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We investigate the effect of the valley degree of freedom on Pauli-spin blockade readout of spin qubits in
silicon. The valley splitting energy sets the singlet-triplet splitting and thereby constrains the detuning range. The
valley phase difference controls the relative strength of the intra- and intervalley tunnel couplings, which, in the
proposed Pauli-spin blockade readout scheme, couple singlets and polarized triplets, respectively. We find that
high conversion fidelity is possible for a wide range of phase differences, while taking into account experimentally
observed valley splittings and tunnel couplings. We also show that the control of the valley splitting together with
the optimization of the readout detuning can compensate the effect of the valley phase difference. To increase
the measurement fidelity and extend the relaxation time we propose a latching protocol that requires a triple
quantum dot and exploits weak long-range tunnel coupling. These opportunities are promising for scaling spin
qubit systems and improving qubit readout fidelity.

DOI: 10.1103/PhysRevB.97.245412

I. INTRODUCTION

The experimental demonstration of high-fidelity quantum
dot qubits with long coherence [1,2] that can be coupled to
perform two-qubit logic gates [3,4] and used to execute small
quantum algorithms [5] has positioned silicon as a promising
platform for large-scale quantum computation. Building upon
these advances, exciting new directions forward have been pro-
posed [6–13] that exploit uniformity [14], robustness against
thermal noise [15], or semiconductor manufacturing [16], and
aim for operation of quantum error correction codes [17] on
qubit arrays.

Despite its promises, silicon poses specific challenges due
to the sixfold degeneracy of its conduction band minimum
in bulk. This degeneracy is lifted close to an interface, and a
gap opens between perpendicular and in-plane valley doublets.
Interfaces and gate electric fields cause coupling either in the
same or different orbital levels. The same-doublet same-orbital
coupling is the so-called valley mixing, while the others are
generally referred to as valley-orbit coupling [18]. Whereas
silicon quantum dots can often be operated in the regime of
vanishingly small valley-orbit coupling [19–21], valley mixing
cannot be neglected. It has been shown [21–23] that this does
not lead to a direct splitting between the bulk valleys, but the
coupling gives rise to a valley splitting between the valley
eigenstates. As a consequence, the valley mixing is determined
by two parameters only [24]: its phase, the valley phase, and
its modulus, the valley splitting. Typical valley splittings range
from tens of μeV to about 1 meV [1,25–28] and introduce
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new challenges for spin qubits defined in silicon quantum
dots. Despite them, it has been shown that universal quantum
computation with spin qubits is still possible [29]. On the
contrary, consequences of the valley phase have been studied
only in limited research, but found to be significant in valley
qubits [30] and donors close to an interface [31], while they
strongly influence the exchange interaction [32]. A crucial
question is therefore how much the valley mixing impacts
quantum computation with spins in silicon quantum dots in
the general case of non-negligible valley nonpreserving tunnel
coupling.

Here, we investigate its effect on readout, now one of the
most challenging operations for spin qubits. We concentrate on
Pauli-spin blockade readout and show that high spin-to-charge
conversion fidelity is achievable in a wide parameter range.
This readout technique is considered in large-scale quantum
computation proposals [14–16] since it requires few electron
reservoirs and is compatible with moderate magnetic fields
[33,34]. However, in standard Pauli-spin blockade schemes
the readout time is limited due to spin relaxation [35–37].
Moreover, usually two spin states are projected on charge states
with different electric dipoles, leading to a readout fidelity
smaller than the conversion fidelity [38,39]. A possible solution
is to exploit latching mechanisms in the pulsing scheme,
locking the charge in a long-lived metastable state [40–42]. The
final states now have a different number of electrons, improving
the readout fidelity [39]. Here we overcome these limitations
and propose a protocol based on a triple quantum dot, removing
the need of an external reservoir.

This work is organized as follows. In Sec. II, we intro-
duce the model describing a multivalley two-electron double
quantum dot and discuss Pauli-spin blockade readout. In
Sec. III, we investigate how the valley phase difference and
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FIG. 1. (a) Spin-valley single-particle energy levels of a silicon
double quantum dot. The valley ground states are shown in red,
while the excited valley states, separated by the dot-dependent
valley splitting EL(R)

v , are in blue. A dot- and valley-dependent
Zeeman energy (e.g., E

L,−
Z ) splits the spin states. The constant-

color arrows represent the intravalley tunnel coupling t±±, while
intervalley coupling t±∓ arrows have a color gradient. (b) Top:
Cross section of a schematic device. The confinement gate (C)
defines the dots, plunger gates (G) accumulate the electrons and
control the out-of-plane electric field, while the barrier gates (B)
tune the tunnel coupling t . Bottom: Schematic stability diagram of
a double quantum dot. Green and orange lines mark the dot-lead
transitions. Interdot intervalley tunneling occurs along the dashed
line, separated from the ground state line by the right dot valley
splitting ER

v .

splitting energy impact the spin-to-charge conversion fidelity.
We identify the conditions that enable conversion fidelities
beyond 99.9%. A triple quantum dot scheme combining Pauli-
spin blockade with long-lived charge states is proposed and
studied in Sec. IV. We discuss the conclusions and opportuni-
ties in Sec. V.

II. MODEL

A. Silicon double quantum dot Hamiltonian

The model developed in this section can be generalized to
other doubly occupied multivalley double quantum dots, but
here we restrict the discussion to quantum dots at the Si/SiO2
interface. We define the left and right quantum dots as target
and ancilla qubits, respectively. We consider ten single-particle
spin-valley states: the four lowest orbital spin-valley states of
each dot shown in Fig. 1(a) and the two lowest valley states in
the first excited orbital of the ancilla qubit, needed to build the
same-valley triplet states of the doubly occupied ancilla qubit.
As shown in Fig. 1(b), the double dot is tuned by means of two
plunger gates (G), controlling the energy levels, and two barrier
gates (B), setting the interdot tunnel coupling. Furthermore
we assume a valley splitting energy Ev = [10 μeV, 1 meV]
and an orbital splitting energy close to 10 meV, consistent
with experimentally measured values [1,26,27]. The order of
magnitude larger orbital splitting, together with operation at a
small magnetic field, justifies the assumption of a negligibly
small valley-orbit coupling and pure valley mixing [18,19,21].

Each dot is described by the Hamiltonian Hd
0 = Hd

v +
Hd

Z + δd,RHR
o , where d = L,R is the dot label, Hd

v describes
the valley spectrum of the dot, Hd

Z the Zeeman splitting, and

HR
o the orbital levels of the right dot (δd,R is the Kronecker

delta). In particular,

Hd
v = Ed

v

∑
v=−,+

δv,+
∑
o=0,1
σ=↓,↑

c
†
d,o,

v,σ

c d,o,

v,σ
, (1)

Hd
Z = 1

2

∑
o=0,1
v=−,+

E
d,v
Z

(
c
†
d,o,

v,↑
c d,o,

v,↑
− c

†
d,o,

v,↓
c d,o,

v,↓

)
, (2)

HR
o = ER

o

∑
o=0,1

δo,1

∑
v=−,+
σ=↓,↑

c
†
R,o,

v,σ

c R,o,

v,σ
, (3)

where o,v, and σ are the orbital, valley, and spin labels, respec-
tively. The Zeeman splitting is defined as E

d,v
Z = gd,vμBBd .

In general the g factor is valley and dot dependent due to
spin-orbit coupling [43,44]. Here we assume a vanishingly
small spin-orbit coupling [45–47] arising from a magnetic field
applied along one of the minimizing directions. This assump-
tion is further warranted by the possibility of low magnetic field
operation when using Pauli-spin blockade readout (low-field
operation has several other advantages; see Refs. [14,15]).
In this range, finite δEv

Z = E
R,v
Z − E

L,v
Z can be realized via

nanomagnets, and we restrict ourselves to the case E
R,v
Z >

E
L,v
Z . Hv describes the splitting between the valley eigenstates

due to the mixing of the k±z bulk valleys induced by the Si/SiO2
interface and the electric field [23,48,49] (see Appendix A). We
consider dot-dependent valley splittings [25] due to interface
effects and local variations in electric field [19]. The valley
coupling is �v ≡ Eve

iφD , whose modulus is the valley splitting
energy and whose phase is the valley phase (i.e., the phase of the
fast Bloch oscillations of the wave function) [50,51]. The valley
eigenstates are of the form D± = (1/

√
2)(Dz ± eiφDD−z),

where D±z = L±z,R±z are the bulk ±z valleys wave functions
of the quantum dots [23,49].

The two-electron double-dot Hamiltonian reads

H2e = H0 + Hε + HC + Ht. (4)

Here H0 describes two noninteracting quantum dots. Hε is
the detuning term, describing the gate-controlled shift ε of the
ancilla qubit energy levels with respect to those of the target
qubit. Referring to Fig. 1(b), this corresponds to increasing
the voltage on G3. The third term HC accounts for the effect
of the Coulomb potential Vee. For the system considered here
and within the Hund-Mulliken approximation, the Coulomb
exchange integral j = 〈LzR±z| Vee |RzL±z〉 and the valley
exchange integral jv = 〈D∓zD±z| Vee |D±zD∓z〉 are negligible
[22,52,53]. Theoretical works have estimated j ≈ 1 μeV for
30 nm separated dots [54] and jv 
 1 μeV [22]. The on-site re-
pulsion in the ancilla (right) dot UR

o = 〈RvRv(v̄)| Vee |RvRv(v̄)〉,
or charging energy, is assumed to be a few tens of meV
[26,27]. In the Pauli-spin blockade readout scheme only the
ancilla qubit can be doubly occupied; thus the (2,0) states are
neglected and hence terms of the form 〈LL| Vee |LL〉 do not
appear in HC . The remaining two Coulomb integrals do not
appear explicitly in HC since the direct Coulomb interaction
k = 〈LzR±z| Vee |LzR±z〉 is an offset, while the Coulomb
interaction enhancement terms s = 〈R±zRz| Vee |L±zRz〉 are
part of the tunnel coupling t . It holds that t = t0 + s, where t0 =
〈Rz| H0 |Lz〉. The last term in H2e is the tunnel Hamiltonian
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expressing the hopping of one electron between the two dots.
The different terms of the Hamiltonian are

H0 =
∑

d=L,R

Hd
0 , (5)

Hε = −ε
∑

o = 0,1
v = −,+
σ =↓ , ↑

c
†
R,o,

v,σ

cR,o,

v,σ

, (6)

HC =
∑
o=0,1

UR
o

∑
o′ = 0,1

σ,σ ′ =↓ , ↑
v,v′ = −,+

nR,o,

v,σ

nR,o′,
v′,σ ′

, (7)

Ht =
∑
v,v′
o,o′
σ

tvv′c
†
R,o,

v,σ

c L,o′ ,
v′ ,σ

∏
r=vR ,σR,oR

R=S,V,O

(−1)δr,ESδR,0 + H.c., (8)

where n is the number operator, σR,vR , and oR are the spin,
valley, and orbital indexes of the right electron, and S,V,O

are the spin, valley, and orbital numbers of the two-electron
state. The label ES stands for the excited state of the quantum
number expressed by r . The condition S(V,O) = 0 means that
the spin (valley or orbital) part of the 2-electron wave function
is a spin singlet (valley or orbital) built from the single-particle
states. t±± and t±∓ are the intravalley and intervalley tunnel
couplings, respectively [22,55,56]. The first(second) coupling
allows for tunneling between valley eigenstates of the same
(different) form. We note that both terms prevent tunneling
between states that have a different bulk valley index [49]. It
holds [22] that t±± = t

2 [1 + e−i�φ] and t±∓ = t
2 [1 − e−i�φ],

where �φ = φL − φR is the valley phase difference. The exact
value of �φ depends strongly on microscopic origins such as
the interface roughness and the height difference between the
dots. For instance, sinceφ = 2k0d, whered is the distance from
the interface, even a single terrace step (d = a0/4) leads to a
quite large phase difference [23] φ ≈ 0.84π . In the case of a
negligibly small height difference and a flat interface the valley
mixing is the same and the valley eigenstates have the same
valley composition. In practice, however, typical quantum dots
have an orbital spacing on the order of 10 meV, corresponding
to a dot size of around 10 nm, which is comparable to the
correlation length range (few to hundreds of nm) reported
for the Si/SiO2 interface [32]. As such, we expect different
quantum dots to have different valley compositions.

B. Two-electron energy levels

Having considered 10 single-particle spin-valley states, the
Hamiltonian H2e is expressed on a 26-state basis. These are
the 22 lower orbital states and four (0,2) states describing
the same-valley double occupancy of the ancilla qubit. How-
ever, these same-valley double-occupancy states contribute
significantly to the eigenstates only at high detuning (i.e.,
ε � UR + ER

o ) and we neglect therefore higher-energy (0,2)
states. The basis states are tensor products [49,57] of the form
|(σL,σR)〉 |ψV 〉 |ψO〉 and |χS〉 |ψV 〉 |ψO〉 for the (1,1) and (0,2)
charge configurations. Here |χS〉 is the two-spin wave function
while |ψV 〉 and |ψO〉 are the symmetrized two-particle valley
and orbital functions. For simplicity, from here on the orbital

part is dropped, while we label the (0,2) states as S
v,v′
(0,2), T

v,v′
0,(0,2),

or T
v,v′
±,(0,2).

In this work, we consider the case when ER
v � EL

v > E
R,L
Z

and, as shown in Fig. 2(a), three branches separated by the
valley splitting emerge [49]: in the lowest (−−) and highest
(++) branch the two electrons have the same valley number,
while in the middle branch they are opposite (±∓). The (1,1)
same-valley branches consist of four states each, while in the
(0,2) configuration these same states include only the spin
singlet state, because of the Pauli exclusion principle. The
different-valley branch includes eight levels when in the (1,1)
and four states in the (0,2) charge states. The difference in Zee-
man energy sets the energy splitting between the antiparallel
spin states in the three branches. A small difference in valley
splitting energy splits the (+−) and (−+) states, as shown
in Fig. 2(a). The control of �φ allows to select the nature
of interdot tunneling, ranging from intra- to intervalley-only
tunneling, as shown in Fig. 2(b). In particular, for �φ = 0 the
|↓,↓〉 states are uncoupled from the (0,2) charge states in the
lowest orbital and the blocked region extends to the orbital
spacing energy.

C. Two-dot Pauli-spin blockade readout

At negative detuning (i.e., ε 
 UR), the two lowest eigen-
states can be approximated with the basis states |↓,↓〉 |−−〉
and |↑,↓〉 |−−〉. Differing only in the spin orientation of the
target qubit, these states are hereafter used as initial states of
the Pauli-spin blockade readout protocol and their valley label
is dropped.

As shown in Fig. 2(c), Pauli-spin blockade readout consists
of a spin-to-charge conversion. At the beginning of the readout
protocol, the ancilla qubit is in the ground state while the
target qubit can be either spin up or spin down. The readout
pulse detunes the double quantum dot beyond the intravalley
anticrossing and inside the blocked region (UR < εf < UR +
ER

v − E
R,−
Z ), the brown region in Fig. 2(c). As shown in

Fig. 2(d), if the two spins are initially antiparallel [blue level in
Fig. 2(c)] the final state will be the singlet S−−

(0,2) (green level);
otherwise, the system will remain blocked in |↓,↓〉 (red level)
until it relaxes via a spin flip. Experimentally, the final state can
be probed either by charge sensing [33,34] or by gate-based
dispersive rf readout [58]. However, these techniques require
slightly different pulses. The former detects differences in the
electric field due to a difference in the charge configuration,
while the latter probes the level mixing via the quantum
capacitance [59]. The highest fidelities are obtained far from
or close to the intravalley anticrossing [60], respectively.

Here we consider 1 μs long linear adiabatic pulses con-
ceived for charge sensing. (See Appendix B for details on
pulse adiabaticity.) We note that shaped pulses could improve
speed and performance (see Ref. [14] and therein references),
although in arrays operated by shared control linear pulses
could be required [14]. The duration is chosen as a trade-off
between fast pulses and adiabaticity. The conversion fidelity F

is defined as the probability that |↑,↓〉 evolves to a (0,2) state
while |↓,↓〉 remains in a (1,1) state. Since at the beginning of
the readout protocol the system is in either of the two lowest-
lying eigenstates with the same probability, the conversion
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FIG. 2. (a) Energy levels of a multivalley double quantum dot with Ev > EZ . We distinguish three separate branches of energy states: the
valley ground states (red), the valley excited states (blue), and the valley mixed states (light blue and red). The difference in valley splitting causes
the splitting between the (+,−) and (−,+) subbranches. The simulation parameters were UR

o = 30 meV, t = 1.5 GHz, �φ = π/2, ER(L)
v = 105

(100) μeV, ER
o = 10 meV, and E

R(L),−
Z = 28.65 (28.5) μeV. The two-spin states have a similar order for the three branches and are shown

for the lowest branch only. (b) Zoom-in at the intravalley anticrossing. Increasing the phase difference from 0 to π changes the tunneling from
pure intravalley to pure intervalley. The light brown rectangle highlights the high-fidelity detuning range. (c) Schematic of Pauli-spin blockade
readout sequence. The states used in the readout protocol are shown with the same colors as in (d). The double quantum dot is initialized either
in |↑,↓〉 (in blue) or |↓,↓〉 (in red). The detuning is consequently changed linearly with an adiabatic pulse. Here ER(L)

v = 300 (305) μeV and
δE−

Z = 20.7 neV. (d) Results of time evolution simulations, using the same parameters as in (c). Inside the high-fidelity region F is higher than
99.9%. The oscillations at negative detuning in the top panel are the fingerprint of a singlet (1,1). The pulse starts at the symmetry point and
the pulse duration is set to achieve a high degree of adiabaticity (see Appendix B for more details).

fidelity is the weighted sum of F|↑,↓〉→(0,2) and F|↓,↓〉→(1,1):

F = F|↑,↓〉→(0,2) + F|↓,↓〉→(1,1)

2

= 1

2

[ ∑
a∈(0,2)

|〈a|f 〉|2 +
∑

b∈(1,1)

|〈b|f ′〉|2
]
, (9)

where f and f ′ are the two final states calculated from the time
evolution of the two lowest-lying eigenstates |↑,↓〉 and |↓,↓〉,
respectively.

From Eq. (9) it can be seen that the ultimate limit to the
readout fidelity is set by the final state composition, which
depends on the valley phase difference. Even a perfectly
adiabatic pulse results in F < 1 if the final state f ′ has a
non-negligible contribution from T +−

−,(0,2) [see Fig. 2(a)].
We recall that we have assumed negligible spin-orbit cou-

pling. Contrarily to bulk silicon, in quantum dots defined at
the Si/SiO2 interface it can be non-negligible. The structural
inversion asymmetry leads to a Rashba spin-orbit coupling,
while the dominant Dresselhaus [47] arises from the interface
inversion asymmetry [61–63]. The spin-orbit coupling strength
depends, apart from the magnetic field orientation, on the
vertical electric field, valley composition, and microscopic
properties of the interface [44]. In actual devices it causes
g-factor variability [45], valley dependency [43,46], and mix-
ing between antiparallel and parallel spin states [64]. As a
consequence, when including the spin-orbit Hamiltonian in
H2e, anticrossings between S−−

(0,2) and the polarized triplets
emerge [38,44]. Further, such mixing would reduce F even
for adiabatic pulses. The shape of the pulse used for Pauli-spin
blockade readout has to be modified accordingly, i.e., a two-
speed linear pulse, to allow for a diabatic crossing of the S-T −
anticrossing [65]. Therefore our assumption of negligible

spin-orbit coupling ensures that our results demonstrating the
impact of the valley phase are not obscured by spin-orbit
effects.

III. RESULTS

From previous considerations, it emerges that the larger
ER

v the greater F . In general, ER
v can be tuned via a vertical

electric field [1,19,48]. In the device shown in Fig. 1(b), valley
splitting can be controlled via the combined tuning of G3 and
confinement gate C.

In Fig. 3 we show how the phase difference impacts on F for
different valley splittings (here ER

v = EL
v ). Whenever ER

v >

E
R,L
Z /2, F > 80% can be reached; in general we find a fidelity

higher than 90% for Ev � 40t . For a fixed valley splitting,
the phase dependence of F is nonmonotonic, as visible for
small splittings (Ev < 30 μeV). At low �φ the fidelity is high
because the intervalley anticrossing is very narrow and the
two final states have different charge configurations over a
large detuning range. The minimum at �φ ≈ π

2 arises from
the opposite phase dependence of t±± and t±∓. Here a higher
ER

v is needed to realize a large energy separation between the
two anticrossings in order to reach the same fidelity (see 90%
contour line in Fig. 3). For �φ > π

2 the fidelity increases with
increasing phase, since the increasing intervalley coupling is
compensated by the smaller detuning needed for the |↑,↓〉 to
evolve to S−−

(0,2) (see Fig. 4). The decrease in F at high �φ is due
to the increase in the pulse diabaticity. The conversion fidelity
in the adiabatic case shows that a fidelity higher than 90% can
be reached even for �φ ≈ π , as highlighted by the dotted red
lines in Fig. 3, although it requires an impractical slow pulsing
rate.
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FIG. 3. Fidelity obtained by pulsing from ε = UR − 1 meV to
UR + ER

v in 1 μs with �t = 1 ps, t = 1.5 GHz, and δE−
Z = 5 MHz,

for a range of experimentally achieved valley splitting energies (here
ER

v = EL
v ). Contour lines are shown in white. The decrease in F

for �φ approaching π (i.e., t±± → 0) is caused by an increase in
diabaticity, due to the constant pulse duration, absent in adiabatic
evolution (red). For each point of the map, we have plotted the
maximum achievable fidelity by taking the optimal detuning.

Properly tuning the readout position given a random phase
difference is beneficial and enables reaching the 99% fidelity
threshold in a very large range of valley splittings and phase
differences. The optimal readout point shifts with �φ reflect-
ing the state composition. As shown by the dots in Fig. 4, for
a small phase difference it is convenient to read out close to
the intervalley anticrossing, while for a large difference the
pulse should end slightly beyond the intravalley anticrossing.
In particular, the maximum fidelity is reached, as expected, for
�φ = 0 and ε = ER

v while a minimum arises at �φ = π/2.
In Fig. 4 the fidelity is higher than 90% except where the
level mixing is strong (e.g., ε ∼ 0 and �φ ∼ 0 or ε ∼ ER

v

and �φ ∼ π ), but there are two separate regions where F >

99.9%, because ER
v /t ∼ 50.

However, when aiming at F > 99% or higher, the con-
trol of the ancilla qubit valley splitting enables over-
coming the low-fidelity region at intermediate �φ. The
two 99.9% regions merge for ER

v /t ∼ 54; e.g., when t =
1.5 GHz a valley splitting of at least 0.36 meV is re-
quired. Figure 5 shows that for experimentally obtained
valley splitting high fidelity can be achieved for a quite
large range of tunnel coupling t . For a valley splitting
of 0.1 meV and considering perfect adiabatic pulses, a
fidelity beyond 99.9% can be reached for t � 500 MHz
and 0 � �φ � 0.7π . When the valley splitting is slightly
larger, i.e., 300 μeV, the same fidelity can be achieved for
t < 1.5 GHz. When the valley splitting is 700 μeV, a fidelity
of 99% can be reached when t < 5 GHz and a fidelity of 99.9%
requires t < 3 GHz. Moreover, Fig. 5 shows that t could be
used as an additional knob to improve the fidelity, in the case
of limited control of the valley splitting.

FIG. 4. Fidelity obtained by time evolution simulations (color
map with white contour lines) and perfectly adiabatic pulses (red).
The difference between the detuning position of maximum fidelity
obtained from time evolution simulations (dots) and adiabatic pulses
(dashed line) is due to the finite speed of the pulse. As a consequence
of the chosen parameters (e.g., δE−

Z = 5 MHz, ER
v = 300 μeV,

t = 1.5 GHz, and pulsing from UR − 2ER
v to UR + 2ER

v ) a gap where
F < 99.9% opens for intermediate �φ. The maximum fidelity has a
nonmonotonic dependence on �φ, visualized here by the color map of
the dots; a minimum is observed at π/2 (light green), a local maximum
at π (blue), and the maximum at 0 (dark blue).

IV. TRIPLE-DOT READOUT PROTOCOL

Experimental works on Pauli-spin blockade in silicon quan-
tum dots show readout fidelity significantly lower than the
conversion fidelities reported here [38,39,42]. This reduction is

FIG. 5. Fidelity obtained by time evolution simulations (color
map with white contour lines) and adiabatic pulses (red). A realistic
value of 0.3 meV enables reaching F > 99% for t up to 4.5 GHz
in a wide range of phase differences (here up to �φ = 0.8π ). The
reduction in fidelity at low t is caused by higher diabaticity of the
pulse. In the top right panel it prevents reaching F > 99.9%. As in
Fig. 4 δE−

Z = 5 MHz and the pulse extremes are UR ± 2ER
v .
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FIG. 6. (a) Schematic of a triple-dot device with negligibly weak
long-range coupling. (b) Left panel: Hysteretic stability diagram of
a tripled quantum dot with the readout pulse scheme. The first step
[from (I) to (II)] is a standard double-quantum-dot Pauli-spin blockade
readout pulse. In the second step [from (II) to (III)], charge moves
from the target to the left ancilla qubit only if the target qubit is
initially spin blocked (III′). Transitions between nearest-neighboring
dots are denoted by two-color interdot transition lines. The edges
of the hysteresis regions are marked by three-color lines. The line
color reflects the involved dots. Right panels: Energy level diagrams
showing the triple-dot occupation at (I), (II), (III), and (III′) positions
depending on the initial spin state. (c) Left panel: The readout is
performed by oscillating the middle and left dot energy levels forcing
the system to oscillates between the (1,0,1) and (0,1,1) charge states.
Right panel: The charge state mixing leads to a capacitive term
measured via rf gate-based dispersive readout. For simplicity, the
charge occupation of the right dot is dropped since it remains constant.

predominantly due to the small sensitivity of the charge sensor
to variations in the electric dipole caused by a difference in
the charge position. Therefore protocols involving metastable
states [38–40,42] have been proposed. Typically, after project-
ing the initial states onto a singlet (0,2) or a triplet (1,1), the
system is pulsed deep in the (0,2) region, past an excited charge
state. While the singlet (0,2) is still the ground state, the triplet
(1,1) relaxes (i.e., an electron tunnels from or to an electron
reservoir) to the excited charge state. Coulomb blockade leads
consequently to a long charge relaxation time. The variation
in the sensor signal induced by a different number of electrons
trapped in the double quantum dot is typically larger by a factor
1.4–4 and fidelities approaching 99.9% have been reported
[38,39]. Furthermore, such latching mechanisms allow for
delayed readout, splitting the spin-to-charge conversion from
the actual readout process, which can be beneficial when
scaling to large qubit arrays [14,16].

Here we replace the reservoir used in recent experimental
works [38–40,42] with a third dot (L′) added to the left side of
the double dot considered in the previous sections, providing
clear benefits in scalability. In the following we consider that
the triple dot is loaded with two electrons at the beginning of
the protocol and then the coupling to the electron reservoir
is switched off. The triple dot is controlled by two “virtual”
gates GL and GR , which are linear combinations of the B
and G gates shown in Fig. 6(a). In particular, defining μd the

chemical potential of the dot d, we assume that μL′ is kept to a
reference level and that GL shifts only μL. On the other hand,
GR is mainly coupled to μR , but controls also μL. The interdot
transition lines with a positive (negative) slope in Fig. 6(b)
correspond to μL′(R) = μL. We assume negligible long-range
tunnel coupling tRL′

between the two outer ancilla qubits [see
Fig. 6(a), right panel]. This condition results in a stability
diagram similar to the case of hysteretic double quantum dots
[66]. The transition lines arising from direct tunneling between
the ancilla qubits R and L′ [e.g., the one between (1,0,1) and
(0,0,2)] are hysteretic and depend on the sweeping direction
of the gate GR . When tRL′ �= 0 the condition μL′ = μR leads
to electron transfer. The corresponding transition lines appear
vertical in a stability diagram and are independent from GL.
However, when tRL′ = 0, tunneling can only occur when
μL′(R) � μL � μR(L′) [39,66]. For increasing voltage GR an
electron can be transferred to R from L′ when μL′ = μL � μR .
Consequently, the lines have a negative slope. For decreasing
GR , transfer occurs when μR = μL � μL′ and the slopes have
positive slope, as in Fig. 6(b).

The pulse protocol starts in a (0,1,1) charge configuration,
position (I) in Fig. 6(b). Here μL′(1) > μL(1),μR(1). The
system is detuned inside the (0,0,2) spin-blocked window to
position (II) where μL′(1),μR(2)T− > μL(1) > μR(2)S . Here
we assume that �φ, t , ε, and ER

v are optimized accordingly
to the previous sections to allow for high conversion fidelity.
The initial state (0,↑,↓) is then converted to a (0,0,2) charge
state, while (0,↓,↓) remains blocked in a (0,1,1) configuration.
GL and GR are then lowered together, raising the chemical
potentials μR and μL.

The detuning direction is parallel to the (0,1,1) ↔ (0,0,2)
charge transition line so that μR(2)S < μL(1) and their relative
offset is kept constant. The pulse ends in the hysteretic (0,0,2)
region at position (III) where μL′(1) < μR(2)S < μL(1), i.e.,
past the extension of the (0,1,1) ↔ (1,0,1) transition line.
The short-range coupling enables spin-to-charge conversion
and charge shelving. If the separated spins were antiparallel,
the S(0,0,2) will remain in the same charge configuration. This
holds even for μL′(1) < μR(2)S < μL(1), since no electrons
can tunneling when tRL′ = 0. Parallel spins, however, remain
in the (0,1,1) charge configuration. In that case, when μL′ (1) =
μL(1) an electron is transferred between L and L′. As a
consequence, (0,↓,↓) and (0,↑,↓) evolve to (1,0,1) and (0,0,2),
respectively. The negligible long-range tunnel coupling ex-
tends the spin flip relaxation time to a charge relaxation time,
determined by cotunneling.

The next step of the protocol is the actual readout [Fig. 6(c)].
First the tunnel coupling tLR is completely switched off. The
two possible final states of the L′L double dot are (0,0) and
(1,0), if at the beginning of the pulse the two spins were, respec-
tively, antiparallel or parallel. Now rf gate-based dispersive
readout can be used. The presence or absence of an electron
in the L′L double dot can be translated with high fidelity to
the spin state of the target qubit. We note that in the case of
limited control of tLR this scheme can still be implemented,
since the rf tone is applied such that the system oscillates
between (1,0,1) and (0,1,1). Importantly, the possibility to
doubly occupy the left ancilla qubit softens the experimen-
tally demanding requirements of the triple donor scheme
of Ref. [67].
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V. CONCLUSIONS

In summary, we have investigated the impact of an uncon-
trolled valley phase difference on the conversion fidelity of
Pauli-spin blockade readout. The damping effect of the phase
can be mitigated by the control of the valley splitting of the
ancilla qubit. In particular, we have shown that the control of
the valley splitting energy together with the optimization of
the readout position is sufficient to overcome randomness
of the valley phase difference, even when the control of the
tunnel coupling is limited and t assumes realistic values. For
ER

v > 0.3 meV a fidelity higher than 99.9% can be reached
for t < 2 GHz, as long as evolution is adiabatic with respect
to the intravalley anticrossing. In addition, we have proposed
a protocol based on an isolated triple quantum dot to extend
the Pauli-spin blockade readout measurement time by orders
of magnitude, significantly improving readout fidelity.

Our results show that the randomness of the valley phase
difference can potentially lower the readout fidelity. However,
the experimentally demonstrated control of valley splitting and
fine tuning of the detuning can overcome such variability. The
extended relaxation time obtainable in a triple-dot protocol
makes Pauli spin blockade thereby an excellent method to be
integrated in large-scale spin qubit systems.
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APPENDIX A: VALLEY MIXING HAMILTONIAN

Although the valley degree of freedom can be regarded as a
pseudospin, there are some differences between the case of sil-
icon bulk valleys and a single spin in a magnetic field. The gen-
eral Hamiltonian of a spin-1/2 in a magnetic field has three pa-
rameters, i.e., the three components of the magnetic fields, and
the mixing perturbation is fully described by two angles and the
magnitude. The particular case of the silicon z bulk valleys can
be derived from the general case by setting the z component of
the (effective) magnetic field (diagonal terms of the Hamilto-
nian) to zero. As demonstrated by early works on valley physics
in silicon [21–23], the sixfold degeneracy of the conduction
band is first split by confinement, which lifts the x and y valleys
leaving the degeneracy between the z and −z bulk (or bare)
valleys. The remaining degeneracy is lifted by the electric field
in the z direction and the interface (and a small contribution
from the magnetic field). This perturbation (Vv) has the same
effect on the two ±z valleys. The valley mixing Hamiltonian
written in the basis spanned by the bulk valley states has equal
diagonal terms, i.e., 〈Dz|Vv|Dz〉 = 〈D−z|Vv|D−z〉 = 
. The
effective valley Hamiltonian thus reads

Hv =
[


 �v

�∗
v 


]
. (A1)

As a result, the offset 
 can be extracted and included in
the orbital energy and the mixing of the bulk valleys is fully
described by the complex number �v [32]. By rewriting Hv in
the eigenstate basis (D±) Eq. (1) of the main text is obtained.

APPENDIX B: ADIABATICITY THRESHOLD

In this Appendix we discuss the adiabaticity condition
for a linear pulse. For two-level systems a detailed theory
has been developed and the Landau-Zener formula [68,69]
p = exp(−4π2t2/hv) links the speed v of a linear pulse to the
probability p of a diabatic transition between the eigenstates
of the system. In the case of a multilevel system an analytical
equation exists for the simple case of three-state ladder systems
[70,71], where two states are differently coupled to a third state
and which successfully describes coherent adiabatic passage
[72] or stimulated Raman adiabatic passage [73].

Here we consider the three-level system described by the
Hamiltonian

H3L =

⎡
⎢⎣

−δE−
Z /2 0 t−−

0 δE−
Z /2 −t−−

t∗−− −t∗−− UR
o − ε

⎤
⎥⎦ (B1)

written on the basis [|↑,↓〉, |↓,↑〉, S(0,2)]. It approximates
the 26-level system considered in the main close to the
lowest valley branch intravalley anticrossing (ε ∼ UR). Each
of the three eigenstates �1,2,3 of H3L undergoes an adiabatic
evolution when the criterion [74]∣∣∣∣α

max
i

ωmin
i

∣∣∣∣
2


 1 (B2)

is satisfied. Here ωmin
i is the minimum energy difference

between the ith eigenstate and the closest neighbor, while αmax
i

can be seen as the maximum “angular velocity” [74] of the state
�i since it is defined as

|αi(t)|2 =
∑
j �=i

|αij (t)|2 =
∑
j �=i

| 〈�̇i(t)|�j (t)〉 |2. (B3)

It has been shown (Ref. [74] for more details) that the total
diabatic probability pi during the time evolution of the ith
eigenstate satisfies

pi � max

⎛
⎝∑

j �=i

∣∣∣∣αij (t)

ωij (t)

∣∣∣∣
2
⎞
⎠ < pmax

i =
∣∣∣∣α

max
i

ωmin
i

∣∣∣∣
2

. (B4)

From Eq. (B4) the dependency of pi on the pulse speed can be
obtained. Since for a linear pulse the speed v = ε̇ is constant
we can rewrite �̇i(t) as �̇i(t) = ∂�(t)

∂ε
v. An upper bound to the

diabaticity probability is obtained by converting the inequality
in Eq. (B4) to

pi = v2max

⎛
⎝∑

j �=i

∣∣∣∣ α̃ij (t)

ωij (t)

∣∣∣∣
2
⎞
⎠, (B5)

where α̃ij (t) is the speed-normalized “angular velocity”. Equa-
tion (B5) can be used as a lower bound for the speed to obtain
a defined pi .

In Fig. 7(a) α̃1 is plotted, as well as the two contributions
α̃12 and α̃13, as a function of the detuning. At negative detuning
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the dominant term is α̃12 meaning that the Zeeman energy
difference sets the adiabaticity condition, while α̃13 better
describes the system around zero detuning. For the particular
case shown in Fig. 7 of t−− = 1.5 GHz and δEZ = 10 MHz
the peak at zero detuning is lower than the one related
to the Zeeman energy difference. In such a scenario, it is
possible to adiabatically pulse from S(0,2) to |↑,↓〉, defining the
adiabaticity with respect to the tunnel coupling only, given a
large detuning range and a small p1. For higher tunnel coupling
the zero-detuning peak becomes dominant and the two-level
approximation becomes more accurate.

Equation (B5) can be used to set the speed of a Pauli-spin
blockade pulse in such a way that pulses with different t

satisfy the same adiabaticity condition. The function to be
maximized on the right-hand side of Eq. (B5) can be viewed as
a “local” speed since it is a function of time and thus detuning.
As shown in Fig. 7(b), it has the same trend as α̃1 and can
be analogously split into two contributions. While the speed
obtained from Eq. (B5) corresponds to the global minimum
of the “local” speed, the global speed calculated from pmax

i is
orders of magnitude smaller. Since pmax

i is an upper bound,
using this definition will make the pulses much slower than
what is required, and the use of pi allows for faster pulses. The
fidelity of a |↑,↓〉 → S(0,2) pulse is limited by the adiabaticity
of the charge transition; therefore the higher the adiabaticity the
higher the fidelity. In general, the global speed derived using
the Landau-Zener formula for p = 0.1% would result in a
fidelity approaching 99.9%, while setting pi = 0.2 in Eq. (B5)
or replacing t with t/2 in the Landau-Zener formula allows for
fidelity higher than 99.9%.

In the time evolution shown in Fig. 2(d) a linear pulse from
ε = 0 to ε = UR + 2ER

v , with the pi = 0.2 approximation,
was used.

FIG. 7. (a) The speed-normalized “angular velocity” α̃1 of the
ground state as a function of the detuning. At negative detuning
it reduces to α̃12, while at positive to α̃13. Here t = 1.5 GHz,
δEZ = 10 MHz, and �φ = 0. The peak at the anticrossing corre-
sponds to the contribution of a pure two-level system, while the broad
peak is due to the fact that |↑,↓〉 and |↓,↑〉 are coupled to each other
only via the singlet (0,2). (b) The “99.9% adiabatic probability” local
speed as a function of detuning. The lower and upper horizontal lines
are the global speed obtained using Eq. (B2) and the Landau-Zener
formula, respectively. The middle one stems from the global 99.8%
probability speed.
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