
D
el
ft
U
ni
ve

rs
ity

of
Te

ch
no

lo
gy

Optimize the
indescribable
A Look at the Unification
between Machine Learning and Optimization

Optimization with Constraint Learning
Finn Dijkstra

Optimize the
indescribable

A Look at the Unification
between Machine Learning and Optimization

by

Finn Dijkstra
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 21, 2022 at 9:00 AM.

Student number: 4600339
Project duration: February 22, 2022 – July 12, 2022
Thesis committee: Dr. K. Postek, TU Delft, supervisor

Dr. ir. G. F. Nane, TU Delft

Cover: Food.Mediterranean food by Ali Raza under CC BY-NC 2.0 (Mod-
ified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Abstract
Packages to encode Machine Learned models into optimization problems is an underdeveloped area,
despite the advantages is could provide. The main draw of implementing Machine Learned models
into optimization models, is that it allows the optimizer to better account for the human experience.
Maragno D., Wiberg H. et al. constructed an implementation of the encoding with their package OptiCL.
In order to verify their implementation and provide principles for (re)designing packages with similar
functions, an amount of components of OptiCL were replicated within this paper. The requirements for
the program were first constructed before detailing the implementation process. After the program was
implemented, bothOptiCL and the found programwere tested in order to compare performances. Using
the results and an investigation of the two implementations, a framework for encoding similar packages
was provided using the insights gained. Using mathematical formulations supplied by Maragno D.,
Wiberg H. et al., design principles outlined in this report and research into the encoding of other Machine
Learned models, other developers could construct robust packages that allow for easy integration of
valuable information gained from Machine Learning into optimization problems. This in turn allows for
frequently used optimization models to account for more human understanding.

Finn Dijkstra
Delft, July 2022

i

Contents

Abstract i

Nomenclature iii

1 Introduction 1

2 Requirements 3

3 Implementation 4
3.1 The Components . 4
3.2 Implementation Details . 5

3.2.1 The Optimizer . 5
3.2.2 Machine Learning models . 7
3.2.3 Trust Region . 10
3.2.4 Performance Measurement . 11

4 Results and Discussions 12
4.1 Results . 12

4.1.1 ML method performances . 13
4.2 Discussion . 14

4.2.1 Model evaluation . 14
4.2.2 Implementation evaluation . 14

5 Conclusion 16

References 17

ii

Nomenclature

Abbreviations

Abbreviation Definition

MIOCL Mixed Integer Optimization with Constraint Learning
WFP World Food Program
ML Machine Learning/Learned
LR Linear Regression
SVR Support Vector Regression
TR Trust Region
CH Convex Hull
MIO Mixed Integer Optimization
MAE Mean Squared Error
MSE Mean Squared Error
V-MSE Validation Mean Squared Error
OOP Object Oriented Programming

iii

1
Introduction

In this paper we aim to marry the two worlds of machine learning and optimization.
For those unfamiliar with either or both of these fields, that statement might be unclear in its meaning.

These fields, however, are integrated into modern life and will be encountered, unknowingly, every day.
The navigation in your car, the videos that get recommended to you online, the stock of your local
supermarket, all of these are primarily based on at least one of these fields. To illustrate more clearly
what they entail separately and what aim to achieve in this paper, we take a closer look at the first
example: the navigation in your car.

Currently, the route you are shown when asking the navigation for help, is entirely based on an
optimization problem with concrete goal, variables and constraints. The computer inside calculates the
route that takes the least amount of time given a few constraints, such as avoiding ferry’s and tollways.
While functional and efficient, such optimizers are currently limited to objectives and constraints humans
can formulate, i.e. express in a formula with known values, such as total travel time based on travel
time of road segments.

Machine Learning, on the other hand, is able to calculate an estimator for things humans can per-
ceive, but not formulate. For example humans could perceive and provide a comfort rating of a route
but not express a underlying logic in a formula. Once trained with various routes and comfort ratings, a
Machine Learning estimator could give a comfort rating of a given route, even though that exact route
has not received a human rating before.

Clearly, it would be immensely useful if we could use the Machine Learned estimators (often called
ML models) in an optimizer, however little to no support is currently available. The navigation in your
car could for example take into account the comfort of your commute when supplying you with your
route to work. It could make sure the delivered route is the fastest possible, while making sure it’s up to
a certain standard of comfort, or, alternatively, calculate the most comfortable commute, while making
sure you still arrive on time. The latter is not only ideal for your daily commute, but could also be used
for route suggestions when you plan to make a holiday trip.

As it stands, ML models are often perceived as ”black boxes”; measurements go in, results comes
out. Optimizers, however, need transparency in their constraints and objectives to solve their problem.
The requirement to solve this mismatch and to enable the combined operation of ML models and op-
timizers thereby becomes clear: create methods to extract the driving formulas of the ML models and
implement them into an optimization solver as constraints used in the optimization calculation. This is
exactly what Maragno D., Wiberg H. et al. have done with their package OptiCL [1] as outlined in the
paper Mixed Integer Optimization with Constraint Learning (MIOCL) [2] and what we aim to replicate
here.

The goal of the paper is to provide feedback on OptiCL and deliver strategies for (re)designing
packages aiming to encode ML models into optimization problems. To achieve this, we aim to replicate
the function and compare the methods of MIOCL’s example for the World Food Program (WFP): the
goal of the program is to supply ration packets as cheaply as possible to groups of people in different
cities in Syria, while making sure the ration not only supplies the recipients with their daily nutrients, but
also makes sure the combination of ingredients is up to a certain standard of taste. The taste of the

1

2

rations is given a score estimated by a ML model and, using that score, the optimizer minimizes the
cost.

The structure of this paper will be as follows: first the project’s goal introduced above will be de-
scribed further and the requirements for our program will be extrapolated, subsequently the implemen-
tation process is described, and finally the results are outlined and compared to those found in the
original paper.

2
Requirements

The goal of this paper, is to supply feedback on OptiCL and provide tactics for researchers and devel-
opers aiming to (re)designing similar packages. To achieve meaningful feedback, a program will be
implemented independent of OptiCL.

In the program, the aim is that it can solve the optimization problem described in theWFP example of
MIOCL, ensuring it is compatible with the ML-methods, trust regions and performance measurements
as described in MIOCL. All of the components will be explained further in detail in this paper.

Mission statement In the World Food Program example of the paper, the goal is to find the cheapest
way to provide groups of inhabitants within different cities with their necessary daily nutrients. We aim
to know what the ingredients of the found ration are, where to purchase those ingredients and what the
optimum transport routes are.

Normally such an optimizer contains little more than minimizing the cost while making sure every
inhabitant gets their daily dose of nutrients, i.e. a classical linear programming model combining a
transportation optimization with diet requirement constraints.

The aim here however is to extend our optimizer to ensure the rations we provide are sufficiently
tasty. As tastiness is not something that humans can accurately describe with formulas, the tastiness
is estimated with a Machine Learned model, which shall feed into the optimizer to ensure that each
food basket is sufficiently tasty.

Components Using the description above, we can break down the program into key components.
These components are necessary for the program to fulfill our purpose and are divided into separate
parts in such a way that implementing them part by part is possible.

The first component that should be included in the program is the basic optimizer, that is the opti-
mizer which finds the cheapest ration delivery plan without accounting for the taste of the rations. The
second component of the program will be the ability to train models using different ML methods. Fur-
thermore, the formulas inside of the ML models need to extracted and implemented into the optimizer.
In additional, it is essential to the program to make sure the optimization solutions are limited to regions
where we trust the ML model, i.e. regions that are close enough to the data on which the ML model
is based. Finally we need to add ways to measure the performance in both accuracy and computa-
tion time in order to compare this implementation’s performance with the performance of the program
developed in the paper, called OptiCL.

3

3
Implementation

This chapter is about the components required to replicate the function of OptiCL as provided in the
World Food Program example of MIOCL. As a quick reference, these are the functions the program
must fulfill as already found in Chapter 2:

1. Optimize the WFP problem, not yet account for taste.
2. Train models with ML methods.
3. Encode found ML models into the optimizer.
4. Limit the optimizer to regions where the model is trustworthy.
5. Measure the performance of the program

In the first section of this chapter a more detailed description is provided off what each of these com-
ponents entails and on the characteristics they must have. Further sections describe the implementa-
tion process for each component; the sections start with necessary background information, continuing
on to mathematical descriptions where necessary, and finish with explaining the process of encoding
the components into Python.

3.1. The Components
In this section we will go into the different components, providing information on what it provides to the
program and what is necessary to fulfill it. All components are explained in order of implementation,
which means we start with the basic optimizer:

The Optimizer needs to find the lowest cost solution for the WFP problem. All optimization problems
look mathematically similar: all have a function to optimize (either they aim to minimize it’s value or
maximize it) and several constraints limiting the amount of possible solutions. While many different
sorts of optimization problems and methods to solve them exist, both this paper and MIOCL that it is
based on restrict themselves to linear problems where variables can be a combination of integers and
continuous variables. This type of problem, called a Mixed Integer Optimization (MIO) or Mixed Integer
Programming (MIP) problem, provides a good balance between efficiency and usefulness.

Here the aim is to minimize the cost of the ration delivery plan and the constraints are here to ensure
the plan is feasible and provides the recipients with all their nutrients. This optimizer essentially needs
to solve two problems: find the best ingredients in a ration and find the best purchasing location and
supply route given that ration. Due to the extensive amount of work already done in the optimization
field, both of these problems already have worked out examples that need little adaptation. In addition
to the examples, plenty of Python packages are available to solve such optimization problems. In the
implementation section an explanation will be provided on the mathematical structure of an optimizer
and on formula and parameter acquisition, before providing some notes on the process of encoding
the optimizer in the program.

4

3.2. Implementation Details 5

The Machine Learning models are necessary to estimate values that humans are unable to formu-
late. It can be used to estimate a vast amount of values, from incredibly complex phenomenons, such
as the flow of visitors through a museum, to more abstract values, such as taste or comfort. Such a
model is trained on a large data set using a Machine Learning method. Due to the linearity restriction
of an MIO problem, the amount of usable ML methods is limited. These methods all need to be able to
be formulated linearly.

Encoding ML models into the optimizer needs additional effort, even if the ML models are linear.
The optimizer cannot access the linear formulas that drive the models and as such cannot use the
methods that normally solve linear problems. This means that the parameters need to be extracted
out of the models and encoded into the optimizer. This process of extraction and encoding is the main
function that OptiCL provides and the core functionality we aim to replicate in this paper.

As the aim is to provide the same functionality asOptiCL, the specific methods chosen to be encoded
are: Linear Regression, Support Vector Regression, Regression Trees. All of these methods will be
described separately in the implementation section, starting with a general description and continuing
onto the mathematical descriptions and encoding process.

Trust regions are necessary to keep the solution confined to spaces where the model can accurately
predict the modeled value. A common method used to create these regions, and the method used in
this paper, is constructing a Convex Hull (CH) around the data set on which the model is trained. A
Convex Hull is the smallest region around a set, such that every point of the set is within the region and
the region is convex, in other words, the region has no angle exceeding 180 degrees.

While a single Convex Hull already limits the degree the prediction can differ from the true value, a
data set will likely still contain areas within the hull, where little to no data has been collected. To combat
this a technique called Clustering is often used; clustering creates different groups of data points, such
that every group is as densely packed with data points as it can be. After the data set is separated into
groups, separate Convex Hulls are created around each of the groups. While this limits the amount of
forms our solution can take even further, it is expected to provide a more accurate prediction.

Performance Measurement is necessary to compare the accuracy and the computation time of dif-
ferent ML methods and the use of trust regions. Additionally it is necessary to achieve the main goal of
this report: study the efficiency of OptiCL and discover potential oversights or areas of the package with
simple yet effective improvements. We measure the accuracy of the predictions and the computation
time, with and without trust region of all ML methods using this implementation and OptiCL. To ensure
robustness, this step is done iteratively, changing parameters of the optimizer and the subset of the
data, on which the ML models train, at each step.

3.2. Implementation Details
3.2.1. The Optimizer
To implement the optimizer, two things are necessary: a mathematical description of the problem and a
solver in which the found description is encoded. Luckily plenty of solvers are available for these sorts
of problems. We have chosen to use the solver Gurobi, which is the same solver as used MIOCL. In
the coming paragraphs the process of finding the mathematical description will be detailed, along with
the mathematical description itself. After we arrive at the description of the problem, the key formulas
to be encoded into Gurobi will be highlighted.

Mathematical description: As a reminder: the goal of the basic model is to minimize cost of sup-
plying rations to communities across different cities while meeting certain nutrition requirements. The
World Food Program requires information on the ingredients and their quantities in the rations, where
to purchase them and how to transport these ingredients to their destinations, as well as related costs.

From the mission statement, it can be determined that the solver needs to find the minimal value for
the objective function, which is described as the combined cost of purchasing of the ingredients in the
rations and the shipping of said ingredients to the destination sites. The key constraint is the minimum
required nutritional value of each ration.

3.2. Implementation Details 6

As often is the case, larger optimization problems can be broken down into a combination of multiple
smaller problems for which descriptions are already readily available. Here problem can be split into
two well known problems; a Stigler diet problem and a multi-commodity flow problem.

The Stigler diet problem optimises diet costs (i.e. purchasing price) while ensuring the sum of
all nutrients in a daily diet equals or exceeds the recommended daily nutritional requirement. The
assumption is that the supplied ration is the main or only nutrition of the recipient. The tastiness or
palatability constraint of a ration will be fed into the Stigler diet problem from the ML learned model at
a later stage.

The multi-commodity flow problem optimises transport costs based on a description of the possible
transportation network, symbolizing every city with a point, commonly called a node. Any path that
leads from one city to the next, is described as link between the two respective nodes and is called an
edge. The resulting transportation costs over this path then can be described as a number assigned
to that edge, called flow. The keep our network manageable we define three types of nodes: starter
(where ingredients are purchased), transport and destination nodes.

Two specific constraints for the multi-commodity flow problem are the following: First, the amount of
ingredients delivered to a city needs to equal its demand, i.e. ensure a ration for every person for every
day. Secondly, there should be no excess remaining so any cities only used for transfer of ingredients
need to distribute as much of each ingredient as they receive and all purchased quantities need to
leave the starter cities.

A specific realization necessary to join the two separate problems is the fact that the cost of the
ingredients could differ depending on the city in which they are purchased. As the objective function
is the sum of all transport and ingredient acquisition costs, the transport costs of the multi-commodity
flow problem need to be combined with the purchasing costs of Stigler diet problem.

The problem can now be described as in the set of equations (3.1a)-(3.1g), using the sets from
Table 3.1 and the variables and parameters from Table 3.2:

Symbol Set Description
N Set of all Nodes in the network
NS Set of all Starting Nodes (cities where the ingredients are purchased)
NT Set of all Transfer Nodes (cities where shipments can travel through)
ND Set of all Destination Nodes (cities with the communities that need rations)
I Set of all ingredients for the rations
V Set of all nutritional values we measure

Table 3.1: Set descriptions

Symbol Description Unit
Variables

Xk Weight of ingredient k in a single ration g
fijk Weight of ingredient k transported from node i to node j t

Parameters
y Conversion from grams to metric ton -
t Days that the shipment of rations should last d
dj Demand (amount of recipients) at node j -
rn Daily requirement of nutrient n mg
vkn Value of nutrient n in ingredient k mg/g
cpik Cost of purchasing a metric ton of ingredient k at node i $/t
ctij Cost of shipping a metric ton from node i to node j $/t

Table 3.2: Variable and Parameter descriptions

3.2. Implementation Details 7

minimize :
∑
i∈N

∑
j∈N

∑
k∈I

(fijkc
T
ij) +

∑
i∈ND

∑
j∈N

∑
k∈I

(fijkc
P
ik) (3.1a)

Given :
∑
k∈I

Xk · vkn ≥ rn ∀n ∈ N (3.1b)∑
i∈NS∪NT

(fijk) = t · dj ·Xk ∀j ∈ ND (3.1c)

∑
i∈NS∪NT

(fijk) =
∑

i∈NT∪ND

(fjik) ∀j ∈ NT (3.1d)

Xk ≥ 0 ∀k ∈ I (3.1e)
fij ≥ 0 i, j ∈ N (3.1f)

fijk = 0
∀k ∧ (i = j ∨

j ∈ NS ∨ i ∈ ND)
(3.1g)

Encoding process As mention before, the solver used in this project is Gurobi. In addition to the
standalone program, Gurobi has support for multiple programming languages, including the language
used in this project: Python. To ensure Gurobi uses methods for linear problems, it is required to
encode the problem in the form described (3.1a)-(3.1g), as rearranging an equation likely leads to a
non-linear description. After understanding the environment sufficiently, implementation of the problem
is straight forward. After testing the optimizer by checking the solution for different parameters, it was
concluded that the optimizer was successfully implemented.

3.2.2. Machine Learning models
As explained in earlier paragraphs, machine learning is the process of developing a model that mimics
human thought processes, especially useful when it is humanly not possible to express a relation be-
tween input and output directly in a formula. There are different methods to develop a model, however,
within this paper, all methods used are developed by a process called supervised learning. Supervised
learning start with collecting large amounts of data which contains measured output based on a given
input. In the WFP problem we require a data set with the surveyed taste score for a given ration com-
position. After the training data has been acquired, the model is calibrated on that data-set. After the
model finished training its prediction for the output, an output can be predicted using the model when
supplied with new input. The training data of the WFP problem consists of 5000 measurements, each
with a taste score between 0 and 1.

3.2.2.1. Linear Regression
A Linear Regression model can be best visualized starting with two dimensions. To illustrate, we shall
use sugar content of a product and taste of a product for input and output respectively. We collect the
data from different products by surveying data. Then find a straight line such that the data points are
as close as possible to the line (as seen in figure 3.1 and 3.2). The height (the taste score) of the line,
at 0 sugar content is called the intercept. The slope of the line is then called the taste coefficient for
sugar. Extending to more dimensions now becomes more clear. Say we add protein content as an
extra input, then we find a plane such that data points have the least distance, the intercept is found at
0 for both values and the slope in the direction of a dimension is the taste coefficient of that dimension
(see figure 3.3). Embedding a minimum on taste then equates to restricting the optimization problem
to the area underneath the plane, as seen in figure 3.4. Higher dimensions function the same, with the
resulting structure of the model forming a hyperplane.

Mathematical description Coefficients and an intercept describe the hyperplane as in equation (3.2).
Those coefficient can be found by finding the values where they attain a minimal Mean Squared Error
(MSE) with regards to the data set as described in equation (3.2). This method stimulates a more even
distribution of errors in comparison to finding coefficient by their absolute errors, as large singular errors
are punished more heavily than multiple smaller errors.

3.2. Implementation Details 8

Figure 3.1: A linear regression of a sample data set Figure 3.2: The same linear regression with errors in
prediction illustrated

Figure 3.3: A sample 3d linear regression Figure 3.4: Restriction of input to fulfill constraint

taste(x) = b+

n∑
i=1

cixi (3.2)

Minimize
∑

(xi,yi)∈D

(yi − taste(xi))
2 with D = the training data (3.3)

Encoding process The encoding process is fairly simple: the equations of (3.4) are encoded into
Gurobi.

y = b+

n∑
i=1

cixi (3.4a)

y ≥ taste_requirement (3.4b)

3.2.2.2. Support Vector Regression
The Support Vector Regression, like Linear Regression, results in a hyperplane close to all data points.
The difference between the two methods lies with the properties of the resulting hyperplanes. Linear
Regression results in a hyperplane as close as possible to all points, while Support Vector Regression
aims to be more accurate for most data point and stimulates a more evenly distributed dependency of
every input dimension.

Mathematical description and Encoding process An SVRs result in a hyperplane like Linear Re-
gressions, an SVR can be mathematically described as in (3.2) and encoded with the constraint in
(3.4). To achieve the desired properties of the SVR, the coefficients are found by minimizing the equa-
tion (3.5). D is the data set again, the other unfamiliar terms are n, which symbolizes the dimension of
our input, and C, which is a variable determined when encoding. The SVR prioritizes minimizing errors
for large value for C and prioritizes even distribution of input dimension dependency. Note that using
absolute errors punishes singular outliers less heavily, as mentioned earlier.

3.2. Implementation Details 9

Minimize

n∑
i=1

c2i + C
∑

(xi,yi)∈D

|yi − taste(xi)| (3.5)

3.2.2.3. Regression Tree
The final model, like a tree, starts at a base point and keeps splitting the further in the tree you go. At
every branching point an inequality is evaluated, if the input is greater or equal to the splitting value it
will go to the right, if its less then the splitting point than it goes to the left. Once the end of the tree,
called a leaf, is reached, we predict the score of the input to equal the value associated with the found
leaf. A diagram illustrating the sorting process is shown at figure 3.5. Because the tree sorts the input
into different groups, assigning a value to each of the resulting groups, it can be visualized as in figure
3.6. This implies adding Regression Tree constraints in an optimizer is the same as restricting the input
to lie within the leaf groups, where the associated value fulfills the constraint.

Mathematical description The mathematical description of a Regression Tree revolves around indi-
cator functions, functions that result in 1 if the input fulfills a condition and 0 if the input does not. These
functions are incredibly useful to show what leaf an input belongs to and to show if in input fulfills the
inequality at a splitting point. While an indicator function is normally denoted by 1A(x) or IA(x), the
following paragraphs use ia(x) for the inequality at a splitting point a, while keeping In(x) to symbolize
if x belongs to leaf n. As all inequalities must be linear functions and our input can be represented as
a vector, the inequality at a splitting point can be described as a matrix multiplication (see (3.6a)) and
the indicator function ia follows from that description (see (3.6b)).

Ma · x ≥ ba (3.6a)

i(x)a =

{
1 Ma · x ≥ ba

0 Ma · x < ba
(3.6b)

Following the description for the inequalities a unique path can be constructed to reach each leaf.
An example path has been provided in equation (3.7a) to reach leaf_2 of figure 3.5. Using the paths
found, a description for In(x) can be found as shown in (3.7b).

p(l2) = {i(l2)f(x)≥a = 0, i(l2)g(x)≥b = 0, i(l2)i(x)≥d = 1} (3.7a)

I(x)n =

{
1 ∀i(n)a ∈ p(n) : i(n)a = i(x)a

0 else
(3.7b)

Figure 3.5: A diagram of how a tree sorts input onto a leaf Figure 3.6: An example on how a Regression Tree classifies
input and assigns values

3.2. Implementation Details 10

As any input can only be sorted into a single leaf, the Regression Tree is described with the equa-
tions in (3.8), with L the set of all leaves and cn the value of leaf n.

taste(x) =
∑
n∈L

cnI(x)n (3.8a)

with
∑
n∈L

cn = 1 (3.8b)

Encoding process Using the mathematical description of a Regression Tree, there exist essentially
3 methods to implement the model. The first method is the simplest, yet least efficient; Gurobi has
support for binary variables, therefore all equations from (3.6b) till (3.8b) can be implemented directly
into the model, adding taste(x) ≥ taste_requirement as well.

The second method is to remove all leaves, that are insufficient for the taste requirement, before
implementing into the model. This eliminates the need to add (3.8a) and the taste constraint directly
into the model. Removing insufficient leaves is done quickly and results in the solver containing less
variables and having to calculate less equations. Due to the solver calculating every equation a large
number of times, this saves a significant amount of time, especially for stricter taste constraints.

The final method follows a similar logic to the second, except the optimization model is solved for
every feasible leaf separately. After the optimal solutions are found for each leaf, the costs of the
solutions are compared resulting in the cheapest becoming the final solution.

In the implementation, the second method has been used to ensure the encoding of the ML model
into the optimization problem remains separated for adaptability of solving methods.

3.2.3. Trust Region
Constructing Convex Hulls to define trust regions is a non-trivial task for this data set. The data set,
more specifically a set where each data point is a ration description with an accompanying taste score,
has an input with 25 dimensions, each a potential ingredient of the ration. Efficiency of Convex Hull
descriptions should be considered, as higher dimensional data sets often create CHs with a large
amount of descriptive vertices. A traditional description of a hull would be dependant by describing
the interior by a convex combination of all its border points, resulting in an equation that becomes
explosively complex as dimensions of the data set and border points of the hull increase.

The use of packages available online to compute the CH is, to the best of our research and under-
standing, unavailable. Either the package is only able to calculate data that is 2 or 3 dimensional, or the
package (such as the one provided by SciPy) relies on Qhull to calculate the hull. After researching the
topic, a paper by A. Siegel [3] was found. In that paper, it was found that Qhull is unable to calculate
hulls of large dimensional data sets; the program ran out of memory when calculating a 10 dimensional
hull with 1000 supplied data points. The 25 dimensions with a similar amount of data points given by
theWFP problem would have the same result, which our testing confirmed. While Siegel did provide an
alternative algorithm to calculate higher dimensional hulls, no package has been provided and we were
unable to implement the found algorithm as significant developmental resources had been invested into
developing a function independently before finding the paper.

Failure to calculate the Convex Hull After discovering that standard packages were unsuitable for
the needs of the problem, development of a function began that was able to calculate higher dimen-
sional Convex Hulls. While constructing the function, several methods were tested, all aiming to supply
a CH formulated such that the optimizer could process the hull more efficiently. After several attempts
where roadblocks were met, a final approach was formulated: the data set would be repeatedly re-
duced in dimensions by translating the entire set over two vertices, that are guaranteed to be border
points. After the entire set was translated, the two translating vertices for every dimension would be
used to iteratively increase dimensions back to full. At every dimension, points would be added that
lie outside of the incomplete description of the hull, resulting in a complete hull when the dimension
was back to full. The border points were stored into triangular facets. As these facets are triangular
in nature, it should allow the optimizer to restrict itself to the given facets by relatively uncomplicated
matrix multiplication (see equation (3.9)).

3.2. Implementation Details 11

F = {v0, v1, ..., vn} (3.9a)
wi = vi − v0 ∀1 ≤ i ≤ n (3.9b)

M =

wT

1

wT
2

.

.
wT

n

 (3.9c)

x ∈ F ⇐⇒ x− v0 = M ·

c1
c2
.
.
cn

 ⇐⇒ M−1(x− v0) =

c1
c2
.
.
cn

 (3.9d)

with c0 =

n∑
i=1

ci (3.9e)

0 ≤ ci ≤ 1 ∀0 ≤ i ≤ n (3.9f)

While ultimately unable to implement this method due to lack of resources, interest in pursuing this
problem has not reduced and development will likely continue after this paper has been published.

Alternative restriction of the optimizer While unable to implement the Convex Hull, the need to
restrict the optimizer close to the data set remains. To ensure sufficient time remained to implement
remaining features, a simple restriction has been chosen. In this implementation, the optimizer will be
restricted to the minimum and maximum value that an ingredient attains on the given data set.

3.2.4. Performance Measurement
The main goal of this paper is to replicate as much features of OptiCL as feasible and afterwards
compare the two implementations. Without measurements, comparisons have no qualitative evidence
to back them up. To deliver such evidence, two things need to be discussed: setup and measures.

Setup To ensure the measurements are robust, many different data sets and model descriptions will
be tested. Each taste score and trust region method will be measured over 1000 iterations, every it-
eration will be supplied with a subset of the Machine Learning training data and parameters that lie
between 0.8 and 1.2 times their original value, with the exception of nutrient requirements and nutri-
ent values of the food. The exceptions have been decided as it could deliver a skewed taste score.
Additionally, Python multiprocessing is used in order to speed up data collection. Lastly two control
groups are constructed, one where no taste is accounted for and another patchwork solution, where
the taste score is substituted the percentage that sugar accounts for all calories in order to simulate
human estimation.

Measures The two properties, that are important when considering wider use of constraint learning,
are efficiency and accuracy. To measure efficiency, all computation times are measured. Accuracy we
measure two fold: once against the complete training set to measure accuracy within expected input
and the predicted taste of the final solution will be compared to the ”true” taste score (determined by
the function that generated the training data set) to measure the necessity of the trust region.

As the project setup has now been detailed, the results can be found on the following page.

4
Results and Discussions

In this chapter the results and observations about the performance of all different methods and imple-
mentations are outlined. After the specific results are discussed, a larger look at the implementation
of OptiCL will be taken in comparison using the knowledge gained as result of implementing the repli-
cation. All points of improvement that are provided relate specifically towards the implementation of
OptiCL, but many revelations are applicable to any implementations that aim to integrate ML-methods
into optimization models.

4.1. Results
The results of the tests can be found be found in Table 4.1 and Table 4.2.

Test setup description: All test are done on a desktop computer runningWindows 10. The computer
has 16GB of RAM and an AMD Ryzen 5 5600X. While Python multiprocessing was used to increase
the speed of testing, no virtual memory shortage was observed, which could lead to inaccurate results.
The test consists of 1000 iterations, at each step all combinations of trust region and ML methods are
tested. As a control the model is solved at each step without accounting for taste and with accounting
for taste by a patchwork formulation of taste created by a human. In order to test the implementations
under differing circumstances, every iteration step is supplied with 1000 point sample of the larger 5000
point data set for training the taste score. Additionally at every step, all parameters, with the exception
of nutritional requirements and nutritional values of food, are varied from 0.8 to 1.2 times their original
value. The Mean Squared Error with regards to the 5000 point data set, the absolute error between
the predicted and true taste score of the optimization and the computation time of the entire program is
measured and the mean and standard deviation are displayed in Table 4.1 and Table 4.2 respectively.

Before addressing other ML methods, a small note on the OptiCL Linear Regression: an in-
spection has been done on both OptiCLs implementation and the implementation of OptiCL into the
performance measurement function as both the MSE and the absolute error with regards to the solution
are of such a large quantity, that it becomes unusable as the true taste score attains value between 0
and 1. The inspection, however, was not able to deliver the reason for the inaccuracy of the ML model.

12

4.1. Results 13

ML method Mean V-MSE MAE MAE-TR

Without Machine Learning
No Taste NaN NaN NaN
Patchwork 0.105 (NaN) 0.767 (0.954) 0.289 (0.036)

This Implementation
LR 0.019 (1.41 · 10−4)) 0.047 (0.080) 0.053 (0.050)
SVR 0.020 (2.35 · 10−4)) 0.048 (0.069) 0.044 (0.052)
Tree 0.016 (6.99 · 10−4)) 0.607 (0.873) 0.186 (0.089)

OptiCL
LR 3.009 (0.274) 1.627 (0.115) 1.672 (0.096)
SVR 0.298 (2.02 · 10−4)) 0.618 (0.481) 0.537 (0.050)
Tree 0.108 (0.026) 0.567 (0.736) 0.194 (0.075)

Table 4.1: Taste score performance (Standard deviation) of 1000 iteration and 1000 elements in the sub set

ML method Time Time-TR

Without Machine Learning
None 0.044 (0.004) 0.047 (0.006)
Patchwork 0.045 (0.006) 0.048 (0.007))

This Implementation
LR 0.052 (0.007) 0.055 (0.008)
SVR 0.188 (0.014) 0.191 (0.014)
Tree 0.369 (0.028) 0.366 (0.029)

OptiCL
LR 1.248 (0.090) 1.249 (0.090)
SVR 0.287 (0.020) 0.288 (0.018)
Tree 5.098 (0.391) 5.115 (0.397)

Table 4.2: Computations times (Standard deviation) of 1000 iteration and 1000 elements in the sub set

4.1.1. ML method performances
The best two performing MLmethods are this papers implementation of Linear Regression and Support
Vector Regressions. Both performing similar in accuracy, with the SVR specifically performing better
than Linear Regression in providing a solution with accurate taste score when restricting the solution to
a trust region. This is balanced by the computational speed that the Linear Regression provides, only
slightly slower than no taste constraint and patchwork taste constraint. While our implementation of
a Regression Tree and OptiCLs implementation for Support Vector Regression and Regression Trees
have errors less than 0.65, it is important to remember that the true taste score only attains values
between 0 and 1. In this context absolute errors greater than 0.1 already disrupt the usefulness of the
optimized solution, due to unreliability of taste.

Min/Max constraint vs Convex Hull. In order to measure the difference between this papers imple-
mentation of a trust region and OptiCLs implementation of a CH as trust region, another, smaller, test
has been done. In this test OptiCL was tasked to implement a CH using 50 first data sets and param-
eter variations of the larger test. The results can be seen in Table 4.3. When comparing the results of
the two trust region methods, the hull on average adds an extra 0.5 seconds computation time and per-
forms slightly worse in accuracy, which should be attributable the selection of parameters and training
sub sets. The reasoning as to why the accuracy should not be worse is that any region defined convex

4.2. Discussion 14

combination of data points, regardless of formulation or elements removed from an original data set, at
minimum restricts the region the minima and maxima of the data set on each dimension.

OptiCL with CH
ML method MAE Time
LR 1.630 (0.087) 1.824 (0.040)
SVR 0.585 (0.044) 0.864 (0.030)
Tree 0.228 (0.109) 5.662 (0.248)

Table 4.3: Measurements of OptiCLs Convex Hull (Standard deviation) of 50 iteration and 1000 elements in the sub set

OptiCL vs this Implementation. As seen in Table 4.1 and Table 4.2, OptiCL currently performs worse
in both accuracy and computational time in comparison to this implementation. After inspection of the
OptiCL code, the main difference between the two implementations was found. This paper uses base
parameters provided by SciPy, while OptiCL uses a parameter grid to find the optimal parameters to
train the model. This logically causes longer computation times, yet should deliver a more accurate
solution. A possible cause for the inaccuracy is that OptiCL might overfit the model to the data set; the
data points within the sample training sub set could be predicted more accurately, however input needs
to remain incredibly close to those data points to remain accurate. This line of reasoning is supported
by the models performance on the larger data set. The Validation MSE tests the models performance
on a predetermined set of reasonable inputs outside of the training set and OptiCL achieves lower
accurate than this implementation where no parameters have been optimized.

4.2. Discussion
The discussion is split into two part: one part evaluating model specific performance of different taste
constraint implementations and the second part evaluating the implementation of OptiCL.

4.2.1. Model evaluation
While both Linear Regression and Support Vector Regression perform sufficiently well on the model,
Regression Trees grow to be useless due to their accuracy when input is not within areas with dense
training data. This is further supported by the improvement in accuracy found when evaluating increas-
ingly similar data (from solution error, to restricted error, to MSE of the original training data).

Human performance Surprisingly, the patchwork human estimation performs similarly to a Regres-
sion Tree in accuracy, without the need for models training. The respectable performance, despite the
lack of parameter/formula optimization, could stem from a combination of two characteristics. The for-
mulation was created by a human with, like all other humans, years of amateur experience on judging
food. This characteristic leads to a passively pre-trained estimation, regardless of how primitive the
formulation was. The other characteristic is that the formulation does not directly rely on the ingredi-
ents, but the relation of underlying nutritional values: the taste score is corresponded 1 to 1 with the
ratio of calories that originate from sugar. Regardless of the cause of the performance, it highlights the
contribution human interaction to improve Machine Learned models, which could consist of supplying
different input formulations and supplying adequately accurate starting parameters. The validity of this
observation is an area that is suitable for additional research.

4.2.2. Implementation evaluation
While the mathematical background of OptiCL is sound, the results of the tests, along with the imple-
mentation process, highlight some points of improvements for OptiCL as a package. This advice can
be used as implementation policies for any other programs aiming to proved integration of machine
learning into optimization for public use. Before they are discussed, the validity of the OptiCL results
found in this paper is discussed.

4.2.2.1. Validity of OptiCL results.
With regards to the results found in MIOCL, the absolute solution errors found here are in line with
the results in their tests, when accounting for the expected difference by squaring the error instead of

4.2. Discussion 15

taking the absolute error. The difference in accuracy of validation MSEs is due to this paper measuring
the MSE on the entire training set and training it on a 1000 data point sub set. As a result, the two
are non comparable. Lastly the difference in computation time is due to this paper measuring the time
to construct the optimization model, train the ML models, implement the models and finally solve the
optimization model. The time measured in MIOCL, in contrast, only measures computation time to
solve the final optimization model. As a result, the assumption can be made that, with the exception
of Linear Regression, the same version of the program has been used in the measurements and the
measurements are suitably valid.

4.2.2.2. New Implementation Strategies
As discussed, all points of improvements for OptiCL mentioned in the following paragraphs can be used
as design principles for anyone developing packages to integrate ML models into optimization models.
The key takeaways can be split up in the following categories: clarity on input and use, accessibility of
functions and variables, adaptability and goal fulfillment.

Clarity on input and use. While implementing OptiCL into the model, several issues were encoun-
tered on which functions needed to be used to achieve the desired goal. In addition to finding the
correct Python function to call, many of the functions required inputs that had little explanation on what
data types it accepted and how the types should be constructed. The simplest solution to create clarity
on program usage is more documentation.

Accessibility of functions and variables. During the testing phase, the Machine Learned model
was required to test the accuracy of its predictions. The structure of OptiCL, however, did not allow ac-
cess directly to the model, only the coefficients could be extracted. Similarly, several functions contain
sub-functions, which were inaccessible from the user, and had to be called indirectly and inefficiently
through the main function. Both of these issues could solved by either defining all functions inde-
pendently or using an OOP approach with classes, as both allow access to all functions and the
former does not have shared variables while the latter allows shared variables to be accessed.

Adaptability. To the best of our understanding, in order to implement an ML model into an optimiza-
tion problem, OptiCL requires that all steps are taken within the functions supplied by themselves, in-
cluding the final solving of the optimization problem. The rigidity of use necessitated alterations within
the package to accommodate for the requirements of this papers use. Likewise the user can opt to not
save results, however the implementation attempts and fails to access paths to file locations regardless
of the choice made. The path to improving adaptability is more challenging than the previous: all mod-
ules should be creating to work independently and accept and supply common data structures.
Alternatively, new variants of existing modules can be created that provide additional support for those
structures.

Goal fulfillment. Lastly we urge to keep in mind what the goal of the implementation is. OptiCL
contains incongruences that restrain the usefulness of the program. For example, it requires model
training using methods supplied by the package implying start to finish encoding, yet in the manuscript
of OptiCL only measurements of computation time for solving the final optimization model are supplied,
implying a piecewise independent package. When constructing a start to finish package, it is useful
to add the ability to train and encode the ML models and solve the optimization problem in a single
function call. The goal of parameter optimization is to increase accuracy of the ML-model. Inferring
implementation steps from the goal, it is necessary to ensure that the accuracy does indeed increase.

5
Conclusion

The goal of this project was to compare the performance of OptiCL to an independently programmed
implementation, in order to discover implementation strategies for (re)designing packages to fulfill sim-
ilar functions. While the implementation was successful implementing most functions, we were unable
to implement half of the Machine Learning methods and only implemented a simplified version of a
trust region.

During testing, several observation about specific Constraint learning practices were made. The
two main observations were that ML models similar to Regression Trees require strict trust regions and
that additional human interaction could lead to better results, which can be studied further.

Additionally, the following strategies for providing packages to users were provided:

• Increase detail in documentation to improve clarity on use.
• Convert to an Object Oriented Programming approach or define every function independently to
allow users access to useful variables and functions.

• Ensure models are independent and accept industry standard data types to increase adaptability
of the package to more use cases.

• Formulate the goal of package in order to decrease incongruence between goals and package
functionality.

Additional areas that have the possibility for future research and development are:

• Constructing a publicly available implementation for finding higher dimensional convex hulls.
• Finding description methods for Convex Hulls to increase efficiency of constraining an optimizer
to the interior of the hull.

• Finding more best practices for implementing Machine Learning models into optimization prob-
lems, such as the comparatively high benefit found when restricting the Regression Tree in this
implementation.

• Research into the encoding of additional Machine Learnedmodels, beyond those found in MIOCL.

16

References
[1] M. Donato and W. Holly. OptiCL. 2022. URL: https://github.com/hwiberg/OptiCL.git (visited

on 04/11/2022).
[2] M. Donato et al.Mixed-Integer Optimization with Constraint Learning. 2021. DOI: 10.48550/ARXIV.

2111.04469. URL: https://arxiv.org/abs/2111.04469.
[3] A. Siegel. “A parallel algorithm for understanding design spaces and performing convex hull com-

putations”. In: Journal of Computational Mathematics and Data Science 2 (2022), p. 100021. ISSN:
2772-4158. DOI: https://doi.org/10.1016/j.jcmds.2021.100021. URL: https://www.
sciencedirect.com/science/article/pii/S2772415821000110.

17

https://github.com/hwiberg/OptiCL.git
https://doi.org/10.48550/ARXIV.2111.04469
https://doi.org/10.48550/ARXIV.2111.04469
https://arxiv.org/abs/2111.04469
https://doi.org/https://doi.org/10.1016/j.jcmds.2021.100021
https://www.sciencedirect.com/science/article/pii/S2772415821000110
https://www.sciencedirect.com/science/article/pii/S2772415821000110

	Abstract
	Nomenclature
	Introduction
	Requirements
	Implementation
	The Components
	Implementation Details
	The Optimizer
	Machine Learning models
	Trust Region
	Performance Measurement

	Results and Discussions
	Results
	ML method performances

	Discussion
	Model evaluation
	Implementation evaluation

	Conclusion
	References

