a-time
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method (Czitrom 1999), which addresses the parameter sensitivity relative to the point
estimates chosen for the parameters held constant, is used in this work. The one-factor-
at-a-time method is more convenient than the other methods because it enables to
analyze the effect of one parameter on the dependent variable at a time by keeping other
parameters constant.

4 Application

This section demonstrates the proposed simulation framework by applying it on a
hypothetical pipeline based network. The hypothetical case is inspired from an initia-
tive to collect carbon from distributed emitters using pipeline network in Rotterdam
area, the Netherlands. However, the case could represent any network consisting
multiple sources and a single sink such as district heating networks and (bio)gas
networks to mention a few.

4.1 Description of the Design Problem

The hypothetical field has three sources S1, S2 and S3 and one sink S0. Figure 2 shows
the position of the three sources and the sink on a 60 by 60 Km field. The objective is to
build a pipeline network which transports material X1 from supply points (sources) to a
single demand point (physical sink). The design problem takes the perspective of a
private developer whose objective is to make profit by connecting the spatially
distributed sources to a sink. During the design exploration phase the future flow rates
of existing sources and the capacities they require are uncertain. Moreover, the timing
and flow rate of future sources is also uncertain. For example, in carbon capture
networks, connected emitters increase their CO2 capture targets with time. Moreover,
most carbon capture networks are expected to expand by adding more emitters in the
future.

The demonstration tries to answer the following design questions that could be
asked by network designers and network developers.

1. What is the most cost-effective strategy for phasing the network to meet increasing
flow from existing and future sources?

2. How to strategically design the network to be able to coordinate the capacities of
source facilities, pipelines, and the sink as the network expands over time with new
sources joining the network?

3. Is overbuilding capacities with large-diameter pipeline early in the design in order
to accommodate future flow increase from sources making economic sense?

4. Is it worthy to wait a new source to join the network and for how long?

The objective of this work is then to design networks that provide enhanced value
for the investor given the uncertainty in flow rate from existing sources and future new
sources.

1 By material we mean flowing matter in gas or liquid state.
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In order to answer the above questions we specify the design problem scenario such
that S2 and S3 are existing sources and S1 will join at some unspecified future time.
The economic lifetime of the network is limited to 10 years. The rest of this demon-
stration is to apply the methodology proposed in the previous section with the aim to
design a network that provide enhanced value for the investor given the uncertainty (1)
in flow rate from existing sources (i.e. S2 and S3); and (2) timing and flow rate of the
future new source (i.e. S1).

4.2 Step 1: Exploratory Uncertainty Analysis

The objective of this step is to model the major uncertainties and explore their effect on
the performance of design alternatives. In this study we focus on two major uncer-
tainties: (1) stochastic behavior of flow rate from existing sources, hereafter called flow
uncertainty, and (2) the uncertainty in new source(s) that may join the network in the
future called participant uncertainty. Flow uncertainty represents flow rate changes
from existing sources over the economic lifetime of the network, for example, increase
in capture targets from CO2 emission sources. Participant uncertainty represents the
uncertainty in the timing of new sources and their flow rates.

4.2.1 Characterization of Major Uncertainties

Flow Uncertainty Flow uncertainty is due to the stochastic nature of volume flow
rates of sources over the life time of the network. An evolutionary path of volume flow
rate over time is an external variable that can influence the capacity of the pipe required
for connecting a source. It could vary with time given the long life time of such
projects. For example, flow from a CO2 producing power plant may increase due to

Fig. 2 Layout of the hypothetical field
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stage-wise increases in emission reduction targets; and flow from a bio-gas producing
field could decease due to reduction of substrate. Flow uncertainty model is used to
generate possible future trajectories of volume flow rates from sources. First, the flow
behavior of the three sources at a given instant in time is modelled using a normal
distribution. Initial flow estimates of sources are:

& S1: mean 100 m3 tone/year and standard deviation 20 m3 tone/year.
& S2: mean 400 m3 tone/year and standard deviation 100 m3 tone/year.
& S3: mean 350 m3 tone/year and standard deviation 70 m3 tone/year.

Next, Geometric BrownMotion (GBM) process is used to model the evolution of flow
rate from the three sources over an investment period life time of 10 years. Initial values
are taken by randomly sampling from the initial. To generate the evolutionary paths the
expected drift rate of 1 % and volatility of 30 % are assumed for all the three sources. In
each simulation, the GBMmodel produces future flow evolution volume flow rate values.
Figure 3 shows initial flow estimate model of the three sources and one instance of the
future flow rates of the three sources over a 10 year time period. The sink is assumed to
have significant capacity to absorb all flows from existing as well as future new sources.

Participant Uncertainty Participant uncertainty represents the uncertainty arising from
new source(s) that may join the network in the future. The uncertainty originates from two
dimensions: spatial and temporal. Spatially, the new participant could assume any geo-
graphical position relative to the existing network. Temporally, the new source could join
the network at any time within the technical life time of the network. For designers, both
dimensions of participant uncertainty could result in infinite possibilities of network
configuration alternatives. As a result, the identification and evaluation of design options
is extremely difficult, if not computationally intractable. For simplification, we assume
that the new participant will be S1 and this will avoid the spatial uncertainty. With this
simplification the uncertainty will be in the time S1 will join the network.

Figure 4 shows 3 instances (years 3, 5 and 7) of the flow evolutionary path of S1. It
represents a model of the uncertainty in the year S1 may be connected to the network.
The objective is to explore for value maximizing configuration of the network if S1
does not exist at the beginning but appear after sometime within the 10 years period.

Fig. 3 Initial flow estimate model of sources (left) and one instance of the evolution of flow of the three
sources over a 10 year period (right)
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4.2.2 Network Modelling

As indicated in the methodology section, in this study we developed a network model
based on the concept of graph theory. In a graph theory representation of networks,
sources and sinks are nodes (e.g. bio-gas fields and gas consumption sites) and their
connections are edges (e.g. pipelines). To determine the investment cost of the network
the model uses flow-dependent model, as in (Heijnen et al. 2014). Hence, to generate a
minimum-cost edge-weighted Steiner minimal network, the network algorithm uses the
following cost function of edges as in.

Ce ¼ leqβe ð1Þ

In Eq. 1, le is the length and qe is the capacity of an edge e. β is the cost exponent for the
capacity with 0≤β≤1: If β ¼ 0, the capacity of the pipelines has no influence on the cost.
If β ¼ 1, building two pipelines of capacity 1 is just as expensive as building one pipeline
of capacity 2. Avalue of β ¼ 0:6 is commonly used (Heijnen et al. 2014), indicating that
there are economies of scale to building high-capacity pipelines. Then, the total invest-
ment cost C Tð Þ of a network T is sum of all connection costs as given in Eq. 2.

C Tð Þ ¼
X

∀e∈E Tð Þleq
β
e ð2Þ

where E Tð Þ is the set of all edges in a network tree T .
In addition to cost, it is also necessary to calculate the expected income of the

network. A revenue model that calculates the expected income as a linear function of
capacity required by the source is used. The assumption is that the network developer
generates income by charging a certain fee per unit capacity. The expected income (EI)
from a network T is then given as:

EI Tð Þ ¼ α
X

i∈V Tð Þ% sf g
qi ð3Þ

Fig. 4 One instance of S1 joining a network at year 3, 5 and 7 and its flow evolutionary path
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In Eq. 3, qi is the used capacity by a source i in a network T , V(T) is the set of all
nodes in the network T, s is the sink and α is the constant coefficient representing, for
instance, a constant fee per a unit volume of liquid/gas charged by the network
developer. In this demonstration we assumed α ¼ 1 (see section 4.4 for a sensitivity
analysis with varying α).

The total income from a given network in its life time is calculated as a summation
of discounted yearly income flows over the 10 years period. The interest rate of r=8 %
is used for this demonstration. The sum of the discounted cash flows is the present
value of income (PVI).

PVI Tð Þ ¼ α
X n

t¼0

P
qi

1þ rð Þt ð4Þ

The life time performance of a network under a given scenario of an uncertain
parameter is evaluated using the Net Present Value (NPV) metric.

NPV Tð Þ ¼ PVI Tð Þ−C Tð Þ ð5Þ

4.2.3 Monte Carlo Simulation and Design Analysis

In this section, Monte Carlo simulation of the network model is carried out by
varying flow scenarios. Given the low flow rate from S1 at the beginning and the
uncertainty in the time it may join the network, the following two design strategies
are proposed: committing design strategy (CDS) and abandoning design strategy
(ADS). Under the CDS the network will be designed by connecting all the three
sources and in the case of ADS the decision is to connect S2 and S3 only by
abandoning S1. The inputs of the model are yearly flow rate values from each
sources over 10 year period and the spatial position of the sources and the sink.
The simulation results in minimum-cost tree-shaped network configurations
connecting source nodes to the sink.

Figure 5 (left) and Fig. 6 (left) show density diagrams of 10 network configurations
based on a single flow evolutionary path (scenario) under CDS and ADS respectively.
Each network configuration is an edge-weighted Steiner tree generated by taking flow
rate values at each year of a single flow evolutionary path. The simulation outputs
provide designers a better insight into what would be the optimal configuration of the
network, not only based on the values of design variables at the time of design but also
in multiple future stages.

However, in practice networks are path-dependent, i.e. the state of a given
network at later stage is dependent on the decisions made in earlier stage. Network
developers will not build one network in year 1 and another network in years after
that. Then, the question becomes, how to select the network that provide maxi-
mum value over a given scenario?

One way to select the network that maximizes value among several design alterna-
tives is to use a preliminary economic evaluation technique the Present Worth Ratio
(PWR), as in (Heijnen et al. 2014). The PWR illustrates the efficiency in the invested
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capital by taking into account the investment cost and the expected revenue of a
network over a fixed period of time.

PWR ¼ Expected revenue−Investment cost
Investment cost

ð6Þ

Figure 5 (right) and Fig. 6 (right) show the network that maximizes value out of the
10 configurations under CDS and ADS respectively. The thickness of edges indicates
their capacity. Monte Carlo simulations of the network model results in multiple value
maximizing networks and their respective economic performances (i.e. cost and PWR
values). 200 different flow path scenarios are simulated resulting 200 optimal networks
for each design strategy. Then, the value maximizing network with a highest PWR is
selected. This step is used to screen network design alternatives that make economic
sense given the future evolution of flow. It serves a preliminary design exploration step

Fig. 6 Network configurations under the abandoning design strategy: density diagram of multiple network
configurations (left) and value maximizing network (right)

Fig. 5 Network configurations under the committing design strategy: density diagram of multiple network
configurations (left) and the value maximizing network (right)
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by simulating different uncertain scenarios. Exploring multiple design concepts using
multiple scenarios provides decision makers with a better insight into the effects of
uncertainty compared to a deterministic design based on a single scenario or a few pre-
defined scenarios.

Once the networks with the highest PWRs are selected for both design strate-
gies, their life-time economic performances are evaluated over multiple uncertain
scenarios. Net Present Value (NPV) metric is used to evaluate the economic
performance in this study. 200 Monte Carlo simulation runs were carried out to
compare the economic performance of both design strategies. The 200 NPVs of
both design strategies are plotted as cumulative distributions, or also known as
target curves, see Fig. 7. Moreover, from NPVs of each design strategy, the
corresponding expected net present values (ENPVs) are calculated. The ENPV is
the most likely NPV (i.e. NPV at 50 % probability in the cumulative distribution
curve) calculated by probability-weighting NPVs. The two design strategies are
also compared using other economic metrics as shown in Table 1. For the purpose
of comparison, the NPVs of the two designs are normalized against the expected
net present value (ENPV) of the abandoning design strategy.

From Fig. 7 and Table 1 it is clear to see that the committing design strategy results
in a better NPV than the abandoning design strategy. The value enhancement suggests
that the revenue obtained from S1under the committing design strategy outweighs the
avoided cost of connecting S1 under the abandoning design strategy. Even though
abandoning design strategy helps to avoid revenue risk due to the low flow rate of S1 at
the early years, it loses the opportunity that may be obtained due to future flow rate
increases. However, this conclusion is only valid under flow uncertainty. Under
participant uncertainty abandoning design strategy is the only realistic solution of the
two strategies. If the network is developed based on abandoning design strategy and a
new source wants to join after some years, then the design will not be able to
accommodate it. The only possibility is to make a connection directly to the sink. In
such a case, the cost will increase and the overall performance of the network will even
further decrease.

In addition to NPV (ENPV, minimum NPV and maximum NPV), Capital expendi-
ture (CAPEX) can provide valuable insight during decision making. For example, the
NPVof the network under CDS is higher than ADS. However, ADS requires a lower
CAPEX than CDS and that can be a factor in decision making.
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Fig. 7 Target curves for the two design strategies (connection fee a = 1)
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4.3 Step 2: Flexibility Analysis

The objective of this step is to further enhance the life time performance of the network
given the two uncertainties defined in step 1. It involves defining flexible strategies,
identifying real options to enable these flexible strategies and evaluation of designs
with real options. A stage-wise development of the network with expansion options is
defined as a flexible design strategy (FDS).

4.3.1 Identification of Real Options

To enable the flexible design strategy two real options are identified: expansion option
to accommodate future flow increases from all sources and an option to delay the
connection of S1. The two real options enable the network to pro-actively manage flow
and participant uncertainties. If S1 exists but its flow rate remains low in the future
delaying its connection could be valuable. If S1 exists and its flow rate increases in the
future or if S1 does not exist at the beginning but appear later in the future the
expansion option could be valuable. The expansion option is made possible by
embedding redundancy in the length and capacity of the network. Having the expan-
sion option may require more initial capital but could give the network manager the
right to accommodate future connection of S1 at lower overall cost.

Figure 8 (left) shows 10 different layouts of the network connecting the three source
points with the sink. It can be seen that S1 is not connected to the network all the time.
The simulation showed that connecting S1 is not worthwhile before year 5 given its low
flow rate. One strategy to design the network is to start by connecting S2 and S3 with
an option to connect S1 in the future. We call this strategy as the flexible design
strategy. Figure 8 (right) shows the layout of the network under the flexible design
strategy. A dotted line is used between node S1 and node J1 to represent future
connection of S1. Real options are embedded in the network by committing large-
size pipes between nodes S0 and J2, i.e. laying out line J1-J2-S2 instead of J2-S2. Both
options require extra pipe capacity on line J2-J1 and extra length (i.e. the difference
between J2-J1-S2 and J2-S2). Real options can also be considered in line S2-J1 and S3-
J2 by having extra capacity to handle future flow rate increases. When the flow from S1
makes an economic benefit the developer can build the pipeline J1- S1. The redundant
pipeline capacities and lengths embedded in the network enable the network developer
to exercise stage-wise expansion strategy.

4.3.2 Design Evaluation

The performance of the three design strategies is evaluated using flow and
participant uncertainty scenarios define in step 1. NPV is used to compare the

Table 1 Summary of statistics for the two designs strategies (% of ENPVor as % of initial CAPEX of ADS)

Parameters ENPV Min NPV Max NPV Initial CAPEX Min CAPEX Max CAPEX

Committing design strategy 106 ± 6 72 ± 6 134 ± 6 116 ± 8 110 ± 8 128 ± 8

Abandoning design strategy 100 ± 4 64 ± 4 119 ± 4 100 ± 5 95 ± 5 108 ± 5
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performance of the three design strategies. 200 Monte Carlo simulations are
carried out resulting in 200 NPVs for each design strategy. Then, target curves
are plotted based on the 200 NPVs. Moreover, from NPVs of each design strategy,
the corresponding expected net present values (ENPVs) are calculated. The ENPV
is the most likely NPV (i.e. NPV at 50 % probability in the cumulative distribution
curve) calculated by probability-weighting NPVs. In addition to ENPV, decision
makers also use capital expenditure (CAPEX) to evaluate design strategies.
Table 2 shows ENPV and CAPEX of the three design strategies.

Under Flow Uncertainty From Fig. 9 and Table 2 it can be seen that the flexible
design strategy performs much better than the two rigid design strategies. The
sources of improvement in performance are from the flexibility that enabled by the
real options built in the edges and lengths of the flexible design strategy. The real
options help to reduce down side risks such as commitment to big pipeline
capacity when flow from S1 is low. They also help to capitalize on the upside
opportunity when the flow from S1 increases. Therefore, the improvement in
performance of the flexible design strategy when compared to the other two
design strategies can be considered as the value of the real options (VoRO). The
value of the real options is calculated by subtracting the ENPV of the rigid design

Fig. 8 Density diagram of network layouts (left) and the layout of the network under the flexible design
strategy (right)

Table 2 Summary of statistics for the three designs strategies (expressed as % of ENPVADS or as % of
initial CAPEX of ADS)

Parameters ENPV Min NPV Max NPV Initial
CAPEX

Min
CAPEX

Max
CAPEX

Flexible design strategy 144 ± 10 111 ± 10 174 ± 10 105 ± 6 98 ± 6 112 ± 6

Committing design strategy 106 ± 6 72 ± 6 134 ± 6 116 ± 8 110 ± 8 128 ± 8

Abandoning design strategy 100 ± 4 64 ± 4 119 ± 4 100 ± 5 95 ± 5 108 ± 5
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strategies from the flexible design strategy, see Eq. 7. Appendix shows how cost
and revenue are calculated to decide the value of real options.

VoRO ¼ ENPVflexible design−ENPVrigid designs ð7Þ

From Table 2 it can be seen that the flexible design requires a lower initial CAPEX
when compared to the committing design strategy but a higher initial CAPEX when
compared to the abandoning design strategy. The committing design strategy is the
most expensive of the three. Initial CAPEX could be an important factor when
evaluating designs and the flexible design strategy reduces costly initial commitments
when uncertainty about the future flow evolution of S1 is higher.

The initial CAPEX of ADS is comparatively smaller than the other two design
strategies largely due to the fact that there is no connection to S1. Even though, the
strategy minimizes investment cost in the early years compared to the CDS and FDS, it
loses significant revenue from future increases in flow rate of S1. However, in ADS S1
may join the network when information about S1 is known. However, under such
scenario connecting S1 requires building dedicated pipeline directly to sink. As a result
of such practice, the network could provide much inferior value when compared to the
FDS and the CDS.

Under Participant Uncertainty The time a new participant could join the network has
an effect on the value of the overall network. A comparison is made between the FDS
and ADS, as the CDS is not realistic solution, in this case. The analysis is carried out
for scenarios on which the new source (S1) joins the network in years 3, 5 and 7. The
performance of the two design strategies is shown using cumulative probability
distribution of NPV, see Fig. 10.

It can be seen from Fig. 10 that the ENPVof the FDS is higher than the ADS in each
of the three scenarios. However, the superiority of FDS over ADS diminishes as the
time for connecting S1 is delayed. The curve below P50 (i.e. the lower half of the target
curve) shows that the risk of FDS increases faster than the risk of ADS if the connection
to S1 is further delayed from Y5 to Y7. In such cases, it does not make economic sense
to build a real option that can be exercised only after a long period of time as the value
of the option diminishes with time.
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In real pipeline network design, decision regarding the time period to consider extra
capacity to accommodate future new sources is called ‘no-regrets-period’. The ‘no-regrets-
period’ depends on the profitability of the fluid flowing through the network and varies
from one case to another. In carbon capture networks, the ‘no-regrets-period’ for having
redundant pipe capacity extends up to 10 years based on the current CO2 price (Austell et
al. 2011). In natural gas networks, the ‘no-regrets-period’ can extend beyond 15 years.

The analyses of the design strategies under flow uncertainty and participant uncer-
tainty show that there are values to be gained from flexibility. Mainly, there are two
flexibility enablers (real options) that can built in the physical design. The first is the
extra diameter in edges, required for accommodating future flow rate increases from
existing sources and new connections. The second is the extra length that is built in the
configuration. These real options anticipate increases in flow rate from existing sources
that are not financially feasible to connect at the beginning due to their low flow rate
and from new sources that could join in the future. Flexibility would not be possible if
designers do not plan and embed those real options at the early stages of the design
process.

4.4 Step 3: Sensitivity Analysis

In this step sensitivity analysis is carried out to examine how the three design strategies
depend on assumptions. Specifically, the sensitivity of the performance of the three
design strategies to the connection fee (α) and the initial flow estimate are considered.

4.4.1 Sensitivity to the Connection Fee

The connection fee value is varied to check its effect on the performance of the flexible
design compared to the rigid designs. The connection fee is the amount paid by sources
per unit capacity. In other words the connection fee is the price that is charged by the
network developer. Figure 11 shows the relative performance (in terms of NPV) of the
three design strategies at various connection fee values. The network model is simu-
lated 200 times for each connection fee values. For the purpose of comparison the
NPVs of the three designs are normalized against the ENPVof the abandoning design
strategy at α=1.
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Figure 11 it is clear to see that the difference between the flexible design strategy and
the abandoning design strategy increases when the connection fee increases. The cause of
this relationship is mainly due to the increase in revenue as α has a linear relationship with
revenue. At low α the difference between the committing design strategy and the
abandoning design strategy becomes negative. The negative value implies that, as the
connection fee decreases, the abandoning design strategy becomes more valuable than the
committing design strategy for the network developer. On the other hand, the flexible
design strategy performs better than the abandoning design strategy on all α values.
However, as α decreases the difference between the flexible design strategy and the
abandoning strategy decreases. Another observation from Fig. 11 is that the difference
between the flexible and the committing design strategies decreases when the connection
fee increases. The decreasing trend is due to the fact that as α increases its effect on the
revenue increases. That means the value of early commitment increases with increasingα.

4.4.2 Sensitivity to Initial Flow Estimate

In this section the effect of initial flow estimates is analyzed. Specifically, the mean
value of S1 is varied as S1 is used to make the case for uncertainty analysis in previous
steps (low flow rate in case of flow uncertainty and new source in case of participant
uncertainty). As the abandoning design strategy does take into account S1, the analysis
is focused on the flexible and the committing design strategies. The analysis carried out
for flow uncertainty and participant uncertainty.

Figure 12 shows the performance of the flexible and the committing design strate-
gies versus the mean value of S1. It is clear to see that both design strategies increase
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with increasing mean value of S1. This is due to the linear relation between flow rate
and revenue. Up to a mean value of 400 m3 tone/year, the flexible design strategy
performs better than the committing design strategy. However, above 400 m3 tone/year
the committing design strategy appears to be better than the flexible design strategy.
The above observations indicate that at higher mean value of S1 early commitment is
valuable than investing on real options.

One the other hand, one can expect that the abandoning design strategy to have
constant value since there is no connection to S1. However, the lost opportunity due to
a potential increase in flow rate of S1 or avoided risk due to low flow rate from S1 by
the abandoning design strategy can be implicitly inferred by comparing it against the
other two design strategies. If the mean value of S1 increases, then the opportunity lost
by the abandoning design strategy increases. Conversely, if the mean flow of S1
decreases the risk avoided by the abandoning design strategy increases and at much
lower mean value, the abandoning strategy can become better than the committing
strategy.

The effect of the initial estimate is very strong for the case of participant uncertainty.
Figure 13, shows the effect of initial mean value of S1 on the performance of the
flexible and the abandoning design strategies. The performance of the flexible strategy
compared to the abandoning strategy largely depends on the time S1 is connected. If S1
joins the network early in the investment period, the value of the flexible strategy
increases or decreases proportional to the mean value of S1. Conversely, if S1 joins the
network later in the investment period, the value of the flexible design strategy
diminishes with increasing mean value of S1. For instance, if S1 joined the network
in year 7, the flexible strategy provides inferior value compared to the abandoning
strategy. The cost of having the real options for flow rate of 500 m3 tone/year is higher
than the cost for 100 m3 tone/year. At higher flow rate, the size of extra capacity to
accommodate flow increases will be larger. Moreover, as shown in Fig. 10, the value of
having the real options would be higher if S1 joins the network at year 3 than at year 7.
As a result, the value of the option with higher initial flow rate at year 7 becomes lower
than with lower initial flow rate. On the other hand, the performance of the abandoning
design strategy is the same as it does not depend on S1. Therefore, at year 7, the
difference between the flexible design strategy and the abandoning design strategy
decreases with increasing initial flow rate of S1.
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5 Conclusions

This paper introduces a method to enhance the value of networks by identifying
and integrating flexibility enablers under uncertainty. In the paper, we argued
that one way to design flexible networks is to adopt a real options-based design
approach. The proposed method uses a graph theoretical network model to
carryout out exploratory uncertainty analysis of design alternatives. The aim
of the exploratory analysis is to screen out promising design concepts out of
several alternatives. Once candidate designs are selected, design flexibility
analysis is carried out to improve the life cycle performance of networks by
considering uncertainties. The design flexibility analysis uses the concept of
real options to enhance the value of the network. The proposed design ap-
proach contrasts with the typical design and planning approach which tends to
focus on pre-defined requirements and often leads to inflexible and sub-optimal
networks.

Using a hypothetical pipeline-based network for demonstration purposes, the
method provides valuable insights to designers and decision makers on how to
design flexible networks under capacity and participant uncertainty. We found
out that building higher pipe capacity is valuable if flow rate increases from
existing sources and/or if new sources join the network in the future. Moreover,
the proposed method could provide valuable insight into which parts of the
network should designers include real options. Results reveal that physically
built-in capabilities, such as extra pipe capacities and lengths, provide easy and
cost-effective expansion option of the network when compared with a deter-
ministic design approach.

The procedure introduced in this study generally can be applied to most
pipeline-based network design problems including natural and bio gas pipeline
networks, water distribution networks and district heating networks. However,
different networks are subject to distinct costs and benefits and faced with their
respective sources of uncertainties; as a result, details of modelling and com-
putation may need to be adjusted to suit the particular network at hand.

Future works in this research include expanding the network model to multiple
sources and multiple sinks, cases other than pipelines such as electricity transmission
lines which have a different governing physics. Moreover, the utility of the proposed
method could be further increased by applying it on real case studies, and by taking into
consideration no-go areas such as parks and residential areas.
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Appendix: Cost and Revenue calculations

Investment cost and revenue calculation is required for making decisions weather to
make a connection to a given source or not.
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Cost Calculation

If a connection to S1 is delayed to year t, the present value of the cost of building the
network is the summation of the cost of edges in year 1 and the discounted value of the
cost for connecting S1 at year t as shown i’n Eq. A.1.

C Tð Þ ¼ C Tð Þy¼1 þ Cy¼t ðA:1Þ

where y stands for year, C Tð Þ y¼1 is the summation of the costs of edges in year 1, and
Cy¼t is the cost of pipeline from S1 to junction point j1 at time of connection t. C Tð Þ
y¼1 and Cy¼t are mathematically expressed as follows:

C Tð Þy¼1 ¼ ∑le*qβe ðA:2Þ

Cy¼t ¼ lS1; j1*q
β
S1; j1 ðA:3Þ

Expected Revenue Calculation

Revenues are calculated as the product of the volume flow rate and the price per
volume flow rate. The price could also be the service charge (e.g. connection fee) for a
unit pipe capacity required for connection. Revenues are calculated every year and
discounted to a present value using a discount rate of r. The summation of the

Fig. 14 Configuration of a network with option for future expansion
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discounted revenues from all sources over investment time of the project gives the
expected revenue of the network, Er.

Er ¼ α
X y

1

Ft

1þ rð Þy ðA:4Þ

where Ft is the summation of flow rates from all existing sources.
As noted, the decision rule checks if the connection to S1 is worthy by comparing the

cost incurred for enabling connection of S1 (summation of cost of the edge from junction
point to S1 and the extra cost of pipeline from junction point to the sink to accommodate
S1) with the expected revenue from S1. If the expected revenue from S1 is greater than the
cost for its connection, then S1 will be connected. However, if the flow is small in early
years, a case for differing the connection to S1 may be relevant. This means that the
algorithm has to check for delaying and abandoning strategies. In the cases of delaying
strategy, the algorithm checks for building real options in the capacity and the length of the
pipe. This requires calculating the cost of the options and comparing it against the
expected revenue from S1. The cost of taking real options for enabling the network to
be flexible for future connections and increases in flow rate is given as:

Coption ¼ C Tð Þy¼1 þ
Cy¼t

1þ rð Þt ðA:5Þ

where Coption is the cost of the option.
The expected revenue from S1 (Ers1Þ is calculated as

Ers1 ¼ α
X y¼n

y¼t

Fs1

1þ rð Þy ðA:6Þ

where Fs1 is the flow from S1.
If the expected revenue is greater than the cost of the real option built in, the algorithm

results in a network configuration with an option for future expansion. If the delaying
strategy is not worthy, the algorithm will choose the abandoning strategy. That means:if
Coption > Erð Þ s1, do not built an option, else if Coption < Erð Þ s1, build the option.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Ajah AN, Herder PM (2005) Addressing flexibility during process and infrastructure systems conceptual
design: real options perspective. IEEE, WaiKoloa, pp 3711–3716

Albanese C, Campolieti G (2006) The binomial lattice model. In: Advanced derivatives pricing and risk manage-
ment: theory, tools and hands-on programming application. Elsevier Academic Press, London, p 337–348

Austell M et al (2011) Development of large scale CCS in The North Sea via Rotterdam as CO2-hub, WP 4.1
Final report, s.l.: EU CO2 Europipe Consortium

An Approach for Integrating Valuable Flexibility 339



163

Babajide A, de Neufville R, Cardin M-A (2009) Integrated method for designing valuable flexibility in oil
development projects. Soc Pet Eng 4:3–12

Buurman J, Zhang S, Babovic V (2009) Reducing risk through real options in systems design: the case of
architecting a maritime domain protection system. Risk Anal 29(3):266–379

Canon AJ, McKendry IG (2002) A graphical sensitivity analysis for statistical climate models: application to
Indian Monsoon Rainfall prediction by artificial Neural Networks and Multiple Linear Regression. Int J
Climatol 22(13):1687–1708

Cardin M-A (2014) Enabling flexibility in engineering systems: a taxonomy of procedures and a design
framework. J Mech Des 136(1):1–14

Cardin M-A et al (2013) Emperical evaluation of procedures to generate flexibility in engineering systems and
improve lifecycle performance. Res Eng Des 24(3):277–295

Cardin M-A, Ranjbar-Bourani M, de Neufville R (2015) Improving the lifecycle performance of engineering
projects with flexible strategies: example of on-shore LNG production design. Syst Eng 18(3):253–268

Chen BY et al (2013) Finding reliable shortest paths in road networks under uncertainty. Netw Spat Econ
13(2):123–148

Chung BD, Yao T, Xie C (2011) Robust optimization model for a dynamic network design problem under
demand uncertainty. Netw Spat Econ 11(2):371–389

Czitrom V (1999) One-factor-at-a-time versus designed experiments. Am Stat 53(2):126–131
de Neufville R (2003) Real options: dealing with uncertainty in systems planning and design. Integr Assess

4(1):26–34
de Neufville R (2004) Uncertainty managment for engineering systems planning and design. Monograqph:

Engineering System Symposium, MIT, Cambridge
de Neufville R, Scholtes S (2011) Flexibility in engineering design. MIT Press, Cambridge
de Neufville R, Scholtes S, Wang T (2006) Real options by spreadsheet: parking garage case example. J

Infrastruct Syst 12(2):107–111
de Neufville R, Hodota K, Sussman J, Scholtes S (2008) Real options to increase the value of intelligent

transportation systems. Transp Res Rec 2086:40–47
de Weck O, de Neufville R, Chaize M (2004) Staged deployment of communications satellite constellations in

low earth orbit. J Aerosp Comput Inf Commun 1(4):119–136
Deng Y et al (2013) Valuing flexibilities in the design of urban water managment systems. Water Res 47:

7162–7174
Desai J, Sen S (2010) A global optimization algorithm for reliable network design. Eur J Oper Res 200:1–8
Flyvjberg M, Holm M, Buhl S (2005) How (in)accurate are demand forecasts in public works projects? The

case of transportation. J Am Plann Assoc 71(2):131–146
Goel V, Grossmann IE, El-Bakry AS, Mulkay EL (2006) A novel branch and bound algorithm for optimal

development of gas fields under uncertainty in reserves. Comput Chem Eng 30:1076–1092
Hassan R, de Neufville R (2006) Design of engineering systems under uncertainty via real options and

heuristic optimization. Real Options Conference, New York
Heijnen PW, Ligtvoet A, Stikkelman RM, Herder PM (2014) Maximising the worth of nascent networks.

Netw Spat Econ 14(1):27–46
Ibe OC (2013) Markov processes for stochastic modeling, 2nd edn. Elsevier Inc., London
Jablonowski C, Ramachandran H, Lasdon L (2011) Modeling facility-expansion options under uncertainty.

Soc Pet Eng 6(4):239–247
LiM,Gabriel SA, ShimY,AzarmS (2011) Interval uncertainty-based robust optimization for convex and non-convex

quadratic programs with applications in network infrastructure planning. Netw Spat Econ 11(1):159–191
Li T, Wu J, Sun H, Gao Z (2015) Integrated co-evolution model of land use and traffic network design. Netw

Spat Econ: 1–25
Lin J (2008) Exploring flexible strategies in engineering systems using screening models. Massachusets

Institute of Technology, Cambridge
Lin J, de Weck O, de Neufville R, Yue HK (2013) Enhancing the value of offshore developments with flexible

subsea tiebacks. J Pet Sci Eng 102:73–83
Mulvey JM, Vanderbei RJ, Zenois SA (1995) Robust optimization of large scale systems. Oper Res 43(2):

264–281
Ordóñez F, Zhao J (2007) Robust capacity expansion of network flows. Networks 50(2):127–180
Roy RK (2010) A primer on the taguchi method, 2nd edn. SME, Dearborn
Saltelli A, Chan K, Scott M (2000) Senstivity analysis: gauging the worth of scientific models, 1st edn. Wiley,

New York
Szeto WY, Jiang Y, Wang DZ, Sumalee A (2013) A sustainable road network design problem with land use

transportation interaction over time. Netw Spat Econ 15(3):791–822

340 Y. G. Melese et al.



164

Tarhini H, Bish DR (2015) Routing strategies under demand uncertainty. Netw Spat Econ: 1–21
van der Broek M et al (2010) Designing a cost-effective CO2 storage infrastructure using a GIS based linear

optimization energy model. Environ Model Softw 25:1754–1768
Wang T (2006) Real options Bin^ projects and systems design: identification of options and solutions to path

dependency. Dissertation, Massachusets Institute of Technology: Cambridge
Zhao T, Tseng C-L (2003) Valuing flexibility in infrastructure expansion. J Infrastruct Syst 9(3):89–97
Zhao F et al (2015) Population-driven urban road evolution dynamic model. Netw Spat Econ: 1–22

An Approach for Integrating Valuable Flexibility 341



165



166

Cooperation under uncertainty: Assessing the value of risk
sharing and determining the optimal risk-sharing rule for agents

with pre-existing business and diverging risk attitudes

Yeshambel Melese a,⁎, Sara Lumbreras b, Andrés Ramos b, Rob Stikkelman a, Paulien Herder a

a Delft University of Technology, Department of Infrastructure Systems and Services, The Netherlands
b Comillas Pontifical University, Institute for Research in Technology, Madrid, Spain

Received 9 May 2016; received in revised form 15 November 2016; accepted 30 November 2016
Available online 14 December 2016

Abstract

The allocation of risk among the cooperating parties in a shared project is an important decision. This is especially true in the case of
large infrastructure investments. Existing risk allocation methods are either simplistic or do not consider the effect of the agents' pre-existing
businesses. In this paper, we model and analyse the effect of risk sharing when two agents want to co-develop an energy infrastructure project in an
uncertain environment. The cooperating agents have a pre-existing risky business, and the new common project has a deterministic initial cost but
random revenue potential. Our analysis shows that the optimal risk-sharing rule depends not only on the agents' risk aversions but also on the
volatility of the common project profit, the volatilities of the agents' pre-existing businesses and the correlation of each agent's pre-existing
business with the common project. An illustrative example based on energy infrastructure is used to show the implications of the sharing rule for
partners.
© 2016 Elsevier Ltd. APM and IPMA. All rights reserved.

Keywords: Energy infrastructure investment; Risk sharing; Cooperation; Contracts; Uncertainty; Risk averse agents

1. Introduction

The selection of partners in a joint venture and the allocation
of risk among them are important decisions that have a deep
impact on the success of the project. However, the existing
methods in the literature only consider the agent's risk aversion,
leading to the least risk-averse agent taking a higher share of
the risk. However, determining the best risk-sharing approach
should take other factors into account such as the agent's
pre-existing businesses. This paper answers this question,
developing a model to determine the value of risk sharing –
that is, how much value the coalition brings with respect to
the project being developed by a single partner. Contrary to

existing approaches, our developed value of risk sharing considers
the agents' pre-existing business and their correlation to the joint
venture, together with their risk attitudes. The model provides
valuable insights for the most favourable design of a coalition and
the risk-sharing contract in order to get the most of the benefits
of cooperation.

Cooperation is even more important in infrastructure projects
given their high capital intensity, which makes it necessary to
form partnerships face the needs for investment in an efficient
way. Specifically, the energy sector has recently experienced
an increased need for cooperation which we would like to
highlight, as it provides a further specific context for this need.
Agents in the energy sector are increasingly seeking cooperation
to cope with the competitive and complex energy landscape
caused by forces such as liberalization, deregulation, renewable
energy integration, and climate policies (Ligtvoet, 2013). This
can be seen in several large scale joint infrastructure project
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initiatives and plans. For example, in the USA, regional trans-
mission operators are cooperating to develop inter-regional
electricity transmission lines to facilitate the integration of
renewable energy sources that span across multiple regions
(MIT Energy Initiative, 2011). In Europe, bordering transmis-
sion operators are cooperating to invest in cross-border trans-
mission to facilitate electricity market integration (Brancucci
Martínez-Anido, 2013). Moreover, new regulatory frameworks
are being introduced to encourage cooperation in electricity
markets integration (Böckers et al., 2013), renewable energy
integration (EU Commission, 2006), electricity and gas in-
frastructure development and upgrade (Henry et al., 2014;
Brancucci Martínez-Anido, 2013), energy efficiency (Nauleau
et al., 2015), and CO2 emission reduction (RCI, 2011).

The rationale for cooperation in infrastructure projects is
multiple: it enables agents to minimize the effects of uncertainty
by aligning their interests (Ligtvoet, 2013); provides strategic
advantages such as the ability to achieve objectives faster,
getting access to know-how or to markets, cost advantages,
transfer or complementarity of technologies, and economies of
scale (Williamson, 1979; Bronder and Pritzl, 1992; Guoa et al.,
2014). However, cooperation is not always straightforward, and
various uncertain factors expose parties to different kinds of
risks (Lam, 1999; EU Commission, 2006). On the one hand,
large-scale infrastructure projects are particularly subject to risk
due to large initial costs, high irreversibility (sunk costs), and
long-term durability of assets (Lam, 1999; Boatenga et al.,
2015). On the other hand, cooperation involving infrastructure
(and energy infrastructure in particular) is complex as multiple
agents are involved with different objectives and constraints. By
its own nature, cooperation is a multi-motive game. Because each
party displays a rational behaviour, there are considerable costs
and risks involved in the decision to join a project (Williamson,
1979; Nooteboom, 2000). The presence of endogenous uncer-
tainty (e.g. strategic behaviour) (Berger and Hershey, 1994;
Grundy, 2000) and exogenous uncertainty (e.g. technology,
market, regulatory changes) often lead to a deadlock in which
decision-making stagnates as parties become increasingly risk
averse and are afraid to ‘bet on the wrong horse’ (McCarter et al.,
2010; Gong et al., 2009). Therefore, with incentives on one
hand and costs and risks on the other, the challenges in most
infrastructure development cooperation projects are: (1) How
will the associated risk and value be shared among the partners?
(2) How should we structure contracts to enhance synergies at an
acceptable level of risk?

In the strategic management literature, the discussion on
the allocation of benefits and risks from cooperation under
uncertainty is based on two perspectives: a value-creation
perspective and a risk-sharing perspective. The value-creation
perspective takes the view that agents cooperate to gain value
and hence focuses on the allocation of value from cooperation
(Folta and Miller, 2002; Holta et al., 2000). In that respect,
real-options valuation is receiving increasing attention as a tool to
analyse the value of cooperation, see for example (Kogut, 1991;
Liu et al., 2014; Park et al., 2013). The risk-sharing perspective
uses the concept of risk sharing to explain the motive for
cooperation and allocation of risk among cooperative agents

(see for example Allen and Lueck, 1999; Medda, 2007; Blenman
and Xu, 2009).

Regarding the allocation of value from cooperation, the
literature has also come a long way from deterministic cooperative
game theory models of Nash (1950), Nash (1953) and Shapley
(1953) to models for stochastic payoffs (Suijs et al., 1999; Savva
and Scholtes, 2005). The literature on optimal risk sharing between
two parties was first analysed by Borch for the specific case
of insurance contracts (Borch, 1962). Later, Wilson led the
research for efficient risk sharing in syndicates (Wilson, 1968)
and more recently this was advanced by Pratt (Pratt, 2000).
Various risk-sharing allocation techniques have been presented for
infrastructure investments. (Lam et al., 2007) used qualitative
risk allocation for construction projects using a fuzzy inference
mechanism. Medda (2007) used a game theoretical approach to
the allocation of risks in transport public-private partnerships.
Other techniques applied to this problem include Artificial Neural
Networks (Jin and Zhang, 2011) or fuzzy system dynamics
(Nasirzadeha et al., 2014). However, all these previous works
largely focus on closed contracts where the only payoff comes
from the joint investment, and the effects of the agents' pre-existing
businesses are ignored. Moreover, the methods used to model the
uncertainty in the future performance of the common project
are either deterministic or relatively simplistic, while the future
revenues from most infrastructure investments are stochastic.

In this study, we deal with stochastic revenue and consider
the correlation of the pre-existing businesses of cooperating
agents with the common project. We use concepts from the
risk-sharing literature to model a risk-sharing contract between
two risk-averse agents who invest in a common project.
Then, we apply cooperative game theory to analyse the synergy
effects of risk sharing. A stylized case example loosely inspired
by a joint venture created to develop a merchant electricity
interconnector between the Netherlands and the UK, known as
BritNed (BritNed, 2015) is used to illustrate the implications of
this research.

This paper adds to the existent literature in two ways: we
study the value of cooperation considering that the participants
have pre-existing businesses that are correlated with the joint
venture and that these agents can have diverging risks attitudes.
We also develop the rule for optimal risk sharing –i.e. how
much of the risk should be borne by each agent-. These results
can be used to select among possible partners so that the value
of cooperation is better and to support negotiations.

The paper is organized as follows. Section 1 introduces the
work. Section 2 provides the basic model set-up and assumptions.
Section 3 solves for the optimal linear contract between the two
agents. Section 4 introduces uncertainty in the form of difference
in contract design between cooperating parties and solves for the
real option value of risk sharing. Section 5 presents computa-
tional results and analysis of optimal risk share and values of risk
sharing.

2. Modelling revenue and profit

Let's take two agents (i=1 ,2) who intend to create a joint
venture to share the development cost and future profit of an
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energy infrastructure project. Each agent has a pre-existing
risky business before the possibility of investing in the common
project is considered. Moreover, agents agree to share the
profit risk associated with the common project. We assume that
cooperating agents observe the evolution of the joint cooper-
ative project's value and they have symmetric information. All
parties have access, ex-post, to the true realized returns of the
common project. All profits of the new venture will be shared
between the two agents. The applicability of the proposed
model is general but throughout the paper a joint project to
develop a merchant transmission line is used as an illustrative
case.

We assume that the future performance of the common
project is uncertain and follows a stochastic process. For
example, in merchant power interconnectors1, the daily
revenue is stochastic due to the random nature of congestion
revenue, which depends on daily electricity demand and nodal
prices (Salazar et al., 2007). There is an array of approaches
(e.g., Brownian motion, mean reverting process) that can be
used to model the revenue time series (Dixit and Pindyck,
1994). Geometric Brownian Motion (GBM) processes are
frequently applied to model stochastic price and revenue
behaviours. Salazar et al. (2007) and Fleten et al. (2011)
employed a GBM process to model electricity prices for an
economic analysis of merchant power interconnectors. Brandao
and Saraiva (2008) and Carbonara et al. (2014) used GBM
process to model revenue in infrastructure projects.

Although GBM is preferred for the purposes of price
modelling, it fails to effectively model profit and cash flows as
it does not allow for negative realizations. Arithmetic Brownian
Motion (ABM) processes are frequently used to model
economic performance measures that can become negative
(e.g. profits) (Copeland and Antikarov, 2001). Since the
revenue of merchant interconnector project depends on price
differences between the connected markets, ABM can be used
to model its dynamics over time. Moreover, if the price of each
individual price region is modelled using a GBM process, the
dynamics of the difference can be reasonably approximated
using an ABM process (Carmona and Durrleman, 2003).
Therefore, in this study, we assume that the investment-flow
returns follow an ABM process.

An ABM process representation of profit p(t) at any time is
given by

p tð Þ ¼ p0 þ μt þ σW tð Þ; ð1Þ
where p0 is the initial value, μ is the expected return (the drift),
and σ is the volatility of profit.

To illustrate the risk-sharing rule, we consider the following
cooperation scenario. The agents agree on creating the joint
venture S at time t=0. Then, at time t= τ b T, the partners
decide to sign a risk-and-profit-sharing agreement based on the

discounted value2 of the common project's profit for the period
[τ,T]. Therefore, we are interested in the distribution of
the present value of the profit of the three entities: i.e. the
common project and the two pre-existing business of the
agents. Mathematically, the present value of an ABM process
can be reasonably approximated using a normal distribution
(Ross, 1999; Cartea and González-Pedraz, 2012). Therefore, a
time = τ b T, the profits of the common project and the agents'
pre-existing businesses are denoted as follows:

▪ xi0ðτÞ = the discounted value of the profit from agent i's
existing business.

▪ xi1ðτÞ = the discounted value of the profit if either of the
agents invests on the joint venture alone.

▪ x(τ) = the discounted value of the profit from the common
project.

▪ xi(τ) = the discounted value of the profit from the joint
venture received by agent i.

The expressions of the distributions of the pre-existing
business and the common project are shown as follows.

xi
0 τð Þ � N μ0

i ;σ
0
i

� � ð2Þ

x τð Þ � N μs;σsð Þ ð3Þ

Whether the agents decide to take up the new project as a
single investor or together as a joint project, it is important to
define the relationship between the joint venture and their
existing projects. Since the two agents have some existing risky
businesses, their decision whether to invest in the shared
infrastructure project or not depends on their pre-existing
business and the characteristics of the new shared project. For
example, if two neighbouring countries jointly invest in an
electricity interconnector, the electricity prices in both countries
will be affected and that in turn will affect the revenue of
transmission operators and generators in each country (Parail,
2009). As a result, neighbouring countries (at least the
transmission operators and generators in the high electricity
price market) have the interest to keep the two electricity
markets separate (Kristiansen and Rosellón, 2010; Parail,
2010). In order to take into account the influence of the
new common project, we consider its correlation with the
pre-existing businesses of the two agents.

The dependence between the pre-existing businesses and
the common project is determined by a linear correlation
coefficient ρi (Pastore, 1988). This correlation coefficient
takes a value between 0 and 1, i.e. −1≤ρi≤1. If ρi=0,
then the common project and the pre-existing business are
independent. If 0bρib1, then the two are positively correlated
and if −1bρib0, then they are negatively correlated.

The sum of two dependent normal distributions (which
can each describe the present value of an ABM-cash-flow) is

1 Merchant electricity interconnector, also called non-regulated transmission
investment, is an arrangement where a third party constructs and operates
electric transmission lines between unrelated electricity markets, often across
borders. Interconnectors are the physical links which allow the transfer of
electricity across borders.

2 In a continuous-time game the payoffs are realized along the time of the
cooperation. However, we assume that agents evaluate the worth of cooperation
(i.e. their individual share) by discounting the sum of future payoffs at the time
of entering into the cooperation.
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a normal distribution (Pastore, 1988). By this principle, we
can define the distribution parameters of xi1 and xi(τ) based on
Eqs. (2) and (3).

If one of the agents carries out the investment alone3, the total
uncertain payoffs can be obtained by adding the payoff from
the existing business and the payoff from the common project.

xi
1 τð Þ ¼ xi

0 τð Þ þ x τð Þ ð4Þ
Therefore, xi1ðτÞ is given as

xi
1 τð Þ � N μ1

i ;σ
1
i

� � ð5Þ

where μi
1 =μi

0 +μs and σ1
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ0

i Þ2 þ σ2
s þ 2ρiσ

0
i σs

q
.

Similarly, if the agents cooperate the total value of each
agent's payoff from engaging in the joint venture is the sum of
the uncertain payoff from the existing business and a share
φi∈ [0, 1] of the uncertain payoff from the joint venture. Here
we define the risk-sharing contract to be a rule to calculate the
percentage share of the equity stake in the common project.
Therefore, if the agents cooperate in developing the project the
cash flow depends on the contractually agreed share rule φi.

xi τð Þ ¼ xi
0 τð Þ þ φix τð Þ ð6Þ

xi τð Þ � N μi;σið Þ ð7Þ

where μi=μi
0 +φiμs and σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ0

i Þ2 þ φ2
i σ2

s þ 2ρiφiσ
0
i σs

q
.

The probability density distribution of a normal distribution
function x with mean μ and variance σ2 is expressed as

f x;μ;σð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e−
x−μð Þ2
2σ2 ð8Þ

Inserting the mean and variances of Eqs. (5) and (7) in
Eq. (8) we get a probability density distribution of for xi1ðτÞ
and xi(τ).

f xi
1 τð Þ� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π σ2
i þ σ2

s þ 2ρiσiσs

� �q e
−

xi
1− μiþμsð Þð Þ2

2 σ2
i
þσ2sþ2ρiσiσsð Þ ð9Þ

f xi τð Þð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π σ2

i þ φ2
i σ

2
s þ 2φiρisσiσs

� �q e
−

xi
1− μiþφiμsð Þð Þ2

2 σ2
i
þφ2

i
σ2sþ2φiρisσiσsð Þ

ð10Þ
The expressions in Eqs. (9) and (10) respectively show

the probability distribution of profit for each agent if they
invest in the common project alone and if they invest jointly.
Determining the profit distributions in Eq. (9) requires only
calculating the correlations (ρi) between the profit from the
agents' pre-existing businesses and the profit from new
common project, given their distribution is known. However,

determining the profit distributions in Eq. (10) requires deriving
the optimal risk sharing ratio (φi) in addition to correlation. In
the next section we use utility theory to derive the optimal risk
share ratio.

3. Optimal risk-sharing rule

In the previous section, we define the uncertain profit agents
will receive when they engage into a shared investment.
However, the value of the uncertain payoff depends on the risk
preference of the agent. Without loss of generality, we assume
both agents are risk averse. A risk-averse agent is reluctant to
accept a bargain with an uncertain payoff compared to another
bargain with a more certain, but possibly lower, expected
payoff (Pratt, 2000). We model the payoff preference of agents
using expected-utility functions (Schoemaker, 1982), i.e. party i
prefers an uncertain payoff X over an uncertain payoff Y if
E[Ui(X)]NE[Ui(Y)] where Ui is a suitable utility function (Pratt,
1964). The underlying assumption is that the agents' perception
of risk can be fully captured by the expected utility function,
which reflects the value of the payoff share from the common
project. Utility function translates each of the possible payoffs into
a non-monetary measure known as utility. For tractability reasons,
we consider a negative exponential utility function assuming the
agents that the risk preference of each firm is governed by a
constant absolute risk aversion (CARA)4 utility function.

U Xð Þ ¼ −e−γX; ð11Þ
where U(X) represents the utility function, X is the evaluation
measure (such as profit or cost), γ is a constant that describes risk
aversion. The degree of risk aversion that is appropriate depends,
for instance, on the nature of the agent or on its asset position
(Pratt, 1964). CARA means that, if we change a uncertain payoff
X by adding a fixed additional amount of money to the agent's
payoff in all possible outcomes of the gamble, then the certainty
equivalent of the gamble should increase by this same amount.
Constant risk aversion is widely used for practical decision
analysis due to its convenience (Myerson, 2004). Moreover,
constant risk aversion allows us to evaluate independent uncertain
payoffs (i.e. P(t) and Pi0ðtÞ) separately.

For a CARA utility function shown in Eq. (11), the expected
utility of Eq. (8) is given by5

EU xð Þ ¼ −e−γ μ−γσ2
2

� �
ð12Þ

Using the same formulation xi(τ) can be given by

E U xið Þð Þ ¼ −e
−γi μ0

i þφiμs−γi
σ0
ið Þ2þφ2

i
σ2sþ2ρiφiσ

0
i
σs

2

� �

ð13Þ

Eq. (13) shows that the expected utility of the discounted
value of the joint venture for agent i is a function of her share

3 However, for reasons of risk and other regulatory barriers, they are not
willing to do it alone or not allowed by law. This is often the case for cross-
border power transmission investment.

4 The assumption of CARA utility function may seem far from reality
compared to constant relative risk aversion (CRRA). However, the kind of
utility function that describes the average is still controversial.
5 See Sargent and Heller (1987) for the proof.
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from the joint venture and the correlation of her existing
business to the new joint venture.

For CARA utility function, γiN0 implies that agents are
risk averse. Therefore, for each random xi, an agent prefers
receiving the expected payoff E[xi] with certainty to receiving the
random payoff xi. Moreover, agent 1 is more risk averse than agent
2 if γ1Nγ2

6.Therefore, we can define the certainty equivalent
(CE) of a random payoff xi by CEi (xi)= Ui

−1 (E(Ui (xi))),
provided that the expected utility exists. Then, for all these
random payoffs xi, E(Ui(CEi(xi)) ≡Ui(CEi(xi)) = E(Ui(xi)) holds.
Since the expected utilities equal one another, agent i is
indifferent between the random payoff xi and the deterministic
payoff CEi(xi). Therefore, the certainty equivalent expression of
distributed xi is given by

CEi xið Þ ¼ μ0
i þ φiμs−γi

σ0
i

� �2 þ φ2
i σ

2
s þ 2ρiφiσ

0
i σs

2
ð14Þ

Individual rationality dictates that each agent will try to
maximize their expected utility. Then the question becomes:
what is the optimal contract for two agents to efficiently share
the risks involved in a cooperative project?

To derive the optimal risk-sharing rule, we assumed that
parties act cooperatively and have symmetric information about
the characteristics of the venture. The returns to the venture are
also verifiable ex-post, and the management of the joint venture
acts to maximize the joint venture profits. It is also rational to
think that both firms prefer to take up as little risk as possible
while trying to increase their own gain. However, for risk-
averse firms with a concave utility function, marginal gains
decrease as risk taking decreases. Furthermore, this rate of
reduction of marginal gains will be different for both players in
view of their differing risk aversion levels. Therefore, the task
for a rational firm in such situation is to optimize the amount of
risk-taking in relation to the amount of gain.

The maximum total value of the joint venture will be
obtained at a risk-sharing rule where the marginal value of
taking up some infinitesimal fraction of the risky venture is the
same for both agents (Bolton and Dewatripont, 2005). If
the marginal gains were different for the two agents, it would
be possible to add to the total value by taking away an
infinitesimal amount of risk from the firm with the smaller
marginal gain and giving it to the firm with a larger marginal
gain. Therefore, the first optimality condition equates the
marginal gains of the uncertain payoff of the two agents (Borch,
1962).

d
dφ1

CE1 x1ð Þ þ d
dφ2

CE2 x2ð Þ ¼ 0
X
i¼1;2

φi ¼ 1
ð15Þ

where, φ1 is the share of agent 1 and the share of agent 2 is
1−φ1. The expression in Eq. (15) means that the risk sharing

problem is given as a maximum of the sum of the certainty
equivalents of the two agents.

x τð Þ� ¼ max
φ1

CE1 x1ð Þ þ CE2 x2ð Þ½ � ð16Þ

Inserting Eqs. (14) in (15) and rearranging, we get the optimal
share of the risk φ1⁎ for agent 1.

φ�
1 ¼

γ2
γ1 þ γ2

þ ρ2s
γ2

γ1 þ γ2

σ0
2

σs
−ρ1s

γ1
γ1 þ γ2

σ0
1

σs
ð17Þ

With 0bφi⁎b1 and∑i¼1;2φ
�
i ¼ 1:

Note that the optimal risk-sharing rule does not depend on
the mean rate of the returns of the pre-existing businesses
(μ1 and μ2). Only the risk aversion of the two parties, the
volatilities of the pre-existing businesses and the correlations of
the pre-existing businesses with the joint venture affect the
optimality conditions. There is no risk-sharing agreement when
φ1⁎=0,φ2⁎=1, or equivalently

γ1
γ2
¼ σsþρ2sσ2

ρ1sσ1
; or φ2⁎=1,φ2⁎=0, or

equivalently γ1
γ2
¼ ρ2sσ2

ρ1sσ1þσs
. The condition that 0bφi⁎b1 can be

equivalently expressed as 0bγ2(σs+ρ2sσ2)−γ1ρ1sσ1b (γ1+γ2)σs.
This condition is expressed with the parameters that represent
the distribution of profit from the agents' existing businesses and
the common project, and the agents' risk aversions.

Let us define the following variables that depend on risk
aversion, correlation, and volatility:

K1 ¼ γ2
γ1

;K2 ¼ ρ1s
σ1

σs
; and K3 ¼ ρ2s

σ2

σs
; for ∀γ1;∀σs ≠ 0

Then, the condition for the existence of a feasible risk sharing
agreement is given as:

K1N0
K2 bK1 1þ K3ð Þ
K2NK1K3−1

ð18Þ

An important feature of expression (17) is that it is time-
invariant. This implies that after the risk-sharing contract has
been agreed neither party will have an incentive for dynamic
re-negotiation of their respective risk share unless these correla-
tions and volatilities change.

3.1. The effect of correlation

In expression (17) we can see that the optimal amount
of risk an agent is willing to take partly depends on the
correlation of the agents' existing projects with the common
project. If there is no correlation between the common project
and the agents' existing businesses the optimal risk share is
only a function of the agents´ risk aversions ( for instance for
agent 1, φ�

1 ¼ γ2
γ1þγ2

). In such case, the certainty equivalent of

agent i is given by:

CEi ¼ μ0
i þ φ�

i μs−γi
σ0
i

� �2 þ φ�
i

� �2
σ2
s

2
ð19Þ6 By changing the signs of the parameter γi, the utility function becomes

convex and, as a consequence, the player will be a risk-seeker.
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If the pre-existing businesses and the new common project
are correlated the agents' certainty equivalents can be found by
using Eq. (20).

CEi ¼ μ0
i þ φ�

i μs−γi
σ0
i

� �2 þ φ�
i

� �2
σ2
s þ 2ρi φ

�
i σ

0
i σs

2
ð20Þ

Then, the effect of correlation can be obtained by subtracting
Eq. (19) from Eq. (20) as shown in Eq. (21).

CEi−CEi ¼ μs φ�
i −φ

�
i

� �
−
γiσ

2
s

2
φ�

i

� �2− φ�
i

� �2� �
−γiρiφ

�
i σ

0
i σs

ð21Þ
It can be seen that the correlation coefficient (i.e. ρiN0

or ρib0) affects the value of the right-hand side of Eq. (21).
Using expression (21) agents can get valuable insight, at least at
exploratory stage of cooperation, about the effect of the new
project to their overall expected utility.

3.2. The value of risk sharing

In this section, we derive the value of risk sharing that can
be obtained from cooperation. We treat cooperation in the
joint venture as an investment option that can be exercised
by committing some given capital. As with any investment,
cooperation in the joint venture comes with its own risks. As
a result, at the conceptual stage of the cooperation agents
have three options: exercise the investment in the project
through cooperation, invest in the project alone or do nothing.
We refer to the first one as cooperation option. The solo investment
and the abandoning options are referred as non-cooperation
options.

If agent i neither cooperates or invests alone (i.e. carry out
only existing project), the certainty equivalent of the uncertain
payoff from the existing project xi

0 is given by

CE0
i ¼ μ0

i −γi

σ0
i

� �2
2

: ð22Þ

If either of the agents invests alone, then the certainty
equivalent of the uncertain profit xi

1 is given by

CE1
i ¼ μ0

i þ μs−γi
σ0
i

� �2 þ σ2
s þ 2ρiσ

0
i σs

2
: ð23Þ

In this case, the value of risk sharing for each agent, VoRsi,
can be obtained by comparing the utility agent i gets from the
cooperation option with that of the non-cooperation options.
The value of cooperation via risk sharing can be obtained by
subtracting the maximum of the certainty equivalent values of
the two non-cooperation options from the cooperation.

VoRsi ¼ CEi−max CE1
i ;CE

0
i

� � ð24Þ
Expression (24) allows us to define the condition under

which partners will choose cooperation to undertake a project
when there is a background risk (from their existing business)
and project risk (from the common project), provided that they

can also consider investing on their own. It shows the minimum
of the value that the agent gets as a result of cooperation.
Theoretically, the minimum VoRsi should be greater than zero
for the agent to engage into cooperation. Otherwise, the agent
could compare the maximum of CE1 and CE0 to either invest in
the project alone or not invest at all. Expression (24) can also be
used by individual agents to select a cooperating partner to set
up a joint venture for a project. Different agents are most likely
to have different background risks, resulting in an increase in
the value of risk sharing. Using expression (24), agents can
compare the amount of value they obtained by sharing the risk
of the common project with the different kinds of prospective
partners who have different background risk.

3.3. The risk-sharing zone

In expression (24), we present a model to determine the
value agents get if they take an optimal share of the risk. The
direct takeaway from Eq. (24) is that depending on the VoRs
agents can decide whether to engage in cooperation or not.
However, cooperation could be possible if one agent has a
positive VoRs and can transfer a portion of the surplus to
the other agent with negative VoRs. In this section, we check
whether cooperation is possible via a side payment. We assume
that agents agree on the cooperation at time t=0. Then, after
uncertainty is resolved, they decide to exercise the cooperative
option t= τ b T and receive an instant payoff. The core of a
cooperative game is the set of payoff allocations that make both
partners better off than if they were to go it alone. i.e.

CEi≥CEi
1

X
i¼1;2

CEi ¼ CE:

A payoff for either firm is in the core if

CEi
1≤CEi≤CE: ð25Þ

The focus now is to define the risk-sharing-value core in
which cooperation is possible. In this core, partners can agree to
maximize the sum of their certainty equivalents by sharing the
risky returns in proportion to their respective risk tolerances.
We will focus on linear contracts, i.e. agreements involving a
deterministic cash payment Di and a share φi of an uncertain
payoff CE at t =τ. The total payoff of agent i from the joint
project will be

CEi ¼ Di þ φiCE: ð26Þ

Linear contracts are very common in most joint-venture
revenue-and-cost-sharing arrangements (Bolton and Dewatripont,
2005; Savva and Scholtes, 2005). In Eq. (17) we derived the
optimal share of risk when two agents cooperate to maximize
their joint certainty equivalents. However, the optimal risk-
sharing rule only specifies how much risk each player will take
and does not determine the optimal payoff for each agent from
the cooperation. This is because the deterministic amount Di that
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the two agents exchange is not constrained and is determined
through negotiation.

To know the amount of Di let us define the sharing rule in a
situation where agent 1 owns the option to develop the project
alone. For agent 2, there is always the alternative of not
participating in the project with a zero payoff. The best sharing
rule for agent 1 would be one that maximizes 1's certainty
equivalent subject to the constraint that 2's certainty equivalent
should not be less than zero. The best sharing rule can be
achieved by sharing in the optimal proportions, to maximize
the sum of the each agent's certainty equivalents, with an
additional payment from agent 2 to agent 1 on the condition
that 2's certainty equivalent should be equal or greater than
zero. The best possible sharing rule for agent 1 would be to sell
agent 2 an optimal share of the project which is φ2⁎. The
maximum price of the optimal share of the investment is equal
to φ2⁎*CE. Agent 1´s overall certainty equivalent is equal to
(φ1⁎*CE)+ (φ2⁎*CE). This value is the maximum sum of
certainty equivalent that the two partners can get from the
project and it is allocated to agent 1.

However, agent 2 would prefer to pay less than φ2⁎*CE for
an optimal share φ2⁎. Agent 2 may try to negotiate for lower
price. The negotiated price that is given from agent 2 to agent 1
for an optimal share of the project is the cash D. Although D is
determined through negotiation it has minimum value that
agent 1 can accept. At the minimum, D should make agent 1´s
certainty equivalent better than owning 100% of the project
alone. Hence, the conditions for the core of the cooperation
game, subject to optimal sharing, is given as

CE1 þ D≥CE1
1

CE2≥DX
i¼1;2

φ�
i ¼ 1:

The first two conditions guarantee that the optimal share
value, as estimated by each agent, is at least as good as going
it alone and the third condition will ensure efficient risk
sharing. Then, the core of the cooperation game captures the
risk exchange zone. In this case, the risk exchange zone is
determined by the amount of D that is exchanged between the
two agents. It is given as follows:

CE1
1−CE1≤D≤CE2 ð27Þ

It can be seen from Eq. (27) that the core of the cooperation
game is non-empty as long as D is positive7. A non-empty core
indicates that there are gains to be made by cooperating via risk
sharing. In other words, the risk-sharing zone is the risk-sharing
core of the contract. It can also be seen from expression (27)
that the size of the risk sharing core depends on the risk
aversion γi of the two agents in addition to the variances σ1, σ2

of the pre-existing businesses and the correlations ρ1 and ρ2 of
the pre-existing businesses with the joint venture.

So far, we have seen the value that risk sharing provides
for risk-averse agents seeking cooperation. We showed that for
a stochastic cooperative joint venture between agents with a
CARA utility function, linear contracts provide Pareto-efficient
payoff allocation and allow an optimal risk-sharing rule. We
assumed that agents maximize their joint welfare and under that
assumption, linear contracts can provide optimal risk sharing
mechanism. The optimal risk sharing contract is determined by
the exchange of a negotiated cash payment from one party to
another. It is dependent not only the parameters that affect
the optimal risk share (i.e. risk aversion γi, volatilities σ1, σ2 of
the pre-existing businesses and the correlations ρ1 and ρ2 of
the pre-existing businesses with the joint venture), but also
the agents' relative bargaining power (Choi and Triantis, 2012;
Murnighan et al., 1988).

4. Illustrative example

In this section, we provide an example of our results for
illustration purposes. Specifically, we present analyses of the
effect of correlation on the optimal risk share and the value
risk sharing for cooperating partners. A stylized joint invest-
ment on merchant electricity interconnector is used for
demonstration. We provide some background that presents the
need for analysing the value of risk sharing in this specific
situation. However, the example should be taken only as an
illustration rather than a numerically accurate case study. Fitting
model parameters would require access to confidential infor-
mation and interactions with the agents in order to extract
accurately their risk preferences, and it would not add to the
illustration intended, which considers many different possible
values for the parameters.

4.1. Problem background

The current electricity infrastructure across the EU is outdated
and inefficient and bottlenecks prevent efficient transmission of
electricity from one part of Europe to the other and from one
country to another (Norton Rose Fulbright, 2014). The lack of
much new public interconnection investment has induced the
European legislator to opt for merchant transmission projects
(Parail, 2009). Merchant projects could be carried out by new
actors as in the case of East–West cables and by incumbent
transmission system operators (TSOs) as in the case of BritNed
(Supponen, 2011). However, investment by new actors to
connect different market regions is discouraged by the protection
tendencies of incumbent TSOs on both sides of the market
(Kristiansen and Rosellón, 2010). As a solution, regulators allow
incumbent TSOs of both regions to invest in the interconnection
as merchant project. A notable example is BritNed merchant
interconnector between the UK and the Netherlands (BritNed,
2015).

There is a conflicting choice between national and company
interests in cross-border transmission investments (Supponen,
2011). From the national perspective, the motivation for
interconnector investment originates from a need to improve
the security of supply, facilitate renewable energy integration or

7 Individual rationality is the boundary condition for having non-empty core
of the cooperative game.
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electricity price reduction (Kristiansen and Rosellón, 2010).
For example, the major motivation for expanding the Germany-
Netherland interconnector capacity is Germany's increasing
share of electricity from wind which can be exported to
Norway. The major motivation for constructing the NorNed
cable is the security of supply, since Norway is almost entirely
dependent (99%) on hydro generation, and the Nederland is
predominantly thermal. BritNed has been undertaken because
of security-of-supply issues and the European Commission's
desire to link electricity markets. However, from a TSO
perspective, the project is risky. For instance, historically
the Netherlands has been a higher-priced country (especially
during peak hours) relative to its neighbours. From an orga-
nizational perspective Tennet (the Dutch TSO) has an incentive
to isolate the market, while the Dutch regulator's objective
is to introduce renewable energies in an otherwise thermal-
dominated system. On the one hand, there are national interests
and associated incentives to cooperate. On the other hand,
there are costs and associated risks. Therefore, TSOs need to
understand the effect of cooperation: i.e. the share of risk
during cooperation, the potential value of cooperation and the
effect of the interconnector on their existing business. Next,
a simplified Numerical analysis is presented to demonstrate
these issues.

4.2. Major assumptions of the case study

The main parameter values defining the performance of
the three entities and the risk aversion of the agents are shown
below, in annual terms.

• Initial cost of the common project Cs=15
• Distribution of revenue of the common project μs=40,
σs=20

• Distribution of revenue of the agent 1 μ1=400, σ1=100
• Distribution of revenue of the agent 1 μ2=250, σ2=50
• Risk aversion of agent 1 = 0.1
• Risk aversion of agent 2 = 0.3

As highlighted above, although this case study is inspired
by BritNed, the situation is hypothetical, and the estimated
parameter values are intended for illustration only.

4.3. Effect of correlation on the risk sharing ratio

Fig. 1 shows agent 1's optimal share of risk as a function
of correlation coefficients assuming constant risk aversion. In
Fig. 1a it can be seen that, for ρ1sN0, agent 1's share of risk
decreases linearly as the correlation between its pre-existing
business and the common project increases. On the other hand,
for ρ1sb0, the optimal share of risk for agent 1 increases as its
correlation increases. Fig. 1a also shows that the risk share of
agent 1 depends on ρ2s as well. It can be said that the risk share
of agent 1 increases as the correlation of agent 2 shifts from
negative to positive. However, it is important to notice that
for a given correlation coefficient of agent 2, the correlation
coefficient of agent 1 should be between certain value range
for optimal risk sharing to exist. For example, if ρ2s=0.5, the
optimal risk sharing between the two agents, is possible
when 0.2≤ρ1s≤1 for the assumed risk aversion and volatility
parameters. The optimal risk share of agent 1 steeply decreases
from 90% at ρ1s=0.2 and ρ2s=0.5 to 10% at ρ1s=1 and ρ2s=0.25.
In Fig. 1b it can be seen that the risk share of agent 2 linearly
varies with the correlation of its pre-existing business with the
common project.

In a particular case where the correlations coefficients of
both agents are equal to zero agents 1 and 2 take 75% and 25%
of the risk respectively. The more risk-averse agent takes a
smaller share of the risk and vice versa. However, Fig. 1 shows
that the agents can take a higher or lower share of the risk when
the correlations of their pre-existing businesses are considered.
If agent 1’s pre-existing business profit is positively correlated
to the projected revenue of the common project and agent 1
knows that agent 2's pre-existing business is negatively
correlated to the common project revenue, then it is optimal
for agent 1 to take a lower share of the risk than the one obtained
at zero correlation.

Fig. 1. Optimal risk share as function of correlation coefficients: (a) agent 1, and (b) agent 2.
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Therefore, considering correlation provides a deeper insight
for agents regarding their optimal share of risk in cooperative
ventures. Previous approaches only considered that the share
of risk taken by a partner is higher for lower risk aversion.
However, we show how the optimal risk share depends greatly
on the correlation of the joint venture with the agent's pre-
existing businesses.

4.4. The value of cooperation via risk sharing

In the previous section, we showed that the optimal stake
of risk is influenced by the correlation of the pre-existing
businesses with the common project. However, the optimal risk
ratio only informs how much stake of the risk each player
will take and does not provide information about the value
of cooperation via risk sharing. Fig. 2 shows the value of
cooperation via risk sharing (VoRs) as a function of correlation
coefficients. In Fig. 2a it can be seen that the value of
cooperation for agent 1 is positive when her pre-existing
business is positively correlated to the common project.
However, the value of risk sharing depends also on the
correlation coefficient of agent 2. If agent 1 has a positive
correlation, the value of risk sharing increases as agent 2’s
correlation increases. The effect of the correlation of agent 1's
business on its value of risk share can be clearly observed when
the correlation coefficient of agent 2 is fixed. For example, in
Fig. 2a it can be seen that for ρ2s=0.5 the VoRs1 increases
from close to zero at ρ1s= −0.2 to 27.5 million Euros at ρ1s=1.

Similarly, for agent 2, the value of risk sharing is influenced
by the correlation of its pre-existing business with the common
project, in addition to the correlation coefficient of agent 1. In
Fig. 2b it can be seen that for ρ1sb0 the value of risk sharing for
agent 2 decreases as his pre-existing business is more
negatively correlated to the common project. On the other
hand, if ρ1sN0, the value of cooperation for agent 2 decreases
as her/his existing business is more positively correlated to the
common project. If the VoRs for both agents is positive, it
indicates that partners with divergent risk attitudes and correlation

coefficients can gain more synergies from risk sharing in
uncertain environments.

It is likely that different agents have different background
risk from their pre-existing businesses. If an agent knows about
the performance of the co-partner's businesses profit, then it
is possible to calculate the share of risk and the value of
cooperation with another agent. However, symmetry informa-
tion among partners is required regarding the performance of
the common project and their pre-existing businesses. If an
agent has information about the pre-existing businesses of
potential candidate partners, she/he can use that information to
determine worthy co-investors. This is particularly important
at the exploratory stage of the co-investment and during con-
tract negotiation stages. Having a better understanding of the
economic implications of committing contractual agreements,
especially when the new venture has implications on the per-
formance of the pre-existing business, could help build resilient
partnerships and avoid problems.

5. Conclusions

The exploratory phase of a joint infrastructure project
entails uncertainties to cooperating agents with respect to the
value of the project and the optimal share of risk. Uncertainty
often leads to a deadlock situation in which decision-making
stagnates. To address uncertainty in such situations, an
approach is required that allows the assessment of the risk
and gain of cooperation for each agent. In this paper, we
analyse the effect of risk sharing when two risk-averse agents
co-develop an energy infrastructure project under uncertain
environment. The two agents have background risks from their
pre-existing businesses, and the joint project is represented by
a risky cash flow. The cooperating partners are risk-averse but
need not have the same risk aversion. We assume that the
partners will act cooperatively to maximize their joint welfare
and there is information symmetry on the common project
performance. The models and numerical analyses provide
valuable managerial insights.

Fig. 2. Values of risk sharing as function of correlation coefficients: (a) agent 1, (b) agent 2.
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First, agents with divergent risk attitude can gain more
synergies from risk sharing in uncertain investment environ-
ments. This is in agreement with earlier work (Savva and
Scholtes, 2005) and implies that cooperating with a partner
with a different risk attitude can be very beneficial. As shown in
Eq. (27), risk-sharing opportunities increase the risk exchange
zone (i.e. the synergy set) from traditional economies of scale
and scope. This could encourage uncertain agents to engage in
cooperation to develop vital energy infrastructures.

Secondly, agents can structure better risk-sharing contracts.
Conventionally, the risk preference of cooperating agents de-
scribed with their respective risk aversion is used to allocate risk
optimally. In this study, we found that the optimal share depends
also on the future projection (i.e. volatility) of the new common
project and the agent's pre-existing businesses. Furthermore,
the optimal risk share depends on the correlations between the
agents' pre-existing businesses and the new common project.
These additional insights can help agents understand better the
economic implications of long lasting contractual agreements and
build enduring partnerships.

Last, the model can help agents to select the most suitable
partner for a project. Agents can carry out an exploratory assess-
ment of the value risk sharing with the different prospective
partners. Different agents have a different background (pre-
existing business) and risk attitudes, and the developed model can
support the selection of a partner.

Finally, the modelling framework and the numerical analysis
presented in this paper invite opportunities for future work. One
area of future work could involve extending the model for
multiple agents and considering the relative negotiation power
of agents. Moreover, a real case study would make the model
more relevant for practical deal negotiations.
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A B S T R A C T

This paper presents a systematic design analysis method based on the flexible design approach and the concept
of real options to support decision-makers during conceptual design of infrastructure public–private partnership
projects under uncertainty. It employs probabilistic and simulation methods to model uncertainty and flexible
design concept to generate flexible design strategies within the physical layout and the contractual structure.
Monte Carlo simulation is used to compare the value effects of design strategies. Illustrated on a stylized pub-
lic–private partnership to develop a carbon capture and storage infrastructure, it was found that partners could
find design solutions that not only reduce risk exposure but also enable value-creation. For example, by de-
signing the physical network with flexibility options such as extra capacity and length coupled with flexible
revenue guarantee contract, partners can be able to reduce risk and enhance their respective value in the face of
capacity demand uncertainty. Such a design strategy can be a promising way to realize multi-user carbon capture
and storage investments.

1. Introduction

Carbon capture and storage (CCS) is considered as one of the best
options currently available for mitigating global greenhouse gas emis-
sions, especially given the reality that fossil fuels will remain the pri-
mary sources of energy for the foreseeable future (IEA, 2015). For ex-
ample, the EU climate and energy framework stated CCS as the “only
option available” to reduce direction emission at large scale (European
Commission, 2014). The framework also considers CCS as key tech-
nology for emisison reduction from fossil fuel-based power generation
(European Commission, 2014). Yet, currently, carbon capture and sto-
rage (CCS) is not being deployed on a commercial scale.

One of the key challenges to achieving large-scale deployment of
CCS is the development of the infrastructure necessary to transport and
permanently store CO2 (Austell et al., 2011). Several techno-economic
studies have demonstrated that the most cost effective way to develop
large-scale CCS networks is to connect multiple CO2 sources and storage
sites via networks of pipelines (Middleton et al., 2012; Melese et al.,
2015; Chrysostomidis and Zakkour, 2008). Multi-user pipeline net-
works facilitate more CCS projects deployment, as CO2 emitters that do
not have the capacity (technically and/or financially) to build their
front-to-end pipeline will be able to gain access to a network (Austell
et al., 2011). By reducing unit transportation costs as well as entry costs
for new entrants, multi-user pipeline networks will especially help

smaller emitters which may not able to bear the cost of building an
individual pipeline (Austell et al., 2011).

However, in the current situation, developing multi-user CO2 pi-
peline networks would expose developers to significant first-mover risk
and additional up-front costs (Chrysostomidis and Zakkour, 2008;
Bowen, 2011). The first-mover risk is greater during the demonstration
stage of CCS (Bowen, 2011). But, the risk could gradually phase out as
the pipeline networks start to develop by adding new emitters. Never-
theless, at its current stage, CCS investment faces substantial risks and
uncertainties (Lupion and Herzog, 2013; Global CCS Institute, 2014). As
a result, currently, CCS network deployment projects are mostly limited
to point-to-point connections.

The high risk of building CCS raises an argument that government
support may be required. Risk sharing in the form public-private
partnership (PPP) is a common form of public support mechanism used
to improve the financial viability of infrastructure investments (Cruz
and Marques, 2013a,b). An infrastructure PPP bundles investment and
service provision in a single long-term contract (Engel et al., 2013). The
contract allows the concessionaire (the private actor) to manage and
control the assets, usually in exchange for user fees and government
payments (e.g. subsidy), which compensate for investment and other
costs. In the case of CCS, government support for multi-user CO2 pi-
peline network investments can be justified on the basis that taking
advantage of economies of scale can reduce the overall cost of
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mitigating greenhouse gas emissions to society (Mikunda et al., 2011).
Furthermore, public support can be justified on the basis that mitigation
of CO2 emissiones is a form of public good in which governments have a
vital role to play (Chrysostomidis and Zakkour, 2008). Studies sub-
stantiate the use of public funds to realize large-scale deployment of
CCS technology (DECC, 2010; Chrysostomidis and Zakkour, 2008;
Groenenberg and de Coninck, 2008). A study done by Boston Con-
sulting Group (BCG) for Global CCS Institute suggests that considerable
government involvement is required to overcome the current com-
mercial realities of CCS (Global CCS Institute, 2010). The same view is
supported by the evidence from the case study by Environmental Re-
source Management (Chrysostomidis and Zakkour, 2008).

Deployment of CCS infrastructure PPPs is very challenging for
number of reasons. Firstly, infrastructure PPPs are generally long
lasting contracts involving massive and irreversible capital investments
under a highly uncertain environment. Secondly, infrastructure PPPs
have intrinsic characteristics that make them particularly vulnerable to
exogenous uncertainty related to the macroeconomic scenarios, tech-
nological changes, regulatory changes, competition or emergence of
substitute services (Shen et al., 2006). Finally, infrastructure PPPs are
vulnerable to opportunistic behavior as they require cooperation be-
tween actors with different and often conflicting objectives
(Williamson, 1979; Hart, 2003; Guasch and Straub, 2009). Private ac-
tors are mostly concerned with the financial feasibility of the invest-
ment as they are particularly susceptible to revenue risk, whereas the
public actor is concerned with cost overruns, guarantee payments, and
reliability of the service provided by the infrastructure.

Related to the last reason, synchronizing the interest of the public
actor with that of the private actor is important factor for effective
deployment of multi-user CCS. Private network operators usually invest
in smaller capacity to save the sunk cost (Global CCS Institute, 2010).
Moreover, private network operators charge a very high tariff and that
is considered as one of the reasons that discourage emitters from par-
ticipating in a CCS project (Global CCS Institute, 2010). On the other
hand, public actors want to ensure that sufficient capacity is available
for existing and future emitters (Austell et al., 2011). Therefore, from a
design perspective, deployment of CCS via public-private partnership
involve both engineering and contractual design dimensions that may
lead to conflicts. These design issues are more visible and impactful at
the initial stage of the design process commonly called the conceptual
design stage (de Neufville, 2004).

Conventionally, PPP contractual arrangements involving large in-
frastructure projects are based on deterministic demand forecasts and
cost estimations (Cruz and Marques, 2013a,b). However, several studies
have shown that demand forecasts and cost estimations are often in-
accurate (de Neufville, 2004; Flyvjberg et al., 2005). As a remedy,
contracting parties ‘overwrite’ contracts in order to reduce the degree of
exposure to situations out of the forecast (Marques and Berg, 2010).
However, such kind of contract design approach emphasizes risk
minimization and in the process undermines the ability to adapt to
changing circumstances (Cruz and Marques, 2013a,b). Moreover, the
dynamic nature of uncertain factors and the inability of contracting
parties to write complete contingent contracts, in essence, underscores
that risk management activity should be dynamic (Chiara and
Kokkaew, 2009).

Flexibility is a design concept that captures the adaptability of a
designed solution to uncertainty (de Neufville and Scholtes, 2011; Cruz
and Marques, 2013a,b). It is an attribute of the designed system (i.e. a
physical infrastructure or a contract), alongside reliability, robustness,

availability, and maintainability (Saleh et al., 2003). The concept of
flexible design has gained increasing attention for designing large-scale
engineering systems that can better accomodate uncertainty (Cardin,
2014; Melese et al., 2016). Similarly, the idea of contractual flexibility
is gaining momentum in contracts involving large-scale infrastructures
(Chiara and Kokkaew, 2009; Tan and Yang, 2012; Cruz and Marques,
2013a,b; Domingues et al., 2014).

Infrastructure PPPs involve engineering and contractual dimensions
that may provide opportunities to design flexibility. From an en-
gineering design perspective, the physical infrastructure can be de-
signed with flexibility capabilities that will allow it to adapt to changes,
e.g. demand (de Neufville and Scholtes, 2011; Zhao and Tseng, 2003).
From a contractual design perspective, opportunities exist to in-
corporate flexibilities, e.g. flexible concession period, revenue guaran-
tees, options to defer or abandoning the project (Cruz and Marques,
2013a,b).

To date, several CCS infrastructure models have been proposed in
the literature that tried to address the spatial and temporal uncertainty
facing large-scale CCS deployment. (Mendelevitch et al., 2010) devel-
oped a model that considers multi-stage deployment of the CCS net-
work. (Middleton et al., 2012) introduced an improved model that al-
lows an optimal deployment of CCS over multiple periods. The model is
designed to be flexible regarding how much CO2 is captured, trans-
ported, and stored in each period. (Melese et al., 2015) introduced a
design procedure that deals with temporal and spatial uncertainties
facing the deployment of CCS networks. The design procedure uses
graph theory to model CCS networks and uses exploratory modeling
and the concept of flexible design to search for design strategies that
would allow cost-effective expansion of a multi-user network. The
works above represent advanced approaches that provide insights into
the economics of integrated CCS deployment. However, all these
methods focus on the physical design of the infrastructure and im-
plicitly or explicitly assume a single actor (investor), whereas a CCS PPP
involves multiple actors and requires modeling of both the physical and
the contractual structures.

To this extent, in this study, an integrated design analysis frame-
work that models both engineering and contractual structures of in-
frastructure PPPs is presented. The framework is used to explore the
value effects of different physical and contractual design strategies by
simulating the model under different uncertain scenarios. A public-
private partnership for deployment of CCS networks is used as a case
study to demonstrate the proposed framework.

The rest of the paper is organized as follows. In Section 2, the
proposed methodological framework is presented. In Section 3, the
proposed method is demonstrated on a PPP arrangement for deploy-
ment of a hypothetical CCS network. Section 4 concludes the paper.

2. Proposed methodological framework

By blending ideas presented in (Melese et al., 2015) on engineering
design of CCS networks with those of (Brandao and Saraiva, 2008) and
(Engel et al., 2013) on concession contractual design, this paper pre-
sents a systematic design analysis framework for a conceptual design of
a CCS PPP. The framework is used to study the value effects of different
design stratgies at the conceptual stage of the design process. It involves
three major steps as shown in Fig. 1: Identify and characterize relevant
uncertain design variables; generate technical and the contractual de-
sign concepts of the PPP; and Monte Carlo simulation and design ana-
lysis.

Fig. 1. Proposed framework for systematic design analysis.
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2.1. Step 1:- identify and characterize relevant uncertain design variables

As highlighted in the introduction section, uncertainty, in the con-
text of infrastructure PPP design, reflects the fact that many assumed
inputs could change over time. Therefore, the first task in the design
process is to identify uncertain design variables that could affect the
performance of the PPP and the values of partners. These include
market uncertainty, raw material input uncertainty, cost uncertainty,
productivity uncertainty, technological uncertainty, regulatory un-
certainty, etc.

Once the relevant uncertain variables are identified, they must be
characterized appropriately. Characterization involves modeling initial
distributions and future states of the selected uncertain variables.
Uncertainties can be modeled using a number of different methods, and
the choice of a particular method depends on the information available.
When sufficient historical data is available, statistical methods (e.g.
regression) can be used to fit empirical data and derive future states
(Agarwal and Aluru, 2010). When there is a lack of historical data,
analytical approaches could be more helpful as they allow the use of
assumptions on the initial behavior of the uncertain variable (i.e. types
of distribution and speed of convergence) (Sankararaman et al., 2014).

Once the initial distribution of the selected variable is defined, fu-
ture states over several stage or design period should be modeled. A
stage or design period in this context would be a suitable planning
period (i.e. months, years). The future states can be generated using
continuous stochastic models such as Geometric Brownian Motion
(GBM) and Wiener processes, or discrete models such as the binomial
trees (Lin, 2008).

2.2. Step 2:- generate technical and the contractual design concepts of the
PPP

In this step, designers generate flexible design concepts of both the
physical and the contractual structures to deal proactively with chan-
ging design requirements identified in step 1. Flexible design concept
generation involves defining strategies necessary to determine how the
physical network and contractual arrangement will adapt in the face of
uncertainty (Cardin et al., 2013). Examples of flexibility strategies in
technical design and management include (Trigeorgis, 1996): (1) defer
investment until favourable conditions arise, (2) staged or phased de-
ployment of asset, (3) change operation and management by expanding
or contracting production capacity, (4) abandon or opt-out of a project,
(5) switch inputs and/or outputs to capture emerging new require-
ments, (6) or combination of the above. Flexible duration contract,
flexible revenue guarantee, step-in rights are some common forms of
flexible design strategies for contracts (Cruz and Marques, 2013a,b).

Generating flexible design concepts require developing a model of
the designed system at hand. Therefore, designers need to develop a

model of the PPP including the configuration of physical infrastructure
and the contractual relationship between the partners. In the case of
CCS networks, the physical configuration of the network includes de-
sign variables such as capacity, length, and flow rate. Contractual de-
sign variables include tariff, contractual period and the share of risk and
benefits.

2.3. Step 3:- Monte Carlo simulation and design analysis

The objective of this step is to evaluate, analyze and compare the
performance of different combinations of physical and contractual de-
sign strategies by simulating them under different uncertain scenarios.
Monte Carlo simulation is a commonly used means to assess the value of
design concepts to distributions of uncertainty. The inputs are the
evolution of the uncertain parameters and the flexible design strategies.
The result is a distribution of the project value, for example, its net
present value (NPV). Then compare the resulting distributions, along
with aggregate statistics of interest, to get an understanding of the value
effect of the different design solutions for the partners.

3. Illustration – carbon capture and storage networks

3.1. Design problem

For the purpose of illustration, we formalized a stylized design
problem that resembles a real-world network design context but is more
abstract and general. The problem involves the conceptual design of a
CCS network. The field has two existing CO2 sources, S1 and S2, and
one potential source, S3, that could join in future. All existing and fu-
ture new sources will be connected via a pipeline network to a single
sink S0 (e.g. storage site). Fig. 2 shows the spatial location of the three
sources and the sink.

A partnership is created between a private firm who will own and
operate the network, hereafter called, network operator; and a gov-
ernment agent, hereafter called, public actor to develop the CCS net-
work. The network operator invests in the network and the public actor
shares investment and operational risk with the network operator via a
long-term concession contract. It is assumed that the network operator
will not invest in the network without the risk-sharing contract. The
network operator will build and operate the network for the period of
the concession.

The two actors have different objectives which define their value in
the partnership. The objective of the public actor is to ensure the public
interest- reduction of CO2 emission by facilitating the availability of a
pipeline based CO2 transport infrastructure which can provide suffi-
cient capacity for existing and future CO2 sources. To meet its objective,
the public actor provides subsidy payments for the network operator in
the form of minimum revenue guarantee (MRG). On the other hand, the
network operator’s objective is profit. Therefore, there are three di-
mensions of value in this design problem: contractual payments (public
actor’s view of the problem), profit (network operator’s view of the
problem), and availability of sufficient capacity which trades off the
other two values and relates the outcomes to both actors.

The values of the two actors in the partnership depend on the
physical configuration of the network and the contract arrangement
between them. Under CO2 supply uncertainty, the reliability of the
network is its ability to provide the required capacity as and when CO2

supply increases over time. Therefore, the design strategy will influence
the reliability as some design configurations may be more reliable than
others.

The concession contract is used as a mechanism for the exchange of
values for the actors. It also provides a legal framework for the risk
allocation provision to manage the CO2 supply (or capacity utilization)
risk. For example, the contractual connection tariff term and other risk
sharing provisions determine the payments that the public actor makes
to the network operator.

Fig. 2. Layout of the Field.
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By integrating the physical and contractual design, this case study
investigates the effects of architectural flexibility, i.e. extra capacity,
and length, in the physical domain and connection fee/tariff and rev-
enue guarantee in the contractual domain. Each of these design di-
mensions presents difficult choices given the uncertainty in CO2 supply
and changing regulations. In this context, the goal of this paper is to
propose a systematic design analysis framework that enables value
creation through improved physical design of the CCS network and
value exchange (risk sharing) through improved contractual design. As
pointed out in the introduction, the literature often treats these two
types of designs separately, and in this study, we demonstrate how an
integrated design approach that considers both physical and con-
tractual structures shapes value creation and exchange during con-
ceptual design of CCS networks. A step by step illustration of the fra-
mework is presented next.

3.2. Step 1 – identify and characterize uncertain design variable

Designers face a number of uncertainties in the initial design stage
of a multi-user CO2 pipeline network. Some of the prevalent un-
certainties are: the exact number of emission sources who are willing to
join network and the capacities they require, the cost per unit capacity
(e.g. material and digging costs), the availability and capacity of sto-
rage sites, competition from alternative technologies, and regulatory
policy regarding CO2 emissions including the CO2 price. Collectively,
these uncertainties have an impact on the investment decision of the
network operator. They also have an effect on the decision to invest in
the integrated network or just point-to-point pipeline (Knoope et al.,
2015).

In this study, we focus on capacity demand uncertainty, a major
design variable, that makes the deployment of an integrated CCS net-
work very challenging (Austell et al., 2011). The uncertainty over ca-
pacity demand originates from two sources: (1) from existing partici-
pants whose demands may change over time; and (2) from participants
who may be interested in joining the network in the future. The prof-
itability of the CCS network investment highly depends on the capacity
requirement as well as the tariff charged by per unit volume of CO2.
Therefore, the uncertainty of capacity demands of future and existing
sources should be clearly quantified and considered in the investment
decision.

3.2.1. Capacity demand uncertainty of existing sources
Analogous to (Melese et al., 2015), the uncertainty over the capacity

demand of existing sources is modeled using an analytical approach.
The capacity demand of a CO2 source is related to its CO2 flow.
Therefore, to model the initial capacity demand uncertainty of the two
existing sources (S2 and S3) a normal distribution model is used.

• S2 (mean = 350 kt CO2/year and standard deviation = 40 kt CO2/
year)

• S3 (mean = 400 kt CO2/year and standard deviation = 50 kt CO2/
year)

Next, future states of CO2 flow over several stages of the planning
period is quantified. In this study, the planning period is set for 20
years, which is a reasonable time horizon for a progressive CCS de-
ployment strategy (Asian Development Bank, 2015). To model the fu-
ture states of CO2 flow, Geometric Brownian Motion (GBM) process is
used. The parameters of the GBM process for both sources are drift
rate = 5% and volatility = 7.5%. With the initial assumptions, drift
rate and volatility, the GBM process generates yearly flow data over the
planning period. Fig. 3 shows initial flow estimate model and flow
evolution pathways for sources S2 and S3.

3.2.2. Capacity demand uncertainty of future sources
Timing and capacity demand of future sources present another

challenge for an integrated CCS network deployment. In this study, we
only consider one future source, S1.

Theoretically, S1 could be CCS ready and join the network at any
time over the planning period. However, in reality, it takes years to
install a CO2 capture unit and to be ready to join a CCS network. In this
study, four timing scenarios are considered with a time step of four
years: Year 4, Year 8, Year 12 and Year 16. A time period of four years is
considered reasonable for an emitter to install a capture unit and con-
nect to a network.1 The capacity demand of S1 is modeled in a similar
way to that of S2 and S3 with initial flow estimate modeled as shown in
Fig. 4a with mean = 300 kt CO2/year and standard deviation = 50 kt
CO2/year. Then, GBM process is used to model future yearly CO2 flow
rates. Parameters of the GBM process are, drift rate = 5% and volati-
lity = 7.5%.

3.3. Step 2 – generate technical and the contractual design concepts of the
PPP

The objective of this step is to generate flexible design concepts of
the physical CCS network as well as the risk sharing contract. To fa-
cilitate the generation of flexible design concepts models of the physical
CCS infrastructure and the contractual relationship is developed. These
models help to analyze the value effects different design concepts under
different uncertainty scenarios.

3.3.1. The physical network design model
A graph theory-based network modeling technique is used to model

the physical layout of the CO2 transport infrastructure. The technique is
effective in modeling the layout of spatially distributed and connected
infrastructures as networks consisting of nodes and links (Heijnen et al.,
2014). CCS involves transporting CO2 from of CO2 capture stations
(source nodes) to an injection site (sink node) through pipelines (links).

In CCS pipeline network design, various goals may be pursued.
Minimization of investment cost and availability of sufficient capacity
are probably the most important and evident. In this study, the goal is
to maximize the present worth ratio (PWR) the network investment.
The PWR of the network will be maximized when investment cost of
building the network are low and expected revenues are high.

= −PWR expected revenue investment cost
investment cost (1)

The investment cost of the CCS network depends on the length and
capacity of the pipeline. The inputs of the model are flow rates of
sources to determine capacity and the spatial positions of sources and
sink nodes to determine length. The spatial positions of the three
sources and the sink node are fixed as shown in Fig. 2. The total cost of
a network N is the sum of all the costs of edges

=C N l f q( ) Σ ( )
e E

e eϵ (2)

where E is the set of all edges in a network N, le is the length of an edge e
and f(qe)is the cost per unit length of building an edge e with a flow
capacity of qe. The flow capacity is assumed to be given by

= ≤ ≤f q q( ) with 0 β 1.e e
β

(3)

where β is the exponent taking account capacity variation on the cost.
The cost exponent takes into account the capacity factor in the cost

calculation. The lower the cost exponent, the more beneficial it is in
terms of construction costs. An empirical cost exponent value of 0.6 is
commonly used in pipeline networks models (Heijnen et al., 2014). The
cost exponent indicates that building high-capacity pipelines have cost
advantages. The network model then produces edge-weighted Steiner

1 The actual instllation time of a capture ready plant could vary depending on the size
of the capture unit, the type of capture technology, and other project specific factors (IEA
GHG, 2007).

Y. Melese et al.



182

minimal trees2 that take into account both the capacity and the length
of the pipeline.

In addition to cost, expected revenue over the planning period
should also be modeled. For this purpose, the expected revenue is
modeled as a linear function of flow rate. It is assumed that the network
operator generates revenue by charging a connection tariff from CO2

sources. Hence, the revenue Rt of a network N in year t is given as,

=
∈

R N α q( ) Σt
N s ii V( ) \ { } (4)

where qi is the used capacity by CO2 supplier i in a network N, V(N) is
the set of all nodes in the network N, s is the sink and α is the constant
coefficient representing the tariff.

Searching for the worth maximizing network involves simulation of
the network model with different uncertainty scenarios. The simulation
will result in thousands of design possibilities. Advantage of the net-
work model is that it is simple low-fidelity and therefore can be run
much faster than detailed high-fidelity models. This characteristic of
the model comes in handy when one tries to search and screen for a few
promising design concepts out of thousands of possibilities.

3.3.2. The contractual structure design model
The objective of the contract model is to structure the allocation of

risk between the two actors given the uncertainty in capacity demand
from existing and future sources. As shown in Eq. (4) revenue depends
on uncertain CO2 supply/capacity utilization [in units of cubic meters/
year] and the constant tariff level [in euros per cubic meter]. When the
profitability of the network project is weak, the public actor provides a

revenue guarantee to the network operator.
Let Pt be the minimum revenue guaranteed by the public actor in

year t. If we assume a constant connection fee (tariff), the actual rev-
enue (Rt) resembles the stochastic process of CO2 supply, qi. Taking into
account the guarantee, the effective revenue It for the network operator
in year tcan be given as:

It = max (Rt, Pt) (5)

Adding discounted values future incomes over the planning period
gives the present value of total revenue (PVR). The connection cost or
tariff is assumed to be 1 €/t CO2. It is also assumed that the real dis-
count rate,3 r, to be 8%.

∑= +=
PVR N

I N
r

( ) ( )
(1 )t

t
t

0

20

(6)

Eq. (6) is critical in defining the contractual relationship between
the network operator and the public actor. From the perspective of the
network operator, the performance of a given network design over its
lifetime can also be analyzed based on the Net Present Value (NPV)
valuation, as shown in Eq. (7).

NVP(N) = PVR(N) − C(N) (7)

At the conceptual design stage, Eq. (7) can be used by the network
operator to explore the economic performance of different network
design choices.

On the other hand, the public actor is concerned with the amount of
subsidy to be paid to the network operator. The value of the guarantee,

Fig. 3. Sources capacity demand model. Initial flow estimate model (a) and three instances of future trajectories of flow (b).

Fig. 4. Capacity demand model of S1: (a) initial flow estimate, (b) instances of flow trajectories over time. Each trajectory represents one instance of S1 flow path. Y stand for Year.

2 A Steiner minimal tree is a tree connecting points in a plane using lines of shortest
possible total length (Gilbert and Pollak, 1968).

3 Different discount rates are used in different studies: 7.5% (Chrysostomidis and
Zakkour, 2008), 10% by (Knoope et al., 2015)
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V(t) in year tis given as:

V(t) = max (0, Pt − Rt) (8)

The total present value of payments over the concession period can
be calculated by discounting V(t) over the concession period. The
present value of Eq. (8) is the value of the option in each year. The total
sum of the option gives total value of guarantee payment, VGf.

∑= +=

= V t
r

VG ( )
(1 )f

t

t T

t
1 (9)

The expressions in Eqs. (7) and (9) model the objectives of the
network operator and the public actors. The network operator’s ob-
jective is to maximize the NPV or PWR and the public actor is interested
in minimizing the amount of VGf. The conflict arises because the public
actor main objective is to provide sufficient capacity for existing and
future sources. These design objectives are affected by the way the
network designed, i.e. le and qe, and the way the contract is designed,
i.e. Pt and α. Therefore, both actors should analyze the value effects of
different design concepts in the face of capacity demand uncertainty.

3.3.3. Design concepts
The choice of flexible design concepts should take into account the

evolution of capacity demand uncertainty and the effect on the value of
the contracting partners. At the conceptual design stage, the network
operator and the public actor have two degrees of freedom to integrate
flexibility: the layout of the physical network, i.e. capacity and length of
the network and the structure of the risk-sharing contract, i.e. the level
of the floor and ceiling levels. By playing with these two degrees of
freedom, the two actors can find combinations of design strategies that
enhance their value under capacity demand uncertainty.

From an engineering design perspective, two network design stra-
tegies are considered. The first design strategy is to develop the network
by connecting the two existing sources S2 and S3 but without taking
into account the future source S1. It is normally considered as the base
case design strategy by which the network operator develops the net-
work with the only information available during the conceptual design
stage. We name this design strategy as the deterministic design strategy.
The expected capacity demands of S2 and S3 are the basis for the de-
terministic design strategy.

The second design strategy is to develop the network by connecting
the two existing sources S2 and S3 and taking into account the possi-
bility that S1 will join the network sometime in the future. We call this
design strategy as the flexible design strategy. Moreover, the flexible
design strategy takes into account variations in the capacity demands of
existing sources (i.e. S2 and S3). Fig. 5 shows the design concepts of the
two design strategies.

In the face of capacity demand uncertainty, the network operator
can satisfy her/his participation constraint (i.e. expected net present

value, ENPV > 0) by carefully selecting the technical and contractual
design variables. At the same time, the network operator may also be
concerned that capacity shortage will not only reduce revenues but also
damages reputation. Therefore, it is assumed that the network operator
shares the value of public actor to minimize the capacity shortage for
existing and future sources. The network operator can try to accomplish
this by finding a suitable combination of the physical design inputs. To
summarize, the network operator has to try to find a combination of
both physical and contractual design inputs that best accomplishes the
stated objectives.

One the other hand, the public actor’s primary interest is ensuring
the availability of sufficient capacity for current and future CO2 emit-
ters. The public actor can try to accomplish this objective by finding a
suitable combination of the physical and contractual designs. However,
the public actor faces a trade-off between providing sufficient capacity
and contractual payments that must be made to the network operator.
Since revenue to the network operator depends on the capacity utili-
zation which is uncertain, if it falls below MRG, the public actor will
have to pay a subsidy to the network operator to bring its revenue back
to the MRG level.

The value of guarantee payment not only depends on the level of Pt
but also on the design configurations. Some design configurations could
cost more than others. Moreover, the way the network is designed
closes or opens options for cost-effective expansion of the network over
its lifespan. Therefore, the public actor has to find the combination of
both physical and contractual design inputs that will help to accomplish
the stated objective, i.e. reduce capacity shortage and minimize subsidy
payment.

To deal with the risk of excessive subsidy payments, the public actor
may include a revenue ceiling (Engel et al., 2013). The joint modeling
of the MRG and ceiling can be seen as a compound options by which the
two options are mutually exclusive and can be modeled by assuming
that the actual revenue will fall in either of the three positions: below
the revenue floor (i.e. MRG level), between the revenue floor and the
revenue ceiling or above the revenue ceiling. The inclusion of the floor
and ceiling in the contract provides flexibility for both actors and im-
pose bounds on the risk associated with unpredictable revenue streams.
(Quiggin, 1996) suggested the use of options concept in PPP contracts
to provide flexibility and mitigate exposure to risk associated with
unpredictable revenue streams.

Similar to work by Brandao and Saraiva (2008), in this paper, the
risk-sharing contract model is structured as a composition of a
minimum revenue guarantee and a maximum revenue ceiling. The
minimum revenue guarantee can make the CCS project more attractive
financially to the network operator since it ensures a minimum level of
income. On the other hand, the maximum revenue ceiling works like a
cap for total revenue on the upper side, allowing the public actor to
control for higher-than-expected returns by the network operator.

Fig. 5. Network design concepts based on the de-
terminstic design stratgey (a), and the flexible design
strategy (b).
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However, the ceiling does not restrict the direct revenue amount ob-
tained from CO2 sources. Therefore, the contract model has an option
like characteristics; it is exercised when the actual revenue falls below
the minimum level of revenue or above the maximum revenue ceiling
(Jun 2010).

In the case of revenue floor and ceiling contractual structure, the
effective revenues IGt received by the network operator (i.e. observed
from tariff and subsidy) in each period t are given by:

IGt = min{max (Rt,Pt), Qt} (10)

where Qt is the revenue ceiling level
The public actor can limit exposure opportunistic behavior by using

the revenue ceilings, where payments terminate once a ceiling is
reached. With revenue ceiling, the value of the option in each year is
determined as shown in Eq. (10), but the cumulative sum of all pay-
ments made by the public actor is limited to the cap. Then, under the
revenue floor and ceiling arrangement, the total value of guarantee
payment, VGfc such as shown in Eq. (11).

VGfc =min{VGf, Cap} (11)

VGfc depends on the choice of the cap. In practice, the cap will take
into account the type and size of the investment and the maximum risk
exposure the public actor is willing to have on the CCS project, and its
impact on the effectiveness of the MRG (Tan and Yang, 2012). In rea-
lity, the effect of the cap is limited because it affects only the total
outlays of at the highest end of the revenue, which are the ones that
have the lowest probability of occurring. On the other hand, including a
cap on the amount of revenue can help to eliminate the uncertainty
over the maximum exposure by the public actor in the project.

3.4. Step 3 – Monte Carlo simulation and design analysis

This step involves evaluating, analyzing and comparing the per-
formance of different combinations of physical and contractual design
strategies. In Section 3.4.1, the performances of the two physical design
strategies are compared in a situation where the network operator in-
vests without a risk sharing arrangement. Profit (i.e. NPV) and capacity
shortage are used to compare the two physical design strategies. The
network operator is mainly concerned about profit but still considers
reducing capacity shortage as a secondary objective. Then, in Section
3.4.2, the outcomes of two physical design strategies are compared
under a risk-sharing contract arrangement. Profit, capacity shortage,
and subsidy payment are evaluated at different revenue guarantee
level, and their implications for the network operator and the public
actor are analyzed and compared.

3.4.1. Comparing physical design strategies without risk sharing
arrangement

The performances of the two physical design strategies are eval-
uated for different uncertainty realizations defined in step 1. The ana-
lysis is carried out for the scenarios on which the new source (S1) joins
the network in years 4, 8, and 12. The connection fee/tariff level paid
by the sources is set at 0.6 €/ton of CO2. Monte Carlo simulation is
carried out resulting in distributions of NPVs and capacity shortage
values for each design strategy. Then, NPVs are sorted and plotted as
cumulative distribution function, otherwise known as value-at-risk-gain
(VARG) curve (de Neufville and Scholtes, 2011). Fig. 6 shows cumu-
lative probability distribution curve of the two design strategies.

From Fig. 6a it can be seen that both physical design strategies
present, in varying degree, a major risk for the network operator.
However, comparing the two design strategies the flexible design
strategy performs better than the rigid design strategy if S1 joins at year
4 or earlier. The flexible design strategy enables the network operator
to capitalize from future CO2 flow increases from existing sources S2
and S3, and the new source S1. The redundant pipe capacities in edge

S0-J1 and edge J1–J2 and the proximity of the connection node J1 to
source S1 enable cheaper expansion of the network. In contrary, the
rigid design strategy cannot allow accommodation of S1 and potential
flow increases from existing sources. Under the given problem defini-
tion, if the network developed based on rigid design strategy, S1 may
have to build in individual connection directly to sink (i.e. a line from
S1 to S0), which would be much more expensive than building a line
from S1 to J1.

However, the performance of the flexible design strategy decreases
when S1 joins later, as seen in year 8 and year 12 scenarios. Moreover,
when S1 joins the network at year 8 and year 12, the flexible design
strategy performance lower than the rigid design strategy. The decrease
in the performance of the flexible design strategy suggests that the
economic value of having oversized capacity diminishes with time.
Therefore, the economic viability of designing the network with over-
sized capacity is contingent on the timing of the future sources joining
the network. Unused capacity locks capital and imposes a great risk for
the network operator. In commercial CO2 pipeline investment, the term
‘no-regret-period’ is used to indicate anticipatory extra capacity in-
vestment decisions. At tariff level of 0.65€/ton, the ‘no-regret-period’
for the flexible design strategy is around 4 years. Currently, in com-
mercial CO2 pipeline investments ‘a no-regrets-period’ is around 10
years (Austell et al., 2011).

Another, perhaps, less interesting, performance evaluation measure
for the network operator is the capacity shortage. From Fig. 6b it is
clear to see that the flexible design strategy minimizes capacity
shortage compared to the rigid design strategy. It shows that including
oversized pipelines in critical links of the network enables cost effective
accommodation of future CO2 flow increases from existing sources and
new sources. Moreover, since the flexible design strategy allows an-
ticipatory capacity availability, it may encourage other emitters (i.e.
CO2 sources) to invest in CO2 capture technologies. Therefore, the
flexible design strategy could be interesting for potential future parti-
cipants and the public actor as it allows realization of integrated CCS
network. However, such a design strategy could have a negative eco-
nomic incentive for the network operator as shown in Fig. 6b.

However, from the network operator’s perspective, the economic
performance the flexible design strategy can be improved by increasing
tariff paid by CO2 sources. Fig. 7 shows the expected net present value
(ENPV) of the two design strategies at different tariff level. It can be
seen that when the tariff level is increased from 0.65€/ton to 1.5€/ton,
the flexible design strategy provides better economic performance than
the rigid design strategy. The improvement in ENPV also provides a
valuable insight with regard to ‘no-regret’ anticipatory capacity in-
vestments. The ‘no-regrets-period’ increases from 4 years to 8 and 12
years depending on the tariff level. For example, at tariff level of 0.65€/
ton, the flexible design strategy performs better for scenarios that S1
joins the network at year 4 or earlier. When the tariff level is increased
to 1 €/ton, the flexible design strategy performs better than the rigid
design strategy for a scenario that S1 joins the network at year 8. As the
tariff level is increased to 1.5 €/ton, the no-regrets period for the
flexible design strategy increases to 12 years. However, the result
shown in Fig. 7 is only based on uncertainty in future capacity demand.
Other factors (e.g. discounting rate, tax) could increase the cost of in-
vestment and, therefore, reduce the no-regrets period. The no-regrets
period could increase if policies that encourage CCS investment and
reduce the capital cost of CCS are in place.

Tariff level could also have an effect on capacity shortage. A higher
tariff level means that the flexible design strategy becomes economic-
ally viable than the rigid design strategy. In such cases, the network
operator could be willing to invest in extra capacity, and that will re-
duce capacity shortage. However, a higher tariff level may discourage
emitters from engaging in CO2 reduction investments. In such situa-
tions, government support in the form of a risk sharing could be ne-
cessary.
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3.4.2. Comparing physical design strategies with a risk sharing arrangement
Similar to the preceding section, the performances of the two phy-

sical design strategies are evaluated for different uncertainty realiza-
tions: i.e. the new source (S1) joins the network in years 4, 8, and 12.
The connection fee/tariff level is set at 0.6 €/ton of CO2. However,
unlike the previous case, the public actor shares revenue risk in the
form of minimum revenue guarantee (MRG). If revenue falls below
MRG (which is set based on the expected CO2 flow rate), the public
actor will have to pay a subsidy to the network operator to improve
revenue risk. We analyze how the values of each actor are affected
under such situations.

The network operator requires MRG rate that can satisfy her/his
participation constraint (i.e. NPV> 0). Fig. 8 shows the effect of
MRG rate on the expected profit (ENPV) of the flexible design
strategy. It indicates that the MRG rate that is required to satisfy the
participation constraint of the network operator depends on the
timing of the new source S1. The required MRG rate increases ap-
proximately from 9% to 43% when the participation time of S1
increase from 4 years to 12 years. One other hand, the required
guarantee rate for the rigid design is between 25% and 30%. With
the rigid designs strategy, the network operator enjoys surplus
profit above 30% MRG rate.

Although a higher MRG rate implies increased profit for the network
operator, it has negative implications for the public actor, specifically,
regarding subsidy payments. Fig. 9 shows the effect of different MRG
rate on the expected subsidy payments for both physical design stra-
tegies. It can be seen that subsidy payment depends on the physical
design strategies and the level of MRG. Up to 25% MRG rate, there is no
government guarantee payment implying that the network operator
direct revenue from tariff is higher than the guarantee level. However,
above 25% MRG rate, the guarantee level exceeds the direct revenue
from the tariff resulting in subsidy payments by the public actor. For the
flexible design strategy, the amount of subsidy payment over the con-
cession period depends on the timing of the new source. For example,
for 50% MRG rate, the subsidy payment doubles when connection time
of the S1 changes from year 4 to year 12. On the other hand, subsidy
payment for the rigid design strategy does not vary with the timing of
the new source because the revenue of such design strategy depends
only on the flow from the existing two sources. However, by compar-
ison, the government pays more for the rigid design strategy than the
flexible design strategy for the same MRG rate. Although a higher MRG
rate increases the network operator’s profit, it presents a huge risk for
the public actor. Therefore, intuitively one can say that, if the network
operator chooses the rigid design strategy, the MRG rate that would be

Fig. 6. Cumulative probability distribution curve of NPVs (a) and capacity shortage (b).

Fig. 7. Expected net present value of the two design strategies at different tariff level.
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acceptable by the public actor is expected to be lower than what it
would be for the flexible design strategy.

As shown in Eq. (11), the public actor can guard itself against ex-
cessive subsidy payments using revenue cap. For example, in the case of
the rigid design strategy, the public actor could negotiate a fixed rev-
enue cap level that will limit the cumulative sum of all government
outlays. Therefore, using the real options pricing method provides a
realistic valuation of the guarantee payments than the tradition dis-
counted cash flow method. The valuation of revenue guarantee using
options pricing method allows the public actor to determine the value
of future contingent liabilities. It also enables the public actor to define
guarantees that are high enough to allow economically feasible CCS
deployment by network operator but low enough not to burden public
funds.

The public actor’s main objective is to provide sufficient capacity for
existing and future sources at reasonable subsidy payments. So, far we
have seen the effect of design choices on profit and subsidy payments,
but not on capacity shortage. A better impression of the value space can
be seen by drawing all the three performance measures in a three-di-
mensional axis. The value space can reveal physical and contractual
design combinations that provide high outcomes(i.e. low capacity
shortage, high profit, low subsidy payments) and provide an indication
of the feasible solution region that satisfies both actors. It can also
provide value insight regarding value trade-offs for different con-
tractual and physical design strategies. Depending on the realization of
flow and participation uncertainty some design combinations provide
low performances on all measures. Although these designs are not likely
choices for the actors, they are feasible designs and represent a part of
the trade-off surface in the value space. Many physical and contractual
design combinations deliver intermediate as well as high outcomes, i.e.
[high profit, low subsidy payments, and low capacity shortage]. Likely
design choices for the actors are those who resulted in a low capacity
shortage and positive NPV.

Fig. 10 shows all the three value combinations (profit, capacity
shortage, and subsidy payment) for both physical design strategies. It
can be seen that it is impossible to recommend a single Pareto-optimal
solution that is best for both actors. Instead, it is possible to identify a
set of design combinations (physical and contractual design strategies)
that could be acceptable for both actors. For example, a flexible design
strategy with 50% MRG rate risk sharing contract would improve profit
for the network operator while providing extra capacity for future new
sources. MRG rate higher than 50% could expose the public actor to
huge subsidy payment for a small increase in capacity availability (or
slight decrease in capacity shortage). On the other hand, MRG rate
much less than 50% would expose to the network operator to revenue
risk. Moreover, it could make the extra capacity investment un-
attractive and could force the network operator to choose the rigid
design strategy. Such a situation would be far more likely if the new
source joins the network far in the future (e.g. > 12 years). In general,
it can be said that a risk sharing arrangement with MRG rates higher
than 25% but less than 75% with a flexible physical design strategy
constitute a set of design choices that could be selected by both actors.
Within this set, actors have the opportunity to make value trade-offs
and find synergies. However, the set of design combinations could vary
depending on the tariff level. Intuitively, one can expect the level of
MRG to decrease when the tariff level increases. Higher tariff level in-
creases real revenue for the network operator keeping it above the MRG
floor for most of the time, and vice-versa.

4. Conclusions

This paper discusses the use of flexible design concept for deploy-
ment of large-scale CCS infrastructures via PPP arrangement under CO2

supply uncertainty. A framework for a flexible design approach is
presented for design and value analysis different physical and con-
tractual design strategies. The approach employs probabilistic and

Fig. 8. Effect of MRG rate on the expected profit (ENPV): (a) the flexible design strategy, (b) rigid design strategy.

Fig. 9. The effect of different MRG rate on the expected subsidy payments: (a) flexible design strategy, (b) rigid design strategy.
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simulation methods to anticipate a range of future CO2 supply sce-
narios. Then, Monte Carlo simulation is employed to compare the value
effects of design strategies under different CO2 supply scenarios.

The analysis revealed some valuable insights. It is found that the
choice of the physical configuration of the physical network and the
contract structure affects values of the two actors differently. For ex-
ample, oversizing the capacity of critical links of the network favors the
public actors objective but comes at the expense of exposing the net-
work operator to high revenue risk. However, the two actors can find
design solutions that not only able to change the risk exposure of the
network operator but also enable value-creation and value-exchange
with the public actor. For example, by designing the network with
flexibility options, i.e. extra capacity, and length, and using option
based revenue guarantee mechanism, the two actors not only able to
reduce risk but also enhance value, in the face of uncertainty. More
broadly, the framework enables to two actors to iteratively explore
different design solutions in the face of CO2 supply uncertainty and
converge on a design that is acceptable to both of them.

It must be pointed out that practical deployment of CCS networks
depends on other uncertainty factors in addition to CO2 supply un-
certainty. For example, the kind of incentive offered for reducing CO2

emissions will likely influence the progressive deployment of individual
CCS projects and the final layout of the CCS network. An improved cost
function (including, for example, pumping cost, the thickness of the
material, the terrain of the landscape, and operation and maintenance
cost) for the network model would provide better insight regarding
design and investment decisions. Future research should take into ac-
count these issues.
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