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Abstract
This research paper aims to investigate the effect of
entropy while training the agent on the robustness
of the agent. This is important because robustness
is defined as the agent’s adaptability to different en-
vironments. A self-driving car should adapt to ev-
ery environment that it is being used in since a mis-
take could cost someone’s life. Therefore, robust-
ness is of great importance in self-driving cars. An
increase in entropy would promote the exploration
of different strategies and prevent convergence on
local maximum results. In order to test entropy val-
ues in training, the Soft-Actor Critic algorithm is
used. The algorithm is run on a simulated city en-
vironment called Carla. In the end, collected data
shows that the agent which is trained with a higher
entropy value adapts to environments it did not train
on better than the low entropy agent. However, a
low entropy agent performs better in the environ-
ment it is trained in. Therefore, increasing the en-
tropy increases robustness but it lowers the perfor-
mance in the training environment itself.

1 Introduction
Autonomous driving is a big point of interest for many car
manufacturers and researchers. The ease it provides to hu-
mans and allowing quick responses that humans would not be
able to perform is a big advantage and reason for it to be re-
searched. Even though it provides such benefits, implement-
ing self-driving car technology without making sure it works
in all environments imaginable could result in catastrophic
scenarios such as car crashes. In order to prevent this, agents
can be trained using Deep Reinforcement Learning methods.

Deep Reinforcement Learning methods are an extension
of Reinforcement learning methods and use deep neural net-
works (neural networks with multiple layers) in order to de-
cide upon an action. Simple Deep Reinforcement Learning
approaches tend to perform poorly when the environment
changes. This makes them undesirable to train self-driving
cars. Therefore the solution should be searched elsewhere.
The approach we will take is to augment the typical reinforce-
ment learning objective with a maximum policy entropy term.
This means that the method we tackle in this research tries to
learn a policy that not only tries to get as much reward as
possible but also does it as randomly as possible.

Maximizing entropy means that the agent will try random
ways instead of sticking to already learned methods. This al-
lows the agent to discover more ways to complete the given
task. Since the agent knows how to complete the given task in
multiple ways, introducing a new obstacle to the environment
may be solved using knowledge gained using this method.
An example can be provided from work done by Benjamin
Eysenbach and Sergey Levine [16]. Comparing standard re-
inforcement learning and maximizing entropy on a robot arm
that tries to move an object to a target location shows that
when a new wall is introduced, simple reinforcement learning
almost always fails, whereas maximum entropy completes the

task 95% of the time. Since it can adapt to different environ-
ments, it is also said to be a robust method of training the
agent.

The research question we will investigate in the paper is
”How does entropy maximization affect the training and ro-
bustness of final policies under various testing conditions?”.
In order to show this, the Soft-Actor Critic (SAC) algorithm
will be used with various target entropy values. Different en-
tropy values and environments will be simulated in Carla [6].
Carla is a really realistic simulator that will allow me to sim-
ulate real-life situations in a controlled environment. Using
such technology and utilizing implementation methods pro-
vided by work done by previous researchers, entropy maxi-
mization will be investigated. This investigation will be done
in the following steps:

1. Performance during agent training: Different entropy
values may have an effect on the performance of train-
ing. This can be in the form of faster convergence or
convergence on a different value for the agent’s rewards.
For this step, we will identify differences and try to ex-
plain their causes. When we have a good reason for the
results, we will comment on their strength and weak-
nesses.

2. Performance during evaluation: When the agents are
trained, they will be tested on different environments.
This is done in order to answer the research question of
this paper. Robustness is the agent’s adaptability to dif-
ferent environments therefore performance of the agent
in different environments will be investigated.

2 Background Information
2.1 Markov Decision Process
Markov Decision Process is a stochastic decision-making
process that uses a mathematical framework to model the
decision-making of a dynamic system. It uses tuples
⟨S,A, T,R, γ⟩ where S is the set of states that the agent can
be in. Each state represents a different configuration that the
agent can find itself in. A is the set of actions that the agent
can take. In an autonomous car example, this can be steering
angle, breaking, etc. T is the transition model. It is a function
T (s, a, s′) that gives the probability that the agent transitions
to the state s′ from state s by taking the action a. R is the
reward model. It is a similar function to the transition func-
tion but gives the reward obtained by taking the action rather
than probability. Finally, γ is the discount factor. It is a value
between 0 and 1 that represents the agent’s preference for im-
mediate or future rewards.

Ultimately, Markov Decision Processes try to find the best
possible mapping from states to actions such that the agent
knows which action at state s will give the greatest reward
at the end. In the case of reinforcement learning, Q-learning
is commonly used in order to find such mapping in Markov
Decision Processes.

2.2 Q-learning
Q-learning is a simple way for agents to learn how to act op-
timally in controlled Markovian domains [18]. In order to do



Q(s, a) = (1− α) ·Q(s, a) + α · (r + γ ·maxa′Q(s′, a′))

Figure 1: Bellman equation to update Q-values [18]

this, it keeps track of a table called Q-table. This table stores
Q values (expected reward) for all state-action pairs. Each
step of Q-learning updates the Q-table based on the Bell-
man equation (Figure 1). This equation states that the opti-
mal Q-value for the given state-action pair is the immediate
reward (r) plus the expected maximum reward from future
(max(Q(s′, a′))) discounted by the discount factor (γ). α is
the learning rate which is the weight given to the new infor-
mation. Q-learning converges to the optimum action-values
with probability 1 so long as all actions are repeatedly sam-
pled in all states and the action-values are represented dis-
cretely [18].

2.3 Q-networks
Q-network is a specific type of artificial neural network that
is used to approximate the Q-function. Instead of using a ta-
ble to represent Q-values, it uses a neural network in order
to estimate the Q-values. However, a single Q-network may
suffer from an overestimation of action values. Therefore two
separate Q-networks can be used. In this architecture, action
selection and action evaluation are done by different networks
which in theory reduces overestimation. Training is often un-
stable due to fast-changing target Q-values, and target net-
works are employed to regularize the Q-value estimation and
stabilize training by using an additional set of lagging param-
eters [15]. Target networks are replicas of their respective
networks. Their parameters are updated slowly through soft
updates in order to align with the parameters of their respec-
tive networks. The goal of this approach is to mitigate the
issues of overestimation bias. It also accelerates learning sta-
bility.

2.4 Experience Replay
In traditional reinforcement learning, the training agent uses
the experience to learn and immediately moves on to the next
experience, discarding previous experiences. In experience
replay, the agent has a buffer that stores the history of experi-
ences. While training, rather than using previous experience,
a random sample from the buffer can be used. Experience
replay not only provides uncorrelated data to train a neural
network, but also significantly improves the data efficiency
[17].

2.5 Soft Actor-Critic
The algorithm used to train the agent in this paper is the Soft
Actor-Critic algorithm. Soft Actor-Critic is an algorithm that
optimizes a stochastic policy in an off-policy way, forming
a bridge between stochastic policy optimization and DDPG-
style approaches [1]. The main reason we chose to use the
SAC algorithm is because it allows entropy regularization.
This means that the policy is trained to maximize a trade-off
between expected return and entropy [1]. In addition to this,
our algorithm incorporates the usage of two Soft Q-network

Q(s, a) = r + γ · (V (s′)− α · log(π(a|s)))

Figure 2: Soft Actor-Critic Bellman update equation [8]

y = r (s, a) + γπ (a|s′)T
(
min
θ1,2

Qθi (s
′)− α log π (·|s′)

)

Figure 3: CleanRL Bellman update target function [11]

to reduce the overestimation bias issue in Q-network-based
methods [11]. The method alternates between collecting ex-
perience from the environment with the current policy and
updating the function approximators using the stochastic gra-
dients from batches sampled from a replay pool. Using off-
policy data from a replay pool is feasible because both value
estimators and the policy can be trained entirely on off-policy
data [10].

In the Soft Actor-Critic algorithm, Bellman update equa-
tion is modified in order to give importance to entropy. This
can be seen in figure 2. Other than the variables we have ex-
plained before, V (s′) represents the estimated expected cu-
mulative reward for being in state s′ and following the cur-
rent policy. π(a|s) is the policy’s probability of taking action
a in state s. In addition to figure 1, this equation subtracts
the entropy regularization term in order to calculate the Q-
value. This encourages exploration by giving less value to
low-entropy actions.

Instead of coding the Soft Actor-Critic(SAC) algorithm
from the ground up, the CleanRL [11] implementation is
used. This implementation supports discrete action spaces
and exploits the discrete action space by using the full action
distribution to calculate the Soft Q-targets instead of relying
on a Monte Carlo approximation from a single Q-value. In
order to do this, it modifies the Bellman update equation as
shown in figure 3.

It can be seen that the function takes the minimum Q-
network value. This is done in order to reduce the overestima-
tion bias. The Bellman update target is modified for discrete
action space such that Q only takes states as inputs and it gen-
erates Q-values for all actions. The Algorithm uses this and
weighs the target by the corresponding action selection prob-
ability in order to reduce the variance of the gradient [11].
Ultimately, the objective function is given in figure 4.

Objective function given in Figure 4 has πϕ(α|s) term.
Logarithm of this term is the target entropy used at Table 1.
By changing this value, we modify the algorithm such that we
change the entropy and this changes probability of exploita-
tion vs exploration.

max
ϕ

Jπ(ϕ) = Es∼D

[
π(α|s)T

(
min
i=1,2

Qθi(s)− α log πϕ(α|s)
)]

Figure 4: Objective function used in the CleanRL implementation
[11]



Figure 5: CarRacing(left) and Carla bird-eye view(right) observa-
tion space

Given the stochastic nature of the policy in SAC, the ac-
tor (or policy) objective is formulated so as to maximize the
likelihood of actions that would result in a high Q-value esti-
mate. Additionally, the policy objective encourages the pol-
icy to maintain its entropy high enough to help explore, dis-
cover, and capture multi-modal optimal policies [11]. Maxi-
mum entropy RL augments the reward with an entropy term,
such that the optimal policy aims to maximize its entropy at
each visited state [8].

Robustness is the adaptability of the trained agent to dif-
ferent environments such as different maps and car popula-
tions. The aim of this research is to investigate how entropy
affects robustness. Entropy is our likelihood of selecting un-
explored random options instead of trying to improve current
good ones.

3 Methodology
In order to test how different entropy values affect the robust-
ness, a suitable environment that will run the simulations is
required. In order to achieve this, three frameworks are used.
First of all, the gym framework by OpenAI [2] is at the center
of this research. The gym framework provides a CarRacing
environment which is used for early test runs before the Carla
simulator [6]. On top of this, a repository called CleanRL
[11] is used in order to implement required algorithms and
run them on provided environments. After it was verified
that the agent learns on the CarRacing environment, we had
to make the algorithm compatible with the Carla simulator.
This is done by using a framework called gym-carla [3],
which forms a communication between Carla and the gym
framework. Carla simulations were run after the OpenAI
gym simulations. This is because Carla uses a lot more
physics logic and is slower than the gym CarRacing environ-
ment. Ordering work like this proved to be more efficient
than directly running Carla simulations while debugging the
algorithm to make sure it learns from the environment. Since
the Carla simulator is a computationally (GPU particularly)
heavy framework and takes a full day to train, training was
done on delft-blue [5] GPU nodes. This way, agents could be
trained without interruption and multiple tasks could run at
the same time which proved to be more efficient.

In order to tune hyper-parameters, the SAC agent was
trained in the CarRacing environment. From these trials, en-
tropy values that will be used to train agents in the Carla en-

vironment were selected. Training on the CarRacing envi-
ronment makes sense because the observation space provided
by the CarRacing environment is similar to the one provided
by the gym-carla bird-eye view. Both of them essentially re-
quire the agent to follow a line (grey road for the CarRacing
and blue line for the Carla environment). Carla environment
makes the agent’s task a bit more complicated by adding other
cars to the road. However, due to the similarities, we have
chosen to test and debug the training of the agent on the Car-
Racing environment.

The steps for the procedure are given below to make it
easier to understand.

Implement and test entropy maximization using SAC
1. Make sure Soft-Actor Critic learns on visual (pixel) in-

put. Use CarRacing from the gym framework to test.
2. Train SAC.
3. Check trained data and analyze it.
4. Use the gym-carla framework to train the SAC agent on

the Carla simulator.
5. Run SAC agent in different environments (maps) on

Carla. Check how it performs in different environments.
6. Repeat the last step with different entropy values(0.5,

0.6).
Compare agents

1. Compare how each entropy value performs when tested
on a similar environment that they trained on.

2. Compare how each entropy value performs when tested
on a different environment/map.

Agents are trained until their rewards converge and their
episodic return versus step graphs are compared. The goal is
to identify differences between obtained graphs such as con-
verging to better results or converging faster. Ultimately, the
rewards of different agents in different environments are com-
pared in order to find a relationship between entropy and ro-
bustness.

Using this methodology, it is aimed to show the effect of
different entropy values while training on adaptability to dif-
ferent environmental variables such as different maps and car
density.

4 Experimental Setup and Results
4.1 Setting up the environment
As we have indicated before, the implementation of the SAC
algorithm is taken from the CleanRL [11] repository. This
implementation offers out-of-the-box discrete action space
agent training. It utilizes Convolution Layers [14] and re-
scaling of observation space [13]. However, some changes
to the CleanRl code have been made. Due to hardware limi-
tations, we have chosen to use Delft Blue [5] supercomputer.
Even though the GPU node we used in order to train our agent
trained around 50% faster, the SAC algorithm is computa-
tionally heavy. Even when we run the algorithm for 24 hours
(the maximum amount of time that the GPU node can be re-
served for our permission level), the agent would complete



Parameter Name Value
Seed 1
total timesteps 100000
buffer size 100000
gamma 0.99
tau 1.0
batch size 64
learning starts 10000
policy learning rate 0.0003
q learning rate 0.0003
update frequency 2
target network frequency 4000
alpha 0.2
autotune True
target entropy scale [0.5, 0.6]

Table 1: Parameters used to train SAC

100 thousand steps with no clear convergence. This meant
that we have to run the algorithm in multiple sessions.

In order to make the algorithm usable for the purposes of
this paper, following changes were made:

1. Checkpointing and saving the model: The CleanRL
implementation of the SAC algorithm did not have
checkpoint and model-saving functionality. For the pur-
poses of this paper, the code was modified in order to
add these functionalities.

2. Implementing a way to evaluate the trained agent:
The CleanRL implementation did not provide a way to
evaluate the trained agent out of the box. In order to
be able to train the saved agent, the evaluation code of
the DQN algorithm in the same repository is taken as
a basis. It was modified so that the action space gen-
eration was done through the trained agent of the SAC
algorithm.

4.2 Training the agent
After these steps were complete, our agent could be safely
trained remotely on the Delft Blue [5] nodes. Different jobs
were submitted at the same time to use our time as efficiently
as possible. Hyper-parameter values obtained from running
the CarRacing environment given in Table 1 are used for the
Carla environment. When we investigate Figure 6, no clear
difference can be seen between the agent which trained with
an entropy value of 0.5 and 0.6. Looking at Figure 7 and 8,
which shows Q-values, we can see that the training perfor-
mance of the agents is similar. It can be observed that none
of the agents trained until convergence. We will explain the
reason behind this in section 7, limitations.

4.3 Evaluating the agents
After agents were done with training, they were evaluated in
different environments. Each agent ran 10 times on 3 differ-
ent maps, Town4 being the map they have trained on. This
means that agents were evaluated based on how they per-
formed in the environment they trained on as well as how
they performed in the environment that they did not train on.

Figure 6: SAC Agent episodic-return vs steps graph. Steps (hori-
zontal), ER (vertical)

Figure 7: SAC Agent Q-values (first q-network) vs steps graph.
Steps (horizontal), Q-values (vertical)

Their performance on the environments that they did not train
on will give us their robustness as that is how we defined ro-
bustness. Figure 8 shows agents’ performances on different
maps. Every agent trained on Town4 and did not train on
Town3 or Town5.

5 Discussion
In contrast to other off-policy algorithms, SAC approach is
very stable, achieving very similar performance across differ-
ent random seeds [9]. It was shown that the SAC algorithm it-
self is a robust algorithm. However, it does need a good value
for the target entropy value. In this paper, how the entropy
value used in the algorithm affects robustness is investigated.
Looking at the final evaluation data collected represented in
Figure 8, we can see that the entropy value of 0.5 outper-
forms the entropy value of 0.6 in the Town4 environment,
which is the environment that they trained on. This can be ex-
plained as the agent doing fewer random actions which makes
it easier to adapt to the same environment. Since it sticks to
better actions more often, it adapts to the environment bet-
ter. However, when we look at Town2, we can see that agent
with higher entropy outperforms lower entropy. Reasoning
behind this can be random actions preparing the agent better
for states that the agent is not familiar with. Therefore when
agent faces a new environment, the agent which trained with



Figure 8: SAC Agent Q-values (second q-network) vs steps graph.
Steps (horizontal), Q-values (vertical)

Figure 9: Comparison of evaluation results of different agents on
different maps

more entropy is more likely to be familiar with those states.
Even though Town2 makes us think this way, Town3 does not
directly suggest this conclusion. This suggests that further
testing is required (training longer and more samples for eval-
uation) to reach a more concrete conclusion. Ultimately, our
data suggest that entropy makes agents adapt to different en-
vironments faster while making it harder to train for a specific
environment. This suggests that the data collected through
experiments support our initial hypothesis. This shows that
the agent trained with a higher entropy value adapts to differ-
ent environments better due to using its time more on explo-
ration rather than exploitation.

6 Responsible Research
Even though the main goal of this research is to train cars in
order to teach them how to drive in traffic, the models used
in this paper are very primitive compares to what is required
for agents that should be implemented in the real world. This
is also the reason why both training and testing processes are
in virtual environments. Therefore, the findings of this re-
search should be taken into account but the produced model
should not be directly adapted. In addition to this, the con-
clusion was reached by non-converging agents. Therefore,
there is a chance that the outcome will change and suggest a
different conclusion when it is possible to train the agents un-
til they converge. Conclusions of this paper should be taken
with caution because of this and it is encouraged to try and
reproduce what is described in this paper.

7 Conclusions and Future Work
In this paper, we wanted to investigate how entropy max-
imization affects the training and robustness of final poli-
cies under various testing conditions. In order to show that,
two different agents were trained with different entropy val-
ues. Their training data was investigated and it was seen that
they do not show any significant difference during learning.
However, when they were evaluated in different environments
(different maps), agents performed differently. The agent
with higher entropy was able to outperform in the environ-
ment Town2 which they did not train on and nearly the same
result in the environment Town3. As for the environment they
trained on, the lower entropy agents achieved better results
during evaluation. This suggests that when the entropy is in-
creased, agents adapt better to the environment that they are
training in, however, agents with higher entropy will achieve
better results in environments that they are not familiar with.
In conclusion, increasing the entropy increases the robustness
of the agent.

For future improvements, the experimentation step can be
improved as discussed in parts 5 and 6. In order to confirm
the findings of this paper, agents can be trained more steps (if
converges, until convergence) and more samples for the eval-
uation step can be used. Other possible improvements include
changing different settings such as the number of cars and
pedestrians in CARLA. Lastly, more agents can be trained
and compared with each other in order to make the findings
more significant. Due to limitations of time and hardware,
only two agents could be trained. However, more agents with



a wider range of entropy values would make the research
more significant in terms of testing the hypothesis and find-
ings of this paper.
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A CARLA Parameters
’number of vehicles’: 100,
’number of walkers’: 0,
’display size’: 256, # screen size of bird-eye render
’max past step’: 1, # the number of past steps to draw
’dt’: 0.1, # time interval between two frames
’discrete’: False # whether to use discrete control space
’discrete acc’: [-3.0, 0.0, 3.0], # discrete value of accel-
erations
’discrete steer’: [-0.2, 0.0, 0.2], # discrete value of steer-
ing angles
’continuous accel range’: [-3.0, 3.0], # continuous ac-
celeration range
’continuous steer range’: [-0.3, 0.3], # continuous steer-
ing angle range
’ego vehicle filter’: ’vehicle.lincoln*’, # filter for defin-
ing ego vehicle
’port’: 2000, # connection port
’town’: ’Town04’, # which town to simulate
’task mode’: ’random’, # mode of the task, [random,
roundabout (only for Town03)]
’max time episode’: 1000, # maximum timesteps per
episode
’max waypt’: 12, # maximum number of waypoints
’obs range’: 32, # observation range (meter)
’lidar bin’: 0.125, # bin size of lidar sensor (meter)
’d behind’: 12, # distance behind the ego vehicle (meter)
’out lane thres’: 2.0, # threshold for out of lane
’desired speed’: 8, # desired speed (m/s)
’max ego spawn times’: 200, # maximum times to
spawn ego vehicle
’display route’: True, # whether to render the desired
route
’pixor size’: 64, # size of the pixor labels
’pixor’: False, # whether to output PIXOR observation
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