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Dual-Mode Vehicle Routing in Mixed Autonomous and
Non-Autonomous Zone Networks*

Breno Beirigo, Frederik Schulte, and R. Negenborn

Abstract— Autonomous vehicles (AVs) are expected to widely
re-define mobility in the future, transforming many solutions
into autonomous services. Nonetheless, this development re-
quires an expected transition phase of several decades in
which some regions will provide sufficient infrastructure for
AV movements, while others will not support AVs yet. In
this work, we propose an operational planning model for
mobility services operating in regions with AV-ready and not
AV-ready zones. To this end, we model detailed automated
driving areas and consider a heterogeneous fleet comprised
of three vehicle types: autonomous, conventional, and dual-
mode. While autonomous and conventional vehicles can only
operate in their designated areas, dual-mode vehicles service
zone-crossing demands in which both human and autonomous
driving are required. For such a hybrid network, we introduce
a new mathematical planning model based on a site-dependent
variant of the heterogeneous dial-a-ride problem (HDARP).
With a numerical study for the city of Delft, The Netherlands,
we provide insights into how operational costs, service levels,
and fleet utilization develop under 405 scenarios of multiple
infrastructural settings and technology costs.

Index Terms— Autonomous Vehicles, Ride Sharing, Mobility
Services, Autonomous Zones, Dual-Mode Vehicles

I. INTRODUCTION

The advent of autonomous vehicles (AVs) represents a
disruptive change to urban transportation systems. Traveling
with shared, self-driving vehicles will become as affordable
as using public transport since all expenses of purchasing,
maintaining and insuring vehicles are distributed across a
large user-base [1]. Moreover, the widespread adoption of
such vehicles represents a step forward on urban sustainabil-
ity since reduced vehicle ownership directly impacts con-
gestion and parking requirements. In fact, several simulation
studies (e.g., [2], [3], [4]) have shown that current vehicle
rides of major urban centers could be adequately serviced
using comparatively smaller fleets of shared autonomous ve-
hicles (SAVs). Most of these studies, however, assume a full-
automation setting, a mobility scenario which is currently
far from reality. Many companies have been still testing
SAE level 3 vehicles in which special conditions apply (e.g.,
mapped routes, fair weather, possible human intervention)
and early versions of level 4 vehicles are likely to be limited
to more controlled environments (e.g., freeways, restricted
zones) [5], [6].
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(P14-18 project 3)” (project 14894) of the Netherlands Organization for
Scientific Research (NWO), domain Applied and Engineering Sciences
(TTW).

The authors are with the Department of Maritime &
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Netherlands. Email addresses: b.alvesbeirigo@tudelft.nl,
f.schulte@tudelft.nl, and r.r.negenborn@tudelft.nl.

During a transition phase to full-automation, regulatory
barriers will prevent AVs to operate in areas requiring ad-
vanced driving capabilities (e.g., shared spaces). Hence, the
introduction of AVs is likely to happen gradually, following
not only technological advances but also the spread of
automation-friendly infrastructures. Chen et al. [7], for in-
stance, suggest that government agencies can dedicate certain
areas of road networks exclusively to AVs. Such autonomous
vehicles zones (AVZs) could enhance the performance of
transportation networks, by facilitating the formation of
platoons, for example. In essence, until automation level 5 is
achieved, fleet operators have to employ both conventional
and autonomous vehicles to guarantee maximum service
coverage on partially autonomous infrastructures.

This paper investigates how the gradual evolution of
autonomous infrastructures influences fleet composition as
well as vehicle routing in a mobility service. We simulate
the spread of automated driving areas in urban networks
and analyze the operational performance of a heterogeneous
fleet comprised of autonomous vehicles (AVs), conventional
vehicles (CVs) and dual-mode vehicles (DVs). While CVs
and AVs are only allowed to operate in their respective areas,
DVs can freely drive throughout the entire network. We
carry out the analyses for the city of Delft, The Netherlands,
by creating various autonomous driving areas in the city’s
mobility network. Figure 1 illustrates a possible setting with
autonomous and conventional driving zones in the example
of Delft.

We define the problem as a mixed integer linear program-
ming (MILP) formulation in Section II and describe how we
generated the hybrid networks and set up the test cases in
Section III. Moreover, we discuss the results of our exact

Automated 
driving (AD) 

Conventional 
driving (CD) 

Fig. 1. Example of autonomous vehicle zone (AVZ) deployment in Delft,
the Netherlands. In AVZs, infrastructure is ready to support automated
driving.
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implementation and present some managerial insights based
on our experiments (Section IV) concluding with a summary
of key insights and outlook on future work (Section V).

II. PROBLEM DEFINITION

In this study, we introduce a multi-depot site-dependent
dial-a-ride problem (MDSDDARP), an extension of the
heterogeneous dial-a-ride problem (HDARP) introduced by
Parragh [8]. Similarly to HDARP, the MDSDDARP consists
of designing a cost-effective routing plan for a fleet of het-
erogeneous vehicles to attend a series of pickup and delivery
requests with different modes of transportation. However,
while in most HDARP variants the source of vehicle het-
erogeneity is associated to transportation requirements of
hospitals’ patients (e.g., wheelchair space, stretcher, patient
seat), in MDSDDARP the compatibility relationship between
customers and vehicles depends on the ability a vehicle has to
access customer locations. This concept was first explored by
Nag et al. [9] in the site-dependent vehicle routing problem
(SDVRP), in which certain customer sites (e.g., congested
areas) could only be serviced by specific types of vehicles
(e.g., small-capacity vehicles). However, rather than basing
on vehicle’s dimensions or user preferences to determine
user-vehicle compatibility, we rely on vehicle’s driving capa-
bilities (automated, conventional, and dual-mode) to decide
whether they are allowed to service users in automated or
conventional driving areas. We summarize the MDSDDARP
as follows. Given:

• a hybrid street network comprised of an autonomous
vehicle zone (AVZ) and a conventional vehicle zone
(CVZ);

• a heterogeneous fleet comprised of three vehicle types:
autonomous, conventional, and dual-mode; and

• a set of time-constrained transportation requests arising
from either a CVZ or an AVZ.

The MDSDDARP consists of constructing a set of vehicle
routes in such a way that:

• DVs can pickup and deliver customers in the entire
network, whereas AVs and CVs can only operate in au-
tomated and non-automated driving areas, respectively;

• vehicles depart from multiple locations and can stop at
the delivery location of their last attended customer;

• the capacity of a vehicle is not exceeded along its route;
• the ride time delay of a route does not exceed a limit

dride;
• the pickup time delay of a request does not exceed a

limit dpk;
• a subset of the requests is attended (i.e., service denial

is allowed);
• the total profit is maximized.
Figure 2(a) illustrates the problem for a fleet of three

vehicles (A, C, and D) of different types (autonomous,
conventional and dual-mode), and three requests (1, 2, and
3) spread over a hybrid street network. While pickup and
delivery points of requests 2 and 3 lie entirely inside a single
zone, passenger 1 must be picked up inside an AVZ and

delivered in a CVZ location. Next, Figure 2(b) shows how we
simplify this setup by eliminating intermediate nodes of the
real-world street network and creating a viable transportation
network where vehicles and passengers are connected by
their shortest paths according to their site compatibility.
While vehicle D is allowed to visit every pickup and delivery
node, A can only visit the nodes inside the AVZ and C can
only visit the nodes inside the CVZ. Notice that although the
pickup point of request 1 is inside the AVZ, vehicle A is not
connected to it, since A cannot reach request 1 destination.
Undirected lines represent two-way paths between nodes
(possibly non-symmetric) and directed lines highlight some
of the problem’s operational constraints, such as, vehicles
can only start their route by visiting pickup points and there
are not paths from request destinations to origins.

A. MILP formulation

The multi-depot site-dependent DARP is modeled on a
directed graph G = (N,E). The node set N is partitioned
into {P,D,O} where P = {1, ..., n} is both the set of
pickup nodes and request indices, D = {n + 1, ..., 2n} is
the set of destination nodes and O is the set of origins o(k)
of vehicles k ∈ K. The set O is created to better simulate a
free-floating mobility service in which vehicles depart from
distinct points within the service area (rather than departing
from a central station) and park nearby the delivery point of
the last attended request upon finishing the service.

We consider that each vehicle k ∈ K with capacity Qk is
from a type m(k) ∈ T , and every transportation request i can
be served by a subset of vehicle types Ti ⊆ T . Consequently,
the arc set E is defined as E = {(i, j,m) : i ∈ O, j ∈
P or i, j ∈ P ∪D, i 6= j and i 6= n+ j for m ∈ T}, so that
there might have up to |T | paths from i to j, each one having
a travel time tmi,j . In this study, the set of types T coincides
with the driving modes allowed in our hybrid maps (i.e.,
T = {AV,CV,DV }).

To each node i ∈ N is associated a load qi, corresponding
to the number of passengers, so that qi ≥ 0 ∀i ∈ P ,
qi = −qi−n ∀i ∈ D and qi = 0 ∀i ∈ O. Additionally,
the service duration di is the sum of passenger delays δ
for entering/leaving a vehicle visiting node i ∈ N , so that
di = |qiδ| ∀i ∈ N .

3

2

2

A

3 1
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AVZ
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City map, vehicles, 

and requests

Transportation 
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A

(a) (b)

Fig. 2. (a) Real world input (hybrid street map, customer’s pickup and
delivery locations, and vehicle positions) and (b) corresponding viable
transportation network.
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TABLE I
MILP ENTITIES OF THE MDSDDARP

Sets
K Vehicles.
P Pick-up nodes and request indices.
D Delivery nodes.
O Origin nodes o(k) of vehicles k ∈ K.
N = P ∪D ∪O.
V Valid visits (k, i) for k ∈ K and i ∈ N .
R Valid rides (k, i, j) for k ∈ K and i, j ∈ N .
T Vehicle types.
Parameters
o(k) Origin point of vehicle k ∈ K.
Qk Capacity of vehicle k ∈ K.
αk Base fare for attending a passenger using vehicle k.
βk Distance rate for attending passenger using vehicle k.
γm(k) Average operational cost/s (fuel, tolls, maintenance, labor, etc.)

of vehicle k.
m(k) Type of vehicle k ∈ K.
t
m(k)
i,j Travel time from node i to node j in mode m(k) ∈ T for

vehicle k ∈ K.
δ Time spent by a single passenger to enter/leave a vehicle.
di Service duration at node i ∈ N (i.e., sum of passenger’s

entering/leaving delays in i).
qi Number of passengers of request i.
dpk Maximum pickup time delay.
dride Maximum ride time delay.
[ei, li] Pick-up time window of request i.
Variables
xk
i,j Binary decision variable equal to 1 if vehicle k ∈ K travels

from point i ∈ N to point j ∈ N .
τki Arrival time of vehicle k at point i.
rki Time spent by request i ∈ N in vehicle k ∈ K.
wk

i Load of vehicle k ∈ K after visiting point i ∈ N .

Moreover, let dpk be the maximum pickup delay, dride the
maximum ride delay of all requests, and ti the revealing
time of request i. For a pickup and delivery pair (i, j) where
i ∈ P and j ∈ D, the earliest times (ei and ej) and latest
times (li and lj) to visit i and j are defined as follows:
(ei, li) = (ti, ti+dpk) and (ej , lj) = (ei+di+ tmij , ej+dride)
for driving modes m ∈ T .

The decision variable xk
i,j is equal to 1 if the arc

(i, j,m(k)) ∈ E is traversed by vehicle k ∈ K and the load
of a vehicle k upon leaving node i ∈ N is wk

i . Regarding the
time related variables, rki is the ride time of request i ∈ P in
vehicle k and τki is the time at which vehicle k arrives at node
i ∈ N . Ultimately, in order to streamline model execution,
a preprocessing phase is carried out to reduce the number
of decision variables. We define R as the set of valid rides
comprised of feasible (k, i, j) combinations and an auxiliary
set of valid visits V = {(k, i) : (k, i, j) ∈ V or (k, j, i) ∈
V }. Table I summarizes the sets, variables and parameters.

The formulation of the MDSDDARP is then as follows:

Maximize:∑
(k,i,j)∈R

i∈P

(αk + βkt
m(k)
i,n+i)x

k
i,j −

∑
(k,i,j)∈R

γm(k)t
m(k)
i,j xk

i,j (1)

Subject to:∑
(k,i,j)∈R

xk
i,j ≤ 1 i ∈ P (2)

∑
(k,o(k),j)∈R

xk
o(k),j ≤ 1 k ∈ K (3)

∑
(k,i,j)∈R

xk
i,j −

∑
(k,i,j)∈R

xk
i,n+j = 0 k ∈ K, j ∈ P (4)

∑
(k,i,j)∈R

xk
i,j −

∑
(k,j,i)∈R

xk
j,i = 0 k ∈ K, j ∈ P (5)

∑
(k,i,j)∈R

xk
i,j −

∑
(k,j,i)∈R

xk
j,i ≥ 0 k ∈ K, j ∈ D (6)

τk
j − τk

i ≥ tki,j + di +Mk
i,j(x

k
i,j − 1) (k, i, j) ∈ R (7)

ei ≤ τk
i ≤ li (k, i) ∈ V (8)

rki = τk
n+i − (τk

i + di) i ∈ P, (k, i) ∈ V (9)

t
m(k)
i,n+i ≤ rki ≤ t

m(k)
i,n+i + dride i ∈ P, (k, i) ∈ V (10)

wk
j − wk

i ≥ qj +W k
i,j(x

k
i,j − 1) (k, i, j) ∈ R (11)

max{0, qi} ≤ wk
i ≤ min{Qk, Qk + qi} (k, i) ∈ V (12)

xk
i,j ∈ {0, 1} (k, i, j) ∈ R (13)

wk
i , τ

k
i ∈ N (k, i) ∈ V (14)

rki ∈ N i ∈ P, (k, i) ∈ V (15)

The objective function (1) maximizes the revenue obtained
from passenger delivery while minimizing operational costs.
Constraint (2) allows service denial, since not all customers
need to be picked up, and constraint (3) defines that vehicles
can potentially stay still in their origin nodes in case they
are not scheduled. Constraint (4) imposes that if a vehicle
visits a request pickup node it must also visit the associated
delivery node. In turn, the flow constraints (5) and (6)
ensure vehicles arrive and exit pickup nodes but may arrive
and stay at delivery nodes, reflecting occasions in which a
vehicle delivers its last customer and waits in the vicinity
for incoming requests. Constraints (7) and (8) guarantee
adequate arrival times at nodes within predetermined time
windows while constraints (9) and (10) define and limit
the ride time of each request. In turn, feasible load flows
are guaranteed by constraints (11) and (12). Finally, the
validity of W and M at the linearized constraints (7) and
(11) is ensured by setting W k

i,j ≥ min{2Qk, 2Qk + qi} and
Mk

i,j ≥ max{0, li + tki,j + di − ej} ∀(i, j, k) ∈ R.

III. SCENARIOS FOR AUTONOMOUS VEHICLE
DEPLOYMENT

Assuming automated driving areas are gradually imple-
mented, we establish three key elements that may influence
the performance of future heterogeneous fleets: the cost de-
preciation of autonomous technologies (III-A), the configura-
tion of mixed-zone street networks (III-B), and the particular
demand patterns arising from such zoned environments (III-
C).
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TABLE II
OPERATIONAL COST SCENARIOS FOR VEHICLE TYPES IN RELATION TO

AUTOMATION TECHNOLOGY ( IN e/S)

Vehicle type
Cost scenario AV CV DV
S01 (large price premium) 0.004 0.002 0.005
S02 (moderate price premium) 0.003 0.002 0.004
S03 (minimal price premium) 0.002 0.002 0.003

A. Operational cost scenarios

It is widely assumed that AV technologies will become
increasingly affordable until they eventually reach market
saturation. Thus, we consider this gradual price deprecia-
tion to build three operational cost scenarios. In our study,
operational costs vary according to the distance traveled (in
seconds, considering an average speed of 40km/h) and are
comprised of (I) general automotive costs (e.g., maintenance,
parking, fuel, insurance), (II) driver’s labor and (III) au-
tomation related costs (e.g., maintenance of extra sensors,
software, data storage, computing power). In Table II, we
show how these elements compose the total operational cost
of each vehicle type for the potential scenarios S01, S02,
and S03. Regardless of the vehicle type and scenario, we
only vary the automation related costs (III), from 0.003e/s
to 0.001e/s, while keeping general automotive costs (I) and
driver’s labor (II) stable at 0.001e/s each.

B. Mixed-zone street network

Since the development of dedicated automated areas is un-
certain, we simulate the deployment of autonomous vehicles
zones (AVZs). First, we use the python library OSMnx [10]
to extract the map of Delft from OpenStreetMap and save it
as a directed graph G comprised of edges (streets) and nodes
(intersections). To guarantee any two nodes are connected
to each other, we eliminate all nodes not belonging to the
largest strongly connected component of G, resulting in a
final graph with 2,123 nodes and 4,964 edges.

Generating AVZs consists of choosing z random nodes
of this graph to be the zone origins and iteratively adding
the neighboring edges and nodes from these origins, one
level at a time, until at least an overarching coverage
percentage p of strongly connected nodes within zones is
achieved. In turn, all zones are interconnected by the shortest
paths between their origins, yielding a strongly connected
subnetwork representing a possible AVZ deployment. Figure
3 shows nine potential AVZ configurations for the street
network in Delft considering a coverage percentage p ∈
P = {10%, 25%, 50%} and number of zone origins z ∈
Z = {1, 2, 4}. While z varies the spatial configuration of
AVZs, p simulates their expansion, so that different transition
scenarios can be assessed. To broaden the variability of our
test cases even further, we repeat the generating process 5
times, resulting in 45 transportation networks with distinct
configurations of automated driving areas.

Finally, assuming three modes of driving are available,
automated driving (AD), conventional driving (CD) and dual-
mode driving (DD), we create a look-up structure to store

z = 1 
p = 25% 

z = 2 
p = 25% 

z = 4 
p = 25% 

z = 1 
p = 10% 

z = 4 
p = 10% 

z = 4 
p = 50% 

z = 2 
p = 50% 

z = 1 
p = 50% 

Conventional driving (CD) Automated driving (AD) 

z = 2 
p = 10% 

Fig. 3. Potential deployment of automated driving areas in Delft street
network considering different combinations of number of zones z and
coverage percentage p.

TABLE III
ZONE-CROSSING FREQUENCIES

Zone-crossing
Transportation pattern High Moderate Low

intra-zone (AV Z −AV Z) 10% 30% 40%
intra-zone (CV Z − CV Z) 10% 30% 40%
inter-zone (AV Z − CV Z) 80% 40% 20%

the shortest distances between every node and its reachable
neighbors for each driving mode. Hence, a node belonging
to an AVZ, for example, may access every node within the
AVZ via automated driving paths whereas nodes outside the
AVZ can only be accessed via dual-mode driving paths.

C. Transportation demand vs. zone configuration scenarios

OD data is randomly generated to assess distinct demand
distributions based on the transportation patterns of the
passengers in relation to the configuration of AD areas. This
way we can investigate what is the logistical outcome when
transportation demands are restricted to a particular area
(intra-zone transportation) or when origin and destination
nodes belong to different zones (inter-zone transportation).
To do so, we consider three zone-crossing frequencies (low,
moderate, and high) as shown in Table III. Additionally, we
investigate the implication of busy operational environments
by uniformly distributing such demands on different time
intervals, namely, 1, 2, 5, and 10 minutes.

IV. NUMERICAL STUDY

Using the scenarios defined in Section III, we describe
how we set up our test cases (Section IV-A) and discuss
the significance of our findings (Section IV-B). Results are
expressed in terms of the following performance marks:

• Service level: the percentage of attended requests.
• Fleet utilization: the percentage of the fleet actually

used to service requests.

1328

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:00:12 UTC from IEEE Xplore.  Restrictions apply. 



• Mobility cost: the relative operational cost to service
each request.

• Execution time: the sum of preprocessing time (for
creating a suitable transportation network and setting
up the MILP model) and the solver runtime.

• Fleet composition: Percentages of each vehicle type that
compose the final make-up of used vehicles.

A. Test case configuration

Table IV summarizes the parameters we consider to gener-
ate a total of 14,580 test cases, and Table V defines values for
service and fleet configuration parameters presented in Sec-
tion II-A. Instances are run for up to 10 min (not including
preprocessing times) using an Intel Xeon 3.7Ghz computer
with 32GB RAM and the MILP model is implemented using
the Python interface of the Gurobi 7.5.2 optimizer.

B. Results

Under the time boundary specified, optimal results were
obtained in 91% of the test cases. We then use this optimal
subset of results to carry out our analysis, assessing mean
values of test cases grouped by different parameters (e.g., a
result defined by number of vehicles, number of requests,
and operational cost scenarios, can be the mean of up to
540 tests cases). In the following sections, we enumerate
our main findings.

1) Time interval and fleet performance: The busier the
logistical scenario, the higher the fleet utilization, and the
fewer requests can be serviced. This trend can be verified in
the average percentages of service level and fleet utilization
presented in Table VI, and it is especially remarkable when
a large number of requests must be serviced by few vehicles.

2) Fleet composition & AD coverage: Fleet composition
depends on the AD coverage once AVs and DVs are more
prone to be scheduled when larger areas of the transportation
network can accommodate autonomous driving. Figure 4
illustrates this trend. Each square represents the average

TABLE IV
SUMMARY OF TEST CASE SETTINGS TOTALING 14,580 INSTANCES

Parameter Values
Number of vehicles {15, 30, 60}
Number of requests {10, 20, 40}
Operational cost scenarios {S01, S02, S03}
AD coverage percentage {10%, 25%, 50%}
Number of AD zones {1, 2, 4}
Zone-crossing {high, moderate, low}
Time interval (min) {1, 5, 10, 20}
Number of zone configurations 5

TABLE V
SERVICE AND FLEET CONFIGURATION PARAMETERS

Parameter Value
Base fare αk e3.0
Distance rate βk e0.001
Vehicle capacity Qk 5
Entering/leaving vehicle delay δ 30 s
Pickup delay dpk 5 min
Ride delay dride 10 min

TABLE VI
SERVICE LEVEL AND FLEET UTILIZATION ON DIFFERENT TIME

INTERVALS, NUMBER OF VEHICLES AND REQUESTS

Service level Fleet utilization
#R #V 01min 05min 10min 20min 01min 05min 10min 20min
10 15 93.9% 96.5% 97.9% 99.4% 60.2% 58.6% 56.1% 51.8%

30 99.4% 99.7% 99.7% 100.0% 31.9% 31.1% 30.3% 29.1%
60 99.8% 100.0% 99.8% 100.0% 16.1% 16.0% 15.9% 15.6%

Avg. 97.7% 98.7% 99.1% 99.8% 36.1% 35.2% 34.1% 32.1%

20 15 71.3% 80.4% 89.4% 96.5% 86.4% 87.2% 84.8% 80.7%
30 97.1% 98.2% 99.6% 99.8% 60.2% 57.3% 54.5% 50.9%
60 99.8% 99.9% 100.0% 100.0% 31.5% 30.6% 29.9% 28.9%

Avg. 89.4% 92.9% 96.3% 98.8% 59.4% 58.4% 56.4% 53.5%

40 15 41.8% 49.8% 63.4% 84.5% 94.6% 93.6% 95.9% 95.8%
30 75.5% 87.1% 94.2% 98.6% 87.8% 88.1% 82.1% 76.9%
60 97.7% 99.3% 99.7% 99.8% 59.2% 56.1% 52.6% 49.1%

Avg. 71.6% 78.7% 85.8% 94.3% 80.5% 79.2% 76.8% 73.9%
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Fig. 4. Fleet composition according to automated driving coverage
(10%, 25% and 50%), zone-crossing frequency (L=Low, M=Moderate, and
H=High) and operational cost scenarios (S01, S02, and S03).

percentage of a vehicle type for each combination of AD
coverage, zone-crossing frequency, and operational cost sce-
nario. Notice that within each zone-crossing category, the
share of AV and DV vehicles tends to grow while the
opposite occurs to CVs. Larger AVZs may lead to farther
AV trips, making vehicles busier for longer periods and
preventing them serving other customers. Hence, to comply
with the service time constraints, the size of AV fleets must
follow the growth of AVZs, whereas the size of CV fleets
must follow the shrinkage of CVZs.

3) Fleet composition and zone-crossing frequencies: Al-
though 80% of the requests must be serviced by DVs when
a high crossing frequency is considered, this share is not
directly reflected in the shares of DVs actually scheduled,
which were around 50% no matter the AD coverage and
cost scenario. This subpar representation may be associated
with the dimension of our transportation network: travel
times between pickup and delivery nodes are generally short,
so that fewer vehicles can service several customers. In
contrast, actual DV shares for the low and moderate inter-
zone frequencies more closely resemble their correspondent
zone-crossing frequencies in Table III.
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TABLE VII
OVERALL TEST CASE RESULTS FOR EACH OPERATIONAL COST

SCENARIO AND NUMBER OF VEHICLES AND REQUESTS

Service Fleet Mobility cost (e) Pre. Run.
#V #R level utilization S01 S02 S03 (s) (s)
15 10 96.9% 56.7% 1.43 1.19 0.92 0.0 0.1

20 84.4% 84.8% 1.43 1.17 0.91 1.5 2.7
40 59.8% 94.4% 1.29 1.07 0.83 9.2 459.3

30 10 99.7% 30.6% 1.27 1.05 0.82 0.5 0.3
20 98.7% 55.7% 1.30 1.08 0.84 3.4 1.5
40 88.2% 83.3% 1.31 1.08 0.84 18.9 188.9

60 10 99.9% 15.9% 1.17 0.96 0.75 2.0 0.7
20 99.9% 30.2% 1.17 0.97 0.75 7.2 3.2
40 99.0% 54.2% 1.21 1.00 0.78 38.8 72.9

4) Fleet composition & operational cost scenarios: The
depreciation of automated driving was found to be virtually
irrelevant, especially at high zone-crossing frequencies. In
such cases, there is no leeway for replacing conventional
vehicles once most of the trips expressly require dual-mode
vehicles, so that it is more likely that such vehicles end up
being used to also service intra-zone requests, no matter the
operational costs in place. In contrast, if a low zone-crossing
frequency is considered, the share of AVs and DVs slightly
increases whereas the share of CVs decreases: former DV
rides are replaced by AV rides and former CV rides are
replaced by DVs.

5) The influence of operational costs: As expected, the
depreciation of autonomous vehicle operational costs de-
creases mobility costs (see Table VII). Independently of the
operational cost scenario, mobility costs tend to decrease
as more vehicles are available since trip distances can be
shorter. Additionally, the results also help define the tradeoff
between fleet size, and operational costs for a number of
requests.

6) Execution time: As shown in Table VII, the preprocess-
ing time (Pre.) is directly related to the number of vehicles
and requests since it consists of looping through all decision
variables to eliminate unfeasible answers. In contrast, the
runtime (Run.) seemed to be more sensitive to the scarcity
condition posed by certain operational environments than by
the number of decision variables and constraints. In fact, the
busier the operational environment, the longer the runtime:
small fleets dealing with a far superior number of requests
(e.g., 15 vehicles and 40 requests) are a more complex
challenge to the branch-and-bound method of Gurobi solver.

V. CONCLUSIONS & FUTURE RESEARCH

In this study, we investigated how mixed-zone transporta-
tion networks can affect mobility services in the light of
the gradual development of autonomous infrastructures. We
model the routing for such services considering a hetero-
geneous fleet comprised of conventional, autonomous, and
dual-mode vehicles, and assume that only the latter can
freely access every location in the network. In contrast, au-
tonomous and conventional vehicles are restricted to operate
in automated driving areas and non-automated driving areas,

respectively. Then, such vehicle/infrastructure compatibility
requirement is used to formulate the problem as a variant
of the heterogeneous dial-a-ride problem in which site-
dependencies are taken in consideration.

The results obtained with numerical experiments for the
city of Delft, The Netherlands provide detailed insights into
how operational costs, service levels, and fleet utilization
develop under scenarios of multiple infrastructural character-
istics, fleet configurations, and technology costs in the next
decades of vehicular automation. In this way, the work builds
a foundation for the increasingly important problem domain
of partially autonomous vehicle routing and the design of
future mobility services for such conditions.

The presented results let urban planners understand the
importance of infrastructural decisions for the quality of
local mobility services, and transportation providers gain
fundamental insights on how to adjust a fleet to infrastruc-
tural conditions of cities. In this respect, the results show
that an ideal fleet composition is not driven by changes in
operational costs but is strongly associated with coverage
of autonomous vehicle zones and demand patterns. The
functions of traffic planning and fleet management may
therefore converge increasingly in future, and advanced data
analysis will be essential for the quality of such (partially)
autonomous mobility services. Future work will therefore in-
corporate analytics based on large-scale, real-world demand
data from major urban centers and also consider the real-time
dynamics of vehicle routing.

REFERENCES

[1] K. Spieser, K. Treleaven, R. Zhang, E. Frazzoli, D. Morton, and
M. Pavone, “Toward a systematic approach to the design and eval-
uation of automated mobility-on-demand systems: A case study in
Singapore,” in Road Vehicle Automation (G. Meyer and S. Beiker,
eds.), pp. 229–245, Springer International Publishing, 2014.

[2] D. J. Fagnant and K. M. Kockelman, “The travel and environmental
implications of shared autonomous vehicles, using agent-based model
scenarios,” Transportation Research Part C: Emerging Technologies,
vol. 40, pp. 1–13, 2014.

[3] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
“On-demand high-capacity ride-sharing via dynamic trip-vehicle as-
signment.,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 114, no. 3, pp. 462–467, 2017.

[4] P. M. Boesch, F. Ciari, and K. W. Axhausen, “Autonomous vehicle
fleet sizes required to serve different levels of demand,” Transportation
Research Record: Journal of the Transportation Research Board,
vol. 2542, pp. 111–119, 2016.

[5] T. Litman, Autonomous Vehicle Implementation Predictions. Victoria
Transport Policy Institute, 2017.

[6] B. Madadi, R. van Nes, M. Snelder, and B. van Arem, “Network
design and impacts of automated driving: An explorative study,” in
Transportation Research Board 97th Annual Meeting, 2018.

[7] Z. Chen, F. He, Y. Yin, and Y. Du, “Optimal design of autonomous
vehicle zones in transportation networks,” Transportation Research
Part B: Methodological, vol. 99, pp. 44–61, 2017.

[8] S. N. Parragh, “Introducing heterogeneous users and vehicles into
models and algorithms for the dial-a-ride problem,” Transportation
Research Part C: Emerging Technologies, vol. 19, no. 5, pp. 912–930,
2011.

[9] B. Nag, B. L. Golden, and A. Assad, “Vehicle routing with site
dependencies,” Vehicle Routing: Methods and Studies, pp. 149–159,
1988.

[10] G. Boeing, “Osmnx: New methods for acquiring, constructing, ana-
lyzing, and visualizing complex street networks,” Computers, Environ-
ment and Urban Systems, vol. 65, pp. 126–139, 2017.

1330

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:00:12 UTC from IEEE Xplore.  Restrictions apply. 


