
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Osprey Simulator
A Simulator Framework for
Fixed-Wing UAV Updraft Localization

Master Thesis
Kjell Vleeschouwer

Osprey Simulator
A Simulator Framework for

Fixed-Wing UAV Updraft Localization

by

Kjell Vleeschouwer

Master Thesis to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday February 5, 2025 at 9:30 AM.

Thesis committee:
Chair: Dr. E. J.J. Smeur TU Delft, AE
Supervisors: Prof. Dr. G. C. H. E. de Croon TU Delft, AE

Ir. B. D. W. Remes TU Delft, AE
Ir. S. Hwang TU Delft, AE

External examiner: Dr. R.T. Rajan TU Delft, EEMCS
Student number: 4557107
Project duration: June 1, 2023 – December 12, 2024

Cover: Image captured from a simulation within the Osprey Simulator

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

I would like to begin by expressing my sincere gratitude to my supervisors, Guido, Sunyou, and Bart,
for their guidance and unwavering support during the final stages of my studies at TU Delft. Over the
past year and a half, I have navigated many challenges, balancing the demanding final phase of my
thesis with a full-time job, a job for which I needed the software skills I developed during this project.
The flexibility and understanding shown by my supervisors have been invaluable, allowing me to close
the TU Delft chapter with both a project I am proud of and the opportunity to start a job that embodies
the saying, “love what you do and you’ll never work a day in your life.” I also hope that someone at the
MAVLab can build further on this simulator framework, ultimately developing a real-life test for soaring
detection by first training it with the simulator.

I would also like to extend my heartfelt thanks to my girlfriend, Emma. Her unconditional support,
timely warnings when procrastination loomed, and her own inspiring academic dedication have been
crucial to my progress. Similarly, I am grateful to my sister Britt, who’s motivational speeches and own
recent achievement of becoming a surgeon stands as a testament to hard work and determination, a
benchmark to which I continue to aspire.

Lastly, I offer my deepest thanks to my parents for their endless love, encouragement, and the oppor-
tunities they have provided me throughout my life. Their support has been the foundation upon which
I have built my present and continue to shape my future. Graduating from TU Delft marks a significant
personal milestone, yet it is also a tribute to the steadfast support they have given me throughout my
life. I am forever grateful.

Kjell Vleeschouwer
Delft, February 2025

i

Contents

Preface i

List of Figures iii

List of Tables iv

Abbreviations vi

I Scientific Paper 1

II Literature Study 14
Summary 15

1 Introduction 17
1.1 Research Question . 17
1.2 Focus during research . 19

2 Soaring Techniques 20
2.1 Atmospheric energy Harvesting . 20

2.1.1 UAV configuration . 21
2.2 Static Soaring . 21

2.2.1 Thermal-soaring . 22
2.2.2 Orographic soaring . 23

2.3 Wind Fields . 25
2.3.1 Soaring conditions: Sink rate . 25
2.3.2 Wind Fields around different objects . 25

2.4 Dynamic Soaring . 29

3 Machine Learning research 31
3.1 Reinforcement Learning . 31

3.1.1 The basics . 31
3.1.2 Deep Reinforcement Learning Algorithms . 32
3.1.3 Uses in UAV’s . 32

3.2 Deep Learning in Autonomous UAV’s . 33
3.2.1 Updraft localization with Deep Learning . 33
3.2.2 Supervised Learning . 34
3.2.3 Image classification with CNN . 34
3.2.4 Semi-Supervised Learning . 36
3.2.5 Self-Supervised learning . 38
3.2.6 SSL for the thesis project . 39

4 Simulator Research 40
4.1 Pre-Requisites . 40
4.2 Environments and CFD . 40
4.3 Simulator: Pegasus Simulator . 42

5 Thoughts on thesis 44
5.1 The research gap . 44
5.2 Planning . 45

6 Conclusion 47

ii

Contents iii

III Software Structure & Results 48
7 Software Functionality 49

7.1 Overview of Isaac Sim . 49
7.1.1 The Role of Universal Scene Description (USD) Files in Isaac Sim 49
7.1.2 Understanding Articulation Points in Isaac Sim 49
7.1.3 The Built-in Sensor Suite and Its Impact on Osprey Simulator 50
7.1.4 The Synthetic Data Generation Tools . 50

7.2 Closing remarks on Isaac Sim . 50

8 Soaring Spot Detection Network Results 51
8.1 Testing and Results . 51

8.1.1 Suggestions for Future Work and Improvements 55

9 Future Work 56
9.1 Recommendations . 56
9.2 Improvements . 56
9.3 Research Ideas for Peers . 57

References 58

A Supplementary Material 62

List of Figures

2.1 Top view of the Rigitech Eiger UAV [50] . 21
2.2 Slope soaring with the indicated vertical wind speed [25] 26
2.3 Slope soaring with the excess updraft windfield. Grey zone indicates the soaring region

[25] . 26
2.4 The change in soaring region when changing the slope angle [25] 26
2.5 The change in soaring region while changing the windspeed [25] 26
2.6 The excess updraft wind field on a cylinder shape plotted. [a], [b], [c] show different

locations where soaring is possible on the zero excess updraft line [58]. 27
2.7 The glidepolar for the updraft windfield in Figure 2.6 [58] 27
2.8 Schematic of CFD analysis and plotted wind field on a ship [28] 28
2.9 Vertical velocity as fraction of wind velocity on a building[66] 29
2.10 Updraft velocities in an enviromnet with multiple buildings [64] 29
2.11 Schematic overview of gradient soaring at sea and using mountains [40]. 30

3.1 Taxonomy of Reinforcement Learning Algorithms [1] . 32
3.2 Schematic overview of CNN architecture for number classification from writing [16] . . . 35
3.3 Labeled image from the cityscapes database [10] . 36
3.4 Labeled image from the Cityscapes database[10] . 36
3.5 The AST-SSL network from [39]. The structure combines transfer learning with semi-

supervised learning. 37
3.6 [35] . 39

4.1 Real life buildings created in blender . 41
4.2 Rotterdam buildings in Blender . 41
4.3 Schematic overview of the Pegasus Simulator framework built upon ISAAC Sim 43

8.1 Updraft Prediction, Random Environment . 52
8.2 Downdraft Prediction, Random Environment . 52
8.3 Network Prediction 1 TU-Delft environment, windspeed: 5m/s 52
8.4 Ground Truth Label 1 TU-Delft environment, windspeed: 5m/s 52
8.5 Network Prediction 2 TU-Delft environment, windspeed: 5m/s 52
8.6 Ground Truth Label 2 TU-Delft environment, windspeed: 5m/s 52
8.7 Network Prediction 3 TU-Delft environment, windspeed: 5m/s 53
8.8 Ground Truth Label 3 TU-Delft environment, windspeed: 5m/s 53
8.9 Prediction Error due to flat ground surface . 53
8.10 Horizon flat surface prediction . 54
8.11 Correct updraft prediction, with incorrect horizon network flaw 54
8.12 Updraft predictions for different wind speeds . 54

iv

List of Tables

2.1 Fixed-wing drone specifications for soaring [25], [28] . 21
2.2 Specifications for the Rigitech Eiger UAV [50] . 21
2.3 Comparison of the main features of Thermals and Orographic Lift and their differences . 25

3.1 COCO Instance Segmentation Baselines with Mask R-CNN [69] 36

4.1 Simulator comparison . 42

v

Abbreviations

AP Average Precision 35, 37
API application programming interface 49
CFD Computational Fluid Dynamics 15, 23–25, 41–45, 56
CNNs Convolutional Neural Networks 34
DES Detached Eddy Simulation 41
DL Deep Learning 33
DRL Deep Reinforcement Learning 32, 33
GANs Generative Adversarial Networks 38
INDI Incremental Nonlinear Dynamic Inversion 23
IoU Intersection over Union 55
LES Large Eddy Simulation 41, 42
LLM’s Large Language Models 33
MAE Mean Absolute Error 55
MAV’s Micro Aerial Vehicles 24
ML Machine Learning 15, 22, 31, 40, 42, 44, 47,

56
NLP Natural Language Processing 33
RANS Reynolds Averaged Navier Stokes 41
RL Reinforcement Learning 22, 23, 31–33
RMSE Root Mean Squared Error 55
SSL Self-Supervised Learning 38, 39, 42, 47
UAV Unmanned Aerial Vehicle 17, 18, 47
UAV’s Unmanned Aerial Vehicles 15, 17, 20–25, 27, 29–33,

36, 38–40, 43, 44, 47
USD Universal Scene Description iii, 49, 50
VTOL Vertical Takeoff and Landing 21

vi

Part I

Scientific Paper

1

1

Osprey Simulator: A simulator framework for
fixed-wing UAV updraft localization

Kjell Vleeschouwer , Sunyou Hwang*, Bart D.W. Remes*, Guido C.H.E. de Croon*

Abstract—The real-world application of Micro Air Vehicles
(MAVs) is often constrained by their limited flight range and
endurance, primarily due to battery limitations. One way to
overcome this challenge is by leveraging naturally occurring
vertical air currents, a technique inspired by soaring birds. This
paper introduces Osprey Simulator, a framework designed to
simulate and test energy-efficient soaring flight strategies for
fixed-wing drones. Built on Isaac Sim, Osprey Simulator enables
the creation of both randomly generated urban environments and
real-world environments, such as the TU Delft campus. These
environments are paired with accurate wind field simulations
using OpenFOAM, providing a robust platform for studying
aerodynamic interactions in diverse settings. This functionality
allows for the generation of scalable synthetic datasets, including
depth images and wind field information, enabling comprehen-
sive exploration of soaring potential across various structural
geometries and wind conditions. Using generated synthetic data, a
neural network was trained to predict optimal soaring regions by
analyzing depth images and wind field information. The network
demonstrates the ability to identify updraft and downdraft
regions, enabling more efficient path planning for drones in urban
environments. By integrating realistic simulations and advanced
predictive models, Osprey Simulator serves as a powerful tool
for advancing autonomous soaring and extending the operational
range of fixed-wing MAVs.

SUPPLEMENTARY MATERIAL

Code: https://github.com/kv8-A/OspreySimulator

I. INTRODUCTION

Small flying robots, commonly referred to as Micro Air
Vehicles (MAVs), are increasingly used in a variety of real-
world applications, from windmill inspection and agricultural
surveying to search and rescue operations. However, a major
limitation of MAVs lies in their restricted flight range and
endurance, stemming from constraints on size, weight and
mainly their battery. One way to extend their operational dura-
tion and coverage is to harness energy form the environment.
When looking at nature, birds achieve this through soaring,
which is the ability to get energy out of the environment by
harnessing naturally occurring spots of vertical air currents.
These currents can come in the form of thermal updrafts,
orographic updrafts or or dynamic soaring which makes use
of wind gradients [1][2].

In recent years, researchers have begun to investigate how
MAVs and UAVs (Unmanned Aerial Vechicles) can mimic
these soaring techniques to improve the endurance of MAVs.
While thermal updrafts, rising columns of warm air, have long
been exploited by gliders, MAVs can also utilize orographic

*thesis supervisors.

Fig. 1. System Architecture of Osprey Simulator. SoarEnvGen prepares the
environments and the wind fields. With the then Synthetically generated data,
the updraft recognition networ is created.

lift, which arises when wind is deflected upward by terrain
or structures.UAVs can also utilize orographic lift, which is
created when wind is deflected upward by terrain or structures.
These orographic soaring techniques have been researched and
tested in real life, and autonomous soaring controllers have
even been developed [3][4][5]. More recently, autonomous
soaring has also been demonstrated in [6]. However, these
approaches predominantly focus on local control near known
soaring locations, requiring the MAV to already be within or
very close to an updraft region.

For autonomous soaring to become practical in real-world
conditions, MAVs must detect and predict soaring opportuni-
ties from a distance rather than just react once they are nearby.
This requires integrating environmental cues such as vision-
based terrain recognition, depth sensing, and sophisticated
wind field modeling. By identifying features such as tall
buildings or cliffs and understanding the associated wind
conditions, MAVs can be guided to optimal soaring spots
before arrival. Instead of relying on manually crafted, error-
prone algorithms, this paper proposes leveraging deep neural
networks to generalize the detection and exploitation of these
spots.

To support such research, this paper introduces the Osprey
Simulator, a new simulation framework built on top of the
Pegasus Simulator and NVIDIA Isaac Sim platforms [7][8].
Developed to advance research on autonomous UAV soar-
ing and orographic updraft detection, The Osprey Simulator
automatically integrates realistic wind fields, supports vision
and depth sensors, and provides both randomly generated
and real-world simulation environments. It expands upon the

2

high-fidelity capabilities of Isaac Sim by incorporating com-
plex wind dynamics and fixed-wing UAV models, enabling
researchers to develop and test neural networks, like the
introduced SoarDetect, for identifying and utilizing orographic
soaring regions. his platform paves the way for robust, ulti-
mately advancing MAV autonomy and endurance.

The remainder of this paper is organized as follows: Sec-
tion II discusses related work in more detail. Section III
presents the Osprey Simulator and its core functionalities.
Section IV details the use of synthetic self-supervised data to
set up and train a neural network for updraft detection. Finally,
Section V concludes with a discussion of future research
directions.

II. RELATED WORK

The idea of soaring from UAVs is not new and was first
introduced in 2005 by Allen. Allen recognized the possibilities
for UAVs that could potentially increase their endurance
between 2 and 14 hours [1]. The idea has been further explored
in [9, 4, 3, 10, 11, 12, 13]. Although the focus mainly has
been on thermal soaring and dynamic soaring, these ideas
have been explored for orographic soaring in [6] and [14]. In
[6], Hwang created an algorithm where autonomous soaring
in a wind tunnel was performed, while in [14], de Jong et
al. successfully developed a soaring controller on a moving
object. This work is used as motivation for Osprey Simulator,
as the hope is to use the real-life dynamics and physics to test
these controllers in simulation first.

Orographic soaring and the shape of wind fields in urban
environments were further explored in [4], [10]. In [4], wind
tunnel tests were conducted using a subscale model to the wind
fields, and more specifically the possibility for updrafts around
buildings. These wind tunnel tests were later validated exper-
imentally by performing tests on the top of the real building.
[10] performed a first 3D CFD analysis where the results were
in line with what was to be expected from the tests performed
in [11] & [4]. The research performed in [12] examined the
wind fields within a building complex in Singapore using
OpenFOAM for Computational Fluid Dynamics (CFD) with
the aim of understanding the wind effects on UAVs’ flight
paths.

Throughout the years, multiple simulators have been devel-
oped for all kinds of robotics and UAV cases, with most of
them focused on quadrotor dynamics. However a simulator
specifically designed for fixed-wing UAVs that is able to
simulate realistic wind fields generated with CFD, seems to
be missing. This section will go through the several platforms
that have been developed, with each addressing different re-
quirements for detailed, realistic modeling of robotic systems.
Platforms like Gazebo have long been favored for their ROS
integration & physics engine; however, it lacks the ability
to simulate complex visual environments. This gap has been
narrowed by the development of simulators like AirSim &
Flightmare, which respectively utilize the advanced game
engines Unreal Engine and Unity [15] [16][17][18][19].

Building on existing technologies, NVIDIA has introduced
its Omniverse suite, which includes Isaac Sim. Isaac Sim

offers sophisticated simulation capabilities tailored to robotics
applications by making use of NVIDIA’s expertise in GPU-
accelerated computing and AI. Isaac Sim excels in modal
data generation and high-quality RTX rendering. All of this
is integrated under the Universal Scene Description standard
for complex 3D environment representation. USD has been
developed by Pixar. Despite its comprehensive features, Isaac
Sim lacks in areas critical for UAV and other aerial vehicle
simulation. Examples of the support it lacks include sensors
like a barometer, airspeed vector, and more [7] [8].

Trying to fill this gap in aerial simulation within the
NVIDIA Omniverse, Pegasus Simulator was developed. Pega-
sus Simulator has been built upon Isaac Sim. It distinguishes
itself by its emphasis on integration with widely adopted
frameworks like PX4-autopilot and ROS2, while focusing pri-
marily on quadrotor dynamics. Additionally, it supports both
software-in-the-loop (SITL) and hardware-in-the-loop (HITL)
simulations. It also further extends the mission sensors needed
for aerial simulation. Comparing it to Osprey Simulator, it
still misses two important capabilities: realistic wind fields &
fixed-wing dynamics. Building on the foundation of Pegasus
Simulator, GSL-Bench has been developed as a sophisticated
benchmarking suite tailored specifically for the field of Gas
Source Localization (GSL) [20]. GSL-Bench addresses the
challenges of GSL by integrating the high-fidelity graphics
powered by Isaac Sim and the creation of random environment
generation on which CFD simulation is performed. Although
these environments consist of indoor warehouses and others,
GSL-Bench is one of the first simulators integrating simulation
with high-fidelity wind fields inside the simulator, something
that has been performed for Osprey Simulator as well.

Recently, in [21], a software pipeline was developed where
they had CFD-generated urban wind fields inside the simulator
for quadrotor flight. Here, the simulation integrates Open-
StreetMap for real-world building geometry, OpenFOAM for
CFD and wind field computations, and the Gazebo simula-
tion environment. The software pipeline imports these urban
geometries and performs the CFD analysis using the steady-
state RANS equation with a k-ϵ turbulence model. After the
CFD generation, a customized Gazebo plugin interpolates
the generated CFD wind field at runtime, influencing the
quadrotor’s dynamics. The results showed the impact of wind
on the quadrotor’s dynamics and highlighted the impact of
urban wind fields on the quadrotor’s stability and control.

The approach within the Osprey Simulator resembles the
work described above, with key differences in the generation
of real-world building geometries as well as the simulation
environment used. Unlike the referenced work, the Osprey
Simulator supports fixed-wing UAVs and uses a Computational
Fluid Dynamics (CFD) software pipeline, called SoarEnv,
which integrates urban wind fields into the simulation. More
about the CFD module SoarEnv can be found in subsec-
tion III-D.

III. SIMULATOR SOFTWARE ARCHITECTURE

The Osprey Simulator Software consists of multiple modules
with the end-goal in mind of creating an operating fixed-
wing dynamics UAV flying in a photo-realistic simulation

3

environment. It also provides a high level of physics fidelity by
providing windfields inside the environment that are created by
the SoarEnv module within the simulator. The SoarEnv module
acts as a Python OpenFOAM automation. Additionally, the
SoarEnv module facilitates the generation of realistic wind
fields and random urban environments, which are crucial for
simulating orographic updrafts. The architecture can be seen in
Figure 2. Furthermore, a synthetic data generation module has
been developed to create datasets for training neural networks
capable of detecting soaring hotspots.

Fig. 2. Software Architecture Schematic

A. NVIDIA ISAAC SIM & Pegasus Simulator

The Osprey simulator is built upon the Pegasus Simulator
framework, which is a custom-built extension of NVIDIA
Isaac Sim for quadrotor flight.

NVIDIA Isaac Sim offers advanced simulation capabilities
tailored to robotics applications, leveraging NVIDIA’s exper-
tise in GPU-accelerated computing and AI. However, it lacks
support in areas critical for UAV simulation, such as specific
sensors and dynamics models.

Pegasus Simulator addresses these gaps by emphasiz-
ing quadrotor simulation and integrating widely adopted
frameworks like PX4-Autopilot and ROS2, supporting both
software-in-the-loop (SITL) and hardware-in-the-loop (HITL)
simulations. It also extends the mission sensors needed for
aerial simulation. Nevertheless, Pegasus Simulator still misses
two important capabilities: realistic wind fields and fixed-wing
dynamics.

Osprey Simulator builds upon Pegasus Simulator by intro-
ducing fixed-wing UAV models and integrating realistic wind
fields generated through CFD computations via the SoarEnv
module. SoarEnv automates OpenFOAM simulations and en-
ables the creation of random urban environments through
a custom pipeline in Blender. These features enhance the

simulation’s realism and enable the testing of fixed-wing UAVs
in complex environments with accurate physics. Additionally,
the synthetic data generation API within Osprey Simulator
allows for the creation of datasets necessary for training
neural networks aimed at detecting soaring hotspots, further
expanding the simulator’s capabilities.

B. Simulation Environment

The simulation environment in Osprey Simulator is a critical
component that provides realistic settings for testing fixed-
wing UAVs. Environment generation is facilitated through two
primary methods, both integrated within the SoarEnv module:
importing real-world environments using the Blender-OSM
(Blosm) add-on and generating random urban environments
using a custom Python module interacting with Blender.[22,
23].

The Blosm add-on for Blender, formerly known as Blender-
OSM, significantly enhances environmental simulation capa-
bilities by enabling the integration of OpenStreetMap, Google
3D cities, and real-world terrain data into Blender [22, 23].
Incorporated into SoarEnv, the Blosm add-on allows for
the creation of rich, realistic 3D environments by importing
accurate geographic data. This streamlines the process of
generating landscapes and urban settings that reflect actual
locations. An example of such an environment within the
Osprey Simulator is shown in Figure 3, showing the TU
Delft campus. These environments can serve as exact locations
where future testing will be performed, providing the ability
to quantify the simulation-to-reality gap.

Fig. 3. The TU Delft Campus

Both methods require conversion of the environment files
for compatibility with different components of the simulator.
Since both the simulation environment and the CFD API to
OpenFOAM do not accept the ’.blend’ format, the environ-
ment files are converted to ’.usd’ files for Isaac Sim and
’.obj’ files for the CFD computations. SoarEnv automates this
conversion process, ensuring that the scales and coordinates
remain consistent across formats. This is crucial because the
windfield generated from the ’.obj’ file must align accurately
with the environment in the ’.usd’ file within the simulator.

The Osprey Simulator provides a seamless workflow for
preparing realistic simulation environments. This integration

4

enhances the simulator’s capability to test fixed-wing UAVs
in complex urban settings with accurate physics and environ-
mental interactions.

C. Vehicle model

A detailed vehicle model is implemented to replicate the
behavior of fixed-wing UAVs. It integrates a 3D drone model
via a USD file, defining the UAV’s visual and physical
characteristics with a single articulation point to streamline
dynamics. Configurable parameters, such as mass, aerody-
namic coefficients, and propulsion details, allow users to adjust
performance attributes, enabling testing of fixed-wing UAVs
under diverse conditions.

1) Vehicle & System Dynamics: The Osprey Simulator
models fixed-wing UAV dynamics using fundamental forces
and moments. Figure 4 illustrates the primary forces acting
on the UAV: lift, drag, thrust, and weight, along with the
pitch and yaw moments. For simplicity, the roll moment is
excluded, with turns modeled exclusively using yaw. While
more complex dynamics models exist, this simplified approach
provides sufficient fidelity to simulate soaring flight and study
updraft exploitation.

Fig. 4. Fixed-plane dynamics

To model the fixed-wing dynamics, the following equations
are employed for lift, drag, and thrust. While straightforward,
these equations capture the main aerodynamic effects relevant
to the simulator’s goal of identifying soaring locations.

Lift is calculated using the lift equation, Equation 1, where
the lift coefficient CL is dependent on the angle of attack α,
and the airspeed V accounts for wind interactions.

L =
1

2
· CL · ρ · V 2 · S

CL = f(α)
(1)

The airspeed V is computed as the sum of the MAV’s ground
speed and wind velocity components. Both the ground speed
and wind velocity are represented as 1D arrays of size 3
in the ground frame of reference. The airspeed used in the
equations is the magnitude of the resulting airspeed vector, as
the equation is independent of direction (positive or negative):

V =
∣∣∣V⃗Ground + V⃗Wind

∣∣∣ (2)

Drag is computed similarly to lift, Equation 3, incorporating
the drag coefficient CD, which is dependent on both the
lift coefficient and a drag component CD,0 that includes
components like profile drag [24].

D =
1

2
· CD · ρ · V 2 · S (3)

CD = CD(CD,0, CL)

CD = CD,0 +
C2

L

π · e ·AR
(4)

Here, e is the span efficiency factor, and AR is the aspect ratio
of the wing.

Thrust is modeled using the equation [24]:

T = CT · ρ · n2 ·D4 (5)

Where
• CT is the thrust coefficient (assumed constant for this

study)
• n is the propeller rpm in revolutions per second
• D is the propeller Diameter
• ρ is the air density

In real-world scenarios, there would be CT and CP (power
coefficient) curves that vary with the advance ratio, J , defined
as [25]:

J =
V

n ·D
(6)

Here V , is the airspeed. However, for the purposes of this
study, the propeller RPM is scaled directly by the power input
controlled through the throttle. Both CT and the influence of
the advance ratio on performance are kept constant for sim-
plicity. While this approach deviates from real-life behavior,
it is sufficient for capturing the primary effects relevant to
fixed-wing UAV dynamics and updraft exploitation.

Although these equations are relatively simple, they ad-
equately represent the primary aerodynamic effects relevant
to updraft exploitation. The exclusion of the roll moment,
while a limitation, simplifies the model and does not hinder
the analysis of soaring flight. Future work could incorporate
coordinated turns using roll for increased realism.

By leveraging the wind field data generated by SoarEnv
and integrating it with the created aerodynamics, the simulator
achieves sufficient fidelity to analyze fixed-wing UAV behavior
in diverse wind conditions. This approach enables efficient
testing of UAV performance while providing extensive visual
and quantitative data for analysis. Furthermore, the simulator is
designed to allow future enhancements to its dynamics models,
fostering further research in UAV dynamics and autonomous
soaring.

2) Sensor Modeling: In addition to the sensor suite already
available in Isaac Sim and Pegasus Simulator, several extra
sensors are needed for fixed-wing UAVs. These sensors were
developed in a way that provides callback functions that can
access the UAV state directly. The important sensors included
and used inside the Osprey Simulator are:

5

• Airspeed Sensor: Measures the drone’s airspeed by calcu-
lating the difference between the ground speed and wind
speed. This is essential for aerodynamic calculations and
control, particularly in determining lift and drag forces.

• Altimeter: Provides altitude information by measuring the
aircraft’s height above a reference point, usually sea level.
This sensor is crucial for maintaining desired flight levels
and for executing altitude-dependent flight maneuvers.

• Angle of Attack Sensor: Measures the angle between the
wing chord line and the oncoming airflow (relative wind).
This angle is critical for assessing lift generation and for
preventing stall conditions.

• Flight Path Sensor: Determines the flight path angle
relative to the horizon, helping in trajectory planning and
stability control. It provides data on whether the drone
is ascending, descending, or flying level. The flight path
angle γ can bee seen in Figure 4.

• Heading Indicator: Indicates the drone’s heading or direc-
tional orientation relative to magnetic north. This sensor
aids in navigation and ensures the UAV follows the
intended flight path.

• Pitch Angle Gyro: Measures the pitch rate of the drone.
This information is vital for attitude control, allowing the
UAV to maintain or change its nose-up or nose-down
orientation as required.

By integrating these additional sensors, the Osprey Simulator
enhances its capability to accurately simulate fixed-wing UAV
operations. These sensors provide detailed data necessary for
aerodynamic calculations, control algorithm development, and
navigation, thereby increasing the fidelity of the simulation.

3) Control with Autopilots: For the purposes of the paper,
some minor control was needed to eventually be able to set
waypoints to updraft locations, three primary control modes
have been implemented. Osprey simulator currently has the
altitude hold, velocity hold and heading hold modes available.

• Altitude Hold Controller
The altitude hold mode is designed to maintain a UAV
at a specific altitude using a Proportional-Derivative (PD)
controller. The core of the altitude hold system involves
computing the altitude error, which is the difference
between the desired reference altitude and the current
altitude. The PD controller then adjusts the angle of
attack to minimize this error. By varying the angle of
attack, the UAV can increase or decrease lift to stabilize at
the desired altitude. The controller parameters, including
the proportional and derivative gains, were fine-tuned
to minimize the oscillations and have a short transient
response, while also capping the rate of change in the
angle of attack to realistic pitch rates. Figure 5 shows the
control block diagram.

• Velocity Hold Controller
The velocity hold mode is responsible for maintaining the
UAV’s airspeed. Similar to the altitude hold mode, this
controller uses a PID approach. The primary input is the
difference between the current velocity and the desired
reference velocity as well as the current acceleration. The
controller this system uses proportional control gains for

Fig. 5. Block Diagram of The Altitude Hold Controller

both acceleration and velocity to regulate throttle adjust-
ments. The controller adjusts the throttle to minimize the
velocity error, by changing the throttle setting until the
target speed is met. The proportional gains were fine-
tuned for a stable response. At the end there is accounted
for the range of throttle settings, which is between 0 and
1. The control block diagram can be seen in Figure 6.

Fig. 6. Velocity Hold Mode schematic

• Heading Hold Controller
To complete the ability for path following inside the sim-
ulator, a heading hold controller was developed as well.
Using the same approach as for the altitude & velocity
hold controllers, the heading controller was made. Here
the controller bases itself on the current heading input
and the error with the desired reference heading. The
controller calculates the shortest angular distance to the
target heading to prevent large angle swings.

D. SoarEnv

SoarEnv is a standalone software pipeline integrated into the
larger Osprey Simulator, specifically designed for generating
computational fluid dynamics (CFD) wind fields from 3D
urban environments. The pipeline operates in three primary
stages: first, it converts real-world or randomly generated
3D environments into compatible geometric formats such as
.obj or .stl files using a combination of Blender plugins
and and a custom Python module. These environments are
then processed through OpenFOAM, where steady-state CFD
simulations are performed to capture detailed wind behavior
around structures. The results of these simulations are exported
as wind fields, which are subsequently formatted for use within
NVIDIA’s Isaac Sim, enabling realistic airflow integration into
simulation environments. For a visual overview of this process,
this can be seen in Figure 7.

A big factor of this pipeline is that it is highly versatile,
capable of generating wind fields for both real-world environ-
ments and randomly generated urban layouts. The leveraging

6

of these precomputed wind fields in SoarEnv allows for the
simulations to perform accurate dynamic simulations within
the virtual environment, making it an essential tool within
the Osprey simulator and other simulations/simulators where
accurate wind fields are critical.

Fig. 7. The SoarEnv Module

1) 3D Environment Conversion and Simulation Setup: The
SoarEnv pipeline provides two main methods for generating
3D urban environments, each serving different needs. The
first method uses Blender’s blosm add-on, which was shortly
described in subsection III-B, to create realistic urban land-
scapes by importing geographic data, allowing for the precise
modeling of real-world cities and environments [22]. This
is particularly useful when simulating actual locations where
environmental factors like wind interaction need to be studied
in specific contexts.

The second method involves the generation of random urban
environments using the custom Python random environment
generator API within SoarEnv. This API automates the import
of pre-modeled buildings, places them randomly within a
defined field, and applies randomized textures to ensure visual
variation. A key feature of the API is its ability to check for
and prevent building overlap, which helps maintain a realis-
tic urban layout. Additionally, the API generates a textured
ground plane, completing the environment setup. Once the
environment is created, it is exported in OBJ & USD format,
ready for respectively CFD simulations in OpenFOAM and
integration within the NVIDIA IsaacSim framework. Figure 8
shows a randomly generated environment, highlighting the
variety in building textures and shapes.
These two methods together provide maximum flexibility in
environment generation, whether for real-world applications
or hypothetical scenarios. The random generation method, in
particular, allows for the creation of vast amounts of diverse
data, which is invaluable for training machine learning models.
By simulating wind fields across varied environments, SoarEnv
supports research into neural networks for updraft detection,
as well as use cases for predicting wind behavior in complex
urban settings and around buildings. This scalability is a
needed and valuable feature for training neural networks.

2) CFD Simulations Using OpenFOAM: Once the 3D
environment is generated, SoarEnv leverages OpenFOAM to
conduct automated CFD simulations, capturing realistic wind
field data. The simulation begins with setting up the mesh,

Fig. 8. Randomly Created Environment with SoarEnv package

where the 3D geometry from the environment file is used
to define the simulation volume. Key parameters, such as
the domain size, are configured based on the dimensions of
the imported model, ensuring sufficient margins around the
buildings to prevent boundary interference. This is achieved by
dynamically adjusting the mesh and grid cell sizes according
to the environment’s geometry.

The wind velocity and direction are specified as part of
the simulation settings. The OpenFOAM simpleFOAM solver,
combined with the RANS turbulence model, is employed to
handle the steady-state airflow simulations [26]. To create a
comprehensive dataset, the simulation runs for a range of wind
velocities and directions, generating a full map of possible
wind conditions across the environment. All necessary con-
figurations, including mesh generation and solver parameters,
are stored and applied through automated scripts, streamlining
the entire CFD workflow. During the mesh preparation phase,
a refinement box is defined around key areas to ensure higher
accuracy in wind field calculations. Key areas are regions
where the flow field is expected to change significantly, such
as around buildings and other geometric objects.

After setting up the simulation, SoarEnv uses its custom API
to fully automate the OpenFOAM process, from mesh genera-
tion to solver execution. The API ensures seamless integration
of all steps, applying the configured settings and managing the
simulation workflow without manual intervention. The output
is a detailed wind field, represented as vector data, which
is saved for post-processing and visualization. These wind
fields can then be integrated into NVIDIA IsaacSim or other
platforms, enabling real-time interaction with precomputed
airflow data.

E. Post-Processing and Wind Field Integration

Once the simpleFOAM solver completes the steady-state sim-
ulations, it returns a three-dimensional wind field, represented
as vector data at each mesh point. These wind fields are then
processed and integrated directly into the Osprey Simulator.
The wind direction in the simulations is defined using cardinal
points—North (N), East (E), South (S), West (W), and their
intermediate directions NE, SE, SW, and NW—which are

7

mapped to specific angles relative to the positive x-axis in
the global reference frame.

These angles are assigned as follows: North corresponds to
0◦, East to 90◦, South to 180◦, West to −90◦, Northeast to
45◦, Southeast to 135◦, Southwest to −135◦, and Northwest to
−45◦. By converting these angles to radians, the wind velocity
vectors are calculated using trigonometric functions:

u = −V cos(θ) cos(ϕ)

v = −V sin(θ) cos(ϕ)

w = −V cos(ϕ)

(7)

where V is the wind speed, θ is the wind direction angle in
radians, ϕ is the elevation angle, and u, v, and w are the wind
velocity components along the x (east-west), y (north-south),
and z (vertical) axes, respectively. The negative signs ensure
that the wind vector points in the correct direction relative
to the coordinate system. For example, a wind blowing from
the north (N) with a speed of V would have components
(−V, , 0, , 0), indicating a wind moving towards the negative
x-direction (westward).

This mapping aligns the wind directions with the global
reference frame used in the simulation, where the x-axis repre-
sents the east-west direction (positive towards the east), the y-
axis represents the north-south direction (positive towards the
north), and the z-axis represents the vertical direction (positive
upwards). By accurately defining the wind directions and
their corresponding velocity vectors, the simulation captures
realistic wind interactions within urban environments

In Figure 9 , Figure 10 and Figure 11, the wind field’s
updraft regions and flow field are clearly visible, showcasing
the pipeline’s ability to capture realistic airflow behavior
around buildings. OpenFOAM, a well-known and reliable CFD
tool, was used to generate these wind fields, and its established
accuracy reduces the need for extensive verification in this
context. To assess the qualitative accuracy of SoarEnv, the
wind field was initially compared against flow patterns around
square-shaped buildings, which are commonly studied in exist-
ing research [4, 3, 12]. These comparisons demonstrated that
the resulting flow patterns closely resembled computational
and experimental findings reported in the literature, providing
confidence in SoarEnv’s accuracy. While most urban buildings
tend to be rectangular, it is assumed that the wind fields gener-
ated by SoarEnv will also be reliable for other building shapes.
However, further quantitative validation may be required for
more complex or unusual geometries.

To conclude, SoarEnv plays a critical role in the Osprey
Simulator by generating realistic wind fields. With SoarEnv
providing accurate airflow simulations, Osprey Simulator can
be used to model orographic updraft recognition and optimize
energy-efficient path planning.

Fig. 9. TU Delft Aerospace Building corner slice vertical (Uz) wind vector

Fig. 10. Random Generated Building vertical wind vector

Fig. 11. Wind field shape

8

IV. SELF-SUPERVISED LEARNING FOR UPDRAFT
DETECTION

In the final part of the Osprey Simulator setup, we build a
neural network capable of detecting soaring hotspots, where
updrafts are likely to occur. These soaring hotspots are es-
sential for energy-efficient path planning or zero-thrust hov-
ering of fixed-wing drones. The focus is put on orographic
updrafts, with the current database consisting mainly of urban
environments. By using urban environments, the predictability
of wind patterns around buildings and urban structures can be
leveraged. The network will be trained using synthetic data
generated within the simulator, specifically depth images that
mark regions with vertical wind vectors. Depth images provide
a pixel-wise representation of the distance from the drone to
surrounding objects, which is critical for identifying terrain
features, building structures, and other elements that influence
wind dynamics. This section outlines the process of generating
this data and preparing the network for updraft detection.

Fig. 12. The orographic updraft detection module

A. Data collection

To train a neural network effectively, a large and diverse
dataset is required. The dataset will include the input depth
images, wind direction, and labeled updraft regions. These
updraft regions are represented by the wind velocity in the
z-direction. Updrafts are specific to the sink rate of the drone;
the sink rate of the drone needs to be lower than the vertical
wind vector. Once this is the case, it can be considered an
updraft region. Because the model predicts the vertical wind
velocity at each pixel in the environment, it can be adapted
for use with any fixed-wing drone, regardless of its specific
Cl, Cd curve or sink rate. By setting a threshold based on
the drone’s sink rate, an updraft region can be identified as
any location where the predicted upward velocity is equal to
or greater than the sink rate. This flexibility makes the model
broadly applicable across different drone configurations. The
synthetic data generation pipeline will be leveraged to do this,
as can be seen in Figure 12. The pipeline will, de facto, ensure
that there is an automatic label generation process, making
data collection exponentially scalable with the number and
variability of environments.

The pipeline first sets up the environments—both random
and real-life environments that have been created—and then

randomly takes images within these environments while ran-
domizing the camera locations and rotations. These rotations
and positions are critical for the wind direction relative to
each camera position; the wind direction will be one of the
inputs to the neural network, as it has an important impact on
predicting whether the building shows an updraft or downdraft
(positive or negative vertical wind vector). Updrafts occur
above buildings on the sides where wind hits the structure
(see Section II, Figure 9 and Figure 10).

The synthetic DataRecorder class records the depth images,
which represent the distance from the camera to objects in the
environments. The choice of using depth images mainly comes
from the ease of having only one channel, which lowers the
computational effort for training, while still providing critical
geometric information about the scene within the camera
frame.

Thanks to the Isaac Sim framework, a point cloud can
be generated for each depth image, eliminating the need
for camera transformations. The PointCloudProcessor class
reshapes the point cloud data into coordinates per pixel.

These coordinates are then used in the WindFieldProcessor,
where the wind field data is processed for the coordinates
per pixel. To make this computationally more efficient, this
process has been pre-filtered by leveraging our knowledge
of the behavior of orographic wind field data. The network
will be interested in updraft regions above buildings, which
allows us to pre-filter and label as follows. First, the building
edges—mainly the rooftops—are targeted using OpenCV edge
detection. Next, for each detected edge pixel’s coordinate, an
upward movement vector is applied. As shown in Figures 10
and 9, the optimal updraft generally occurs above the building
edges. After applying the movement vector, the new coordinate
is used to obtain an interpolated average value of the vertical
wind vector from the wind field data. This value is then
assigned to a range of pixels, which can be adjusted as needed,
creating an updraft or downdraft zone. The resulting image has
the same shape as the depth image, (H,W), but now the pixels
contain the vertical wind scalar values. These ”vertical wind
images” or arrays will be used as labels during the neural
network training process. This process is also visualized in
Figure 13.

The input wind direction relative to the drone/camera body
frame, the depth image, and the labels per image are now
created, saved, and processed to be used for training.

B. Neural Network: SoarDetect

To effectively detect updraft regions from depth images in
urban environments, a neural network that can capture both
local spatial details and global contextual information is es-
sential. For the network architecture design it was decided
to utilize a modified U-Net architecture for this task due to
its proven success in image segmentation and pixel-wise pre-
diction problems [27]. The U-Net’s encoder-decoder structure
with skip connections allows it to learn hierarchical features
and preserve spatial resolution, which is critical for identifying
updraft regions that often occur near edges and rooftops. The
network was implemented using Pytorch [28].

9

Fig. 13. Synthetic Data Vertical Wind Image Process

1) U-Net Modification and Structure: The input to the
network consists of a single channel representing the depth
image, while the wind vector components (Vx, Vy) are in-
corporated at the bottleneck of the U-Net architecture. By
introducing the wind vector components at the deepest layer of
the network the model gains explicit information about global
wind conditions while maintaining focus on spatially localized
interactions between wind and environmental structures. This
approach allows the network to learn how large-scale wind
patterns influence vertical wind velocities, particularly around
complex geometries such as building edges, where updrafts
are most pronounced.

The modified U-Net architecture comprises an encoder and
a decoder connected through skip connections at each level.
The encoder path consists of four blocks, each containing
two convolutional layers with batch normalization and ReLU
activation, followed by a max-pooling layer for downsampling.
The number of feature channels doubles at each downsampling
step, starting from 64 and reaching 512 in the bottleneck,
enabling the network to capture features at multiple scales
essential for understanding both fine details and broader con-
text.

At the bottleneck, the wind vector components are trans-
formed through a fully connected layer to produce a feature
representation, which is then spatially broadcasted and con-
catenated with the encoder’s output. This integration enriches
the bottleneck feature map with wind-specific global context,
facilitating the network’s ability to learn complex aerodynamic
interactions.

The decoder path mirrors the encoder but replaces max-
pooling with upsampling layers. Employing bilinear interpola-
tion for upsampling due to its simplicity and ability to reduce
checkerboard artifacts commonly associated with transposed
convolutions [29]. After each upsampling step, the feature
map is concatenated with the corresponding feature map from
the encoder via skip connections, enabling the network to
reconstruct spatial details necessary for precise localization
of updraft regions. The final layer is a 1× 1 convolution that
produces a single-channel output representing the predicted
vertical wind velocities (Vz). By integrating wind vector com-
ponents at the bottleneck, the network effectively combines

global wind conditions with spatially detailed environmental
features, enhancing its ability to detect soaring hotspots for
energy-efficient drone flight planning.

C. Input and Output of the Model

The modified U-Net model accepts a single input tensor
consisting of three channels:

1) Depth Image: A single-channel image representing
the distance from the camera to objects in the scene.
The depth images are normalized to ensure numerical
stability and consistent scaling across the dataset.

2) Wind Vector: A two-dimensional vector v = [vx, vy]
representing the wind velocity components relative to
the drone’s frame of reference. The wind vector is
incorporated into the network at the bottleneck, where it
is transformed into a feature representation using a fully
connected layer. This feature representation is expanded
spatially to match the bottleneck dimensions and con-
catenated with the encoder’s output. By providing the
wind vector at this stage, the network can leverage both
global wind conditions and spatially detailed environ-
mental features to predict updraft regions accurately.

The depth images are normalized to the range [0, 1] to
ensure training stability [30]. These normalized depth images
are combined with the wind vector features at the bottleneck to
form the network’s complete input. The vertical wind images
serve as the ground truth outputs, providing per-pixel labels
for training, as discussed in subsection IV-A.

The output of the model is a single-channel image with
the same spatial dimensions as the input depth image and the
ground truth labels. Each pixel value in the output represents
the predicted vertical (z-direction) wind velocity at its cor-
responding spatial location. Pixels with positive values indi-
cate updrafts, while negative values denote downdrafts. The
model’s predictions closely resemble the synthetically labeled
data, enabling precise identification of soaring hotspots and
downdraft regions for energy-efficient drone flight planning.

D. Training

The goal of the training process is to enable the model to
learn how geometric features captured in depth images and
global wind conditions represented by wind vectors combine
to influence vertical wind velocities, particularly in identifying
localized updraft and downdraft regions caused by aerody-
namic interactions with complex environmental structures. The
model was trained on a computer with an Intel Core i7 10th
Gen CPU and an NVIDIA GeForce RTX 2080 Super with
Max-Q Design, featuring 8 GB of memory.

The synthetic dataset used for training was generated from
two distinct environments: a randomly generated environment
and a real-world environment based on the TU Delft campus.
Both environments were simulated under varying wind veloc-
ities and drone positions. he randomly generated environment
consisted of procedurally created building shapes, including
cubes, spheres, rounded roofs, triangular roofs, and domes, of-
fering a diverse range of aerodynamic challenges. In contrast,

10

the TU Delft campus provided realistic geometric details with
well-defined architectural structures. While in contrast to that
the TU Delft campus provided realistic geometric details with
well-defined, complex architectural features. This combination
ensured high variability in aerodynamic conditions, enriching
the dataset and allowing the model to generalize effectively.
As a result, the network achieved low training loss and was
able to predict vertical (z-direction) wind velocities with high
accuracy, even in regions with intricate flow dynamics, such
as around building edges.

1) Loss Function and Optimization: For the loss function
the Mean Squared Error (MSE) loss function was implemented
to measure the difference between the predicted and actual
vertical wind velocities. The MSE loss is suitable for regres-
sion tasks where the goal is to predict continuous values [30].
Next, for the optimizer it was decided to make use of the
Adam optimizer. The decision was made because of its ability
to handle sparse gradients and adapt the learning rate during
training, which enhances the convergence speed and stability
of the training [31]. The training loss can be seen in Figure 14

2) Hyperparameters: The model was trained using a learn-
ing rate of 1 × 10−4, which balances the need for steady
convergence with the avoidance of overshooting minima. Due
to computational constraints, a batch size of 2 was used;
although small, this batch size was sufficient for the model
to learn from the data.

The network was trained for 25 epochs using a dataset of
5,800 samples. The random environment contributed 4,000
samples, derived from 400 images simulated across 10 dif-
ferent wind velocities. The TU Delft campus environment
provided 1,800 samples, generated from 600 images simulated
at three different wind velocities.

Fig. 14. Training Loss SoarDetect

E. Testing and Results

After training, the model’s performance was evaluated on a
separate test dataset consisting of depth images and wind
vectors that were not used during training.

The model demonstrates generalization and correctly pre-
dicts updraft regions. However, there are cases where it incor-
rectly identifies certain features as edges, such as the border
of the ground plane being falsely recognized as a rooftop line.
Increasing the diversity of the dataset by introducing more

Fig. 15. Updraft Prediction

environments is expected to mitigate such issues. The model
also performs better with the randomly generated environment
compared to the TU Delft campus environment, likely due
to the simpler geometries in the former. The TU Delft envi-
ronment presents more complex shapes, which challenge the
model’s predictive capabilities.

One notable observation is the model’s ability to adapt its
predictions to varying wind velocities. For instance, at low
wind speeds of 1 m/s, where updraft regions are minimal,
the model accurately predicts this lack of significant updrafts.
Conversely, at higher wind velocities, it effectively identifies
larger updraft regions. Additionally, the model recognizes
downdraft regions, a critical capability for realistic predictions.
This is evident in scenarios where the drone faces a building
front with a headwind, correctly predicting the absence of an
updraft on that side. For flight planning, this concept can be
extended by implementing an algorithm that accounts for the
likelihood of an updraft on the opposite side of the building.
This is particularly useful when the drone is positioned below
the roof surface and cannot directly observe the other side. An
example of a predicted downdraft is shown in Figure 16.

It is important to note that the test data still originates from
the same two environments used during training. To achieve
more comprehensive results, evaluations on entirely unseen
environments would be necessary.

F. Future Work

Future work involves validating the model with real-world data
to assess its performance outside simulated environments. This
validation will help assess the model’s generalizability and
practical utility in actual drone operations, ensuring that it
can accurately detect updraft regions under varying real-world
conditions.

Testing the model on entirely new environments beyond
those used during training is also essential to further evaluate
its ability to generalize to unseen geometries and wind condi-
tions. Expanding the dataset with a broader range of building

11

Fig. 16. Downdraft Prediction

shapes and wind scenarios would address current challenges,
such as false edge detections, and enhance robustness.

Additionally, integrating the model into real-time drone
systems could enable practical deployment for energy-efficient
flight planning. Algorithms could be developed to infer updraft
regions in unseen areas, such as predicting updrafts on the
opposite side of a building when only one side is visible.

Lastly, due to computational constraints, the environments
simulated during training were limited in size and complexity.
Access to more powerful hardware would allow for generating
larger and more detailed environments, further improving the
model’s ability to learn and generalize.

V. CONCLUSION

Osprey Simulator is a platform designed to advance research
in fixed-wing drone operations by simulating real-world envi-
ronments with the goal of enabling learning for autonomous
soaring. The simulator includes a detailed fixed-wing aircraft
model, incorporating its own control modes and physics to
accurately replicate the dynamics of real-world flight.

Central to this is SoarEnv, which generates accurate, de-
tailed wind fields, enabling critical applications such as oro-
graphic updraft recognition and energy-efficient path planning.
Utilizing Osprey Simulator and SoarEnv, synthetic data was
collected by combining the generated wind fields with depth
images and the simulator’s ability to get the wold coordinates
of the objects in the image. Providing a rich dataset of depth
images and corresponding wind vectors. This data served as
the foundation for training the modified U-Net neural network,
SoarDetect, designed to predict vertical wind velocities from
depth images and wind information.

By integrating these realistic environmental factors and
advanced neural network models, Osprey Simulator provides a
unique opportunity for researchers to test and optimize fixed-
wing drone performance in complex, dynamic conditions. The
successful training of SoarDetect demonstrates the platform’s
capability to facilitate significant advancements in autonomous

drone technology, particularly in enhancing energy efficiency
through updraft exploitation.

REFERENCES

[1] Michael Allen. “Autonomous soaring for improved en-
durance of a small uninhabitated air vehicle”. In: 43rd
AIAA Aerospace Sciences Meeting and Exhibit. 2005,
p. 1025.

[2] Abdulghani Mohamed et al. “Opportunistic soaring by
birds suggests new opportunities for atmospheric energy
harvesting by flying robots”. In: Journal of the Royal
Society, Interface 19 (Nov. 2022), p. 20220671. DOI:
10.1098/rsif.2022.0671.

[3] Caleb White et al. “A feasibility study of micro air
vehicles soaring tall buildings”. In: Journal of Wind
Engineering and Industrial Aerodynamics 103 (2012),
pp. 41–49.

[4] Simon Watkins et al. “Towards autonomous MAV soar-
ing in cities: CFD simulation, EFD measurement and
flight trials”. In: International Journal of Micro Air
Vehicles 7.4 (2015), pp. 441–448.

[5] Tom Suys et al. “Autonomous Control for Orographic
Soaring of Fixed-Wing UAVs”. In: arXiv preprint
arXiv:2305.13891 (2023).

[6] Sunyou Hwang, Bart DW Remes, and Guido CHE
de Croon. “AOSoar: Autonomous Orographic Soar-
ing of a Micro Air Vehicle”. In: arXiv preprint
arXiv:2308.00565 (2023).

[7] Viktor Makoviychuk et al. Isaac Gym: High Per-
formance GPU-Based Physics Simulation For Robot
Learning. 2021. arXiv: 2108.10470.

[8] Marcelo Jacinto et al. Pegasus Simulator: An Isaac
Sim Framework for Multiple Aerial Vehicles Simulation.
2023. arXiv: 2307.05263 [cs.RO].

[9] Caleb White et al. “The soaring potential of a micro
air vehicle in an urban environment”. In: International
Journal of Micro Air Vehicles 4.1 (2012), pp. 1–13.

[10] Alex Fisher et al. “Micro air vehicle soaring in urban
environments”. In: 2016 Australian Control Conference
(AuCC). IEEE. 2016, pp. 9–14. DOI: 10.1109/AUCC.
2016.7867924.

[11] Abdulghani Mohamed et al. “Scale-resolving simulation
to predict the updraught regions over buildings for
MAV orographic lift soaring”. In: Journal of Wind
Engineering and Industrial Aerodynamics 140 (2015),
pp. 34–48.

[12] Joshua C Nathanael, Chung Hung J Wang, and Kin Huat
Low. “Simulation of Wind Field in a Building Complex
for Evaluation of the Wind Effect Along UAS Flight
Path”. In: AIAA AVIATION 2023 Forum. 2023, p. 4096.

[13] Jake Tallman. “Soarnet, Deep Learning Thermal Detec-
tion for Free Flight”. PhD thesis. California Polytechnic
State University, 2021.

[14] Chris PL de Jong et al. “Never landing drone: Au-
tonomous soaring of a unmanned aerial vehicle in front
of a moving obstacle”. In: International Journal of
Micro Air Vehicles 13 (2021), pp. 1–12.

12

[15] Shital Shah et al. “AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles”. In:
Field and Service Robotics. 2017. eprint: arXiv:1705.
05065. URL: https://arxiv.org/abs/1705.05065.

[16] Yunlong Song et al. “Flightmare: A flexible quadrotor
simulator”. In: Conference on Robot Learning. PMLR.
2021, pp. 1147–1157.

[17] Brian Karis. “Real Shading in Unreal Engine 4”. In:
Proceedings of the ACM SIGGRAPH 2013 Courses.
ACM, 2013.

[18] Nathan Koenig and Andrew Howard. “Design and
use paradigms for Gazebo, an open-source multi-robot
simulator”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2004,
pp. 2149–2154.

[19] Unity Technologies. Unity 5 Manual. Available at:
https://docs.unity3d.com/Manual/. 2015.

[20] Hajo Erwich. “GSL-Bench: High Fidelity Gas Source
Localization Benchmarking”. In: (2023).

[21] Nicholas Kakavitsas et al. “Quadrotor Flight Simulation
in a CFD-generated Urban Wind Field”. In: 2024 IEEE
Aerospace Conference. IEEE. 2024, pp. 1–8.

[22] vvoovv. Documentation for Blosm addon. https://github.
com / vvoovv / blosm / wiki / Documentation. Accessed:
2024-05-19. 2024.

[23] Blender. Blender - Simulations. Accessed: 26 August
2023. URL: %5Curl % 7Bhttps : / / www . blender . org /
features/simulation/#fluids%7D.

[24] Ger J.J. Ruijgrok. Elements of Airplane Performance.
ISBN: [Insert ISBN Here, if known]. Delft University
Press, 2009.

[25] MIT Unified Thermodynamics Course. Airspeed and
Propeller Advance Ratio. Accessed: [Insert Date Here].
n.d. URL: https://web.mit.edu/16.unified/www/FALL/
thermodynamics/notes/node86.html.

[26] C. Peralta et al. “Validation of the simpleFoam (RANS)
solver for the atmospheric boundary layer in complex
terrain”. In: Wind Energy Science 3 (2013), pp. 237–
247.

[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
“U-Net: Convolutional Networks for Biomedical Image
Segmentation”. In: International Conference on Medi-
cal Image Computing and Computer-Assisted Interven-
tion (2015), pp. 234–241.

[28] Adam Paszke et al. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: Ad-
vances in neural information processing systems 32
(2019).

[29] Augustus Odena, Vincent Dumoulin, and Chris Olah.
“Deconvolution and Checkerboard Artifacts”. In: Distill
(2016).

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. http://www.deeplearningbook.org. MIT
Press, 2016.

[31] Diederik P. Kingma and Jimmy Ba. “Adam: A Method
for Stochastic Optimization”. In: International Confer-
ence on Learning Representations (2015).

Part II

Literature Study

14

Summary

The technology evolution of Unmanned Aerial Vehicles (UAV’s) has undergone significant advance-
ments, with rapid progression showing no signs of slowing down. Different industries, researchers and
even governments are looking to use UAV’s for all kind of purposes, where most of them are limited
by their endurance. Due to batteries already having excellent performance and efficiency other ways
have to be found to increase their endurance. One solution that is currently being researched and is
a big part of this literature study is the bio-inspired way of using bird-soaring techniques to harvest
atmospheric energy. This report will focus on orographic soaring which is a specific soaring technique
that’s possible when wind fields are created by sufficiently large (human created) structures.

Although some research has been performed on thermal soaring for UAV’s, the research on orographic
soaring has only been gaining momentum over the last couple of years. This report tries to prepare the
author and reader with enough knowledge for the upcoming thesis project which will focus on orographic
updraft recognition within a self-created simulated environment.

The literature study starts off by giving a current update on soaring techniques and delves further
into the research that has been performed on orographic soaring. It shows that to the best of the
author’s knowledge the first significant contribution was in 2012 where a research team recognised
the possibilities of orographic soaring. The emphasis in the orographic soaring research was more on
exploring possibilities as well as some tests which conducted. An autonomous soaring algorithm was
created to let a drone position itself within the wind field, however nothing was done regarding updraft
recognition.

The chapter closes of with a description of how orographic wind fields behave. It can be concluded
that, given the wind conditions and object shapes, these fields always take similar form which could be
beneficial for recognition purposes.

The other main part of the report, is the chapter that focuses on the machine learning of the thesis
project. Here it is seen that a clear gap exists in the field of updraft localization. A review has been
done of the current state of the art techniques, while similar application papers were discussed. Histor-
ically Machine Learning (ML) models have leaned heavily on supervised learning, requiring significant
amounts of labeled data. On the other hand, self-supervised learning, a more novel approach, presents
an alternative for this. By using the data’s inherent structure, it loses the need for a time consuming
annotation process. It should be noted that here the challenge lies in the novelty of the use case
as well as getting the same accuracy as for supervised models. Bridging the gap between the previ-
ously mentioned techniques is Semi-Supervised learning. Semi-Supervised learning could present as
a compelling option where it could harness the best of both.

As all different techniques are explored, a decision will have to be made between the tried-and-tested
annotating intensive supervised learning or the newer, more intricate self-supervised learning which
shows a lot of potential.

The report closes off with an in-depth examination for a simulator pipeline. Within this chapter, the
efficacy of the Pegasus Simulator is shown. Although some fine-tuning will be needed, once tailored
for the fixed wing updraft recognition task, the Pegasus Simulator and the underlying NVIDIA’s Isaac
Sim application are a good foundation to build on during the thesis project. Next to a fixed wing in-
tegration, the simulator will need an integration for a Computational Fluid Dynamics (CFD) pipeline.
Additionally, configuring the chosen ML technique with the simulator also remain something that has
to be addressed.

The literature study also gave the research question for the upcoming thesis project which is as follows:

How to autonomously pick & recognize orographic soaring locations from a distance for an UAV
by using extrareceptive inputs and how can we learn this in a simulated (urban) environment?

15

16

While some aspects of this question have been addressed, the comprehensive answering and practical
application will be explored in the subsequent thesis project.

1
Introduction

The past few years some research has focused on using soaring techniques inspired by birds for UAV’s.
This research has been performed with the goal of solving the long-endurance challenge for battery-
powered aerial vehicles. Throughout this literature study it will become clear that multiple autonomous
control algorithms have been created for the soaring of UAV’s. In addition to these created control al-
gorithms, autonomous cross country challenges have been performed to test the advantage of soaring
for optimal path planning. Another focus of soaring techniques is hovering which is done by making
use of orographic lift.

Both these ideas have been performed in simulation as well as experimentally. This literature study
will now prepare the author for a not well researched section of autonomous soaring, it will provide the
basics to start the thesis project that focuses on creating a simulation for orographic updraft localization
in an urban environment.

The idea of soaring for UAV’s was first introduced in 2005 by Allen, here Allen recognised to possibilities
for UAV’s by increasing their endurance between 2 and 14 hours [4]. By now the research on soaring
has been explored much further with the focus being on the techniques of dynamic and static soaring
for applications in hovering and optimal path planning. To start off the literature study, in the following
sections the research question will be formed and the focus points for the thesis project will be set.

1.1. Research Question
For the continuation of the thesis research following this literature study report, it is of high importance
to formulate a research question. The research question will be addressed at the end of the project.
The question is as follows:

How to autonomously pick & recognize orographic soaring locations from a distance for an Unmanned
Aerial Vehicle (UAV) by using extrareceptive inputs and how can we learn this in a simulated (urban)
environment?

Now, the research question contains some key words which will on their own summarize the research
that is done in this report. Breaking down these key words and giving their definition is important as
this way there is a clear understanding of what is meant, which minimizes any ambiguity. These key
words will on their own break down in further sub-questions that will help further with the ambiguity of
the research question.

• Orographic Soaring: This report will give an introduction to the different soaring techniques in
existence today. Furthermore it will show the distinction between static soaring and dynamic
soaring, where orographic soaring is a subcategory of static soaring. Sub-Questions

– How will the orographic lift be simulated?

* How does CFD come into play here?

17

1.1. Research Question 18

* Is CFD compatible with the chosen simulator?

* How will the environment be created?
• UAV: The fixed-wing Unmanned Aerial Vehicle that will act as agent in the simulation. FixedWing,
with a high aspect ratio are a necessity for soaring vehicles.

Sub-Questions

– How will the UAV be implemented into the simulator?

* Which simulator framework will be easiest to implement the fixed wing?
• Autonomously: The detection of good soaring places will be done autonomously. This will result
in looking into different Machine Learning techniques to achieve this. The thesis project will focus
on the autonomous detection of soaring locations and will not develop a soaring controller as this
is out of scope for the thesis project.

Sub-Questions

– What techniques will be needed for this?

* From all the computer vision algorithms which one will work best?

* Has this been done before for other soaring techniques than updrafts?

* If it has not been done before, how will it be implemented for this project?
– What are good soaring locations?

* Will the focus be put on buildings alone?

* Are there other orographic soaring locations in urban cities besides buildings?
• Extrareceptive Inputs: It is important to have and select realistic sensors that will be able to use
the Extrareceptive inputs from the environment in a way the autonomous detection works. Sub-
Questions

– What will these inputs be, which sensors will be needed?

* What input sensors are realistic to use in real-life as well as input sensors that are avail-
able in the simulator environment of choice?

* How many sensors will be needed, knowing that having too much will increase the com-
putational load of the UAV and the ML algorithm?

• Simulated Environment: The project will not focus on real-life tests but on the creation of a simu-
lation environment. This environment should be realistic enough that in the end it can be used to
train in the simulator and then can be deployed with an accurate model for real life applications.
At first, the simulated environment will be an urban environment.

Sub-Questions

– Should there be other environments than the urban?

* Once the urban is created, and there is still time left, would it be beneficial to create a
coastal/sea environment to simulate the work in [28]?

– What will the best simulator be for this case?

* The research shall have to focus on game rendering engines, which one will come out
on top?

* What kind of simulators have been used in other applications in the MAVLab research
team?

These key-words also have a further usage, which helping to focus during the research, and setting
said research objectives. These research objectives are explored in section 1.2.

1.2. Focus during research 19

1.2. Focus during research
The research is done for the Never Landing Drone division within the MAVLab. The research is done in
preparation for the Thesis project that will follow, it is therefore important to set some objectives during
the research study. These objectives will also be similar to the outline of the report, setting well-defined
objectives will accomplish a good start of the thesis project. The setting of certain research objectives
will be derived from the research question and the key-words explained in the last section.

Key literature study focus areas:

• Understanding the control of orographic soaring

– Look into the fixed-wing configuration for the orographic soaring
• Achieve an understanding of updrafts inside simulator frameworks. Has any research been done?
If yes get up to date with said research.

• Have a good understanding of the different simulator frameworks and environments currently
available for the application within this project.

• Look into the different Deep Learning technologies that have been used for updraft recognition.
If none has been done, look into techniques that seem promising.

Completing the above tasks will result in a good preparation for the thesis, it is however also good to
set the main goals that will need to be completed during the thesis. Focusing on these goals will help
with the planning and the structure of the thesis as is discussed in section 5.2

• Create a pipeline to introduce wind fields into a simulated environment
• Create an agent within environment that has a soaring controller included as well as extrarecep-
tive sensors that can be used for detection

• Look into and create a ML algorithm, then train the agent in recognizing good locations for soaring

2
Soaring Techniques

This chapter will give an overview of the research that has been done on the different kind of soaring
techniques currently being used. For soaring there are two different distinctions that have to be made
and that’s static soaring and dynamic soaring. section 2.2 explains how static soaring is defined as
the gaining of atmospheric energy due to a vertical wind component which is called an updraft. Static
soaring also has two sub categories, thermal soaring which is widely used by birds and gliders, and
orographic soaring which is also used by birds in all different kind of forms [40]. Orographic soaring is
what will be the main focus for the thesis project.

An overview of dynamic soaring will be given in section 2.4. This section will give a small overview and
will only give the main pointers as it has been extensively researched and is not the focus within the
thesis project.

This chapter will also give a clear overview of theoretical framework of the subject and the different
concepts that need to be understood for the thesis. The chapter will end with a summary of the key
findings and from this chapter the common themes as well as the gaps in literature will be shown in
section 5.1.

2.1. Atmospheric energy Harvesting
The need for autonomous soaring comes from the endurance problem for UAV’s where the current
state of the art batteries are already very efficient. This means that extra endurance will have to be
created with something other than increasing battery efficiency, a deeper look into atmospheric energy
harvesting.

Already in 2005, before the revolution in drone and battery technologies, M. J. Allen recognized the
need for improved endurance of small UAV’s [4]. It was recognised that soaring techniques commonly
used by birds & glider pilots to improve their range, endurance, energy savings and cross-country
speed, can also be used by UAV’s. Using these techniques is also known as atmospheric harvesting,
as the energy is harvested by making use of atmospheric conditions.

Atmospheric energy harvesting will only be possible if one of the two following conditions listed below
are met. Where there is most definitely a high chance of both conditions occurring at the same time
[40].

1. The wind field components are in an upward direction
2. The wind field varies spatially or temporally

These two conditions can also be transformed into 2.1 which shows the quantification of the distinct
opportunities for atmospheric energy harvesting. The equation shows a clear distinction between the
two different types of soaring. Both will be explained into further detail in respectively section 2.2 and
section 2.4.

20

2.2. Static Soaring 21

de
dt

=

drag losses of net thrust︷ ︸︸ ︷
(T −D)V

m
+

Static soaring︷ ︸︸ ︷
gWU (s, t)−

dynamic soaring︷ ︸︸ ︷[
V · ∂W

∂t
+ V · ∂W

∂s

ds
dt

]
, (2.1)

2.1.1. UAV configuration
While enjoying the opportunities offered by atmospheric energy harvesting would be important for any
kind of autonomous aerial vehicle, the UAV’s needs to satisfy certain conditions. Because of this, the
result is that the UAV’s dynamics should be fixed wing to receive the most energy for these techniques.

The specifications of two examples of fixed wing drones, that have successfully used soaring tech-
niques can be seen in Table 2.1. Both of these were successfully used in research that will be discussed
later on in subsection 2.2.2.

Table 2.1: Fixed-wing drone specifications for soaring [25], [28]

Properties Parrot Disco UAV Eclipson model C
Wingspan [mm] 1150 1100
Mass [g] 750 716
Aspect ratio [-] / 6.9

The table shows that these drones have a low weight, which correlates to a lower sink-rate. Further-
more having slender wings, thus having an higher aspect ratio is also more beneficial for soaring. In
Figure 2.1 a top view can be seen of the RigiTech drone which is a Vertical Takeoff and Landing (VTOL)
fixed-wing drone that has been designed with as goal to have long range package delivery. Although
the specs differ a lot with the ones seen in Table 2.1, keeping in mind that after some efficiency im-
provements soaring techniques could also be used by such like drones for commercial applications.

Figure 2.1: Top view of the Rigitech Eiger UAV [50]

Table 2.2: Specifications for the Rigitech Eiger UAV [50]

Rigitech Eiger UAV
Wingspan [mm] 2240
Mass [g] 10,500
Aspect ratio [-] /
Endurance 100 km,
1kg payload [minutes] 57 -70

It is also important to state that these opportunities do not limit themselves to urban environments and
dunes, as research has shown that exploiting updrafts from thermals and orographic soaring has been
used for monitoring solar parks, using ships, ... [40]. Further down the line this research can even be
important for space missions as the recent NASA ingenuity helicopter mission success leaves open
the need for extra endurance, range etc... [40].

2.2. Static Soaring
As mentioned in section 2.1 static soaring needs an upward vertical to have a positive specific energy
flow, this also means that energy can be lost in a downdraft which has a downward wind component.
The strategy of static soaring is particularly common among large birds, such as eagles and vultures
[61]. Static soaring can be split up into two main components, Thermal Soaring and Orographic Soar-
ing. While thermals are created by temperature differences in the air, the vertical wind component for

2.2. Static Soaring 22

orographic soaring is generated by an object, creating orographic lift [40].

The strategies that are shown by soaring bird show a versatility that adapts between thermals and
orographic soaring [61] [40]. This underscores the possibility that UAV’s can employ similar techniques,
capitalizing on similar opportunities presented by monitoring and detecting anthropogenic structures.
This aligns directly with the primary aim of this research, as elaborated in chapter 1.

2.2.1. Thermal-soaring
Already introduced in the paragraphs above, thermal-soaring is currently the most widely used and
researched atmospheric energy harvesting technique. Thermal-soaring is a type of soaring flight in
which a bird, UAV’s or glider pilot maintains or gains altitude by exploiting the so called thermals [3].

A thermal is an area of rising are that is caused by the difference in temperature between the warm air
just above the ground and the ”colder” air higher up. As the sun unevenly warms the Earth’s surface,
think of asphalt roads in the summer, parking lots, deserts or even solar parks as seen in [3][40]. The
difference in the density of the air due to the temperature difference, the less dense, warmer air rises
and creates a thermal, taking up soaring animals or UAV’s with it.

Thermals are areas of rising air that are caused by the uneven heating of the ground by the sun. When
a bird or flying robot flies into a thermal, the air beneath its wings is rising. This creates a difference
in pressure between the air beneath the wings and the air above the wings. This pressure difference
creates lift, which allows the bird or flying robot to maintain altitude without flapping its wings [67].

The research on thermal-soaring is extensive and, as said before, was first introduced by Allen in [4].
Allen recognised that the technique birds used was an untapped opportunity and the paper provided
a systematic approach to the problem of autonomous soaring and demonstrated the potential of this
technique for improving the endurance of UAV’s [67].

Thermals are typically strongest in the morning and evening, when the sun is low in the sky. The size of
a thermal can vary, but they can typically support a bird or flying robot weighing up to a few kilograms [3].
Also important to keep in mind is that, thermals can last for a few minutes or up to an hour, depending
on the conditions.

As stated in the beginning of this chapter, Allen was the first to recognize the possibility of energy
harvesting inspired by birds in [4]. The simulations of Allen, were all done with static soaring techniques
and more specifically only thermals.

Allen followed up this research in [5] where outer loop soaring guidance and control controller was
added to the autopilot. In this report the results of a real-life experimental test was performed, where
the UAV’s was able to climb 172m on average while exploring and exploiting thermal updrafts. This is
now known as the first successful soaring guidance and control algorithm aswell as the first successfully
performed test. It should be known that for the autopilot, the updraft locations were known.

This research was followed up by different autonomous cross-country challenges which made use of
thermals to gain height and therefore extend the duration of flight. Examples of this can be found in
[43], [9], [68], [48]

Where in the first it is a cross-country soaring approach with hierarchical Reinforcement Learning (RL),
the second path planning with heuristic search and the third RL for trajectory generation.

Again it should be noted that all three cases did not display any form of updraft detection and all thermal
locations were known during flight. The controller was learned how to optimally use these thermals,
not detect them.

In [60], a thermal detection neural network was created. However because of the unpredictable nature
of thermals and its dependency on temperature and other weather conditions, the networks had to be
trained on a dataset of different satellite images and their corresponding weather data. Although very
interesting, the nature of orographic soaring locations and its predictability will make sure that such
extensive data collection is not needed. More on orographic soaring as well as possible ML techniques
in respectively subsection 2.2.2 and chapter 3.

2.2. Static Soaring 23

As the research in thermals is not really relevant for the goal of the thesis project, this section will
stay limited. However a deeper look into the possible RL techniques that were used for thermals in
section 3.2, as this could prove useful for detection orographic soaring. It should also be remembered
that like in the ”cross-country challenge” the research in thermals has mostly been done with the goal
of optimal path planning in mind.

2.2.2. Orographic soaring
Orographic soaring is caused by horizontal wind vectors colliding with some kind of object and resulting
in a vertical wind vector around the object, thus creating an updraft region around the structure. These
objects can come in the forms of slopes, dunes, buildings, moving objects(ships) and mountains. Com-
pared to thermal soaring which can give updrafts of hundreds of meters, orographic soaring only has
updraft regions at lower altitudes around said objects [40]. However these objects give opportunities
for energy harvesting in urban cities and coastal places, which are the environments that will be most
used by UAV’s once applications as drone package delivery and drone building surveillance, surveil-
lance become more prevalent [51]. The other advantage is that orographic soaring locations are more
predictable to localize than thermals making it more advantageous for cross-country path planning [66].

In this section the current research on orographic soaring with UAV’s will be given. It will become clear
that the focus of the autonomous soaring is mainly being applied to two applications, firstly in hovering.
Orographic soaring for hovering means that when done correctly UAV’s can use 0% throttle and thus
increasing their flight endurance this way .The other of the two main applications is using orographic
soaring within path planning, here the idea is that a drone will choose the most energy efficient path by
making use of orographic soaring locations. Recognizing these orographic soaring locations is where
the follow-up thesis research will become important.

In [25], Hwang showed the wind tunnel experiment of slope soaring. Here it showed for the first time
an autonomous soaring algorithm that positioned itself within an orographic updraft region without pri-
ori knowledge of the wind field. This report puts focus on two main aspects, the controller and the
AOSearch algorithm. For the controller Hwang succeeded in creating a single controller for the nav-
igation and soaring, this was done by adopting an Incremental Nonlinear Dynamic Inversion (INDI)
controller with control allocation [25]. Control allocation refers to the process of distributing commands
among multiple actuators in a system to achieve a specific control goal [27]. In this study, it is done by
using Weighted Least Squares optimization to prioritize controlling pitch over thrust, aiming to minimize
thrust for the outer loop controller [25].

This research is especially important for the follow up thesis project of this report, as once the updraft
is localized, this algorithm could be suitable to have the UAV’s position itself correctly in the wind field.

UAV’s hovering is inspired by birds as well, Kestrels can be observed often to soar above dunes without
using any ”throttle”, not flapping their wings [25][45]. Kestrels use this technique for hunting and are
therefore hovering to surveil their prey, this analogy comes nice into place as now UAV’s can be used
with orographic soaring for surveillance of different kinds as well [62].

Another key aspect of the literature study in preparation of the thesis project is the research on soaring
in urban environments. The feasibility of this as well some simulations on this were performed by a
team at the RMIT University in Australia, they first performed feasibility studies in [65] where a building
representative for an urban environment was selected to simulations in [66]. In [65], C. White already
recognized that due to performed tests the orographic lift will be between 15-50% of the wind speed at
the soaring height, this is later confirmed in [64] & [41]. A detailed description of the orographic wind
field of the report will be discussed in section 2.3.

The further research of Watkins introduced CFD analysis and how this influences the wind flow wield,
the details of this will be discussed further in section 2.3. Important in this research is how, as to to
the author’s current knowledge, this was one of the first detailed analysis’s for orographic soaring in
Urban environments. It showed with simulations as well as experimental tests that orographic soaring
is viable for optimal path planning [64]. Here the viability of using CFD proves its important role and it
will play a big role in the upcoming thesis project.

In [19] the author sets outs the three main challenges for orographic soaring in urban environments for

2.2. Static Soaring 24

the first time. The viewed challenges are the following [19]:

• The prediction and sensing of orographic updrafts as well as a strength estimation
• The optimal path planning in an environment while making use of updraft locations withing a
mission

• Use the harvested energy from updrafts to increase in altitude or find another way of harvesting
the energy.

The first recognized challenge is really what will be explored further on in the follow-up thesis project.
Furthermore the paper tries to answer these challenges by giving a report of the author’s attempt in
solving them.

The occurrence of orographic updrafts is much more predictable than it is for thermals, giving it an
advantage in localizing it [19]. As orographic soaring is understandable and occurs at structure under
certain wind conditions, helping an agent understand this will be important and the main goal [19].
The technique that’s investigated here is to first perform numerical calculations on with CFD on the
environment and use these predictions for the autonomous soaring, this is however not really efficient
once another environment is used [19]. In chapter 3 research will be discussed on how an agent can
learn from these simulated environments and can use it in environments on which it was not trained.
Doing this will be one of the main task for the thesis project and will answer the research question in
section 1.1.

[41] shows the investigation of A.Mohamed et al. where the authors try to investigate the use of CFD
for understanding the updraft intensities around buildings and in complex environments. Besides this
they try to achieve a general understanding of the wind flow fields in these complex environments. This
paper will be explained into more detail in section 2.3.

In 2021 The MAVLab Team at the TU Delft succeeded in achieving hovering flight in front of a moving
ship [28]. [28] reported to achieve autonomous soaring at 0% throttle in the simulations and in the
performed test it achieved an average of 4.5%. Although the experimental results did not achieve
the same result as the simulations, this is still deemed a very successful result as this was the first
experimental test that succeeded in showing that it is possible to harvest energy from the wind field
generated my a moving obstacle [28].

Another interesting takeaway from this paper is the relation between wind speed and throttle usage/.
Here the relationship between the ground speed of the ship, the wind speed and the updraft velocities
are tested well. It shows the importance of maintaining a good balance between obtaining enough
potential energy to hover and enough kinetic energy to match the ground speed [28].

Next to ships, for the maritime case, it has been shown that the brown pelican has been able to soar by
making use of the updraft created by waves [57]. This makes waves the only natural source available
on the ocean for orographic soaring, which is all made possible thanks to the nature of the wave’s own
progression relate to the air, making it able to generate updrafts even if no wind is available [57]. The
wave-slope soaring flight that is observed with Brown Pelicans. This behaviour is also seen in birds as
albatrosses, fulmars, pelicas and gulls [40].

Herring gulls have been seen and known to follow big ships like ferry’s and cruise ships to soar alongside
[61].

What can be concluded from the research in static soaring is the difference of when, how and for what
applications thermals and orographic lift is used. It should be clear now that orographic soaring is the
better option for Micro Aerial Vehicles (MAV’s) and UAV’s, to get a clear overview, the main advantages
and differences between orographic soaring and thermals have been listed in Table 2.3

2.3. Wind Fields 25

Table 2.3: Comparison of the main features of Thermals and Orographic Lift and their differences

Thermals Orographic Lift
Availability Low availability in Urban environments High availibility

Predictablility Low predictability High, known to occur
above certain objects

Strength Weaker Strong, at high windspeed

Size Can span for km’s Can be big for Mountain’s or ridges.
Mostly ”small”.

2.3. Wind Fields
In the past section what the current knowledge and research is for soaring with UAV’s. This section will
work towards understanding the wind fields for orographic soaring and the theory behind it. Simulations
and representations of the orographic soaring wind fields have been performed multiple times in past
research [64][42]. This section will therefore give an overview of this research and how this will be of
use for the thesis project.

Examples of the simulations and calculations of these different research cases will be shared, this will
prove useful for generating realistic wind fields in simulation in the upcoming thesis project.

The results of [65][64] can also be used as validation as due to the similarity between normal shaped
buildings, where it is won’t really matter and the numerical results should resemble the ones for the
simulated environment. The modelling of wind fields can be done in two different kind of ways, CFD
and wind tunnel tests, both has been performed in the past.

2.3.1. Soaring conditions: Sink rate
The sink rate is one of the important factors for achieving soaring flights above buildings and in general
[66]. The sink rate is the rate at which an unpowered UAV’s,aircraft or bird descends [61]. This thus
means to achieve soaring the updraft velocity should be the same or greater then the sink rate of the
UAV’s.

In [66], Watkins et al. concluded that the minimum sink rate in correspondence to the measured wind
velocity is of much higher importance than the maximum lift-to-drag ratio for achieving soaring flight.
Because of this, considering the glide polar of the airframe of the UAV’s is important as it shows this
relationship [58]. For the autonomous control of this, it is important to realize that at the maximum
endurance speed, the sink rate will be the smallest/ [58].

During the wind-tunnel tests that were preformed, it was clearly seen that the sink rate varied between
0.5-2.6 m/s for wind velocities between 4.8 and 12.7m/s. This shows the exponential increase in sink
rate in comparison to wind speed [66]. In the optimal soaring regions of the building the vertical wind
component ranged between 15% & 50% of the measured airspeed while the stagnation point occurred
at 80% of the building height. While other research into the wind fields around buildings confirms this
[53].

2.3.2. Wind Fields around different objects
Although most urban environments will mostly have square shaped buildings for soaring, these shapes
can vary. Therefore in this section different examples of wind field will be shown on all different kind of
shapes. Here it will become clear how wind fields act differently for said shapes.

As discussed in subsection 2.2.2, extensive tests were performed on slope soaring for UAV’s in [25],
[58] and [28].

In [25], Hwang et al. show the wind field over a slope with a clear view of the viable soaring region.
Because in this report the UAV’s is autonomously looking for a hover position of 0% throttle, the soaring
region is, as was made clear in subsection 2.3.1, the region where the sink rate is equal to the updraft
velocity. A clear CFD analysis was performed and in Figure 2.2 the vertical upward velocity field can be
seen. Where in Figure 2.3 the soaring region is shown as the region where there is no excess updraft.

2.3. Wind Fields 26

Figure 2.2: Slope soaring with the indicated vertical wind
speed [25]

Figure 2.3: Slope soaring with the excess updraft windfield.
Grey zone indicates the soaring region [25]

During the testing, the velocities as well as the slope angle were varied. Increasing the slope angle
results in the soaring position moving to the front [25]. Both variations are best plotted on the glide
polar as this shows the influence best. Both can be seen in respectively Figure 2.4 and Figure 2.5.

Figure 2.4: The change in soaring region when changing the
slope angle [25]

Figure 2.5: The change in soaring region while changing the
windspeed [25]

Also from the MAVLab team at the TU Delft, a similar analysis was done for a cylinder shape by in [58].
In Figure 2.6 and Figure 2.7 3 different soaring positions are shown in the simulation and then on the
glide polar. In Figure 2.7 the positions [a] and [c] have the same sinkrate while at position [b] the lowest
sink rate is found.

2.3. Wind Fields 27

Figure 2.6: The excess updraft wind field on a cylinder shape
plotted. [a], [b], [c] show different locations where soaring is

possible on the zero excess updraft line [58].

Figure 2.7: The glidepolar for the updraft windfield in
Figure 2.6 [58]

The last non-rectangular shape that was studied by the MAVLab team at the TU Delft is the wind field
from amoving object, in [28] this was a ship. As explained before in subsection 2.2.2 orographic soaring
also occurs on moving objects like ships at sea. In Figure 2.8 a schematic overview of a performed
CFD analysis shows how such a wind field looks. Here the wind field is dependent on 1 more variable
than in the above discussed cases. Besides the wind speed and the shape of the object, the wind fields
is now also dependent on the velocity of the ship, the moving object.

In [28] the sinkrate, which was explained in subsection 2.3.1, has not been used but here, but the
effect of updrafts was modelled into differential equations. Because a moving object is being used, the
relative motion of the UAV’s has been put into equation form in Equation 2.2

ż = VTAS · sin(γ) + wz (2.2)

Now for the aircraft to use the updraft without using any throttle the following condition should be met
[28]; The minimum rate of climb should be equal or higher than the minimum rate of climb, this is shown
in Equation 2.3.

Equation 2.2 and Equation 2.3 show how all is dependent on the true airspeed, which is the relative
velocity between the moving object and the wind velocity. Same can be said for the flight path angle,
which is depended with the updraft which is again dependent on the relative velocity between wind and
the moving object.

ż ≥ 0 ⇔ VTAS · sin(γ) ≥ −wz (2.3)

2.3. Wind Fields 28

Figure 2.8: Schematic of CFD analysis and plotted wind field on a ship [28]

Another type of soaring structure that was discussed and also is of high importance for the research
objective of the upcoming thesis project, is the wind field of buildings. As discussed earlier, [64], [65],
[19] all performed CFD analysis on a selected building and pretty much came to the same conclusions
considering the wind field.

In 2012 the research started of with analysing a scale model building inside the wind tunnel as shown
in Figure 2.9, here the measurement grid was only in front of the building, which makes this analysis
incomplete as the wind field also extends above the building.

In 2015 the research was continued and a full scale environment model was made of the campus.
Making a full scale model accounts for the wind turbulence created by other buildings, this can be seen
in Figure 2.10. In this figure the case of the updraft area above the building clearly shows the updraft
region above the building, which could be important as in case of a crash, a crash on the roof would
have less chance of hitting a human than crashing on the ground below.

A general note about urban orographic soaring is that the wind fields are always dependent on the wind
direction and velocity more or less the same, which makes them quite predictable.

2.4. Dynamic Soaring 29

Figure 2.9: Vertical velocity as fraction of wind velocity on a
building[66] Figure 2.10: Updraft velocities in an enviromnet with multiple

buildings [64]

2.4. Dynamic Soaring
As was just discussed in section 2.2, static soaring is bound to specific locations where soaring oppor-
tunities take place, whereas Dynamic soaring is dependent on the moving velocity at certain point in
space or time [40]. Dynamic soaring also comes in two different techniques, as velocity difference in
space is recognised to be gradient soaring while difference in time is called gust soaring. They have
both in common that the wind field is not constant nor homogeneous and that they can be used for
soaring [40].

From a biology perspective, albatrosses have been seen to use dynamic soaring the most. Here the
albatrosses make use of the wind gradient, which is the difference in wind velocity at different heights.
Lord Rayleigh mentioned this a first time already in 1883 in [47]. Gradient soaring, as said before, uses
the difference in velocities at different heights. This difference in height is caused by frictional effects
close to the ground which can also be other surfaces like waves and mountains. How higher from the
surface the less friction thus this means that the wind speed will increase.

Dynamic soaring is a step by step process that is best described in the following way [49]:

Step 1 : The UAV’s or bird positions itself within the slower moving wind.
Step 2 : The UAV’s or bird climbs to a higher altitude, gaining potential energy, going back to Equation 2.1,

and some airspeed due to the stronger wind.
Step 3: Now the UAV’s should make a downward movement which converts the potential energy into

kinetic energy.
Step 4: By now doing the last three steps on a loop, the vehicle will be able to use momentum to reach

higher velocities and eventually higher gained altitude.

The schematic examples of this loop are given in Figure 2.11. Here the examples show dynamic soaring
by birds using waves and hills.

2.4. Dynamic Soaring 30

Figure 2.11: Schematic overview of gradient soaring at sea and using mountains [40].

Gust soaring, which is the other technique within dynamic soaring, uses sudden gust to gain atmo-
spheric energy instead of the wind gradient. The mechanics of gust soaring is when a UAV’s or bird
uses the sudden wind bursts to have boosts of wind and therefore have increases in altitude. This is
in a way similar to a surfer using the energy of waves to displace themselves [49]. Gust soaring is also
much more stochastic then gradient soaring and therefore quite difficult to predict.

To conclude, gradient and gust soaring, thus dynamic soaring is an ingenious way for atmospheric
energy harvesting. The main difference between the two techniques is that gusts and thus gust soaring
is very stochastic while gradient soaring is more predictable and different techniques can be designed
for this related to UAV’s.

3
Machine Learning research

Machine Learning has now been common use for the application of autonomous UAV’s. This chapter
will first introduce how machine learning is applied to general cases of autonomous control. After
this there will be given an overview of research that has been done on the autonomous detection of
orographic soaring locations. Because as of this report, the research into this subject has been limited,
research on different applications but with possible interesting techniques for the use case of this project
will be given as well. It will be seen that there has been done a lot of research on autonomous UAV’s
that made use of the same inputs as for this problem. This chapter will be theoretical and should result
in a selection of ML techniques that should be explored further in the thesis.

It should be remembered throughout the section that all data will be created by using simulator that is
created for the thesis. Therefore all data will be self-created from the available environment, which is
important to remember during the research into a suitable method.

The first ML technique that will be looked at is reinforcement learning

3.1. Reinforcement Learning
The general definition of Reinforcement Learning is that it is a branch of Machine Learning where an
agent learns by interacting with a specific environment, this interaction is ”graded” by a policy function,
which should be maximized. One of the distinctions between RL and Supervised (Deep) Learning,
which will be discussed in section 3.2 is that for the latter the model is explicitly taught what is correct
and what’s not whereas in RL it goes back to the concept of trial and error [1] [6].

3.1.1. The basics
To be clear on the terms that will be used in this section, the fundamental components of RL are listed
below [1].

• Agent: This would be the drone, the learner
• Environment: All that the agent interacts with
• State: A complete description of the state of the environment, world.
• Observation: A partial description off the state
• Action: Action that is performed inside the environment by the agent. Every environment has its
own set of actions, the set of valid actions within an environment is called the action space

• Reward: The reward, and therefore the reward function is of critical importance for the learning
in RL. This function is dependent on the current state, action performed, and new state.

• Policy: The Policy is the equation that decides what action to take. It is said that the policy can
be considered to be the agent’s ”brain”. This policy is learned by mapping states to actions, which
over timemaximizes the expected cumulative reward. An important concept in RL is the challenge

31

3.1. Reinforcement Learning 32

of balancing exploration (trying new actions) with exploitation (sticking with known, rewarding
actions).

3.1.2. Deep Reinforcement Learning Algorithms
As was stated before, the research into reinforcement learning has been extensive for years. Together
with the advance of deep learning, neural networks have been integrated into reinforcement learning
which has made way for Deep Reinforcement Learning (DRL) [6] [23].

Generally RL is categorized in two different types, model-free and model-based algorithms. The cat-
egorization is done based on the utilization of the environment models. Model-free methods do not
have a model of the environment to help make decisions, these algorithms learn to make decisions by
directly interacting with the environment [1].

Model-Based RL, as the name suggests, does use a model of the environment to make decisions.
Here a model of the environment is learned first, this predicts the next state as well as the reward given
a state and action. This model is then used to decide on what action to take. The main advantage
to having a model-based algorithm is that the agent can plan by thinking ahead, this ensures a high
sample efficiency [1].

In Figure 3.1 a taxonomy of RL algorithms is given. Here some of the used RL algorithms are given
categorized under model-free & model-based.

Figure 3.1: Taxonomy of Reinforcement Learning Algorithms [1]

3.1.3. Uses in UAV's
Although already mentioned in subsection 2.2.1, a deeper look is taken in the research on updraft
recognition for UAV’s. As mentioned, no research was found on orographic soaring recognition and
the research was only focused on thermals and dynamic soaring.

In [43], the author takes on the challenging aspect of cross-country soaring. Here the challenge lies
in the decision-making trade-offs between covering distance, exploiting updrafts, mapping the environ-
ment all while considering the unpredictable nature of thermal updrafts.

The example of the GPS triangle competition task is used with a model-free RL approach where the
policy is only improved by observing the outcomes and the received rewards. As the agent knows all
the locations of the thermals, this RL application does not cover any updraft localization but this is an
optimal path planning application while making use of updrafts.

3.2. Deep Learning in Autonomous UAV's 33

While other research also shows the tackling of the same optimal path planning problem while making
use of thermals, none has shown more insight in detecting these thermals. While still recognizing
this is something that should be research, the stochastic nature of thermals makes this difficult. For
the detection of orographic updrafts, the same tactics as in [68], [43] and other RL techniques while
tweaking the policy function for going to orographic soaring places in the urban environment. The fact
that soaring locations will happen above the same places could make this a valid RL problem.

Other research that could be valuable when looking at their techniques were as followed. Researchers
in the University of Zurich have looked into using DRL, here it was recognized that DRL has potential
for solving time-optimal trajectory planning. This research was inspired from the work that was done by
the Robotics and Perception Group at the University of Zurich for the AlphaPilot challenge. It should
be noted that in the report, [20], no DRL techniques were used and their perception system was made
using deep learning, something that will be delved further into in section 3.2.

With the end goal of this project in mind, the key takeaways from these two papers are that current
research in DRL for autonomous drones is currently performed for trajectory-planning and perception
is done with Deep Learning. This is not to say that once the updraft localization system is in place, DRL
can be used for having route optimization by making use of updrafts, as what is suggested for further
work in [43].

These key facts are further underlined by [59], here a target detection system for UAV’s is being de-
veloped. Here it is recognized that for the object (target) detection Deep Learning is used. The other
components like, path planning, navigation and control are being addressed with DRL [59].

The use of RL is an option for the upcoming thesis project, however in the following section a look is
taken into using Deep Learning (DL).

3.2. Deep Learning in Autonomous UAV's
Deep Learning is currently one of the most researched subjects in the world, it has revolutionized com-
puter vision and just recently a new revolution has started thanks to the advance in Natural Language
Processing (NLP) and the creation of Large Language Models (LLM’s).

In the beginning of the section the possibilities of DL are shown and the fact that DL has not been used
as of yet for updraft recognition. Furthermore the section will delve into Supervised, semi-supervised
and self-supervised learning, here a general overview of how it works as well as some research is
shared. The research that is shared tries to find suitable tactics that could be used on the updraft
recognition problem for the upcoming thesis project.

3.2.1. Updraft localization with Deep Learning
Deep Learning is a sub-field of Machine Learning that utilizes multi-layered artificial neural networks to
extract and analyze data. Inspired by the human brain in both its functionality and structure [23], the
term ”deep” refers to themultiple layers of the network throughwhich data is processed and transformed.
The ability to process enormous amounts of data and continually refine the model by extracting features
underpins the core principles of deep learning.

This literature study will give some insights on how different Deep Learning is currently used as well
as find the most suitable method for the research objective. The section will furthermore provide the
theory on the methods as well as reference some of the research that has been performed on it for the
application of updraft localization. This could also be in the form of research on other applications that
can be compared to updraft localization as, to the author’s current best knowledge, there has been little
to none research on updraft localization.

During the research into the different and right DL methods, it is important to look back at section 1.2
and set the constraints of the problem.

The subject DL goes synonymous with the concept of supervised learning. Supervised learning algo-
rithms learn from a set of labeled training data [23]. The fact that it requires a large labeled dataset is
for the current application not ideal. The potential training data will have to be created in the simulator,
more about that in chapter 4. Although the artificially created data will try to be as accurate as possi-

3.2. Deep Learning in Autonomous UAV's 34

ble, the fact that everything needs to be labeled is not ideal. Which moves the research into looking
at algorithms that train on unlabeled data, this brings up two possibilities: Unsupervised Learning &
Self-Supervised learning .

Unsupervised learning is a method that learns from an unlabeled dataset, with the aim to find structure
in this data [23]. Some of the applications where it is used is for task like clustering and association
[23].

3.2.2. Supervised Learning
The most popular way of deep learning is supervised learning, which uses algorithms to learn form a
training dataset of labeled examples. This learning phase will provide the model with all kind of weights
and the ability to generate an output from an input which is of the same type as the models training
data [23]. This technique has been the most commonly used deep learning technique and is mostly
used in image classification.

During training, the model of weights is asked to produce outputs, these outputs are compared to
labeled data that was not in the training set. The predictions are compared with a loss function, where
this loss function quantifies if the models predictions are good. Throughout the training the goal is to
minimize the loss function, the most popular optimization technique for this is gradient descent [23].

3.2.3. Image classification with CNN
As discussed in subsection 2.2.2, the occurrence of updrafts in urban environments are quite pre-
dictable, as given a minimum wind velocity, certain objects like buildings, dunes, other human-made
structure will have a wind field with vertical wind vectors. Due to this a simple classification neural
network can be applied.

No specific works on just building classification has been performed due to the simplicity of the task.
Some works on building features could be found however, this is already to much. A solution could be
classifying building and using the area just above it with updraft regions, several building databases are
available online for training. The classified images can also be aligned with the wind sensing sensor
as the wind direction plays a role in the approach of the updraft wind fields.

An important part in supervised learning for computer vision has been the development of Convolutional
Neural Networks (CNNs). The nature of CNNs lets them be controlled in depth and breadth thanks to
which they are effective in tasks related to image perception [32]. The architecture of CNN’s of which
an example can be seen in Figure 3.2. CNNs have mainly three types of layers, convolutional layers,
pooling layers and fully connected layers [63]. CNNs created the way for successful algorithms in
computer vision applications like object detection, classification, robotics perception and self-driving
cars [63].

3.2. Deep Learning in Autonomous UAV's 35

Figure 3.2: Schematic overview of CNN architecture for number classification from writing [16]

In relevance to the thesis project, the research on object detection has been extensive when considering
object detection. Although there is no ”orographic updraft detection” network at the moment, the nature
of orographic updrafts, as mentioned in chapter 2, makes it so that a network can be learned above
which kind of structure these updrafts occur. Detectron2, is an object detection library created by Meta
which houses all state of the art object detection networks which can be fine tuned [69].

One of the pre-trained models that could be used is one of the models from the ”R50”, where R50 refers
to the ResNet-50 backbone architecture for this model [34]. The models in Table 3.1 are all state-of
the art models available within Detectron2, all these models could be fine-tuned further for orographic
soaring locations.

Taking R50-FPN, which is an R-CNN, would already give incredibly accurate masks while having the
least computational power needed for training. R-CNN stands for region based convolutional network,
which is an architecture specifically for object detection [22].

The ImageNet R50-FPN model has been compared between other has had state-of-the-art perforance
while forming the back bone of other detection models like, Mask R-CNN, RetinaNet, Faster R-CNN
and PointRend [29] [30].

In [29], Kirillov et al. shows the a version of the Mask R-CNN network with FPN (Feature Pyramid
Network). Here the combination of the Mask R-CNN and the FPN network, which is a single-network
baseline with the goal of having an accurate performance for instance and semantic segmentation. The
model was trained and tested on the dataset Cityscapes, and had Average Precision (AP) values of 32
for the model.

The dataset Cityscapes, is a dataset that was made for the development of self-driving cars with thou-
sands of street view images labeled [10]. This dataset could also be of use for the thesis project if it
is decided to use supervised learning, as building recognition will then be of use. An example of how
accurate the images in the dataset are labeled can be seen in ??, where the building has a complex
form but is still accurately labeled.

Kirillov et al. followed up their research in [30] where the design of PointRend takes place. PointRend is
a neural network that has the ability to perform point based segmentation predictions. PointRend, just
like Mask R-CNN FPN can be both used for instance and semantic segmentation. Due to the efficiency
of the technique, the model is able to achieve an AP of 35.8 with R50-FPN as backbone on the dataset
Cityscapes. This is better than PointRend while it should also be noted that due to the point based
rendering of the model, the resolution is of less importance while this was for PointRend.

3.2. Deep Learning in Autonomous UAV's 36

Figure 3.3: Labeled image from the cityscapes database [10] Figure 3.4: Labeled image from the Cityscapes database[10]

While the previous papers trained networks to recognize buildings from the side or the front, for UAV’s
applications top view recognition would also be handy. In [70] a segmentation network based on the
SegNet architecture was used to accurately recognize buildings from a top view perspective. The
dataset that was used here, was their own however the authors also proposed the usage of dataset’s
like the Inria Aerial Image Dataset which contains many more labeled images [37]. Another option is
to use available dataset’s from the international society for photogrammetry and remote sensing [70].

While the previous research focused more on full masks and object detection, semantic edge detection
presents a promising technique for building and thus updraft identification. Yu’s work on this, in [73],
demonstrates the potential it has when trained on a dataset like Cityscapes. The inherent nature of edge
detection makes it appealing for integration with stereo or depth imagery. Doing this would possibly
enhance the accuracy of the resulting spatial data, further helping in the process of updraft region
detection.

However, a significant drawback of supervised learning is its requirement for enormous amounts of
labeled data. In subsection 3.2.4 a deeper look will be taken into how the current research holds itself
to combining labeled with unlabeled data in semi-supervised learning.

Table 3.1: COCO Instance Segmentation Baselines with Mask R-CNN [69]

Name lr
sched

train
time
(s/iter)

inference
time
(s/im)

train
mem
(GB)

box
AP

mask
AP model id

R50-C4 1x 0.584 0.11 5.2 36.8 32.2 137259246
R50-DC5 1x 0.471 0.076 6.5 38.3 34.2 137260150
R50-FPN 1x 0.261 0.043 3.4 38.6 35.2 137260431
R50-C4 3x 0.575 0.111 5.2 39.8 34.4 137849525
R50-DC5 3x 0.47 0.076 6.5 40 35.9 137849551
R50-FPN 3x 0.261 0.043 3.4 41 37.2 137849600
X101-FPN 3x 0.69 0.103 7.2 44.3 39.5 139653917

3.2.4. Semi-Supervised Learning
Semi-Supervised learning sits between supervised, discussed in subsection 3.2.2, and self-supervised
learning, discussed in subsection 3.2.5. Here the model is trained on both labeled data and unlabeled
data, typically this means that only a small amount of labeled data is need while the biggest part of
the training data is unlabeled [23]. Semi-Supervised learning therefore deals with the cost and time-
consuming part of acquiring and labeling data. For the purposes of the thesis project this could be a
viable option, as taking the idea of recognizing buildings, some images from a known labeled dataset
could be used while it is completed by generated non-labeled data.

Important research was published Semi-Supervised object detection by Liu et al. in 2021. In [36], Liu
et al. the make notice of the fact that most of the Semi-Supervised learning research has been focused
on classification tasks neglecting object detection which has a higher labeling effort. Because of this
they came up with the approach ”unbiased teacher”. Here the model trains two networks, a student
and a teacher, where during training the teacher improves while guiding the student in the ”learning”
process”. This model ensures that the pseudo-labels in semi-supervised learning are more accurate

3.2. Deep Learning in Autonomous UAV's 37

and thus improving the overall technique. The unbiased teacher therefore showed an improvement of
6.8 AP more compared to the previous best method.

Semi-Supervised learning is a technique currently being researched for autonomous driving vechicles.
Menke et al. developed a technique in [39] which leverages Semi-Supervised Learning to battle the
cost of labeling data while achieving state of the art object detection performance. The technique
that they’ve developed uses some labeled images and some ”guessed” labels for training, they have
combined this Semi-Supervised technique with ”adversarial style transfer”. Adversarial style transfer
makes images from different domains look more like each other. The state-of-the-art network they’ve
used for this is the transfer network AWADA. A transfer style network can best be looked as transferring
the artistic style of a famous painting to a photograph. The reason why this technique is used is because
the network is trained on synthetic data.

Figure 3.5: The AST-SSL network from [39]. The structure combines transfer learning with semi-supervised learning.

In this network, that is described in Figure 3.5, they combine style transfer techniquewith Semi-Supervised
learning and create a more accurate network in the process. The network in this paper also uses the
technique ”Unbiased Teacher” developed by Liu et al. in [36] and was discussed earlier on. To try and
understand the network the process goes as follows:

1. Sampling of images: The first step is sampling the source data and the target data. The target
data does not have any labels as of yet.

2. Style Transfer: The style transfer technique, AWADA, will try to let both target and source images
look alike.

3. Student Network: Images are processed by the student network. Which is the network that tries
to detect the objects. The source images have ground truths, therefore the loss of the student
network can be calculated.

4. Pseudo-Labeling: This is the Semi-Supervised part, here the target network does not have any
labels so they let the ”teacher network” of the model predict and assign these ”pseudo” labels.

5. Loss on pseudo labels: The student network will now calculate the loss between the target
images as well as the pseudo labels.

6. Updating the models: The student network is updated (trained). However, the teacher network
is not directly updated. For this an exponential moving average is taken of the student network
to update the teacher with that.

The paper concludeswith having a higher AP then other state-of-the-art transfer style & semi-supervised
learning networks when tested on the synthetic-to-real adaptation. This is also what makes this poten-
tially interesting for the thesis project , as here a network trained on synthetic non-labeled data could
prove useful.

3.2. Deep Learning in Autonomous UAV's 38

[54] Provides another insight in how semi supervised learning can be used by delving into different data
augmentation techniques with an emphasis on Generative Adversarial Networks (GANs) and Domain
adaptation.

In the findings of the paper it is suggested that while traditional supervised approaches retain their
superiority in data-rich environments, semi-supervised techniques with domain adaptation, emerge as
alternatives when the annotating tasks are extensive. When compared to supervised learning methods,
it showed that in situations with abundant high-quality ground truth data they still have an edge.

3.2.5. Self-Supervised learning
All solutions discussed in the previous sections have a need for some or complete data labeling. As
the thesis project needs to set up a pipeline for others to simulate an environment where soaring as
well as soaring detection is possible, a model that can be trained without annotating data would be a
nice addition.

Here Self-Supervised Learning (SSL) can be of use, SSL is a Deep Learning method where a model
learns to understand and extract meaningful representations, doing this with unlabeled data [71]. Hav-
ing self-supervised data annotation is an important step as other methods require human annotated
data which can be a limiting factor on the training process.

SSL could be a viable approach for updraft localization, as it has been proven to be very successful
in dense localization tasks and object detection tasks [7]. The network should be set up by designing
proxy tasks that leverage the available inputs such as vision, wind sensing, and depth sensing, of
which training signals can be created that guide the drone to learn meaningful representations related
to updrafts. SSL would allow the agent from unlabeled data, thus delete the time-consuming labeling
process in the process.

Relevant work
Although a self-supervised approach has not been used for orographic updraft localization, this section
will present relevant works which can be used to try and build out a strategy which can be used for the
purposes of this project.

In [31] Kouris and Bouganis developed a SSL network which let the drone calculate the distance to
collision with objects, which on its turn helped with the autonomous navigation of the drone to avoid
obstacles. The Self-Supervised setup is interesting as here the depth sensors placed on the drone
matches the measured distances to the visual data.

The input image was divided in three different regions on which every region was a distance was given
for the closest distance to a certain object. This method could also be used for the thesis project as here
the classification could just be binary in the sense that it is a soaring region or its not one. This shows
the possibility of depth estimation with the usage of monocular vision, this way depth sensors/cameras
are not needed to accurately calculate distances. The CNN network model was based on the AlexNet
model, which is known to be a computationally low-demanding model.

Another way to approach this for the thesis project is that if the same network and strategy is used,
the drone could be learned to estimate distances to all surrounding buildings, which together with the
known wind direction and velocity could result in the drone localizing the closest viable soaring wind
field.

Another self-supervised method with monocular vision was done by Li et al. in [35]. Here the approach
is comparable to [31], with the biggest difference that the monocular vision approach matches other
UAV’s. An overview of the network output and the SSL approach can be seen in Figure 3.6. For
the thesis project a similar approach can be taken where there is a image which is matched with the
distance to the different objects inside the environment.

3.2. Deep Learning in Autonomous UAV's 39

Figure 3.6: [35]

For this paper an simulation pipeline was setup. This was completely done using Blender. Using
Blender it became possible to render multiple realistic 3D robot models. Important here is that the
positions and depth of the robots are known in the rendering environment. Because of this the data
from Blender can be used as ground truth data to create the labels for the synthetic dataset. More
about the use of Blender in chapter 4.

Already in subsection 3.2.2 it was shown how depth images could work as a good solution for detect-
ing updrafts. For Self-Supervised learning some research has been performed in monocular depth
estimation. While [24] and [46] focus on depth estimation for autonomous driving, [18] looks into depth
estimation for UAV’s. Although very interesting and a good showcase of the power of self-supervised
learning, it has not been clear how depth estimation would help in the localization of updraft regions.

3.2.6. SSL for the thesis project
Utilizing a simulation environment makes the application of SSL an attractive avenue for the thesis
project. Though the specifics of its implementation remain to be fleshed out, the preliminary research
provides a compelling basis for the author to delve deeper into this area and explore the potential
benefits.

Should SSL prove to be overly complex, transitioning to semi-supervised or even supervised learning
remains on the table. Nevertheless, bearing in mind the ultimate objective of devising a simulation
pipeline for drone training across varied environments, the prospect of labeling every new dataset
becomes a significant drawback.

4
Simulator Research

To achieve the research objective a simulator already available will have to be chosen to create the
environment that will be needed. This chapter will explore the trade-off between current off-the-shelf
simulators for UAV’s. Furthermore it will also clearly set the requirements for this simulator as well as
look into the urban environment creation within the simulator.

The chapter will give an overview of the research that has been performed in the field as well as current
ideas that were realized during other research.

4.1. Pre-Requisites
The search for the right simulator for the application described in this paper as well as for the further
thesis research, is done with setting a list of ”needs”. Ideally the simulator would be able to comply with
the needs of the thesis goals set in section 1.2.

Because the localization will be done by training an agent, this AI will need inputs. These inputs there-
fore also need to be available in the simulation environment. Some inputs that need to be kept in mind
when looking at software are:

• Depth Sensing
• Wind direction sensing
• Visual cues

Next to this, if visual cues are to be used, the realism gap between the simulator and real-life should
be minimal. This is only when the agent relies on visual cues, it could be that depth sensing alone is
enough. Therefore some extra requirements are set when looking at a simulator:

• The simulation rendering should be realistic, minimal simulation-to-reality gap
• Availability of API for ML
• Minimal computational effort
• Availability of real life sensors: Wind sensors, depth sensors, cameras, ...
• Ability to create and store synthetic data

4.2. Environments and CFD
1. Blender

For the environment creation one of the most used 3D computer graphics software that is being
used. Blender is a great rendering tool where its use in simulations is perfect for the current ap-
plication [8]. Another important functionality from Blender is its python API where its functionality
can be expanded using Python scripts, making it possible to write custom tools if necessary [8].

40

4.2. Environments and CFD 41

The last important quality of Blender is its easiness to import and export to multiple data files
[8][13].

In [13] an example is done of how to create a real life environment in Blender, for this example
the city of Brussels was used. This example can be seen in Figure 4.1.

Blender makes it possible to import terrain models from the ”Urbis dataplatform”, which opens up
the possibility for doing the same for example the TUDelft campus, hovering above the Aerospace
faculty for example [13].

In [14] the author takes the environment creation a step further. Here, using the Blender add-on
”SketchUp” is used to import the textures of the buildings for the 3D model. Having these textures
is important for the realism of the agent, when computer vision is used. The example that was
shown in the article can be seen in Figure 4.2

Figure 4.1: Real life buildings created in blender

Figure 4.2: Rotterdam buildings in Blender

The following step should be performing a CFD analysis on the created environment, something
which was done by Nathanael et al. in [42]. In this report a realistically rendered environment
of a neighborhood in Singapore was created in the same way as the example described earlier.
After this environment creation, a CFD analysis using OpenFOAM was performed with the focus
on the wind turbulence. For the case of the upcoming thesis project, the same process should
be repeated but with focus on the vertical wind field.

Another interesting framework that has been released recently is the open source framework
”WorldGen” [55]. WorldGen is a generative simulator which means it can generate countless
different environments with very realistic textures [55]. This creation of synthetic data would help
a lot in the training of an agent and would be a nice addition in comparison to making certain
environments yourself. The code repository however is as of this date still not made public so it
can not be used, maybe in the future.

2. OpenFOAM

Multiple reports suggest that for the wind flow simulation of urban/city environments as well as
single building CFD simulations OpenFOAM is more than suitable [17], [42]. The fact that it is
open source and easy use-able for Blender created environments is another advantage [21]. In
short the process using OpenFOAM would look like the following:

(a) Import from Blender
(b) Mesh generation

• blockMesh
• snappyHexMesh –> More appropriate for complex urban geometries.

(c) Setting up the simulation

• Defining boundary conditions
• Specifying the turbulence model: Choice between, Reynolds Averaged Navier Stokes
(RANS), Large Eddy Simulation (LES) & Detached Eddy Simulation (DES). RANS can

4.3. Simulator: Pegasus Simulator 42

be used as it is less computationally expensive than the others and this was also used
in [42]. When considering a single building, LES could be used as it is more accurate,
however for big urban environments it gets computationally too demanding [17].

(d) Running the simulation
(e) Post-Processing

• paraView: Package for visualizing the flow patterns, wind fields and more

Lastly, this CFD will have to be integrated with the simulator, which is chosen in section 4.3.
Depending on the simulator there will be the possibility for offline analysis or online coupling.
However, it is likely that the CFD will be done at first and than the simulations will be encoded in
the simulator as having the simulator coupled to the CFD solver for real-time interactions will be
too computationally demanding.

4.3. Simulator: Pegasus Simulator
Throughout the years multiple (aerial) simulators have been developed, in Table 4.1 the most relevant
simulators are given. The table also gives an overview of the simulator requirements that were set
in section 4.1. The simulator that is selected for the thesis project is the Isaac Gym, this section will
further explain how this choice was made.

At first Flightmare seemed the best option together with AvoidBench. AvoidBench is an extension made
upon Flightmare. RotorS and Hector do not compare to flightmare in Sensors as well as in ML API.
AirSim was seriously considered as well, however here the ML API came in the form of a wrapper and
for Flightmare this was build in.

Table 4.1: Simulator comparison

Simulator Rendering
Engine Sensors ML API Physics

Simulations

RotorS OpenGL IMU,
RGB No CPU

Hector OpenGL IMU,RGB,
Depth No CPU

AirSim [52] Unreal IMU,RGB,Depth,
Segmentation No/Yes(wrapper) CPU

Flightmare [56] Unity IMU, RGB, Depth,
Segmentation Yes CPU

AvoidBench [72] Unity IMU, RGB, Depth,
Segmentation Yes CPU

Isaac Sim [38] Nvidia Omniverse
Platform. RTX Renderer

IMU, RGB, Depth,
Segmentation Yes GPU

Now ISAAC Sim is created by a team at NVIDIA, where they specifically created this environment
specifically for reinforcement learning research [33][15]. The biggest difference with the other simula-
tors is the fact that the physics simulations are done by use of GPU. This is an important difference as
the researchers claim that using GPU gave around 3 orders of magnitude improvement compared to
simulators using CPU [38]. ISAAC Sim has some built in environments and agent dynamics, however
none of use for the upcoming thesis project. ISAAC Sim is also created with the process of SSL in
mind. The simulator is designed so that it is very easy to generate Synthetic Data, this feature would
be a big advantage for the upcoming project.

Now in May 2023 Kulkarni et al. came up with a quadrotor ISAAC Sim build called Aerial Gym [33].
This version only has quadrotor dynamics, which means that for the purpose of the thesis project, an
Aerial ”fixed-wing” Gym will have to be created upon ISAAC Sim. Hoping that the work in [33] can help
with this.

4.3. Simulator: Pegasus Simulator 43

Now another framework that has been build upon ISAAC Sim is the Pegasus Simulator [26]. Jacito only
recently published their work in July 2023, making this simulator the newest of all the related work. The
simulators discussed and listed in Table 4.1 have all one thing in common, which is they are built with
a game engine that is not specifically focused on robotics applications, however Pegasus Simulator is
built this way as it is built on top of the NVIDIA Omniverse suite.

The design of the Pegasus simulator was done with keeping in mind the best features of the most
used UAV’s simulator frameworks. Designed as an Python extension on the NVIDIA ISAAC simulator,
a gazebo like experience was created but with much more detailed rendering [26]. In Figure 4.3 a
schematic of the Pegasus framework can be seen. Within this framework the author states that it is
possible to create and use other vehicles than a quadrotor, which also can have its custom sensors
[26]. As this is really the first time that the agent configurability is so clearly stated, the decision of using
the Pegasus Simulator framework for the thesis project is even more substantiated.

The hope is that a fixed-wing simulator framework can be built upon the Pegasus Simulator. Combining
this with a pipeline to easily merge the environment and the CFD generated wind fields, the ISAAC
Sim and the Pegasus Simulator extension seem far-out the best possible option to use as simulator
framework.

Figure 4.3: Schematic overview of the Pegasus Simulator framework built upon ISAAC Sim

5
Thoughts on thesis

5.1. The research gap
In this section the gaps in the current state-of-the-art research are explained. The gap in the research
is what the upcoming thesis project will try to fill with answering the research question established in
chapter 1.

From chapter 2 the current research in all the soaring techniques are discussed, these soaring tech-
niques are well researched. It has been generally recognised that use of soaring techniques for atmo-
spheric energy harvesting is a viable option for energy/endurance limited UAV’s.

chapter 3 delves deeper into the research in ML for the thesis , a clear gap in the research occurs.
While there’s research on detecting objects or gauging depth using various ML techniques, the specific
domain of orographic updraft recognition remains largely untouched. The research is therefore focused
on analog style papers of which the discussed ML techniques could potentially be translated in to
orographic updraft recognition.

Consequently a review has been done of the current state of the art techniques, that could be used. His-
torically ML models have been anchored heavily in supervised learning, requiring significant amounts
of labeled data. In contrast, self-supervised learning, which is newer, offers a compelling alternative.
What should become clear during the thesis project is how the advantage of losing the need for a
time consuming annotation process weighs up against the challenge of it being a newer technique as
well as being compared to supervised accuracy. Nestled between these two methodologies is Semi-
Supervised learning, which might bridge the best elements of both.

As all different techniques are explored, a decision will have to be made between the tried-and-tested
annotating intensive supervised learning or the newer, more intricate self-supervised learning which
shows a lot of potential. Deciding on the right technique to used will play a vital role in filling the
research gap.

It’s worth noting that from the research into the behavior and occurrence of orographic soaring wind
fields, showed that they are very predictable under known wind conditions. For instance, given a certain
wind speed, a building will consistently produce a similar orographic wind field. The predictability of
these wind fields could play a valuable role to designing a strategy and tactic to fill the main research
gap.

The last thing needed to be researched was the current state of UAV’s simulators. Here chapter 4
showed how different state-of-the-art simulators are available, however a gap exists in merging de-
tailed CFD wind fields with the simulator. Another gap that has been identified is the lack of fixed-wing
UAV’s simulators that currently exist. All the viable simulators found did not allow for fixed-wing con-
figurations and were only designed for quad rotor dynamics. This might be attributed to the fact that a
lot of commercial UAV’s simulators are tailored for quadrotor dynamics. Additionally, a seamless con-
figuration between the chosen ML technique and the simulator has yet to be addressed and currently

44

5.2. Planning 45

poses as another gap.

This report shows the research that has been done in updraft detection/sensing, as well as autonomous
control inside or close to updraft regions. It also showed theory, tactics and algorithms for optimal path
planning by making use of updrafts. All these cases rely on previous knowledge of updraft regions, or
for the case of thermals after first training a prediction model and then using the predictions.

5.2. Planning
This section will go over the planning for the thesis project. As discussed in section 1.2 the primary and
subsidiary research goals for the thesis project have been identified. These goals are now scheduled
in for the coming months.

The three core goals mentioned in chapter 1 and section 5.1 simplify the planning process. The general
planning is first setting up the environment and the simulator, then implement the Machine Learning
algorithm. This is finished by a month of reporting the findings, although it is advised and planned to
report some of the techniques found and used, during the implementation of said techniques.

For the first main block, which is setting up the simulator and the simulator environment. This block has
been assigned around two months and should be done around the middle of October. Although this
could take quite some work and setting up environments could take upmonths, most of the environment
set up and simulator setup has been done during the literature study, so there is a strong possibility
that this is done around the end of September.

Furthermore a month has been assigned to setting up the environment. Setting up the environment
consists of the following two main tasks, the urban environment creation and the CFD analysis on this
environment. How the CFD will be performed as well as the needed theory for this was performed
during the literature study and is described in section 2.3 & chapter 4.

For the Machine Learning part of the thesis, first a decision will have to be made on what ML technique
to use, some possible techniques have been described in chapter 3. However as was mentioned, the
most suitable one will have to be discovered while reading and trying more. This is also the most
difficult part of the thesis as finding and creating a suitable algorithm is the main part of the research
gap, as described in section 5.1.

Lastly, the agent will have to be trained inside the environment. For this a month has been scheduled,
which means that if everything goes according to the project plan, the product should be done by the
end of December. After the Christmas break a month is foreseen for reporting.

The graduation process, will start off with an official draft submission by the end of January and, fol-
lowing the dates shared by the TU Delft [2]. This would mean the green light review would happen 2
weeks after the draft submission around the 20th of February. After the feedback is processed, the
thesis hand in is planned around the first of March, which given the minimum of 20 working days would
result in the thesis defence on the 20th of March.

It should be accounted for that, as this project is mainly a software project, the unforeseeable nature
of bugs and library issues can cause a planning to differ. Hence the use of sprint sessions in most
software companies. But nevertheless this planning seems reasonable and will increase efficiency
and give structure by having set different deadlines for the different parts of the thesis.

N
A

M
E

P
ro

je
ct

 p
la

n

Li
st

S
um

m
er

 H
ol

id
ay

S
et

tin
g

up
 th

e
si

m
ul

at
or

In
se

rt
 th

e
fix

ed
 w

in
g

dy
na

m
ic

s

S
et

 u
p

A
er

ia
l G

ym
 a

nd
 d

ep
en

d…

S
en

so
r

Im
pl

em
en

ta
tio

n

S
et

tin
g

up
 d

at
a

m
an

ag
em

en
t

S
et

tin
g

U
p

E
nv

iro
nm

en
t

E
nv

iro
nm

en
t c

re
at

io
n/

 B
ui

ld
in

g
…

C
F

D

S
et

tin
g

up
 M

L
te

ch
ni

qu
e

D
ec

id
e

on
 S

S
L

vs
 R

L

C
re

at
e

A
lg

or
ith

m

Im
pl

em
en

t A
lg

or
ith

m
 in

 S
im

ul
at

or

Tr
ai

ni
ng

 th
e

M
L

al
go

rit
hm

C
hr

is
tm

as
 H

ol
id

ay

R
ep

or
tin

g

W
rit

e
do

w
n

si
m

ul
at

io
n

re
su

lts

G
en

er
al

 r
ep

or
t w

rit
in

g

T
he

si
s

dr
af

t s
ub

m
iti

on

G
re

en
 L

ig
ht

 r
ev

ie
w

G
ra

du
at

in
g

P
ro

ce
ss

si
ng

 fe
ed

ba
ck

T
he

si
s

ha
nd

 in

D
ef

en
ce

20
23

20
24

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

S
um

m
er

 H
ol

id
ay

K
V

S
et

tin
g

up
 th

e
si

m
ul

at
or

K
V

In
se

rt
 th

e
fix

ed
 w

in
g

dy
na

m
ic

s

S
et

 u
p

A
er

ia
l G

ym
 a

nd
 d

ep
en

de
ci

es

S
en

so
r

Im
pl

em
en

ta
tio

n

S
et

tin
g

up
 d

at
a

m
an

ag
em

en
t

K
V

S
et

tin
g

U
p

E
nv

iro
nm

en
t

K
V

E
nv

iro
nm

en
t c

re
at

io
n/

 B
ui

ld
in

g
C

re
at

io
n

K
V

C
F

D
K

V

S
et

tin
g

up
 M

L
te

ch
ni

qu
e

K
V

D
ec

id
e

on
 S

S
L

vs
 R

L
K

V

C
re

at
e

A
lg

or
ith

m
K

V

Im
pl

em
en

t A
lg

or
ith

m
 in

 S
im

ul
at

or
K

V

Tr
ai

ni
ng

 th
e

M
L

al
go

rit
hm

K
V

C
hr

is
tm

as
 H

ol
id

ay
K

V R
ep

or
tin

g
K

V

W
rit

e
do

w
n

si
m

ul
at

io
n

re
su

lts
K

V

G
en

er
al

 r
ep

or
t w

rit
in

g
K

V

T
he

si
s

dr
af

t s
ub

m
iti

on
K

V

G
re

en
 L

ig
ht

 r
ev

ie
w

K
V

G
ra

du
at

in
g

K
V

P
ro

ce
ss

si
ng

 fe
ed

ba
ck

K
V

T
he

si
s

ha
nd

 in
K

V

D
ef

en
ce

K
V

6
Conclusion

Building on the insights that were gained during this Literature Study it has become clear that building
further on soaring techniques is one of the ways that will help in the innovation race to solve the en-
durance problem for UAV. The study shows clearly the importance as well as the different advanced
soaring techniques that have been studied as well as the ones that need some more research. The
predictable patterns of orographic wind fields form a good base for the research in the upcoming thesis
project.

The exploration into ML techniques shows the role AI has played in the field of UAV’s as well as the
role it could play in the advancement of soaring techniques, and in the case of the upcoming literature
project, orographic soaring detection. The comparison between supervised, semi-supervised and self-
supervised learning models offers valuable insights into their strengths and limitations. The potential
of SSL in particular emerged as the most promising as this way the problem of the labor intensive data
labeling process can be avoided. The shift to more efficient learning models has also been coming up
the recent years in other fields.

The study also spends a chapter on the possible current state-of-the-art simulators that can be used to
integrate said ML techniques. Here NVIDIA’s Isaac-Sim and its Pegasus-Simulator extension show the
most promise. They present the unique opportunity to develop a pipeline which can simulate orographic
wind fields, a fixed-wing UAV’s as well as create synthetic data for Self-Supervised learning. The
creation of complex urban environments is also possible with the use of Blender, these environments
can then be imported to the the simulator.

Finally, the key research gaps are identified. The study clearly shows the gap in machine learning
applications on the detection of orographic soaring locations. Furthermore it clearly shows the lack of
integration between realistic wind fields and simulators as well as a lack in fixed-wing UAV simulators.
Addressing these gaps will be essential for answering the research question in the upcoming thesis
project.

47

Part III

Software Structure & Results

48

7
Software Functionality

This chapter will give a more extensive explanation of the software architecture of the Osprey Simulator,
and more specifically the engine Isaac Sim, than was given in the scientific paper in I. It will focus on
the use of USD files, as this was a steep learning curve during the thesis. This chapter is therefore
written to further easen reproducibility.

7.1. Overview of Isaac Sim
As discussed previously in the literature study and scientific paper, Part I & chapter 4, Isaac Sim is an
advanced robotics simulation platform developed by NVIDIA and built on the Omniverse framework [38].
It offers the opportunity to simulate high-fidelity, real-time environments mainly for the use and testing
of robotic systems, sensor integration, and autonomous algorithms. Isaac Sim is widely recognized
for its seamless integration with machine learning workflows, physics-based simulation, and a robust
application programming interface (application programming interface (API)) that supports extensive
customization. These capabilities make it an ideal tool for both research and industrial applications in
robotics [38]. Isaac Sim has been used as the engine for this thesis project, where fixed-wing dynamics
and an atmosphere have been built upon it.

Although Isaac Sim has great functionality, some more explanation is needed, especially for the use
and management of USD files, which is done throughout the simulation for every object.

7.1.1. The Role of USD Files in Isaac Sim
Universal Scene Description (USD) files form the backbone of Isaac Sim’s scene management. USD
is an open, extensible framework developed by Pixar for 3D scene description, and it is utilized in Isaac
Sim for the following reasons [38, 12]:

• Scene Definition and Composition: USD files allow for complex environments, including geometry,
materials, lighting, and hierarchical relationships among objects.

• Hierarchical Structuring: With USD’s inherent support for scene graphs, complex assemblies
(such as multi-jointed robots) can be organized into logically related components. This hierarchy
simplifies the management of articulation points and sensor placements.

• Live Updates andCollaboration: USD supports non-destructive editing, allowing real-time changes
to objects and environments that facilitate iterative design and collaborative development. For ex-
ample, during testing the mass of the drone can be easily changed.

The use of USD files not only streamlines scene creation but also enhances interoperability with
other digital content creation tools.

7.1.2. Understanding Articulation Points in Isaac Sim
One of the more challenging yet critical concepts in the Isaac Sim simulations was that of articulation
points. These are essentially the joints or connectors that dictate how various parts of a robotic assem-

49

7.2. Closing remarks on Isaac Sim 50

bly move relative to one another. For the purposes of the thesis project, there was only one articulation
point around the center of pressure of the wing. However, in more extensive simulations, the possibility
of creating control surfaces and connecting these through articulation points offers a lot of opportunity
for further research with Osprey Simulator.

The Articulation Points in Isaac Sim, which represent the joints (revolute, prismatic, spherical, etc.)
connect the different components of a robot [11]. They are fundamental in determining the degrees of
freedom and movement constraints within the simulation. The correct modeling of articulation points
is essential for accurately computing the kinematics and dynamics of connected bodies. This involves
complex mathematical formulations and careful tuning to maintain simulation stability and realism.

Each additional joint introduces further variables that affect system behavior. Misconfigured articulation
points can lead to numerical instability or unrealistic behavior in simulations. It is therefore advisable
to test individual joints and constraints in isolation before integrating them into the full robotic system.
Although Isaac Sim offers tools to visualize and debug joint behavior, which can ease the process, it
stays an error-prone but important process.

7.1.3. The Built-in Sensor Suite and Its Impact on Osprey Simulator
Isaac Sim’s comprehensive, built-in sensor suite has played a pivotal role in the development of the
Osprey Simulator. The sensor suite includes detailed and configurable models for cameras, LiDAR,
inertial measurement units (IMUs), and other sensors commonly used in robotics and autonomous
systems.

By leveraging the realistic data output from Isaac Sim’s sensor models, the Osprey Simulator could
integrate and validate sensor fusion algorithms more effectively. This will also at some point help with
the transition to real-world sensor data and usage.

7.1.4. The Synthetic Data Generation Tools
Another significant feature of Isaac Sim is its built-in synthetic data generation capabilities. These tools
enable the capture of diverse data types such as RGB images, depth maps, and point clouds, which
are all crucial for training and validating autonomous systems.

Isaac Sim’s synthetic data generation tools provided the foundational methods for capturing detailed
depth and point cloud data. Although extensive work was needed to refine these outputs for the specific
localization of updraft application, the built-in methods served as the initial basis for data collection.
The ability to automatically generate large datasets under controlled conditions allowed for building
extensive training datasets, and leaves open the possibility to scale this up if the available computational
power allows it. By integrating synthetic data generation directly within the simulation environment, it
becomes easier and also helps to close the gap to real-life tests.

7.2. Closing remarks on Isaac Sim
Isaac Sim stands out as a powerful simulation platform that not only provides a realistic environment
for robotics testing but also offers advanced tools that have been instrumental in projects such as
the Osprey Simulator. The integration of USD files for scene management, the careful modeling of
articulation points, and the extensive built-in sensor and synthetic data generation capabilities have all
contributed to its success in supporting complex simulation tasks. These features have now set up the
Osprey Simulator to eventually move from simulation to real-world applications.

For more information about the installation of Isaac Sim and Osprey Simulator, the Readme of the
source code project can give more information. Here the other requirements needed to run as well as
some installation tips and USD environment tips are mentioned. The code can be found in Appendix A

8
Soaring Spot Detection Network

Results

8.1. Testing and Results
After the training, described in the scientific paper in Part I, the model’s performance was evaluated
on a separate test dataset comprising depth images and wind vectors that were not used during train-
ing. The inference dataset consisted of the TU Delft environment as well as the Random Environment.
Overall, the model demonstrates strong generalization capabilities and accurately predicts updraft re-
gions across varied environmental scenarios. This section presents several hand-picked results that
show the behavior and illustrate both the strengths and limitations of the model.

Notably, in the randomly generated environment, characterized by simpler geometries, the model pro-
duces precise predictions, whereas in the more complex TU Delft campus environment, certain chal-
lenges arise due to intricate architectural details, which was to be expected. This difference can be
seen clearly in Figures 8.1, 8.2, 8.3, 8.5 and 8.7. This is not unexpected behavior as, he updraft and
wind flow in simpler environments tend to be less turbulent and more coherent, disrupted by orographic
structures with general shapes like cylinders, rectangles, triangles etc. While for the real-life environ-
ments, due to all the complex shapes in there, the wind field exhibits more unexpected behavior.

The model, also shows great context awareness, as can be seen in Figures 8.1, 8.2, 8.3, 8.4. It
accurately predicts when there are downdraft as well as when there are updrafts. This is an important
capability, since updrafts typically occur only on the windward side of structures, where the wind impacts
the building. Recognizing this pattern is vital for future navigation towards soaring hotspots, ensuring
that the model does not erroneously predict updrafts on every rooftop. These results indicate that the
model effectively interprets wind direction and its relation to updraft localization from the wind vector
input.

51

8.1. Testing and Results 52

Figure 8.1: Updraft Prediction, Random Environment Figure 8.2: Downdraft Prediction, Random Environment

Figure 8.3: Network Prediction 1 TU-Delft environment,
windspeed: 5m/s

Figure 8.4: Ground Truth Label 1 TU-Delft environment,
windspeed: 5m/s

Figure 8.5: Network Prediction 2 TU-Delft environment,
windspeed: 5m/s

Figure 8.6: Ground Truth Label 2 TU-Delft environment,
windspeed: 5m/s

8.1. Testing and Results 53

Figure 8.7: Network Prediction 3 TU-Delft environment,
windspeed: 5m/s

Figure 8.8: Ground Truth Label 3 TU-Delft environment,
windspeed: 5m/s

Figure 8.9: Prediction Error due to flat ground surface

Despite these promising results, some misclassifications were noted. Specifically, the model occasion-
ally misidentifies certain features, for example, it sometimes erroneously recognizes the border of the
ground plane as a rooftop edge. Such errors indicate that further diversification of the training dataset,
particularly by including additional environments with varying ground and rooftop characteristics, could
enhance prediction accuracy. Out of approximately 200 images, Figure 8.9 was one of the few pre-
dictions that did not make any sense, a result that is generally positive given the computational limits
during training.

While Figure 8.10 also produces an incorrect updraft prediction, this error is acceptable since the net-
work might interpret a horizontal flat line as a building ceiling. This issue could potentially be addressed
by training on more data or improving the synthetic data labeling process. As discussed in the scien-
tific paper in Part I, this process makes use of edge detection, which likely contributed to the network
recognizing the edge in this context.

Now in Figure 8.11 the networks ’horizon’ flaw happens again, while still correctly predicting the updraft
above the building. Additionally, this observation suggests again that the network might be a bit sen-
sitive to horizon-like features, or more generally horizontal lines. Incorporating more diverse training
samples featuring varied horizon lines, that do not have any updraft, and urban edge cases might help
solve this issue, leading to more robust predictions overall.

8.1. Testing and Results 54

Figure 8.10: Horizon flat surface prediction

Figure 8.11: Correct updraft prediction, with incorrect horizon network flaw

One observed strength of the model is its adaptability to different wind velocities. At low wind speeds
(e.g., 1 m/s), where significant updraft regions are naturally minimal, the model correctly predicts a
corresponding lack of updrafts. Conversely, under higher wind velocities, themodel effectively identifies
more extensive updraft regions, aligning well with expected aerodynamic behavior. This sensitivity
to wind speed variations is further evidenced by the accurate predictions of downdraft regions, as
discussed before.

Figures Figure 8.12a, Figure 8.12b, and Figure 8.12c illustrate predictions for the same depth image
under varying wind velocities. As can be seen, the network shows almost no updrafts at 1 m/s, while
the increases to 5 and 10 m/s produce clearly visible changes. This behavior is desirable, as it demon-
strates that the model is context-aware and exhibits the appropriate sensitivity to wind speed.

(a) Updraft prediction for 1 m/s wind speed (b) Updraft prediction for 5 m/s wind speed (c) Updraft prediction for 10 m/s wind speed

Figure 8.12: Updraft predictions for different wind speeds

8.1. Testing and Results 55

8.1.1. Suggestions for Future Work and Improvements
To further improve the model’s robustness and generalizability, the following enhancements should be
considered. These possible improvements are discussed further in chapter 9

• Quantitative EvaluationMetrics: Once amore robust model is produced, its important to include
additional quantitative metrics such as Mean Absolute Error (Mean Absolute Error (MAE)), Root
Mean Squared Error (Root Mean Squared Error (RMSE)), or Intersection over Union (Intersec-
tion over Union (IoU)) for segmentation accuracy. These metrics would provide a more detailed
evaluation of the model’s performance and enable direct comparisons with other approaches.

• Evaluation on More Environments: Testing the model on entirely new and diverse urban set-
tings beyond the randomly generated and TU Delft environments. This would help validate the
model’s generalization capabilities and its adaptability to unforeseen architectural patterns.

• Edge-Detection Refinement: Refining the edge-detection component used in pre-labeling by
experimenting with advanced techniques or integrating learned edge-detection methods. This
may reduce false positives at the ground-to-rooftop transitions, and improve the ground truth
label data in general.

• Real-World Validation: Supplement synthetic data evaluations with real-world flight tests. This
would allow for adjustments based on real aerodynamic conditions and sensor noise, further
bridging the gap between simulation and actual drone operation.

By addressing these areas, future iterations of the model would be able to achieve even greater ac-
curacy, which would further increase the usage & usefulness of the model. Once improvements are
made this could pave the way to real-life tests.

9
Future Work

In the following, some directions for future work are set, divided into recommendations for the models,
improvements to the simulation pipeline, and broader research ideas for which Osprey Simulator could
be used.

9.1. Recommendations
To further strengthen and validate the simulation framework, the following is proposed:

• UAV and Aerodynamics Enhancements:

– Develop a fixed-wing UAV model with an articulated USD file that includes control surfaces.
– Extend the current longitudinal dynamics to full dynamics, incorporating lateral as well as
longitudinal behavior.

• CFD Pipeline Optimization:

– Investigate the use of NVIDIA’s new ML techniques to enhance CFD simulations [44].
• Improving Neural Network Predictions (SoarDetect):

– Increase the training data size.
– Increase batch size from 2.
– Increase the resolution of vertical wind predictions to capture finer aerodynamic details.

• Real-World Testing & Validation:

– Conduct flight experiments with real UAVs to validate simulation predictions.
– Benchmark SoarDetect’s wind predictions against measurements from anemometers or wind
LiDAR systems.

9.2. Improvements
Several enhancements can be made to the existing software pipeline, particularly concerning CFD
accuracy and its respective computational limits, as well as simulation fidelity:

• CFD

– Fine-tune and optimize CFD parameters to improve simulation accuracy.
• Computational Optimization:

– Optimize CFD simulations through parallelization and GPU-based processing (e.g., CUDA).
– Design lightweight neural network models for real-time onboard inference.
– Increase computational capabilities

56

9.3. Research Ideas for Peers 57

• Environment and Computational Enhancements:

– Expand the number and variety of real-world environments within the simulator.
– Increase the environment size and computational limits to support higher-fidelity wind field
modeling.

• Synthetic Data Generation:

– Generate more complex urban and natural environments with varied building shapes, mate-
rials, and terrain.

– Improve the synthetic data labeling process

9.3. Research Ideas for Peers
For researchers looking to further this work, the following ideas are proposed:

• Autonomous Soaring Strategies:

– Develop reinforcement learning methods for real-time, energy-optimized path planning to-
wards updrafts.

– Explore cooperative strategies where multiple UAVs share soaring locations to enhance
energy efficiency.

• Integration with Other Platforms:

– Integrate with simulators such as ROS for extended testing and control applications.
– Explore integration with automatic flight control software like PX4 to enhance overall system
performance.

References

[1] Joshua Achiam. “Spinning Up in Deep Reinforcement Learning”. In: (2018).
[2] AE4010 Research Methodologies: Project Planning. Aug. 2019.
[3] Zsuzsa Ákos et al. “Thermal soaring flight of birds and unmanned aerial vehicles”. In: Bioinspira-

tion & biomimetics 5.4 (2010), p. 045003.
[4] Michael Allen. “Autonomous soaring for improved endurance of a small uninhabitated air vehicle”.

In: 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005, p. 1025.
[5] Michael J Allen and Victor Lin. Guidance and control of an autonomous soaring UAV. Tech. rep.

2007.
[6] Ahmad Taher Azar et al. “Drone Deep Reinforcement Learning: A Review”. In: Electronics 10.9

(2021). ISSN: 2079-9292. DOI: 10.3390/electronics10090999. URL: https://www.mdpi.com/
2079-9292/10/9/999.

[7] Randall Balestriero et al. A Cookbook of Self-Supervised Learning. 2023. arXiv: 2304.12210
[cs.LG].

[8] Blender. Blender - Simulations. Accessed: 26 August 2023. URL: %5Curl%7Bhttps://www.blen
der.org/features/simulation/#fluids%7D.

[9] Anjan Chakrabarty and Jack Langelaan. “Flight path planning for uav atmospheric energy har-
vesting using heuristic search”. In: AIAA guidance, navigation, and control conference. 2010,
p. 8033.

[10] Marius Cordts et al. The Cityscapes Dataset for Semantic Urban Scene Understanding. 2016.
arXiv: 1604.01685 [cs.CV].

[11] NVIDIA Corporation. Isaac Sim Documentation. https://docs.omniverse.nvidia.com/isaac
sim/latest/index.html. Accessed: 2024-12-03. 2025.

[12] NVIDIA Corporation. OpenUSD on NVIDIA Omniverse. https://www.nvidia.com/en- us/
omniverse/usd/?ncid=pa-srch-goog-230293-vt49&_bt=697115562887&_bk=openusd&_bm=
p&_bn=g&_bg=162278196418&gad_source=1&gclid=EAIaIQobChMI3YzrqYG7hgMV2zWtBh2Qhwop
EAAYASAAEgJbVfD_BwE. Accessed: 2024-12-03. 2025.

[13] Tim De Craecker. Creating a City LandScape in Blender 3D. https://medium.com/@timdecr
aecker/creating-a-city-landscape-in-blender-3d-a06015eb0a1b. Accessed: 25 August
2023. 31 May 2021.

[14] Tim De Craecker. Creating Urban Landscape in Blender 3D — Part 2. Accessed: 25 August
2023. 31 May 2021. URL: %5Curl%7Bhttps://medium.com/@timdecraecker/creating-urban-
landscape-in-blender-3d-part-2-a5880ec8bf8e%7D.

[15] Nvidia Developer. Isaac Gym. Accessed: 28 August 2023. URL: %5Curl%7Bhttps://developer.
nvidia.com/isaac-gym%7D.

[16] Dharmaraj. Convolutional Neural Networks (CNN) - Architecture Explained. https://medium.
com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb19
7b243. Accessed: 15 September 2023. 1June 2023.

[17] Daniel Elfverson and Christian Lejon. “Use and Scalability of OpenFOAM for Wind Fields and
Pollution Dispersion with Building- and Ground-Resolving Topography”. In: Atmosphere 12.9
(2021). ISSN: 2073-4433. DOI: 10.3390/atmos12091124. URL: https://www.mdpi.com/2073-
4433/12/9/1124.

[18] I-Sheng Fang et al. “ES3Net: Accurate and Efficient Edge-Based Self-Supervised Stereo Match-
ing Network”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. June 2023, pp. 4472–4481.

58

https://doi.org/10.3390/electronics10090999
https://www.mdpi.com/2079-9292/10/9/999
https://www.mdpi.com/2079-9292/10/9/999
https://arxiv.org/abs/2304.12210
https://arxiv.org/abs/2304.12210
%5Curl%7Bhttps://www.blender.org/features/simulation/#fluids%7D
%5Curl%7Bhttps://www.blender.org/features/simulation/#fluids%7D
https://arxiv.org/abs/1604.01685
https://docs.omniverse.nvidia.com/isaacsim/latest/index.html
https://docs.omniverse.nvidia.com/isaacsim/latest/index.html
https://www.nvidia.com/en-us/omniverse/usd/?ncid=pa-srch-goog-230293-vt49&_bt=697115562887&_bk=openusd&_bm=p&_bn=g&_bg=162278196418&gad_source=1&gclid=EAIaIQobChMI3YzrqYG7hgMV2zWtBh2QhwopEAAYASAAEgJbVfD_BwE
https://www.nvidia.com/en-us/omniverse/usd/?ncid=pa-srch-goog-230293-vt49&_bt=697115562887&_bk=openusd&_bm=p&_bn=g&_bg=162278196418&gad_source=1&gclid=EAIaIQobChMI3YzrqYG7hgMV2zWtBh2QhwopEAAYASAAEgJbVfD_BwE
https://www.nvidia.com/en-us/omniverse/usd/?ncid=pa-srch-goog-230293-vt49&_bt=697115562887&_bk=openusd&_bm=p&_bn=g&_bg=162278196418&gad_source=1&gclid=EAIaIQobChMI3YzrqYG7hgMV2zWtBh2QhwopEAAYASAAEgJbVfD_BwE
https://www.nvidia.com/en-us/omniverse/usd/?ncid=pa-srch-goog-230293-vt49&_bt=697115562887&_bk=openusd&_bm=p&_bn=g&_bg=162278196418&gad_source=1&gclid=EAIaIQobChMI3YzrqYG7hgMV2zWtBh2QhwopEAAYASAAEgJbVfD_BwE
https://medium.com/@timdecraecker/creating-a-city-landscape-in-blender-3d-a06015eb0a1b
https://medium.com/@timdecraecker/creating-a-city-landscape-in-blender-3d-a06015eb0a1b
%5Curl%7Bhttps://medium.com/@timdecraecker/creating-urban-landscape-in-blender-3d-part-2-a5880ec8bf8e%7D
%5Curl%7Bhttps://medium.com/@timdecraecker/creating-urban-landscape-in-blender-3d-part-2-a5880ec8bf8e%7D
%5Curl%7Bhttps://developer.nvidia.com/isaac-gym%7D
%5Curl%7Bhttps://developer.nvidia.com/isaac-gym%7D
https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243
https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243
https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243
https://doi.org/10.3390/atmos12091124
https://www.mdpi.com/2073-4433/12/9/1124
https://www.mdpi.com/2073-4433/12/9/1124

References 59

[19] Alex Fisher et al. “Micro air vehicle soaring in urban environments”. In: 2016 Australian Control
Conference (AuCC). IEEE. 2016, pp. 9–14. DOI: 10.1109/AUCC.2016.7867924.

[20] Philipp Foehn et al. “Alphapilot: Autonomous drone racing”. In: Autonomous Robots 46.1 (2022),
pp. 307–320.

[21] OpenFOAM Foundation. Chapter 1 Introduction. Accessed: 26 August 2023. URL: %5Curl%7Bh
ttps://www.openfoam.com/documentation/user-guide/1-introduction%7D.

[22] Ross Girshick et al. “Rich Feature Hierarchies for Accurate Object Detection and Semantic Seg-
mentation”. In: 2014 IEEEConference onComputer Vision and Pattern Recognition. 2014, pp. 580–
587. DOI: 10.1109/CVPR.2014.81.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearni
ngbook.org. MIT Press, 2016.

[24] Vitor Guizilini et al. 3D Packing for Self-Supervised Monocular Depth Estimation. 2020. arXiv:
1905.02693 [cs.CV].

[25] Sunyou Hwang, Bart DW Remes, and Guido CHE de Croon. “AOSoar: Autonomous Orographic
Soaring of a Micro Air Vehicle”. In: arXiv preprint arXiv:2308.00565 (2023).

[26] Marcelo Jacinto et al. Pegasus Simulator: An Isaac Sim Framework for Multiple Aerial Vehicles
Simulation. 2023. arXiv: 2307.05263 [cs.RO].

[27] Tor A. Johansen and Thor I. Fossen. “Control allocation—A survey”. In: Automatica 49.5 (2013),
pp. 1087–1103. ISSN: 0005-1098. DOI: https://doi.org/10.1016/j.automatica.2013.01.
035. URL: https://www.sciencedirect.com/science/article/pii/S0005109813000368.

[28] Chris PL de Jong et al. “Never landing drone: Autonomous soaring of a unmanned aerial vehicle
in front of a moving obstacle”. In: International Journal of Micro Air Vehicles 13 (2021), pp. 1–12.

[29] Alexander Kirillov et al. “Panoptic Feature Pyramid Networks”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.

[30] Alexander Kirillov et al. PointRend: Image Segmentation as Rendering. 2020. arXiv: 1912.08193
[cs.CV].

[31] Alexandros Kouris and Christos-Savvas Bouganis. “Learning to Fly by MySelf: A Self-Supervised
CNN-Based Approach for Autonomous Navigation”. In: 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2018, pp. 1–9. DOI: 10.1109/IROS.2018.8594204.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep con-
volutional neural networks”. In: Advances in neural information processing systems 25 (2012).

[33] Mihir Kulkarni, Theodor J. L. Forgaard, and Kostas Alexis. Aerial Gym – Isaac Gym Simulator for
Aerial Robots. 2023. arXiv: 2305.16510 [cs.RO].

[34] Inwoong Lee et al. “An Efficient Human Instance-Guided Framework for Video Action Recogni-
tion”. In: Sensors 21 (Dec. 2021), p. 8309. DOI: 10.3390/s21248309.

[35] Shushuai Li, Christophe DeWagter, and Guido CHEDe Croon. “Self-supervised monocular multi-
robot relative localization with efficient deep neural networks”. In: 2022 International Conference
on Robotics and Automation (ICRA). IEEE. 2022, pp. 9689–9695. DOI: 10.1109/ICRA46639.
2022.9812150.

[36] Yen-Cheng Liu et al. Unbiased Teacher for Semi-Supervised Object Detection. 2021. arXiv: 2102.
09480 [cs.CV].

[37] Emmanuel Maggiori et al. “Can Semantic Labeling Methods Generalize to Any City? The In-
ria Aerial Image Labeling Benchmark”. In: IEEE International Geoscience and Remote Sensing
Symposium (IGARSS). IEEE. 2017.

[38] Viktor Makoviychuk et al. Isaac Gym: High Performance GPU-Based Physics Simulation For
Robot Learning. 2021. arXiv: 2108.10470.

[39] Maximilian Menke, Thomas Wenzel, and Andreas Schwung. “Improving Cross-Domain Semi-
Supervised Object Detection with Adversarial Domain Adaptation”. In: 2023 IEEE Intelligent Ve-
hicles Symposium (IV). 2023, pp. 1–7. DOI: 10.1109/IV55152.2023.10186678.

https://doi.org/10.1109/AUCC.2016.7867924
%5Curl%7Bhttps://www.openfoam.com/documentation/user-guide/1-introduction%7D
%5Curl%7Bhttps://www.openfoam.com/documentation/user-guide/1-introduction%7D
https://doi.org/10.1109/CVPR.2014.81
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1905.02693
https://arxiv.org/abs/2307.05263
https://doi.org/https://doi.org/10.1016/j.automatica.2013.01.035
https://doi.org/https://doi.org/10.1016/j.automatica.2013.01.035
https://www.sciencedirect.com/science/article/pii/S0005109813000368
https://arxiv.org/abs/1912.08193
https://arxiv.org/abs/1912.08193
https://doi.org/10.1109/IROS.2018.8594204
https://arxiv.org/abs/2305.16510
https://doi.org/10.3390/s21248309
https://doi.org/10.1109/ICRA46639.2022.9812150
https://doi.org/10.1109/ICRA46639.2022.9812150
https://arxiv.org/abs/2102.09480
https://arxiv.org/abs/2102.09480
https://arxiv.org/abs/2108.10470
https://doi.org/10.1109/IV55152.2023.10186678

References 60

[40] Abdulghani Mohamed et al. “Opportunistic soaring by birds suggests new opportunities for atmo-
spheric energy harvesting by flying robots”. In: Journal of the Royal Society, Interface 19 (Nov.
2022), p. 20220671. DOI: 10.1098/rsif.2022.0671.

[41] Abdulghani Mohamed et al. “Scale-resolving simulation to predict the updraught regions over
buildings for MAV orographic lift soaring”. In: Journal of Wind Engineering and Industrial Aerody-
namics 140 (2015), pp. 34–48.

[42] Joshua C Nathanael, Chung Hung J Wang, and Kin Huat Low. “Simulation of Wind Field in a
Building Complex for Evaluation of the Wind Effect Along UAS Flight Path”. In: AIAA AVIATION
2023 Forum. 2023, p. 4096.

[43] StefanNotter et al. “Hierarchical Reinforcement Learning Approach for AutonomousCross-Country
Soaring”. In: Journal of Guidance, Control, and Dynamics 46.1 (2023), pp. 114–126.

[44] NVIDIA. Transforming CFD Simulations with ML using NVIDIA Modulus. https://developer.
nvidia . com / blog / transforming - cfd - simulations - with - ml - using - nvidia - modulus/.
Accessed: 2024-12-12. 2020.

[45] Matthew Penn et al. “A method for continuous study of soaring and windhovering birds”. In: Sci-
entific Reports 12.1 (2022), p. 7038.

[46] Sudeep Pillai, Rareş Ambruş, and AdrienGaidon. “SuperDepth: Self-Supervised, Super-Resolved
Monocular Depth Estimation”. In: 2019 International Conference on Robotics and Automation
(ICRA). 2019, pp. 9250–9256. DOI: 10.1109/ICRA.2019.8793621.

[47] Lord Rayleigh. “The soaring of birds”. In: Nature 27.701 (1883), pp. 534–535.
[48] Gautam Reddy et al. “Glider soaring via reinforcement learning in the field”. In: Nature 562.7726

(2018), pp. 236–239.
[49] Philip L Richardson. “Upwind dynamic soaring of albatrosses andUAVs”. In:Progress inOceanog-

raphy 130 (2015), pp. 146–156.
[50] RIGITECH. Technology. Accessed: 16 August 2023. URL: %5Curl % 7Bhttps : / / rigi . tech /

technology/%7D.
[51] Skyports Drone Services. Royal Mail and Skyports partner on drone delivery. https://skyport

sdroneservices.com/royal-mail-and-skyports-partner-on-drone-delivery/. Accessed:
09 August 2023. 16 December 2020.

[52] Shital Shah et al. “AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles”.
In: Field and Service Robotics. 2017. eprint: arXiv:1705.05065. URL: https://arxiv.org/abs/
1705.05065.

[53] V Kr Sharan. “On characteristics of flow around building models with a view to simulating the
minimum fraction of the natural boundary layer”. In: International journal of mechanical sciences
17.9 (1975), pp. 557–563.

[54] Ana-Maria Simion and�erbanRadu. “Experiments with Semi-Supervised Learning: fromCityscapes
to Medical Images”. In: 2023 24th International Conference on Control Systems and Computer
Science (CSCS). 2023, pp. 477–483. DOI: 10.1109/CSCS59211.2023.00081.

[55] Chahat Deep Singh et al. “WorldGen: A Large Scale Generative Simulator”. In: 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 9147–9154.

[56] Yunlong Song et al. “Flightmare: A flexible quadrotor simulator”. In: Conference on Robot Learn-
ing. PMLR. 2021, pp. 1147–1157.

[57] Ian A Stokes and Andrew J Lucas. “Wave-slope soaring of the brown pelican”. In: Movement
Ecology 9 (2021), pp. 1–13.

[58] Tom Suys et al. “Autonomous Control for Orographic Soaring of Fixed-Wing UAVs”. In: arXiv
preprint arXiv:2305.13891 (2023).

[59] Tanmaya Swain et al. “Deep Reinforcement Learning based Target Detection for Unmanned
Aerial Vehicle”. In: 2022 IEEE India Council International Subsections Conference (INDISCON).
2022, pp. 1–5. DOI: 10.1109/INDISCON54605.2022.9862891.

https://doi.org/10.1098/rsif.2022.0671
https://developer.nvidia.com/blog/transforming-cfd-simulations-with-ml-using-nvidia-modulus/
https://developer.nvidia.com/blog/transforming-cfd-simulations-with-ml-using-nvidia-modulus/
https://doi.org/10.1109/ICRA.2019.8793621
%5Curl%7Bhttps://rigi.tech/technology/%7D
%5Curl%7Bhttps://rigi.tech/technology/%7D
https://skyportsdroneservices.com/royal-mail-and-skyports-partner-on-drone-delivery/
https://skyportsdroneservices.com/royal-mail-and-skyports-partner-on-drone-delivery/
arXiv:1705.05065
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
https://doi.org/10.1109/CSCS59211.2023.00081
https://doi.org/10.1109/INDISCON54605.2022.9862891

References 61

[60] Jake Tallman. “Soarnet, Deep Learning Thermal Detection for Free Flight”. PhD thesis. California
Polytechnic State University, 2021.

[61] Henk Tennekes. The Simple Science of Flight, Revised and Expanded Edition: From Insects to
Jumbo Jets. MIT press, 2009.

[62] JJ Videler, D Weihs, and S Daan. “Intermittent gliding in the hunting flight of the kestrel, Falco
tinnunculus L”. In: Journal of experimental Biology 102.1 (1983), pp. 1–12.

[63] Athanasios Voulodimos et al. “Deep learning for computer vision: A brief review”. In: Computa-
tional intelligence and neuroscience 2018 (2018).

[64] Simon Watkins et al. “Towards autonomous MAV soaring in cities: CFD simulation, EFD mea-
surement and flight trials”. In: International Journal of Micro Air Vehicles 7.4 (2015), pp. 441–
448.

[65] Caleb White et al. “A feasibility study of micro air vehicles soaring tall buildings”. In: Journal of
Wind Engineering and Industrial Aerodynamics 103 (2012), pp. 41–49.

[66] Caleb White et al. “The soaring potential of a micro air vehicle in an urban environment”. In:
International Journal of Micro Air Vehicles 4.1 (2012), pp. 1–13.

[67] Wikipedia contributors. Thermal — Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/w/index.php?title=Thermal&oldid=1125892184. [Online; accessed 26-September-2023].
2022.

[68] Timothy D Woodbury, Caroline Dunn, and John Valasek. “Autonomous soaring using reinforce-
ment learning for trajectory generation”. In: 52nd Aerospace Sciences Meeting. 2014, p. 0990.

[69] Yuxin Wu et al. Detectron2. https://github.com/facebookresearch/detectron2. 2019.
[70] Yumin Tan Wuttichai Boonpook and Bo Xu. “Deep learning-based multi-feature semantic seg-

mentation in building extraction from images of UAV photogrammetry”. In: International Jour-
nal of Remote Sensing 42.1 (2021), pp. 1–19. DOI: 10.1080/01431161.2020.1788742. URL:
%5Curl%7Bhttps://doi.org/10.1080/01431161.2020.1788742%7D.

[71] Ishan Misra Yann LeCun. Self-supervised learning: The dark matter of intelligence. https://
ai.meta.com/blog/self- supervised- learning- the- dark- matter- of- intelligence/.
Accessed: 22 August 2023. 4March 2021.

[72] Hang Yu, Guido C. H. E de Croon, and Christophe De Wagter. AvoidBench: A high-fidelity vision-
based obstacle avoidance benchmarking suite for multi-rotors. 2023. arXiv: 2301.07430 [cs.RO].

[73] Zhiding Yu et al. “Casenet: Deep category-aware semantic edge detection”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017, pp. 5964–5973.

https://en.wikipedia.org/w/index.php?title=Thermal&oldid=1125892184
https://en.wikipedia.org/w/index.php?title=Thermal&oldid=1125892184
https://github.com/facebookresearch/detectron2
https://doi.org/10.1080/01431161.2020.1788742
%5Curl%7Bhttps://doi.org/10.1080/01431161.2020.1788742%7D
https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://arxiv.org/abs/2301.07430

A
Supplementary Material

Source Code Osprey Simulator: https://github.com/kv8-A/OspreySimulator

62

https://github.com/kv8-A/OspreySimulator

	Preface
	List of Figures
	List of Tables
	Abbreviations
	I Scientific Paper
	II Literature Study
	Summary
	Introduction
	Research Question
	Focus during research

	Soaring Techniques
	Atmospheric energy Harvesting
	UAV configuration

	Static Soaring
	Thermal-soaring
	Orographic soaring

	Wind Fields
	Soaring conditions: Sink rate
	Wind Fields around different objects

	Dynamic Soaring

	Machine Learning research
	Reinforcement Learning
	The basics
	Deep Reinforcement Learning Algorithms
	Uses in UAV's

	Deep Learning in Autonomous UAV's
	Updraft localization with Deep Learning
	Supervised Learning
	Image classification with CNN
	Semi-Supervised Learning
	Self-Supervised learning
	SSL for the thesis project

	Simulator Research
	Pre-Requisites
	Environments and CFD
	Simulator: Pegasus Simulator

	Thoughts on thesis
	The research gap
	Planning

	Conclusion

	III Software Structure & Results
	Software Functionality
	Overview of Isaac Sim
	The Role of USD Files in Isaac Sim
	Understanding Articulation Points in Isaac Sim
	The Built-in Sensor Suite and Its Impact on Osprey Simulator
	The Synthetic Data Generation Tools

	Closing remarks on Isaac Sim

	Soaring Spot Detection Network Results
	Testing and Results
	Suggestions for Future Work and Improvements

	Future Work
	Recommendations
	Improvements
	Research Ideas for Peers

	References
	Supplementary Material

