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Abstract
A reference-free modified embedded atom method (RF-MEAM) potential for iron has been
constructed. The new potential is made to predict both bcc and fcc (α-Fe and γ-Fe) lattice
properties, with a special interest in modelling in the 800–1300 K temperature range. This is the
range in which transformations and key processes in steel occur. RF-MEAM potentials can be
used directly in commonly used molecular dynamics simulation software (e.g. LAMMPS). The
new potential is compared to several other (M)EAM potentials which are commonly used. It is
demonstrated that the new potential combines good characteristics for point defect energies with
free surface and stacking fault energies. Also the Nishiyama–Wassermann and
Kurdjumov–Sachs orientation relation ratios and interface energies are reproduced, allowing for
simulations of α-Fe and γ-Fe interphases.

Keywords: EAM, RF-MEAM, interatomic potential, iron

(Some figures may appear in colour only in the online journal)

1. Introduction

A key component for molecular dynamics (MD) simulations
is an interatomic potential capable of predicting experimental
material properties accurately. For iron several potentials have
been constructed [1–8], several of these potentials were con-
structed using the Embedded AtomMethod (EAM) [1, 3, 4, 7]
or modified embedded atom method (MEAM) [5, 8] formal-
isms. More recently machine-learning potentials (MLPs) like
Gaussian approximation potentials [9] and neural network
potentials [10] have seen increased interest, however existing
MLPs are not fit to experimental but rather density functional
theory (DFT) data asMLPs require larger datasets to train than

∗
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Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

experiments can provide. An issue with DFT is that it finds dif-
ferent material properties for γ-Fe than what is experimentally
observed. Additionally MLPs prove impractical for systems
containing large numbers (∼106) of atoms as the MLP form-
alisms are computationally demanding. Furthermore current
MLPs are made for highly specialised applications, e.g. dis-
location dynamics [10], whereas the potential in this work is
aimed at general simulation at finite temperatures.

The original EAM formalism has some shortcomings, par-
ticularly for systems where directional bonding plays a role,
e.g. elements from the middle of the transition metal series
especially bcc metals such as Fe, and semi-conductors [11].
TheMEAM formalism has subsequently beenmade to address
the issues concerning directional bonding. However MEAM
potentials are tied to a particular reference structure and its
associated zero-temperature Rose universal equation of state
(EoS) to find its total energy [12]. Timonova and Thijsse [13]
have developed an improved MEAM formalism which they
have called reference free (RF)-MEAM. RF-MEAM removes
the dependency of the potential on the Rose equation, thus

1361-648X/22/505901+12$33.00 Printed in the UK 1 © 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1361-648X/ac9d14
https://orcid.org/0000-0002-4447-4385
mailto:R.J.Slooter@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/ac9d14&domain=pdf&date_stamp=2022-11-2
https://creativecommons.org/licenses/by/4.0/


J. Phys.: Condens. Matter 34 (2022) 505901 R J Slooter et al

removing the need for a particular reference structure, hence
the name. The RF-MEAM formulation is used here to con-
struct an improved interatomic potential for iron, applicable
to both the ferrite (bcc) and austenite (fcc) phase.

Many EAM potentials have a similar analytical form as the
RF-MEAM potential, e.g. [1, 3, 4, 14, 15]. It is therefore con-
venient to use these EAM potentials as a starting-point for fit-
ting RF-MEAM potentials. The use of a prior EAM poten-
tial eases the finding of an acceptable local minimum from
the many local minima in the parameter space. Existing EAM
potentials can be enhanced by adding angular functions for the
local electron density. In this work this method is illustrated
for iron in section 2, but it may be applied to other systems for
which an EAM potential is available, e.g. vanadium [14], or a
system containing both iron and carbon [15].

The widely used EAM potential by Ackland et al [1] was
chosen as the point of departure to construct a RF-MEAM
potential as formulated by Duff et al [16]. The Ackland poten-
tial performs well for predicting several properties of α-Fe,
notably various point defects. Simultaneously there is room
for improvement in the description of the γ-Fe phase, as the
elastic constants and lattice parameter are not well predicted
by the potential for this phase. The new potential is fitted to
experimental data where possible, as there is no direct exper-
imental data available for the elastic constants of γ-Fe at 0 K
an extrapolation of high-temperature neutron scattering data
[17] is performed. Details for this extrapolation are provided
in section 2.3.

The potential presented in this work performs well for
both the α-Fe and γ-Fe lattice parameter, elastic constants,
and several point-defects. This is not only an improvement
on the EAM potentials, but also on some alternative MEAM
potentials [5, 8] that describe the formation energies of
interstitials [5] and vacancies [8] less well. Results demon-
strating the effectiveness of the new potential are presented in
section 3. The ability to predict lattice properties for both α-Fe
and γ-Fe lattices is particularly useful in modelling transform-
ations and processes in steel, where processes may take place
in both crystal structures.

In section 2 the experimentally measured data selected for
the fit, in particular the elastic parameters for austenite, and the
fitting procedure for the potential are described. In section 3
the results of the potential are compared to several other poten-
tials and its performance is discussed. Finally, in appendix the
potential parameters are given.

2. Fitting procedure

2.1. RF-MEAM formalism

The RF-MEAM formalism in this work follows the form used
by Duff et al [16]. The total energy function for a system of N
atoms of type ζ is given as

E=
N∑
i=1

Eemb
ζi

(ρi)+
1
2

N∑
i̸=j

ϕζi,ζj (rij) . (1)

Here ϕζi,ζj (rij) is the pair-potential between atoms i and j,
separated by a distance rij. Eemb

ζ (ρi) is the embedding energy
function given as,

Eemb
ζ (ρ) = aζρ

1
2 + bζρ2 + cζρ3 + dζρ4, (2)

where a quartic term was included to accommodate the start-
ing potential from Ackland. ρi is the fictitious local electron
density at site i,

ρi =
2ρ (0)

i

1+e−Ti
, (3)

Ti =
3∑
l=1

t(l)i

(
ρ
(l)
i

ρ
(0)
i

)2

. (4)

The density term ρ
(0)
i is the spherical term present in EAM,

the terms ρ
(l)
i where l= 1,2,3 are the angular terms which

are added in the MEAM formalism. When t(l)i = 0 a standard
EAM potential is obtained

ρ
(0)
i =

N∑
j̸=i
f(0)ζj

(rij) , (5)

(
ρ
(l)
i

)2
=

N∑
j,k ̸=i

f(l)ζj
(rij) f

(l)
ζk

(rik)P(l) (cosθjik) (6)

where f(l>0)
ζi

are partial electron density contributions, and

P(l) (x) are Legendre polynomials, given by Rodrigues’ for-

mula P(l) (x) = 1
2ll!

dl

dxl
(
x2 − 1

)l
.

The (partial) electron density and pair-potentials are sums
of cubic splines:

f(l)ζi
(r) =

6∑
n=1

a(n,l)
ζi

(
r(n,l)ζi

− r
)3
H
(
r(n,l)ζi

− r
)
, (7)

ϕζi,ζj (r) =
16∑
n=1

b(n)
ζi

(
s(n)ζi

− r
)3
H
(
s(n)ζi

− r
)

(8)

where H(r) is the Heaviside function. In the fitting procedure
a(n,l)
ζi

, r(n,l)ζi
, b(n)

ζi
, s(n)ζi

, t(l)i , aζ , bζ , cζ , and dζ are the parameters
to be optimised. In contrast to the MEAM formalism the pair-
potential is not tied to the reference structure via the Rose EoS.
All fitting in this work was done using MEAMfit v2 [16]; the
values of the parameters are given in section 4.

The pair potential as in equation (8) is valid above a cut-
off distance (here 1.2 Å), below the cut-off distance the pair
potential is divided into two parts. Below 0.9 Å the Biersack–
Ziegler–Littmark [18] form is used. Between 0.9 Å and 1.2 Å

an interpolation of the form e(B0+B1r+B2r
2+B3r

3) is made by
MEAMfit, with Bi values such that the function and its first
derivative are continuous at 0.9 Å and 1.2 Å. The resulting
interpolation function is reconstructed within the LAMMPS
implementation for RF-MEAM [19].
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2.2. Methodology

The fitting of the RF-MEAM potential was performed using
MEAMfit v2 [16]. The starting point in this work is the EAM
potential by Ackland et al [1], this potential uses cubic splines
as in MEAMfit. Since the Ackland potential is effectively an
initial guess for the RF-MEAM potential it is important to
establish where the prior potential performs well and also
where room for improvement exists. The lattice constant for
α-Fe is predicted well by the Ackland potential as are point-
defects; changes must not infringe upon the qualities of the
existing potential. For γ-Fe several changes need to be made,
most notably to the elastic constants and lattice parameter. The
chosen fit-data is discussed in sections 2.3–2.6 as well as the
detailed work-flow.

The strategy used in this work is as follows:

(a) First the lattice parameter, cohesive energy, and bulk mod-
ulus are fitted for perfect α-Fe, γ-Fe, and ε-Fe lattices.
Here the angular terms do not contribute, so they are not
included in the fit yet.

(b) Next, the elastic parameters are fitted against data of
strained lattices, at this point the angular terms become
relevant and are included in the fitting procedure from
this stage onward. Note the EAM portion of the potential
are still included as optimisation parameters in the fitting
procedure.

(c) Once the lattice and elastic parameters are fitted, point-
defect energies are included, see section 2.5. At this stage
inter-atomic forces are relevant, these forces ensure that
the crystal remains stable when a point-defect is present.
Reference data for forces are obtained from Vienna
Ab-initio Simulation Package [20–24] (VASP 5.3.5)
simulations.

(d) Once the lattice parameters, cohesive energies, elastic con-
stants, and point-defects are reproduced satisfactorily the
potential can be used in LAMMPS [19] to verify the poten-
tial’s performance in MD simulations.

The weighting of various fitting targets is chosen such that
all the energies, forces, and stresses are equally weighted. This
weighting is entered in the fit database used by MEAMfit v2
[16]. It is important to notice that each supercell returns one
energy, six stress values, and for each atom in the supercell
three forces. During the optimisation some weights are adjus-
ted to correct for poorly fitted quantities, this is repeated until
the resulting fit is satisfactory.MEAMfit v2 uses a Normalised
Weighted RMSE for the optimisation function.

A notorious issue with iron, and other ferromagnetic sys-
tems, is the role of magnetisation. Magnetic ordering plays
a key role in the bcc-fcc transition in iron [25]. An in depth
study to incorporate magnetisation into an interatomic poten-
tial was conducted by Dudarev and Derlet [26]. The poten-
tial in that work was fitted to the magnetic ground states for
both α-Fe and γ-Fe. Magnetic contributions at finite tem-
peratures are not explicitly included in the potential fitted in
this work.

Table 1. Various experimental and theoretical values for the elastic
constants of γ-Fe and the results for fitting to equations (9) and (10)
as found in this work.

Temperature (K) References
C11

(GPa)
C12

(GPa)
C44

(GPa)
B

(GPa)

Experimental
1200 [17] 188 156 87 167
1573 [17] 171 135 68 147
1428 [33] 154 122 77 133
1428 [34] 154 144 78 147
1428 [35] 181 156 83 164
298 [27] 204

Theoretical (DFT)
1200 [32] 149 92 135 111
1300 [32] 145 92 131 110
1400 [32] 141 91 127 108
1500 [32] 137 90 123 106
1600 [32] 132 89 118 103
1428 [36] 136 88 124 104
0 [37] 182 126 129 144

Extrapolated to 0 K
0 [32]a 200 106 186 137
0 [32]b 171 98 157 122
0 [17]a 243 224 148 230
0 [17]b 212 185 114 194
0 [17, 33–35]c 198 207 114 204
a Extrapolated to equation (9) assuming c= 0.
b Extrapolated to equation (10).
c Extrapolated to equation (10), assuming B= 204 at 298 K, C ′ = 0 at 823.

2.3. Elastic constants for γ-Fe

The elastic constants for γ-Fe are experimentally determined
at high-temperatures or in stabilizing alloys. However, the RF-
MEAM potential fitted in this work is fitted to static data,
so data at 0 K is needed. In table 1 it can be seen that DFT
calculations at high temperature contradict experimental data.
Therefore, instead of using DFT, another approach is chosen
to approximate the required data using experimental data. In
this work an extrapolation was performed using the experi-
mental data of Neuhaus et al [17], as their data follows the
expectations in [27] best where it is assumed that the elastic
parameters for γ-Fe will not differ greatly from those of α-Fe.
The data points were used for extrapolation using equation (9)
which follows the experimental data for several metals, but
most importantly for α-Fe as shown by Varshni [28]

Cij = a− bT2

T+ c
. (9)

As there are just two datapoints equation (9) cannot be
used as-is, hence it was assumed that ∂Cij/∂T= k, where
k=∆Cij/∆T is constant, i.e. c= 0. Such a linear fit is also
performed for the bulkmodulus and shear modulus in the work
by Lindgren and Gyhlesten Back for pure iron, see [29]. A lin-
ear fit will produce a value for Cij that is likely too large.
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Figure 1. Results for extrapolating the elastic constants for γ-Fe from [17], as well as the data from [33–35]. The narrow solid line and
dashed line (blue) and the + symbols are the linear, quadratic and literature values for C11 respectively. The thick dash-dotted line and
dotted line (red) and the ‘x’ symbols are the linear, quadratic and literature values for C12 resp., and the narrow dotted line and dash-dotted
line (black) are the quadratic extrapolation for C11 and C12 using that C′ = 0 at 823 K and B = 204 GPa at 0 K respectively. The thick solid
line and dashed line (purple) and the ‘∗’ symbols are the linear, quadratic and literature values for C44 respectively.

Varshni also introduced an asymptotic approximation to
equation (9) [28]:

Cij = a− bT2 . (10)

Effectively the extrapolations with equations (9) and (10)
yield an upper and a lower value to the elastic constants. In
table 1 the results as well as the experimental values from
[17] are given. One expects dCij/dT|T→0 = 0 as there is little
expansion near absolute zero, therefore equation (10) provides
a more physically consistent temperature dependence than the
linear approximation.

As the value for C12 is not explicitly given in [17] but
rather C ′ = (C11 −C12)/2, an additional datapoint is entered,
C ′ = 0 at 823 K [30, 31], as this is roughly where the martens-
itic transformation would occur, where it is assumed that the
martensitic transformation is caused by mechanical instabil-
ity of the γ-Fe lattice, which is why C11 < C12 at low tem-
peratures. Here it is used that the paramagnetic γ-Fe phase is
unstable at low temperatures. Finally the assumption that B=
(C11 + 2C12)/3≈ 204 GPa at 298 K (from [27]) is included,
here C11 and C12 are solved simultaneously for equation (10)
using a least-squares minimisation. Additionally the data is
compared to a theoretical calculation based on calculated (ab
initio) lattice parameters [32].

The extrapolation with equation (10) using the exper-
imental values from [17, 33–35] performs best with the
assumption that C ′ = 0 at 823 K, and the prediction of Ghosh
and Olson [27] that B= 204 at 298 K. The results can be seen

in figure 1. Furthermore, the temperature dependence of the
elastic constants is similar to α-Fe as suggested in [27]. The
potential is therefore fitted to B= 204 GPa, C11 = 198 GPa,
C12 = 207 GPa, and C44 = 114 GPa.

2.4. Crystal structure and elastic constants

First the non-angular contributions of the (fictitious) electron-
density are optimised, i.e. the EAM portion of the potential
where the angular terms are set to 0, i.e. t(l)i = 0 for l= 1,2,3
as in equation (4), as well as the pair-potential terms. Fitting
is performed on multiple defect free α-Fe lattices with vary-
ing lattice parameters. The lattice parameter is varied around
the experimental value a= 2.8605 Å (±3%) [38, 39], in [39]
this value is found by extrapolation to 0 K using thermal
expansion [40] with the data of [41]. The cohesive energy is
set to Ecoh =−4.28 eV/atom [2, 42]. For the lattice paramet-
ers near the equilibrium value the energy is calculated using
VASP 5.3.5 with a Projector Augmented Wave Perdew Burke
Ernzerhof potential (PAW-PBE) to establish the shape of the
potential. Note that the PAW-PBE lattice parameter is signific-
antly smaller than the experimental value, therefore the VASP
lattice parameters were shifted as detailed in table 2.

After the perfect lattice data (for bcc, fcc, and hcp) is fitted,
stresses are included. For α-Fe the elastic constants used are
C11 = 243 GPa, C12 = 138 GPa, and C44 = 122 GPa [41]. The
elastic constants are determined at 4.2 K, here we assume that
the temperature dependence near 0 K is negligible as changes
are minimal at low temperatures [41].

4
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Table 2. VASP data and the rescaled values used for fitting defect
free α-Fe lattices.

VASP
lattice
(Å)

Rescaled
lattice (Å)

VASP
energy

(eV/atom)

Rescaled
energy

(eV/atom)

2.1645 2.2500 0.9236 0.4812
2.7163 2.8000 −8.0934 −4.2164
2.7406 2.8250 −8.1691 −4.2558
2.7648 2.8500 −8.2059 −4.2749
2.7750 2.8605 −8.2156 −4.2800
2.7891 2.8750 −8.2021 −4.2730
2.8133 2.9000 −8.1980 −4.2709

The same approach is taken regarding the γ-Fe lattice. The
target lattice parameter is a= 3.562 Å [38], this value was
extrapolated from high temperature measurements and veri-
fied using FeNiMn alloys. The energy difference at 0 K isF
∆Ebcc→fcc = 0.06 eV derived by thermodynamic assessment
[43]. Ab initio studies suggest a value of 0.1 eV [44, 45]
for anti-ferromagnetic (AFM) γ-Fe at 0 K. Elastic paramet-
ers were extrapolated from high temperature measurements as
part of this work as detailed in section 2.3. The potential is
fitted to B= 204 GPa, C11 = 198 GPa, C12 = 207 GPa, and
C44 = 114 GPa.

An additional data point is a ε-Fe lattice, where a=
2.523 Å, c/a= 1.603 [46], the experimental data holds for
room-temperature (296± 3 K). The values at zero pressure
are extrapolations of an empirical function derived in [46].
For the cohesive energy∆Ebcc→hcp = 0.082 eV from ab initio
calculations [44] was used as there is no direct experimental
data available. The cohesive energy of ε-Fe is similar to that
of γ-Fe or lower as found by some studies [2, 44].

2.5. Point defects

Especially for (relaxed) point defects the RF-MEAM potential
improves on the starting (EAM) potential by adding in angular
dependencies for the local density function. Using the perfect
lattices for α-Fe and γ-Fe using the target lattice parameters
as in section 2.4. Several point defects are constructed. For
α-Fe: a vacancy; a vacancy cluster of first-nearest neighbours
(1NN), and second-nearest neighbours (2NN); common inter-
stitials, <100>, <110>, <111> dumbbells, tetrahedral (TET)
and octahedral (OCT). For defects in γ-Fe only a vacancy was
included, as there are few experimentally known defect ener-
gies and DFT calculations for γ-Fe give results that differ from
known experimental values. All the used target values, and
their respective sources, are presented in tables 3–5.

2.5.1. Vacancies. A notable change to most existing poten-
tials is the vacancy formation energy in α-Fe. Following the
work of Glensk et al [47] it is assumed that previous methods
to estimate the vacancy formation energy have systematically
given a value that is too low. Therefore values taken from DFT
calculations were used. For the vacancy in γ-Fe a DFT value
is used for AFM ordering as it is found that this is the most

stable ordering [48]. For the bi-vacancy clusters in α-Fe the
binding energies were taken from the detailed work of Domain
et al [49]. In this work the indirect binding energy for cells
with 128-2 atoms at constant volume was used, as the vacancy
clusters are modelled for large lattices at equilibrium.

2.5.2. Interstitials. In literature various values for intersti-
tial energies, particularly for dumbbells, are presented. In this
work the data by Marinica et al [50] were used, as it confirms
earlier data [1, 49, 51, 52]. Moreover, the various energies in
the references show the same general order from most to least
stable interstitial. In [50] the <100> dumbbell is unstable and
relaxes to an octahedral site so no value was provided. Other
studies [1, 49, 51, 52] show that the formation energy is similar
to, or as Marinica suggests higher than that of the octahedral
site.

The pair-potential part of the Ackland potential uses a
short range cut-off radius of 2.05 Å, this is too large for
(unrelaxed) interstitials. Unrelaxed interstitials are included to
provide data for interatomic forces, so the cut-off radius must
be chosen accordingly. In order to accommodate for this the
short range cut-off has been set to 1.2 Å.

2.6. Stacking faults and free surfaces (FSs)

Unstable stacking fault (USF) energies and FS energies are
not used in the fit, however the performance of the potential
presented in this work has been tested for several USFs and
FSs. The reference data is mainly taken from DFT calcula-
tions. For α-Fe data is available from an experimental study
[53], which has been included in table 3. The theoretical data
presented for γ-Fe FSs and for α-Fe USFs is taken directly
from DFT calculations.

Orientation relations (ORs) between α-Fe and γ-Fe like
Nishiyama–Wassermann (NW) and Kurdjumov–Sachs (KS)
are also tested, but not fitted to. For the OR’s reference data
is taken from DFT calculations [54, 55].

3. Validation of the potential and discussion

3.1. Structural properties

Physical properties, as calculated with the RF-MEAM poten-
tial presented in this work using LAMMPS [19], are presen-
ted in tables 3–5. The new potential, given in table 6, is com-
pared to several other potentials, notably the Ackland potential
[1] on which it is built, labelled Ack04, the MEAM poten-
tial by Lee et al [5] (BJLee), a second MEAM potential by
Lee et al [8] (TLee). Also added in the comparison are an
analytical bond-order potential by Müller et al [2] (Mül07),
another EAM potential by Mendelev et al [4] (Mend03), and
finally a recent angular-dependent potential (ADP) by Starikov
et al [56] (Stari21). Reference data is provided from various
sources. Where possible, experimental data is provided other-
wise a theoretical value is used.

The performance of the various listed potentials was
checked using LAMMPS. The lattice parameter is determined

5
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Table 3. A comparison between various potentials and experimental or theoretical data. Bold values were used as target values in the fit.

Ack04
[1]

Mül07
[2]

Mend03
[4]

BJLee
[5]

TLee
[8]

Stari21
[56] RF-MEAM

Lattice properties for various crystal structures

Theory (DFT) Exp.
afcc,0K (Å) 3.482 [2] 3.562 [38] 3.6584 3.611 3.6584 3.6111 3.589 3.523 3.562
∆Ebcc→fcc, 0K (eV) 0.11 [2],

0.101 [44],
0.06 [45]

0.139 0.030 0.121 0.048 0.009 0.092 0.085

abcc,0K (Å) 2.832 [2] 2.8605 [38, 39] 2.8553 2.860 2.8553 2.8636 2.851 2.830 2.8604
Ecoh,bcc (eV/atom) −4.28 [2] −4.28 [42] −4.013 −4.28 −4.127 −4.29 −4.28 −4.376 −4.281
ahcp,0K (Å) 2.459 [2] 2.523a [46] 2.605 2.555 2.607 2.563 2.534 2.502 2.515
chcp,0K/ahcp,0K 1.58 [2] 1.603a [46] 1.600 1.630 1.595 1.614 1.640 1.676 1.640
∆Ebcc→hcp (eV) 0.06 [2],

0.082 [44]
0.116 0.027 0.117 0.030 0.015 0.126 0.101

fcc/bcc ratio inter-atom distances relevant for the KS and NW-OR, and their interface energies
[fcc]//[bcc] 0 K

Theory (DFT) Exp.
[−110]//[−111] KS-OR 1.004 [2] 1.017 [38] 1.046 1.031 1.046 1.030 1.028 1.016 1.017
[[1–10]]//[001] NW-OR 0.869 [2] 0.881 [38] 0.906 0.893 0.906 0.892 0.890 0.880 0.881
[−12–1]//[−110] NW-OR 1.065 [2] 1.079 [38] 1.110 1.093 1.110 1.092 1.090 1.078 1.079

[fcc]//[bcc] 1100 K

Exp.
[−110]//[−111] KS-OR 1.025 [38] 1.040 1.037 1.040 1.035 1.027 1.013 1.035
[[1–10]]//[001] NW-OR 0.888 [38] 0.901 0.898 0.901 0.897 0.889 0.878 0.896
[−12–1]//[−110] NW-OR 1.087 [38] 1.103 1.100 1.103 1.098 1.089 1.075 1.098

Elastic parameters (GPa) at 0 K.

Theory (DFT) Exp.
C11 bcc 277 [2] 243 [41] 243 225 243 243 228 250 243
C12 bcc 147 [2] 138 [41] 145 142 145 138 135 108 142
C44 bcc 96 [2] 122 [41] 116 126 116 122 118 110 117
B bcc 190 [2] 173 [41] 178 169 178 173 166 155 175

Extrapolated Exp.
C11 fcc 198 188b[17] 102 204 67 204 192 201 215
C12 fcc 207 156b[17] 91 144 40 171 148 173 175
C44 fcc 114 87b [17] 55 101 10 86 80 55 151
B fcc 204 167b[17] 95 164 49 182 163 183 188

Exp.
Tmelt (K) 1811 [58] 1796 2270 1772 2200 >1900 >1950
a The lattice parameter for ε-Fe holds for a temperature 296 ± 3 K.
b The experimental data is measured at 1200 K.

by isotropic relaxation of the volume of a perfect lattice. For
defects, and stacking faults the supercell was relaxed at con-
stant volume. For the FSs the surface direction is allowed to
expand to allow for relaxation. Except for the FSs periodic
boundary conditions are used. The stopping criteria are set
such that the energy change between iterations is 1× 10−8 eV,
for forces the 2-norm of the global force vector must be
less than 1× 10−8 eV Å−1. All supercells were construc-
ted using Atomsk [57]. Defect formation energies and sur-
face energies are calculated from the excess energy using

the cohesive energy for the relevant state. The total energy
for a supercell containing N atoms in a perfect lattice is
known, so the energy difference is caused by the introduced
defect.

All point defects in α-Fe were simulated in a 1024 atom
cubic cell of 8 × 8 × 8 unit cells. For γ-Fe a cubic cell con-
taining 864 atoms, i.e. 6 × 6 × 6 unit cells was used. The
FSs have been simulated in a 6 × 6 × 6 unit cell system with
periodic boundaries in two directions for both α-Fe and γ-Fe,
leaving two 6× 6 unit cell FSs. For the 6× 6× 6 unit cell the

6
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Table 4. Comparison of selected potentials for energies associated with point defects. Bold values were used as target values in the fit.
Various energies are listed as: formation energies Ef, migration energies Em, and binding energies Eb are included.

Ack04
[1]

Mül07
[2]

Mend03
[4]

BJLee
[5]

TLee
[8]

Stari21
[56] RF-MEAM

Point defects energies (eV) at 0 K

Theory (DFT) Exp.
Ef
vac.,bcc ∼2.2 [59], 2.47

[47, 60]
1.40 [61],
1.59–1.89 [58]

1.72 1.56 1.71 1.77 1.68 2.05 1.99

Em
vac.,bcc ∼0.7 [59] 0.55 [58]–0.85

[62]
0.57 0.57 0.47 0.47 0.19 0.79 0.59

Ef
vac.,fcc 1.82–2.27 [48] 1.40 [62]–1.71

[61]
1.77 1.92 1.75 1.92 2.67 1.97 1.93

Em
vac.,fcc 1.55 [62],

0.75–1.2 [63]a
0.45 0.32 0.57 0.20 0.85 0.94

Eb
1NNvac.,bcc 0.15 [49] 0.15 0.20 0.00 −0.60 0.09 0.18
Eb
2NNvac.,bcc 0.29 [49] 0.26 0.13 0.25 0.07 0.20 0.26

Theory (DFT)
Ef
SIA⟨100⟩.,bcc 4.64 [64] 4.59 4.02 6.23 4.54 5.00 4.42
Ef
SIA⟨110⟩.,bcc 3.52 [50], 3.64 [64] 3.59 4.19 3.52 4.90 3.67 4.25 4.04
Ef
SIA⟨111⟩.,bcc 3.94 [50], 4.34 [64] 5.51 4.33 5.02 4.04 4.79 4.19
Ef
SIA⟨TET⟩.,bcc 4.13 [50] 4.16 5.53 3.98 4.59 4.46
Ef
SIA⟨OCT⟩.,bcc 4.16 [50] 4.22 4.19 6.40 4.42 —b 4.40

a This is derived from the activation energy presented in [63] of 3.02 eV/atom, where the author of this work has subtracted the vacancy formation energies
from [48].
b Unstable, collapses to <110>.

Table 5. Several free surfaces and unstable stacking fault energies are presented, as are the KS and NW OR interface energies. None of the
values were used as targets in the fitting procedure.

Ack04
[1]

Mül07
[2]

Mend03
[4]

BJLee
[5]

TLee
[8]

Stari21
[56] RF-MEAM

Free surfaces (J m−1)

Theory Exp.
E100,bcc 2.29 [65],

2.32 [66]
2.40a [53] 1.75 1.67 1.78 2.49 1.49 2.63 2.02

E110,bcc 2.27 [65],
2.19 [66]

2.40a [53] 1.62 1.36 1.65 2.36 1.60 2.42 1.91

E111,bcc 2.52 [65],
2.36 [66]

2.40a [53] 1.96 1.84 2.00 2.58 1.62 2.77 2.28

E211,bcc 2.40a [53] 1.85 1.67 1.89 2.47 2.38 2.65 2.15

Theory (DFT)
E100,fcc 2.13, 2.15 [67] 1.64 1.65 1.57 2.40 1.59 2.57 1.98
E110,fcc 2.26, 2.27 [67] 1.77 1.84 1.71 2.40 1.85 2.65 2.11
E111,fcc 2.08, 2.10 [67] 1.58 1.39 1.44 2.18 1.64 1.68 1.81

Unstable stacking faults (J m−2)

Theory (DFT)
(001)/[ 1200] bcc 1.79, 1.86 [68] 1.89 2.15 1.85 2.26 2.01 2.28 2.31
(011)/[ 1200] bcc 1.40, 1.43 [68] 1.78 1.93 1.75 2.01 1.39 1.78 1.87
(011)/[ 12

1
40] bcc 0.47, 0.59 [68] — 0.90 0.66 — — — 0.63

KS and NW OR (J m−2) for 0 K

Theory (DFT)
EKS 0.41 [54], 0.27 [55] 0.920 0.312 0.363 1.805 0.326
ENW 0.32 [55] 0.778 0.254 0.341 1.536 0.257
a The experimental surface energies from [53] are taken for a polycrystalline surface.

7



J. Phys.: Condens. Matter 34 (2022) 505901 R J Slooter et al

Figure 2. Vacancy migration energy for first nearest-neighbour atom in γ-Fe (a), and α-Fe (b) calculated using the nudged-elastic band
(NEB) method. The position of the moving atom is given between 0 and 0.5, where 0 is a vacancy in an otherwise perfect lattice and 0.5 is
the halfway point between the vacancy and the original lattice site. The solid line corresponds to the potential presented in this work, the
dotted line for TLee, the dashed line is for BJLee, and the dash-dotted line belongs to Stari21.

separation of the two FSs is more than three times the max-
imum cut-off radius used in the potential. The FSs were also
simulated for a smaller supercell, where the difference in FS
energy with a 4× 4× 4 unit cell is in the order of 0.01 J m−2.
Finally the USFs had an area of 6 × 6 unit cells, and the cell
length perpendicular to the stacking fault is 16 unit cells, i.e. 8
unit cells between stacking faults, here periodic boundaries
were used. The separation of the stacking fault interfaces is
more than four times the maximum cut-off radius used in the
potential.

The lattice parameters and elastic constants found for the
RF-MEAM potential reproduce the experimental values for
both α-Fe at 0 K and our extrapolated experimental elastic
constants for γ-Fe at 0 K. This in contrast to most other poten-
tials as shown in table 3, except for the potential by Lee et al
[8]. In general the γ-Fe lattice parameter is overestimated,
except for Stari21 which was fitted to DFT data. For Stari21
the afcc,0K : abcc,0K ratio agrees with the experimental ratio.
However the elastic parameters for Stari21 are slightly off
for α-Fe. The RF-MEAM potential is among the potentials
(BJLee, and Stari21) that find a high bulk modulus for γ-Fe,
as was predicted by Ghosh and Olson [27].

3.2. Point defects

For point defects there are greater differences between the
various potentials. TLee shows values for vacancy clusters in
α-Fe, vacancy migration energies which are too low. Stari21
performs better, however the interstitial formation energies are
relatively high. This makes the current RF-MEAM potential
more suitable for modelling and simulating defects, most not-
ably vacancy (migration) in α-Fe and γ-Fe than TLee. Note

that the RF-MEAM potential performs best when combining
vacancies and interstitials in a single system, as some other
potentials perform well for specific types of point defects.
The nearest-neighbour vacancy migration path is presented in
figure 2, note the unphysical behaviour observed for the TLee
potential.

3.3. Surfaces and stacking faults

The surface energies and USFs which were not part of the fit-
ting procedure, however they are reproduced well for the RF-
MEAM potential (table 5). Note, there exist relatively large
differences between the various potentials and even some lit-
erature sources. Here it is seen that, except for BJLee and
Stari21, other potentials underestimate surface and USF ener-
gies. Stari21 on the other hand finds relatively high energies.

Lastly the NW and KS-OR are evaluated with the new
potential. The energies for both OR predicted by the RF-
MEAM potential agree with literature [54, 55]. The lattice
ratios for α-Fe and γ-Fe follow the experimental data from
[38]. This is contrasted by Mend03 and Stari21, which both
find very high interface energies for the fcc-bcc ORs. These
are valuable characteristics of the RF-MEAM potential when
applied to interphase modelling. Hence the RF-MEAM poten-
tial is well-suited for static interphase modelling.

Finally for the common {110}-plane and {112}-plane gen-
eral stacking faults (GSF) in bcc, when shifting in the <111>-
direction are simulated. The supercell used is 6 × 6 × 16 bcc
unit cells in size with periodic boundary conditions. The stop-
ping criteria are the same as for other simulations. The stack-
ing fault is simulated by incrementally moving one half of the
supercell with respect to the other along the <111>-direction.
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Figure 3. GSFE for the {110} and {112}-planes. A shift is introduced in the <111>-direction The solid lines belong to the RF-MEAM
potential, the dashed lines to Stari21, the dotted lines to TLee, and the dash-dotted lines to BJLee. The black squares are DFT results using
PAW-GGA taken from [69]. The outlier here is Stari21 which produces a consistently high surface and USF energy too.

Figure 4. Dependence of the α-Fe (a) and γ-Fe (b) lattice constants on the temperature. In the dash-dotted line the experimental data from
Acet et al [38] is presented, we compare the results of BJLee (dashed line, circle markers), TLee (dotted line), Stari21 (dashed line, square
markers), and the RF-MEAM potential (solid line) presented in this work.

Relaxation of atoms is only allowed perpendicular to the stack-
ing fault plane, as in [56, 69].

In figure 3 the RF-MEAM potential is compared to BJLee,
TLee, and Stari21. The GSF energies for both planes are sim-
ilar for the four tested potentials, only Stari21 produces higher
values. The higher values correspond to DFT results [69], to
which Stari21 was originally fitted.

3.4. Thermal expansion

For thermal expansion four perfect lattices (5 × 5 × 5 unit
cells) with different lattice parameters are heated using the
canonical (NVT) ensemble setting in LAMMPS. The cell is
simulated for 2.5 ns, such that the equilibrium pressure can

be determined. The equilibrium lattice parameter is determ-
ined by using that P=−dE/dV. A linear fit to the equilibrium
pressure with respect to volume is made, for the equilibrium
lattice parameter P(V) = 0.

At 300 K (room temperature) the calculated lattice para-
meter in α-Fe is 2.864 Å, and at 1100 K the α-Fe lattice para-
meter is predicted to be 2.886 Å, which is in agreement with
the results from Acet [38]. Moreover the expansion in the tem-
perature range 800–1300 K, shown in figure 4, follows the val-
ues presented in [38].

The thermal expansion of the RF-MEAM potential differs
from other potentials. For α-Fe the growth is repressed partic-
ularly for temperatures below 700 K, and for γ-Fe the lattice
is not stable at low temperatures. This instability needs to be

9
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Figure 5. Visualisation of some of the strengths and weaknesses of various potentials as presented in tables 4 and 5. Bar 1 corresponds to
Ack04, then 2: Mül07, 3: Mend03, 4: BJLee, 5: TLee, 6: RF-MEAM, 7: Stari21. The black horizontal line corresponds to literature data, for
vacancies the fitting targets are used. For the bcc free surface [66] is used, for fcc free surfaces [67], and for the ORs [55].

taken into account when using the potential in finite temper-
ature simulations for γ-Fe. The instability makes it difficult to
accurately determine the lattice parameter at 700 K, so there
is a jump in figure 4.

Most other potentials show only linear growth for the γ-Fe
lattice parameter, however this is not physical. At low temper-
atures the thermal expansion should be small and gradually
increase to a linear growth as is seen for the literature data.
The RF-MEAM potential and Stari21 display this for both α-
Fe and γ-Fe, where TLee only has linear expansion. A pecu-
liarity of Stari21 is that at room temperature the equilibrium
lattice parameter has decreased which is unphysical behaviour.

3.5. Discussion

Most Fe-potentials are constructed with specific targets in
mind; the TLee potential is made to model the bcc to fcc trans-
ition, but it fails when modelling vacancy structures. The ADP
potential Stari21 is made with dislocations and point defects
in mind, but is not well-suited for surfaces and stacking faults,
or the fcc-bcc interface. The RF-MEAM potential presented
here was fitted to simulate experimental data where possible.
However, this is challenging as a wealth of fitting data, such
as atomic forces, are available from DFT only. For the general
structural data fitting to experimental data at 0 K was accom-
plished, however the elastic constants of γ-Fe at 0 K are fitted
to extrapolated experimental data.

The new RF-MEAM potential can describe vacancy sys-
tems well, it also follows the FS energies, and fcc-bcc OR
energies. Hence, the RF-MEAM potential is most suitable
when simulating vacancy systems and surfaces or stacking
faults, and particularly the interphase relation between α-
Fe and γ-Fe. It must be noted that static simulations here
work better than finite temperature simulations as the thermal
expansion of both phases is slightly off. In figure 5, the specific

strengths of the listed potentials in comparison to the RF-
MEAM potential are visualised.

4. Conclusions

In this work a RF-MEAM potential for iron has been obtained
for the purpose of simulating both α-Fe and γ-Fe. The presen-
ted potential reproduces many experimental material proper-
ties, such as defects, interfaces or surfaces, better than prior
(M)EAMpotentials. The current RF-MEAMpotential is ready
to for use in LAMMPS for calculations on large systems, for
which MLP’s are still impractical.

The potential presented in this work predicts accurate lat-
tice properties and defect energies, most notably for vacancies,
and self-diffusion. Additionally surface energies and stacking
fault energies are predicted well. ORs between the bcc and fcc
lattice are predicted well for both NW and KS. The thermal
expansion in the 800–1300 K temperature range follows the
experimental data well. Therefore the potential presented here
can be used for simulations in α-Fe, and in γ-Fe, as well as in
inter phase simulations.
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Appendix. The potential

In table 6 the parameters of the RF-MEAMpotential presented
in this work are given.

Table 6. Parameters of the RF-MEAM potential.

(ζ = Fe) Value Unit Cut-offs (Å)

Embedding function

aFe −1.000 000 0000 eV
bFe −0.000 673 1412 eV
cFe 0.000 000 0000 eV
dFe 0.000 000 0765 eV

Electron-density pre-factors

t(1)Fe 0.007 220 8979
t(2)Fe 0.000 679 3420
t(3)Fe 0.000 000 0000

Pairwise functions (ED)

f(l=0)
Fe ,

(
a(1,0)
Fe ,r(1,0)Fe

)
11.686 859 4080 0.0–2.4

f(l=0)
Fe ,

(
a(2,0)
Fe ,r(2,0)Fe

)
−0.554 710 7401 0.0–3.2

f(l=0)
Fe ,

(
a(3,0)
Fe ,r(3,0)Fe

)
0.506 935 2708 0.0–4.2

f(l=1)
Fe ,

(
a(1,1)
Fe ,r(1,1)Fe

)
−45.831 339 9973 0.0–2.5

f(l=1)
Fe ,

(
a(2,1)
Fe ,r(2,1)Fe

)
20.351 730 7168 0.0–3.2

f(l=1)
Fe ,

(
a(3,1)
Fe ,r(3,1)Fe

)
−7.732 949 7788 0.0–4.0

f(l=1)
Fe ,

(
a(4,1)
Fe ,r(4,1)Fe

)
1.258 181 8551 0.0–4.8

f(l=2)
Fe ,

(
a(1,2)
Fe ,r(1,2)Fe

)
148.513 244 8477 0.0–2.5

f(l=2)
Fe ,

(
a(2,2)
Fe ,r(2,2)Fe

)
−22.814 750 5687 0.0–3.2

f(l=2)
Fe ,

(
a(3,2)
Fe ,r(3,2)Fe

)
11.515 010 6233 0.0–4.0

f(l=2)
Fe ,

(
a(4,2)
Fe ,r(4,2)Fe

)
−2.026 949 8368 0.0–4.8

f(l=3)
Fe ,

(
a(1,3)
Fe ,r(1,3)Fe

)
2600.091 135 3033 0.0–2.5

f(l=3)
Fe ,

(
a(2,3)
Fe ,r(2,3)Fe

)
73 863.832 500 2631 0.0–3.2

f(l=3)
Fe ,

(
a(3,3)
Fe ,r(3,3)Fe

)
46.883 735 1394 0.0–4.0

f(l=3)
Fe ,

(
a(4,3)
Fe ,r(4,3)Fe

)
21.185 129 1577 0.0–4.8

Pairwise function (PP)

ϕFe,Fe

(
b(1)
Fe,Fe,s

(1)
Fe,Fe

)
−71.414 445 4775 eV 1.2–1.8

ϕFe,Fe

(
b(2)
Fe,Fe,s

(2)
Fe,Fe

)
104.948 192 6512 eV 1.2–1.95

ϕFe,Fe

(
b(3)
Fe,Fe,s

(3)
Fe,Fe

)
−87.705 791 6224 eV 1.2–2.2

ϕFe,Fe

(
b(4)
Fe,FE,s

(4)
Fe,Fe

)
69.650 061 9465 eV 1.2–2.3

ϕFe,Fe

(
b(5)
Fe,Fe,s

(5)
Fe,Fe

)
−13.927 442 2124 eV 1.2–2.4

ϕFe,Fe

(
b(6)
Fe,Fe,s

(6)
Fe,Fe

)
1.192 148 8095 eV 1.2–2.5

(Continued.)

Table 6. (Continued.)

(ζ = Fe) Value Unit Cut-offs (Å)

ϕFe,Fe

(
b(7)
Fe,Fe,s

(7)
Fe,Fe

)
−20.708 542 6576 eV 1.2–2.6

ϕFe,Fe

(
b(8)
Fe,Fe,s

(8)
Fe,Fe

)
45.457 894 2098 eV 1.2–2.65

ϕFe,Fe

(
b(9)
Fe,Fe,s

(9)
Fe,Fe

)
−23.636 881 0075 eV 1.2–2.7

ϕFe,Fe

(
b(10)
Fe,Fe,s

(10)
Fe,Fe

)
0.289 112 8787 eV 1.2–2.8

ϕFe,Fe

(
b(11)
Fe,Fe,s

(11)
Fe,Fe

)
−0.824 076 6547 eV 1.2–3.0

ϕFe,Fe

(
b(12)
Fe,Fe,s

(12)
Fe,Fe

)
1.593 369 4153 eV 1.2–3.3

ϕFe,Fe

(
b(13)
Fe,Fe,s

(13)
Fe,Fe

)
−0.247 520 6962 eV 1.2–3.7

ϕFe,Fe

(
b(14)
Fe,Fe,s

(14)
Fe,Fe

)
−0.090 529 8856 eV 1.2–4.2

ϕFe,Fe

(
b(15)
Fe,Fe,s

(15)
Fe,Fe

)
0.114 524 7138 eV 1.2–4.7

ϕFe,Fe

(
b(16)
Fe,Fe,s

(16)
Fe,Fe

)
−0.031 104 9596 eV 1.2–5.3

The potential parameters are labelled as in the
equations (1)–(8) in section 2.1.
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