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SUMMARY

In the coming decade, a new generation of extremely large-scale ground-based astro-
nomical telescopes will see first light. It is well known that increasing the size of the tele-
scope aperture is only beneficial if the adaptive optics (AO) system, which compensates
for turbulence-induced wavefront aberrations, scales accordingly. For the extreme-AO
(XAO) system of the future European Extremely Large Telescope (E-ELT), in the order of
104–105 unknown phase points have to be estimated at kHz range frequencies to update
the actuator commands of the corrective device, consisting of a deformable mirror (DM).
The work on fast algorithms for wavefront reconstruction (WFR) for real-time applica-
tion has therefore been extensive. Conventional WFR algorithms estimate the unknown
wavefront from wavefront sensor (WFS) measurements. They are generally based on a
linear relationship between the unknown wavefront and the sensor read out, and as-
sume one of the two following principles. Zonal methods represent the wavefront as
discrete phase points in terms of which the sensor model is formulated, leading to a per
se local phase-measurement relationship. The second group of modal methods expands
the wavefront with a set of globally defined polynomials which results in a sensor model
that acts on the entire sensor domain.

Within the AO group of the Delft Center for Systems and Control, the Spline-based
ABerration REconstruction (SABRE) method has been developed. The approach uses
bivariate simplex B-spline functions in a linear regression framework to solve the WFR
problem and was conceptualized for gradient measurements of the commonly used
Shack-Hartmann (SH) sensor. The B-spline basis functions, employed to locally model
the unknown wavefront, are defined on simplices which are joined into a triangulation
that covers the entire sensor domain and constitutes the support of the global spline
function representing the wavefront estimates. The SABRE method unifies the strong
points of modal and zonal approaches. The polynomial description of the wavefront es-
timates results in good noise rejection properties and provides an analytical solution
to the WFR problem in the entire pupil plane of the telescope. With the support of
the B-spline basis functions confined to a single triangle, the sensor model linking B-
coefficients and SH measurements remains however locally bound. The focus of this
thesis lies on advancing the B-spline framework for WFR from SH measurements in
terms of computational efficiency and reconstruction accuracy by exploiting this twofold
character of the method. All findings on the developed algorithms were supported by
Monte-Carlo simulations in numerical experiments.

Founded on the local nature of the B-spline functions, an inherently distributed so-
lution to the WFR problem was developed for application on large-scale AO systems
and execution on multi-core hardware. The Distributed Spline-based ABerration REcon-
struction (D-SABRE) method combines a domain decomposition ansatz with the linear
regression of the original global SABRE. The method decomposes the WFS domain into
any number of partitions and solves a local WFR problem on each partition using the
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discussed B-spline framework. In a second stage, piston offsets between the partitions
are eliminated in an iterative, but distributed procedure. The theoretical speedup scales
quadratically with the number of partitions and numerical experiments have shown that
the D-SABRE reconstruction accuracy remains within 1% of the global approach for low
to moderate noise scenarios. The introduction of a hierarchical scheme for the elimi-
nation of the piston offsets between the locally computed wavefront estimates solves a
crucial issue of piston error propagation observed for large numbers of partitions with
the original version. By locally approximating the projection of the WF estimates onto
the DM actuator command space, a fully distributed correction procedure was devel-
oped. A parallel implementation of the method for graphics processing units (GPU) has
proven its scalability to application on XAO systems. With a standard off-the-shelf GPU,
the computation of the AO correction updates for the benchmark case of a 200×200 SH
array is accomplished in less than one millisecond.

Besides the work on parallelization and load distribution, the potential of increasing
the reconstruction accuracy of the B-spline estimates, achieved with a given SH sen-
sor array, by employing higher degree polynomials was investigated. Two approaches
are introduced to retrieve information of higher order than the local gradients from the
intensity distributions of the SH focal spot pattern. Firstly, an extended sensor model
was developed that utilizes first and second order moment measurements of the SH fo-
cal spots. Numerical experiments have shown that, in presence of higher order aberra-
tions within the single subaperture domains, the resulting SABRE-M (for Moment mea-
surements) method is superior to the gradient-based SABRE method on a given SH ar-
ray. Equal reconstruction accuracy is obtained with SABRE-M on a SH grid of halved
sampling, therefore reducing the number of lenslets required to obtain a certain perfor-
mance and creating improved signal-to-noise ratios. A second procedure referred to as
SABRE-I (for Intensity measurements), that directly processes the pixel information of
the SH intensity patterns, has been derived through small aberration approximations of
the focal spot models. The local support of the B-spline basis functions and a known di-
versity phase, that is introduced in each subaperture to avoid sign ambiguity in the even
modes, are key to the presented fast solution of the underlying optimization problem.
In order to guarantee the validity of the small aberration approximations, the method is
applied in two correction steps, with a first compensation of large low order aberrations
through the gradient-based linear SABRE followed by compensation of remaining high
order aberrations with the intensity-based nonlinear SABRE-I.

The thesis at hand establishes the B-spline framework as self-supporting and legiti-
mate class of wavefront reconstruction algorithms for astronomical AO. Extensive tests
in end-to-end simulation environments have proven the distributed SABRE for gradient
measurements as robust towards low light scenarios and relevant system geometries.
The discussed low-level parallel implementation realizes a further step towards on-sky
application, an endeavor that should be the focus of future work. Experiments on an op-
tical bench would provide the insight that is necessary to either demonstrate or further
improve the maturity of the novel B-spline approaches for higher order measurements
retrieved from the intensity distributions of the SH pattern.



SAMENVATTING

De komende tien jaar zal een nieuwe generatie van extreem grote astronomische aard
telescopen in gebruik genomen gaan worden. Het is algemeen bekend dat het vergroten
van de diameter van de apertuur van een telescoop alleen voordelig is als de adaptieve
optica (AO), die de door turbulentie veroorzaakte golffrontaberratie wegregelt, meeschaalt.
Voor het extreem-AO (XAO) systeem van de toekomstige European Extremely Large Te-
lescope (E-ELT) moeten in de orde van grootte van 104–105 onbekende punten van de
fase enkele duizenden keren per seconde worden geschat om de actuatorstuursignalen
van het regelapparaat, dat bestaat uit een adaptieve spiegel, bij te werken. Om deze re-
den is er een uitgebreide literatuur op het gebied van snelle algoritmes voor het schatten
van het golffront (wavefront reconstruction, WFR) voor real-time toepassingen. De stan-
daar WFR-algoritmes schatten het onbekende golffront op basis van metingen van een
golffrontsensor (wavefront sensor, WFS). In het algemeen zijn deze algoritmes gebaseerd
op de lineaire relatie tussen het onbekende golffront and de sensormetingen, en zijn ze
gebaseerd op één van de volgende twee principes. Zonale methoden representeren het
golffront als een set discrete fasepunten. Op basis hiervan wordt het sensormodel gefor-
muleerd, en dit leidt noodzakelijkerwijs tot een lokale relatie tussen de fase en de meting.
The tweede groep, die van modale methoden, splitst het golffront op in een set van po-
lynomen die op het hele domein gedefinieerd zijn; dit resulteert in een sensormodel dat
het gehele sensordomein beschrijft.

In the adaptieve opticagroep van het Delft Center for Systems and Control is de Spline-
based ABerration REconstruction (SABRE) methode ontwikkeld. Deze aanpak gebruikt
bivariate simplex B-splinefuncties in een raamwerk van lineaire regressie om het WFR-
probleem op te lossen, en was oorspronkelijk ontworpen voor metingen van de gradiën-
ten van een golffront door de veelgebruikte Shack-Hartmann (SH) sensor. De B-spline
basisfuncties, die worden gebruikt voor lokale modellen van het onbekende golffront,
worden gedefinieerd op driehoeken waarin het gehele sensordomein is onderverdeeld.
Die driehoeken zijn tezamen de drager van de globale splinefunctie voor de gehele golf-
frontschatting. De SABRE-methode combineert de sterke punten van modale en zo-
nale benaderingen. De beschrijving van de golffrontschatting op basis van polynomen
resulteert in goede ruisonderdrukkingseigenschappen en geeft een analytische oplos-
sing voor het WFR-probleem in de gehele pupil van de telescoop. Aangezien de dragers
van de B-splinefuncties beperkt zijn tot een enkele driehoek, blijft het sensormodel dat
B-coefficienten verbindt aan SH-metingen noodzakelijkerwijs lokaal. Deze dissertatie
richt zich op het doorontwikkelen van het B-splineraamwerk voor golffrontschattingen
op basis van Shack-Hartmannsensormetingen op het gebied van de efficiëntie van de
rekenmethodes en de nauwkeurigheid van de schattingen door het uitbuiten van het
tweezijdige karakter van de methode. Alle conclusies over de ontwikkelde algoritmes
worden ondersteund door Monte-Carlo simulaties in numerieke experimenten.

Gebaseerd op de lokale structuur van de B-slinefuncties is een inherent gedistribu-
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xii SAMENVATTING

eerde oplossing voor het WFR-probleem ontwikkeld voor toepassing op een grootscha-
lig AO-systeem and uitvoering op multi-core hardware. De gedistribueerde SABRE (D-
SABRE) methode combineert een domeindecompositie-ansatz met de lineaire regressie
van het originele SABRE. De methode ontbindt het WFS-domein in een willekeurig aan-
tal partities and lost een lokaal WFR-probleem op op iedere partitie door middel van het
hiervoor besproken B-spline raamwerk. In een tweede stap worden piston offsets tussen
de partities weggewerkt in een iterative, maar gedistribueerde procedure. De theoreti-
sche versnelling schaalt kwadratisch met het aantal partities en numerieke experimen-
ten laten zien dat de nauwkeurigheid van de schatting van D-SABRE binnen een tole-
rantie blijft van 1% ten opzichte van de globale aanpak in scenarios met weinig tot een
middelmatige hoeveelheid ruis. De introductie van een hierarchisch schema van meer-
dere niveaus voor het wegwerken van de piston offsets tussen lokaal berekende golf-
frontschattingen lost een cruciaal probleem op van de originel versie, waar kon worden
gezien dat fouten in de piston offset zich propageerden wanneer grote hoeveelheden
partities werden gebruikt. Door het lokaal benaderen van de projectie van golffront-
schattingen op de mogelijke actuatorstuursignalen van de DM, is een volledig gedis-
tribueerde correctiemethode ontwikkeld. Een parallele implementatie van de methode
voor graphics processing units (GPUs) bewijst de schaalbaarheid van de toepassing voor
XAO-systemen. Met een standaard, vrij verkrijgbare GPU kan een AO correctie update
worden berekend voor een maatstafprobleem met een 200×200 SH metingsrangschik-
king in minder dan één milliseconde.

Naast het werk op het gebied van de parallelisatie en de verdeling van het reken-
werk, is onderzocht hoe de schattingsnauwkeurigheid van de B-splineschattingen kan
worden verbeterd, voor een gegeven SH sensormetingsrankschikking, door middel van
het gebruik van polynomen van hogere orde. Twee aanpakken worden voorgesteld om
informatie van hogere orde dan de lokale gradiënten uit de intensiteitverdelingen van
het SH focuspuntenpatroon te halen. Om te beginnen werd een uitgebreid sensormo-
del ontwikkeld dat gebruik maakt van metingen van het eerste en tweede moment van
de verdeling van de SH focuspunten. Numerieke experimenten hebben laten zien dat,
in aanwezigheid van aberraties van hogere orde op een enkel subapertuur, het resul-
taat van de SABRE-M (waar M voor Momentmeting staat) methode superieur is aan de
gradiënt-gebaseerde SABRE methode voor een gegeven SH metingsrangschikking. Een
gelijke schattingsnauwkeurigheid wordt verkregen met de SABRE-M method op een SH
metingsrangschikking met de helft van de meetpunten per zijde, waarmee het aantal
bedodigde lensjes gereduceerd wordt voor een gegeven nauwkeurigheid, en waarmee
de signaal-ruisverhoudingen verbeterd worden. Een tweede methode genaamd SABRE-
I (waar I for Intensiteitsmetingen staat) is ontwikkeld die direct de informatie van de
pixels van de SH-intensiteitspatronen gebruikt. Deze methode is afgeleid door middel
van een kleine-aberratiebenadering van het focuspuntmodel. De lokale draging van de
B-spline basisfuncties en het gebruik van een bekende faseaberratie (diversity phase),
toegevoegd in ieder apertuuronderdeel om ambiguïteit te voorkomen in het positief of
negatief zijn van de even modes, zijn essentieel voor de hier gepresenteerde snelle op-
lossingen van het onderliggende optimalisatieprobleem. Om de validiteit van de kleine-
aberratiebenadering te kunnen garanderen, wordt de methode toegepast in twee stap-
pen, waar eerst de grote lage-orde-aberraties worden gecompenseerd door middel van
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de gradiënt-gebaseerde lineaire SABRE, en waar vervolgens de hogere orde-aberraties
worden gecompenseerd met de op intensiteit-gebaseerde SABRE-I.

Deze dissertatie vestigd het B-splineraamwerk als een zelf-ondersteunende and le-
gitieme klasse van golffrontschattingsmethodes voor astronomische adaptieve optica.
Extensieve testen in complete simulatieomgevingen hebben bewezen dat de gedistribu-
eerde gradiëntmeting-gebaseerde SABRE-methode robuust is in scenarios met weinig
licht en relevante systeemopzetten. De hier besproken low-level parallele implementa-
tie realiseert een volgende stap richting daadwerkelijke toepassing op een telescoop, een
streven dat de focus zou moeten zijn van toekomstig werk. Experimenten op een opti-
sche bank zouden dat inzicht moeten geven dat nodig is om de volwassenheid van de
nieuwe B-splinemethodes voor metingen van hogere ordes geëxtraheerd uit de intensi-
teitsverdelingen van het SH patroon, danwel te laten zien of te verbeteren.
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1
INTRODUCTION

CHAPTER ABSTRACT
Over the last three decades, adaptive optics has developed into a well established tech-
nique to actively compensate for wavefront distortions which are introduced by refrac-
tive index variations in turbulent regions of the Earth’s atmosphere. Without such cor-
rection, the angular resolution of a ground based astronomical telescope is limited by
the smallest scales of the atmospheric turbulence, which ranges between a few and sev-
eral tens of centimeters, rather than the size of its pupil aperture. While the current class
of 8–10 m telescopes have all seen great improvement in their imaging quality through
upgrades with adaptive optics systems, any system design which does not include atmo-
spheric correction prohibits itself for the next generation of 30–40 m telescopes currently
under construction. The focus of this thesis lies on the computationally most expensive
part of the adaptive optics control loop, the estimation of the aberrated wavefront. This
introductory chapter provides details on the imaging formation process under the ef-
fect of atmospheric turbulence and an overview of the development to modern day’s
adaptive optics systems. A survey of classical and recent wavefront estimation methods
follows in order to establish the state of the art. The given information is not exhaus-
tive, but should ease the understanding of challenges and motivation of this work. For
a more detailed overview the reader is recommended to consult the standard text books
[1–3]. The chapter closes with a summary of the contributions and a description of the
organization of the thesis.

1



1

2 1. INTRODUCTION

1.1. IMAGING THROUGH ATMOSPHERIC TURBULENCE

I n order to derive a performance criterion for adaptive optics correction, a good under-
standing of the wavefront aberrations induced by atmospheric turbulence and their

detrimental effect on the image formation process is needed. Adaptive optics tries to im-
prove the quality of the output of telescopes, images formed in the focal plane which are
impaired by wavefront aberrations. This section introduces the statistical description
of the atmospheric turbulence in Section 1.1.1 and explains the basic concepts of opti-
cal image formation under the influence of wavefront aberrations in Section 1.1.2. For
extensive background information the reader is referred to the literature [4–7]. Finally,
a measure for the quality of a turbulence degraded image is related to a performance
criterion for adaptive optics correction in Section 1.1.3.

1.1.1. THE STATISTICS OF TURBULENCE AND PHASE ABERRATIONS
The key reference for the following section is Roddier’s [2] introduction to the matter.

Radiation emitted from a stellar object, which is treated as a point source in infi-
nite distance, propagates as a spherical wave and can be considered as a plane wave,
when arriving at the Earth’s atmosphere. During propagation through areas of varying
refractive index, which are caused by atmospheric turbulence, optical pathlength dif-
ferences are induced. Turbulence is strongest near ground level and, above a certain
altitude, found in several discrete layers. Most astronomical sites are therefore located
at high altitude such that geometric optics can be applied [3]. In this scenario it is valid
to consider straight ray paths and ignore diffraction effects and interference. The optical
pathlength differences introduced by the atmospheric turbulence are summed up layer
by layer along the propagation path resulting in a non-planar wave. The wave arriving at
the telescope aperture, described by the complex optical field

U (x) = A(x)eiφ(x), (1.1)

shows random fluctuations in its amplitude and phase, A(x) and φ(x), which are real
valued functions defined at point x ∈ R2 in the telescope pupil plane. A wavefront is a
surface of equal phase. In the vicinity of a certain plane the phase profile provides in
the considered scenario a good approximation of the wavefront. With geometric optics
applied, the amplitude can be treated as a constant, A(x) = 1 , because diffraction is
considered insufficient to produce significant amplitude changes, i.e. scintillation [3].
The phase perturbations in the telescope pupil are obtained through simple integration
along the line of propagation

φ(x) = k
∫ ∞

0
n(x , z)dz, (1.2)

where k = 2π
λ is the wavenumber at observing wavelength λ. Within the visual to near-

infrared range of interest, the air refractive index fluctuations n(x , z) are hereby suffi-
ciently wavelength independent. Hence the optical pathlength differences, given by the
integral in Eq. (1.2), can be corrected at all wavelengths by the same compensation.

The fluctuations in the refractive index are created when atmospheric airflow be-
comes turbulent, e.g. due to local convection cells or wind shear, and mixes air of dif-
ferent temperatures. The mechanics of turbulent flow is described by the Kolmogorov
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turbulence model [4, 8], which assumes kinetic energy being added to the medium in a
large-scale disturbance of size L0 (outer scale) which breaks down into turbulent eddies
of smaller and smaller scale until the energy is dissipated as heat at the so-called in-
ner scale l0. Turbulent flow is a random process and can only be described by statistics.
From Kolmogorov’s main hypothesis of a 2

3 power law reigning the structure function of
the velocity fluctuations in the turbulence, the structure function of the refractive index
fluctuations can be derived:

DN(ρ) =
〈∣∣n(r )−n(r +ρ)

∣∣2
〉
=C 2

Nρ
2
3 , (1.3)

where 〈·〉 denotes the ensemble average and C 2
N the refractive index structure coefficient,

which varies over distances much larger than the scale of refractive index changes. At-
mospheric turbulence and resulting random variables are assumed to be homogeneous,
hence to not depend on position r ∈ R3 but only the separation vector ρ ∈ R3 between
two points. They are also considered to be isotropic which implies that the spatial statis-
tics do not depend on orientation but only the modulus ρ = |ρ| of the separation vector.
The Kolmogorov law is only valid for l0 ≤ ρ ≤ L0. For atmospheric turbulence, the in-
ner scale is of the order of millimeters and the outer scale, while having been subject of
debate, is generally treated as of the order of tens of meters [2, 9].

With atmospheric turbulence considered in plane parallel layers, the refractive in-
dex structure coefficient C 2

N is generally expressed as a function of height h above the
ground. Its profile C 2

N(h) depends on the astronomical site and is experimentally de-
termined. Combining Eq. (1.2) with the statistics of the refractive index fluctuations
in Eq. (1.3) leads to the conclusion that the random phase aberrations follow Gaussian
statistics of zero mean and adhere to the spatial phase structure function

Dφ(ξ) =
〈∣∣φ(x)−φ(x +ξ)

∣∣2
〉
= 6.88

(
ξ

r0

) 5
3

, (1.4)

which is given for a distance ξ = |ξ|, with ξ ∈ R2 between two points in the telescope
aperture. It depends on the Fried parameter [10] or optical coherence length which is
defined as

r0 =
(
0.423k2(cosγ)−1

∫ ∞

0
C 2

N(h)dh

)− 3
5

, (1.5)

where γ is the angular distance of source from the zenith and k the wavenumber. Includ-
ing the integral of the C 2

N(h) profile, the parameter r0 is a measure of the entire turbu-
lence strength along the line of sight for a particular wavelength λ. At visible wavelength
λ= 0.5 µm, it typically varies between 5 cm (very poor seeing) and 25 cm (excellent see-
ing) [3]. The phase structure function in Eq. (1.4) allows to quantify the random phase
aberrations introduced by Kolmogorov turbulence by computing e.g. its mean square
value over a certain area. An interesting property of the Fried parameter r0, following
from Eq. (1.5), is that it defines the diameter of a circular aperture over which the time-
averaged mean square value of the phase aberration is approximately 1 rad2.

Through the Kolmogorov model, the spatial distribution of the phase fluctuations is
described. This section is finalized with a brief note on the temporal characterization of
atmospheric turbulence which is commonly achieved by the Taylor hypothesis of frozen
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flow [11]. The theory states that over short time intervals the phase aberrations intro-
duced by a turbulent layer at height h solely change by a translation with a constant
transverse velocity v ∈ R2. As such, the phase aberration at point x and time t + τ is
related to the phase at time t by

φ(x , t +τ) =φ(x −vτ, t ). (1.6)

This translates the temporal difference τ into a spatial difference ξ = vτ which is de-
scribed by Eq.(1.4), directly linking the spatial and the temporal statistics of atmospheric
aberrations. If there are several turbulent layers, moving at different speeds in different
directions, the phase profile in the telescope aperture is still assumed to be propagat-
ing at a velocity v̄ computed as weighted average of the wind speeds of all the turbulent
layers:

v̄ =
(∫ ∞

0 C 2
N(h) |v (h)| 5

3 dh∫ ∞
0 C 2

N(h)dh

) 3
5

, (1.7)

where the integral is calculated along the line of sight. Typical values for the wind speed
are in the order of 10 m/s with peak values up to 40–50 m/s [3]. The temporal phase
structure function Dφ(τ) is then obtained by evaluating Eq. (1.4) for ξ= v̄τ. A general pa-
rameter that quantifies how fast the atmosphere is evolving can be derived. The Green-
wood time delay [12] or atmospheric coherence time is given as τ0 = 0.314 r0

v̄ and defines
the time interval during which the mean square difference due to propagation reaches
about 1 rad2. Considering the discussed typical value for the Fried parameter and the
layer averaged wind speed, the atmospheric coherence time lays in the single digit mil-
lisecond range for visible wavelength.

1.1.2. TURBULENCE DEGRADED IMAGE FORMATION
While geometrical optics suffices to describe the propagation of light waves through the
atmospheric turbulence, Fourier optics have to be employed to explain the diffraction
and interference phenomenas which define the formation process of the images in the
focal plane of optical telescopes. The reader is referred to the textbook of Goodman [7]
for more detailed information on optical image formation. The provided explanations
on the resolution and the optical transfer function of an optical system in both the short
and long-exposure regime are based on the standard discourse of Hardy [3].

Diffraction due to the finite aperture in the pupil plane of the telescope defines the
optimal resolution that can be obtained with the optical imaging system. In the near-
field region after the aperture, the propagation of the optical field U (x) defined in Eq. (1.1)
can be computed as superpositions of spherical wavefronts emitting from each point
in the aperture, the so-called Fresnel diffraction [7]. When the propagation distance to

the image plane 4z > 2D2

λ , with observing wavelength λ and aperture diameter D , the
Fresnel approximation can be replaced by the Fraunhofer diffraction integral [7]. This
far-field propagation of the field is proportional to its Fourier transform, meaning that
the field distribution in the image plane is the spatial frequency spectrum of the com-
plex field in the telescope pupil given in Eq. (1.1). The Fraunhofer integral can be used to
approximate the propagation of a wave through a lens from its aperture to the back focal
plane which performs an operation equivalent to the far field propagation. The intensity
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diff - limited PSF short - exposure PSF long - exposure PSF

Figure 1.1: Diffraction-limited, short-exposure, and long-exposure image of a point source at λ= 2.2 nm pro-
duced by an 8 m telescope. (Image credit: Quiros-Pacheco [13].)

of the field at focal plane location u ∈ R2 is then given as the squared absolute value of
the propagated optical field. The instantaneous image of an incoherent point source,
the short-exposure point spread function (PSF), is therefore computed as

p(u) ∝ ∣∣F {P (x)eiφ(x)}(u)
∣∣2

, (1.8)

where F (·) denotes the 2D Fourier transform and pupil function P (x) is one inside and
zero outside of the aperture. This establishes the nonlinear relation between the inten-
sity distribution in the telescope focal plane and the phase profile in the aperture plane.
The image of a point source in an ideal telescope, i.e. in the absence of wavefront distor-
tions, is only limited by diffraction and called the Airy disk. The diffraction limited PSF
has a central core, containing about 84% of the light, which is surrounded by a series of
diffraction rings. Considering angular coordinatesα ∈R2 in the focal plane, the first dark
ring of the diffraction pattern is at an angular distance of 2.44 λ

D rad. This describes the
Rayleigh resolution criterion of an ideal telescope which indicates the angular distance at
which two objects can be distinguished under diffraction limited conditions for a tele-
scope of aperture D . Under the influence of atmospheric turbulence characterized by
Fried parameter r0, the short-exposure PSF consists of a large number of speckles, each
of angular diameter 2.44 λ

D rad as shown in Fig. 1.1. For exposure times of longer than
the fraction of a second, the speckles blend into a continuous blur the so-called seeing
disk which is of diameter 2.44 λ

r0
rad. This long-exposure PSF defines, as the ensemble

average of the short-exposure PSF, the maximum resolution that can be obtained with a
ground-based telescope without compensation of atmospheric turbulence. Since Fried
parameter r0 is proportional to the 6

5 power of λ according to Eq. (1.5), the effects of
atmospheric turbulence on the imaging quality are stronger at shorter wavelengths [3].

When observing an extended astronomical object instead of a point source, the im-
age i (α) is obtained by convolving the short-exposure PSF of the optical system from
Eq. (1.8) with the object intensity distribution o(ζ) [7]:

i (α) = (p ∗o)(α) =
∫ 1

0

∫ 2π

0
p(α−ζ)o(ζ)dζ, (1.9)

where ζ ∈ R2 denotes the angular coordinate in the object plane. The resolution of the
obtained image, i.e. the detail that can be recovered in the projection of object o(ζ) onto
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the image plane, is hence blurred by PSF p(α), with the diffraction limited optimum.
Via the Fourier transform the convolution of Eq. (1.9) can be described as element-wise
product for each spatial frequency point f ∈R2.

The Fourier transform of the short-exposure PSF p(α) is called the optical transfer
function (OTF) which describes the ability of the imaging system to capture spatial fre-
quency information [3]. The cut-off frequency of the modulus of the normalized OTF
at the diffraction limit is equal to D/λ rad−1. In the presence of uncompensated atmo-
spheric aberrations of Fried parameter r0, the OTF shows spatial frequency content, that
is however weakened and distorted, up to D/λ rad−1. For long-exposure imaging, the
speckles average out and any detail in the object at spatial frequencies larger than r0/λ
rad−1 is irrevocably lost. Under the assumptions, introduced in Section 1.1.1, that the
phase aberrations adhere to Gaussian statistics of zero mean and that scintillation can
be neglected, it is possible to express the long-exposure OTF as the product of two optical
transfer functions: 〈

OTF( f )
〉= B( f )T ( f ), (1.10)

with ensemble average 〈·〉, where B( f ) is the atmospheric transfer function and T ( f )
the telescope transfer function. The atmospheric transfer function B( f ) is computed as
the auto-correlation function B0(ξ) of the complex field U (x) in the telescope pupil when
evaluated inλ f . Since the phase aberrations have Gaussian statistics of zero mean, B0(ξ)
can be expressed in terms of the phase structure function Dφ(ξ), which yields

B( f ) = B0(λ f ) = e−
1
2 Dφ(λ f ). (1.11)

The resolving power R of a telescope [14] describes the effects of atmospheric turbu-
lence on the optical images as the integral of the long-exposure optical transfer function

R( f ) =
∫

B( f )T ( f )d f . (1.12)

Considering small apertures D ¿ r0, the effects of the atmospheric turbulence are hereby
negligible such that B( f ) ≡ 1; for large apertures D À r0 on the other hand, the influence
of the aberration dominates and telescope transfer function T ( f ) ≡ 1. These two scenar-
ios result respectively in a diffraction limited and seeing limited resolving power,

Rdiff( f ) = π

4

D

λ

2

and R( f ) = π

4

r0

λ

2
, (1.13)

under consideration of a circular aperture. When observing through atmospheric tur-
bulence of Fried parameter r0, the resolving power in the seeing-limited case is equal
to the resolving power of diffraction limited imaging with a telescope with diameter r0.
Observations with telescopes of larger diameter do not provide better resolution unless
the wavefront aberrations are compensated for with adaptive optics [3].

1.1.3. STREHL RATIO: A MEASURE OF IMAGING QUALITY
A commonly used practical measure of the quality of turbulence degraded long-exposure
images is the Strehl ratio, which is defined as the ratio of peak intensities of the aberrated
PSF to that in a diffraction limited, aberration free PSF (Airy disk) [1, 3]. Since a present
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wavefront aberration φ(x) diffracts light away from the center of the image, Strehl ratio
provides a useful mean to assess the performance of an adaptive optics system and is in
long-exposure notion given by

S =
〈

p(0)
〉

p0(0)
=

〈
1

A

∣∣∣∣Ï
R2

P (x)eiφ(x)dx

∣∣∣∣2〉
, (1.14)

where P (x) denotes the pupil function, A the aperture surface and 〈·〉 the ensemble aver-
age. The Strehl ratio values range from 0 to 1 in case of perfect correction, and are usually
expressed in percent.

In order to evaluate the Strehl ratio with Eq. (1.14), the residual phaseφ(x) is explicitly
needed over the entire aperture. This is rarely available in adaptive optics, where the
wavefront aberrations induced by turbulence are random and described statistically. For
large telescope apertures of D À r0 and a good compensation scenario, it is possible to
relate the Strehl ratio directly to the mean square error or variance of the phase

σ2
φ =

〈
1

A

Ï
R2

P (x)
(
φ(x)−φ0

)2 dx
〉

(1.15)

where the so-called piston mode of the phase aberration

φ0 = 1

A

Ï
R2

P (x)φ(x)dx (1.16)

is the average over the aperture and has no effect on the images obtained in the focal
plane [2]. By expanding the exponential in Eq. (1.14) and retaining the first two terms
[15], the Strehl ratio can be approximated as

S ≈ e−σ
2
φ . (1.17)

This widely used expression, often referred to as extended Marechal approximation, is
valid until a phase mean square error of about 4 rad2 [3]. Displaying the Strehl ratio as
strictly decreasing function of σ2

φ, the approximation shows that maximizing the image
quality in terms of Strehl ratio is equivalent to minimizing the mean squared phase over
the telescope aperture. It has been shown that wavefronts with minimum-variance yield
indeed the maximum Strehl ratio [16].

1.2. ADAPTIVE OPTICS IN ASTRONOMY
After having detailed the limitations posed by atmospheric turbulence to the imaging
quality of ground-based astronomical telescopes, the following section provides an in-
troduction to the technique of adaptive optics (AO) which aims at the correction of the
discussed wavefront aberrations. After a description of the conceptual set up and essen-
tial components of a conventional adaptive optics system in Section 1.2.1, a closer con-
sideration of the adaptive optics control loop follows in Section 1.2.2, where the math-
ematical models and optimization problems related to the AO components are intro-
duced. Limitations and error sources of an adaptive optics system are introduced in
Section 1.2.3 to give an insight on the design requirements. The section closes with a
brief description of more advanced adaptive optics configurations that have been con-
ceived for specific applications in Section 1.2.4.
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1.2.1. THE PRINCIPLE OF ADAPTIVE OPTICS
The concept of adaptive optics (AO) in astronomical telescopes [1–3, 17] aims at im-
proving the image quality by compensating the wavefront distortions induced by at-
mospheric turbulence in real time. The optical pathlength differences of the aberrated
wavefront are measured in each point of the aperture and by introducing a corrective
pathlength of opposite sign a flat wavefront is restored. Adaptive optics therefore en-
ables telescopes of diameters D larger than Fried parameter r0 to achieve close to diffrac-
tion limited rather than seeing limited imaging.

Controller

Wavefront 
Sensor

Scientific 
Camera

Flat Wavefront

Deformable 
Mirror

Atmospheric Turbulence

Aberrated Wavefront

Tip-tilt 
Mirror

Beam 
Splitter

Compensated Wavefront

Figure 1.2: Schematic of an adaptive optics system and its main components. (Adapted from Kulcsár et al.
[18].)

The idea of compensating the detrimental effect of the atmospheric turbulence on
the image quality was first suggested by Babcock in 1953 [19] who suggested the use of a
seeing sensor and a wavefront corrector. The first adaptive optics system that overcame
the significant technological difficulties of real time correction of wavefront aberrations
were developed throughout the 1970s by the US Department of Defence and the US Air
force and were employed for satellite detection and compensation of laser beams prop-
agating from ground into space. In the mid-1980s, plans to integrate adaptive optics
in astronomical telescopes took shape in the collaboration of the U.S. based National
Optical Observatory (NOAO), the European Southern observatory (ESO) and the Office
National d’Etudes et de Recherche Aerospatiales (ONERA) in France. First tests of a non-
military application were achieved in 1989 with the Come-On system [20]. An updated
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version was finally mounted on the 3.6 telescope at La Silla and has been operation since
1993. By today, all examples of the current state of the art of 8–10 m telescopes, the Very
Large Telescope (VLT) and Gemini South in Chile as well as the Keck 1 & 2, the Gemini
North and the Subaru telescopes in Mauna Kea, have been upgraded with adaptive op-
tics systems [21–24] to offer the astronomer aberration corrected observation. For the
future generation of extremely large telescopes (ELTs) of diameters between 25 and 40
m that will see first light in the 2020s—the European Extremely Large Telescope (E-ELT),
the Thirty Meter Telescope (TMT), and the Giant Magellan Telescope (GMT)—adaptive
optics compensation is an absolute imperative.

A classical, single-conjugate AO system consists of three main components depicted
in Fig. 1.2: the wavefront sensor (WFS), the deformable mirror (DM) and the controller.
After the passage through the atmospheric turbulence, the aberrated wavefront enters
the telescope with a non zero phase profile φWF(x) where x ∈ R2 denotes the spatial co-
ordinate in the aperture. In a closed-loop setting, the light beam is firstly directed to
the deformable mirror, which is optically conjugated to the pupil plane of the telescope.
Leaving aside segmented mirrors, all types of deformable mirrors consist of a continu-
ous reflective face sheet which is deformed by a set of actuators. An optical pathlength
difference, independent of the wavelength, is produced and introduces a corrective opti-
cal phaseφDM(x). By means of a beam splitter, the reflected light is then divided into two
parts. The first part of the corrected beam is sent to the science camera, where the image
of the celestial object is acquired in the focal plane of the telescope. The remaining light
propagates to the wavefront sensor, which is conjugated to the pupil plane and provides
a quantitative measure about the residual phase profile φ(x) = φWF(x)−φDM(x). A di-
rect measure of the residual phase is not possible and wavefront sensors generally give
information about the wavefront gradient or curvature, which are again independent of
wavelength. The task of the controller is to process the WFS measurements s ∈ RN into
electrical signals u ∈ RM that correctly update the actuator command signals defining
the deformable mirror shape such that the residual phase profile is kept as flat as possi-
ble. With adaptive optics the image distortions at the focal plane are therefore reduced
and imagining quality close to the diffraction limit can be achieved in a particular field-
of-view (FoV) of interest.

In wavefront aberration correction for astronomical application, a distinction is com-
monly made between adaptive optics and active optics [17, 25]. The latter is employed to
compensate large, low frequency wavefront errors which are mainly introduced by grav-
itational and wind forces, temperature variations and the optical shape of the primary
mirror of the telescope. Active optics operates at low temporal frequencies of less than
1 Hz, if compared with correction bandwidths in the range of 100–1000 Hz required for
adaptive optics [3].

1.2.2. THE ADAPTIVE OPTICS CONTROL LOOP

The goal of the adaptive optics control loop is to compensate for the atmospheric phase
aberrations such that the imaging quality of the telescope improves. It was discussed in
Section 1.1.3 that maximizing the imaging quality in terms of Strehl ratio is achieved by
minimizing the variance of the phase aberrations φ(x , t ) present in the telescope aper-
ture at time instant t ∈R for the spatial coordinate x ∈R2. In a closed-loop setting,φ(x , t )
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consists of the residual wavefront i.e. the difference between the incoming atmospheric
phase aberrations φWF(x , t ) and the corrective phase φDM(x , t ) introduced by the de-
formable mirror, as depicted in Fig. 1.2. The controller of an adaptive optics system
aims therefore at computing an update to the corrective phase such that the variance
of the residual phase is minimized. Since a direct measure of the residual phase is not
possible, classical AO control includes a wavefront reconstruction step, to obtain an es-
timate of the residual wavefront from the WFS measurements. The reconstructed phase
is projected onto the space of actuator commands in a second mapping in order to ob-
tain the increment for the update of the deformable mirror. It has been shown that the
reconstruction and projection steps can be considered as static operations and solved
independently without any loss in performance [26]. A temporal compensator accounts
for the temporal evolution of the atmospheric wavefront and for delays occurring in the
control loop, and ensures stability and closed-loop performance of the AO system.

While the considered wavefronts are continuous functions of time and space, in prac-
tice, one is limited to a finite dimensional space at time instants t = kT , with T denoting
the sampling time. For the spatial dimension, there are two general methods of repre-
senting the continuous wavefronts [3]. With the zonal approach a spatial sampling of
the wavefront is obtained by considering a vector φ(k) = φ(x i ,kT ) of phase values on
a grid of points x i ∈ R2, i = 1, . . . , J . The procedure divides the aperture into an array of
independent zones and the representation may be expanded to arbitrarily high spatial
resolution by increasing the number of zones. The modal approach describes the wave-
front as a sum of basis functions of increasing complexity, which are defined over the
entire aperture, resulting in the expansion

φ(x ,k) =
J∑

i=1
φi (k)Zi (x). (1.18)

and a finite representation of the continuous wavefront through the basis coefficient
vector φ(k) ∈ RJ . A widely used basis is given by the Zernike polynomials [27] which al-
low an orthonormal decomposition defined on a support with circular symmetry. The
simple analytic expression of the Zernike polynomials is computationally beneficial, how-
ever higher order polynomials become increasingly difficult to measure and correct. A
further common representations is the Karhunen–Loève basis [28] which has statistically
independent coefficients [2].

For most wavefront sensors the relationship between the (open loop) WFS measure-
ments s(k) ∈RN and the finite dimensional representation of the incoming phase profile
φ(k) can be approximated as linear, yielding the sensor model

s(k) = Gφ(k)+η(k), (1.19)

where G ∈ RN×J is the so-called geometry matrix and η ∈ RN denotes the zero mean,
white and uncorrelated measurement noise vector. The exact form of G depends hereby
on the sensor geometry and the type of basis functions or sampling locations chosen re-
spectively in the modal or zonal representation of the wavefront. The minimum-variance
wavefront reconstruction problem can now be formulated with the 2-norm as

φ̂(k) = arg min
φ(k)∈RJ

〈∥∥s(k)−Gφ(k)
∥∥2

2

〉
, (1.20)
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where vector φ̂(k) ∈ RN denotes the finite dimensional representation of the wavefront
estimate, which is computed via a static, linear operation φ̂(k) = Es(k) with the re-
construction matrix E ∈ RJ×N . There are several early methods [29–31] which treat the
wavefront reconstruction problem of Eq. (1.20) in a deterministic setting by neglecting
the stochastic nature of the wavefront. The resulting least-squares solution [32], ob-

tained with the pseudo inverse E = (
G>G

)−1G> of the geometry matrix, has been im-
plemented for many adaptive optics systems, but is sensitive to high levels of measure-
ment noise. Returning to the stochastic formulation [26, 33, 34] of the wavefront re-
construction problem results in the minimum-variance or maximum a posteriori (MAP)
estimator E = (

G>C−1
η G+C−1

φ

)−1G>C−1
η which can also be interpreted as a regularized

pseudo inverse. Including the stochastic a priori information in form of phase covari-
ance matrix Cφ = 〈

φ(k)φ(k)>
〉 ∈ RJ×J and the measurements noise covariance matrix

Cη =
〈
η(k)η(k)>

〉 ∈ RN×N provides improved performance under low-light level condi-
tions.

The projection of the computed wavefront estimate onto the actuator space is based
on the deformable mirror modelφDM(k) = Hu(k), which is defined by the actuator com-
mand vector u(k) ∈ RM and the influence matrix H ∈ RJ×M . The columns of H corre-
spond to the influence functions that describe the mirror surface deformation associ-
ated with each actuator and are discretized in the same manner as the phase aberrations.
The optimization problem to minimize the mean square fitting error between wavefront
estimate φ̂(k) and DM phase φDM(k) is deterministic and can therefore be formulated
as a least-squares problem

û(k) = arg min
u(k)∈RM

∥∥φ̂(k)−Hu(k)
∥∥2

2 . (1.21)

The optimal actuator command vector is then obtained in a second linear and static
operation u(k) = Fφ̂(k) with the projection matrix F = (

H>H
)−1H> ∈ RM×J . Note, that

in a closed-loop setting, the output of the reconstruction and projection steps does not
represent the full correction but gives the increment with which the current deformable
mirror shape is updated.

While the wavefront reconstruction and deformable mirror projection typically ne-
glect all temporal dynamics in the adaptive optics system, the task of the temporal com-
pensator is to take into account temporal delays in order to provide a good disturbance
rejection and to ensure the stability of the AO system. In classical AO control the tem-
poral compensator consists of a series of parallel feedback loops which are realized by
an integrator with a diagonal gain matrix. While the standard approach assumes the
same gain for all feedback loops, in modal gain optimization the gain of the integrator
controller is optimized for each spatial mode [35–37]. Further more advanced methods
include predictive controllers [38–41] for which delay compensation is achieved by pre-
dicting the evolution of the turbulence, or optimal controllers [18, 42–46] that are based
on a Linear Quadratic Gaussian framework.

1.2.3. ERROR SOURCES AND SYSTEM DESIGN
The main design drivers for an adaptive optics system are the conditions of the atmo-
spheric turbulence and the desired imaging quality after the correction of the phase
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aberrations. The Strehl ratio, introduced as a useful measure of the performance of
imaging system, can be related to the mean square value, or variance, σ2

φ of the re-
maining wavefront error as in Eq. (1.17). The various error sources contributing to the
wavefront error lie either in external factors, including the atmospheric conditions and
characteristics of the reference star used for wavefront sensing, or within limitations of
components and functions of the adaptive optics system itself. Assuming that all er-
ror sources are independent, the mean square wavefront error is approximated as their
sum. This section provides insight on errors introduced by components (see Fig. 1.2) of
the single-conjugate adaptive optics loop discussed in Section 1.2.2. The explanations
assume hereby a point source and follow the discourse provided by Hardy [3].

An important error source in the wavefront sensing and reconstruction step is the
measurement noise in the wavefront sensor. Assuming zero mean and uncorrelated
noise, a diagonal noise covariance matrix Cη = σ2

ηI can be considered for any kind of

wavefront sensor, where σ2
η expressed in rad2 denotes the measurement noise variance,

which depends on the brightness of the reference source. The mean square wavefront
error due to noise propagation in the reconstruction process [2] is then defined through
the noise rejection capability of the reconstructor E, and can be expressed as [47]

σ2
M = 1

N
trace

(
E>E

)
σ2
η, (1.22)

where N is the number of wavefront sensor measurements. The spatial resolution of
the sampling points or basis functions representing the discrete wavefront, gives a sec-
ond source of wavefront measurement error, which is however generally included via
the fitting error of the deformable mirror, whose degrees of freedom pose a fundamental
limit to performance of an AO system. The mean square wavefront error introduced by
the mirror fitting can be derived with the stochastic description of the phase aberrations
from Section 1.1.1 as

σ2
F = aF

(
d

r0

) 5
3

, (1.23)

where d ∈ R is the size of the inter-actuator spacing projected onto the aperture and
aF ∈ R denotes the fitting error coefficient which depends on the influence functions
of the corrector [30]. Wavefront aberrations of mean square value below a threshold of
1 rad2 have little effect on the image quality and, for general purpose, do not need to
be corrected. This threshold allows to derive the order of magnitude for the number
of actuators needed to achieve adequate correction at a given Fried parameter r0 and
telescope aperture diameter.

All adaptive optics systems suffer from a finite time delay between measurement and
correction of the wavefront. Temporal errors are introduced by the limited correction
bandwidth of the adaptive optics control system and pure time delay, respectively caus-
ing mean square wavefront errors of

σ2
T = aT

(
fG

fS

) 5
3

and σ2
D =

(
τ

τ0

) 5
3

, (1.24)

where fS ∈ R is the bandwidth of the feedback controller and constant aT ∈ R depends
on the type of feedback controller and is equal to 1 for a integrator type controller. The
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characteristic frequency of the atmosphere, known as Greenwood frequency [48], fG ∈ R
corresponds to the atmospheric coherence time τ0 introduced in Section 1.1.1. Pure
time delays τ ∈ R occur during CCD read out of the wavefront sensor and processing of
the wavefront sensor measurements [12].

1.2.4. IMPROVED SKY COVERAGE AND WIDE FIELD CORRECTION
The main limitation of single-conjugate adaptive optics (SCAO) is due to an effect called
anisoplanatism. In standard AO the wavefront aberrations acquired along the optical
path between the telescope and the reference source of the wavefront sensor are mea-
sured and corrected. However if the observed object and the reference source are not
the same, the imaging path crosses a different part of the atmospheric turbulence since
it is distributed in volume. The so-called isoplanatic angle θ0 describes the angular dis-
tance between the science object and the reference source at which the mean square
non-common path wavefront error is 1 rad2 [3]. It is defined as [49]

θ0 = 0.314
r0

h̄
cos(γ), (1.25)

where γ is the zenith angle of the reference source and h̄ the weighted height of the tur-
bulent layers computed in analogue manner to Eq. (1.7). A single-conjugate AO system
provides effective compensation only within a FoV equal to 2θ0 around the reference
source. As a function of Fried parameter r0, the isoplanatic angle is wavelength depen-
dent and varies from about 2 arcsec in the visible, to about 10 arcsec in the near-infrared
domain [3].

For wavefront sensing, a bright reference source is required to guarantee adequate
signal-to-noise ratio (SNR) in the measurements. Most celestial objects of interest are
of too high magnitude 1 to serve as a reference source and require a sufficiently bright
star, referred to as natural guide stars (NGS), within angular distance θ0 to benefit from
atmospheric compensation. Using natural guide stars, the sky coverage, i.e. the fraction
of the sky which can be reached by adaptive optics correction, is between 0.001% and
0.1% for the visible and near-infrared domains [3]. The introduction of laser guide stars
(LGS) as reference sources for wavefront sensing was suggested by Foy and Labeyrie [50]
and provides a partial solution to the problem of limited sky coverage. Laser beacons are
generated by ground-based laser beams and can be placed in the vicinity of the science
object of interest. They are created in two ways. Rayleigh beacons are produced through
molecular scattering at altitudes up to 15 km; sodium beacons are generated through
resonance fluorescence in a thin layer of sodium found at an altitude of 90 km [51]. While
being suitable for measuring higher order wavefront components, laser beacons give no
information about the overall tip and tilt aberrations of the incoming wavefront [52].
The laser beam is perturbed by the same turbulence on both ways up and down, and
therefore always appears on axis. Since the star magnitude required for tip/tilt tracking is
much lower than for sensing of high order modes, it can be achieved with a faint natural
guide star. A more limiting factor for aberration compensation with laser guide stars
is the cone effect or focal anisoplanatism caused by the finite height of the laser beacons

1The brightness of stars is given in terms of magnitude. In this logarithmic scale, an increase of one in magni-
tude corresponds to a decrease in brightness by a factor of 1001/5.
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within the Earth’s atmosphere [53]. Only the turbulence in the conical beam produced by
the backscattered light is measured leading to an incomplete probing of the turbulence
on the optical path of the telescope. The introduced wavefront error, which scales with
the telescope diameter and the observing wavelength, prohibits the use of laser guide
star assisted adaptive optics for telescopes of diameter larger than 8 m in the visible [54].
In this a case a constellation of multiple guide stars has to be used. Nowadays, all of the
major 8–10 m ground-based telescopes are equipped with laser guide star AO systems
[55–58].

The fact that single-conjugate adaptive optics correction is only efficient in a very
small FoV prohibits the observation of extended objects like galaxies or clouds whose an-
gular size is larger than the isoplanatic angle. The principle of multi-conjugate adaptive
optics (MCAO) was proposed [59–61] to overcome this limitation by compensating the
atmospheric aberrations in the three dimensional volume above the telescope instead
of a single plane conjugated to the telescope aperture. This is achieved by the coordi-
nated use of multiple wavefront sensors and deformable mirrors. The wavefront sensors
probe the turbulent volume in different directions using a combination of several laser
and natural guide stars. The process of restoring the turbulence distribution in volume
from the WFS measurements is called atmospheric tomography. Tomography eliminates
the cone effect limitation of laser guide stars and allows for a three dimensional correc-
tion of the atmospheric turbulence by optically conjugating several deformable mirrors
to the main turbulent layers. MCAO systems provide uniform, near diffraction limited
correction over 10 to 20 times the FoV achievable with classical adaptive optics [62].

MCAO as such was first demonstrated by Multi-conjugate Adaptive optics Demon-
strator (MAD), a prototype employing several natural guide stars built at ESO [63]. The
first LGS supported MCAO system is the Gemini Multiconjugate adaptive optics System
(GeMS) at the Gemini South telescope, which has seen first light in 2011, achieves near
diffraction limited images at near infrared wavelengths over a field of view of 120 arcsec
[62]. Several variants of new generation of AO systems called wide field AO (WfAO) have
been investigated in the last years, including ground layer adaptive optics (GLAO), multi
object adaptive optics (MOAO) and laser tomography adaptive optics (LTAO).

1.3. PUPIL PLANE WAVEFRONT SENSING
The computationally most complex and intensive part of the AO control loop, and fo-
cus of this thesis, is reconstruction of the wavefront from WFS measurements. The most
popular class of wavefront sensors perform pupil plane sensing [2, 3], where part of the
incoming light is diverted by means of a beam-splitter to a sensor conjugated to the pupil
plane of the telescopes. Pupil plane sensors provide information on the local gradients
or curvatures of the wavefront and are well described by geometrical optics, and there-
fore working with broadband light. They are very suitable for real time application since
the relationship between the unknown wavefront and the recorded data can be approx-
imated as linear in most of the cases.

There is a row of pupil plane sensors, which are shortly mentioned here. The lateral
shearing interferometer [64] combines the incoming wavefront with a shifted version of
itself to form interference. For small shift distances, called shears, the obtained fringe
pattern is proportional to the finite difference of the wavefront in the direction of the
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shift and hence to the local wavefront tilt. The sensor is rarely used in astronomical AO,
since it requires a near coherent scenario, with a loss in fringe contrast seen for broad-
band light, and is complex in hardware and implementation [2]. The curvature sensor
[65] consists of two detector arrays placed at the same distance before and behind the
focal plane. The difference between the two intensity patterns can be related to the lo-
cal WF curvature. The sensor has been implemented for direct actuation of membrane
and bimorph mirrors [3] since the curvature of their deformation is proportional to the
control signals. For the pyramid sensor [66], the incoming wavefront is focused on a
pyramid prism, which divides the beam into four sub-beams. A modulation of the beam
generally enables good illumination of the four pupil images created on a detector. In
geometrical optics approximation, the sensor signals can be shown as proportional to
the phase derivatives. More accurate expressions for the pyramid wavefront signals have
been obtained from diffractive optics theory [67].

The most commonly used pupil plane wavefront sensor in astronomical adaptive
optics is the Shack-Hartmann sensor. This thesis investigates wavefront reconstruction
from Shack-Hartmann (SH) sensor read out. The principles and workings of the sensor
receive therefore greater attention in the next section.

Detector

Aberrated
Wavefront

Lenslet Array

Focal Spot
Optical Axis

Figure 1.3: Schematic of the Shack-Hartmann wavefront sensor. (Adapted from Quiros-Pacheco [13].)

1.3.1. THE SHACK-HARTMANN SENSOR
The Shack-Hartmann (SH) wavefront sensor is based on the procedure of the Hartmann
test, which was improved by Shack and Platt [68], and commonly employed to retrieve
gradient information about the present wavefront aberration in a manner that is very in-
tuitive and depicted in Fig. 1.3. A grid of identical lenses, the so-called lenslet array [69],
is conjugated to the telescope pupil and segments the telescope aperture into a number
of subapertures. An image of the guide star—also referred to as focal spot—is formed
for each subaperture and recorded by a photon sensor, typically a charged-coupled de-
vice (CCD) or four quadrant detectors (quad-cell) [69], located in the focal plane of the
lenslets. When the incoming wavefront is flat, each focal spot is located exactly under
the geometrical center of its respective subaperture, defining a regular grid. In presence
of turbulence, the position of each spot shifts according to the average slope of the wave-
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front part seen by the subaperture. The established way of processing the SH focal spots
is to compute their positions e.g. by determining the centers of gravity through a centroid
algorithm [2] as

cx (i , j ) =
∑

u uIi , j (u)∑
u Ii , j (u)

and cy (i , j ) =
∑

u v Ii , j (u)∑
u Ii , j (u)

. (1.26)

The centroids cx (i , j ) and cy (i , j ) provide a measure of the displacement of the focal spot
from the optical axis of the respective lenslet. The sum is performed for all pixels in the
CCD camera assigned to subaperture (i , j ) which is in the i -th row and j -th column of
the rectangular lenslet array. The intensity Ii , j (u) ∈ R is then measured by the pixel at
location u = (u, v) ∈ R2. By replacing the discrete sum with a continuous integral, it can
be shown that the centroids from Eq. (1.26) are proportional to the averaged wavefront
gradients sx (i , j ) and sy (i , j ) across the corresponding subaperture:

sx (i , j ) = 1

f
cx (i , j ) = λs

2πAs

∫
Pi , j (x)

∂φ(x)

∂x
dx +ηx (i , j ), (1.27)

sy (i , j ) = 1

f
cy (i , j ) = λs

2πAs

∫
Pi , j (x)

∂φ(x)

∂y
dx +ηy (i , j ), (1.28)

where f is the lenslet focal length, λs the measuring wavelength and As the subaper-
ture area. Each subaperture (i , j ) is defined by its pupil function Pi , j (x) for pupil plane
coordinate x ∈ R2, and the measurement noise is represented with ηx (i , j ) and ηy (i , j ).
In this way, the SH wavefront sensor delivers an array of local slope measurements of
the wavefront over the entire telescope pupil, which show linear behavior as long as the
gradients remain small. An important conclusion drawn from Eqs. (1.27)–(1.28) is that
the slope measurements sx (i , j ), sy (i , j ) are independent of wavelength λs since the op-
tical pathlength differences are wavelength independent as well (see Section 1.1.1). This
renders the SH wavefront sensor applicable to broadband light.

The main contributions to the measurement noise ηx (i , j ),ηy (i , j ) in a SH sensor
are the photon shot noise and the detector noise. The variance of the SH measurement
errors due to noise is given, in rad2, by the sum

σ2
η =σ2

ph +σ2
det (1.29)

of the photon shot variance σ2
ph and the detector noise variance σ2

det. Employing a CCD

camera as photon sensor, the variances of the noise contributions can be derived via
Poisson and Gaussian statistic respectively as [2]

σ2
ph = π2

2

1

nph

(
XT

XD

)2

, (1.30)

σ2
det =

π2

3

σ2
e_

n2
ph

(
X 2

S

XD

)2

, (1.31)

where nph is the number of photons captured per subaperture and frame. The full widths
at half maximum (FWHMs) of the focal spot and of the diffraction-limited focal spot of
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a subaperture are given in pixels and indicated by XT and XD. Finally, XS is the size of
the window used to calculate the focal spot centroids, and σ2

e_ the mean square value of
noise electrons per pixel and frame.

The classical wavefront reconstruction methods for local gradient measurements
provided by pupil plane sensors introduced in Section 1.2.2 are based on a finite dimen-
sional representation of the wavefront of either zonal or modal nature. A reformulation
of the SH sensor model of Eqs. (1.27)–(1.28) in terms of these discrete representations of
the phase φ is therefore required. In the zonal case, the local averaged gradients of the
wavefront sx (i , j ), sy (i , j ) are commonly approximated through finite differences (FD).
Considering square subapertures and the so-called Fried geometry [29], the FD model
of the SH wavefront sensor is given by[

sx (i , j )
sy (i , j )

]
≈ γs

2ds

[(
φ(xi+1, y j+1)+φ(xi+1, y j )

)− (
φ(xi , y j )+φ(xi , y j+1)

)(
φ(xi+1, y j+1)+φ(xi , y j+1)

)− (
φ(xi , y j )+φ(xi+1, y j )

)]+[
ηx (i , j )
ηy (i , j )

]
,

(1.32)
where γs denotes the scaling of the integrals in the continuous sensor model of Eqs.
(1.27)–(1.28) and ds the size of the subapertures. The included pupil plane positions
mark the four corners of subaperture (i , j ) and, when gathered for the entire lenslet ar-
ray, define the spatial sampling vector φ ∈ RJ of phase values from Section 1.2.2. It is
emblematic for a zonal SH sensor model, that Eq. (1.32) assumes each subaperture to
receive a tilted wavefront and that higher order aberrations are consequently neglected.
For the sake of completeness, the Hudgin [30] and Southwell [47] FD models which are
also frequently used to approximate the local spatial derivatives should be named. For a
modal expansion of the wavefront in a set of global basis functions as in Eq. (1.18), the
average wavefront gradients can be expressed as[

sx (i , j )
sy (i , j )

]
= γs

[∑J
m=1φm

∫
Pi , j (x)

∂Zm (x)
∂x dx∑J

m=1φm

∫
Pi , j (x)

∂Zm (x)
∂y dx

]
+

[
ηx (i , j )
ηy (i , j )

]
. (1.33)

The resulting local SH sensor model is hence formulated in terms of the spatial deriva-
tives of the chosen basis functions [47], e.g. the Zernike polynomials Zm(x), m = 1, . . . , J ,
and the respective basis coefficients which are the spatial discretization φ ∈ RJ of the
wavefront in modal wavefront reconstruction. By recasting the local zonal or modal
measurement models of Eq. (1.32) and Eq. (1.33) respectively for all subapertures (i , j )
into a global set of equations, the global SH sensor model for zonal or model wavefront
reconstruction is established in the matrix form of Eq. (1.19).

In both the zonal or model case, solely the centroids of the focal spots and hence
information about the local averaged gradients of the wavefront are processed. Higher
order wavefront aberrations present within the subapertures are neglected and the over-
all spatial frequency content retrievable with a SH wavefront sensor is limited by the
sampling introduced with the lenslet array. According to the Shannon theorem, the
maximum spatial frequency measured by a SH lenslet array is of amplitude

∣∣ f s

∣∣ = 1
2ds

,
where ds is the size of the subapertures [13]. For details of spatial frequency larger than∣∣ f s

∣∣, aliasing of the higher order aberrations onto lower frequencies occurs. Retrieval of
these higher order aberrations, via measuring the focal spot displacements, can only be
achieved by increasing the number of subapertures in the SH wavefront sensor in order
to improve the spatial sampling of the wavefront.
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1.3.2. EFFORTS FOR SCALABILITY IN WAVEFRONT RECONSTRUCTION

The classical wavefront reconstruction methods discussed in Section 1.2.2 can be for-
mulated in a matrix-vector multiplication. The reconstruction matrix, derived as the
least-squares or minimum-variance solution of the wavefront reconstruction problem,
is hereby constructed offline and then multiplied with the WFS measurement vector in
online operation to obtain the wavefront estimate. The complexity of computing the
reconstruction matrix and performing the real-time matrix vector multiplication scales
with O (N 3) and O (N 2) respectively, where N is the number of WFS measurements or un-
known values of the discrete wavefront representation. With dozens to hundreds of WFS
measurements, the computational load remains manageable for the standard AO sys-
tems installed at the current generation of 8–10 m telescopes, e.g. NACO [21] at the VLT
with 368 measurements or ALTAIR [56] of the Gemini telescopes with 240 measurements.
More advanced AO configurations on the same category of telescopes result in several
thousand degrees of freedom rendering the required update frequencies of around 1 kHz
a, while increased, still feasible challenge. The Gemini Multiconjugate adaptive optics
System (GeMS) [62] employs 5 LGS illuminated SH sensors, each consisting of a 16×16
lenslet array, to perform the tomographic reconstruction of the atmospheric turbulence.
A new class of high contrast imaging instruments, designed for the detection of extra-
solar planets, are equipped with eXtreme AO (XAO) systems, a high performance single-
conjugate AO variant that is equipped with a very large number of actuators. The XAO
systems integrated in the SPHERE instrument [70] at the VLT and the Gemini Planet Im-
ager (GPI) [71] at the Gemini telescope achieve the necessary high accuracy wavefront
reconstruction with a 40× 40 and 44× 44 SH sensor array respectively [72]. Both wide
field and extreme AO will play a crucial role for future extremely large telescopes (ELTs)
on which they will result in systems with 104–105 degrees of freedom due to the increased
pupil diameters of 30–40 m. Current reconstruction techniques will become computa-
tionally intractable for dimensions of this order. The following section gives an overview
of the long-standing efforts to improve the scalability of wavefront reconstruction meth-
ods which have led to a variety of algorithms that exploit structure and sparsity in the
system matrices of the wavefront reconstruction problem in Eq. (1.20) and often avoid
the explicit computation of the reconstruction matrix. Next to gains in computational
efficiency, the memory requirements are relaxed in the latter case because storage of the
full reconstruction matrix is no longer necessary.

An approach suggested by Freischlad and Koliopoulos (1986 [73]) is based on the Fast
Fourier Transforms (FFT) and was extended to circular apertures and several sensor ge-
ometries by Poyneer et al. (2002 [74]). By filtering the slope measurements to produce
a phase estimate, a direct inversion of the WFS model is performed in the frequency
domain with computational complexity of O (N log N ). An analysis of decentralized al-
gorithms by MacMartin (2003 [75]) considers local reconstructors which compute each
actuator command based on a subset of WF measurements within the neighboring re-
gion. The observed performance degradation on low order global modes is mitigated by
either combining the local and global estimators in a hierarchical multi-layer approach,
or by including prior local estimates which preserves the decentralized structure. The
approaches yield computational complexities of respectively O (N 4/3) and O (N 3/2).

The least-squares solution of the wavefront reconstruction problem discussed in Sec-
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tion 1.2.2 can be computed by only relying on sparse matrix operations [32] e.g. through
a Cholesky factorization or iteratively through conjugate gradient type methods. Al-
though least-squares algorithms give suitable results for classical single-conjugate AO
or extreme AO, they generally shown poor performance for application to MCAO sys-
tems [72]. A regularization term based on priors of the phase statistics is introduced
resulting in the minimum-variance reconstructor discussed in Section 1.2.2. In order
to apply sparse matrix techniques, i.e. Cholesky factorization which reduces the overall
complexity of the reconstructor to O (N 3/2), Ellerbroek (2002 [72]) replaces the inverse
of the non-sparse phase covariance matrix by a sparse approximation. A class of itera-
tive methods based on preconditioned conjugate gradient (PCG) [32] emerged for sparse
and fast computation of minimum-variance wavefront estimates. Aiming at application
for extreme adaptive optics, Gilles et al. (2002 [76]) proposed a multi-grid PCG algo-
rithm, in which the phase covariance matrix is approximated by a block circulant matrix
with circulant blocks allowing for an efficient inversion in the Fourier domain and a total
complexity of order O (N log N ). By employing a faster approximation to the turbulence
statistics, the algorithm was improved to provide scalable, i.e. O (N ) minimum-variance
wavefront reconstruction [77]. The application of multigrid PCG with sparse phase co-
variance matrix approximation to widefield AO has been investigated in Gilles et al. 2003
[78]. For the MCAO configuration, the considered matrix system has as block structure
induced by the atmospheric turbulent layers. While the required Cholesky factorization
of the diagonal blocks scales with O (N 3/2), close to linear computational complexity in
terms of the unknown phase points is achieved for the remaining operations of the al-
gorithm. Tomographic reconstruction at computational cost of order O (N log N ) is pro-
vided by Vogel (2006 [79]) through a Fourier domain preconditioner which is related to
the above mentioned Fourier transform wavefront reconstruction and therefore outper-
forms the multigrid PCG approach.

In view of the gradually materializing designs for the first light instruments of the
planned ELTs, more recent contributions in wavefront reconstruction algorithms aimed
at linear computational complexity. The Haar-wavelet-based reconstruction method by
Hampton et al. (2008 [80]) computes the 2-D Haar wavelet decomposition of the un-
known wavefront by filtering and downsampling of the gradient measurements in an
O (N ) algorithm. Next to the high computational speed, the option of applying stan-
dard wavelet denoising techniques to the WFS data is benefitial. Thiébaut and Tallon
(2010 [81]) presented the Fractal Iterative Method (FrIM), a preconditioned conjugate
gradient based algorithm, which was later extended to atmospheric tomography [82].
By exploiting a fractal approximation of the Karhunen–Loève basis, the authors derived
an operator, which is implemented as a recursive sparse algorithm of linear complex-
ity, for fast computation of the regularization term in the minimum-variance estimator.
Through a line integral approach the Cumulative Reconstructor (CuRe) by Rosensteiner
(2011 [83]) achieves wavefront estimates in O (N ) operations. An iterative scheme in-
tegrates the gradient measurements in x and y direction to create horizontal and the
vertical lines of phase points which are aligned into a 2 dimensional grid. In combina-
tion with a Kaczmarz algorithm the method has been applied to the MCAO configuration
[84, 85]. Further, issues with strongly increased noise propagation for large lenslet arrays
are counteracted by a domain decomposition approach that allows a parallel implemen-
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tation of the method [86].

1.4. FOCAL PLANE WAVEFRONT SENSING
While pupil plane sensors dominate wavefront sensing in real time astronomical AO,
mainly due to the convenient linear phase-measurement relationship, the second class
of wavefront sensors referred to as focal plane sensors have dedicated application cases
and receive increasing attention in real-time application [6, 87]. A focal plane sensor
generally consists of the photon detector, commonly a CCD camera, in the focal plane
of the telescopes which captures images disturbed by aberrated wavefront. The record-
ings contain therefore information about the observed science object and the wavefront
aberrations which are both unknown. Little to no dedicated optics are required and
focal-plane sensors are sensitive to all aberrations degrading the imaging quality of the
telescope. This is opposed to pupil plane WF sensors, which use a beam splitter to divert
part of the incoming light on a dedicated optical path, and are thus effected by non-
common path aberrations. The major drawback of focal plane sensing is the nonlin-
ear relationship of the intensity measurements and the unknown wavefront discussed
in Section 1.1.2, which makes the estimation of the wavefront aberrations, commonly
referred to as phase retrieval problem [88], computationally challenging and real time
application therefore problematic.

1.4.1. THE CONCEPTS OF PHASE RETRIEVAL AND PHASE DIVERSITY
The first practical method performing phase retrieval from focal plane measurements
was suggested by Gerchberg and Saxton (1972 [89]) in the context of electron microscopy.
Based on a single image of a point source, the algorithm finds the phase aberration that
is most consistent with the known pupil function and the measured intensity distribu-
tion by employing the theory on the wave field propagation discussed in Section 1.1.2.
In a series of projections, executed by the Fourier transform and its inverse, the con-
straints in the pupil and focal plane, i.e. the known aperture and the measured image,
are iteratively enforced on the complex wave field in the two domains until the algo-
rithm converges. The approach was further advanced by Gonsalves (1976 [90]), who em-
ployed a gradient-search method, and by Fienup (1982 [88]), who established the link be-
tween the projection-based algorithm and the minimization of a least-squares criterion
in terms of the unknown aberrations. The two major limitations of these phase-retrieval
methods are firstly their sole applicability to point sources and secondly a sign ambigu-
ity in the reconstructed phase [87]. From the definition of the point spread function in
Eq.(1.8) it can be seen that for a real and even pupil function P (x) two phase profilesφ(x)
and φ′(x) =−φ(−x) lead to the same point-spread function, since∣∣F {P (x)eiφ(x)}

∣∣2 = ∣∣F {P (−x)ei(−φ(−x))}
∣∣2. (1.34)

Hence even if the object is known, the solution of the phase retrieval method from one
image is not unique because of a sign indetermination of the even part of the phase.
Gonsalves (1982 [91]) showed that by recording a second image with an additional known
phase aberration with respect to the first image (e.g. defocus), the sign ambiguity of the
solution can be removed. Further it becomes possible to estimate the unknown phase
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even in the case of extended and unknown objects. The technique, referred to as phase
diversity [91–94], is illustrated in its most common setup in Fig.1.4. The conventional
focal plane image i0 is degraded by the unknown phase aberration φ and the additional
diversity image i1 of the same object o is formed after reflexion by a beam splitter onto
a second detector that is defocused by a known amount. The two resulting image equa-
tions

i0 = p(φ)∗o +η0, (1.35)

i1 = p(φ+φD,1)∗o +η1, (1.36)

are formed according to Eq. (1.9), with φD,1 denoting the known diversity phase. The
point spread function p(·) is indicated as a function of the respective phase aberration
and η represents the measurement noise in the focal plane images. Gonsalves [91] has
formulated the problem of identifying the combination of object and phase which is
compatible with the data as the nonlinear least-squares problem

min
(o,φ)

(∥∥i0 −p(φ)∗o
∥∥2

2 +
∥∥i1 −p(φ+φD,1)∗o

∥∥2
2

)
. (1.37)

After parametrization of the wavefront through polynomial expansion, the metric is al-
ternately minimized for object o, by translation to the Fourier domain, and phase φ by
applying the nonlinear gradient search algorithm mentioned with respect to the phase
retrieval problem. The results were later extended to allow more than two diversity mea-
surements [92] and the application with extended objects [93, 94] .

Aberrated
Wavefront

Beam Splitter

Lens

CCD1

CCD2
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Known Defocus
Length

Conventional 
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Figure 1.4: Schematic of a phase diversity system. (Adapted from Paxman et al. [92] and Roddier [2].

Phase diversity sensors are easy to optically implement and calibrate, and do not suf-
fer from non-common path aberrations since the science image is directly processed,
but the high computational cost makes application in real time correction challenging
[87]. The iterative procedures that solve the phase diversity problem depend on the
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imaging model of Eq. (1.9) involving convolutions which are generally implemented us-
ing computationally demanding Fast Fourier transforms (FFT). Efforts towards speeding
up phase-diversity estimation aim on the one hand at faster convergence by proposing
more advanced numerical algorithms [95, 96]. On the other hand, modifications to the
cost function, which is used to estimate the aberrations and the object from the data,
have been suggested [94, 97]. Hereby, new metrics are often developed with a focus on
reducing the number of required Fourier transforms. Additional difficulties arise from
the limitation of phase diversity methods to narrow spectral bands and the fact that in-
tensity measurements only sense the phase modulo 2π. The latter results in so-called
phase wrapping when the peak-to-valley variation of the turbulence induced phase is
larger than 2π [87]. Despite continuous advances on fast phase diversity methods, the
involved computing time of the phase estimates is significant with regard to the tem-
poral evolution of the turbulence and current AO systems rely mainly on pupil plane
sensing. Applications of phase diversity sensing for real-time AO correction has been
achieved for a small number of aberration modes, with early demonstrations presented
by Gates et al. (1994 [98]) and Kendrick et al. (1994 [99]).

A more obvious field of application is the calibration of optical telescopes and cor-
rection of quasi-static aberrations [87]. Phase diversity has been proven suitable for
the compensation of slowly varying aberrations introduced by shortcomings of the tele-
scope and AO system themselves, where errors can originate in misalignments, tempera-
ture variations or design and fabrication faults of the optical components. Calibration of
non-common path aberrations of only the AO system and the science camera has been
demonstrated pair NAOS/Conica at the VLT [100]. Correction of atmospheric aberration
through phase diversity is often realized through post processing of recorded images.
Image restoration may hereby be performed on uncompensated or AO-compensated
image, where the latter is of importance since AO correction through adaptive optics is
always partial and impaired by non-common path aberrations [101, 102].

1.4.2. SMALL PHASE SOLUTIONS FOR REAL TIME APPLICATION

The main factor limiting the application of phase diversity in real-time AO correction
is the high computational complexity of early methods, solving the underlying nonlin-
ear optimization problem, which entail the repetitive evaluation of Fourier transforms
and are prone to converge to local minima. A branch of recent methods, achieving de-
creased complexity for the involved calculations, has been derived from a contribution
by Gonsalves (2001 [103]) who suggests a small phase approximation of the phase re-
trieval problem. The presented closed-form solution is based on a first order approx-
imation of the complex field in the pupil plane assuming that the unknown phase is
small. The phase is described separately in its even and odd parts, and retrieved from
two simultaneous images of a point source. A single in-focus image suffices hereby to
estimate the complete odd phase component and the modulus of the even component
of the complex field in the focal plane. A phase diversity, typically defocus, is applied to
the second image which is used for the remaining sign determination of the odd part.

The concept of small phase solutions has been realized in several iterative methods
in order to expand the limited validity range of the approximation. In two closely related
approaches [104, 105], a first order approximation is derived for the image of the point
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source in the focal plane to which a known diversity phase was applied. The nonlinear
relationship between the intensity distribution and the unknown phase is hereby lin-
earized through a first-order Talyor expansion, with regard to the modal representation
of the phase, which allows the reformulation of the phase diversity problem as a linear
regression framework.

The linearized focal-plane technique (LIFT) by Meimon (2010 [104]) was designed for
the sensing of low order aberrations, due to low order turbulence and telescope wind-
shake, with a faint natural guide star in Laser Tomography AO systems. The phase re-
trieval method is intended for application in a good correction scenario of Strehl ratios
≤ 30% and performed in 3 iterations on a single focal plane picture that was exposed
to a π/8 radian astigmatism diversity phase. In each iteration, the Taylor expansion is
developed around zero phase aberration in the first and around the current estimate in
the subsequent iterations. This is followed by the computation of the maximum likeli-
hood estimate of the phase increment which minimizes the residual between the mea-
sured intensities and the obtained linearized intensity model evaluated for the current
phase estimate. An experimental validation of tip/tilt and focus estimation with LIFT
has been provided for monochromatic light and in a large spectral bandwidth scenario,
with a better sensitivity than the generally employed 2×2 SH sensor [106]. The concept
was demonstrated on-sky in open-loop with GeMS, the multi-conjugate adaptive optics
system of Gemini South [107].

Smith et al. (2012, [105]) introduced the iterative linear phase diversity (ILPD) method
which is intended for real time estimation including higher order phase aberrations with
larger amplitudes up to 1 rad rms. The ILPD method is evaluated in a closed-loop scheme
and processes at each iteration a single full aperture image, which is recorded at a 2 rad
defocus offset and includes the optical correction of the previous estimate. Assuming
that the science camera frame rate and the deformable mirror are sufficiently fast com-
pared to the changes in the wavefront, the amplitude of the unknown residual phase de-
creases which improves the validity of the linear approximation of the focal plane point
source image which is considered around zero phase for all iterations. Hence, the Taylor
expansion deriving the small aberration approximation can be precomputed and no on-
line evaluations of the Fourier transform are required. This reduces computation of the
least-squares estimate in each iteration to a matrix-vector multiplication of computa-
tional complexity O (M N ) where M is the number of included pixels, and N the number
of polynomials included in the modal expansion of the unknown phase.

A further iterative offshoot of the small phase solution is the Fast & Furious (FF)
method by Keller et al. (2012 [108]). The approach modifies Gonsalves’ original ana-
lytical solution to the phase retrieval problem based on a second order approximation
of the complex optical field in the pupil plane, which leads to a significant extension
of the application range of the method range to aberration of amplitudes of ∼1.5 rad
rms. With sequential instead of simultaneous acquisition of the phase diversity images,
a second procedure introduced by Gonsalves (2010 [109]), the sequential phase diversity,
is adopted. Considered in a closed-loop scenario, each iteration produces an estimate of
the residual phase which is used to update the deformable mirror. The correction change
generates the phase-diversity in the newly capture image which is used in combination
with the image of the previous iteration to compute the following phase increment. It is
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showns that one iteration can be performed with a single, 2D Fourier transform, yielding
a computational complexity of O (N log N ) for N actuators. Next to the requirements of
small aberrations, a monochromatic point sources and a sufficiently fast camera frame
rate, the FF algorithm is limited by assumption of an even pupil function. An adaptation
[110] of the method solves this issue by combining it with a Gerchberg–Saxton type pro-
cedure that also estimate the pupil amplitudes. While for conceptualized high resolution
imaging enabled by wavefront correction with the extreme AO systems on the future ELT
generation, further potential applications are the sensing of non-common path aber-
ration and slow low-order modes. Closed-loop simulations [111] demonstrated the FF
method as a suitable focal plane sensor for real-time detection of the the so-called low
wind effect encountered in the SPHERE instrument [70] at the VLT.

1.5. MOTIVATION AND SCOPE OF THE THESIS
In the coming decade, a new generation of extremely large-scale ground-based astro-
nomical telescopes will see first light. It is well understood that increasing the size of
the telescope aperture is only beneficial if the adaptive optics (AO) system, which com-
pensates for turbulence-induced wavefront aberrations, scales accordingly. This applies
not only to conventional AO, but also to the more advanced configurations of wide-
field adaptive optics (WfAO) and extreme adaptive optics (XAO) which will be of great
importance for the class of extremely large-scale telescopes (ELTs). The designs of the
multi-conjugate adaptive optics modules MAORY [112] and NFIRAOS [113] planned for
the European Extremely Large Telescope (E-ELT) and the Thirty Meter Telescope (TMT)
respectively include 6 laser guides stars for high order tomographic wavefront sensing
to provide uniform compensation over an extended field of view. The extreme AO sys-
tems of the exo-planet imaging instruments EPICS [114] at the E-ELT and PFI [115] at the
TMT on the other hand aim at very high contrast wavefront estimation and correction
in a single-conjugate AO setting for a narrow field of view. The discussed configurations
yield the challenge to compute in the order of 104–105 unknown phase points at kHz
range frequencies to update the actuator commands of the corrective devices, consisting
of one or several deformable mirrors (DMs). The work on fast algorithms for wavefront
reconstruction (WFR) in real-time application has therefore been extensive [72–86].

Conventional WFR methods estimate the unknown wavefront from local gradient
measurements which are provided by a wavefront sensor (WFS) located in the telescope
pupil plane. They are generally based on a linear relationship between the unknown
wavefront and the sensor read out, and assume one of the two following principles [3].
Zonal methods represent the wavefront as discrete phase points in terms of which the
sensor model is formulated, leading to a per se local phase-measurement relationship.
The second group of modal methods expand the wavefront with a set of globally defined
polynomials, e.g. Zernike [27] and Karhunen-Loève [28] polynomials, which results in
a sensor model that acts on the entire sensor domain. The state of the art in gradient-
based WFR consists predominantly of efficient linear regression algorithms [77, 81] that
rely on sparse matrix techniques and iterative solvers, and scale linearly with the num-
ber of unknowns. However, even with linear complexity orders, the computational loads
are dependent on a WFS array wide—or global—count and scaling with the telescope
aperture diameter, such that the limit in single CPU core performance will be reached
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at a certain point. While certain computational operations can be parallelized [116],
most current WFR methods were not designed specifically for parallel processing archi-
tectures and their underlying construction is that of a non distributed global algorithm,
which generally manifests in a full reconstruction matrix. As a direct consequence, the
wavefront estimate can only be calculated at a single central point where all WFS mea-
surements must be gathered and at which the wavefront estimate is projected onto the
actuator command space. The parallel implementation of the CuRe line integral ap-
proach [83, 86] demonstrated that, due to the mentioned local phase-measurement re-
lationship, a distributed solution of a zonal WFR method can be achieved rather straight-
forwardly when no statistic information on the phase is included. This does in general
not apply to modal methods since the commonly employed basis polynomials have a
global support over the entire pupil domain. In order to obtain a modal solution within
a distributed framework, an alternative set of basis functions that provide a locally well
defined expansion of the wavefront has to be used.

Within the AO group of the Delft Center for Systems and Control, the Spline-based
ABerration REconstruction (SABRE) method [117] has been developed to address the
challenge of a modal wavefront model that supports a zonal phase-measurement con-
nection. The approach uses multivariate simplex B-spline functions [118] in a linear
regression framework to solve the WFR problem and was conceptualized for gradient
measurements of the frequently used Shack-Hartmann (SH) sensor [68]. The choice of
multivariate simplex B-splines for modal wavefront representation was made for several
reasons. Firstly, the simplex B-splines have an arbitrarily high approximation power on
a global model scale, which is invoked by the resolution of the underlying triangulation
constituting the geometric support structure of the model [119]. This gives an advantage
over the commonly used global polynomials, i.e. Zernike and Karhunen-Loève polyno-
mials, which are limited in their spatial resolution and subjected to oscillations on the
domain edges (i.e. Runge’s phenomenon [120]) for high spatial order modes. Further,
the simplex B-spline models are parametric and linear in their coefficients, allowing for
an efficient high accuracy wavefront model over large pupil domains and the application
of linear regression methods for the wavefront estimation [121]. Finally, the simplex B-
splines carry a local polynomial basis, which results in efficient computational schemes
since only small subsets of coefficients and basis functions need to be considered for
estimation and evaluation procedures [119]. The B-spline basis functions are hereby
defined on single simplices, i.e. triangles in the considered 2D case, which are joined
into a triangulation that covers the domain of interest and constitutes the support of the
global spline model. In the SABRE framework, the SH WFS geometry determines the tri-
angulation which is carried on vertices that form the simplices, and the simplex B-spline
model of the unknown wavefront is defined in the entire pupil plane of the AO system.
The method is invariant of the WFS geometry in the sense that non-rectangular or par-
tially obscured sensor grids can be accommodated by inhomogeneous distribution of
the vertices [117]. Ultimately, the SABRE method unifies the strong points of both modal
and zonal approaches. The polynomial description of the wavefront estimates results in
good noise rejection properties and provides an analytical solution to the WFR problem
in the entire pupil plane. With the support of the B-spline basis functions confined to a
single triangle, the sensor model linking B-coefficients and SH measurements remains
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however locally bound [117].
The focus of this thesis lies on advancing the B-spline framework for WFR from SH

measurements in terms of computational efficiency and reconstruction accuracy by ex-
ploiting this twofold character of the method. The findings are demonstrated and scruti-
nized in numerical simulations, while experimental and on-sky demonstrations are not
within the scope. In the first matter of this work, an inherently distributed solution to the
WFR problem intended for execution on multi-core hardware is developed, founded on
the local nature of the B-spline functions. The approach combines a domain decompo-
sition ansatz [122] with the linear regression of the original global SABRE, realizing the
distributed modal WFR method motivated at the beginning of this section. Adequate
reconstruction accuracy, generalization to circular and annular pupils and robustness
towards low-light scenarios are further criteria met by the algorithm [123]. A parallel
implementation of the method for graphics processing units (GPUs) is attained and an-
alyzed, and proves that the resulting algorithm is scalable to application on AO systems
of dimensions expected with the XAO configurations of future ELTs [124]. The extremely
high resolution wavefront estimation required for XAO systems [114, 115] also motivates
the second leg of the thesis. Since the SH measurements are commonly processed in
form of focal spot centroids, the sensor read out is reduced to local gradient information
which results de facto in a locally linear wavefront estimate [47]. With this procedure,
the spatial resolution can only be improved by increasing the number of subapertures
in the SH lenslet array. This work investigates the potential of increasing the reconstruc-
tion accuracy achievable with a given SH array by retrieving additional higher order in-
formation from the focal spot patterns, which allows employing higher degree B-spline
polynomials to model the wavefront at increased spatial resolution. Two procedures
to inflate the information content recovered from the SH patterns are established and
tested. The first approach analyses the accuracy improvement when next to the first or-
der moments, i.e. the centroids, also the second order moments [125–127] of the focal
spots are processed and included in the WFR process [128]. Even higher spatial resolu-
tion in the estimates is obtained by applying focal plane sensing techniques to each of
the intensity distributions in the SH focal spot pattern. In its original application, focal
plane sensing performs phase retrieval [88–90] directly from the focal image in the sci-
ence camera of the optical system. Adaptive optics compensation can then be executed
without additional pupil plane sensors. Due to the nonlinear relationship between the
intensity measurements and the unknown phase profile, early phase retrieval methods
are computationally expensive iterative procedures that often require a large number of
focal images. The introduction of the phase diversity concept [91] and algorithms based
on the assumption of small phase aberrations [103] accelerated the intensity-based al-
gorithms and lead to first successes in real-time AO correction [98, 99, 107]. The study of
focal plane sensing for the SH sensor presented in this work formulates the small aber-
ration phase retrieval problem with phase diversity for the simplex B-spline framework
and exploits again the locality of the measurement-phase relation to create a fast algo-
rithms based on structure and sparsity that is prevalent in the underlying estimation
problem [129].
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1.6. ORGANIZATION AND OUTLINE OF THE THESIS
This thesis is divided into two parts, treating computational load distribution and par-
allelization for the SABRE method on the one hand, and nonlinear B-spline wavefront
reconstruction through focal plane techniques applied to SH focal spots on the other
hand. The main chapters of the dissertation are based on four journal publications
which embody the main scientific output of this PhD project. They are are not orga-
nized in chronological order but with regard to the associated matter of distributed or
nonlinear WFR. The chapters contain, next to the introduction and theoretical analy-
ses of the developed algorithms, numerical experiments that examine the WFR accuracy
and noise resilience of the respective methods in Monte-Carlo simulations. Finally, the
last chapter summarizes the conclusions drawn throughout this thesis and gives rec-
ommendations for future work. The original work of de Visser and Verhaegen [117] on
the SABRE method is the starting point of this thesis and therefore cited various times
in the manuscript. A summary of this publication was therefore added in the Appendix
chapter.

1.6.1. DISTRIBUTED SPLINE-BASED WAVEFRONT RECONSTRUCTION

The first part of this thesis entails the contributions on a distributed wavefront recon-
struction method using B-spline polynomials which was designed in particular for large-
scale wavefront reconstruction problems, as encountered with XAO systems.

CHAPTER 2
The second chapter of this work proposes the Distributed Spline based ABerration RE-
construction (D-SABRE) method for application on large-scale AO systems and imple-
mentation on parallel processing architecture. The D-SABRE method decomposes the
WFS domain into any number of partitions and solves a local WFR problem on each
partition using the B-spline framework introduced with the SABRE method. In a second
stage, piston mode offsets between the local estimates are eliminated in an iterative, but
distributed procedure which requires solely communication between neighboring par-
titions. A detailed analysis of the method’s computational complexity finds the theoret-
ical speedup compared to the SABRE algorithm scaling quadratically with the number
of partitions. Numerical experiments show that the D-SABRE reconstruction accuracy
remains within 1% of the global approach for low to moderate noise scenarios. An ex-
tensive comparison with the distributed version of the CuRe line integral method in both
open-loop and closed-loop simulations, that are obtained with the Yorick Adaptive Op-
tics (YAO) simulation tool, proves the competitiveness of D-SABRE with respect to the
state of the art in distributed WFR.

This chapter is based on the following publication:

C. C. de Visser, E. Brunner and M. Verhaegen, On distributed wavefront reconstruction
for large-scale adaptive optics systems, Journal of the Optical Society of America A, 33:
817-831, 2016.



1

28 1. INTRODUCTION

CHAPTER 3
In the third chapter, an adaptation of the D-SABRE method to application on extremely
large-scale AO systems and the execution on GPUs is presented. The introduction of a
hierarchical multi-level scheme for the elimination of the piston offsets between the lo-
cally computed wavefront estimates solves a crucial issue of piston error propagation
observed for large numbers of partitions with the original version. In order to obtain a
fully distributed method for wavefront correction, the projection of the phase estimates
onto the deformable actuator space is locally approximated and applied in a distributed
fashion, providing stable results for low and medium actuator coupling. The findings
are supported in numerical experiments which are generated with the Object–Oriented
MATLAB Adaptive Optics (OOMAO) simulation tool. Based on further adjustments to
the D-SABRE method under consideration of the hardware at hand, an implementation
with the parallel computing platform CUDA is presented that succeeds in exploiting the
scalability of the algorithm. With a standard off-the-shelf GPU, the computation of the
AO correction updates is achieved in less than one millisecond for the benchmark case
of a 200×200 subaperture array which is representative of the XAO system of the future
E-ELT planet finder.

This chapter is based on the following publication:

E. Brunner, C. C. de Visser, C. Vuik and M. Verhaegen, A GPU implementation for spline
based wavefront reconstruction, Journal of the Optical Society of America A, 35: 859-872,
2018.

1.6.2. NONLINEAR SPLINE-BASED WAVEFRONT RECONSTRUCTION
The second part of the thesis is dedicated to two approaches which improve the res-
olution of the B-spline wavefront estimates by extending the method to higher degree
polynomials, while maintaining the beneficial local nature of the approach. This was be
achieved by increasing the data content retrieved from SH focal spot patterns.

CHAPTER 4
The fourth chapter presents the novel concept of simplex B-spline wavefront reconstruc-
tion using the first and second order moment measurements extracted from the SH fo-
cal spot patterns. Taking into account the integrative nature of the SH sensor, the ex-
pressions for the moments of the intensity distributions in the focal spots are derived
in terms of the simplex B-spline coefficients. The wavefront reconstruction problem is
then formulated as a nonlinear optimization problem which is suitable for fast and po-
tentially distributed solutions, since the zonal or local character discussed for the first
moment, i.e. centroid, based SABRE method prevails. Numerical experiments focus on
the sensitivity, achieved with the resulting SABRE-M (for Moment measurements) algo-
rithm, to aberrations of increasing spatial orders. It is shown that on a given SH array
the SABRE-M method is superior to the SABRE method and that this advantage is as ex-
pected reinforced if higher order aberrations are present within the single subaperture
domains. Equal reconstruction accuracy is obtained with the SABRE-M employing cubic
polynomials on a SH grid of halved sampling. Therefore the number of lenslets which
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are required to accomplish a certain performance is reduced, creating improved signal-
to-noise ratio at a given number of captured photons.

This chapter is based on the following publication:

M. Viegers, E. Brunner, O. Soloviev, C. C. de Visser and M. Verhaegen, Nonlinear spline
wavefront reconstruction through moment-based Shack-Hartmann sensor measurements,
Optics Express, 25: 11514-11529, 2017.

CHAPTER 5
In the fifth chapter, an extension of the simplex B-spline framework to phase retrieval
from SH intensity measurements is obtained via small aberration approximations of the
focal spot models. Directly processing the pixel information of the SH intensity patterns
allows the employment of cubic or potentially higher order polynomials for high accu-
racy reconstruction. The application of focal plane techniques to the focal spots rids
SH wavefront sensing from the limitation in achievable spatial resolution imposed by
the number of lenslets for conventional gradient-based reconstruction. Both, in terms
of B-spline coefficients, linear and quadratic focal spot models are considered and the
trade off in improved accuracy and increased computational effort is discussed. The
local support of the B-spline basis functions and a known diversity phase, that is intro-
duced in each subaperture to avoid sign ambiguity in the even modes, are key to the
presented fast solution of the underlying optimization problem. In order to guarantee
the validity of the small aberration approximations, the method is applied in two correc-
tion steps, with a first compensation of large low order aberrations through the gradient-
based linear SABRE followed by compensation of remaining high order aberrations with
the intensity-based SABRE-I.

This chapter is based on the following publication:

E. Brunner, C. C. de Visser and Michel Verhaegen, Nonlinear spline wavefront recon-
struction from Shack–Hartmann intensity measurements through small aberration ap-
proximations, Journal of the Optical Society of America A, 34: 1535-1549, 2017.
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CHAPTER ABSTRACT
The Distributed Spline-based ABerration REconstruction (D-SABRE) method is proposed
for distributed wavefront reconstruction with applications to large-scale adaptive optics
systems. D-SABRE decomposes the wavefront sensor domain into any number of parti-
tions and solves a local wavefront reconstruction problem on each partition using mul-
tivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup
that scales quadratically with the number of partitions. The D-SABRE method is com-
pared to the distributed Cumulative Reconstruction (CuRe-D) method in open-loop and
closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accu-
racy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more
robust to variations in the loop gain.

The content of this chapter has been published in [123].
@2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic
reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes,
or modifications of the content of this chapter are prohibited.
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2.1. INTRODUCTION

I n the coming decade, a new generation of extremely large-scale optical telescopes
will see first light. It is well known that increasing the size of the telescope aperture

is only beneficial if the adaptive optics (AO) system, which compensates for turbulence-
induced wavefront aberrations, scales accordingly [65]. In particular, the total number
of wavefront sensors (WFS) and deformable mirror (DM) actuators required in an AO
system to obtain a given image quality is determined by the telescope diameter and the
Fried coherence length [29]. To update the DM actuator commands such that the incom-
ing aberrated wavefront is corrected the global wavefront phase has to be reconstructed
from the WFS measurements at kilohertz range frequencies.

Most conventional wavefront reconstruction (WFR) methods, like the finite differ-
ence (FD) method [29, 31, 47], can be formulated as a matrix vector multiplication (MVM)
in which a reconstruction matrix is first constructed offline, and then multiplied online
with a vector of WFS measurements to obtain the unknown wavefront phase. The com-
putation of the reconstruction matrix in its most naive form is an O(N 3) operation, where
N is the number of unknown phase samples. Applying the real-time MVM scales with
O(N 2). For the extreme-AO (XAO) system of the future European Extremely Large Tele-
scope (E-ELT) the number of unknowns N is in the range of 104–105. Current real-time
performance of standard methods fails to meet the required update frequency for such
systems. Hence, there has been a focus on improving the computational efficiency of the
WFR operation.

Currently, one of the most computationally efficient zonal reconstruction methods
is the Cumulative Reconstruction (CuRe) method, which is of complexity order between
O(12N ) and O(19N ), depending on the implementation [83]. Fourier domain methods
are an efficient alternative to the MVM methods discussed above, because the partial
differential equations that relate the wavefront slopes to the wavefront itself can be re-
duced to division schemes in the complex plane. The Fourier domain method presented
by Poyneer et al. in [74] has a time efficiency of O(N log N ). The Haar wavelet based re-
construction method by Hampton et al. reach efficiencies of the order O(10N )[80]. In
the class of iterative methods, the complexity of a multigrid PCG algorithm presented by
[76] scales with O(N log N ). The Fractal Iterative Method (FrIM) by Thiébaut and Tallon
[81] provides a minimum-variance solution of linear complexity with the computational
cost depending on the number of iterations.

While the state of the art in high performance WFR methods reach linear compu-
tational complexity orders, it is important to note that these numbers are WFS-array
wide, or global, numbers. Even with a linear complexity order, the limit in single CPU
core performance will be reached at some point. The disadvantage of current wave-
front reconstruction methods is that they have not been designed specifically for paral-
lel processing architectures. While certain computational operations can be parallelized
straightforwardly (e.g. MVM multiplications can easily be distributed over multiple CPU
cores), their underlying construction is that of a nondistributed global method. As a di-
rect result of this, the reconstructor can only be calculated at a single central point at
which all WFS measurements must be gathered and at which the DM influence matrix is
calculated. A tell-tale sign of any nondistributed global method is that the global recon-
struction matrix is a dense matrix.
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Recently, an extension of the CuRe algorithm [86] was proposed which combines
the original line integral approach with domain decomposition to tackle the high noise
propagation of the centralized algorithm. This distributed version of CuRe, called CuRe-
D, scales with O(20N ) and has been shown to be suitable for parallel implementation.

The main contribution of this paper is a distributed wavefront reconstruction method
which is designed in particular for use in XAO systems and introduced as the Distributed
Spline Based Aberration Reconstruction (D-SABRE) method. The D-SABRE method is
an extension of the recently introduced SABRE method which first used multivariate
simplex B-splines to locally model wavefront aberrations on nonrectangular WFS arrays
[117]. The D-SABRE algorithm is based on a decomposition of the global wavefront sen-
sor domain into any number of triangular partitions, where each partition supports a
local SABRE model which depends only on local WFS measurements.

The D-SABRE method is a two-stage method in which each stage is a distributed op-
eration. In the first stage, a local wavefront reconstruction problem is solved in parallel
on each triangular partition using local WFS slopes, resulting in a local SABRE model.
Each SABRE model has an unknown piston mode, and as a result, there is no continuity
between SABRE models on neighboring partitions. In the second stage of the D-SABRE
method, a continuous global wavefront is reconstructed by equalizing the piston modes
of the local SABRE models using a new distributed piston mode equalization (DPME)
algorithm. Additionally, the dual ascent method from [130] is reformulated into a new
efficiently distributed form by exploiting the inherent sparseness of the D-SABRE recon-
struction and constraint matrices.

The advantages of the D-SABRE method over current distributed wavefront recon-
struction methods can be summarized as follows:

1. D-SABRE is based on a local least-squares estimates and has, in this sense, locally
optimal noise rejection.

2. D-SABRE does not suffer from noise propagation, and the accuracy and noise re-
silience actually improve on a global scale as the size of the partitions increases
and as the global WFS array increases in size.

3. Certain parallel hardware such as a GPU fulfill their potential speedup only for a
sufficiently large computational task per processor, i.e. partitions cannot be cho-
sen too small. This requirement is completely in line with the fact that D-SABRE
accuracy and noise resilience increase with increasing partition size.

4. The D-SABRE wavefront is an analytic solution to the wavefront reconstruction
problem. Without any further interpolation leading to additional approximation
errors, phase estimates are available at any location in the WFS domain. This is an
advantage in case of misalignments between the actuator and subaperture arrays
or if a different actuator distribution is given.

The D-SABRE method currently presented should be seen as baseline, or the simplest
possible version. Future versions will include higher degree (e.g. cubic) splines which
will require fewer subapartures and further increase accuracy, more advanced sensor
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models like that presented in [131], and more advanced estimators such as the minimum-
variance estimator that exploit a priori knowledge of the turbulence and wavefront statis-
tics.

This paper is outlined as follows. First, we provide brief preliminaries on the SABRE
method for wavefront reconstruction in Section 2.2. We introduce the new D-SABRE
method in Section 2.3 and also provide analyses of algorithm convergence and compu-
tational complexity. Additionally, a tutorial example of the D-SABRE algorithm is pre-
sented in Section 2.3. In Section 2.4, the results from a numerical validation are dis-
cussed, where D-SABRE is compared to the global SABRE method and the distributed
CuRe-D method [86] in open- and closed-loop simulations. Finally, conclusions are pro-
vided in 2.5.

2.2. PRELIMINARIES ON THE SABRE METHOD FOR WAVEFRONT

RECONSTRUCTION
The D-SABRE method is an extension of the recently introduced SABRE method for
wavefront reconstruction. In order to aid the reader in the understanding of the the-
ory, preliminaries on the SABRE method will be provided in this section. For a more
in-depth coverage of the matter, we refer to the introductory work on SABRE in [117] or
the Appendix A of this thesis.

2.2.1. WAVEFRONT RECONSTRUCTION FROM SLOPE MEASUREMENTS
The relationship between the slopes of the wavefront phase and the wavefront phase
can be described in the form of the following system of first-order partial differential
equations [31]:

σx (x, y) = ∂φ(x, y)

∂x
, (2.1a)

σy (x, y) = ∂φ(x, y)

∂y
, (2.1b)

with φ(x, y) as the unknown wavefront, and with σx (x, y) and σy (x, y) as the wavefront
slopes at location (x, y) in the directions x and y , respectively.

2.2.2. THE SABRE METHOD ON A SINGLE TRIANGLE
The local model elements of a SABRE model are defined on individual triangles, rather
than on the rectangular elements used by FD methods. In [117] it is shown that on a
single triangle, denoted t , the wavefront phase φ(x, y) is approximated with a SABRE
model of degree d as follows:

φ(x, y) ≈ Bd (b(x, y)) ·c t , d ≥ 1, (x, y) ∈ t (2.2)

with Bd (b(x, y)) as the vector of basis polynomials and with c t as the vector of B-coefficients.
The values in the vector of basis polynomials Bd (b(x, y)) depend only on the geometry
of the sensor array and the polynomial degree d . Therefore, at any given time instant,
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the particular form of the SABRE model is determined by the B-coefficients c t . Con-
sequently, wavefront reconstruction with SABRE essentially consists of estimating the
values of the B-coefficients given a set of WFS measurements.

It is shown in [117] that Eq. (2.2) leads to the following SABRE slope sensor model on
a single triangle:

σx (x, y) = d !

(d −1)!
Bd−1(b(x, y))Pd ,d−1(ax ) ·c t +nx (x, y), (2.3a)

σy (x, y) = d !

(d −1)!
Bd−1(b(x, y))Pd ,d−1(ay ) ·c t +ny (x, y), (2.3b)

with d ≥ 1 as the degree of the SABRE model, Bd−1(b(x, y)) as the basis polynomials of
degree d −1, c t as the vector of B-coefficients from Eq. (2.2), and nx (x, y) and ny (x, y) in
Eq. (2.3) as the residual terms which contain both sensor noise and modeling errors.

The matrices Pd ,d−1(ax ) and Pd ,d−1(ay ) in Eq. (2.3) are the de Casteljau matrices in
the (Cartesian) directions ax and ay which are essential to the SABRE method [132]. In
essence, the de Casteljau matrices allow a reformulation of the PDEs from Eq. (2.1) into
a set of algebraic equations in terms of the B-coefficients c t .

A number of possible sensor geometries were introduced in [117]. In this work we use
the Type-I and Type-II sensor geometries, which should be seen as baseline geometries.
Recently, a more advanced sensor model for SABRE was introduced by Guo et al. [131].
This sensor model is better suited for use with real-world SH sensors which provide a
spatial average of the wavefront slopes instead of point-wise local spatial derivatives of
the wavefront.

2.2.3. THE SABRE METHOD ON A COMPLETE TRIANGULATION
The SABRE method can be used with large-scale wavefront sensor arrays by combining
any number of triangles into a triangulation. The full-triangulation, or global, SABRE
model has a predefined continuity order r between the local models which means that
the r th-order directional derivatives of neighboring local SABRE models match exactly
on the triangle edges. In [117] it is shown that the wavefront phase can be approximated
at any point (x, y) in the WFS domain with a SABRE model such that

φ(x, y) ≈ Bd c , (2.4)

with Bd as the global B-form regression matrix and c as the global vector of B-coefficients
[117]. Given Eq. (2.4), the global WFR problem is constructed from rows of the form
Eq. (2.3) as follows:

σ= Dc +n, (2.5a)

0 = Ac, (2.5b)

with σ = [σ>
x σ>

y ] ∈ R2K×1 as the vector of measured wavefront slopes, n as a residual
noise vector, and A as the global constraint matrix. The spline regression matrix D in
Eq. (2.5a) is defined as

D := dBd−1Pd ,d−1
e , (2.6)
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with Bd−1 as the global basis function matrix of degree d − 1, and Pd ,d−1
e as the full-

triangulation de Casteljau matrix which is constructed as shown in [117]. Note the slight
difference in notation of D in Eq. (2.6) compared to that presented in [117]; it will become
apparent in following sections why this change was made.

The global constraint matrix A in Eq. (2.5b) is constructed as follows:

A :=
[

H
h

]
∈R(EV +1)×J d̂ , (2.7)

with H ∈ R(EV )×J d̂ as the full-rank smoothness matrix describing the continuity condi-

tions. The vector h := [1 0 · · ·0] ∈R1×J d̂ is the anchor vector which was first introduced in
[117], and which is used to fix the piston mode (the unknown integration constant) to a
predetermined constant.

For low degree (d ≤ 2) basis polynomials , the resulting system in Eq. (2.5) will be fully
determined given a Type-I or Type-II SH sensor geometry and the constraints in Eq. (2.7).
However, when moving toward higher degree (d ≥ 3) basis polynomials Eq. (2.5) will
be underdetermined and will not lead to a unique solution. Future work on obtaining
higher degree D-SABRE models will therefore be focused on imposing specific (e.g. "do-
nothing" boundary conditions[133]) boundary conditions on the external edges of the
D-SABRE submodels.

In [117] it was shown that the global wavefront reconstruction problem can be for-
mulated as an equality constrained least-squares optimization problem,

min
c∈RJ d̂

1

2
‖σ−Dc‖2

2 subject to Ac = 0, (2.8)

with σ as the slopes from the wavefront sensor, D from Eq. (2.6), c as the global vector
of B-coefficients, and A as the smoothness matrix from Eq. (2.7). This constrained op-
timization problem can be reduced into a unconstrained problem by introducing the
Lagrangian for Eq. (2.8) as

L (c , y) = 1

2
‖σ−Dc‖2

2 + y>Ac , (2.9)

with y as a vector of Lagrangian multipliers. The minimum of Eq. (2.9) is

∂L (c , y)

∂c
=−D> (σ−Dc)+A>y

!= 0, (2.10)

with which the following B-coefficient estimator is derived:

ĉ = (D>D)−1 (
D>σ−A>y

)
. (2.11)

The problem with Eq. (2.11) is that the undefined piston mode causes D>D to be
rank deficient and therefore not invertible. In [117] this issue was solved by immediately
projecting the spline regressors on the nullspace of the constraint matrix A. Here we
require a more explicit formulation of

ĉ = NA
(
N>

A D>DNA
)−1

N>
A D>σ,

= RAD>σ,

= QAσ, (2.12)
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with NA := null(A) as a basis for the nullspace of the constraint matrix. The SABRE recon-

struction matrix from [117] is defined as QA := RAD> with RA := NA
(
N>

A D>DNA
)−1

N>
A .

2.3. DISTRIBUTED WAVEFRONT RECONSTRUCTION WITH SIM-
PLEX B-SPLINES

In this section, the D-SABRE distributed wavefront reconstruction method is introduced.
D-SABRE consists of 2 stages: Stage-1, which is the distributed local WFR stage, and
Stage-2, which is the combined distributed piston mode equalization and distributed
dual ascent post-smoothing stage. A schematic of the D-SABRE algorithm is shown in
Fig. 2.1.

equalization and distributed dual ascent post-smoothing stage.
A schematic of the D-SABRE algorithm is shown in Fig. 1.

A. D-SABRE Stage-1: Distributed Local WFR

The first stage of D-SABRE involves the decomposition of the
global WFR problem from Eq. (8) into a set of local subprob-
lems. For this we make use of the domain decomposition
method from [16]. First, we decompose the global triangula-
tion T into a set of G subtriangulations as follows:

T � ⋃
G

i�1

T i ; (13)

with each T i containing Ji triangles. Every subtriangulation T i
in turn consists of two parts: a core part Ωi and an overlap part
Ξi as

T i � Ωi ∪Ξi ; Ωi ∩Ξi � Ø; (14)

with Ωi containing JΩi
triangles and Ξi containing JΞi

triangles
such that Ji � JΩi

� JΞi
. The purpose of Ξi is to overlap

neighboring subtriangulation core parts T j in order to increase
numerical continuity between neighboring partitions; see
Fig. 2. In this paper, we use the term “overlap level” (OL) to
define the size of Ξi. The OL is a scalar, which determines how
many layers of simplexes from the core partition are included
in Ξi; see Fig. 2.

We can now introduce the overlap overhead ρ as follows:

ρ � Ji
JΩi

; ρ ≥ 1; (15)

with ρ � 1 indicating no overlap. It is not trivial to provide a
relation between overlap level and overlap overhead because it
strongly depends on the geometry of the triangulation and on
the location of a partition within the global triangulation.
Nevertheless, for a simplex Type-I geometry, the minimum
and maximum ρ can easily be determined using basic geometry
rules:

ρType-I �
(
1� OL�6OL�8

ffiffiffiffiffiffiffiffi
JΩi ∕2

p
JΩi

�max overhead�;
1� OL�OL�4

ffiffiffiffiffiffiffiffi
JΩi ∕2

p
JΩi

�min overhead�;
(16)

with OL ≥ 0 as the overlap level.
We now assume that the wavefront can be approximated

locally on each subtriangulation T i as follows:

ϕi�x; y� ≈ sdri �x; y� � Bd
i ci ; 1 ≤ i ≤ G; (17)

with ϕi�x; y� as the local wavefront phase, sdri �x; y� as a D-
SABRE partition, Bd

i as the local matrix of B-form regressors,
and ci as the set of local B-coefficients.

The goal now is to determine ci for all G local models. For
each subtriangulation T i, we can decompose Eq. (8) into a set
of local subproblems as follows:

argminjjσi − Dicijj22 subject toAici � 0; 1 ≤ i ≤ G;
(18)

with σi as local WFS slopes, Ai as a local constraint matrix, and
Di as the local version of Eq. (6) as follows:

Di � dBd−1
i Pd ;d−1

ui ; (19)

with Pd ;d−1
ui as the local de Casteljau matrix.

Note that the local constraint matrix Ai cannot be obtained
by decomposing the global constraint matrix A into G blocks
because it is not block diagonal. Instead, Ai is constructed
from a new local smoothness matrix Hi and a new local anchor
constraint hi as

Ai ≔
�
Hi
hi

�
∈ R�EiV i�1�×Ji d̂ ; (20)

where it is important to note that Hi does not contain any
smoothness conditions linking a partition i to any other par-
tition. For the anchor vector, we have hi � �1 0… 0� ∈ R1×Ji d̂ .

The local WFR problem in Eq. (18) can be solved in the
same fashion as Eq. (12):

ĉloci � N Ai
�N ⊤

Ai
D⊤

i DiN Ai
�−1N ⊤

Ai
D⊤

i σi

� RN i
D⊤

i σi

� QN i
σi ; (21)

with N Ai
as a basis for null (Ai) and RNi

� N Ai�N ⊤
Ai
D⊤

i DiN Ai
�−1N ⊤

Ai
.

Note that Eq. (21) does not depend on information from
any other partition, and as a result, each of the G local
reconstruction problems can be solved in parallel. In Fig. 3,

Fig. 1. Outline of the D-SABRE algorithm.
Fig. 2. OL-0 partitioning without overlap (left) and an OL-2
partitioning with 2 levels of overlap between partitions (right) using
the same initial triangulation containing 200 triangles. In this case,
JΩi

� 50 for all partitions, while JΞ1
; JΞ4

� 44 and JΞ2
; JΞ3

� 48
for the OL-2 partitioning.
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Figure 2.1: Outline of the D-SABRE algorithm. (Sec. 3.A, 3.B and 3.C refer to Section 2.3.1, 2.3.2 and 2.3.3 in this
thesis, respectively.)

2.3.1. D-SABRE STAGE-1: DISTRIBUTED LOCAL WFR
The first stage of D-SABRE involves the decomposition of the global WFR problem from
Eq. (2.8) into a set of local subproblems. For this we make use of the domain decompo-
sition method from [122]. First, we decompose the global triangulation T into a set of G
sub-triangulations as follows:

T =
G⋃

i=1
Ti , (2.13)

where each Ti contains Ji triangles. Every sub-triangulation Ti in turn consists of two
parts: a core partΩi and an overlap part Ξi as

Ti =Ωi ∪Ξi , Ωi ∩Ξi =;, (2.14)

with Ωi containing JΩi triangles and Ξi containing JΞi triangles such that Ji = JΩi + JΞi .
The purpose of Ξi is to overlap neighboring subtriangulation core parts T j in order to
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increase numerical continuity between neighboring partitions; see Fig. 2.2. In this paper,
we use the term "overlap-level" (OL) to define the size of Ξi . The OL is a scalar, which
determines how many layers of simplices from the core partition are included in Ξi ; see
Fig. 2.2.

Following this, the overlap overhead ρ can be introduced as

ρ = Ji

JΩi
, ρ ≥ 1, (2.15)

with ρ = 1 indicating no overlap. It is not trivial to provide a relation between overlap
level and overlap overhead because it strongly depends on the geometry of the triangu-
lation and on the location of a partition within the global triangulation. Nevertheless,
for a simplex Type-I geometry, the minimum and maximum ρ can easily be determined
using basic geometry rules:

ρType-I =
 1+ OL(6OL+8)

p
JΩi /2

JΩi
(max overhead),

1+ OL(OL+4)
p

JΩi /2
JΩi

(min overhead),
(2.16)

with OL ≥ 0 as the overlap level.

equalization and distributed dual ascent post-smoothing stage.
A schematic of the D-SABRE algorithm is shown in Fig. 1.
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We can now introduce the overlap overhead ρ as follows:

ρ � Ji
JΩi

; ρ ≥ 1; (15)

with ρ � 1 indicating no overlap. It is not trivial to provide a
relation between overlap level and overlap overhead because it
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p
JΩi
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ffiffiffiffiffiffiffiffi
JΩi ∕2

p
JΩi

�min overhead�;
(16)

with OL ≥ 0 as the overlap level.
We now assume that the wavefront can be approximated

locally on each subtriangulation T i as follows:

ϕi�x; y� ≈ sdri �x; y� � Bd
i ci ; 1 ≤ i ≤ G; (17)

with ϕi�x; y� as the local wavefront phase, sdri �x; y� as a D-
SABRE partition, Bd

i as the local matrix of B-form regressors,
and ci as the set of local B-coefficients.

The goal now is to determine ci for all G local models. For
each subtriangulation T i, we can decompose Eq. (8) into a set
of local subproblems as follows:

argminjjσi − Dicijj22 subject toAici � 0; 1 ≤ i ≤ G;
(18)

with σi as local WFS slopes, Ai as a local constraint matrix, and
Di as the local version of Eq. (6) as follows:

Di � dBd−1
i Pd ;d−1

ui ; (19)

with Pd ;d−1
ui as the local de Casteljau matrix.

Note that the local constraint matrix Ai cannot be obtained
by decomposing the global constraint matrix A into G blocks
because it is not block diagonal. Instead, Ai is constructed
from a new local smoothness matrix Hi and a new local anchor
constraint hi as

Ai ≔
�
Hi
hi

�
∈ R�EiV i�1�×Ji d̂ ; (20)

where it is important to note that Hi does not contain any
smoothness conditions linking a partition i to any other par-
tition. For the anchor vector, we have hi � �1 0… 0� ∈ R1×Ji d̂ .

The local WFR problem in Eq. (18) can be solved in the
same fashion as Eq. (12):

ĉloci � N Ai
�N ⊤

Ai
D⊤

i DiN Ai
�−1N ⊤

Ai
D⊤

i σi

� RN i
D⊤

i σi

� QN i
σi ; (21)

with N Ai
as a basis for null (Ai) and RNi

� N Ai�N ⊤
Ai
D⊤

i DiN Ai
�−1N ⊤

Ai
.

Note that Eq. (21) does not depend on information from
any other partition, and as a result, each of the G local
reconstruction problems can be solved in parallel. In Fig. 3,

Fig. 1. Outline of the D-SABRE algorithm.
Fig. 2. OL-0 partitioning without overlap (left) and an OL-2
partitioning with 2 levels of overlap between partitions (right) using
the same initial triangulation containing 200 triangles. In this case,
JΩi

� 50 for all partitions, while JΞ1
; JΞ4

� 44 and JΞ2
; JΞ3

� 48
for the OL-2 partitioning.
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Figure 2.2: OL-0 partitioning without overlap (left) and OL-2 partitioning with 2 levels of overlap between
partitions (right) using the same initial triangulation containing 200 triangles. In this case, JΩi

= 50 for all
partitions, while JΞ1 , JΞ4 = 44 and JΞ2 , JΞ3 = 48 for the OL-2 partitioning

It is now assumed that the wavefront can be approximated locally on each sub trian-
gulation Ti as follows:

φi (x, y) ≈ sd
r,i (x, y) = Bd

i c i , 1 ≤ i ≤G , (2.17)

where φi (x, y) denotes the local wavefront phase, sd
r,i (x, y) a D-SABRE partition, Bd

i the
local matrix of B-form regressors, and c i the set of local B-coefficients. The goal is to
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determine c i for all G local models. For each subtriangulation Ti , we can decompose
Eq. (2.8) into a set of local sub-problems

min
c iR

Ji d̂

1

2
‖σi −Di c i‖2

2 subject to Ai c i = 0, 1 ≤ i ≤G , (2.18)

with σi as local WFS slopes, Ai as a local constraint matrix, and Di as the local version of
Eq. (2.6) defined as

Di =: dBd−1
i Pd ,d−1

ei
, (2.19)

where Pd ,d−1
ei

is the local de Casteljau matrix.
The local constraint matrix Ai can hereby not be obtained by decomposing the global

constraint matrix A into G blocks because it is not block diagonal. Instead, Ai is con-
structed from a new local smoothness matrix Hi and a new local anchor constraint hi ,
such that

Ai :=
[

Hi

hi

]
∈R(Ei Vi+1)×Ji d̂ , (2.20)

where it is important to note that Hi does not contain any smoothness conditions linking
a partition i to any other partition. The anchor vector is defined as hi := [1 0 · · ·0] ∈
R1×Ji d̂ .

The local WFR problem Eq. (2.18) can be solved in the same fashion as Eq. (2.12):

ĉ loc
i = NAi

(
N>

Ai
D>

i Di NAi

)−1
N>

Ai
D>

i σi ,

= RAi D>
i σi ,

= QAi σi , (2.21)

with NAi as a basis for null(Ai ), and RAi := NAi

(
N>

Ai
D>

i Di NAi

)−1
N>

Ai
.

an example is shown of the results of the first distributed stage
of the D-SABRE. Clearly, the local models are disconnected
and do not accurately approximate the global wavefront.
This is a direct result of the anchor constraint in each partition
being independent from that of neighboring partitions.

B. Distributed Piston Mode Equalization

In order to equalize the phase offsets (i.e., unknown integration
constants) between neighboring D-SABRE partitions, a process
called piston mode equalization (PME) is introduced. PME
effectively resolves the difference between the estimated per-
partition (unknown) integration constants. PME offsets an
entire D-SABRE partition with a single constant ki such that
the maximum phase offset between it and a neighboring par-
tition is minimized:

s̃ dri �x; y� � Bd
i ci � ki; 1 ≤ i ≤ G; k1 � 0; (22)

where the tilde indicates that an offset ki as been applied
to sdri �x; y�.

The first partition (i.e. sdr1�x; y�) has k1 � 0 per definition.
This partition is indicated as the master partition, relative to
which all other partitions are equalized. The D-SABRE user
is free to choose the location of the master partition, but a smart
choice is a partition that is located as close as possible to the
center of the global triangulation.

In order to calculate ki, a definition of the concept of neigh-
boring partitions is required. For this, we define the neighbors

of sdri �x; y� as all partitions sdrm�x; y� with 1 ≤ m ≤ G which
share at least one vertex vi;m in the core parts of their triangu-
lations. We then define Mi as the set that contains the indices
of all neighbors of partition i, with Gi � jMij the total num-
ber of neighbor partitions.

The phase offset between partition i and m is calculated
from the phase offset at the shared vertex vi;m. A unique prop-
erty of the simplex B-splines is that spline function value on a
vertex is equal to the value of the B-coefficient located at that
vertex [11,17]. On the shared vertex vi;m, we have sdri �vi;m� �
cΩi

and sdrm�vi;m� � cΩm
. Hence, the estimated phase offset k̂i;m

between partition i and m is

k̂i;m � cΩi
− cΩm

; m ∈ Mi : (23)

Note that in the presence of noise, the estimate of ki;m can
easily be improved by taking the average of the phase offsets at
any number of shared vertices. If partition i has a total of Gi
direct neighbors, the PME constant ki for partition i is deter-
mined as follows:

ki � max fk̂i;mg; ∀ �m > i� ∈ Mi ; (24)

where it should be noted that ki is the maximum offset between
partition i andm withm > i; this asymmetry is required for the
PME operation to converge.

In the form of Eq. (23), PME is a sequential operation.
However, it is straightforward to modify Eq. (23) into a distrib-
uted consensus problem form we indicate as DPME:

k̂i;m�l � 1� � c�l�Ωi;m
− c�l�Ωm;i

; m ∈ Mi ;

l � 1; 2;…; L; (25a)

ki�l � 1� � maxfk̂i;m�l � 1�g; ∀ �m > i� ∈ Mi ;

l � 1; 2;…; L; (25b)

which converges when l � L.
In Fig. 4, the concept of distributed piston mode equaliza-

tion (DPME) is demonstrated. In essence, each partition
continuously adapts its offset based on data obtained from its
direct neighbors which are themselves continuously adapting
their offsets.

At each iteration, the set K�l�
i �m� combines all Gi phase

offsets between partition i and partitions m for iteration l :

K�l�
i �m� � fk̂i;m�l�g; 1 ≤ i ≤ G; ∀ m ∈ Mi : (26)

This set will prove to be instrumental during the distributed
dual ascent stage of D-SABRE.

In Fig. 5, the DPME method has been applied to the
discontinuous reconstructed wavefront from Fig. 3.

C. Distributed Post-Smoothing

DPME minimizes the unknown phase offsets between local
D-SABRE partitions. In general, this does not result in a
smooth reconstruction of the wavefront, especially in the pres-
ence of (sensor) noise. Smoothness can be improved by increas-
ing the overlap level as discussed in Section 3.A but only up to
some point and at the cost of reduced computational efficiency.
In order to obtain a smooth reconstruction, a distributed
dual ascent (DDA) method is used to enforce smoothness be-
tween local D-SABRE partitions. The derivation of the DDA

Fig. 3. Original wavefront (top). The D-SABRE model after com-
pletion of the distributed local reconstruction stage (bottom).

Research Article Vol. 33, No. 5 / May 2016 / Journal of the Optical Society of America A 821

an example is shown of the results of the first distributed stage
of the D-SABRE. Clearly, the local models are disconnected
and do not accurately approximate the global wavefront.
This is a direct result of the anchor constraint in each partition
being independent from that of neighboring partitions.

B. Distributed Piston Mode Equalization

In order to equalize the phase offsets (i.e., unknown integration
constants) between neighboring D-SABRE partitions, a process
called piston mode equalization (PME) is introduced. PME
effectively resolves the difference between the estimated per-
partition (unknown) integration constants. PME offsets an
entire D-SABRE partition with a single constant ki such that
the maximum phase offset between it and a neighboring par-
tition is minimized:

s̃ dri �x; y� � Bd
i ci � ki; 1 ≤ i ≤ G; k1 � 0; (22)

where the tilde indicates that an offset ki as been applied
to sdri �x; y�.

The first partition (i.e. sdr1�x; y�) has k1 � 0 per definition.
This partition is indicated as the master partition, relative to
which all other partitions are equalized. The D-SABRE user
is free to choose the location of the master partition, but a smart
choice is a partition that is located as close as possible to the
center of the global triangulation.

In order to calculate ki, a definition of the concept of neigh-
boring partitions is required. For this, we define the neighbors

of sdri �x; y� as all partitions sdrm�x; y� with 1 ≤ m ≤ G which
share at least one vertex vi;m in the core parts of their triangu-
lations. We then define Mi as the set that contains the indices
of all neighbors of partition i, with Gi � jMij the total num-
ber of neighbor partitions.

The phase offset between partition i and m is calculated
from the phase offset at the shared vertex vi;m. A unique prop-
erty of the simplex B-splines is that spline function value on a
vertex is equal to the value of the B-coefficient located at that
vertex [11,17]. On the shared vertex vi;m, we have sdri �vi;m� �
cΩi

and sdrm�vi;m� � cΩm
. Hence, the estimated phase offset k̂i;m

between partition i and m is

k̂i;m � cΩi
− cΩm

; m ∈ Mi : (23)

Note that in the presence of noise, the estimate of ki;m can
easily be improved by taking the average of the phase offsets at
any number of shared vertices. If partition i has a total of Gi
direct neighbors, the PME constant ki for partition i is deter-
mined as follows:

ki � max fk̂i;mg; ∀ �m > i� ∈ Mi ; (24)

where it should be noted that ki is the maximum offset between
partition i andm withm > i; this asymmetry is required for the
PME operation to converge.

In the form of Eq. (23), PME is a sequential operation.
However, it is straightforward to modify Eq. (23) into a distrib-
uted consensus problem form we indicate as DPME:

k̂i;m�l � 1� � c�l�Ωi;m
− c�l�Ωm;i

; m ∈ Mi ;

l � 1; 2;…; L; (25a)

ki�l � 1� � maxfk̂i;m�l � 1�g; ∀ �m > i� ∈ Mi ;

l � 1; 2;…; L; (25b)

which converges when l � L.
In Fig. 4, the concept of distributed piston mode equaliza-

tion (DPME) is demonstrated. In essence, each partition
continuously adapts its offset based on data obtained from its
direct neighbors which are themselves continuously adapting
their offsets.

At each iteration, the set K�l�
i �m� combines all Gi phase

offsets between partition i and partitions m for iteration l :

K�l�
i �m� � fk̂i;m�l�g; 1 ≤ i ≤ G; ∀ m ∈ Mi : (26)

This set will prove to be instrumental during the distributed
dual ascent stage of D-SABRE.

In Fig. 5, the DPME method has been applied to the
discontinuous reconstructed wavefront from Fig. 3.

C. Distributed Post-Smoothing

DPME minimizes the unknown phase offsets between local
D-SABRE partitions. In general, this does not result in a
smooth reconstruction of the wavefront, especially in the pres-
ence of (sensor) noise. Smoothness can be improved by increas-
ing the overlap level as discussed in Section 3.A but only up to
some point and at the cost of reduced computational efficiency.
In order to obtain a smooth reconstruction, a distributed
dual ascent (DDA) method is used to enforce smoothness be-
tween local D-SABRE partitions. The derivation of the DDA

Fig. 3. Original wavefront (top). The D-SABRE model after com-
pletion of the distributed local reconstruction stage (bottom).
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Figure 2.3: Original wavefront (left). The D-SABRE model after completion of the distributed local reconstruc-
tion stage (right).

Note that Eq. (2.21) does not depend on information from any other partition, and as
a result, each of the G local reconstruction problems can be solved in parallel. In Fig. 2.3,
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an example is shown of the results of the first distributed stage of D-SABRE. Clearly, the
local models are disconnected and do not accurately approximate the global wavefront.
This is a direct result of the anchor constraint in each partition being independent from
that of neighboring partitions.

2.3.2. DISTRIBUTED PISTON MODE EQUALIZATION
In order to equalize the phase offsets (i.e. unknown integration constants) between
neighboring D-SABRE partitions, a process called piston mode equalization (PME) is
introduced. PME effectively resolves the difference between the estimated perpartition
(unknown) integration constants. PME offsets an entire D-SABRE partition with a single
constant ki such that the maximum phase offset between it and a neighboring partition
is minimized:

s̃d
r,i (x, y) = Bd

i c i +ki , 1 ≤ i ≤G , k1 = 0, (2.22)

where the tilde indicates that an offset ki as been applied to sd
r,i (x, y).

The first partition (i.e. sd
r,1(x, y)) has k1 = 0 per definition. This partition is indicated

as the master partition, relative to which all other partitions are equalized. The D-SABRE
user is free to choose the location of the master partition, but a smart choice is a partition
that is located as close as possible to the center of the global triangulation.

In order to calculate ki , a definition of the concept of neighboring partitions is re-
quired. For this, we define the neighbors of sd

r,i (x, y) as all partitions sd
r,m(x, y) with

1 ≤ m ≤ G which share at least one vertex v i ,m in the core parts of their triangulations.
We then define Mi as the set that contains the indices of all neighbors of partition i , with
Gi = |Mi | the total number of neighbor partitions.

smoother starts with the decomposition of the global Lagrangian
from Eq. (9) into sub-Lagrangians according to [12]

L�c; y� �
XG
i�1

Li�ci ; y� �
XG
i�1

�
1

2
jjσi − Dicijj22 � y⊤Gici

�
;

(27)

with y as the global vector of Lagrange duals, ci as a subvector of
local B-coefficients, and Gi as a naive partitioning of the global
constraint matrix A:

A � �
G1 G2 � � � GG

�
: (28)

Dual decomposition of Eq. (27) leads to the following algo-
rithm [12]:

ci�l � 1� � argminciLi�ci ; y�l��; (29a)

y�l � 1� � y�l� � α�l�Ac�l�; (29b)

with α�l� as an iteration-dependent constant and l as the dual
decomposition iterator.

The dual update step in Eq. (29b) clearly is a centralized
operation as it requires a gathering and then broadcasting of
global variables (i.e., y�l� and c�l�).

By exploiting the sparseness structure of the global con-
straint matrix A, a more efficient formulation can be obtained.
The structure of A is as follows [18,19]:2
66666666664

A1;1 0 0 � � � A1;	 0 0 � � � 0 0 � � � 0

0 A2;2 0 � � � A2;	 0 0 � � � 0 0 � � � 0

A3;1 0 0 � � � 0 A3;	 0 � � � 0 0 � � � 0

..

. . .
. � � � 0

0 0 0 � � � 0 0 0 � � � AEQ;	 0 � � � AEQ;J

h 0 0 � � � 0 0 0 � � � 0 0 � � � 0

3
77777777775

×

2
66666664

c1
c2
c3

..

.

cJ

3
77777775
�0; (30)

with each block Aq;j ∈ RQ×d̂ containing all the smoothness
conditions for a single edge q and triangle j. Note that for each

Fig. 4. (A)–(D) Four-step DPME operation on 6 partitions, with G1 as the master partition. Gray and black arrows indicate information flow,
with black arrows as the actual information used in a DMPE step.

Fig. 5. D-SABRE model after completion of the DPME stage, with
remaining discontinuities exaggerated (top); see also Visualization 1.
D-SABRE model after completion of the distributed post-smoothing
stage (bottom); see also Visualization 2.
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Figure 2.4: (A)–(D) Four-step DPME operation on 6 partitions, with G1 as the master partition. Gray and black
arrows indicate information flow, with black arrows as the actual information used in a DPME step.

The phase offset between partition i and m is calculated from the phase offset at
the shared vertex v i ,m . A unique property of the simplex B-splines is that spline function
value on a vertex is equal to the value of the B-coefficient located at that vertex [117, 118].
On the shared vertex v i ,m , we have sd

r,i (v i ,m) = cΩi and sd
r,m(v i ,m) = cΩm . Hence, the

estimated phase offset k̂i ,m between partition i and m is

k̂i ,m = cΩi −cΩm , m ∈Mi . (2.23)
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Note that in the presence of noise, the estimate of ki ,m can easily be improved by taking
the average of the phase offsets at any number of shared vertices. If partition i has a total
of Gi direct neighbors, the PME constant ki for partition i is determined as follows:

ki = max
{
k̂i ,m

}
, ∀(m > i ) ∈Mi , (2.24)

where it should be noted that ki is the maximum offset between partition i and m with
m > i ; this asymmetry is required for the PME operation to converge.

In the form of Eq. (2.23), PME is a sequential operation. However, it is straightfor-
ward to modify Eq. (2.23) into a distributed consensus problem form we indicate as dis-
tributed piston mode equalization (DPME):

k̂i ,m(l +1) = c(l )Ωi ,m −c(l )Ωm,i , m ∈Mi , l = 1,2, . . . ,L, (2.25a)

ki (l +1) = max
{
k̂i ,m(l +1)

}
, ∀(m > i ) ∈Mi , l = 1,2, . . . ,L, (2.25b)

which converges when l = L. In Fig. 2.4, the concept of distributed piston mode equal-
ization (DPME) is demonstrated. In essence, each partition continuously adapts its off-
set based on data obtained from its direct neighbors which are themselves continuously
adapting their offsets.

At each iteration, the set K (l )
i collects all Gi phase offsets between partition i and

partitions m for iteration l :

K (l )
i (m) = {

k̂i ,m(l )
}

, 1 ≤ i ≤G , ∀m ∈Mi . (2.26)

This set will prove to be instrumental during the distributed dual ascent stage of D-
SABRE. In Fig. 2.5 the DPME method has been applied to the discontinuous reconstructed
wavefront from Fig. 2.3.

smoother starts with the decomposition of the global Lagrangian
from Eq. (9) into sub-Lagrangians according to [12]

L�c; y� �
XG
i�1

Li�ci ; y� �
XG
i�1

�
1

2
jjσi − Dicijj22 � y⊤Gici

�
;

(27)

with y as the global vector of Lagrange duals, ci as a subvector of
local B-coefficients, and Gi as a naive partitioning of the global
constraint matrix A:

A � �
G1 G2 � � � GG

�
: (28)

Dual decomposition of Eq. (27) leads to the following algo-
rithm [12]:

ci�l � 1� � argminciLi�ci ; y�l��; (29a)

y�l � 1� � y�l� � α�l�Ac�l�; (29b)

with α�l� as an iteration-dependent constant and l as the dual
decomposition iterator.

The dual update step in Eq. (29b) clearly is a centralized
operation as it requires a gathering and then broadcasting of
global variables (i.e., y�l� and c�l�).

By exploiting the sparseness structure of the global con-
straint matrix A, a more efficient formulation can be obtained.
The structure of A is as follows [18,19]:2
66666666664

A1;1 0 0 � � � A1;	 0 0 � � � 0 0 � � � 0

0 A2;2 0 � � � A2;	 0 0 � � � 0 0 � � � 0

A3;1 0 0 � � � 0 A3;	 0 � � � 0 0 � � � 0

..

. . .
. � � � 0

0 0 0 � � � 0 0 0 � � � AEQ;	 0 � � � AEQ;J

h 0 0 � � � 0 0 0 � � � 0 0 � � � 0

3
77777777775

×

2
66666664

c1
c2
c3

..

.

cJ

3
77777775
�0; (30)

with each block Aq;j ∈ RQ×d̂ containing all the smoothness
conditions for a single edge q and triangle j. Note that for each

Fig. 4. (A)–(D) Four-step DPME operation on 6 partitions, with G1 as the master partition. Gray and black arrows indicate information flow,
with black arrows as the actual information used in a DMPE step.

Fig. 5. D-SABRE model after completion of the DPME stage, with
remaining discontinuities exaggerated (top); see also Visualization 1.
D-SABRE model after completion of the distributed post-smoothing
stage (bottom); see also Visualization 2.
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smoother starts with the decomposition of the global Lagrangian
from Eq. (9) into sub-Lagrangians according to [12]
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;
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with y as the global vector of Lagrange duals, ci as a subvector of
local B-coefficients, and Gi as a naive partitioning of the global
constraint matrix A:

A � �
G1 G2 � � � GG

�
: (28)

Dual decomposition of Eq. (27) leads to the following algo-
rithm [12]:

ci�l � 1� � argminciLi�ci ; y�l��; (29a)

y�l � 1� � y�l� � α�l�Ac�l�; (29b)

with α�l� as an iteration-dependent constant and l as the dual
decomposition iterator.

The dual update step in Eq. (29b) clearly is a centralized
operation as it requires a gathering and then broadcasting of
global variables (i.e., y�l� and c�l�).

By exploiting the sparseness structure of the global con-
straint matrix A, a more efficient formulation can be obtained.
The structure of A is as follows [18,19]:2
66666666664

A1;1 0 0 � � � A1;	 0 0 � � � 0 0 � � � 0

0 A2;2 0 � � � A2;	 0 0 � � � 0 0 � � � 0

A3;1 0 0 � � � 0 A3;	 0 � � � 0 0 � � � 0

..

. . .
. � � � 0

0 0 0 � � � 0 0 0 � � � AEQ;	 0 � � � AEQ;J

h 0 0 � � � 0 0 0 � � � 0 0 � � � 0

3
77777777775

×

2
66666664

c1
c2
c3

..

.

cJ

3
77777775
�0; (30)

with each block Aq;j ∈ RQ×d̂ containing all the smoothness
conditions for a single edge q and triangle j. Note that for each

Fig. 4. (A)–(D) Four-step DPME operation on 6 partitions, with G1 as the master partition. Gray and black arrows indicate information flow,
with black arrows as the actual information used in a DMPE step.

Fig. 5. D-SABRE model after completion of the DPME stage, with
remaining discontinuities exaggerated (top); see also Visualization 1.
D-SABRE model after completion of the distributed post-smoothing
stage (bottom); see also Visualization 2.
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Figure 2.5: D-SABRE model after completion of the DPME stage, with remaining discontinuities exaggerated
(left). D-SABRE model after completion of the distributed post-smoothing (DPS) stage (right).

2.3.3. DISTRIBUTED POST-SMOOTHING
DPME minimizes the unknown phase offsets between local D-SABRE partitions. In gen-
eral, this does not result in a smooth reconstruction of the wavefront, especially in the
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presence of (sensor) noise. Smoothness can be improved by increasing the overlap level
as discussed in Section 2.3.1, but only up to some point and at the cost of reduced com-
putational efficiency. In order to obtain a smooth reconstruction, a distributed dual as-
cent (DDA) method is used to enforce smoothness between local D-SABRE partitions.

The derivation of the DDA smoother starts with the decomposition of the global La-
grangian from Eq. (2.9) into sub-Lagrangians according to [130]

L (c , y) =
G∑

i=1
Li (c i , y) =

G∑
i=1

(
1

2
‖σi −Di c i‖2

2 + y>Gi c i

)
, (2.27)

with y as the global vector of Lagrange duals, c i as a sub-vector of local B-coefficients,
and with Gi as a naive partitioning of the global constraint matrix A:

A = [
G1 G2 · · · GG

]
. (2.28)

Dual decomposition of Eq. (2.27) leads to the following algorithm [130]:

c i (l +1) = argmin
c i

Li (c i , y(l )), (2.29a)

y(l +1) = y(l )+α(l )Ac(l ), (2.29b)

where α(l ) is an iteration-dependent constant and l the dual decomposition iterator.
The dual update step in Eq. (2.29b) clearly is a centralized operation as it requires a

gathering and then broadcasting of global variables (i.e. y(l ) and c(l )). By exploiting the
sparseness structure of the global constraint matrix A, a more efficient formulation can
be obtained. The structure of A is as follows [119, 121]:

A1,1 0 0 · · · A1,? 0 0 · · · 0 0 · · · 0
0 A2,2 0 · · · A2,? 0 0 · · · 0 0 · · · 0

A3,1 0 0 · · · 0 A3,? 0 · · · 0 0 · · · 0
...

. . . · · · 0
0 0 0 · · · 0 0 0 · · · AEQ,? 0 · · · AEQ,J

h 0 0 · · · 0 0 0 · · · 0 0 · · · 0




c 1

c 2

c 3
...

c J

= 0, (2.30)

with each block Aq, j ∈ RQ×d̂ containing all the smoothness conditions for a single edge
q and triangle j . For each edge q , there are exactly two blocks Aq, j : one for each triangle
j containing the mutual edge q .

By exploiting the sparseness of A, two new submatrices Hi and Hi ,M can be de-
rived for each partition i . The submatrix Hi contains all smoothness conditions that
define continuity inside partitions i . The submatrix Hi ,M , on the other hand, contains
all smoothness conditions that govern not only continuity inside partition i , but also
all continuity between partition i and its neighbors. In Appendix 2.6 the details of both
decompositions are presented.

Using the submatrices Hi and Hi ,M , a local distributed version of Eq. (2.29) is ob-
tained with

c i (l +1) = ĉ loc
i +RAi H>

i y i (l ) (2.31a)

y i (l +1) = y i (l )+α(l )Hi ,M c i ,M (l +1) (2.31b)



2.3. DISTRIBUTED WAVEFRONT RECONSTRUCTION WITH SIMPLEX B-SPLINES

2

43

where ĉ loc
i contains the locally estimated B-coefficients from Eq. (2.21), which during the

iteration are constant, RAi is the matrix from Eq. (2.21), and y i is the local dual vector.
The dual update step in Eq. (2.31b) uses c i ,M , which is the vector of all B-coefficients
in sd

r,i as well as all B-coefficients in sd
r,m that are subject to continuity conditions on

Ti ∩Tm ,∀m ∈Mi . The resulting method is fully distributed in the sense that each model
partition only shares information with its direct neighboring model partitions.

2.3.4. D-SABRE STAGE-2: MERGING DPME WITH DDA SMOOTHING
Both the DPME and DDA operations introduced in the previous sections are iterative.
These operations could be executed sequentially, starting with DPME to remove the un-
known phase offsets, and ending with DDA to post-smooth the wavefront. This would,
however, defeat the purpose of D-SABRE as a distributed WFR method because it would
require all partitions to complete the DPME operation before starting the DDA opera-
tion. The reason for this is that if DDA is naively merged with DPME, the DDA smoother
will blend neighboring partitions regardless of convergence of the DPME operation. This
results in significant undesirable and unphysical artifacts in the reconstructed wave-
front.

The solution to this is a new concept indicated as virtual DPME (V-DPME). The idea
is that even though DPME has not yet converged, each partition has at all times exact
information on the phase offset between it and its direct neighbors. In V-DPME, this in-
formation is used to virtually minimize all piston modes between a partition i and its Gi

neighbors. After V-DPME, the DDA algorithm can safely smooth the locally piston mode
equalized partitions without introducing artifacts into the reconstructed wavefront.

The information required for V-DPME is obtained during the DPME operation in the
form of the set K (l )

i from Eq. (2.26) which contains all phase offsets between partition
i and its neighbors. For V-DPME a new vector of virtual offsets µi ,M (l ) is created from

elements of K (l )
i as

µi ,M (l ) =
[

01×JΩi d̂ K (l )
i (m1) ·11×Jm1 d̂ K (l )

i (m2) ·11×Jm2 d̂ · · ·
]>

,

1 ≤ i ≤G , ∀m j ∈Mi . (2.32)

with Jm j as the total number of triangles inΩi ∩Ωm j .
Substitution of Eq. (2.32) in Eq. (2.31b), together with the DPME from Eq. (2.25b),

results in the final formulation of Stage-2 of the D-SABRE algorithm:

c i (l +1) = ĉ loc
i +RAi H>

i y i (l ), (2.33a)

y i (l +1) = y i (l )+α(l )Hi ,M
(
c i ,M (l +1)+µi ,M (l )

)
, (2.33b)

which converges when l = L, after which time the actual PME value is added, resulting
in the final B-coefficient estimate

c i = c i (L)+ki (L). (2.34)

2.3.5. ALGORITHM CONVERGENCE
The DPME and DDA steps of D-SABRE Stage-2 are both iterative in nature. In this sec-
tion, we provide an analysis of convergence of Stage-2 as a whole. It is important to note
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that all parallel operations in Stage-2 are allowed to run asynchronously, i.e. the parallel
processors do not require a global clock-tick.

However, optimal convergence of the DPME operation does depend on synchronic-
ity between neighboring partitions in the sense that failure of one parallel processor to
calculate an initial local WF reconstruction in Stage-1 or an accurate PME update in
Stage-2 at a specific global clock-tick will influence all partitions that through interpar-
tition continuity depend on these results. The DDA step, on the other hand, can be run
completely asynchronously, because V-DPME negates any interpartition offsets. For this
analysis, it is assumed that local wavefront reconstruction and DPME iterations run syn-
chronously on the parallel processors.

DMPE convergence depends solely on the maximum distance, counted in number
of partitions, between the master partition and any other partition. If this distance is
R, then DPME converges in exactly R iterations because it takes at most R steps for in-
formation from the master partition to reach the partition furthest away from the master
partition. Each step requires a single DPME iteration leading to exactly R iterations. Note
that the "max" operation in Eq. (2.25b) only influences the path the information follows,
and not the total number of steps.

We base our analysis of convergence of the DDA step on the theory presented in
[130]. First, let ε?i be the optimal value of the optimization problem in Eq. (2.18):

ε?i = argmin
c i

1

2
‖σi −Di c i‖2

2 subject to Ai c i = 0, 1 ≤ i ≤G , (2.35)

Also, let
ri (l +1) = Ai c i (l +1) (2.36)

be the primal residual at iteration l +1. Then [130] proves that

ε?i −εi (l +1) ≤ (y?)>r (l +1), l →∞, (2.37)

where εi (l + 1) is the optimal value of Eq. (2.18) at iteration l + 1 and y? the optimal
Lagrange dual. The right-hand side of Eq. (2.37) approaches zero as l → ∞ since r (l )
approaches zero when the constraints are met. Therefore, we have liml→∞ εi (l +1) = ε?i
implying convergence.

In practice, we find that our DDA algorithm converges in at most a few tens of itera-
tions, with adequate continuity achieved in L = 10 iterations, which agrees with the rules
of thumb provided in [130]. In this case, the norm of the residual of the smoothness con-
straints (see Eq. (2.7)) is ‖Hc‖2

2 < 1e − 3 for SNR ≥ 0 dB and reaches ‖Hc‖2
2 < 1e − 8 for

SNR ≥ 20 dB.
We also find that initializing the DDA iteration with a smooth initial estimate for ĉ l oc

i
significantly improves convergence of the DDA step. Finally, the rate of convergence of
the DDA stage depends strongly on the value of α(l ) in Eq. (2.33). In our algorithm, a
value of α(l ) = 0.5 leads to fast convergence.

2.3.6. COMPUTATIONAL COMPLEXITY ANALYSIS
Key to the utility of the D-SABRE method is its computational performance. In this sec-
tion, the results from a theoretical analysis of computational complexity of the D-SABRE
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method are presented. The scope of this analysis is limited to theoretically required com-
pute performance per parallel processor. Specific hardware-dependent issues such as
transport latency, cache size, and available instruction sets are not included in this anal-
ysis. In our analysis, we focus on the real-time reconstruction operation and not on
algorithm initialization. In the analysis, we indicate R and L as the total number of it-
erations in respectively the DPME and DDA steps of Stage-2. We compare our results to
that of the global SABRE method. The results are summarized in Table 2.1.

Table 2.1: Comparison of theoretical computational complexity of global SABRE and D-SABRE, where a Sim-
plex Type-1 WFS geometry (i.e. N = J/2) is assumed. All partitions run on a separate (perfect) parallel proces-
sor.

Comparison of theoretical computational complexity

Global SABRE D-SABRE (per core) Speedup (per core)

WFR O
(
d̂ J 2)

O
(
ρ2 J 2

Ωi
d̂

)
O

(
G2/ρ2)

DPME 0 O
(
R JΩi d̂

)
O

(
1/

(
R JΩi d̂

))
DDA 0 O

(
L(1+ρ)

(
JΩi d̂

)2
)

O
(
1/

(
L(1+ρ)

(
JΩi d̂

)2
))

Total O
(

J 2d̂
)

O
(

JΩi d̂
(
ρ2 JΩi +R +Ld̂(1+ρ)JΩi

))
O

(
G2

ρ2 +R/JΩi +Ld̂(1+ρ)

)
J : number of triangles in global triangulation; Ji number of triangles per partition

G : total number of partitions; d̂ : B-coefficients per triangle (d̂ = 3 for linear D-SABRE)

R: DPME iterations (R << d̂ Ji ); L: DDA iterations, ρ = Ji /JΩi

For the global SABRE, we find for the complexity of the matrix-vector operation in
Eq. (2.12)

USABRE =O
(
2N Jd̂

)
, (2.38)

with N as the total number of WFS, and d̂ and J , respectively, as the total number of
B-coefficients and triangles in the global SABRE model.

For Stage-1 of the D-SABRE method, the complexity of the matrix-vector operation
in Eq. (2.21) is given by

Ustage-1 =O
(
2Ni Ji d̂

)
, (2.39)

where Ni is the total number of WFS in partition i and Ji = JΩi + JΞi the total number of
triangles (including the overlap triangles) in partition i .

Determining the complexity of Stage-2 is somewhat more involved because it is an
iterative algorithm consisting of a number of operations. In the following, we shall as-
sume that all necessary simplifications in terms of static matrix precalculation have been
made. The complexity of the matrix-vector and vector-vector operations associated with
DPME and DDA in Eq. (2.33) can then be expressed as

Ustage-2 =O
(
R JΩi d̂ +L

(
JΩi d̂(1+ rH)+ cH(1+ rH)

))
, (2.40)

with R as the total number of DPME iterations, JΩi as the total number of triangles in the
core triangulation of partition i (see Eq. (2.14)), rH = row(Hi ,M ), and cH = col(Hi ,M ).
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In general (for OL > 0), we have rH À 1, cH À 1, rH < JΩi d̂ < cH < Ji d̂ = ρ JΩi d̂ with
ρ from Eq. (2.15). Additionally, we can assume that 2Ni = Ji = ρ JΩi for a simplex Type-I
WFS geometry [117]. With these (conservative) assumptions and under the introduction
of ρ, Eq. (2.39) and Eq. (2.40) can be simplified and combined to

UDSABRE =O
(
ρ2 J 2

Ωi
d̂ +R JΩi d̂ +L

((
JΩi d̂

)2 +ρ (
JΩi d̂

)2
))

,

=O
(
ρ2 J 2

Ωi
d̂ +R JΩi d̂ +L

(
1+ρ)(

JΩi d̂
)2

)
,

=O
(

JΩi d̂
(
ρ2 JΩi +R +Ld̂(1+ρ)JΩi

))
, (2.41)

from which it can be concluded that the contribution of DPME to the total computa-
tional complexity can be neglected for as long as R is small compared to the other terms
in brackets, which holds for most realistic partitionings. If all parallel processors operate
synchronously, and no transport latency is present, the speedup factor over the global
SABRE is obtained by combining Eq. (2.38) with Eq. (2.41) as

SDSABRE =O

(
2N Jd̂

JΩi d̂
(
ρ2 JΩi +R +Ld̂(1+ρ)JΩi

))
. (2.42)

If all partitions have the same number of triangles in the core of the partition (which
is desirable), we have G = J/JΩi with G as the total number of partitions. In addition, if
we assume that use is made of a simplex Type-I geometry (in which case N = J/2), then
using the result J =G JΩi reduces Eq. (2.42) to

S̃DSABRE =O

(
2(J/2)G JΩi d̂

JΩi d̂
(
ρ2 JΩi +R +Ld̂(1+ρ)JΩi

))
,

=O

(
JG

ρ2 JΩi +R +Ld̂(1+ρ)JΩi

)
,

=O

(
G2

ρ2 +R/JΩi +Ld̂(1+ρ)

)
, (2.43)

From Eq. (2.43), it can be concluded that (1) the influence of the DPME step on the
computational complexity is negligible as long as R/Ji ¿ ρ2; (2) the overlap overhead
reduces the speedup by a factor ρ2; and (3) the DDA step is the dominant term in the
computational efficiency if Ld̂ > ρ.

As a rule of thumb, a partitioning can (and should) be designed such that the over-
lap overhead 1 < ρ < 2. For that overlap level, L = 10 produces adequate results in most
cases, showing that the DDA step in the form of the variable L indeed has a dominant
influence on the speedup factor. In fact, when the DDA step is not used, and if we (rea-
sonably) assume R/Ji ¿ ρ2, we obtain a speedup factor of 1

ρ2 G2 for the linear D-SABRE.

In Table 2.1, the results of the complexity analysis are summarized.
Finally, it must be noted here that the efficiency of DDA step can be improved sig-

nificantly when only interpartition smoothness is enforced in Eq. (2.33) instead of full-
partition smoothness. In that case, rH and cH will be significantly smaller to the point
that the overlap overhead will have a dominant contribution to the complexity.
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As an example of Table 2.1, consider first a 64×64 WFS array such that N = 4096, and
assume that a linear spline model (i.e. d̂ = 3) is used on a Type-I sensor geometry. In this
case, the global SABRE would require O (J 2d̂) =O (2·108) flops for a single reconstruction.
For D-SABRE with 64 partitions, OL = 2, R = 4 and no DDA (L = 0), we have JΩi = 128 and
subsequently 1.53 ≤ ρ ≤ 2.19 with Eq. (2.16). In this case, the contribution of DPME can
be neglected (R/JΩi ¿ 1), and we have as a worst case O (ρ2 J 2

Ωi
d̂) = O (2 ·105) = O (57N )

flops per D-SABRE core per reconstruction. For a 200×200 array and a 20×20 partition-
ing (N = 40000), OL = 2, R = 10 and no DDA (L = 0), we have JΩi = 200 and subsequently
1.42 ≤ ρ ≤ 1.92. Again, the contribution of DPME can be neglected, and we find for the
worst case O (4 ·105) =O (11N ) flops per D-SABRE core per reconstruction.

Even though hardware-dependent issues are not scope of this paper, we want to
mention that communication latency between the partitions for the iterative, distributed
Stage-2 of the D-SABRE method is not considered to be an issue in a planned paral-
lel GPU implementation. For the reference case of a 200× 200 SH array and a 20× 20
partitioning and a standard off-the-shelf GPU, all necessary data, e.g. reconstruction
matrices, of the D-SABRE method can be stored directly on the GPU memory and no
communication over the slow GPU to CPU connection will be necessary.

is increased from 102 to 104 sensors, while the total number
of partitions is fixed at 100. For each WFS array, a set of
100 reconstructions are conducted at a low SNR of 6.67 dB
and a high SNR of 30 dB. From Fig. 7 it can be observed that

the Strehl ratio actually increases with increasing WFS array size
for both the SABRE and D-SABRE method for all SNR values.
Also, it demonstrates that when the absolute size of partitions
increases, the propagation of PME errors decreases.

In the right plot of Fig. 7, the results from simulations with
different partitionings of a 50 × 50 grid are shown. In this case,
the global WFS array is decomposed into 25, 100, and 625
local partitions. At each SNR level, 100 reconstructions are per-
formed after which the result is averaged. This time, there is a
clear positive influence on the Strehl ratio of reducing the total
number of partitions on the fixed 50 × 50 WFS array.

From Fig. 7 it can be concluded that the D-SABRE is sub-
ject to propagation of PME errors between partitions but is not
subject to noise propagation. Also, the PME error actually re-
duces in size as the total number of shared vertices is increased.

C. Comparison with CuRe-D in YAO Open-Loop
Simulations

The linear D-SABRE method is compared with the CuRe-D in
terms of reconstruction accuracy and noise propagation for an
open-loop configuration.

1. Open-Loop Configurations

The AO simulation tool YAO was used to create 100 wavefront
realizations with a Fried parameter r0 � 0.18 cm and simulate
the corresponding diffraction-based slope measurements of a
Shack–Hartmann wavefront sensor with a 64 × 64 subaperture
array on a circular telescope pupil of 30 m diameter. In YAO,
the slope measurements are computed, after full propagation
and subaperture image formation, on a 10 × 10 pixel array
using the center of mass algorithm. Subapertures of illumina-
tion higher or equal than 50% were taken into account. In this

Fig. 6. Comparison of the average Strehl ratio of the global SABRE
method with that of various D-SABRE variants as a function of the
signal-to-noise ratio, where 0 dB corresponds with equal magnitudes
of noise and signal. All D-SABRE variants use a decomposition of the
global 50 × 50 WFS grid (2500 WFS) into 25 partitions.

Fig. 7. Left: average Strehl ratio as a function of the total number of WFS and a fixed number of 100 partitions. Right: average Strehl ratio as a
function of signal-to-noise ratio for a varying partition counts on a fixed 50 × 50WFS grid, where 0 dB corresponds with equal magnitudes of noise
and signal. In both cases, an OL-1 overlap with DDA smoothing is used.
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Figure 2.6: Comparison of the average Strehl ratio of the global SABRE method with that of various D-SABRE
variants as function of the signal-to-noise ratio, where 0 dB corresponds with equal magnitudes of noise and
signal. All D-SABRE variants use a decomposition of the global 50×50 WFS grid (2500 WFS) into 25 partitions.

2.4. SIMULATIONS WITH D-SABRE
In this section, the results from numerical experiments with D-SABRE are presented.
These experiments are aimed at validating the D-SABRE method by a simulation study.
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First, the reconstruction accuracy and noise resilience of D-SABRE are compared to
that of the centralized SABRE method in Sections 2.4.1 and 2.4.2. As in [117], a von Kar-
man turbulence model was used to simulate phase screens which are then measured by
a Fourier-optics-based Shack-Hartmann (SH) WFS simulator which generates wavefront
phase slopes for a square grid of varying numbers of subapertures. Slope measurements
of different signal-to-noise ratio (SNR) levels are created by adding Gaussian-distributed
white noise.

The second part of this chapter contains a comparison of D-SABRE to the distributed
Cumulative Reconstructor (CuRe-D) method which provides like D-SABRE paralleliz-
able wavefront reconstruction of linear complexity and was published in [86]. Both
methods were implemented for YAO [134], a Monte-Carlo simulation tool for astronom-
ical AO systems, to test their reconstruction performance on a reference simulator. The
main goal of this study was to obtain a comparison of the two methods under equal con-
ditions to understand if D-SABRE in its most basic form reaches the same level of perfor-
mance as the CuRe-D method for different decomposition levels. This baseline version
of the D-SABRE method applies a spline model of polynomial degree d = 1 and conti-
nuity order r = 0; it further performs only the DPME step in Stage-2. After an open-loop
analysis of reconstruction accuracy and noise resilience under the influence of additive
white noise, we tested both methods in a closed-loop environment for a SCAO setting
considering different SNR levels with respect to photon shot noise. Therefore, an addi-
tional projection step of the reconstructed phase onto the deformable mirror was imple-
mented to allow the correction in combination with a simple integrator control provided
by YAO.

2.4.1. VALIDATION OF D-SABRE ACCURACY

The first experiment is aimed at comparing the D-SABRE method with the global SABRE
method from [117]. For this a Fourier-optics-based SH lenslet array is used to obtain
wavefront slopes from a set of 100 simulated wavefronts observing at a wavelength of
699 nm. For the von Karman turbulence model, a Fried coherence length of 0.2 m was
used with a turbulence outer scale of 50 m and the telescope diameter is assumed to be
2 m. The SH lenslet array consists of 2500 lenslets, laid out in a 50×50 grid with full illu-
mination of all subapertures. Noise affecting the SH wavefront sensor measurements is
simulated through white noise added to the slope measurements, with the SNR provided
by the ratio of the slope and noise variance in the logarithmic decibel scale, where a SNR
of 0 dB implies that the magnitude of the noise is equal to that of the signal.

In Fig. 2.6, the average Strehl ratio is plotted as a function of SNR for different vari-
ants of the D-SABRE method and compared to that of the global SABRE method. For
D-SABRE, the global WFS domain is decomposed into 25 partitions. For each SNR set-
ting, a total of 100 reconstructions are performed. The results show that D-SABRE with
OL-4 and DDA approximates the global SABRE reconstruction within 1% in terms of the
Strehl ratio for SNR ≥ 20 dB, within 5% for SNR ≥ 10 dB, and within 10% for SNR ≥ 5 dB.
In addition, Fig. 2.6 shows that including the DDA step significantly improves D-SABRE
reconstruction accuracy for higher noise cases.
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is increased from 102 to 104 sensors, while the total number
of partitions is fixed at 100. For each WFS array, a set of
100 reconstructions are conducted at a low SNR of 6.67 dB
and a high SNR of 30 dB. From Fig. 7 it can be observed that

the Strehl ratio actually increases with increasing WFS array size
for both the SABRE and D-SABRE method for all SNR values.
Also, it demonstrates that when the absolute size of partitions
increases, the propagation of PME errors decreases.

In the right plot of Fig. 7, the results from simulations with
different partitionings of a 50 × 50 grid are shown. In this case,
the global WFS array is decomposed into 25, 100, and 625
local partitions. At each SNR level, 100 reconstructions are per-
formed after which the result is averaged. This time, there is a
clear positive influence on the Strehl ratio of reducing the total
number of partitions on the fixed 50 × 50 WFS array.

From Fig. 7 it can be concluded that the D-SABRE is sub-
ject to propagation of PME errors between partitions but is not
subject to noise propagation. Also, the PME error actually re-
duces in size as the total number of shared vertices is increased.

C. Comparison with CuRe-D in YAO Open-Loop
Simulations

The linear D-SABRE method is compared with the CuRe-D in
terms of reconstruction accuracy and noise propagation for an
open-loop configuration.

1. Open-Loop Configurations

The AO simulation tool YAO was used to create 100 wavefront
realizations with a Fried parameter r0 � 0.18 cm and simulate
the corresponding diffraction-based slope measurements of a
Shack–Hartmann wavefront sensor with a 64 × 64 subaperture
array on a circular telescope pupil of 30 m diameter. In YAO,
the slope measurements are computed, after full propagation
and subaperture image formation, on a 10 × 10 pixel array
using the center of mass algorithm. Subapertures of illumina-
tion higher or equal than 50% were taken into account. In this

Fig. 6. Comparison of the average Strehl ratio of the global SABRE
method with that of various D-SABRE variants as a function of the
signal-to-noise ratio, where 0 dB corresponds with equal magnitudes
of noise and signal. All D-SABRE variants use a decomposition of the
global 50 × 50 WFS grid (2500 WFS) into 25 partitions.

Fig. 7. Left: average Strehl ratio as a function of the total number of WFS and a fixed number of 100 partitions. Right: average Strehl ratio as a
function of signal-to-noise ratio for a varying partition counts on a fixed 50 × 50WFS grid, where 0 dB corresponds with equal magnitudes of noise
and signal. In both cases, an OL-1 overlap with DDA smoothing is used.
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Figure 2.7: Left: average Strehl ratio as a function of the total number of WFS and a fixed number of 100 par-
titions. Right: average Strehl ratio as a function of signal-to-noise ratio for a varying partition count on a fixed
50×50 WFS grid, where 0 dB corresponds with equal magnitudes of noise and signal. In both cases, an OL-1
overlap with DDA smoothing is used.

2.4.2. INVESTIGATION OF D-SABRE PME ERROR PROPAGATION
An important issue with current state-of-the-art distributed WFR methods is the in-
crease of the reconstruction error as the total size of the WFS array increases [86]. In
contrast to these methods, D-SABRE is not subject to noise propagation within parti-
tions because an optimal least-squares estimator is used. However, D-SABRE is subject
to inaccuracies in the least-squares estimates of the piston mode offsets that are prop-
agated between partitions. In principle, these inaccuracies will only occur if the model
residue is nonwhite or if the sample of the piston offset on shared vertices is too small. In
fact, as the absolute size of the partitions increases (i.e. more triangles per partition), the
piston mode offset estimation will become more accurate as the total number of shared
vertices used to calculate the offset will increase.

Here, we present the results of an investigation into PME error propagation issues
with D-SABRE using numerical simulations.

In the left plot of Fig. 2.7, the results from the simulations of WFS array sizing are
shown. In this case, the WFS array size is increased from 102 to 104 sensors, while the
total number of partitions is fixed at 100. For each WFS array, a set of 100 reconstructions
are conducted at a low SNR of 6.67 dB and a high SNR of 30 dB. From Fig. 2.7 it can be
observed that the Strehl ratio actually increases with increasing WFS array size for both
the SABRE and D-SABRE method for all SNR values. Also, it demonstrates that when the
absolute size of partitions increases, the propagation of PME errors decreases.

In the right plot of Fig. 2.7, the results from simulations with different partitionings
of a 50× 50 grid are shown. In this case, the global WFS array is decomposed into 25,
100, and 625 local partitions. At each SNR level, 100 reconstructions are performed after
which the result is averaged. This time, there is a clear positive influence on the Strehl
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ratio of reducing the total number of partitions on the fixed 50×50 WFS array.
From Fig. 2.7 it can be concluded that D-SABRE is subject to propagation of PME

errors between partitions but is not subject to noise propagation. Also, the PME error
actually reduces in size as the total number of shared vertices is increased.

2.4.3. COMPARISON WITH CURE-D IN YAO OPEN-LOOP SIMULATIONS
The linear D-SABRE method is compared with the distributed Cumulative Reconstructor
(CuRe-D) in terms of reconstruction accuracy and noise propagation for an open-loop
configuration.

P2
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P14

P16

Figure 2.8: Triangulation and partitioning example for D-SABRE. Top left: global Type-II triangulation for a
32×32 SH array constructed with vertices located on SH center locations (solid) and added vertices (empty)
to form the regular Type-II triangulation and to cover the entire pupil domain. Top right: partitioning of the
global triangulation in 16 partitions on a 4×4 partition array. Bottom: partitioning in 16 partitions with applied
overlap level of OL = 2.

OPEN-LOOP CONFIGURATIONS

The AO simulation tool YAO was used to create 100 wavefront realizations with a Fried
parameter r0 = 18 cm at wavelength 650 nm and simulate the corresponding diffraction-
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based slope measurements of a Shack-Hartmann wavefront sensor with a 64×64 sub-
aperture array on a circular telescope pupil of 30 m diameter. In YAO, the slope mea-
surements are computed, after full propagation and subaperture image formation, on
a 10× 10 pixel array using the center of mass algorithm. Subapertures of illumination
higher or equal than 50 % were taken into account. In this section, zero noise is assumed
in the simulation of the slope measurements.

Due to its hierarchical structure, the CuRe-D method is limited to partition arrays of
size Np×Np with Np as powers of two, and it provides wavefront estimates at the corners
of the SH subapertures. Though such partitioning is not necessary for D-SABRE, in order
to compare the two methods, the D-SABRE was configured accordingly and the obtained
spline estimate of the wavefront is evaluated at the subaperture corner positions located
within the pupil domain. Note that the D-SABRE method computes an analytical solu-
tion of the wavefront reconstruction problem providing phase estimates at any point in
the triangulation which covers the telescope pupil. In Fig. 2.8, we show the example of
a Type-II triangulation for a 32×32 SH subaperture array. The two graphics on the right
depict a decomposition of the global partition on the left into a 4×4 partitioning with an
overlap level of OL = 2.

Analogous to Sections 2.4.1 and 2.4.3, noise effects in the sensing process are simu-
lated with additive white noise on the slope measurements provided by YAO. Low signal-
to-noise ratios of SNR < 12 dB are considered in this section to investigate noise re-
silience as well as reconstruction accuracy of the two distributed methods. To do so,
the relative RMS values of the residual wavefronts are compared for varying signal-to-
noise ratios. The data provided is the mean and its standard deviation computed from
RMS errors of wavefront reconstructions for 100 phase realizations.
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Figure 2.9: Reconstruction accuracy and noise resilience for different levels of decomposition on a 64×64 SH
array of D-SABRE and CuRe-D. In the D-SABRE case, different levels of partition overlap are considered. The
average relative residual RMS is plotted as a function of the SNR with respect to additive white noise on the
slope measurements.

OPEN-LOOP RESULTS

In Fig. 2.9, the results from simulations with different partitionings of the 64×64 SH array
are shown. For both methods, we consider Np ×Np partition arrays for Np = 2,4, and,
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8 resulting in square partitions each containing 32×32, 16×16, and 8×8 subapertures,
respectively. In case of D-SABRE, a Type-II triangulation was used and overlap levels of
1, 2, 64/2Np , and, 64/Np were applied.

In comparison with CuRe-D, the D-SABRE method shows an advantage in recon-
struction accuracy for lower levels of decomposition. For the example of a 2× 2 parti-
tioning of the domain, D-SABRE clearly outperforms CuRe-D even for minimal amount
of partition overlap. For higher level of decomposition, equal or better accuracy can only
be achieved by increasing the overlap level. For the 4×4 partitioning, OL = 2 leads to per-
formance comparable to that of CuRe-D, whereas for 8×8 partitioning an overlap of OL
= 64/Np is necessary to achieve better results than CuRe-D.

In terms of noise resilience, a similar trend can be observed. For lower levels of de-
composition, D-SABRE proves more resilient to an increase in the amount of additive
white noise than CuRe-D. We considered the intervals between SNR values at which rel-
ative RMS errors are provided in Fig. 2.9 and computed the average rate of change of the
relative RMS error over these SNR intervals for both methods through finite differences.
Averaged over the different SNR intervals, the rate with which the accuracy of D-SABRE
for the 2×2 partitioning decreases for increasing noise is only 56% of the rate observed
for CuRe-D. For the 4×4 partitioning, the rate of accuracy decay for D-SABRE increases
to 70%, for the 8×8 partitioning to 98% of the rate observed for CuRe-D. These values
were obtained for an overlap level of OL = 64/2Np in case of the D-SABRE method.

The results presented in this section can be explained with the very different noise
propagation behaviors of the two methods. It has been shown in [83] and [86] that the
cumulative approach of the CuRe-D algorithm leads to an accumulation of noise for
larger numbers of subapertures per partition. Hence, increasing the level of decom-
position for the distributed CuRe-D improves the noise propagation properties of the
method. It can be seen in Fig. 2.9 that this reduction of noise propagation within parti-
tions outweighs the negative effect of piston mode estimation errors introduced through
the decomposition. In contrast, as discussed in Section 2.4.3, the D-SABRE algorithm
does not suffer from noise propagation within partitions which contain a large number
of subapertures. However, D-SABRE is subject to PME error propagation between parti-
tions, which results in loss of performance for an increased level of decomposition given
a fixed size WFS array. This effect can be counteracted by increasing the overlap level OL,
or by increasing the size of the WFS array. For strong decomposition, the D-SABRE in the
tested baseline version meets the performance of CuRe-D only for sufficient amount of
overlap OL, which decreases the speed up, as shown in Eq. (2.43).

As discussed in Section 2.2.2, more advanced sensor models can further improve the
quality of the local D-SABRE estimates and reduce the inaccuracies in the piston mode
estimate which are currently propagated between partitions. This would allow higher
levels of decomposition and less partition overlap. Current work on a C-implementation
of the D-SABRE method will make it feasible to test the method for larger WFS arrays of
≈ 104–105 subapertures as will be found in XAO system.

2.4.4. COMPARISON WITH CURE-D IN YAO CLOSED-LOOP SIMULATIONS

To conclude, D-SABRE and CuRe-D are compared in a closed-loop environment regard-
ing their response to photon shot noise. Since D-SABRE and CuRe-D provide estimates
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Figure 2.10: Long-exposure Strehl ratio comparing closed-loop performance and noise resilience of D-SABRE
and CuRe-D for different SNR levels with respect to photon shot noise in a system with a 64×64 SH array and
32×32 actuator array. Left: turbulence with Fried parameter r0 = 18 cm; right: r0 = 25 cm. A 4×4 partitioning
is constructed for both distributed methods. Two loop gains are considered for each method respectively op-
timized for low (solid) and high (dashed) noise levels. In the D-SABRE case, OL = 64/(2Np ) is used. The Strehl
ratio is averaged for 10 turbulence realizations and plotted as a function of the guide star magnitude.

of the residual phase and not directly actuator commands for its correction, an addi-
tional step mapping the phase onto the deformable mirror had to be implemented which
was then combined with the simple integrator control law provided by YAO.

CLOSED-LOOP CONFIGURATIONS

As in Section 2.4.3, we evaluate the D-SABRE phase estimates at the subaperture cor-
ners, i.e. the locations where phase values are provided by CuRe-D. We want to stress
at this point that D-SABRE provides an analytical solution to the wavefront reconstruc-
tion problem and therefore phase estimates over the whole pupil plane. Misalignments
between the subaperture and the actuator grid can be taken into account without ad-
ditional approximation error, e.g. introduced through further interpolation. Further,
the B-spline basis function matrix introduced in Eq. (2.4), which evaluates the D-SABRE
phase estimates, can be precomputed. This allows to apply the deformable mirror fit as
a direct mapping between the B-coefficients and the actuator commands.

We consider a SCAO system with a stackarray deformable mirror defined through
the shape of the actuator influence functions which are provided by YAO. Based on the
influence function values at the subaperture corners, the actuator commands were com-
puted in order to fit the deformable mirror optimally in a least-squares sense to the
phase values. This fitting step is performed in a centralized manner and was not opti-
mized for speed. To allow the computation of meaningful results which require a certain
number of closed-loop iterations for several turbulence realizations, the density of the
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actuators is set lower than the density of the 64×64 subaperture array. We opted for a
32×32 actuator grid where the actuator positions are conjugated to every second sub-
aperture corner in the SH array. Again, the focus was to compare the behavior of the
methods for changes in parameters, like photon shot noise and loop gain, under iden-
tical circumstances, rather than aiming for a simulation of a XAO dimensioned system.
The coupling between the actuators is set to 20% and the normalized response threshold
(in WFS signal) below which an actuator will not be kept as valid to 30%.

To avoid initial transient, the long-exposure Strehl ratio is accumulated starting with
the 50th iteration and the loop is evaluated for 1 s with a sampling time of 2 ms. The per-
formance is evaluated for an on-axis science star created in H band and the experiments
are executed for 10 turbulence realizations. The loop gain of the integrator control was
tuned for both methods to perform optimally averaged for the same set of turbulence
realizations used in the following experiment. Pairs of optimal loop gains for D-SABRE
and CuRe-D were computed for two different noise levels: for a low-noise scenario sim-
ulated with a high flux guide star of magnitude 5 and for a high-noise scenario simulated
with a low flux guide start of magnitude 11. D-SABRE and CuRe-D were applied for a 4×4
partitioning of the 64×64 SH array; in the case of D-SABRE, an overlap level OL = 8 was
chosen.

CLOSED-LOOP RESULTS

In Fig. 2.10, the mean of the closed-loop Strehl ratios is provided with the standard devia-
tion of the mean for increasing impact of photon shot noise, indicated by the decreasing
brightness of the guide star. The solid lines show the Strehl ratios obtained by the re-
spective method if applying loop gains optimized for guide star magnitude 5 (i.e. high
flux), the dashed lines show the results obtained for loop gains optimized for guide star
magnitude 11 (i.e. low flux). The closed-loop experiment was performed for the set of
turbulence realizations with Fried parameter r0 = 18 cm at 650 nm wavelength used for
the open-loop tests in Section 2.4.3. For the loop gains 0.7 and 0.3 obtained by tuning
D-SABRE and CuRe-D, respectively, for high flux, D-SABRE outperforms CuRe-D for all
considered guide star magnitudes.

The advantage which the applied configuration of D-SABRE has shown for the open-
loop environment with additive white noise (see Fig. 2.9) is preserved in the closed-loop
experiment under exposure of photon shot noise, albeit not with the same margin. De-
creasing the loop gain for CuRe-D to 0.2, the optimal loop gain for low flux, boosts its
performance for guide star magnitudes > 9. The analog adjustment of the D-SABRE loop
gain to 0.6 results in a less significant improvement for the low flux range and D-SABRE
does not reach the performance of CuRe-D for the resulting SNR levels. However, in
the high flux range, D-SABRE proves in this experiment greater robustness to the varia-
tion of the loop gain. D-SABRE preserves its performance for guide star magnitudes < 7,
whereas CuRe-D is more sensitive to changes of the loop gain and suffers a significant
drop in Strehl ratio. The experiment was repeated for a set of 10 turbulence realizations
with Fried parameter r0 = 25 cm. The results are depicted in the right plot of Fig. 2.10
and confirm the findings made in this section. For sufficient amount of overlap and a
moderate level of decomposition, the baseline D-SABRE meets the performance of the
CuRe-D method also in a closed-loop setting and under the impact of photon shot noise.
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2.5. CONCLUSIONS
In this chapter, a new distributed multivariate spline based wavefront reconstruction
method is introduced. This new method, D-SABRE, is an extension of the SABRE method
for wavefront reconstruction. D-SABRE is aimed at large-scale wavefront reconstruction
problems (e.g. 200×200 WFS grids) where global reconstructions are not realistic.

The D-SABRE method partitions the global WFS domain into any number of parti-
tions, and then solves the local reconstruction problem in two distributed stages. In the
first stage, the local wavefront reconstruction problem is solved for every partition; this
stage is completely distributed in the sense that no communication between partitions
is necessary. In the second stage, the local partitions are smoothed into a single continu-
ous global wavefront. This stage requires only communication between direct partition
neighbors. The blending consists of two operations: the distributed piston mode equal-
ization (DPME) and the distributed dual ascent (DDA) operation. DPME is aimed at
equalizing the unknown piston modes between partitions, while DDA is aimed at post-
smoothing the resulting partitions. Both operations are iterative, and convergence of
the operations is proved. Without DPME no accurate global wavefront can be obtained.
The DDA operation, on the other hand, can be considered optional and should only be
applied when a continuous global wavefront reconstruction is desired because of its sig-
nificant negative influence on computational complexity.

An analysis of computational complexity showed that a speedup factor over SABRE
can be obtained that is quadratically proportional to the total number of partitions. The
most dominant factor for the complexity is the local reconstruction stage (State-1) and
the optional distributed post-smoothing (DDA) step in Stage-2. The DPME step in Stage-
2 is cheap in terms of computational complexity.

Numerical experiments show that D-SABRE approximates the global wavefront re-
construction within 1% in terms of the Strehl ratio for SNR ≥ 20 dB, within 5% for SNR
≥ 10 dB, and within 10% for very low SNR ≥ 5 dB. The most important factors determin-
ing reconstruction accuracy are the overlap level between partitions and the absolute
partition size, where a larger partition leads to more accurate results.

The D-SABRE method is not subject to noise propagation in the same sense as the
CuRe and CuRe-D methods. Instead, it is subject to propagation of errors created in the
piston mode offset estimations between partitions. The magnitude of this PME error
propagation decreases as the absolute size of the partitions increases. In that sense, D-
SABRE favors very large WFS arrays, that are partitioned into partitions that are as large
as possible given a particular hardware setup.

Finally, a comparison of the D-SABRE method with the CuRe-D method is given
through open- and closed-loop simulations which are performed with the AO simula-
tion tool YAO. The open-loop analysis of the performance under the influence of additive
white noise shows a clear advantage of D-SABRE for low levels of domain partitioning.
If the number of partitions is increased and the size of the partitions decreases, overlap
between the partitions has to be applied in order to outperform CuRe-D. In the tested
closed-loop SCAO configurations, D-SABRE and CuRe-D showed comparable behavior
for decreasing SNR levels due to photon shot noise. D-SABRE has proven to be more
robust to variations in the gain of the control loop.

We conclude D-SABRE will be most useful on very large-scale (> 200×200) WFS ar-
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rays, where the computational hardware favors low levels of domain partitioning result-
ing in partitions that are as large as possible. This is in contrast with CuRe-D, which is
useful on large-scale WFS arrays but which requires an as high as possible domain par-
titioning to prevent noise propagation.

Future work on the D-SABRE method will be focused on extending the approach
(1) to higher degree polynomials (i.e. d ≥ 3), which requires imposing explicit boundary
conditions on the local models; (2) by implementing more advanced sensor models such
as that introduced in [131] that exploit the integrative nature of the SH sensors; (3) by
implementing more advanced estimation schemes that exploit knowledge of turbulence
statistics; and finally (4) by implementing D-SABRE on a real-world parallel hardware
(GPU) setup.

2.6. DECOMPOSITION OF THE SMOOTHNESS MATRIX
By exploiting the sparseness of A in Eq. (2.30), we can derive two new submatrices Hi

and Hi ,m for each partition i . For this we first introduce E = 1,2, . . . ,E as the global index
set of all triangle edges in the global triangulation T and C = 1,2, . . . , J · ĉ as the global
index set of all B-coefficients in the global spline model sd

r .
The first submatrix of A, indicated as the inner constraint matrix Hi , contains blocks

that only influence B-coefficients inside the partition i :

Hi := A(EΩi ,CΩi ), (2.44)

with EΩi ⊂ E as the set of indices of all triangle edges inside the core part Ωi of the sub-
triangulation Ti from Eq. (2.13) and with CΩi ⊂ C as the set of all B-coefficient indices
inΩi .

The second submatrix Hi ,m contains all blocks in A that influence B-coefficients in-
side the partition i as well as B-coefficients in neighboring partitions m through the ac-
tion of the continuity conditions:

Hi ,m := A(Ei ,m ,Ci ,m), (2.45)

with Ei ,m = EΩi ∪Ei→m as the set of indices of all edges in Ti that influence sd
r,i . Finally,

we define Ci ,m ⊂ C as the indices of all B-coefficients in sd
r,i as well as all B-coefficients

in sd
rm

that are subject to continuity conditions on Ti ∩Tm .
We define y i = y(EΩi ) as the local dual vector, c i = c(CΩi ) as the local B-coefficient

vector, and c i ,m = c(Ci ,m) as all B-coefficients in sd
r,i combined with all B-coefficients in

sd
r,m that are subject to continuity conditions onΩi ∩Ωm .
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CHAPTER ABSTRACT
The paper presents an adaptation of the distributed spline-based aberration reconstruc-
tion method for Shack-Hartmann slope measurements to extremely large-scale adaptive
optics systems and the execution on graphics processing units (GPU). The introduction
of a hierarchical multi-level scheme for the elimination of piston offsets between the
locally computed wavefront estimates solves the piston error propagation observed for
large number of partitions with the original version. In order to obtain a fully distributed
method for wavefront correction, the projection of the phase estimates is locally approx-
imated and applied in a distributed fashion, providing stable results for low and medium
actuator coupling. An implementation of the method with the parallel computing plat-
form CUDA exploits the inherently distributed nature of the algorithm. With a standard
off-the-shelf GPU, the computation of the AO correction updates is accomplished in un-
der 1 ms for the benchmark case of a 200×200 SH array.

The content of this chapter has been published in [124].
@2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic
reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes,
or modifications of the content of this chapter are prohibited.
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3.1. INTRODUCTION

I n order to adequately compensate for the phase aberrations that are introduced by at-
mospheric turbulence, the new generation of extremely large scale optical telescopes

requires adaptive optics (AO) systems that scale with the size of the telescope pupil [2].
For the eXtreme-AO (XAO) system [135] of the future European Extremely Large Tele-
scope (E-ELT) this places the number of wavefront sensor (WFS) measurements N in the
range of 104–105. Since the actuator commands of the corrective device, consisting of a
deformable mirror (DM), have to be updated at kHz range frequencies, the work on fast
algorithms to obtain estimates of the incoming wavefronts has been extensive [72, 74–
76], resulting in methods that reach linear computational complexity order [80, 81, 83].
However, for the dimensions of XAO systems, the boundaries in single CPU core perfor-
mance pose a limit for methods that are based on inherently global solutions. Therefore,
increasing efforts have been made in designing wavefront estimation algorithms specif-
ically for parallel processing architectures.

The D-SABRE (Distributed Spline-Based ABerration REconstruction) method [123]
was recently introduced as an extension of the SABRE method [117]. The approach uses
multivariate simplex B-splines [118] to locally model wavefront aberrations and allows
application on non-rectangular WFS arrays. In simulations for rectangular arrays, the
wavefront estimates obtained with the SABRE method have proven superior to the clas-
sical finite difference method with Fried geometry [29] in terms of reconstruction accu-
racy and noise resilience [117]. The local nature of the B-spline basis functions can be ex-
ploited to derive an innately distributed solution to the wavefront reconstruction (WFR)
problem. D-SABRE decomposes the global WFS domain into any number of partitions
and computes the wavefront estimates in two distributed stages: In the first stage, local
WFR problems, which are defined on the partitions and include only local WFS mea-
surements, are solved in parallel, resulting in a set of local wavefront estimates. In the
second stage, the distributed piston mode equalization (D-PME) equalizes the unknown
piston modes of the local B-spline models to obtain the global wavefront estimate. D-
PME is an iterative process which requires only communication between neighboring
partitions. The overall method has a theoretical computational complexity of O(N 2/G2)
flops (floating point operations), that have to be performed per parallel processor, for a
total of G partitions and scales therefore linearly with the number of WFS measurements
for G ≥p

N [123].

The D-SABRE method was extensively compared to the CuRe-D method [86], a line
integral approach with domain decomposition that has linear computational complex-
ity and is suitable for parallel implementation. It has been observed that, constituting
solutions to least-squares problems, the local D-SABRE wavefront estimates show good
noise rejection properties, whereas the cumulative approach of the CuRe-D algorithm
leads to noise accumulation within the partitions. However, D-SABRE is subject to prop-
agation of errors that are created in the estimation of the piston offsets between parti-
tions, if a high level of domain composition is applied or if the domain contains large in-
ternal obscurations. Applying overlap between the partitions mitigated but not negated
this effect, and also decreases the computational speed [123]. This phenomenon yields a
trade off in WF accuracy and number of partitions G , putting a limit on the latter, which
prevents the D-SABRE method from reaching its full potential of linear or even sublinear
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computational load per processor for very or extremely large-scale AO system.

The D-SABRE method in its current form was conceptualized for application with the
most commonly used Shack-Hartmann (SH) WFS. The SH sensor is an array of lenslets
that creates a focal spot pattern from which approximations of the local spatial wave-
front gradients in each subaperture are derived [2, 68]. While the limited amount of
processed data, i.e. two slope measurements per subaperture, restricts the slope based
D-SABRE method to linear B-spline polynomials, two approaches have been introduced
that can extend the method to higher degree polynomials: by exploiting the integrative
nature of the SH sensor, a more advanced sensor model has been implemented that
utilizes first and second order moment measurements of the focal spots [128]; and by
combining the standard D-SABRE with an additional correction step in which the pixel
information in the focal spots is directly worked with, using an algorithm based on small
aberration approximations of the focal spot models [129]. Employing a cubic B-spline
representation of the phase, both approaches can achieve wavefront estimates that are
superior to the linear D-SABRE wavefront estimates if applied to a given SH array. But
since quadratic instead of linear sensor models are included, a trade off with computa-
tion time has to be made.

This paper presents improvements to, and addresses remaining drawbacks of, the SH
slope based D-SABRE method to make it applicable to extremely large-scale AO systems
whilst preserving the acquired strong points, i.e. locality and noise resilience of the ana-
lytical solution [123]. As a first contribution, we present an alternative approach for can-
cellation of the piston offsets between the local WF estimates. The H-PME (hierarchical
piston mode equalization) is based on a multi-level approach that, rather than equaliz-
ing the piston mode in a partition local operation, levels tiles of partitions. Even though
the H-PME requires communication not only between directly neighboring partitions
but throughout the entire WFS domain, the necessary computations can be distributed.
While stricter requirements are posed on the shape of the triangulation in order to ap-
ply the H-PME, the procedure fixes the piston error propagation for large number G of
partitions and extends the applicability of the D-SABRE method to pupil shapes with
arbitrarily large central obscurations [2]. In order to compensate for the present phase
aberrations with an AO system, the deformable mirror actuator commands have to be
computed such that the mirror shape optimally fits the estimated wavefront. Within the
B-spline framework, we suggest an approach that performs this DM projection locally
on each partition, which results, in combination with the D-SABRE method, in a fully
distributed algorithm for fast updates of the corrective DM actuator commands. Devel-
oped as an inherently distributed algorithm, the D-SABRE method was intended for exe-
cution on parallel hardware. For the derivation of the per processor computational load
mentioned above, all hardware-dependent issues such as transport latency, cache size,
and available instruction sets were neglected [123]. The last contribution of this paper,
an adaption and implementation of the D-SABRE method for graphics processing units
(GPU), was therefore crucial to prove the potential of the approach to create scalability
for the WF correction problem. Profiling results for the benchmark case of a 200×200
SH array showed that the presented GPU implementation reaches for XAO systems the
required sub-millisecond computation times with off-the-shelf parallel hardware.

The organization of this paper is as follows. After a short introduction of the D-SABRE
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method and a description of the issues arising from the original piston mode equaliza-
tion procedure in Section 3.2, the alternative hierarchical piston mode equalization is
presented in Section 3.3. Next to the formulation of the approach, numerical experi-
ments with an end-to-end simulation tool for AO-systems show the advantages in wave-
front reconstruction accuracy and resilience to measurement noise. The procedure to
compute the actuator command updates in a fully distributed manner and the approxi-
mation errors which are introduced compared to the global DM projection are described
in Section 3.4. In Section 5, we discuss the GPU implementation of D-SABRE method in
detail and provide speed of the computations and memory transfers by timing and, fi-
nally, Section 3.6 concludes the paper.

3.2. PRELIMINARIES ON THE D-SABRE METHOD FOR WAVE-
FRONT RECONSTRUCTION

The D-SABRE method consists of two stages, as illustrated in Fig. 3.1, with Stage-1 per-
forming the distributed local wavefront reconstruction (WFR) and Stage-2 the D-PME
procedure [123]. An additional postsmoothing routine which was introduced as an op-
tional addition to Stage-2 that not only eliminates the piston offsets but also imposes
smoothness between the local estimates is not considered in this paper.

  

Distributed SABRE  
Local nature of wavefront spline model
allows a distributed solution ! 

- C. de Visser, E. Brunner, M. Verhaegen - JOSA, 2016:
 “On distributed Wavefront Reconstruction for Large Scale AO systems.“

- C. Tielen -  Msc Thesis, 2016:
“GPU implementation of the D-SABRE method for extremely large scale AO systems.” 

E-ELT: AO system specifications

Aberrated wavefront Linear SABRE estimate 

Spline ABerration Reconstruction (SABRE)

Figure 3.1: Scheme of the D-SABRE algorithm: Local wavefront reconstruction and distributed piston mode
equalization.

3.2.1. STAGE-1: DISTRIBUTED LOCAL WFR
By constructing the global triangulation T on the reference centers of the SH subaper-
tures, the B-spline model of the wavefront is defined in the pupil plane. In Fig. 3.2, the
example of a regular Type-II triangulation, which will be used in the remainder of the
paper, is depicted. The D-SABRE method is based on a decomposition of the global tri-
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angulation T into a set of G sub-triangulations such that

T =
G⋃

i=1
Ti , Ti =Ωi ∪Ξi , Ωi ∩Ξi =;. (3.1)

Each sub-triangulation Ti consists of a core part Ωi and an overlap part Ξi that respec-
tively contain JΩi and JΞi triangles resulting in Ji = JΩi + JΞi triangles per partition. The
width of the partition overlap is given in simplices and indicated with the overlap level
(OL), with the example of Fig. 3.3 showing sub-triangulations with OL-1.

Figure 3.2: D-SABRE Type-II triangulation [123] with 5× 5 partitioning on a 16× 16 SH array for a telescope
with a central obscuration ratio of 0.3. The circles depict the reference centers of the SH subapertures that are
illuminated with a minimum light ratio of 0.5 and the illumination area outlined in gray.

Figure 3.3: D-SABRE sub-triangulations of the partitioning in Fig. 3.2 including partition overlap of OL-1 with
core parts in black and overlap parts in gray.
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The local wavefront φi (x, y) within subpartition i is approximated through spline
function sd

ri
(x, y) of polynomial degree d and continuity order r :

φi (x, y) ≈ sd
ri

(x, y) = Bd
i (x, y)c i , 1 ≤ i ≤G , (3.2)

where the local B-form matrix Bd
i (x, y) contains the B-spline basis functions, and c i ∈

RJi d̂ the set of local B-coefficients. The pupil plane coordinates are given by (x, y) ∈ R2,
and d̂ := (d+2)!

2d ! denotes the total number of Bernstein polynomials per triangle. Note,
that for the SH slope based D-SABRE only linear splines of degree d = 1 with zero order
continuity can be employed, resulting in d̂ = 3.

The local slope vector σi = [σ>
i ,x σ>

i ,y ]> ∈ R2Ki×1 includes SH slope measurements of

the subapertures for which the reference centers are located within sub-triangulation
Ti . The distributed local WFR amounts then to the following set of linear least-squares
problems subjected to linear equality constraints:

min
c i∈RJi

‖σi −Di c i‖2
2 subject to Ai c i = 0, 1 ≤ i ≤G , (3.3)

where matrix Ai contains the continuity constraints that ensure smoothness of continu-
ity order r within partition i . The local regression matrix is hereby defined as

Di := dBd−1
i (x, y)Pd ,d−1

ei
∈R2Ki×Ji d̂ , (3.4)

with Bd−1
i (x, y) denoting the local B-form matrix for the reduced polynomial degree d−1

and Pd ,d−1
ei

the local de Casteljau matrix [132].
The local constraint matrix Ai is constructed from local smoothness matrix Hi and

local anchor constraint hi :

Ai :=
[

Hi

hi

]
∈R(Ri+1)×Ji d̂ , (3.5)

where Ri is the number of local continuity constraints in sub-triangulation Ti . The an-

chor vector hi = [1 0 · · · 0] ∈R1×Ji d̂ fixes the local piston modes to a predefined constant.
The local WFR problems, each consisting of a linear least-squares problem with equal-

ity constraints, is solved through projection onto the nullspaces of the local constraint
matrices:

c̄ i =
(
D̄i D̄>

i

)−1
D̄>

i σi , (3.6)

where the projected local regression matrix D̄i := Di NAi is obtained with an orthogonal

basis of the nullspace of Ai stored in matrix NAi := null(Ai ) ∈RJi d̂×d̄i , where d̄i < Ji d̂ . The
result is still in the nullspace of the constraint matrix and the final local coefficient vector
is retrieved by evaluating the vector space of NAi with

c∗
i = NAi c̄ i . (3.7)

3.2.2. STAGE-2: DISTRIBUTED PISTON MODE EQUALIZATION
After computation of the local wavefront estimates in Stage-1, the unknown local piston
modes have to be equalized in Stage-2, for which the distributed piston mode equaliza-
tion (D-PME) was introduced [123].
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Figure 3.4: The D-PME operation on a 2×3 partitioning with the to be leveled sub-triangulations labeled as Gi ,
for i = 1, . . . ,6.

Be Mi the index set of all neighbor partitions m to partition i . The index vectorΩi ,m

collects the coefficients within the core part of partition i that are located on the border
shared with the core part of neighbor partition m, and Ωm,i does so vice versa. With
the results of Stage-1 from Eq. (3.7) stacked in the global starting vector c(0) of D-PME,
iteration l of the procedure is then formulated as

ki (l +1) = max
m

{∣∣c(l )Ωi ,m − c(l )Ωm,i

∣∣} , (m > i ) ∈Mi , (3.8)

cΩi (l +1) = cΩi (l )+ki (l +1), (3.9)

where | · | stands for the mean of the coefficient difference vectors and Ωi denotes as
subscript the coefficients located within the core part of the sub-triangulations. The D-
PME operation is illustrated for a small-scale example in Fig.3.4.

The computation of the piston offset and the update of the local coefficient vector
in Eqs. (3.8) and (3.9) require only access to the coefficients of the local partition and its
neighbors and can therefore be performed in a distributed fashion.

CHAIN PROPAGATION IN D-PME
The asymmetry of using the maximum offset between partition i and only neighbor par-
titions m with m > i is necessary for the D-PME operation to converge. It causes the
information flow to propagate sequentially through the partitioning, during which the
partitions keep adapting their piston modes in a distributed fashion until they are all
equalized relative to one predefined partition, the master partition. The number of iter-
ations LD in which D-PME converges is hence given by the maximum distance, counted
in partitions, between the master partition and any other partitions, resulting in a mini-

mum of LD =
p

G
2 iterations.

Whilst being crucial for convergence of the method, it has been shown in numerical
experiments that there are major drawbacks to the asymmetric equalization of the piston
offsets.

Inaccuracies in the computation of the piston offsets between partitions, caused by
errors in the local wavefront estimates provided by Stage-1, are propagated along par-
tition chains throughout the grid of sub-triangulations. Especially in presence of large
amounts of measurement noise, this effect is magnified by stronger decomposition of



3

64 3. A GPU IMPLEMENTATION FOR SPLINE-BASED WAVEFRONT RECONSTRUCTION

a given triangulation. The decreased size of the sub-triangulations deteriorates the ac-
curacy of the piston offset estimations, since a smaller number of coefficients, shared
by the considered neighboring partitions, are used to compute the offsets in Eq. (3.8).
The increased number of sub-triangulations in the partitioning aggravates the accumu-
lation of the resulting PME errors, which yields to partition chains that diverge in terms
of their piston modes. Application of large amounts of partition overlap can mitigate
however not resolve the problem, and also reduces the computational speed of the D-
SABRE method [123].

Increasing the partition overlap does not suffice to restore a satisfying performance
of the D-PME algorithm, if D-SABRE is applied to a telescope pupil with a central ob-
scuration that is large enough to interrupt the partition chains along which the PME in-
formation propagates. An example is shown in Fig. 3.2, where the decomposition of the
global triangulation, that is built on the illuminated subapertures of the SH array results
in neighboring partitions that do not share any coefficients. In this case, the asymme-
try of the D-PME operation does not allow an information flow around the obscuration
but causes large PME errors that are then further propagated along the partition chains.
The authors of this paper see the potential to render the D-PME procedure applicable
to such cases by formulating D-PME as a consensus enforcing distributed optimization
problem, as it can be e.g. realized with the Alternating Direction Method of Multipliers
(ADMM) [130]. In this paper however, a different procedure based on a multi-level ap-
proach was realized, where information exchange occurs between groups of partitions
instead of merely directly neighboring partitions.

3.3. HIERARCHICAL PISTON MODE EQUALIZATION
We present an alternative PME procedure that resolves the issues of chain and PME error
propagation: the hierarchical piston mode equalization (H-PME). Like the D-PME, the
H-PME procedure is designed as a distributed algorithm, however it realizes the infor-
mation flow not in a sequential but a hierarchical manner.

3.3.1. THE H-PME PROCEDURE

Whilst D-PME can be applied to non-rectangular partitionings, H-PME requires a more
rigid decomposition of the global triangulation into a square 2p×2p grid of G sub-triangulations
Ti , for p ∈N, resulting in G = 22p partitions.

The H-PME method is performed in several levels h = 1, . . . , p. In each level h, square
sub-grids of the partitioning are grouped into partition-tiles each containing 22(h−1) neigh-
boring partitions, as is visualized in Fig. 3.5. The resulting grid of partition-tiles is then
organized in 22(p−h) groups that each contain 4 neighboring tiles. The piston mode
equalization of level h is performed within these groups. Figure 3.5 depicts the second
and last level of H-PME on a 4× 4 partitioning, which acts on one group of tiles each
containing 4 partitions. The tiles, labeled as H2, H3 and H4, are leveled in 3 steps with
respect to tile H1.

H-PME is formulated as the following procedure. For the levels h = 1, . . . , p, be H h
g ,t

the index set of all partitions i that are contained in the partition-tile t of group g , where
t = 1, . . . ,4 and g = 1, . . . ,22(p−h). In order to equalize the piston offsets in group g , 3 off-
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Figure 3.5: Level 2 of the H-PME operation on a 4×4 partitioning, equalizing tiles Ht , t = 1, . . . ,4 each contain-
ing 4 partitions.

sets kg ,ti have to be computed that level 3 tiles with respect to a master tile in the group.
For these 3 offsets, the target tile is indexed as ti and the master tile as tm according to a
predefined order. With the global starting vector c(0) obtained from Stage-1, the piston
correction of tile ti in group g at level h of H-PME is given as

kg ,ti (h) = 1

2h−1

∑
i ,m

∣∣c(h −1)Ωi ,m − c(h −1)Ωm,i

∣∣ , (3.10)

for all i ∈H h
g ,ti

and m ∈H h
g ,tm

with Ωi ,m ∩Ωm,i 6= ;.

cΩi (h) = cΩi (h −1)+kg ,ti (h), for all i ∈H h
g ,ti

. (3.11)

Hereby the piston offset is applied to all partitions in the target tile ti of the considered
group g . It is computed as mean of all differences between coefficients that are located
at the shared partition borders of the considered tiles. As in the D-PME procedure, Ωi ,m

is the index vector to all coefficients in partition i that are shared with partition m and
vice versa. Which target tiles within the group of 4 are leveled to which master tile, is pre-
defined by the setting of ti and tm . In Fig. 3.5, the 3 tile offsets were performed according
to the order ti = 2,3,4 and tm = 1,1,2.

As for D-PME, the update rule of the H-PME procedure in Eq. (3.11) can be per-
formed distributedly for all partitions. The computations of the piston offsets kg ,ti in
Eq. (3.10) however are not a partition local (including only direct neighbor partitions)
operation as this is the case for D-PME. The higher the considered level of the H-PME
procedure, the more spread out the required information is through the global triangu-
lation. Since there is no intersection between the partition index sets H h

g ,t of two dif-
ferent groups g1 and g2, parts of the computation can nevertheless be performed in a
distributed manner.

It has already been stated that H-PME is restricted to square 2p × 2p , p ∈ N, parti-



3

66 3. A GPU IMPLEMENTATION FOR SPLINE-BASED WAVEFRONT RECONSTRUCTION

tionings for which the procedure is performed in p levels. In terms of the total number
of partitions G this leads to LH = log2(

p
G) iterations for H-PME, resulting in a faster in-

formation flow with the hierarchical scheme than with the sequential scheme of Section
3.2.2.

The following section demonstrates in numerical experiments that H-PME does not
suffer from the increased PME error propagation for strong decompositions of the tri-
angulation that was discussed in Section 3.2.2. It is further shown that adequate piston
mode equalization is also possible in presence of a central obscuration when H-PME is
applied.
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Figure 3.6: Reconstruction accuracy and noise resilience comparing D-PME and H-PME for different levels of
decomposition and decreasing SNR levels with respect to photon shot noise. A square pupil was assumed,
hence all subapertures in the considered 64×64 SH array are illuminated.

3.3.2. H-PME IN NUMERICAL EXPERIMENTS
In order to compare the distributed and hierarchical PME procedures, the D-SABRE
open-loop wavefront reconstruction accuracy achieved under the presence of measure-
ment noise is tested for both PME procedures. The Object–Oriented Matlab Adaptive
Optics (OOMAO) simulation tool [136] was used to numerically generate an AO system
with an on-axis natural guide star. The experiments consist of Monte-Carlo simulations
that are based on 100 wavefront realizations computed for atmospheric turbulence of
15 cm Fried parameter at wavelength 550 nm. The D-SABRE method is applied to sets
of the diffraction based SH slope measurements that are obtained from the simulation
tool. The B-spline estimate of the wavefront is evaluated at the resolution of the simu-
lated phase screens and the reconstruction accuracy is given in relative RMS (root mean
square) error, i.e. the ratio between the residual and the aberration RMS, and averaged
over all realizations.
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Figure 3.7: Zero-padded D-SABRE Type-II triangulation with 4 × 4 partitioning on a 16 × 16 SH array for a
telescope with a central obscuration ratio of 0.3. The circles depict the reference centers of the SH subapertures
that are illuminated with a minimum light ratio of 0.5 and the illumination area outlined in gray.

Figure 3.8: Zero-padded D-SABRE sub-triangulations of the partitioning in Fig. 3.7 including partition overlap
of OL-1 with core parts in black and overlap parts in gray.
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ELIMINATION OF THE PISTON ERROR PROPAGATION

The first experiment purely investigates the effect of the number of partitions on the
reconstruction accuracy for a given SH array size and therefore considers a square tele-
scope pupil, since non-rectangular pupils influence the performance of the PME pro-
cedures. The D-SABRE method is applied for different decomposition levels employing
both the distributed and the hierarchical PME scheme. A 64×64 SH lenslet array that is
fully illuminated by the square pupil of side length 25 m is simulated. The slope mea-
surements are computed for decreasing SNR levels with respect to photon shot noise,
which is indicated by the decreasing brightness of the guide-star. D-SABRE runs on a
regular Type-II triangulation [123] and the local wavefront reconstructions are obtained
with a minimal partition overlap of OL-1. In the results presented in Fig. 3.6, the prob-
lematic piston mode error propagation of the D-PME procedure can be observed for the
highly decomposed 16×16 and 32×32 partitionings at all SNR levels. The reconstruction
accuracy obtained with H-PME, on the other hand, is hardly affected by the increase in
the number of partitions and the reduction of the partition sizes. The hierarchical proce-
dure is also less affected by the increasing impact of photon shot noise. Unlike D-PME,
in which all piston offsets are sampled locally based only on coefficients of a single parti-
tion, H-PME computes the piston offset in higher levels as averages of coefficient differ-
ences obtained from several neighboring partitions. This averaging of partition offsets
not only prevents propagation of local PME errors, but also improves the noise rejection
properties of the procedure.

INCLUSION OF AN ANNULAR PUPIL THROUGH ZERO-PADDING

Secondly, the applicability of the H-PME procedure to telescope pupils with central ob-
scuration is shown. An annular telescope pupil with a diameter of 25 m and 0.3 obscu-
ration ratio is considered. From the 64×64 SH array, the slopes measurements of sub-
apertures with an illumination of at least 50% are processed. Due to the requirement of a
square 2p ×2p partitioning, p ∈N, it is not possible to construct the global triangulation
on the reference centers of only the illuminated subapertures as seen in Fig. 3.2. Strong
decomposition of such annular triangulations will create sub-triangulations to which no
data is assigned and hence yield non-square partition grids, as discussed in Section 3.2.2.
To allow arbitrary pupil shapes and SH array dimensions, the illuminated subapertures
are embedded into a square SH array that returns zero slope measurements. Based on
this zero-padding of the SH data, an appropriate triangulation and partitioning can be
created (see Figs. 3.7 and 3.8). At each level of H-PME, the orientation of the partition
tile leveling of Eqs. (3.10) and (3.11) is performed such that tiles with the largest amount
of coefficients within the pupil are considered first. This scheme has also been tested
for D-PME by considering only coefficients located within the pupil for Eqs. (3.8) and
(3.9). However, even though a slight improvement was observed, the piston error chains
could not be sufficiently reduced to obtain useful results, as can be seen in the top phase
screens of Fig. 3.9, which were computed in a noise-free scenario. While the residual
phase obtained with H-PME (bottom of Fig. 3.9) also shows remaining piston offsets for
several partitions at the edge of the pupil, these remain local. Furthermore, an overall
equalization of the piston modes is achieved.

The results of a Monte-Carlo simulation under influence of measurement noise, ob-
tained for the described set-up of a round pupil with central obscuration, are presented
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Figure 3.9: Phase screens of aberration, estimate and residual computed for an annular pupil with central
obscuration of ratio 30% with the D-SABRE method applying the D-PME (Top) and the H-PME (Bottom) pro-
cedures. Piston mode errors caused by zero-slopes that are processed for the non-illuminated subapertures of
the 64×64 SH array, can be observed.

in Fig. 3.10. In addition to increasing impact levels of photon shot noise, the SH array
is further exposed to a constant level of 2 electrons read-out noise per pixel [136]. After
embedding of the illuminated SH lenslets of the system into a square array, the sub-
triangulations are created for several decomposition levels. After local reconstruction
that includes both zero and actual slopes, D-PME and H-PME are applied using only
coefficients located within the illuminated area in which also the residual wavefront is
computed. As expected, D-PME provides reconstruction accuracy that is much inferior
to the results obtained with H-PME. The massive jump in RMS error observed for D-
PME when applying stronger decomposition, shows that entire partitions in the central
obscuration are without real data which interrupts the partition chains along which the
information propagates. Affected by errors that are introduced at the edges of the pupil
through the zero data, H-PME loses performance if compared with the square pupil ex-
periment of Fig. 3.6. An interesting observation that can be made is that stronger de-
composition of the triangulation improves the result, since the reduced partition sizes
contain the erroneous piston estimates in a smaller area of the pupil. Also, it should be
mentioned that the effect of the zero-padding will be less strong in a closed-loop sce-
nario where the real slopes are smaller.

Nevertheless, efforts should be undertaken to reduce the effects of the zero data vis-
ible at the edges of the illuminated part of the telescope pupil; especially in view of the
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Figure 3.10: Reconstruction accuracy and noise resilience comparing D-PME and H-PME on a zero-padded
triangulation (subapertures within pupil illuminated, zero data processed outside of pupil) for different levels
of decomposition and decreasing SNR levels with respect to photon shot noise. The estimates were computed
on the full 64×64 SH array and compared within the annular pupil (central obscuration of 30%).

fact that on a real site the telescope spiders [135] supporting the secondary mirror cre-
ate additional obscured areas. Extrapolating the slope data to avoid sharp features at
the edges of the pupil and the central obscuration would be an option to consider. Also
should extending the H-PME procedures to non-square partition grids and reducing the
resolution of the triangulation to bridge the spider obscurations be part of further stud-
ies aiming at avoiding zero padding altogether. Another issue not in the scope of this
work is the consideration of differential piston effects due to pupil segmentation which
results from segmented mirrors [137] and wide spiders.

3.4. DISTRIBUTED DEFORMABLE MIRROR PROJECTION

Once the wavefront estimate is retrieved with the D-SABRE method, a local solution
for the projection onto the space of actuator commands driving the deformable mirror
(DM) has to be investigated in order to obtain wavefront correction in a fully distributed
manner.

3.4.1. THE DM DISTRIBUTED PROJECTION PROBLEM

For a given actuator command vector u ∈ RM the global phase φu introduced by the
deformable mirror is represented as

φu (x, y) = F(x, y)u, (3.12)
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where matrix F(x, y) contains the values of the actuator influence functions at the pupil
domain coordinates (x, y) ∈ R2. The structure and sparsity of influence matrix F(x, y)
depends on the shape of the influence functions, the placement of the actuators and
their inter-coupling behavior.

The global DM projection has to find the set of actuator commands that optimally
fit the DM phase φu (x, y) to the estimated global D-SABRE phase estimate φ(x, y) =
Bd (x, y)c , at all pupil plane locations (x, y) within the telescope aperture. This can be
achieved by solving the following least-squares problem:

min
u∈RM

∥∥∥Bd (x, y)c −F(x, y)u
∥∥∥2

2
, (3.13)

where Bd (x, y) is the global B-form matrix and c ∈ RJ d̂ the global B-coefficient vector
obtained from the D-SABRE method.

For the distributed DM projection, a local actuator fitting problem is constructed for
each partition i where only the local phase estimates represented by the local coefficient

vector c i ∈ RJi d̂ and the commands ui ∈ RMi of actuators located within the respec-
tive partition are considered. Since the actuators are subjected to inter-coupling, the
B-coefficients and actuators located in the entire sub-triangulation Ti , including core
and overlap parts Ωi and Ξi , are matched to mitigate the effect. Note that to do so, the
coefficient offsets within the PME procedures have to be applied not only to the partition
core but to the partition overlap as well.

The local DM projection problem of partition i is then formulated as the least-squares
problem

min
ui∈RMi

∥∥∥Bd
i (x, y)c i −Fi (x, y)ui

∥∥∥2

2
, (3.14)

for local B-form matrix Bd
i (x, y) that is evaluated at pupil plane coordinates (x, y) within

sub-triangulation Ti . The values of the influence functions for the actuators located
within Ti are sampled at the same coordinates and collected in matrix Fi (x, y). Since the
local influence matrices are constructed for overlapping parts of the pupil plane coordi-
nate plane and actuator grid, Fi (x, y) cannot simply be retrieved as blocks of the global
influence matrix F(x, y). With the resulting optimal local actuator commands, given by

ui =
(
(Fi (x, y))>Fi (x, y)

)−1
(Fi (x, y))>Bd

i (x, y)c i , (3.15)

the global actuator command vector u can be constructed from the commands uΩi of
the actuators located within the core partsΩi of each partition.

It is important to mention, that this approach is a very simple and minimalistic so-
lution to the distributed DM projection, which is expected to introduce errors for very
strong actuator coupling. In order to obtain the solution of the global DM projection
problem of Eq. (3.13) in a distributed manner without approximation errors, future work
should investigate the formulation of the distributed DM projection problem e.g. as a
sharing optimization problem with ADMM [130]. Coupling constraints on local com-
mand vectors ui can be employed to achieve consensus between actuators that are shared
by neighboring partitions or whose influence functions reach neighboring partitions
[129].
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In order to understand the range of applicability for the simpler presented distributed
DM projection, numerical experiments for AO systems in a closed-loop scenario, ob-
tained with the simulation tool OOMAO, are shown in the next section.
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Figure 3.11: Correction performance in long exposure Strehl ratio comparing SABRE and D-SABRE with global
and distributed DM projection for different levels of decomposition. In a noise-free scenario, different levels
of actuator coupling and 3 levels of loop gain, and a fully illuminated 32×32 SH array are considered.

3.4.2. THE DISTRIBUTED DM PROJECTION IN NUMERICAL EXPERIMENTS
This section investigates the effects of not only performing the wavefront reconstruction,
but also the projection onto the deformable mirror in a distributed manner. Another AO
system with an on-axis natural guide star, this time in a closed-loop setting, was simu-
lated with OOMAO. To ease the computational load of running the Monte-Carlo simula-
tions, a smaller system with a 32×32 SH array and a telescope with 12 m diameter are
considered. The numerical deformable mirror is created with a built-in set of modes, de-
rived from cubic Bezier curves, that result in a local region of influence of the actuators
on the DM phase [136]. A Fried geometry was chosen, locating the actuators in the pupil
plane on the corner of the subapertures and yielding a 33×33 actuator array if the entire
SH array is considered.

INFLUENCE OF ACTUATOR COUPLING

As a first experiment, the wavefront correction obtained with D-SABRE (with H-PME)
for a fully illuminated SH array, i.e. a square telescope pupil, is investigated to not take
into account the effects of the zero-padding (see Section 3.3.2), but to purely compare
the impact of using the distributed DM projection instead of the global projection for
varying levels of actuator coupling and different loop gains. A low-level noise scenario,
with a natural guide star of magnitude 8 and 2 electrons read-out noise per pixel, was
adapted.

As performance measure, the long-exposure Strehl ratio [2] (ranging from 0 to opti-
mally 1) was computed from a simulated science camera that pictures an on-axis science
star created in J band. The clock rate of the camera is with 500 Hz set equal to the sam-
pling time of the telescopes and integration lasts for an exposure of 500 frames starting
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Figure 3.12: Correction performance and noise resilience in long exposure Strehl ratio comparing SABRE and
D-SABRE with global and distributed DM projection for two levels of decomposition and decreasing SNR levels
with respect to photon shot noise. The estimates were computed on the full, zero-padded 32×32 SH array and
the correction applied within the annular pupil (30% central obscuration).

after the first 20 frames [136]. To obtain a statistic for the experiment it was performed
for 50 sets of phase screens propagating at a wind speed of 10km/h.

The plots in Fig. 3.11 show the Strehl ratios for wavefront corrections based on D-
SABRE wavefront estimates that are projected onto the DM with either the global so-
lution of Eq. (3.13) or the distributed solution of Eq. (3.14). Both versions were run for
a moderate 4× 4 and a very strong 16× 16 decomposition of the triangulation and are
compared to the baseline result obtained with the global SABRE wavefront correction.
The wavefront correction performance was tested for different amounts of actuator cou-
plings. Low couplings of 20% and 30% see inferior Strehl ratio than the strong couplings
of 40% and 50% throughout, due to inadequate actuator spacing for the considered Fried
parameter of r0 = 15 cm [138]. This also leads to large variances in the low-coupling re-
sults which are magnified by a small number of outliers occurring for all tested versions.
Of main interest however is the behavior of the methods relative to each other. The D-
SABRE wavefront reconstruction with global DM projection provides slightly lower but
relative to the global SABRE correction fairly constant correction quality for all consid-
ered actuator couplings and loop gains. D-SABRE with distributed DM projection is sen-
sitive to both parameters. In case of both low coupling and gain, it provides converging
correction for all considered loop gains and even, by a narrow margin, outperforms D-
SABRE with global DM projection. However for stronger couplings, errors introduced by
the approximation of the global DM projection problem in Eq. (3.13) with the local DM
projection problems Eq. (3.14) show effect. Divergence of the correction obtained with
D-SABRE and distributed DM projection for actuator couplings of 40% and 50% could
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only be prevented by lowering the loop gain to 0.7 and 0.5 respectively. For all coupling
and gain combinations, it can further be observed that very strong partitionings, result-
ing in very small sub-triangulations only covering a few subapertures, yield a drop of
about 1% in the achieved Strehl ratio for both D-SABRE corrections.

APPLICATION ON AN ANNULAR PUPIL

In a second experiment, D-SABRE with global and distributed DM projection is applied
to an annular telescope pupil with central obscuration. As in Section 3.3.2, the SH slopes
are embedded in a square array of zero slope measurements for the D-SABRE runs.
The SABRE with global projection, which does not require any zero-padding and is per-
formed on the illuminated part of the sensor domain, is given as a baseline result in Fig.
3.12. The experiment records the long exposure Strehl ratio for decreasing SNR levels
with respect to photon shot noise and again a constant level of 2 electrons of read-out
noise per pixel.

At the end of Section 3.3.2, we suggested that the piston errors, which remain in the
open-loop estimates after the H-PME procedure (see Fig. 3.9) and are effects of the zero
padding, would be reduced in closed-loop. Indeed there are no visible remnants of the
piston mode errors in the corrective and residual phase screens of Fig. 3.13 which were
retrieved after 20 closed-loop iterations of D-SABRE with distributed DM projection in a
noise-free setting. Even though measurement noise is expected to increase the impact
of zero padding, this observation gives a positive outlook.

                    Aberration / Corrective / Residual phase [rad], D-SABRE (H-PME, dist. Proj., Part. 8x8), 32x32 SH, 33x33 DM, D=12m, r0=0.15m
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Figure 3.13: Phase screens of aberration, correction and residual after 20 closed-loop iterations using a loop
gain of 0.7. The D-SABRE method with the H-PME procedure and the distributed DM projection was applied
to a 32×32 SH array, a 33×33 DM (40% actuator coupling) and an annular pupil with central obscuration of
ratio 30%. There are no visible remnants of the piston mode errors caused by zero-slopes which were observed
in the open-loop setting (see Fig. 3.9).

With an actuator coupling of 40% and a loop gain of 0.7, D-SABRE with distributed
DM projection is now tested for noise resilience in a setting for which the method found
itself close to the limits of its applicability in the previous experiment (see Fig. 3.11). The
results in Fig. 3.12 show that for guide start magnitudes ≤ 8, the fully distributed proce-
dure achieves Strehl ratios within 0.8% of the global SABRE baseline for the moderated
4×4 partitioning; and within 1.4% for the very strong 16×16 partitioning. The deterio-
ration of the distributedly computed correction increases for stronger noise levels.
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The most striking finding in this experiment is however the fact that for illumination
through an annular pupil the distributed DM projection outperforms the global alterna-
tive when reconstructing the wavefront with D-SABRE. This can be explained with local
wavefront reconstruction and piston mode estimation errors introduced through mea-
surement noise and zero-padding of the non-illuminated subapertures. Whereas these
errors remain local with the distributed projection, a propagation throughout the tele-
scope pupil takes place with the global projection.

3.5. ADAPTATION OF D-SABRE FOR GRAPHICS PROCESSING

UNITS
Currently, graphic processing units (GPU) become popular for many engineering ap-
plications [139, 140]. With a high computational load in the fully distributed parts of the
method due to full local reconstruction and projection matrices, and with low inter parti-
tion communication for the piston mode equalization procedures, the D-SABRE method
was conceptualized for implementation on parallel hardware, specifically on GPUs.

GPUs are specialized for compute-intensive, highly parallel computation. A GPU is
built around an array of streaming multiprocessors (SMs) with a certain number of GPU
cores allocated to each SM. The implementation of the D-SABRE method presented in
this chapter is programmed with CUDA, a parallel computing platform and program-
ming model provided by NVIDIA [141]. CUDA enables the definition of C functions,
called kernels, that are executed in parallel by CUDA threads on single processor cores.
Threads are then grouped into so-called thread blocks that execute independently from
each other on different SMs, creating scalability. All threads in a thread block have ac-
cess to some shared memory on the respective SM, which allows cooperative but paral-
lel computation within a block. This fine-grained data parallelism is embedded within
coarse-grained data parallelism amongst the thread blocks. The number of threads per
block is, on current GPUs, limited to 1024 [141].

The efforts undertaken to optimize the performance of the CUDA program, that exe-
cutes D-SABRE on the GPU, presented in this paper can be summarized as follows: max-
imizing utilization by optimally exploiting parallelism in the algorithm and translating it
to the hardware; minimizing data transfers with low bandwidth, with a focus on minimal
data transfer between CPU (host) and GPU (device); and increasing instruction through-
put by the use of single precision floating point numbers and, if possible, avoidance of
synchronization points.

3.5.1. DISTRIBUTED WFR AND PROJECTION AS PRODUCT OF TWO MATRI-
CES

The computationally most expensive operations in the D-SABRE method are the (full)
matrix-vector products of the local WF reconstructions and, in a closed-loop setting,
DM projections in Eq. (3.6) and Eq. (3.14).

Operations that allow a high computational load per thread at a low required mem-
ory transfer, referred to as compute bound rather than memory bound problems, are
most favorable for execution on a GPU. A prime example of such an operation is the
matrix-matrix product. Reformulating the local reconstructions and projections to a sin-
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Figure 3.14: Correction performance and noise resilience in long exposure Strehl ratio comparing D-SABRE
with distributed DM projection performed only within the pupil (MV) or on the full square pupil plane (MM)
for two levels of decomposition and decreasing SNR levels with respect to photon shot noise. The WF estimates
were computed on the full sensor domain of the zero-padded 32×32 SH array and the correction was applied
within the annular pupil (30% central obscuration).

gle multiplication of two matrices has proven to be key in pushing the computation time
to the required sub-millisecond range, for extremely large sensor and actuator arrays of
N =O (104).

In order to realize the distributed operations as a single matrix-matrix product, all
partitions i = 1, . . . ,G need to carry identical reconstruction and projections matrices.
The local input and output vectors are then of the same size and can be stacked in ma-
trices to create the product

Y = QX, with X := [
x1 · · · xG

]
(3.16)

Y := [
y 1 · · · yG

]
,

where in case of the distributed WF reconstruction the local inputs and outputs are de-

fined as x i := σi and y i := c̄ i , and Q := (
D̄1D̄>

1

)−1
D̄>

1 is the system matrix shared by all
partitions i . Respectively for the distributed DM projection, the local inputs and outputs

are given as x i := c i and y i := ui , with Q := (
(F1(x, y))>F1(x, y)

)−1
(F1(x, y))>B1(x, y) as

system matrix.
For the local reconstruction, no further adjustments to the D-SABRE algorithm have

to be made. The zero-padding of the non-illuminated subapertures, introduced to cre-
ate a square partitioning for H-PME in Section 3.3.2, also allows the creation of equally
shaped sub-triangulations (see Fig. 3.8), leading to identical WFR matrices in Section
3.2.1. Regular square sub-triangulations arranged in a 2p ×2p partition grid are achieved
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by embedding the partially illuminated square SH array containing N subapertures into

an extended square array of Next := (
2p mp (N )+1

)2 subapertures, where factor

mp (N ) := min
m∈N {m} such that 2p m >

p
N . (3.17)

The theoretical computational complexity per partition of the D-SABRE method scales
then with O (N 2

ext/G2) flops= O (mp (N )4) flops, since there are a total of G = (2p )2 par-
titions. Using the regular Type-II triangulation, as is done throughout this paper, the
number of triangles in the core part of each partition is then JΩi = 4(mp (N ))2 (see Fig.
3.8 and Section 3.2.1). If an extended array is created according the rule of Eq. 3.17 in
order to embed the 32× 32 SH array used in the closed-loop simulations, one obtains
mp (N ) = 3 for the very strong 16×16 partitioning and mp (N ) = 9 for the moderate 4×4
partitioning.

The distributed DM projection of Section 3.4.1 was slightly changed to not only com-
pute the actuator commands within the pupil, but to also here assume an actuator array
extending over the entire triangulation. That way, identical DM projection matrices can
be enforced for all partitions. Since in this case also the B-coefficients located outside of
the pupil and computed at least partly from zero slopes are included in the projection,
additional errors are potentially created in the computation of the actuator commands
at the edges of the pupil. In order to understand to what extend this adaptation influ-
ences the correction quality, the Monte Carlo experiment from Section 3.4.2 (Fig. 3.12)
was repeated, comparing the distributed DM projection based on several matrix-vector
products respecting the pupil to the matrix-matrix product version just presented. As in
the previous close-loop experiments, it can be seen in Fig. 3.14 that very strong parti-
tioning has a negative effect on the correction quality. The moderate 4×4 partitioning
gives promising results: For moderate noise levels, D-SABRE with distributed projection
adapted for the GPU (MM) achieves Strehl ratios that stay within 0.5% of the correction
level obtained with the projection which is only performed within the pupil (MV). For
strong levels on the other hand, it shows superior noise rejection and outperforms the
latter. In comparison with the globally computed SABRE correction, D-SABRE adapted
for the GPU achieves Strehl ratios within 1.2% of the global result for guide star magni-
tudes ≤ 8 and within 3.6% for magnitudes ≤ 11. This means that a certain trade off in
correction quality has to be made to use the computationally beneficial reformulation
of the problem.

The computational advantages of the presented approach are twofold. Firstly, no
dedicated kernel has to be programmed to perform the product, but a single call of a
built-in CUBLAS routine that is highly optimized to maximize occupancy and minimize
memory latency suffices. Further the required GPU memory space for storage of the
reconstruction and projection matrices, the largest source of data to be allocated on the
GPU, is reduced heavily. The following section describes the GPU implementation of the
entire D-SABRE method in further detail. The computational speed is tested by timing
runs of the implementation for an example of a very large-scale and an example of an
extremely large-scale AO system.
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3.5.2. KERNEL DESCRIPTION AND SPEED BY TIMING
The CUDA implementation consists of a row of kernels that are called sequentially and
perform the following operations in parallel. First the local reconstruction is computed
with Eq. (3.6), after which the full local B-coefficients are obtained from the projected
vector according to Eq. (3.7). This is followed by the kernels performing the H-PME
procedure described in Eqs. (3.10) and (3.11), and finally the actuator commands are
computed with the function for the local projection in Eq. (3.15). While for the local re-
construction and projection, which are performed as matrix-matrix product adhering
to Eq. (3.16), the parallelization of the computation is executed by the so-called GEMM
CUBLAS subroutine, the kernels of the remaining operations are custom coded in order
to translate prevalent parallelism to the multi-core hardware.

Table 3.1 lists the CUDA functions that are executed in one run of the D-SABRE
method. A name tag identifying the operation is given next to the reference for the re-
spective equation in this paper. It is specified if the function is a CUBLAS routine or a
custom coded CUDA-kernel and how many times it is called in one D-SABRE run. In
case of the CUDA-kernels the size of the grid of thread blocks and the number of threads
per block are shown in terms of D-SABRE quantities defined throughout the paper.

Table 3.1: Overview of CUDA functions specifying the following information: the implemented operation and
a reference to the respective mathematical formulation; identification as CUBLAS routine or custom code
kernel; the size of the grid of thread blocks and the number of threads per block; the numer of calls per D-
SABRE run.

Overview of CUDA functions

Operation Eq. Type Grid Block Calls

Loc. reconstruction (3.6), (3.16) CUBLAS - - 1
Exp. nullspace (3.7) Kernel G = 22p Ji d̂ 1
Comp. differences (3.10) Kernel γ22p−h−1 2mp (N ) 2p
Comp. offsets (3.10) Kernel 1 γ22(p−h) 2p
Offset partitions (3.11) Kernel γ22(p−1) Ji d̂ 2p
Loc. projection (3.15), (3.16) CUBLAS - - 1

Ji number of triangles per partition; d̂ : B-coefficients per triangle (d̂ = 3 for linear D-SABRE);

G : total number of partitions; p: power defining 2p ×2p partition grid; mp (N ): see Eq. (3.17);

h: H-PME level (h = 1, . . . , p); γ: γ= 2 and γ= 1 in first and second H-PME call of level h.

CUSTOM CODED KERNELS

Because D-SABRE considers splines of polynomial degree d = 1 and continuity order
r = 0, the expansion of the nullspace of the local constraint matrices in Eq. (3.7) reduces
to a resorting of the projected B-coefficient vector of size d̄i into a larger vector of Ji d̂
expanded B-coefficients within all G partitions.

• This index swap is a partition local operation, which allows independent execu-
tion in G thread blocks, with the index computation and assigning of the to be ex-
panded coefficients performed cooperatively but in parallel in the threads. Recall-
ing the earlier mentioned limitation of numbers of threads per block, the decom-
position of the triangulation has to be strong enough to guarantee that Ji d̂ < 1024.
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The H-PME procedure constitutes 3 kernels of different grid and block sizes. As intro-
duced in Section 3.3.1, each level h = 1, . . . , p performed for a 2p ×2p partitioning, elimi-
nates the piston offsets between 4 tiles of partitions that are grouped together. The num-
ber of groups and the number of partitions per tile depend hereby on level h and power
p (see Section 3.3.1). Since the computation of H-PME offsets in Eq. (3.10) involves co-
efficients shared between the partition tiles, parallelism had to be exploited along these
edges of the tiles and is realized in two kernels.

• The computations of the averaged differences of coefficients located on the con-
sidered partition edges, i.e. the addends of the sum in Eq. (3.10), are partition local
operations. The first H-PME kernel assigns each addend computation to an inde-
pendent thread block. The subtractions of the edge coefficients are performed on
the threads, evoking additional fine-grained parallelism.

• For the computation of the actual offsets in the second kernel, no coarse-grained
data parallelism could be achieved, since the sum in Eq. (3.10) combines data al-
located to various partitions. The kernel is therefore limited to parallelizing the
operation in a cooperative manner, with each offset computation being assigned
to a thread within the single thread block.

• The actual offsetting of the local B-coefficients is parallelized in the third kernel
in the straight forward manner of linking the offset partitions to blocks and the
coefficients to threads.

Since the equalization of the piston modes within the groups of 4 tiles requires a syn-
chronization between the thread blocks after the first 3 tiles are leveled, each H-PME
level is performed by 2 calls of the three presented kernels. This affects also the grid and
block sizes, which are given for the case of a square pupil in Table 3.1. For the first call of
the H-PME kernels in each level h, the constant γ= 2; for the second call, γ= 1.

Table 3.2: Total execution times (as sum totals in case of several kernel calls) of the CUDA functions from Table
3.1 in a full D-SABRE (+ DM projection) run for a

p
N×p

N SH array and a 2p ×2p partition grid. The employed
hardware is described in Table 3.3.

Speed estimates by timing

Operation Execution time (sum total of calls/iteration)(p
N = 100, p = 4

) (p
N = 200, p = 5

)
Loc. reconstruction 86 µs 168 µs
Exp. nullspace 22 µs 67 µs
Comp. differences 48 µs 64 µs
Comp. offsets 37 µs 46 µs
Offset partitions 55 µs 166 µs
Loc. projection 130 µs 147 µs

Full D-SABRE (+ proj.) 379 µs 658 µs

Memory copy 200 µs 862 µs
Memory copy 10 µs 33 µs
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KERNEL EXECUTION AND MEMORY TRANSFER TIMES

Speed estimates by timing of the presented CUDA implementation are given in Table 3.2
and were obtained through test run performed on the hardware specified in Table 3.3.
The implementation of the D-SABRE method was assessed for a very large-scale SH array
of N = 104 subapertures and an extremely large-scale array with N = 4 · 104, that were
embedded in grids of 2p ×2p sub-triangulations according to Eq. (3.17), with p = 4 and
p = 5 respectively. With these moderate partitionings, one obtains mp (N ) = 7 for both
scenarios, which results in the same theoretical computational complexity of O (mp (N )4)
flops per partition. However, the number of partitions increases from G = 256 for the
very large-scale case to G = 1024 for the extremely large-scale case. An annular pupil
with a central obscuration covering 30% of the area was assumed and a Fried geometry
chosen for the lay out of the actuator grid. The speeds by timing, given inµs, are averages
of kernel execution times obtained with the CUDA profiling tool NVPROF [142] from 10
runs of the CUDA code performing the D-SABRE method, and indicate the total times
consumed by the kernel calls in one D-SABRE run.

For the p = 4 case, the local reconstruction and the local projection bear the longest
computation times; for the larger partition grid of p = 5, the 2p calls of the kernel that
performs the H-PME partition offsets constitute a similarly time intensive part of the
implementation. It also shows that the cooperative calculation of the H-PME offsets,
which is performed in a single block since information from partitions has to be shared,
did not create a bottle neck in the implementation and remains one of the kernels with
the lowest total execution time for both cases. The overall kernel execution time per D-
SABRE run (including DM projection) stands at 379 µs for the very large-scale and at 658
µs for the extremely large-scale AO system. To give an idea of the speed up achieved by
implementing D-SABRE on the GPU, the so-called GEMM BLAS subroutine of the Atlas
library was used to perform solely the matrix-matrix product of the local reconstruction.
The processing time of the function was measured with the system-wide real-time clock.
With the CPU listed in Table 3.3, the local WFR alone required 5 ms for the very large-
scale and 18.5 ms for the extremely large-scale scenario.

Since memory latencies can create a major bottleneck in GPU computing, Table 3.1
also lists the times that are spent in each iteration on data transfers between the host (i.e.
CPU) and the device (i.e. GPU) memory via the PCI Express interface [141]. In order to
reduce such memory copies to a minimum, the D-SABRE implementation contains sev-
eral C routines that generate all precomputable data that is necessary for the real-time
CUDA kernels. Using Unified Memory [141] to simplify the code, this data is allocated,
declared and defined directly on the device memory and only structures of pointers to
the required data locations are transfered to the real-time kernels of Table 3.1. In each
iteration the D-SABRE measurement vectors σi from Eq. (3.6) are, stored in a global vec-
tor, transfered from the host to the device in a single memory copy. The reverse copy is
performed at the end of each iteration for a stacked vector of the actuator commands ui

obtained from Eq. (3.15). Despite these efforts, the time spent on memory transfer via
the PCI Express outweighs the overall kernel execution time for the p = 5 case. The use
of more powerful interconnect systems like NVIDIA NVLink [143], which are currently
introduced to the market, would provide immediate speed up of memory transfer.

Including the needed host-device communication, the presented CUDA implemen-
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Table 3.3: Description of the hardware use in the speed tests by timing of the D-SABRE CUDA implementation.

Hardware overview

CPU: Intel(R) Xeon(R) CPU E5-1620 0

Cores 4
Threads 8
Processor Base Frequency 3.60 GHz
System Memory (RAM) 16 GB

GPU: GeForce GTX TITAN X

Micro architecture Maxwell
Base clock 1.09 GHz
CUDA cores 24 x128
Memory bandwidth 336 GB/s
GPU memory 12 GB DDR5
System Interface PCI Express 3.0 x16
Compute Capability 5.2

tation of the D-SABRE method enables the user to compute the DM actuator command
updates in 0.59 ms for a very large-scale AO system with a SH array of N = 104 subaper-
tures; and in 1.55 ms for an extremely large-scale system of N = 4 ·104. With a standard
off-the-shelf GPU, computation times that are edging towards the kHz update frequen-
cies, targeted for the benchmark AO-system of the E-ELT, were achieved.

3.6. CONCLUSIONS
We present a fully distributed algorithm, based on the D-SABRE method, for wavefront
correction in extremely large-scale AO systems. The method is intended for the execu-
tion on parallel hardware and uses slope measurements provided by a Shack-Hartmann
(SH) wavefront sensor.

The D-SABRE method for wavefront reconstruction (WFR) is constructed with a B-
spline model of the wavefront. The local nature of the B-spline basis functions allows
the decomposition of the WFS domain into partitions on which the WFR is locally per-
formed in a distributed manner. The procedure for equalization of the unknown lo-
cal piston modes of the original version of the method, D-PME, showed incompatibility
with large central obscurations and suffered from error propagation for large numbers
G of partitions. The presented hierarchical piston mode equalization, or H-PME, fixes
these issues by creating information exchange not only between directly neighboring
partitions but between groups of partitions through a multi-level approach. This allows
application to extremely large-scale AO systems, where the number of partitions G has to
be set sufficiently large to adequately distribute the computational load. The hierarchi-
cal leveling of the partitions with H-PME also allows faster convergence in only log2(

p
G)

iterations compared to
p

G/2 iterations required with the sequential information flow of
D-PME and shows superior noise rejection properties in numerical experiments with the
OOMAO simulation tool.

In order to compute the deformable mirror (DM) actuator commands from the SH
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data in a fully distributed manner, the projection of the B-coefficients, which describe
the wavefront estimates, onto the space of actuator commands was formulated locally
for each partition. The inter coupling of actuators located at the partition edges is, to
a certain extend, taken into account by partition overlap. In simulation, the procedure
has provided stable long exposure Strehl ratios for actuator couplings of 30% or lower at
varying loop gains.

An implementation of the described distributed WF correction method, based on
D-SABRE with H-PME, for the GPU was programmed with the parallel computing plat-
form NVIDIA CUDA. The algorithm was adapted to the hardware by enforcing identical
sub-triangulations, which allows reformulating the computationally most expensive op-
erations, i.e. the local WF reconstructions and the local DM projections, to respectively a
matrix-matrix product. This so-called compute bound operation is prone to significant
speed up if executed on a GPU and can be performed with the highly optimized GEMM
CUBLAS subroutine. Several custom coded CUDA kernels, that execute the H-PME pro-
cedure and translate prevalent parallelism to the multi-core structure of the GPU, com-
plete the implementation. Speed tests by timing for single runs of the method were real-
ized with a standard GPU. They include, next to the execution time of all CUDA kernels,
the low bandwidth host-device data transfers, which could be reduced to a single copy
of the SH data vector and the command vector per run: the CUDA implementation of
D-SABRE correction method accomplishes the actuator command update with 0.59 ms
for a very large-scale AO system of N = 104 and of 1.55 ms for an extremely large-scale
test of N = 4 ·104, indicating linear scaling of the D-SABRE update time with N .

To obtain the computationally beneficial version of the D-SABRE method presented
in this paper a certain trade off in reconstruction accuracy has to be made. The H-PME
procedure requires a square grid of 2p × 2p , p ∈ N, sub-triangulations, which have to
be of identical size and shape to allow the realization of the local WF reconstructions
and DM projections as matrix-matrix products. In order to create applicability to arbi-
trary pupil shapes and SH array dimensions, the illuminated subapertures are embed-
ded in a square SH array of suitable dimension and zero slopes are processed for the
non-illuminated subapertures. Local reconstruction errors, that occur due to this zero
padding in partitions located at the edges of the pupil, have to be addressed in future
work, also in view of the inclusion of telescope spiders. Further efforts should be under-
taken to extend the distributed DM projection to very strong actuator coupling through
exact solution. For low to medium coupling, the current local approximation provides
superior Strehl ratios if compared with the global DM projection, since local wavefront
reconstruction errors are not propagated throughout the grid of actuator commands.

While the D-SABRE method was devised for SH slope measurements, we are aware of
the shift towards the pyramid wavefront sensor (P-WFS) [66, 144] as baseline for, amongst
others, the eXtreme AO system on the planned E-ELT [135] and future work will be ded-
icated to this matter. An immediate extension of D-SABRE to P-WFS measurements can
be achieved with a preprocessing step presented by Shatokhina et al. [145]. The sug-
gested transformation of P-WFS data to SH data is of O (N ) computational complexity
and highly parallelizable, and would therefore not affect the scalability of the D-SABRE
method.
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CHAPTER ABSTRACT
We propose a spline-based aberration reconstruction method through moment mea-
surements (SABRE-M). The method uses first and second moment information from the
focal spots of the Shack-Hartmann (SH) sensor to reconstruct the wavefront with bivari-
ate simplex B-spline basis functions. The proposed method, since it provides higher
order local wavefront estimates with quadratic and cubic basis functions, can achieve a
given accuracy for SH arrays with a reduced number of subapertures and, correspond-
ingly, larger lenses which can be beneficial for application in low light conditions. In
numerical experiments, the performance of SABRE-M is compared to that of the first
moment method SABRE for aberrations of different spatial orders and for different sizes
of the SH array. The results show that SABRE-M is superior to SABRE, in particular for
the higher order aberrations, and that SABRE-M can give equal performance as SABRE
on a SH grid of halved sampling.

The content of this chapter has been published in [128].
@2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic
reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes,
or modifications of the content of this chapter are prohibited.
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4.1. INTRODUCTION

I n the field of adaptive optics (AO), Shack-Hartmann (SH) sensors are commonly used
to estimate the wavefront for turbulence induced aberration compensation. The mi-

crolens array of the SH sensor creates a focal spot pattern and the first moment of the
intensity distribution of each focal spot gives an approximate of the local averaged spa-
tial gradient of the wavefront aberration.

The most used approaches for wavefront reconstruction (WFR) that process the local
slope measurements from a SH sensor are the zonal (local) finite difference (FD) method
[29] or modal methods that are based on a set of (global) basis functions for the wave-
front representation [47]. A recently developed method for WFR was presented by de
Visser et al. [117]. The SABRE (Spline-based ABerration REconstruction) method uses
bivariate simplex splines [118] to compute an estimate of the wavefront from the lo-
cal wavefront slope measurements of a SH sensor. This way the linearity in the phase
estimation problem is preserved, while the use of modal functions in this zonal recon-
struction method, represented by a set of local nonlinear spline basis functions, makes
it possible to obtain higher order local approximations of the wavefront.

Simulations, comparing the method to the classical finite difference method [29],
have shown that it is resilient to sensor noise and invariant of wavefront sensor geometry.
In addition, the local nature of the SABRE allows an implementation in a distributed
way, that can significantly increase computational efficiency [123]. However, since the
method uses only the first moment information from the SH sensor [117], the potential
of obtaining higher order local wavefront estimates with the nonlinear spline functions
is not achieved.

Since each focal spot in a SH pattern is an intensity distribution containing more in-
formation than just the average slope, this work investigates if extra information from
the sensor can be used in order to exploit this potential. In this paper, an extension
of the SABRE method is presented, the SABRE-Moments (SABRE-M) method, that uses
additional higher order information from the focal spots of the SH sensor, for more ac-
curate wavefront reconstruction. For this purpose, wavefront sensorless techniques—
modal methods that use the complete intensity distribution from the science camera for
nonlinear WFR—were considered for an application to each of the individual intensity
distributions from the subapertures of the SH microlens array. Recently, in the works of
Booth [125], Linhai and Rao [126] and Yang et al. [127], the linear relation between the
change of the second moment of intensity of the image and the averaged squared spatial
gradient of the wavefront aberration was proven. Based on this relation, a novel sensor
model for the SABRE model is presented in this work that applies the first and second
moment information from the SH sensor. This allows modeling of the wavefront with
bivariate simplex splines of higher polynomial degree.

The SABRE-M method, introduced in this work, has some important benefits. Firstly,
the method provides a more accurate wavefront reconstruction, especially for higher or-
der aberrations. Secondly, the SABRE-M makes it possible to reduce the number of sub-
apertures in the SH grid without losing reconstruction accuracy compared to the SABRE
for the original grid. As a consequence the increased subaperture size can have benefi-
cial effects on the dynamic range, the sensitivity and the signal-to-noise ratio. For exam-
ple in the case of low light level conditions, caused be a faint natural or artificial guide
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star, e.g. in astronomy [1], ophthalmology [146], or live-cell fluorescence microscopy
[147], increasing the subaperture size could be advantageous [2].

The organization of this paper is as follows. In Section 4.2, preliminaries on the
SABRE and the second-moments technique of [127] are given, followed by a motiva-
tion for the suggested combination of both techniques. Then, the novel moment-based
sensor model is derived and presented in Section 4.3. In Section 4.4, the results from nu-
merical experiments are shown and discussed. Finally, Section 4.5 concludes this paper,
along with recommendations for further research.

4.2. A COMBINATION OF SABRE AND A SECOND MOMENT TECH-
NIQUE

4.2.1. SABRE: A SPLINE-BASED WAVEFRONT RECONSTRUCTION METHOD
The SABRE method [117] is a wavefront reconstruction method estimating the phase
aberration φ(x) from spatial gradient measurements, which are approximately given by
the change of the first moments of the focal spots of a SH array. In the x direction, the
following relation is applied:

Ix (n) ≈φ′
x (xn), n = 1, . . . , N , (4.1)

where Ix (n) and Iy (n) denote the first moments of the n-th subaperture of the SH sensor,
in the directions x and y respectively, using the notation for the pupil plane coordinates
x = (x, y) ∈R2, and xn ∈R2 defines the location of the n-th subaperture center.

The method uses bivariate simplex splines for the modeling of the wavefront, which
are defined in the barycentric coordinate system according to [118]. Let b(x) be the
barycentric coordinates of x ∈R2, for some given simplex t , then any polynomial p(b(x))
of degree d can be written as a linear combination of basis polynomials [117]:

p(b(x)) =
{ ∑

|κ|=d c t
κB d

κ (b(x)), x ∈ t
0 , x ∉ t ,

(4.2)

where c t
κ ∈ R are called the B-coefficients, which define the unique local function on

the triangle t , and B d
κ (b(x)) ∈ R are the Bernstein basis polynomials for multi-index κ=

(κ0,κ1,κ2) ∈N3. For a given degree d , the possible number of combinations of κ0, κ1 and
κ2 that satisfy |κ| = d , determines the total number of basis polynomials per simplex,
which is given by d̂ = (d+2)!

2d ! .
The wavefront is approximated on a triangulation T by a global simplex B-spline

polynomial sd
r (b(x)), that consists of local polynomials p(b(x)) of degree d , and has a

predefined continuity order r at the edges of adjacent triangles. As shown in [117], the
wavefront model defined on a triangulation T consisting of J triangles is written in vec-
tor notation as

φ(x) ≈ sd
r (b(x)) = Bd (b(x))c , x ∈T , (4.3)

where Bd (x) ∈R1×J d̂ and c ∈RJ d̂×1 respectively are global vectors containing the individ-
ual basis polynomials B d

κ (b(x)) and the corresponding B-coefficients c t
κ for all triangles

t in T .
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The WFR problem consists of the sensor slope model of Eq. (4.1), expressed in terms
of the spline model from Eq. (4.3) through the derivative of a B-form polynomial, and a
set of global constraints

Ac = 0 (4.4)

and is solved in the least-squares sense. The constraint matrix A := [
H> h>]>∈R(EV +1)×J d̂

is introduced in [117] as a combination of the smoothness matrix H ∈ REV ×J d̂ , by which

continuity of order r is imposed, and of the anchor vector h ∈R1×J d̂ , which is used to fix
the unknown piston mode.

Different triangulation types were introduced in [117], of which the regular Type-II
triangulation is used in this work. To obtain the SABRE model for SH slope measure-
ments, the triangulation T is constructed on the (reference) centers of the subapertures,
i.e. the locations in the SH array for which gradient information is provided through the
sensor model in Eq. (4.1). Figure 4.1(a) shows an example of a Type-II triangulation on a
3×3 SH array.

The SABRE has the approximation power to obtain a very accurate estimate of the
wavefront, due to the local modeling with higher degree (d > 1) basis polynomials. How-
ever, it is limited in two ways by the fact that only first order information of the focal
spots is processed: firstly, only gradient information is extracted from the SH patterns,
and therefore no use can be made of the potential of higher degree modeling. Secondly,
only up to second degree basis polynomials (d ≤ 2) can be employed, in order to guar-
antee that the resulting system equations from Eq. (4.1) are fully determined given the
constraints in Eq. (4.4). The use of higher degree (d ≥ 3) basis polynomials will not result
in a unique solution, since the system is under-determined due to the lack of data.

Therefore, this work proposes to extract additional higher order information from the
individual SH sensor focal spots, by deriving a novel sensor model. A second moment
technique, presented in the work of Yang et al. [127], is considered for this purpose.

4.2.2. A SECOND MOMENT TECHNIQUE
Commonly, WFR methods for SH sensors are based on the well known relation between
the change of the first moments Ix , Iy of an intensity distribution and the averaged gra-
dient of the prevailing wavefront. In [127], a new linear relation was proven, stating that
the normalized change of the second moments Ix2 , Iy2 of an image is proportional to the
averaged squared gradient of the wavefront aberration:

Ix2 :=
∫
R2 (I (u)− I0(u))u2du∫

R2 I (u)du
= 1

4π2

∫
R2 P 2(x)φ′

x
2(x)dx∫

R2 P 2(x)dx
, (4.5)

where I (u) and I0(u) define the intensity at a certain location in the image plane u =
(u, v) ∈ R2, for the aberrated wavefront φ(x) and an unaberrated wavefront respectively,
and P (x) denotes the pupil function which is one inside the given aperture and zero
elsewhere.

The relation for the SH model in Eq. (4.1) is based on the principle that a tip and
tilt in the wavefront gives a displacement of the focal spot in the image plane, i.e. the
change of the first moments Ix (n), Iy (n) of intensity in subaperture n. The change of
the second moment of intensity gives the change of the averaged width of the intensity
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distribution. In the novel sensor model for the SABRE, presented in the next chapter,
three additional relations are derived for the change of the higher order moments of
the SH focal spots: two relations for the second moments Ix2 (n), Iy2 (n) in the x and
y direction, and one relation for a mixed moment Ix y (n), showing the cross-correlation
between the two second moments.

4.3. WAVEFRONT RECONSTRUCTION WITH SABRE-MOMENTS
In this section we derive the SABRE-Moments WFR problem. The linear phase-moment
relationships for all considered moments Ix (n), Iy (n), Ix2 (n), Iy2 (n) and Ix y (n) are pre-
sented in Section 4.3.1. After the introduction of closed form expressions for derivation
and integration of B-spline polynomials in Section 4.3.2, the SABRE-M sensor model in
terms of B-coefficients is derived in Section 4.3.3. The section closes with the LS problem
formulation of the SABRE-M method.

4.3.1. PRINCIPLE OF A MOMENT-BASED SH SENSOR MODEL
The novel moment-based SH sensor model consists of five equations: two for the first
moment measurements Ix (n) and Iy (n), two for the second moment measurements
Ix2 (n) and Iy2 (n) and one for the mixed moment measurement Ix y (n), defined in the
n-th subaperture of the SH sensor.

Based on the analytical expression for the change of the first moments of intensity
Ix (n) and Iy (n), which states that the change of the focal spot centroid is proportional
to the average of the wavefront spatial gradient, the system of Eq. (4.1), which relates the
change of the first moment of intensity by approximation to the local spatial gradient in
xn , is replaced by an integral over the subaperture:

Ix (n) = c1

∫
Pn (x)

φ′
x (x)dx , n = 1,2, . . . , N , (4.6)

for the example of direction x, where the constant term c1 := 1

2π
∫

Pn (x) 1dx
includes the

division by the total power of the light inside the pupil, computed with the square pupil
function Pn(x) of subaperture n, which is one inside the subaperture and zero elsewhere.

The expressions for the change of the second moments Ix2 (n) and Iy2 (n) are based
on the relation proven in the work of Yang et al. [127], relating the second moment mea-
surements to the averaged squared spatial gradients:

Ix2 (n) = c2

∫
Pn (x)

(
φ′

x (x)
)2 dx − (Ix (n))2 , n = 1,2, . . . , N , (4.7)

for the example of direction x, with the constant term defined as c2 := 1

4π2
∫

Pn (x) 1dx
.

A simplification of the equations in [127] was achieved by considering central second
moments around the centroid. Therefore the squared centroid is subtracted on the right
side in Eq. (4.7), causing the linear components of the sensor model to fall out.

Finally, the expression for the change of the mixed moment Ix y (n), can be derived
in a similar way as the second moment equations in [127], and is given by the cross-
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correlation between the second moments in the x and y direction:

Ix y (n) = c2

∫
Pn (x)

φ′
x (x)φ′

y (x)dx − Ix (n)Iy (n), n = 1,2, . . . , N . (4.8)

Following the same reasoning as given previously for the second moment equations
from Eq. (4.7), the central mixed moment is considered yielding the subtraction of the
first moment product on the right side of Eq. (4.8).

(a) Triangulation for SABRE (b) Triangulation for SABRE-M

Figure 4.1: Type-II triangulations (black lines) for first moment (left) and second moment (right) measure-
ments of a 3×3 SH array (gray lines) for the SABRE and the moment-based SABRE method.

These five equations form the moment-based SH sensor model which is the foun-
dation for the extension of the SABRE method presented in this work. An important
difference to the SABRE method is that the moment measurements are related to the
complete respective subaperture by the integration in the Eqs. (4.6) – (4.8). As shown in
Figure 4.1a, the standard SABRE triangulation is built on the vertices located at the SH
subaperture centers. This geometry is needed in the SABRE method using basis poly-
nomials of degree d = 2 in order to obtain a well determined system. A triangulation
that is more in line with the novel SABRE-M model is selected, such that the vertices
coincide with the corners of the subapertures, which allows integration over the com-
plete simplices, as shown in Fig. 4.1b. The increased amount of data in the novel sensor
model ensures a well determined system on this triangulation grid, even for a B-spline
wavefront model of polynomial degree d = 3.

4.3.2. THE DIRECTIONAL DERIVATIVE AND INTEGRAL OF A B-FORM POLY-
NOMIAL

The derivation and integration of simplex B-spline functions has to be discussed for the
derivation of the SABRE-M sensor model.

The directional derivative of a B-form polynomial can be expressed in terms of the
original vector of B-coefficients [132]. This relation is used for the modeling of the wave-
front slopes in the SABRE method in [117]. On a simplex t , the first order directional
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derivative in the direction of a Cartesian unit vector e ∈ R2 of the B-form polynomial
p(b(x)) introduced in (4.2) is given by

D1
e p(b(x)) = d !

(d −1)!
Bd−1

t (b(x))Pd−1,d (ae )c t , (4.9)

where Pd−1,d (ae ) ∈ R�d−1×d̂ is the de Casteljau matrix of degree d to d −1, which is ex-
pressed in terms of the barycentric directional coordinate ae := b(v )−b(w ) ∈ R3 of unit

vector e = v −w ∈R2 with respect to the triangle t [132]. The vector Bd−1
t (b(x)) ∈R1×�d−1

for triangle t contains hereby the basis polynomials of reduced degree d − 1 and �d −1
defines the number of B-coefficients on a simplex for a spline of degree d −1 according
to the definition of d̂ given in Section 4.2.

In [118] and [148], a formulation of the integrals of B-form polynomials was pre-
sented. An explicit expression of integrals of the Bernstein basis polynomials over the
complete area of a simplex t is given as∫

t
B d
κ (b(x))dx = At

d̂
, (4.10)

which depends only on the polynomial degree d and the area At of simplex t . The inte-
gration of B-form p(b(x)) from Eq. (4.2) over simplex t is then computed as the sum of
the B-coefficients c t

κ multiplied by the right hand side of Eq. (4.10). Therefore, like the
directional derivative, also integration over a simplex can be expressed in terms of the
B-coefficient vector c t . This useful property of B-spline functions forms the basis for the
modeling of averaged slopes in the novel sensor model for the spline based wavefront
reconstruction method.

As well useful for the following derivations, the expression for the inner product of
two basis polynomials of degree d1 and d2 integrated over a simplex t is given by [148]∫

t
B d1
κ (b(x))B d2

γ (b(x))dx = d1!d2!

(d1 +d2)!

(γ+κ)!

γ!κ!

Atàd1 +d2

, (4.11)

where the shorthand notationκ! := κ0!κ1!κ2! is used to describe the factorial of the multi-
index κ, and àd1 +d2 defines the number of B-coefficients on a simplex for a spline of
degree d1 +d2 according to the definition of d̂ .

4.3.3. DERIVATION OF THE SABRE-M MODEL IN B-SPLINE COEFFICIENTS
In this section the equations for the moment-based Shack-Hartmann sensor model from
Eqs. (4.6) – (4.8) are derived in terms of the B-coefficients that define the B-spline wave-
front model, resulting in the system equations for the SABRE-M method.

The wavefront is approximated locally at each subaperture n = 1, . . . , N in terms of a
spline function

φn(x) ≈ Bd
n (b(x))c n , x ∈Tn , (4.12)

with local B-form matrix Bd
n (b(x)) ∈R1×Jn d̂ and local coefficient vector c n ∈RJn d̂×1. Fur-

ther, Tn is a sub-triangulation [149] of T formed by Jn triangles on one subaperture
domain, where the vertices are at the corners of the subaperture as shown in Fig. 4.1b.
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The averaged local gradient from Eq. (4.6) in x or y direction inside the subaperture
n is calculated as the sum of the Jn integrals of the wavefront spatial gradients over each
simplex t ∈Tn divided by the total area of the subaperture domain.

The integral over a simplex t of the derivative in direction x of the simplex B-spline
wavefront model from Eq. (4.3), can be obtained using the definition of the derivative of
a B-form polynomial from Eq. (4.9) and the expression of the integral in Eq. (4.10):∫

t
φ′

x (x)dx =
∫

t

d !

(d −1)!
Bd−1

t (b(x))Pd−1,d (ax )c t dx

= d !

(d −1)!

At�d −1
1Pd−1,d (ax )c t

= 2At

d +1
1Pd−1,d (ax )c t , (4.13)

where 1 ∈R1×�d−1 is a row vector containing only elements equal to one. The directional
coordinate of unit vector ex in the derivative direction x with respect to the triangle t is
denoted by ax .

Using Eq. (4.13), and summing over all Jn triangles in subaperture n, the first mo-
ment equation with respect to x for a subaperture n of the sensor model from Eq. (4.6)
can now be rewritten to

Ix (n) = 1

2π

2

Jn(d +1)

Jn∑
j=1

1Pd−1,d
j (ax )c t j , (4.14)

with Pd−1,d
j (ax ) as the de Casteljau matrix for the directional coordinate ax with respect

to the triangle t j . It can be noted that At disappears in the equations, since the integral
in Eq. (4.6) is divided by the total area of the subaperture

∫
Pn (x) 1dx = Jn At in order to

obtain the average slope.
Repeating the same for the y coordinate and accounting for the measurement noise

and modeling errors, the linear part of the moment-based sensor model is obtained,
which in terms of the local coefficient vector c n is given by

Ix (n) = 1

2π

2

Jn(d +1)
I1,n(ax )c n +ηx (x),

Iy (n) = 1

2π

2

Jn(d +1)
I1,n(a y )c n +ηy (x),

(4.15)

where I1,n(ae ) :=
[
1Pd−1,d

1 (ae ) · · · 1Pd−1,d
Jn

(ae )
]
∈ R1×Jn d̂ is a vector containing the

sum of each column of the de Casteljau matrices corresponding to the triangles t j , j =
1, . . . , Jn in subaperture n. The terms ηx (x),ηy (x) ∈R contain sensor noise and modeling
errors.

The second moment and the mixed moment equations are derived in a similar way
as for the first moments, whereas now the averaged squared gradients from Eq. (4.7) are
calculated.

The integral over a simplex t of the squared derivative in the x or y direction of the
wavefront model from Eq. (4.3) is obtained using the definition of the derivative of a
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spline from Eq. (4.9) and the definition of the integral of the inner product of basis poly-
nomials over a triangle t from Eq. (4.11):∫

t
φ′

x
2(x)dx =

∫
t

(
d !

(d −1)!
Bd−1(b(x))Pd−1,d (ax )c t

)2

dx

=
(

d !

(d −1)!

)2(
c t )> (

Pd−1,d (ax )
)>(∫

t

(
Bd−1(b(x))

)>
Bd−1(b(x))dx

)
Pd−1,d (ax )c t

=
(

d !

(d −1)!

)2(
c t )> (

Pd−1,d (ax )
)> Atá2(d −1)

Bd−1
Iγ,κ

Pd−1,d (ax )c t

= d At

(2d −1)

(
c t )> (

Pd−1,d (ax )
)>

Bd−1
Iγ,κ

Pd−1,d (ax )c t .

(4.16)

Using Eq. (4.11), the elements of matrix Bd−1
Iγ,κ

∈R�d−1×�d−1 are defined as the scalar expres-

sions (d−1)!(d−1)!
(2(d−1))!

(γ+κ)!
γ!κ! of each inner product

∫
t B d−1

κ (b(x))B d−1
γ (b(x))dx , with |κ| = |γ| =

d −1.
The central second moment equation with respect to x for a subaperture n of the

sensor model from Eq. (4.7) can now be expressed in terms of the spline functions by
summing of Eq. (4.16) for Jn triangles and subtracting the squared first moment from
Eq. (4.14):

Ix2 (n) = 1

4π2

(
d

Jn(2d −1)

Jn∑
j=1

(
c t )> (

Pd−1,d
j (ax )

)>
Bd−1

Iγ,κ
Pd−1,d

j (ax )c t

−
(

2

Jn(d +1)

Jn∑
j=1

1Pd−1,d
j (ax )c t

)2)
. (4.17)

In an analogous manner, the equations for the second moment with respect to y
and for the mixed moment from Eq. (4.8) are written in terms of the subaperture local
coefficient vector c n . The quadratic part of the moment-based sensor model is then
obtained as

Ix2 (n) = 1

4π2 c>
n

(
d

Jn(2d −1)
I2,n(ax ,x )− 4

J 2
n(d +1)2

(
I1,n(ax )

)> I1,n(ax )

)
c n +ηx2 (x),

Iy2 (n) = 1

4π2 c>
n

(
d

Jn(2d −1)
I2,n(a y ,y )− 4

J 2
n(d +1)2

(
I1,n(a y )

)> I1,n(a y )

)
c n +ηy2 (x),

Ix y (n) = 1

4π2 c>
n

(
d

Jn(2d −1)
I2,n(ax ,y )− 4

J 2
n(d +1)2

(
I1,n(ax )

)> I1,n(a y )

)
c n +ηx y (x),

(4.18)
where I2,n(ae1,e2 ) ∈ RJn d̂×Jn d̂ is a block diagonal matrix with a total of Jn blocks of the

form
(
Pd−1,d

j (ae1 )
)>

Bd−1
Iγ,κ

Pd−1,d
j (ae2 ) corresponding to triangles t j , j = 1, . . . , Jn , in sub-

aperture n. The Cartesian unit vectors e1, e2 are defined according to the considered
moment. The terms ηx2 (x),ηy2 (x),ηx y (x) ∈R contain sensor noise and modeling errors.
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4.3.4. FORMULATION OF THE GLOBAL SABRE-M PROBLEM
In this section the nonlinear least-squares estimator is presented for the B-coefficients of
the global SABRE-M model, in order to obtain an approximation of the wavefront from
the moment measurements. The parameter estimation problem, like for the SABRE
method, consists of the minimization of the error between the measurements and the
sensor model in a least-squares sense subjected to the continuity constraints.

Since the moments are only related to the splines inside their respective subaperture,
a local least-squares problem can be defined on each subaperture domain consisting of
Jn triangles. For this, to each subaperture n = 1, ..., N , a measurement vector

bn := [
Ix (n) Iy (n) Ix2 (n) Iy2 (n) Ix y (n)

]> ∈R5×1 (4.19)

is associated, consisting of the moment measurements obtained from the SH pattern.
The local residual vector rn(c n) ∈ R5×1 is defined in the following manner. For each

of the five moment measurements [bn]m , m = 1, ...,5, a residual value is defined that is
strictly linear or quadratic in c n ∈RJn d̂ for the first moments (m = 1,2) or the second and
mixed moments (m = 3,4,5) respectively:

[rn(c n)]m := bn,m − (
l>n,m c n +c>

n Qn,m c n
)

, m = 1, ...,5, (4.20)

where l>n,m c n is given by the sensor model from Eq. (4.15) for m = 1,2 and is zero for
m = 3,4,5, and c>

n Qn,m c n is given by the sensor model from Eq. (4.18) for m = 3,4,5 and
is zero for m = 1,2. It should be noted that the sensor model is identical for each of the
subapertures due to the local nature of the B-spline wavefront model.

The global SABRE-M problem for a total of N subapertures is written as the following
nonlinear least-squares problem:

min
c∈RJ d̂

f (c) =
N∑

n=1
fn(c n) =

N∑
n=1

‖rn(c n)‖2
2 (4.21)

s.t. Ac = 0, (4.22)

where c ∈ RJ d̂ denotes the global coefficient vector and A ∈ REV +1×J d̂ the global con-
straint matrix, which define the B-spline wavefront model as introduced in Eq. (4.3) and
Eq. (4.4). In order to solve for the B-coefficients in Eq. (4.21), a Gauss-Newton algorithm
is used and the constraints are imposed by KKT conditions [32].

4.4. SIMULATIONS WITH SABRE-M
In numerical experiments the performance of the second moment (SM) method, SABRE-
M, presented in Section 4.3, is compared to the first moment (FM) method SABRE, that
was described in Section 4.2.1. The purpose of these experiments is to validate the SM
model and to evaluate the improvements that are achieved by the use of additional in-
formation from the SH sensor.

For all the experiments described in this section, a Fourier optics based SH WFS sim-
ulation according to the Fraunhofer diffraction principle is used in order to generate the
first and second moment measurements in each subaperture. Aiming for the application
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on SH arrays consisting of a smaller number of bigger subapertures, considered are a
large pitch between the square subapertures of Mp = 32 pixels, a width of the diffraction
limited PSF of Md = 4 pixels, a focal distance of f = 20 mm and a wavelength of λ= 633
nm. In the simulations an Ni ×N j = 10×10 microlens array is used. Each intensity spot
of the SH pattern is created by embedding the segment of the wavefront corresponding
to the individual lens in the center of a MCCD ×MCCD grid containing zeros, where MCCD

is defined by the pitch times the diffraction limit, so here MCCD = Md Mp = 128. The fo-
cal spot in the n-th subaperture is then obtained with the zero-shifted two-dimensional
discrete Fourier transform:

in =
∣∣∣∣∣eik(u2+v2)/(2 f )

iλ f
F

(
Pne−iφn

)
δ2

∣∣∣∣∣
2

∈RMCCD×MCCD , (4.23)

with the wave number k = 2π/λ, the pupil function Pn ∈ RMCCD×MCCD containing ones
and zeros, with the corresponding wavefront segment φn ∈ RMCCD×MCCD , and the sam-
pling interval δ. The complete SH pattern is obtained by cutting out each focal spot at
the subaperture size and placing the images in the array, forming an M ×M grid, where
M = Ni Mp = 320.

In the first part of the experiments (Section 4.4.1 and Section 4.4.2), besides the per-
formance through WFR from SH measurements, also the performance of the B-spline
models is shown through a fit of the wavefront. This is showing us the differences be-
tween the modeling ability with the used (first moment or first and second moment)
information from the sensor and the potential modeling ability of the splines.

In order to evaluate the performance of the wavefront reconstruction, the relative
root mean squared error (RMSE) is used as performance metric:

RMSErel =
∥∥φ− φ̂∥∥∥∥φ∥∥ , (4.24)

which is defined by the norm of the difference between the piston removed input phase
φ and estimated phase φ̂, normalized by the root mean square (RMS) of the input phase.

4.4.1. PROOF OF CONCEPT
The first part of the experiments is a proof of concept of the new sensor model de-
rived in Section 4.3. In order to evaluate the gain in reconstruction accuracy that can
be achieved through the additional second moment information retrieved from the SH
sensor by Eq. (4.18), SABRE-M is compared to SABRE, that only uses an approximation
of Eq. (4.15) as sensor model. In the experiments, a spline model of polynomial degree
d = 2 and continuity order r = 1 on a Type-II triangulation grid is used for both meth-
ods. The reconstruction accuracy is tested for aberrations of different spatial orders, for
which deterministic Zernike modes up to the fifth order with an amplitude of A = 1.9 rad
are used as input phase. Because the reconstruction is made on a square aperture, the
Zernike polynomials are defined on a circle with the aperture diagonal as diameter.

In Figure 4.2, the performance of SABRE-M is compared to SABRE, plotted for the dif-
ferent order Zernike aberrations denoted by Z m

n . As a reference, also the approximation
error of the best possible fit with the second degree spline model is given, showing the
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Figure 4.2: Performance of SABRE and SABRE-M on a 10×10 SH array, using a second degree spline, for differ-
ent order Zernike input aberrations. The best fit of the aberration shows the maximal performance that can be
obtained with a second degree spline.

potential in modeling accuracy with the d = 2, r = 1 splines. A fitting error of zero can be
observed for aberrations up to second order Zernike modes, since these orders of modes
can be exactly reconstructed by the second degree splines. Increasing the order of the
mode in general implies a decreasing fitting ability. An exception is seen for the specific
modes Z±n

n , which shape is relatively flat in the middle and extremely steep at the cor-
ners of the square reconstruction domain, worsening the fitting ability with the spline
model. The WFR results show that SABRE-M, by the use of higher order information
from the SH sensor, gives a performance that is significantly superior to that of SABRE
for input phase Z-modes from the third order onwards. The SABRE-M method outper-
forms the SABRE method by 10% to 70%. Further it can be observed that even though the
reconstruction accuracy is dependent on the shape of the deterministic Zernike modes,
overall the advantage of SABRE-M is increasing, from less pronounced improvements at
the third order Z-modes to very pronounced improvements for the fifth order Z-modes.

In addition, it is seen that the SM method approaches the modeling accuracy of the
best possible fit at the specific modes Z±n

n . This clearly shows us the difference between
modeling power of the spline degree and reconstruction power by the SH sensor infor-
mation. It also gives an example of the limitation of the reconstruction accuracy by the
degree of the spline model.

4.4.2. POWER OF A HIGHER DEGREE APPROXIMATION MODEL
The performance of the wavefront reconstruction with simplex splines depends partly
on the selection of the spline parameters. Depending on the size of the SH array, the
input aberration and the amount of data provided by the method, a different spline de-
gree, continuity order or triangulation type is desirable, as a trade-off exists between
smoothness and degrees of freedom of the global spline. The highest spline degree that
can be used by SABRE is d = 2, as discussed in Section 4.2.1. Due to the use of addi-
tional second moment information, with SABRE-M, a d = 3 spline model can be used,
which contains more degrees of freedom and therefore increases the fitting ability of the
wavefront model.

For the evaluation of the performance of the second moment method, stochastic
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(a) n = 10, D/r0 = 10,
RMS≈ 3 rad

(b) n = 30, D/r0 = 10,
RMS≈ 3 rad

(c) n = 10, D/r0 = 60,
RMS≈ 20 rad

(d) n = 30, D/r0 = 60,
RMS≈ 20 rad

Figure 4.3: Turbulent phase screens from Zernike modes of different polynomial order n and of different aber-
ration strength D/r0, and corresponding SH patterns. (a) and (b): weak aberration with RMS ≈ 3 rad; (c) and
(d): strong aberration with RMS ≈ 20 rad.

results are used, with d = 2, r = 1 and d = 3, r = 1 B-spline models for SABRE-M and
a d = 2, r = 1 model for SABRE, all constructed on a Type-II triangulation grid. Ran-
dom input phase screens are created with Zernike functions according to a Kolmogorov
turbulence statistics model [27]. For this model, a turbulence outer scale of L0 = 10D
and five different turbulence strengths are used, with the severity defined by the ratio of
the telescope diameter and the Fried coherence length D/r0 = [5,10,20,40,60]. Further-
more, the number of orders of Zernike modes included in the phase screens is varied,
using n = [2,5,10,15,20,25,30] polynomial orders, corresponding to a total number of
Zernike modes of [5,20,65,135,230,350,495]. For each number of included orders of
Zernike modes, sets of 30 wavefront realizations for each turbulence strength are used in
the experiment, giving a total of 150 realizations per order. In Figure 4.3, four examples
are shown of the phase screens and their corresponding SH patterns for a low and a high
order aberration, each at a weak and a strong aberration strength.

In Figure 4.4 the averaged results from these simulations for aberrations of different
spatial orders are shown. In comparison to SABRE (d = 2, r = 1), SABRE-M (d = 2, r = 1)
using quadratic B-splines shows a significant advantage in reconstruction accuracy for
aberrations that include Zernike polynomials of spatial orders in the range of 5–25. As
seen from the best fit for the d = 2 spline, SABRE-M (d = 2, r = 1) follows the maximal
modeling accuracy much closer than SABRE (d = 2, r = 1), due to the additional sec-
ond moment information. For aberrations including > 15 orders a better accuracy can
be achieved by increasing the spline degree to d = 3, for which a higher amount of de-
grees of freedom in the model is demonstrated by the superior best fit of the cubic spline
model. SABRE-M (d = 3, r = 1) shows an almost constant relative reconstruction error of
less than 0.03. For aberrations that include Zernike polynomials of spatial orders up to
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Figure 4.4: Performance of SABRE and SABRE-M on a 10× 10 SH array, using respectively a spline model of
second and third degree. Stochastic results are shown, for input aberrations with Kolmogorov statistics created
using Zernike modes up to different orders. The best fit of the aberration shows the maximal performance that
can be obtained with a second, respectively third, degree spline.

25 an improvement compared to SABRE of 65% is obtained. However, for very low order
aberrations including < 15 orders, there is not enough second moment information for
the high amount of degrees of freedom of the cubic spline model, and SABRE-M (d = 2,
r = 1) should be used.

In the experiments aberrations including orders ≥ 30 (495 modes) are not considered
because the results are affected by simulation errors due to the limited number of sam-
ples in the CCD grid. Because the second moment method considers the square of the
phase gradient, which oscillates twice faster than the gradient used by the first moment
method, the simulation for the second moments reaches the limitation imposed by the
Nyquist criterion earlier. This can explain the growing reconstruction error when includ-
ing Zernike modes of order ≥ 30 for SABRE-M (d = 3, r = 1), as seen in Fig. 4.4. Hence, in
order to guarantee a fair comparison of both methods through numerical simulations,
the results from aberrations of extremely high spatial orders were not considered, and
aberrations of Zernike modes of the first 25 spatial orders are used in the following sim-
ulations. According to [28] and [101] this number of orders is sufficient for an accurate
representation of the turbulent phase.

Figure 4.5 shows a cross-section of the results from Fig. 4.4 at the level of 25 in-
cluded orders of Zernike modes, in which the reconstruction accuracy is plotted for in-
put phase screens of different aberration strengths. The results, which also applies to all
the other levels of included Zernike orders, show for the cases where SABRE-M outper-
forms SABRE, that the suitable SM method is always superior, independent of aberration
strength. Also, it is observed that the methods are mostly not dependent on aberration
strength, but that the performance is mainly determined by the included modes. This
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Figure 4.5: Cross-section of Fig. 4.4, showing the performance of SABRE and SABRE-M on a 10×10 SH array,
for Kolmogorov models including 25 orders of Zernike modes, at different aberration strengths D/r0. Both
methods show to be nearly independent of aberration strength.

would allow selecting smaller SH arrays of bigger lenses, for reconstruction in the range
of orders in which the second moment method performs best.

4.4.3. ANALYSIS ON THE NUMBER OF SUBAPERTURES
As discussed in the introduction, one of the main goals of the SM method is to achieve
better performance with smaller SH arrays of bigger lenses. For this purpose, the perfor-
mance of the method is tested for different sizes of the SH array.

Figure 4.6 shows the relative RMSE for a 10×10, a 15×15 and a 20×20 microlens array,
in which the results for 30 phase screens of D/r0 = 40 and including Zernike modes of
polynomial order 25 or smaller are seen. The reduced loss of performance of the SM
method for a decreasing number of subapertures shows clearly the main advantage of
the novel method. By the use of the higher order information from the SH sensor, the
method is able to reconstruct at a coarser sampling of the wavefront. The results show
that a doubled sampling of the grid is needed for the SABRE method (at 20×20), in order
to achieve a comparable accuracy as the SABRE-M method at 10×10.

4.4.4. ANALYSIS ON MEASUREMENT NOISE
In this part of the experiments, the influence of sensor readout noise on the performance
is investigated. The noise that affects the SH wavefront sensor measurements is simu-
lated through Gaussian-distributed white noise added to the intensity patterns used for
the moment computation. Different signal-to-noise ratio (SNR) levels are defined by the
ratio of the intensity and the noise variance in the decibel scale, where a SNR of 0 dB
corresponds to a magnitude of the noise that is equal to that of the signal. The images
are preprocessed by applying a threshold, in order to remove the biggest influence of the
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Figure 4.6: Performance of SABRE and SABRE-M for a 10×10, 15×15 and 20×20 SH array. Results are obtained
for phase screens including up to 25 orders of Zernike modes with aberration strength D/r0 = 40.

noise on the measurements.
Figure 4.7 shows the performance of the methods for 30 wavefront realizations at

each SNR level, using phase screens of D/r0 = 40 and 25 orders of Zernike modes. The
results show that the SM method loses performance in contrast to the extremely noise
resilient SABRE method. It is seen that, for high signal-to-noise ratio levels ≥ 24, SABRE-
M still clearly outperforms SABRE. For SNR levels < 24, the advantage compared to the
SABRE method is strongly reduced. Further research is required to improve the SM mea-
surements in the presence of noise, for this the work of [150] and [151] is suggested.
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Figure 4.7: Performance of SABRE and SABRE-M on a 10×10 SH array at different SNR levels. The dashed line
shows the performance for the noiseless case. Results are obtained for phase screens including Zernike modes
of polynomial order up to 25 with aberration strength D/r0 = 40.
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4.5. CONCLUSIONS
A new SH sensor model that uses first and second moment information of the focal spots
for wavefront reconstruction with multivariate simplex B-spline basis functions is intro-
duced. This new wavefront reconstruction method, the SABRE-M (Moment) method,
can be seen as an extension of the SABRE method which is based on an approximate
model of the change in the first moments of the focal spots, commonly referred to as
centroids. The SABRE-M sensor model includes next to the exact equations for the two
first moment measurements, three additional equations that relate the change of the
second moments of the focal spot to the local averaged square gradient of the wavefront.

The SABRE-M method is intended for more accurate wavefront reconstruction in
particular in the presence of higher order aberrations. First-moment-based methods
only give a measure of the averaged slopes in each subaperture. However the second mo-
ment measurements allow the sensing of higher order aberrations in the subapertures.
Also, whilst the original SABRE method is restricted to the use of linear or quadratic
B-spline polynomials because of the limited number of measurements, SABRE-M can
employ cubic polynomials enabling the modeling of higher spatial frequencies in the
wavefront.

The twofold claim of additional information retrieval and increased approximation
power is validated in numerical experiments with a Fourier-based simulation of a 10×10
SH array.

Considering Zernike modes of the first 5 polynomial orders as aberrations, the recon-
struction accuracies obtained for SABRE and SABRE-M are compared, with both mod-
els using a quadratic B-spline model. With equal achievable approximation power, the
SABRE-M method outperforms the first-moment-based SABRE method for all consid-
ered modes, with the advantage ranging between 10% and 70%. Superiority due to the
use of the second order measurements is most pronounced for Zernike modes of poly-
nomial order 4 or higher.

To analyze the reconstruction performance of SABRE-M for quadratic and cubic B-
spline models a Monte Carlo simulation was performed for random aberrations created
with Zernike modes according to a Kolmogorov turbulence statistics model. Increasing
the number of included polynomial orders, it was observed that the spatial frequencies
in the aberrations determine which B-spline model is the optimal choice for the SABRE-
M method. For aberrations including Zernike modes of 15 or less polynomial orders the
quadratic model outperforms the cubic model. The cubic model is superior for aber-
rations including more than 15 polynomial orders because in this range SABRE-M truly
benefits from the additional approximation power. With the adequate B-spline model
the second-moment-based SABRE-M shows an improvement of 55% to 65% compared
to SABRE for the considered high spatial frequency aberrations including more than 5
polynomial orders.

To highlight the benefit of the SABRE-M method for possible application in low light
scenarios, SH arrays of different sizes where considered. It was shown that the stan-
dard first-moment-based SABRE method needs a SH array of 20×20 subapertures in or-
der to achieve reconstruction accuracies comparable to the performance achieved with
SABRE-M on a much coarser 10×10 array. Including the second moment measurements
permits the use of a smaller number of big SH lenses at equal performance, which will
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naturally increase the signal-to-noise ratio in the focal spots.
Finally, in numerical experiments SABRE-M performance has shown to be sensitive

to the influence of Gaussian noise. The standard procedure of thresholding did ease
the effect, however for decreasing signal-to-noise ratio levels the advantage to SABRE
reduces. Further research is required to improve the second moment measurements in
noisy conditions.

We conclude that the SABRE-M method is suitable for higher order wavefront recon-
struction within the single subaperture domains of a SH array, allowing an application
on SH grids with a reduced number of subapertures and an increased subaperture size
without the loss of reconstruction accuracy, which reduces the scale of the wavefront
reconstruction problem and creates favorable signal-to-noise ratio conditions.



5
INTENSITY-BASED WAVEFRONT

RECONSTRUCTION FOR THE

SHACK-HARTMANN SENSOR

CHAPTER ABSTRACT
We propose an extension of the SABRE (Spline-based ABerration REconstruction) method
to Shack-Hartmann (SH) intensity measurements, through small aberration approxi-
mations of the focal spot models. The original SABRE for SH slope measurements is
restricted to the use of linear spline polynomials, due to the limited amount of data,
and the resolution of its reconstruction is determined by the number of lenslets. In this
work, a fast algorithm is presented that directly processes the pixel information of the
focal spots allowing the employment of nonlinear polynomials for high accuracy recon-
struction. In order to guarantee the validity of the small aberration approximations, the
method is applied in two correction steps, with a first compensation of large, low order
aberrations through the gradient-based linear SABRE followed by compensation of the
remaining high order aberrations with the intensity-based nonlinear SABRE.

The content of this chapter has been published in [129].
@2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic
reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes,
or modifications of the content of this chapter are prohibited.
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5.1. INTRODUCTION

T he most commonly employed sensor to gather information about the phase aberra-
tions present in an adaptive optics (AO) system is the Shack-Hartmann (SH) wave-

front sensor [2, 68]. By means of a lenslet array, the pupil is sampled in subapertures and
an approximation of the averaged spatial gradient of the wavefront in each subaperture
is obtained through the computation of the center of gravity (CoG), or centroid, of the
intensity distribution at the focus of the lenslet. This approach allows parallel process-
ing of the SH focal spots and yields a linear relationship between the centroids and the
local gradients of the wavefront.

The two most well known approaches for wavefront reconstruction (WFR) from SH
slope measurements are finite difference (FD) methods [29] which provide a zonal (local)
solution of the WFR problem and modal methods [47] which are based on the expansion
of the wavefront with global basis functions, e.g. Zernike polynomials [27], defined over
the whole pupil plane. Recently, de Visser et al. [117] introduced the SABRE (Spline-
based ABerration REconstruction) method which constructs a triangulation based on
the SH sensor geometry and computes a bivariate simplex spline model of the wavefront
from locally defined B-spline basis functions [118]. It has been demonstrated that SABRE
shows superior resilience to sensor noise and adaptability to wavefront sensor geome-
tries if compared to the FD methods [117]. A distributed implementation of the method
is possible thanks to the local nature of the spline models and increases the computa-
tional efficiency [123]. However, the SABRE method and the standard WFR methods for
SH sensors share the limitation in reconstruction accuracy imposed through the sam-
pling of the pupil by the lenslet array which leads to aliasing errors. Due to the limited
amount of data retrieved from the SH sensor in the form of local slope measurements,
the SABRE method is restricted to the use of linear spline functions.

The goal of this work is to retrieve additional information from the SH patterns in
order to allow the employment of a nonlinear B-Spline wavefront model which requires
the estimation of a higher number of B-spline coefficients. With a nonlinear B-spline
phase model defined on a triangulation based on the geometry and resolution of a cer-
tain SH sensor, more accurate wavefront estimates can be achieved with the same hard-
ware. There are several approaches to the problem: Processing and modeling not only
the first moment but also the second moment information of the focal spots in a SH pat-
tern has been introduced and proven successful [128]. An extension of Antonello’s work
[152], which is based on a polynomial expansion of the complex field, to the B-spline
framework and an application on SH sensors have yet to be investigated. In this paper,
higher order information about the phase is retrieved from each focal spot through the
application of focal plane sensing techniques using directly the pixel information at the
level of the subapertures.

Compared with standard SH wavefront sensing, focal plane sensing techniques have
shown the potential to obtain higher accuracy wavefront estimates from one or several
focal images obtained with the full pupil as aperture [92, 103–105, 108, 153]. To avoid sign
ambiguity in the even modes, a known phase, the so-called phase diversity, is introduced.
Due to the highly nonlinear relationship between pixel intensity values of the observed
point spread function (PSF) and phase, the phase retrieval is performed in cumbersome
iterative procedures which are computationally expensive.
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A common approach to reduce the computational complexity is the approximation
of the nonlinear PSF model through linear Taylor expansion either under the assump-
tion of both a small aberration and a small diversity phase [103] or, as later suggested,
assuming only a small aberration phase [104, 105]. For two reasons an approximation
around zero aberration phase and non zero diversity phase is preferable and was hence
applied in this work: Firstly, one image is sufficient for unique phase estimation since
the linear term of the Taylor expansion is not invariant to even modes if a diversity phase
is included in the model [105]. Secondly, optimal phase diversities depend on the aber-
ration and can in general not be treated as small [154].

The iterative procedures of the following two methods are based on small aberration
approximations of the PSF model and the use of a modal decomposition of the aberra-
tion phase: The LIFT (LInearized Focal-plane Technique) [104] performs several itera-
tions on the same recorded image, where the linearization of the PSF is recomputed in
each iteration around the estimate of the previous iteration under the presence of an
astigmatism phase diversity. The ILPD (Iterative Linear Phase Diversity) method [105]
on the contrary records a new image per iteration including the correction of the phase
estimate obtained in the previous iteration. A significant speed up is achieved compared
to the LIFT since for ILPD the coefficients of the linear PSF model remain constant and
the linearization can be precomputed around zero aberration for a fixed defocus phase
diversity. It has been further shown that an additional quadratic term in the Taylor ex-
pansion of the PSF model renders a more accurate approximation than the linear version
[105, 108].

This paper presents a hybrid approach of processing Shack-Hartmann focal spot pat-
terns with a focal plane sensing approach based on the ILPD method within the frame-
work of multivariate B-splines and introduces the notion of SABRE-I (Spline-based ABer-
ration REconstruction for Intensity measurements). If the PSF models of the focal spots
are considered independently, then it is possible to use small aberration approximations
for each focal spot. The PSF approximations are based on local B-spline models of the
unknown phase patches within the subapertures. Since an arbitrary number of pixel val-
ues in the local intensity distributions can be processed, the use of nonlinear B-splines is
possible. Further, the estimation of local phase patches within the subapertures reduces
the error of the small aberration approximations for larger aberrations. The B-spline the-
ory allows the definition of these local B-spline estimates as well defined parts of a global
phase model, covering the entire sensor domain, and their integration into a global con-
tinuous phase estimate via continuity conditions. We have previously applied this ap-
proach to Hartmann patterns for which there is no sign ambiguity on even modes [155].
The first contribution in this work is the generalization of SABRE-I to SH patterns by
introducing a defocus offset to the lenslet array. With the LIFTed SH scheme [156], a hy-
brid variant of the LIFT was suggested which estimates several local phase modes in each
subaperture that are then used like local slopes. For the SABRE-I algorithm such trans-
lation from local phase modes to global modes via an interaction matrix is not needed
because of the integrity of the local B-spline phase models in each subaperture described
above. Analogous to the ILPD method, the local PSF models of the SABRE-I method are
derived through first or second order Taylor expansion and the method is implemented
as an iterative procedure. Even though the quadratic focal spot models are more ac-
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curate than the linear models and extend the applicability of SABRE-I, the increasing
error introduced through the small aberration approximations of the focal spots deteri-
orates the reconstruction accuracy in the case of larger initial aberrations. Performing
a precorrection step with the standard slope-based SABRE which compensates for large
low order aberrations is suggested. This two stage approach creates the suited small
aberration context for SABRE-I to estimate remaining high order aberrations within the
subapertures and this way increase the performance achievable with a given SH sensor.

The outline of the paper is as follows. In Section 5.2, preliminaries on multivari-
ate B-splines are given followed by the presentation of the linear and quadratic small
aberration approximations of the SH focal spots in Section 5.3. These models are the
basis for the global phase retrieval problem formulation of the SABRE-I method which
is based on a separable costfunction and introduced in Section 5.4. In Section 5.5, we
present a fast algorithm to compute the solution of the SABRE-I problem which results
in a sparse least-squares problem subjected to equality constraints. Section 5.6 presents
and discusses the results from numerical experiments that include a comparison to the
classical slope-based SABRE method. Concluding remarks can be found in Section 5.7.

5.2. PRELIMINARIES ON MULTIVARIATE SIMPLEX B-SPLINES
In the following section, a brief introduction to the theory of bivariate B-splines is given
to ease the understanding of the problem formulation. For a more general coverage of
multivariate B-splines, we suggest to consult [118] which provides a more in-depth ac-
count of the matter.

5.2.1. TRIANGULATION OF SIMPLICES AND BARYCENTRIC COORDINATES

A multivariate simplex B-spline function is a piecewise polynomial that is defined over
a structure called triangulation. In the bivariate case, the triangulation T is a parti-
tioning of a domain in R2 into a set of J non-overlapping 2-simplices (i.e. triangles).
Each simplex ti , 1 ≤ i ≤ J , is formed by the convex hull of its 3 non-degenerate vertices
{v 0, v 1, v 2} ⊂R2. The triangulation is then defined as

T :=
J⋃

i=1
ti , ti ∩ t j ∈

{;, t̃
}

, ∀ ti , t j ∈T , i 6= j , (5.1)

where the edge simplex t̃ is either a line or a vertex.

The basis polynomials of the simplex B-splines are locally defined functions in terms
of the barycentric coordinate system, a local coordinate system defined on an individual
simplex. For a simplex t constructed on the vertices {v0, v1, v2}, the barycentric coordi-
nates (b0,b1,b2) ∈R3 of a point x = (x, y) ∈R2 in the Cartesian plane are given as follows:[

b1

b2

]
= V−1

[
x
y

]
, b0 = 1−b1 −b2 , (5.2)

with transformation matrix V := [v1 − v0, v2 − v0]. In the remainder of this paper, this
transformation will be denoted by b(x) := (b0,b1,b2) ∈R3, x ∈R2.
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5.2.2. BASIS FUNCTIONS OF THE SIMPLEX B-SPLINES
With the barycentric coordinate system defined on simplex t , a local basis of polynomial
degree d is defined on this simplex through the Bernstein polynomials

B d
κ (b(x)) :=

{
d !

κ0!κ1!κ2! b
κ0
0 bκ1

1 bκ2
2 , x ∈ t

0, x ∉ t ,
(5.3)

where the multi-indices κ= (κ0,κ1,κ2) ∈N3 have the properties |κ| = κ0+κ1+κ2 = d and
κ0,κ1,κ2 ≥ 0. The total number of Bernstein polynomials per triangle is then denoted as
d̂ := (d+2)!

2d ! .
Any polynomial pt (x) on a simplex t of degree d can be represented as linear combi-

nation of the Bernstein polynomials in the following B-form:

pt (x) =
{∑

|κ|=d c t
κB d

κ (b(x)), x ∈ t

0, x ∉ t ,
(5.4)

where the B-coefficients c t
κ uniquely determine the polynomial pt (x) on triangle t .

5.2.3. CONTINUITY CONDITIONS
The B-form polynomials pt (x) defined on the single simplices are joined to a global, con-
tinuous spline function by creating continuity of predefined order r between the polyno-
mial pieces. This means that the first r derivatives of B-form polynomials of neighboring
simplices are equal on the shared edges. In the B-spline framework, this can be enforced
through continuity conditions, i.e. a set of linear equations, which are gathered in the
global smoothness matrix

Hc = 0. (5.5)

The global B-coefficient vector c ∈ RJ d̂ is a concatenation of all B-coefficients c t
κ on tri-

angles t ∈ T as introduced in Eq. (5.4). For continuity order r , there are a maximum
number of

Q :=
r∑

m=0
(d −m +1) (5.6)

continuity conditions per edge, and with a total of E edges in the global triangulation,

one obtains matrix H ∈REQ×J d̂ [117].
It is important to note that the smoothness matrix H is highly sparse because the

single continuity constraints only act on coefficients of neighboring simplices. Further,
it shall be mentioned that Q gives an upper bound to the number of non-redundant
continuity constraints per edge in triangulation T .

5.2.4. PARTITIONING
In this paper, we make use of partitioning [123] of the global triangulation T into G sub-
triangulations Ti which are non-overlapping sets of Ji adjacent simplices, such that

T =
G⋃

i=1
Ti , Ti ∩T j =

{;, T̃
}

, ∀ Ti ,T j ⊂T , i 6= j , (5.7)
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where T̃ is either a line, a vertex or a set thereof. Be C := {
1, · · · , J d̂

}
the global index set

of all B-coefficients in the global spline function, then we define Ci ⊂C as the indices of
all B-coefficients corresponding to basis functions defined on simplices within the sub-
triangulation Ti . The local B-coefficient vector of partition i is then given as c i := c(Ci ) ∈
RJi d̂ . The local spline function pi (x) defined on sub-triangulation Ti is uniquely given
by the vector form

pi (x) = B d
i (x)c i , (5.8)

where B-form vector B d
i (x) ∈ R1×Ji d̂ contains the Bernstein polynomials introduced in

Eq. (5.3) which correspond to local B-coefficients c i .
For each partitioning of the global triangulation T into subtriangulations Ti of the

form in Eq. (5.7), two types of submatrices can be created from the global smoothness
matrix H defined in Eq. (5.5): The local smoothness matrices Hi for all partitions i =
1, . . . ,G and the linking matrix Hlink.

Be R := {1, · · · ,R} the global index set of all continuity constraints in the global smooth-
ness matrix H and Ri ⊂ R, 1 ≤ i ≤ G , the set of indices of all constraints only affecting
local coefficients inside the sub-triangulation Ti . Then, we define the inner smoothness
matrix of partition i as follows:

Hi := H (Ri ,Ci ) ∈RRi×Ji d̂ , Ri = |Ri |, (5.9)

and consists of the block in global matrix H which only influences B-coefficients in-
side the partition i . With inner smoothness matrix Hi and local B-coefficient vector c i ,
the continuity conditions are defined to guarantee continuity of order r within the local
spline function pi (x).

The linking matrix Hlink is defined as

Hlink := H (Rlink,C ) ∈RRlink×J d̂ , Rlink = |Rlink|, (5.10)

where Rlink =R \ (R1 ∪·· ·∪RG ). Hence, Hlink collects all rows of smoothness matrix H
which correspond to continuity conditions acting at edges between adjacent partitions.

It can be easily understood that locally smooth spline functions pi (x), which fulfill
the inner partition continuity conditions defined through matrices Hi , can be joined to
a global smooth spline function if also the continuity conditions contained in Hlink, and
acting on the global B-coefficient vector c , are enforced.

5.3. SMALL ABERRATION APPROXIMATION FOR A SH SENSOR
In this section, the linear and quadratic small aberration approximations of the nonlin-
ear PSF models of the SH focal spots are derived based on a simplex B-spline model of a
the phase aberration.

5.3.1. SH INTENSITY PATTERN FORMATION
For our method, the image formation model of the SH detector frame is considered in-
dependently for the single subapertures i , with 1 ≤ i ≤ N . Each focal spot i i ∈ RMi can
be described with a model Ii (u) for image formation of a point source in the presence of



5.3. SMALL ABERRATION APPROXIMATION FOR A SH SENSOR

5

107

a phase aberration φi (x) where interference effects are neglected. Be u ∈ R2 the spatial
coordinate in the focal plane and x ∈ R2 the spatial coordinates in the pupil plane, both
globally defined. The point spread function (PSF) of subaperture i formed at the focal
plane is then given by

Ii (u) = ∣∣F {
Pi (x)eiφi (x)} (u)

∣∣2
, (5.11)

where F {·} is the Fourier transform and pupil function Pi (x) defines the aperture of the
lenslet i . In presence of a known diversity phase φD,i (x) introduced at each subaperture
i , the resulting PSF computes as

ID,i (u) = ∣∣F {
UD,i (x)eiφi (x)} (u)

∣∣2
, (5.12)

with the modified pupil function UD,i (x) := Pi (x)eiφD,i (x).
The focal spot of lenslet i is formed on a matrix of pixels i i ∈RMi such that the m-th

pixel [i i ]m := ID,i ([ui ]m)+ [ni ]m for the pixel center locations ui ∈ RMi×2 under pres-
ence of measurement noise ni ∈RMi . The complete intensity pattern i ∈RN Mi of the SH
sensor is created by tiling the focal spots.

5.3.2. SIMPLEX B-SPLINE MODEL OF THE PHASE
To represent the unknown phase aberration with a multivariate B-spline model in the
pupil plane, a triangulation T as motivated in Section 5.2.1 is constructed on the SH
lenslet array. The independent focal spot models introduced in Section 5.3.1, which
solely depend on the local phase patch within the respective subaperture i , motivate
a triangulation consisting of adjacent, identical subtriangulations Ti , 1 ≤ i ≤ N . Each
subtriangulation is constructed on the subaperture surface with 4 simplices as depicted
in Fig. 5.1 (scaled to a normalized array size).

Joined together the subtriangulations form a global triangulation of regular Type II
[117] with a partitioning as described in Section 5.2.4 which is induced by the SH sensor
geometry and image formation. The gray lines indicate in Fig. 5.1 hence both the sub-
aperture borders and the subtriangulations of the partioning. Using Eq. (5.8), the local
patches of the aberration and diversity phases, φi (x) and φD,i (x), seen by subaperture i
are modeled with a local spline function defined on partition Ti such that

φi (x) = Bd
i (x)c i and φD,i (x) = Bd

i (x)c D,i . (5.13)

The B-coefficient vectors c i ∈RJi d̂ and c D,i ∈RJi d̂ locally define the unknown aberration
and known diversity phase with Ji = 4 for all partitions i .

The global and smooth B-spline model of polynomial degree d of the unknown phase
φ(x), for any location x ∈R2 in the pupil plane of SH array is then obtained as

φ(x) =
N∑

i=1
Bd

i (x)c i s.t. Hc = 0, (5.14)

with smoothness matrix H from Section 5.2.3 containing equality constraints to ensure
global continuity order r .
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SABRE-I Type II triangulation

Figure 5.1: SABRE-I Type II triangulation for 5× 5 SH lenslet array. Gray lines and diamonds visualize the
subaperture borders and focal spots. Black dots indicate the vertices and black lines the edges of simplices.

5.3.3. LINEAR AND QUADRATIC APPROXIMATION OF THE SH INTENSITY PAT-
TERN

The SABRE-I method is based on linear and quadratic approximations of the local PSF
models of Eq. (5.12) which are performed independently for each focal spot in subaper-
tures i under the assumption of small local phase aberrations φi and nonzero defocus
diversity phases φD,i . Both phase components are represented by the B-coefficient vec-

tors c i , c D,i ∈RJi d̂ from the subaperture local B-spline models in Eq. (5.13).
The linear focal spot models are obtained by a first order Taylor expansion of the

nonlinear model ID,i (u) of the PSF from Eq. (5.12) around zero phase aberration c i = 0
under the presence of a diversity phase c D,i 6= 0:

ID,i (u) = ID,i (u)
∣∣∣

c i=0
+ ∂ID,i (u)

∂c i

∣∣∣
c i=0

c i +O
(‖c i‖2) , (5.15)

where u ∈ R2 is the focal plane coordinate limited to the CCD section corresponding
to the considered subaperture. Abbreviating the Fourier transform onto the focal plane
with F {·} := F {·}(u), the constant term and the Jacobian of the Taylor expansion are
computed as

ID,i (u)
∣∣∣

c i=0
=F

{
UD,i (x)

}(
F

{
UD,i (x)

})∗ , (5.16)

∂ID,i (u)

∂ci ,k

∣∣∣
c i=0

= 2ℜ[
i F

{
Bi ,k (x)UD,i (x)

} (
F

{
UD,i (x)

})∗]
, (5.17)
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where ℜ[·] is the real part. The k-th element of the local B-coefficient vector c i and

the local B-form vector Bd
i (x) ∈ RJi d̂ of subaperture i are denoted by ci ,k and Bi ,k (x)

respectively. The modified pupil function UD,i (x) carries the phase diversity component

such that UD,i (x) := Pi (x)eiBd
i (x)c D,i , for x ∈R2, with pupil function Pi (x) of lenslet i .

The quadratic focal spot models can be achieved with the second order Taylor ex-
pansion

ID,i (u) = ID,i (u)
∣∣∣

c i=0
+ ∂ID,i (u)

∂c i

∣∣∣
c i=0

c i +c>
i

∂2ID,i (u)

∂c i∂c>
i

∣∣∣
c i=0

c i +O
(‖c i‖3) , (5.18)

which extends Eq. (5.15) with a quadratic component defined by the indefinite Hessian

∂2ID,i (u)

∂ci ,k∂ci ,l

∣∣∣
c i=0

= 2ℜ[−F
{
Bi ,k (x)Bi ,l (x)UD,i (x)

} (
F

{
UD,i (x)

})∗
+F

{
Bi ,k (x)UD,i (x)

} (
F

{
Bi ,l (x)UD,i (x)

})∗ ]
. (5.19)

The resulting models IL,i (c i ) and IQ,i (c i ), respectively linear and quadratic in B-coefficient
vectors c i , for the focal spots i i ∈RMi of subaperture i are defined per pixel m as[

IL,i (c i )
]

m := j0,i (m)+ j 1,i (m) c i , (5.20)[
IQ,i (c i )

]
m := j0,i (m)+ j 1,i (m) c i +c>

i J2,i (m)c i . (5.21)

The coefficients j0,i (m) ∈R, j1,i (m) ∈R1×Ji d̂ and J2,i (m) ∈RJi d̂×Ji d̂ are given through the
constant, Jacobian and Hessian of the Taylor expansions presented in Eqs. (5.16), (5.17)
and (5.19) evaluated at the corresponding pixel center location [ui ]m ∈R2.

Note that the model coefficients are identical for all subapertures i if the same phase
diversity phase c D,i is applied in each subaperture and if the same pixels ui ∈ R2×Mi in
the respective CCD areas are processed.

5.4. SABRE-I FOR SH INTENSITY PATTERNS: A SEPARABLE

PROBLEM FORMULATION
In the previous section, we presented the linear and quadratic small aberration approx-
imations of the SH focal spots. The intensity patterns in the spots of each lenset i are

modeled independently in terms of the local B-spline coefficient vectors c i ∈RJi d̂ which
represent the phase φi (x) within the subaperture, as introduced in Section 5.3.2 and
form the global phase model with Eq. (5.14). It is now possible to formulate the global
SABRE-I phase retrieval problem from SH focal spots as an equality constrained opti-

mization problem with a separable objective function f : RJ d̂ → R consisting of local
least-squares cost functions:

min
c∈RJ d̂

f (c) =
N∑

i=1
fi (c i ) =

N∑
i=1

‖ri (c i )‖2
2 (5.22)

s.t. Hc = 0, (5.23)
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where the constraint matrix H contains the continuity conditions ensuring a smooth
global B-spline phase estimate. The local residuals ri (c i ) ∈ RMi in subapertures i are
defined per pixel as difference between the measured intensity values and the focal spot
model:

ri (c i ) := i i − IL/Q,i (c i ), ∀i = 1, ..., N , (5.24)

where i i ∈ RMi denotes the measured focal spot which may include noise. The sub-
script L/Q indicates that either the linear focal spot model IL,i (c i ) from Eq. (5.20) or the
quadratic model IQ,i (c i ) from Eq. (5.21) is used.

The objective function f (c) is called separable since it is a sum of functions fi (c i )
of the individual variables c i [157], a feature that is inherited from the independence
of the focal spot models and does not apply to the continuity constraints. The follow-
ing sections describe how to exploit the sparsity and structure of the continuity condi-
tions allowing nevertheless a sparse global solution to the SABRE-I problem presented
in Section 5.5 or alternatively a distributed solution with low communication load (see
Appendix).

5.4.1. NONUNIFORM DEGREE OF CONTINUITY
We recall that the local coefficient vectors c i represent local B-spline models defined on
the subtriangulations Ti , which cover the subapertures i = 1, . . . , N , of a global, regular
Type II triangulation T as depicted in Fig. 5.1. It was shown in Section 5.2.4 that for
each partitioning of a global triangulation the smoothness matrix H can be split in two
types of submatrices: The local smoothness matrices Hi and the linking matrix Hlink. The
global continuity constraints in Eq. (5.23) of the SABRE-I phase retrieval problem can so
be rewritten into the following equivalent formulation:

Hi c i = 0, ∀i = 1, . . . , N , (5.25)

Hlinkc = 0, (5.26)

where the local smoothness matrices Hi ∈ RRi×Ji d̂ act only on the local coefficient vec-

tors and are identical for all partitions Ti . The linking matrix Hlink ∈RRlink×J d̂ constrains

the global coefficient vector c ∈ RJ d̂ , however does so in a sparse manner, since only
coefficients associated to adjacent simplices in neighboring subapertures are coupled.

With this separated formulation of the continuity constraints, it is possible to enforce
different degrees of continuity within and between the subapertures. For the remainder
of the paper, we use the continuity degrees rloc of the inner smoothness matrices and
rlink of the linking matrix. Hereby it has shown crucial to implement local continuity
of degree rloc = 1, whereas it is of advantage to relax the continuity between the local
phase estimates to rlink = 0 which gives the global B-spline model additional freedom in
approximating higher order aberrations within the phase aberrations.

5.4.2. NULLSPACE PROJECTION FOR LOCAL CONTINUITY CONSTRAINTS
Since the local equality constraints in Eq. (5.25) only affect coefficients within their parti-
tion, it is possible to eliminate these constraints by projection onto their nullspace whilst

preserving the separability of the cost function in Eq. (5.22). Be NHi := null(Hi ) ∈RJi d̂×d̄i
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an orthogonal basis of the nullspace of Hi , then the local B-coefficient vector can be
searched within the d̄i -dimensional column space of NHi such that c i = NHi c̄ i , with

c̄ i ∈Rd̄i .
Introduced in the SABRE-I problem from Eqs. (5.22)–(5.23), this leads to the following

equivalent least-squares problem formulation with separable costfunction which finds
its solution in the nullspace of the local constraint matrices:

min
c̄∈RN d̄i

f̄ (c̄) =
N∑

i=1
f̄i (c̄ i ) =

N∑
i=1

‖r̄i (c̄ i )‖2
2 (5.27)

s.t. H̄linkc̄ = 0, (5.28)

where the global projected B-coefficient vector is c̄ ∈ RN d̄i . The projected local residual
functions are defined as

r̄i (c̄ i ) := i i − ĪL/Q,i (c̄ i ), ∀i = 1, ..., N , (5.29)

with the projected focal spot models set to ĪL,i (c̄ i ) in the linear setting and to ĪQ,i (c̄ i )
in the quadratic setting. The projected models are formed according to Eqs. (5.20) and

(5.21) with modified Jacobians and Hessians j̄ 1,i (m) := j 1,i (m)NHi ∈R1×d̄i and J̄2,i (m) :=
N>

Hi
J2,i (m)NHi ∈Rd̄i×d̄i . The linking matrix which acts on the global coefficient vector is

also projected to

H̄link := HlinkNbk
Hi

∈RRlink×N d̄i , (5.30)

where Nbk
Hi

∈RJ d̂×N d̄i is a blockdiagonal matrix with N blocks NHi . The projected linking
matrix yields the set of side constraints for the projected SABRE-I problem and remains
sparse as the product of a sparse matrix and a blockdiagonal matrix.

Since computable off-line, the local nullspace projection reduces the computational
complexity of the SABRE-I phase retrieval problem whilst preserving the sparsity and
structure of the original problem. Once the projected B-coefficients are obtained, the full
B-coefficient vectors can be obtained in distributed fashion as c i = NHi c̄ i for i = 1, . . . , N .
It is also possible to compute directly phase values via a pre-evaluated B-form matrix
from the local B-spline models in Eq. (5.13), such that we obtain phase estimates

φ̂(x i ) = B d
i (x i )NHi c̄ i (5.31)

at locations x i in the lenslet domains of subapertures i .
We want to mention that both the nonlinear focal spot models and the small phase

approximations are invariant to piston offsets and so are therefore the local costfunc-
tions f̄i (c̄ i ). In the global SABRE-I phase retrieval problem the linking constraints hence
not only ensure smoothness between the local phase estimates but also serve to over-
come these local singularities. The remaining unknown global piston mode can be taken
care of in the optimization by either adding a so called anchor constraint [117] which
fixes a single B-coefficient to zero or by adding a regularization term to the costfunction
[32]. The two approaches have given comparable results.
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5.5. FAST ALGORITHM FOR A GLOBAL SOLUTION OF THE SABRE-
I PROBLEM

In this section, we describe a fast algorithm to solve the projected SABRE-I phase re-
trieval problem of Eqs. (5.27)–(5.28) which consists of a linear or nonlinear equality con-
strained least-squares problem with separable costfunction and sparse constraint ma-
trix. Because of structure and sparsity prevalent in the problem, a global solution is in-
vestigated in this section. A distributed solution was also derived and is presented in the
Appendix. In Section 5.5.1, the global Karush–Kuhn–Tucker [157] (KKT) solution for the
linear case is presented, followed by an iterative Gauss-Newton [32] based procedure for
the nonlinear case in Section 5.5.2 which results in a KKT matrix of the same structure for
the computation of the search directions. This section is finalized with an analysis of the
algorithm’s computational complexity in terms of the total number of SH subapertures
in Section 5.5.3.

5.5.1. SOLUTION FOR LINEAR RESIDUAL
If the linear focal spot model of Eq. (5.20) is employed, the local projected residual func-
tions r̄i (c̄ i ) in the global projected SABRE-I problem of Eqs. (5.27)–(5.28) are linear in
terms of local projected B-coefficient vectors c̄ i and the optimality conditions for the
optimization problem can be written in the ensuing KKT system:[

2J̄>1 J̄1
(
H̄link

)>
H̄link 0

][
c̄
w

]
=

[
2J̄>1 b

0

]
, (5.32)

with the global projected B-coefficient vector c̄ ∈ RN d̄i and the dual variable of the pro-
jected coupling constraints w ∈ RRlink [157]. The right side is formed with the constant
part of the local residuals bi ∈ RMi which is pixel-wise defined as [bi ]m := [i i ]m − j0(m)
and yields the global vector b ∈RN Mi .

The global system matrix J̄1 ∈ RN Mi×N d̄i is blockdiagonal since the local focal spot
models were formed independently for the subapertures. The blocks consist of the pro-
jected Jacobians which were introduced in Section 5.4.2 and are collected for all consid-
ered pixels such that

J̄1,i :=

 j̄ 1,i (1)
...

j̄ 1,i (Mi )

 ∈RMi×d̄i . (5.33)

The blocks of J̄1 are identical if the same phase diversity is introduced for all subapertures
and if the same pixels are processed from the different focal spots.

5.5.2. SOLUTION FOR QUADRATIC RESIDUAL
The following section presents a global solution, based on a Gauss-Newton ansatz [32],
to the equality constrained nonlinear least-squares problem that arises in the SABRE-I
method if the quadratic focal spot models, as introduced in Eq. (5.21), are used.

The Gauss-Newton method for nonlinear least-squares problems subjected to equal-
ity constraints is based on a sequence of linearizations of the problem at hand in Eqs.
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(5.27)–(5.28) around a current approximation c̄ [k] ∈RN d̄i at iteration k, with k = 1, . . . ,kGN.

A search direction p [k] ∈ RN d̄i is then computed as solution to the linear constrained
least-squares problem

min
p∈RN d̄i

g (p) =
N∑

i=1
gi (p i ) =

N∑
i=1

∥∥∥r̄i (c̄ [k]
i )+Di (c̄ [k]

i )p i

∥∥∥2

2
(5.34)

s.t. H̄linkp =−H̄linkc̄ [k], (5.35)

where the cost function of the linearized least-squares problem preserves the separabil-
ity of the original problem. The derivative information about the projected local residu-

als r̄i (c̄ i ) ∈ RMi is captured in the Jacobians Di (c̄ [k]
i ) ∈ RMi×d̄i which are evaluated at the

current approximation c̄ [k]
i and given by

Di (c̄ [k]
i ) := ∂r̄i (c̄ [k]

i )

∂c̄ i
=


− j̄ 1,i (1)−

(
c̄ [k]

i

)> (
J̄2,i (1)+ (

J̄2,i (1)
)> )

...

− j̄ 1,i (Mi )−
(
c̄ [k]

i

)> (
J̄2,i (Mi )+ (

J̄2,i (Mi )
)> )

 , (5.36)

using the Jacobians and Hessians of the projected quadratic focal spot models intro-
duced in Section 5.4.2 for pixels m = 1, . . . , Mi in subapertures i = 1, . . . , N .

The KKT condition to the derived linear constrained least-squares problem from Eqs.
(5.34)–(5.35) is[

2
(
D(c̄ [k])

)>
D(c̄ [k])

(
H̄link

)>
H̄link 0

][
p [k]

w [k]

]
=

[
−2

(
D(c̄ [k])

)>
r̄ (c̄ [k])

−H̄linkc̄ [k]

]
, (5.37)

with the dual variable of the projected coupling constraints w [k] ∈ RRlink and the global

projected residual r̄ (c̄ [k]) ∈RN Mi for the current estimate c̄ [k] ∈RN d̄i . The block diagonal

matrix D(c̄ [k]) ∈RN Mi×N d̄i contains the Jacobians Di (c̄ [k]
i ) of the local projected residual

at iteration k. As such, the KKT matrix for the computation of the new global search
direction p [k] has the same dimension and structure as the KKT matrix of the solution to
the linear SABRE-I problem in Eq. (5.32).

The new approximation of the global projected B-coefficient vector is then obtained
via the damped update rule [32]

c̄ [k+1] = c̄ [k] +αp [k], (5.38)

with step size α ∈R. All iterations of the Gauss-Newton algorithm to solve the quadratic
SABRE-I phase estimate are hence performed within the nullspace of the local continuity
constraints. A large fixed step size of α = 1 and kGN = 5 iterations have yielded stable
results.

5.5.3. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, a theoretical analysis of the computational complexity of both the linear
and the quadratic SABRE-I methods is presented. To allow a comparison with classi-
cal SH slope-based wavefront reconstruction methods, the computational complexity
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of the central operation of the two SABRE-I variants is given in terms of the total number
N of SH subapertures. Hardware-dependent issues, such as transport latency or com-
munication overhead, are hereby neglected. The computational complexity of a certain
operation or algorithm segment is denoted with the symbol C (·) and given in flops, with
a flop standing for a single floating point operation.

SIZE AND BANDWIDTH OF KKT MATRICES

The central operation of the two SABRE-I variants is the computation of the solutions
for the KKT conditions in Eqs. (5.32) and (5.37). For a SH array with a total number of N
subapertures, both systems have N d̄i +Rlink equations and variables, with d̄i projected
B-coefficients per subaperture and Rlink linking constraints. The KKT matrices are sparse
and symmetric, but not positive definite, and are of the same structure.

In the SABRE-I problems for a square SH lenslet array (see Fig. 5.1), the number of
non redundant linking constraints, which are associated with the edges between adja-
cent subapertures, is bounded by

Rlink ≤ 2
(
N −

p
N

)
Qlink, (5.39)

where Qlink is defined with Eq. (5.6) as the maximum number of (possibly redundant)
continuity constraints per edge. For the considered cases of zero and first order linking
continuity between subapertures one obtains

Qlink =
{

d +1 for rlink = 0

2d +1 for rlink = 1,
(5.40)

for B-spline polynomial degree d .
Through a Cuthill-McKee permutation [32], the bandwidth B of the KKT matrices

can be minimized. The resulting bandwidth obeys the upper bound

B ≤
p

N d̄i +Qlink, (5.41)

which was empirically determined in simulations. A direct solution of the KKT condi-
tion via factorization was chosen because of the sparsity and the low bandwidth of the
matrices.

DIRECT INVERSION OF KKT CONDITIONS

In the linear SABRE-I, the factorization of the KKT matrix in Eq. (5.32) can be precom-
puted since it is independent of the processed SH data and only the forward and back-
wards substitutions need to be solved on-line. In case of an LU factorization, the two fac-
tors inherit the bandwidth of the original banded matrix and the projected B-coefficient
vector can therefore be estimated with a computational complexity of [158]

C (KKTlin) = 4
(
N d̄i +Rlink

)
B flops (5.42)

=O
(
d̄ 2

i N
3
2
)

flops, (5.43)

where Eq. (5.43) holds a conservative estimate derived with Eqs. (5.39)–(5.41).
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For the quadratic SABRE-I, the inversion of the KKT matrix of Eq. (5.37) has to be
performed in each iteration of the proposed Gauss-Newton algorithm presented in Sec-
tion 5.5.2. Since the matrix is now dependent on the current estimate of the projected
B-coefficient vector, the factorization has to be recomputed. The LDL> approach has
the lowest flop count for the required operation and the computational complexity of
solving the KKT conditions for kGN Gauss-Newton iterations is given by [158]

C (KKTGN
qu ) = kGN

(
N d̄i +Rlink

)(
B 2 +8B +1

)
flops (5.44)

=O
(
kGN d̄ 3

i N 2) flops, (5.45)

where Eq. (5.45) is again a conservative number.
In the example of a cubic B-spline model, the number of projected B-coefficients

per subaperture is d̄i = 16 if local continuity order rloc = 1. Then, for both complexity
estimates in Eqs. (5.43) and (5.45) the subaperture number related term is the dominant
factor as soon as

p
N ≥ 8.

The complexities of the computation of the KKT solutions for the linear and the
quadratic SABRE-I are global numbers and possible parallelization of the forward and
backward substitution or the factorization respectively is here not considered. Both
variants were also implemented in a distributed fashion by reformulating the SABRE-
I phase retrieval problem into an ADMM (Alternating Direction Method of Multipliers)
framework [130]. The derivation of the algorithm and an analysis of its computational
complexity is presented in the Appendix.

INITIALIZATION OF KKT CONDITIONS AND B-SPLINE EVALUATION

It can be seen from Eqs. (5.42)–(5.45) that the computational complexities of the KKT so-
lutions do not scale with the number of pixels Mi processed per subaperture. The com-
putations involved in the initialization of the KKT conditions in Eqs. (5.32) and (5.37)
on the contrary increase for larger numbers of included intensity measurements. These
initializations can however be performed in parallel for all subapertures without inter-
communication. Hence, the following flop counts are local numbers and independent
of the number of SH subapertures N .

For the linear SABRE-I, it is sufficient to recompute the right hand side of Eq. (5.32)
which can be achieved in

C (Initlin) =O
(
Mi d̄i

)
flops (5.46)

per subaperture. In case of the quadratic SABRE-I, both the right hand side and the
blocks Di (c̄ i

[k]), defined in Eq. (5.36), of the KKT condition in Eq. (5.37) need to be up-
dated in every iteration of the Gauss-Newton approach. For kGN Gauss-Newton itera-
tions, we find then that per subaperture

C (InitGN
qu ) =O

(
kGNMi d̄ 2

i

)
flops (5.47)

have to be computed in total for the initialization parts of the iterations. Note that the
updates of the new approximations of the projected B-coefficient vectors from Eq. (5.38)
are also included in this number.
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The evaluation of the B-spline model, after computing the projected B-coefficient
estimates with the SABRE-I method, can as well be performed in parallel with Eq. (5.31)
and has hence a complexity of

C (Eval) = 2d̄i ni flops, (5.48)

where ni denotes the number of evaluation locations x i ∈Rni in each subaperture i .

5.6. NUMERICAL EXPERIMENTS WITH SABRE-I
The performances of the linear and the quadratic SABRE-I variants were assessed in nu-
merical experiments with respect to focal spot model accuracy, phase reconstruction
accuracy, and measurements noise resilience, using Monte-Carlo simulations. In Sec-
tion 5.6.1, the simulated setup, including SH sensor and aberration simulation and a
compressive sampling approach, is described. The advantage of the quadratic focal spot
model over the linear model is assessed on a subaperture local level for increasing aber-
ration strength in Section 5.6.2. A comparison of the iterative SABRE-I scheme on the full
SH array with the classical slope-based SABRE method is provided in Section 5.6.3. In
Section 5.6.4, we discuss a multi-step correction scheme, combining the SH slope-based
SABRE method with the SABRE-I method for SH focal spots, followed by an experiment
to test the noise rejection properties of this procedure in Section 5.6.5.

5.6.1. SIMULATION SETUP AND PIXEL SELECTION
The numerical experiments presented in the following sections are based on a Fourier-
optics SH wavefront sensor simulation according to the Fraunhofer diffraction principle.
We consider a square 10×10 microlens array with a focal distance of f = 1.8 cm and a
wavelength of λ = 1.8 µm. The pitch between the centers of the square subapertures is
300 µm corresponding to Mp = 32 pixels in the simulation which further uses a width of
the diffraction limited PSF of Md = 4 pixels.

The focal spots of the SH pattern are created independently assuming no interfer-
ence between the subapertures and computed with the nonlinear PSF model of Eq. (5.12).
The segments of the wavefront corresponding to the individual lenslets are embedded
in a MCCD ×MCCD grid, where MCCD = Mp Md , to satisfy the Nyquist sampling criterion.

A constant diversity phase is introduced in each subaperture in form of a defocus of 2
rad (radians) RMS (root mean square), corresponding to the CCD detector being moved
off the focal plane of the lenslet array. Since the same diversity phase φD,i (x) is present
in each lenslet i , the linear and quadratic focal spot models of Eqs. (5.20) and (5.21) can
be precomputed.

Input phase screens are generated from the Zernike modes of the first 40 polynomial
orders (i.e. 860 modes) according to the Kolmogorov turbulence model [27] assuming
aberrations with zero mean. According to [28] and [101], this number of Zernike orders
is sufficient for an accurate representation of turbulent phase in our set up. Because of
the square SH lenslet array, we also consider a square pupil and the Zernike polynomials
are defined on a circle with the pupil diagonal of D = 4 m as diameter. The Kolmogorov
model was generated for a turbulence outer scale of L0 = 40 m and Fried parameter r0

defined according to the experiment.
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A MODEL-BASED COMPRESSIVE SAMPLING APPROACH

For the following simulations, a compressive sampling (CS) approach [159, 160] was ap-
plied to further reduce the computational complexity of SABRE-I. To solve the phase
retrieval problem in Eqs. (5.27)–(5.28), only M̄i = ΓMi , for 0<Γ≤1, of the pixels in each
subaperture are used to estimate the spline coefficients. For the remainder of the pa-
per, Γ ∈ R is referred to as compressive sampling ratio. Choosing at each time instance
the largest M̄i intensities in all subapertures of the SH sensor would guarantee maximal
signal-to-noise ratio, however require additional computation and render a time varying
KKT system not only for the quadratic but also the linear case of the SABRE-I method.

As a model-based and static alternative, we have suggested [161] to process those
pixels in the intensity distributions which are most "favored" by the Jacobians of the
focal spot models. For each subaperture i a vector k i ∈RMi is computed as

[k i ]m :=
Ji d̂∑
j=1

∣∣∣ [
j 1,i (m)

]
j

∣∣∣ , (5.49)

for all pixels m = 1, ..., Mi . The entries of this vector reflect the, in terms of the `1-norm,
averaged sensitivity of the intensity measurements to the coefficients of the local aber-
ration B-spline model. Since a constant and identical diversity phase is applied to each
subaperture, the Jacobians j 1,i (m) and hence CS vectors k i are the same for all subaper-
tures i .

A significant advantage of the Jacobian-based compressive sampling over a random
pixel selection was shown in [161] and stable results can be obtained up to a compressive
sampling ratio of 10%, which is applied for the following experiments. A comparison
between the maximum intensity (MaxI) and the Jacobian (Jac) based pixel selection is
provided as a side result in the following sections.

5.6.2. LOCAL PERFORMANCE OF LINEAR VS QUADRATIC MODEL

This section investigates the advantage of the quadratic focal spot model in Eq. (5.21)
over the linear focal spot model in Eq. (5.20) on the subaperture local level. A local B-
spline function of polynomial degree d = 3 and continuity order rloc = 1 is used to model
the wavefront φi (x) seen by subaperture i as introduced in Eq. (5.13) and Eq. (5.25).

A Monte-Carlo simulation was set up by creating 100 Kolmogorov phase screens for
the parameters mentioned in the previous section and for Fried coherence length r0

ranging from 1.6 m to 0.3 m. The presented results are then obtained locally and inde-
pendently for the lenslets in the SH array. Hence, in the following two figures, the RMS
values of the aberrations present in the subapertures and the performance indicators of
the local models were computed locally and then averaged for all subapertures and the
number of phase screens.

In Fig. 5.2, the approximation ability of the focal spot models is tested for increasing
aberration strength. To ensure a fair comparison, the local aberration phase was fitted
with the local B-spline model of Eq. (5.13). The nonlinear PSF model in Eq. (5.12) is
then computed for the resulting B-spline function values, the linear and quadratic PSF
models in Eqs. (5.20) and (5.21) are evaluated for the obtained B-coefficients and the
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Figure 5.2: Local model approximation error for increasing aberration strength. Compressive sampling ratio
of 10% and local diversity defocus phase of 2 rad.

relative RMS approximation error for the focal spot of subaperture i is computed as

εIL/Q,i :=
∥∥Ii (ui )− IL/Q,i (ui )

∥∥
‖Ii (ui )‖ ∈R, ∀i = 1, . . . , N . (5.50)

Both compressive sampling approaches from the previous section based on maximum
intensity or the Jacobian of the focal spot models are applied to select M̄i pixels indicated

by the pixel center locations ui ∈ RM̄i , with a compressive sampling ratio of 10%. The
plot in Fig. 5.2 clearly shows the superior approximation ability of the quadratic model.
Even though both models become less accurate with increasing aberration strength, the
quadratic model preserves its advantage over the linear model for the entire range that
was considered. It can be further seen that the modeling error in the pixels chosen with
the Jacobian CS approach is larger than in the pixels with maximum intensity. However,
the difference is less significant to negligible for small aberrations. To understand if the
advantage in approximation ability of the focal spot models also reflects in the phase re-
trieval process, estimates of the local aberration phases φi (x i ) were computed from the
noise free intensity measurements. Therefore, the local components of the separable
costfunction in Eq. (5.27) of the projected SABRE-I problem were minimized indepen-
dently. The reconstruction accuracy of the local cubic B-spline phase estimates φ̂L/Q,i

obtained with Eq. (5.31) is given in terms of relative RMS error

εφ̂L/Q,i
:=

∥∥φi (x i )− φ̂L/Q,i (x i )
∥∥∥∥φi (x i )

∥∥ ∈R, ∀i = 1, . . . , N , (5.51)

with the subscript L/Q indicating which focal spot model was used. The averaged re-
sults are plotted in Fig. 5.3 and show that the different variants behave relatively to each
other as expected from the approximation error plot in Fig. 5.2. While the relative RMS
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Figure 5.3: Local reconstruction accuracy for increasing aberration strength. Compressive sampling ratio of
10% and local diversity defocus phase of 2 rad.

error of the local estimates obtained with the linear focal spot models is larger than 0.1
already for aberrations of 0.4 rad RMS per subaperture, the quadratic variant passes this
threshold only around 0.5 rad RMS. With both CS procedures, the local relative RMS er-
rors obtained with the quadratic model are halved compared to the linear variant for
aberrations of up to 0.5 rad RMS per subaperture. For larger aberrations, improvements
of at least 40% were obtained.

Whereas in this section only local phase estimates were computed without impact of
the linking constraints in Eq. (5.28), the following section considers the global SABRE-I
problem.

5.6.3. THE ITERATIVE SABRE-I FOR THE FULL SH ARRAY

In general, phase retrieval methods which are based on a small aberration approxima-
tion are performed in an iterative manner [104, 105]. In this work, as in [105], one itera-
tion consists of taking a new image, i.e. a SH focal spot pattern, and computing a phase
estimate which is then included as a corrective phase. In the following iteration, the
remaining aberration is therefore smaller and the focal spot models get more accurate
with every correction step. Fitting errors that would occur in an actual AO setup, where
the corrective phase has be to realized with a deformable mirror (DM), are neglected. It
is further assumed that the frame rate of the SH sensor and the reaction time of the DM
would be sufficiently fast to consider a small number of sequential phase aberrations as
constant.

The experimental set up of a 10×10 SH lenslet array for a (square) pupil of diagonal
D = 4 m was simulated as described in Section 5.6.1. The SABRE-I problem for the full SH
array of Eqs. (5.27)–(5.28) was formulated for a B-spline model of polynomial degree d =
3, continuity of order rloc = 1 within and of order rlink = 0 between the subapertures. As
in the previous section, a 2 rad defocus diversity is applied in each subaperture and 10%
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Figure 5.4: SABRE Type II triangulation for 5×5 SH lenslet array. Gray lines and crosses visualize the subaper-
ture borders and reference center locations. Black dots indicate the vertices and black lines the simplices.

of the pixels from each subaperture were processed. A noisefree scenario is considered
in this section.

The main focus of this work is to advance the B-spline approach for wavefront recon-
struction from SH data through the direct use of the intensity patterns. In order to un-
derstand the improvements of SABRE-I in terms of reconstruction accuracy, phase esti-
mates were also computed with the standard SABRE method for SH slope measurements
[117]. This comparison further allows to benchmark the SABRE-I phase retrieval method
against a classical slope-based wavefront reconstruction method which has been com-
pared extensively [117] with the well known FD method. The slopes are derived via the
first moments of the full focal spots simulated for the same SH array, however computed
without phase diversity. For SABRE a second Type II triangulation was constructed, as
depicted for a smaller example in Fig. 5.4, on which a B-spline model of polynomial
degree d = 1 and homogeneous continuity order r = 0 was defined. This linear phase
model gives the best possible results for the slope-based SABRE because the only al-
ternative stable combination of d = 2 and r = 1 is over-constrained by the continuity
conditions.

As a performance indicator, we use Strehl ratio computed via the extended Marechal
approximation

S ≈ e
−σ2

φ̂ (5.52)

from the RMS wavefront error σφ̂ := ∥∥φ(x)− φ̂L/Q(x)
∥∥ which is calculated over the whole

SH lenslet array for zero mean phases [2]. Each data point indicates the mean and the
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standard deviation of Strehl ratios obtained from the wavefront reconstruction errors for
100 phase screen realizations.
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Figure 5.5: Strehl ratio for several correction steps with SABRE next to linear and quadratic SABRE-I on static
aberrations of r0 = 0.3 m. Compressive sampling of 10% pixels per subaperture based on maximum pixel
intensity or Jacobian selection.

In Fig. 5.5, the Strehl ratio is plotted for several correction steps (i.e. iterations as
described at the beginning of this section) for initial aberrations of r0 = 0.3 m which
corresponds to an average aberration RMS of 4 rad in the entire SH array. For SABRE
with SH slope measurements, the Strehl ratio saturates at 0.85 after major corrections in
the first two and only marginal improvements in the later iterations. This behavior was
expected since as soon as the local averaged phase gradients are minimized no further
information can be retrieved via the SH slopes. The intensity-based SABRE-I with a cu-
bic B-spline phase model gives for all variants in the first correction step a very low Strehl
ratio but outperforms SABRE after several iterations. SABRE-I for compressive sampling
(CS) based on maximum intensity pixels converges to 0.99 Strehl in the quadratic and to
a lower value of 0.97 Strehl in the linear case. Both variants reach a Strehl ratio reduced
by ∼ 7% if the Jacobian-based pixel selection is applied. This significant difference can
be explained with the fact that for the relatively large initial aberrations the fixed pixel
selection does not necessarily fully lie in the high intensity spot of the respective CCD
area and SABRE-I with Jacobian CS converges to the equivalent of a local minimum. It
was observed that for stronger initial aberrations than considered in Fig. 5.5 the per-
formance reached after convergence of the intensity-based SABRE-I deteriorates. For a
Fried parameter r0 = 0.1 m (resulting in an average aberration RMS of 11 rad), all pre-
sented SABRE-I variants fail to even reach, let alone outperform the SABRE performance
in the considered amount of iterations. Next to the increasingly violated small aberra-
tion approximation of the focal spot models in the case of large initial aberrations, a
second error source was identified: the miss-estimation of the local piston modes with
the SABRE-I problem in Eqs. (5.27) and (5.28). The linking constraints have proven in-
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sufficient in compensating the local singularities described at the end of Section 5.4.2,
which results in global low order reconstruction errors.
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Figure 5.6: Strehl ratio for several correction steps with linear and quadratic SABRE-I on static aberrations
of r0 = 0.3 m after precorrection with SABRE. Compressive sampling of 10% pixels per subaperture based on
maximum pixel intensity or Jacobian selection.

5.6.4. SABRE-I WITH SABRE PRECORRECTION

In order to render all variants of the SABRE-I method applicable for moderate to large
initial aberrations, a precorrection step with the slope-based SABRE method is suggested
in this paper. In Fig. 5.6, the first correction step on the same set of initial phase screens
as in Fig. 5.5 is performed with SABRE for slope measurements of an identical 10× 10
SH array. Within two additional correction steps with the intensity-based method, all
SABRE-I variants obtain Strehl ratios > 0.99 and a vast reduction of the variance in the
results is observed. Two major advantages are achieved with this two stage approach:
The linear SABRE-I reaches now the same performance as the computationally far more
expensive quadratic SABRE-I. In this example, only one extra iteration is necessary to do
so. Secondly, the performances achieved with the precomputable Jacobian pixel selec-
tion are from the first SABRE-I iteration onwards within 1% of the Strehl ratio obtained
with the time and subaperture dependent maximum intensity selection. With Fig. 5.5
it can be understood that this is not achievable without the slope-based precorrection
step by simply applying more SABRE-I correction steps. The low order correction of the
slope-based SABRE largely eliminates the local piston modes which are problematic for
the SABRE-I method. And since the same goes for local tip and tilts which cause the
major deplacements of the focal spots within the subaperture areas, the applicability
of Jacobian-based compressive sampling can be extended to much larger initial aberra-
tions.

To confirm the claimed improvements gained with a SABRE precorrection, another
Monte-Carlo simulation was conducted for increasing initial turbulence strength with
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Figure 5.7: Strehl ratio after different numbers of correction steps with linear and quadratic SABRE-I for static
aberrations of increasing Fried parameter r0. As reference reconstruction accuracies obtained with SABRE are
plotted.

100 aberration realizations per indicated Fried parameter. Figure 5.7 shows the Strehl
ratios obtained after 2, 4 and 6 correction steps performed with the linear and quadratic
SABRE-I phase estimates obtained from a Jacobian-based pixel selection and without
SABRE precorrection. The Strehl ratios calculated after one slope-based SABRE correc-
tion step and after saturated correction at 6 steps is plotted as reference. For increasing
aberration strength, a worsening of the SABRE performance is understandably seen be-
cause of the relatively low SH array resolution and the limitation to a linear B-spline
phase model. Whilst for r0 = 0.3 m, the linear and quadratic SABRE-I still achieve, after
6 correction steps, Strehl ratios superior to the standard SABRE, this cannot be achieved
anymore for stronger aberrations despite the decline in SABRE reconstruction accuracy.
If the first iteration is replaced with a SABRE correction, Strehl ratios above the saturated
standard SABRE values can be obtained for all considered aberration strengths with ad-
ditional SABRE-I corrections, as shown in Fig. 5.8. Up to turbulence strengths of r0 = 0.2
m, 3 additional SABRE-I steps (both with the linear or the quadratic focal spot models)
result in Strehl ratios ≥ 0.98. Only for a Fried parameter of r0 = 0.1 m, a drop in accuracy
was observed. However it is still possible to achieve Strehl ratios > 0.80 with 5 addi-
tional steps of linear SABRE-I or 3 additional steps of quadratic SABRE-I, compared to
0.18 (0.38) of Strehl possible after one iteration (saturation) of the standard slope-based
SABRE on a 10×10 SH lenslet array.

This experiment proves the applicability of the SABRE-I method and shows that ex-
ploiting the information prevalent in the focal spots, by processing the pixel intensity
values directly, and employing higher order wavefront models can be an alternative to
the standard approach to obtain high accuracy wavefront reconstruction: increasing
the number of SH lenslets and the sole use of slope-based methods. With the linear
focal spot models, SABRE-I gives a computationally very fast phase estimation. Since
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Figure 5.8: Strehl ratio after different total numbers of correction steps for static aberrations of increasing Fried
parameter r0, where the first correction is computed with SABRE followed by the linear and quadratic SABRE-I.
As reference reconstruction accuracies obtained with SABRE are plotted.

the linear variant of the method requires a larger number of iterations than SABRE-I
for quadratic focal spot models, it is possible to opt for the latter in order to reduce the
number of correction steps. This trade off between computation time and number of
correction steps should be based on the hardware at hand, referring to processor speed,
SH sensor frame rate and DM reaction time. Further, retrieving higher accuracy phase
estimates from a given SH sensor array is translatable to achieving a certain reconstruc-
tion accuracy with a SH sensor carrying less lenslets. At a given number of captured
photons this will lead to an improved signal-to-noise ratio within each lenslet which can
be particularly advantageous for low light applications [2]. To give a first analysis of the
noise resilience of SABRE-I, we refer the reader to the next section.

5.6.5. MEASUREMENT NOISE REJECTION OF SABRE-I
The following section performs a basic test of the influence of measurement noise on
the performance of the SABRE-I method for SH focal spots if it is applied with a SABRE
precorrection step computed from SH slope measurements. Again, a cubic and a linear
B-spline phase model were used respectively. Sensor read out noise was simulated as
Gaussian-distributed white noise and added to the intensity distributions. In a Monte-
Carlo simulation of 100 phase screen realizations, different noise levels are considered
with the signal-to-noise ratio (SNR) given in decibel (dB) scale and defined as the power
ratio of the intensity and the noise in each focal spot. A SNR of 0 dB corresponds then
to an equal amount of noise and signal in the subapertures. The simulated setup of the
previous sections was regarded, but for SABRE-I solely the faster linear focal spot models
were used. We recall that it is possible to reach the same performance with the quadratic
counterpart in equal or less number of iterations.

For small aberrations, as they are observed after the SABRE precorrection step, the
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Figure 5.9: Strehl ratio after SABRE precorrection followed by 3 linear SABRE-I correction steps and after 3
SABRE correction steps for static aberrations of different Fried parameter, considering decreasing SNR levels
through read out noise.

performed Jacobian-based pixel selection applies in fact a thresholding of the focal spots.
To avoid any disadvantage for SABRE as reference method, the intensity distributions
were preprocessed before computing the centroids by applying a threshold which was
adapted to the noise level. This is mentioned to explain the very good noise resilience
of SABRE for SH slope measurements which becomes apparent in the following results.
The good noise rejection properties of the method reported in [117] are further enhanced
by the applied thresholding.

Figure 5.9 shows the Strehl ratios which are obtained after a slope-based SABRE pre-
correction step plus 3 intensity-based SABRE-I steps compared with the correction qual-
ity after 3 SABRE steps for increasing amount of measurement noise and different levels
of initial aberration strength. While the standard SABRE results remain for all consid-
ered noise levels and initial aberration strengths within 10% of the values obtained with
a noise free scenario, the SABRE-I performance significantly deteriorates for low SNR
values. For noise levels of SNR ≥ 20 dB, the final Strehl ratios obtained after 3 SABRE-
I steps stay within 3% of the noise free performances. But for large amounts of mea-
surement noise resulting in SNR ≤ 5 dB, the decrease in the plotted accuracies starts
to exceed 10%. It is clearly visible that for low SNR values the performance achievable
with SABRE-I is limited rather by the noise than the initial aberration strength. If there
is sufficient amount of higher order aberrations present within the subapertures, as it
is the case for Fried parameter r0 = 0.2 m with the considered pupil size, the difference
between the aberration compensations achievable with SABRE-I and with the standard
slope-based SABRE with the SH array at hand is convincing for all SNR levels. For larger
Fried parameters r0, the advantage of the intensity-based method gained through the
retrieval of additional information from the focal spots is only preserved for good SNR
scenarios.
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Condition for a well motivated application of the SABRE-I method in its current form
are either good SNR levels or the presence of sufficient high order information on a sub-
aperture local level. Since the experiment presented in this section only provides a rather
rudimentary analysis of the noise resilience of SABRE-I, a more thorough investigation
of the issue, also including photon shot noise, has to be subject of future work.

5.7. CONCLUSIONS
An extension of the SABRE wavefront reconstruction method to direct use of the pixel in-
formation in the focal spots of a Shack-Hartmann wavefront sensor is introduced through
focal plane sensing techniques. The Spline-based ABerration REconstruction for Inten-
sity measurements (SABRE-I) is based on small aberration approximations of the nonlin-
ear PSF models which are computed in terms of a multivariate simplex B-spline model of
the phase. The introduction of a known diversity phase in each subaperture avoids sign
ambiguity in the even modes. If the small aberration assumption is sufficiently satisfied,
the SABRE-I method has two major advantages. Due to the limited amount of data, i.e.
two slope measurements per subaperture, the classical version of the method is limited
to linear B-spline polynomials for the phase model. By processing intensity pixel infor-
mation, sufficient data for the use of higher order polynomials is harvested and so higher
order aberrations can be estimated within the subapertures. This motivates and justifies
retrieving more information from the SH focal spots than solely the averaged local tip
and tilt.

This work presents a fast solution to the underlying optimization problem of SABRE-
I which minimizes the residuals between the measured focal spots and the small aber-
ration models for all subapertures in a least-squares sense. Since the B-spline theory
allows partitioning of the global phase model into local B-spline models each covering
a single subaperture, the discussed Taylor expansions of first and second order can be
performed independently. This leads to separate and, in terms of local B-coefficients,
linear or quadratic residual functions. In order to join the resulting local phase patches
to a global continuous estimate of the unknown aberration, the SABRE-I problem is sub-
jected to linear equality constraints. The separability of the costfunction and the sparsity
of the matrix describing the continuity conditions are exploited in both the presented
global and distributed solution to the problem at hand.

In numerical Monte-Carlo experiments, the performance of the SABRE-I method
was assessed with a Fourier-based simulation of a 10× 10 SH lenslet array. To reduce
the computational cost, two compressive sampling approaches were employed select-
ing the 10% of pixels in each subaperture which either show the highest intensities or are
most sensitive to the derived focal spot models, with the latter resulting in a time invari-
ant sampling. SABRE-I was implemented as an iterative procedure and tested against
the standard slope-based SABRE method for Kolmogorov phase screens, assumed to be
stationary for the considered number of iterations. One iteration encloses hereby read-
ing out of a SH focal spot pattern, phase estimation and correction assuming zero fitting
error.

It has shown that for too large initial aberrations, the SABRE-I reconstruction accu-
racy suffers because the small aberration approximations of the focal spots are heav-
ily violated. Further, the unsensed local piston modes are insufficiently compensated
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through the continuity constraints which leads to additional low order reconstruction
errors. As a solution, we suggest a precorrection step with the standard slope-based
SABRE which compensates for large low order aberrations and eliminates the local pis-
ton modes. In this configuration, the SABRE-I correction provides stable results for a
larger aberration range. The benefits of pixel information processing and higher order
phase models become apparent considering the achieved corrections for Fried parame-
ter r0 = 0.2 m and a pupil diameter of 4 m: For the 10×10 SH array, the standard SABRE
using a linear B-spline phase model provides a correction of ∼ 0.58 Strehl ratio, which
can be improved to ∼ 0.99 Strehl in only 3 additional correction steps with SABRE-I
employing a cubic phase model. A clear advantage of the quadratic focal spot models
towards the linear model was proven for large initial aberrations. Since the quadratic
SABRE-I variant is computationally more expensive, the model choice results in a trade
off between computation time and number of correction steps.

Further research on the noise rejection of SABRE-I is recommended since the method
has shown sensitive to strong levels of measurement noise, in this work simulated as
Gaussian noise. On the other hand, retrieving higher accuracy phase estimates from a
given SH sensor array is translatable to achieving a certain reconstruction accuracy with
a SH sensor carrying less lenslets. This way, at a given number of captured photons,
application of SABRE-I would create a scenario with improved signal-to-noise ratio con-
ditions.

5.8. DISTRIBUTED SOLUTION OF THE SABRE-I PROBLEM VIA

AN ADMM APPROACH

In the following section, a distributed solution of the linear or nonlinear equality con-
strained least-squares problem in Section 5.4.2 is presented using the Alternating Direc-
tion Method of Multipliers (ADMM) [130]. The derivations are largely based on the work
of Silva et. al. [162] which is applicable to the linear SABRE-I and here extended to the
quadratic variant of the optimization problem. The ADMM approach has given results
comparable to the global KKT solution for SABRE-I if a precorrection step with SABRE
was performed as described in Section 5.6.4.

5.8.1. ADMM PROBLEM FORMULATION

To obtain a distributed solution of the SABRE-I problem via an ADMM approach, the
linking constraints introduced in Section 5.4.1 have to be rewritten in terms of local B-
coefficient vectors. Be E := {

(i , j ) : Ti ,T j ⊂T ,Ti adjacent to T j , i 6= j
}

the set of pairs
of adjacent partitions, i.e. subapertures, of the SABRE-I partitioning described in Sec-
tion 5.3.2. Following the reasoning of Section 5.2.4, be further Ri j ⊂ R the subset of
indices of all continuity constraints in the global smoothness matrix H enforcing conti-
nuity between the partition pairs (i , j ) (the comma is suppressed in subscripts for better
readability). Then, an equivalent formulation of the linking constraints in Eq. (5.26) is
given by [

Gi j Fi j
][

c i

c j

]
= 0, ∀(i , j ) ∈ E , (5.53)
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where coupling matrices Gi j := H(Ri j ,Ci ) ∈ RRi j ×Ji d̂ and Fi j := H(Ri j ,C j ) ∈ RRi j ×Ji d̂ ,

with Ri j = |Ri j |, and c i ,c j ∈RJi d̂ denote the local B-coefficient vectors of the considered
neighboring partitions.

By introducing coupling variables zi j ∈RRi j for all pairs (i , j ) ∈ E and using Eq. (5.53),
the projected SABRE-I problem from Eqs. (5.27) to (5.28) can now be reformulated to

min
c̄∈RJ d̄i

f̄ (c̄) =
N∑

i=1
‖r̄i (c̄ i )‖2

2 (5.54)

s.t. Ḡi j c̄ i = z i j , ∀(i , j ) ∈ E , (5.55)

F̄i j c̄ j =−z i j , ∀(i , j ) ∈ E , (5.56)

with the projected coupling matrices Ḡi j := Gi j NHi ∈RRi j ×d̄i and F̄i j := Fi j NHi ∈RRi j ×d̄i .
Note that if link (i , j ) is included the reverse link ( j , i ) does not need to be added [162].

The augmented Lagrangian [157] for the minimization problem with separable cost
function and coupling equality constraints in Eqs. (5.54) to (5.56) is defined as follows:

L (c̄ , z , w , y) :=
N∑

i=1
‖r̄i (c̄ i )‖2

2 + ∑
(i , j )∈E

(
ρw>

i j

(
Ḡi j c̄ i − z i j

)+ρ/2
∥∥Ḡi j c̄ i − z i j

∥∥2
2

)
+ ∑

(i , j )∈E

(
ρ y>

i j

(
F̄i j c̄ j + z i j

)+ρ/2
∥∥F̄i j c̄ j + z i j

∥∥2
2

)
, (5.57)

where two dual vectors w i j ∈ RRi j and y i j ∈ RRi j associated with the constraints in
Eqs. (5.55) and (5.56) respectively are introduced, as well as the augmented Lagrangian
penalty term ρ ∈R.

5.8.2. ADMM UPDATE LAWS
The first step in each iteration k ′ = 1, . . . ,kADMM of the ADMM routine solving the refor-
mulated SABRE-I problem in Eqs. (5.54)–(5.56) is the update of the local primal variables
c̄ i for partitions i = 1, . . . , N which is obtained by minimizing the augmented Lagrangian
with respect to the local projected B-coefficients c̄ i . If the linear focal spot model is used,
the update rule can be obtained in a single computational step

c [k ′+1]
i =

(
2 J̄>1,i J̄1,i +ρ

∑
(i , j )∈E

Ḡ>
i j Ḡi j +ρ

∑
(l ,i )∈E

F̄>
l i F̄l i

)−1

×(
2 J̄>1,i bi +ρ

∑
(i , j )∈E

[
Ḡ>

i j

(
w [k ′]

i j − z [k ′]
i j

)]
+ρ ∑

(l ,i )∈E

[
F̄>

l i

(
y [k ′]

l i + z [k ′]
l i

)])
, (5.58)

where the local residuals bi and the projected Jacobians J̄1,i are defined in Eqs. (5.32)
and (5.33). The inverse in the update can be precomputed since it does not depend on
any of the optimization variables.

In order to use the quadratic focal spot model, a Gauss-Newton method based on

linearizations of the augmented Lagrangian was applied to compute the update c̄ [k ′+1]
i

of the local projected B-coefficients. The initial value of the search variable in the local



5.8. DISTRIBUTED SOLUTION OF THE SABRE-I PROBLEM VIA AN ADMM APPROACH

5

129

Gauss-Newtons is set to the current coefficient values of the last ADMM iteration, such
that x̄ [0]

i := c̄ [k ′]
i . The update rule of the local Gauss-Newton method is given by

x̄ [k+1]
i = x̄ [k]

i +αp [k]
i , (5.59)

with step size α ∈ R and the iteration count k = 1, . . . ,kGN of the Gauss-Newton method.

The local search directions p i ∈Rd̄i can be computed as

p [k]
i =−

(
2

(
Di (x̄ [k]

i )
)>

Di (x̄ [k]
i ) + ρ

∑
(i , j )∈E

Ḡ>
i j Ḡi j +ρ

∑
(l ,i )∈E

F̄>
l i F̄l i

)−1

×
(
2

(
Di (c̄ [k]

i )
)>

r̄i (x̄ [k]
i ) + ρ

∑
(i , j )∈E

[
Ḡ>

i j Ḡi j x̄ [k]
i + Ḡ>

i j

(
w [k ′]

i j − z [k ′]
i j

)]
+ ρ

∑
(l ,i )∈E

[
F̄>

l i F̄l i x̄ [k]
i + F̄>

l i

(
y [k ′]

l i + z [k ′]
l i

)])
, (5.60)

with the projected local residuals r̄i (x̄ [k]
i ) and their Jacobians Di (x̄ [k]

i ) introduced in Eq. (5.29)
and Eq. (5.36). After kGN Gauss-Newton iterations, the new primal variables in the ADMM
routine are set to

c̄ [k ′+1]
i = x̄ [kGN]

i , (5.61)

where kGN = 2 in combination with a large step size α= 1 has given promising results in
simulations.

The update laws of the coupling and dual variables [162] are formulated as follows:

z [k ′+1]
i j = 1

2

(
Ḡi j c̄ [k ′+1]

i − F̄i j c̄ [k ′+1]
j

)
, (5.62)

w [k ′+1]
i j = wi j

[k ′] + Ḡi j c̄ [k ′+1]
i − zi j

[k ′+1], (5.63)

y [k ′+1]
i j = yi j

[k ′] + F̄i j c̄ [k ′+1]
j + zi j

[k ′+1]. (5.64)

After kADMM iterations, the full B-coefficient vectors and also the phase estimate can be
computed with Eq. (5.31).

5.8.3. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, a short analysis of the computational complexity of the presented ADMM
algorithm is given. Since factors like communication overhead and transport latency are
neglected, the computations can be performed fully in parallel. Therefore, the following
numbers are local and concerning the computations to be performed in each partition,
and hence independent of number of subapertures N .

The local computational complexity of the primal update (pU) of a single ADMM
iteration for the linear SABRE-I case in Eq. (5.58) can be conservatively estimated using
Eq. (5.46) as

C (pUlin) =C (Initlin)+O
(
d̄ 2

i

)
flops, (5.65)

where it is taken into account that there are at most 4 neighbors for each partition and
that the number of linking constraints in matrices Gi j and Fi j of each pair (i , j ) finds the
upper bound Ri j ≤Qlink (see Eq. (5.40)).
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The local primal update of the quadratic case in Eq. (5.61), incorporating kGN lo-
cal Gauss-Newton iterations performed with Eqs. (5.59 and (5.60), results in a computa-
tional cost of

C (pUqu) =C (InitGN
qu )+O

(
kGNd̄ 3

i

)
flops, (5.66)

with Eq. (5.47) and considering the fact that the inverse on the right hand side of Eq. (5.60)
has to be recomputed in each Gauss-Newton iteration.

The coupling and dual variable updates (cdU) of Eqs. (5.62)–(5.64) can be performed
in

C (cdU) ≤ 8Q
(
d̄i +1

)
flops, (5.67)

per iteration and partition. This leads to a total computational complexity for the ADMM
algorithm of

C (ADMMlin/qu) = kADMM

(
C (pUlin/qu)+C (cdU)

)
flops. (5.68)

for the linear or quadratic SABRE-I problem if considering the computation to be per-
formed in parallel per partition, i.e. for each subaperture.
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CONCLUSIONS AND

RECOMMENDATIONS

CHAPTER ABSTRACT
The work presented in this thesis establishes the B-spline framework as self-supporting
and legitimate class of wavefront reconstruction algorithms for astronomical AO. The
first main contribution of this thesis is a distributed wavefront reconstruction method
for SH gradient measurements which was designed in particular for extremely large-
scale wavefront reconstruction problems, as encountered with XAO systems, where global
reconstructions are not realistic. The second contribution is an investigation on how to
extract higher order information present in the intensity distributions of the SH focal
spots. The study achieved to unlock the potential in approximation power of higher
degree B-spline polynomials and boost the reconstruction accuracy obtainable with a
given SH lenslet array. The following chapter summarizes the main conclusions drawn
throughout the thesis with regard to these two subjects. Furthermore, the remaining lim-
itations of the contributions are discussed and further research questions that address
these issues are suggested.
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6.1. CONCLUSIONS

T he following sections recapture the main conclusions of the two principle matters
of this thesis. Via distributed B-spline wavefront reconstruction the aimed at sub-

millisecond computation times for the actuator commands from gradient arrays of XAO
scale have been achieved. As an alternative solution to the task of providing the high
resolution estimates required for this AO configuration, a combination of nonlinear B-
spline wavefront reconstruction and focal plane processing of the SH spot patterns was
suggested.

6.1.1. DISTRIBUTED SPLINE-BASED WAVEFRONT RECONSTRUCTION
The new distributed spline-based aberration reconstruction (D-SABRE) method has been
introduced as an extension of the SABRE method [117] which first used multivariate
simplex B-splines to locally model wavefront aberrations on non rectangular WFS ar-
rays. The D-SABRE method is based on a decomposition of the global WFS domain into
any number of partitions, where each partition supports a local SABRE model which
depends only on local WFS measurements. The D-SABRE method is a two-stage algo-
rithm with each stage consisting of a distributed operation. In the first stage, the local
wavefront reconstruction problems are solved in a completely distributed manner in
the sense that no communication between partitions is necessary. In the second stage,
the local estimates are smoothed into a single continuous global wavefront requiring
only communication between direct partition neighbors. The blending is performed by
two iterative operations: The distributed piston mode equalization (D-PME) algorithm
equalizes the unknown piston modes between partitions and is vital to obtain an accu-
rate global estimate. The distributed dual ascent (DDA) procedure, which was developed
to apply post-smoothing of the obtained estimate, should be considered as optional and
only be used if a continuous global wavefront estimate is desired. An analysis of the theo-
retical computational complexity has shown that a speedup factor over SABRE quadrat-
ically proportional to the total number G of partitions can be obtained, resulting in a
computational load of O(N 2/G2) flops (floating point operations) to be performed per
parallel processor. The overall method scales therefore linearly with the number of WFS
measurements N given that G ≥p

N .
In numerical experiments, the D-SABRE method was extensively compared to the

distributed line integral approach of the CuRe-D method [86]. The main observation
lies in the complementary sensitivity of the methods to measurement noise and the level
of applied partitioning. Constituting least-squares estimates, the local D-SABRE wave-
front estimates show in this sense optimal noise rejection properties. The cumulative
approach of the CuRe-D algorithm on the other hand is known to suffer from noise ac-
cumulation within the partitions and requires an as high as possible domain partition-
ing to prevent this noise propagation. Contrary to this, the D-SABRE method is subject
to propagation of errors that are created in the estimation of the piston offsets between
partitions if a high level of domain decomposition is applied. This phenomenon yields
a trade-off in WFR accuracy and the number of partitions G . In order to lift this limit
on the level of decomposition, which prevents the D-SABRE method from reaching its
full potential of linear or even sublinear computational load per processor, an alterna-
tive procedure was developed. The hierarchical piston mode equalization, or H-PME,
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is based on a multi-level approach that, rather than equalizing the piston mode in a
partition local operation, levels groups of partitions. The procedure not only fixes the
piston error propagation for large numbers G of partitions, but also extends the applica-
bility of the D-SABRE method to pupil shapes with arbitrarily large central obscurations.
The hierarchical leveling of the partitions with the H-PME further shows improved noise
rejection properties and reduces the number of required iterations compared with the
sequential information flow of the D-PME.

In order to compute the deformable mirror (DM) actuator commands from the SH
data in a fully distributed manner, the projection of the B-coefficients, which describe
the wavefront estimates, onto the actuator command space was formulated locally for
each partition. The inter-coupling of actuators located at the partition edges is, in ap-
proximation, taken into account by applying overlap between the partitions. In simu-
lations, the procedure has provided stable long-exposure Strehl ratios for actuator cou-
plings of 30% or lower at varying loop gains. For a medium scale AO system, the resulting,
fully distributed D-SABRE correction procedure achieved Strehl ratios within 1.2% and
3.6% of the globally computed SABRE correction for guide star magnitudes ≤ 8 and ≤11
respectively.

To confirm scalability and applicability to XAO scaled systems, the D-SABRE method
was implemented for GPUs (graphics processing units) using the parallel computing
platform NVIDIA CUDA [141]. The algorithm was adapted to the hardware by enforc-
ing identical sub-triangulations, which allows reformulating the computationally most
expensive operations, i.e. the local WF reconstructions and the local DM projections, to
respectively a Matrix-Matrix product. This so-called compute bound operation is prone
to significant speed up if executed on a GPU and can be performed with the highly op-
timized GEMM CUBLAS subroutine. Several custom coded CUDA kernels, that execute
the H-PME and translate prevalent parallelism to the multi-core structure of the GPU,
complete the implementation. Speed tests by timing for single runs of the method were
realized with a standard GPU and include, next to the execution time of all CUDA ker-
nels, the low bandwidth host-device data transfers of the SH data and the command
vector: the CUDA implementation of the D-SABRE correction method accomplishes the
actuator command update in 0.59 ms for a very large-scale AO system of N = 104 and
in 1.55 ms for an extremely large-scale test of N = 4 ·104, indicating linear scaling of the
D-SABRE update time with the number of WFS measurements N . The latter example
corresponds to the benchmark case of a 200×200 SH array, which was motivated by fu-
ture XAO systems [114, 115]. With an overall kernel execution time of 658 µs, employing
a more powerful interconnect system [143] would suffice to achieve the required sub-
millisecond computation times with off-the-shelf parallel hardware.

6.1.2. NONLINEAR SPLINE-BASED WAVEFRONT RECONSTRUCTION

In the second part of the thesis, two approaches were developed to increase the B-spline
wavefront reconstruction accuracy achievable with a given SH sensor array.

The first approach is based on an extended SH sensor model that includes not only
first moment information, commonly referred to as centroids, but also second moment
information of the focal spots for WFR with multivariate simplex B-splines. Next to the
exact equations for the two first moment measurements, the novel sensor model con-
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tains three additional equations that relate the change of the second moments of the
focal spots to the local averaged square gradients of the wavefront through linear rela-
tionships partly established in the works of Booth [125], Linhai and Rao [10] and Yang
et al. [127]. The resulting SABRE-M (Moment) WFR method entails the solving of a
quadratic least-squares problem that is formulated in terms of local B-coefficients and
can be seen as an extension of the SABRE method. The latter is based on an approximate
model of the change in the first moments of the focal spots. While first-moment-based
methods only use a measure of the averaged slopes in each subaperture, the second mo-
ment measurements allow the sensing of the averaged curvature of the aberrations in
the subapertures. In contrary to the original SABRE method, which is restricted to the
use of linear or quadratic B-spline polynomials because of the limited number of mea-
surements, SABRE-M can employ cubic polynomials enabling the modeling of higher
spatial frequencies in the wavefront.

Both claims of additional information retrieval and increased approximation power
were validated in numerical experiments with a Fourier-based simulation of a 10×10 SH
lenslet array. To analyze the achieved reconstruction performances, Monte Carlo simu-
lations were performed for random aberrations created with Zernike modes according
to a Kolmogorov turbulence statistics model. For the scenario of aberrations includ-
ing the first 25 polynomial orders, the novel SABRE-M method achieved an improve-
ment in relative root mean square error of up to 65% compared to the SABRE method,
independent of the considered aberration strengths. To emphasize the benefit of the
SABRE-M method for possible application in low light scenarios, SH arrays of different
resolution were taken into account. The standard first-moment-based SABRE method
required hereby a SH array of 20×20 subapertures in order to obtain reconstruction ac-
curacies comparable to the performance achieved with the SABRE-M method on a much
coarser 10×10 array. Including the second moment measurements permits therefore the
application on SH grids with a reduced number of subapertures and an increased sub-
aperture size without the loss of reconstruction accuracy, which reduces the scale of the
wavefront reconstruction problem and naturally increases the signal-to-noise ratio in
the focal spots.

As a second approach, a B-spline WFR procedure that directly processes the pixel
information in the SH focal spots was developed using a focal plane sensing technique
drawn from the ILPD method [105]. The spline-based aberration reconstruction for in-
tensity measurements (SABRE-I) uses small aberration approximations of the nonlinear
focal spot models which are computed in terms of the B-spline basis coefficients rep-
resenting the phase. The introduction of a known diversity phase in each subaperture
avoids sign ambiguity in the even modes. Since an arbitrary number of pixel values in
the local intensity distributions can be processed, the use of cubic or even higher order
B-spline polynomials is possible. A fast solution to the underlying optimization prob-
lem of the SABRE-I method, which minimizes the residuals between the measured focal
spots and the small aberration models for all subapertures in a least-squares sense, was
presented. Since the B-spline theory allows partitioning of the global phase model into
local B-spline models each covering a single subaperture, the considered Taylor expan-
sions of first and second order can be performed independently. This leads to separable
and, in terms of local B-coefficients, linear or quadratic residual functions. In order to
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join the resulting local phase patches to a global continuous estimate of the unknown
aberration, the SABRE-I problem is subjected to linear equality constraints. The separa-
bility of the cost function and the sparsity of the matrix describing the continuity con-
ditions are exploited in the presented global and distributed solutions to the problems
at hand. It is important to mention that the algorithms are as well suitable to solve the
nonlinear least-squares problem encountered with the SABRE-M method.

In numerical Monte-Carlo experiments, the performance of the SABRE-I method
was also assessed with a Fourier-based simulation of a 10×10 SH lenslet array. The novel
method was implemented as an iterative procedure and tested against the standard
slope-based SABRE method for Kolmogrov phase screens generated from the Zernike
modes of the first 40 polynomial orders. The wavefronts are hereby assumed to be sta-
tionary for the considered number of iterations with one iteration enclosing the read out
of the SH focal spot pattern, the estimation of the phase and its correction assuming zero
fitting error. In order to extend the application range of the SABRE-I method with regard
to aberration strength, a precorrection step with the standard SABRE compensating for
large low order aberrations was suggested. This two stage approach creates the suited
small aberration context for the SABRE-I method to estimate remaining high order aber-
rations within the subapertures. The correction quality achieved with the 10× 10 SH
array for the example of a 4 m telescope and atmospheric aberration of Fried parameter
r0 = 0.2 m highlights the potential in combining focal plane techniques with a higher
degree B-spline model of the phase: In the Marechal approximation, the Strehl ratio of
0.58 obtained with the standard SABRE employing linear polynomials was improved to
0.99 in only 3 additional correction steps with the SABRE-I using a cubic phase model.

6.2. RECOMMENDATIONS FOR FUTURE WORK
After ample testing of the developed algorithms in simulation environments, experi-
mental demonstrations of both the distributed and nonlinear spline-based wavefront
reconstruction on an optical test bench and eventually an on-sky AO system have to
be the main focus of future research. Further open questions and limitations regarding
the current versions that have to be addressed and bear potential for improvement, but
could not be included into the scope of this thesis are discussed in the following sections.

6.2.1. DISTRIBUTED SPLINE-BASED WAVEFRONT RECONSTRUCTION
Extensive tests in recognized end-to-end simulation environments [134, 136] have proven
the distributed SABRE for gradient measurements as robust towards relevant system ge-
ometries and low light scenarios. The discussed low-level parallel implementation real-
izes a further step towards on-sky application. Nevertheless the following points should
be subject of future work.

• The D-SABRE method was introduced as a linear regression framework applied
with a domain decomposition ansatz. In the current version of the method, least-
squares solutions of the local wavefront reconstruction problems were employed
and implemented by inversion, resulting in full local reconstruction matrices and
a per processor computational load of O (N 2/G2), for N denoting the global num-
ber of wavefront sensor measurements and G the number of partitions. The local
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estimators incorporated the continuity conditions which guarantee smooth local
spline estimates via projection onto the nullspaces of the matrices containing the
corresponding equality constraints. For the applied zero order continuity, a lin-
ear projection operator was developed which maintains the sparsity of the local
banded system matrices. Therefore, the vast class of linearly scaling sparse ma-
trix techniques and conjugate gradient-based methods, discussed in the introduc-
tion chapter, can be straightforwardly applied to the local WFR problems of the D-
SABRE algorithm, reducing the local theoretical computational cost to O (N /G2).

• The formulation of the spline-based WFR method as a linear regression algorithm
makes it suitable for more advanced estimation schemes that include available a-
priori information on the statistics of the measurement noise and the turbulence.
Via the sparse B-form matrix which allows evaluation of the B-spline model at
any desired resolution and location in the WFS domain, the phase covariance ma-
trix can be incorporated to create a stochastic least-squares or minimum-variance
problem that is formulated in terms of B-spline basis coefficients. Generally, reg-
ularization through phase statistics is required in low light scenarios or with un-
derdetermined WFR problems in atmospheric tomography. An open question is
to what extend a local approximation can achieve the inclusion of the priors into
the distributed SABRE framework. Comparable to the presented distributed DM
actuator projections, it should be investigated if the with distance decaying cor-
relation between the phase points can partly be respected by including overlap
between the local partitions. Another promising approach is the work by Haber
and Verhaegen [163] on approximate localized solutions of the minimum variance
WFR estimator via sparse (multi) banded matrices for the zonal finite differencing
method which is suitable for distributed implementation.

• It is a particularity of the B-spline framework that robustness towards measure-
ment noise is inherently provided by the imposed continuity constraints [119].
Preliminary tests of a spline-based minimum variance reconstructor have shown
signs of an overconstraining of the WF estimates if a linear B-spline model with
zero order continuity is employed. Within this observation could potentially lie
a solution to the problem of finding a suitable combination of polynomial order
and continuity degree for slope-based WFR with nonlinear B-splines. Preceding
attempts have either resulted in rank deficient WFR problems or a lack of approx-
imation power, since varying the continuity order changes the degrees of freedom
in the model accordingly. Other options that were considered to enable the use of
nonlinear polynomials are imposing explicit boundary conditions [132, 133, 148]
on the local B-spline models or decreasing the resolution of the triangulation to
enlarge the data content within the single simplices.

• Concerning the projection of the phase estimates onto the DM actuator command
space, further work should be dedicated to extending the applicability of the dis-
tributed approach to strong inter-actuator coupling. With the current rather sim-
plistic solution of defining the local DM projection problems on overlapping parti-
tions, divergence of the correction obtained with D-SABRE and the distributed DM
projection for actuator couplings stronger than 30% could only be prevented by
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tuning the loop gain to sufficiently small values. In order to obtain the solution of
the global DM projection problem in a distributed manner without approximation
errors, the formulation of the distributed DM projection problem e.g. as a sharing
optimization problem with ADMM [130] should be investigated. Coupling con-
straints on local command vectors can be employed to achieve consensus between
actuators that are shared by neighboring partitions or whose influence functions
reach neighboring partitions [162, 164].

• The introduction of the H-PME (hierarchichal piston mode equalization) proce-
dure and the modifications of the D-SABRE method associated with the imple-
mentation for GPUs restricted the liberties on how to construct the triangulation
and apply the domain decomposition in several ways. The current implementa-
tion of the H-PME procedure requires a partitioning of the triangulation into a
square grid carrying a 2p×2p , p ∈N, layout. The sub-triangulations further have to
be of identical size and shape to allow the realization of the local WF reconstruc-
tions and DM projections as Matrix-Matrix products. In order to create applica-
bility to arbitrary pupil shapes and SH array dimensions, the illuminated subaper-
tures are embedded in a square SH array of suitable dimension and zero slopes are
processed for the non-illuminated subapertures. Efforts should be undertaken to
reduce the effects of local reconstruction errors that occur due to this zero padding
in partitions located at the edges of the illuminated parts of the telescope pupil; es-
pecially in view of the fact that on a real site the telescope spiders supporting the
secondary mirror create additional obscured areas [135]. Extrapolating the slope
data to avoid sharp features at the edges of the pupil and the central obscuration
would be an option to consider. Further studies are recommended which aim
at avoiding zero padding altogether e.g. by extending the H-PME procedures to
non-square partition grids or reducing the resolution of the triangulation to bridge
the spider obscurations. However such changes to the algorithm will lead to non-
identical subtriangulations which prohibits the formulation of the local WFR and
DM projection operations as computationally advantageous Matrix-Matrix prod-
ucts. Distributed execution of the local operations remains of course nevertheless
possible and adapting the above mentioned sparse matrix or PCG techniques are
seen as an option to recover the currently achieved computation times in the sub-
millisecond range. Another issue that should be taken into account for the scope
of future work is the consideration of differential piston effects due to pupil seg-
mentation which results from segmented mirrors and wide spiders [165].

• The bottle neck of the presented GPU implementation of the D-SABRE method,
which achieves an overall kernel execution time of 658 µs on a standard GPU for
the XAO scaled scenario, lies in the two memory copies of the SH data and actu-
ator command vector via the PCI Express. Immediate speed up to push the total
computation time including memory transfers to the sub-millisecond range could
be gained by the use of more powerful interconnect systems, like NVIDIA NVLink
[143], which are currently being introduced to the market.

• Whilst the D-SABRE method was devised for SH sensor measurements, future work
should engage with the shift towards the Pyramid wavefront sensor (P-WFS) [66,
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144] as baseline for, amongst others, the eXtreme AO system on the planned E-
ELT [135]. An immediate extension of D-SABRE to P-WFS measurements can be
achieved with a preprocessing step presented by Shatokhina et al. [145]. The sug-
gested transformation of P-WFS data to SH data is of O (N ) computational com-
plexity and highly parallelizable, and would therefore not affect the scalability of
the D-SABRE method.

• The extension of the D-SABRE method to wide-field AO configurations will be an
essential part of any continuation of this project. Prompt application for multi-
conjugate AO and multi-object AO for natural and artificial guide stars can be
achieved by combining the D-SABRE method with the work of Ramlau and Rosen-
steiner [84, 85], in which the calculation of the wide-field correction is divided in
three sub-problems. The required estimation of the incoming wavefronts from
several guide stars may hereby be undertaken by the D-SABRE method. The ill-
posed atmospheric tomography problem of computing the turbulent layers based
on the reconstructed wavefronts and the subsequent determination of the mir-
ror deformation from the reconstructed atmosphere are then solved with the pro-
posed Kaczmarz-type iterative method. Both latter operations are again of linear
computational complexity and parallelizable. Aiming for an all-encompassing B-
spline framework that includes atmospheric tomography and wide-field AO cor-
rection, a feasibility study should be undertaken to understand the potential of a
possible 3-dimensional simplex B-spline model of the turbulence. Recent work
on simplotope B-Splines [149], an extension of simplex B-Splines based on sub-
division of multi dimensional models into layers of lower dimensional simplex
B-splines, is for this context a promising field of research. A distributed ADMM
approach that decouples the simplotopes and introduces coupling variables to en-
force global continuity was suggested to reduce the complexity of the B-coefficient
estimation [166]. The resulting parallel algorithm could be a starting point for the
derivation of a fully distributed B-spline framework for wide-field AO correction.

• After extensive numerical experiments on end-to-end simulation tools, on-site
tests of the D-SABRE method with an established AO system are desirable. The
implementation work on the algorithm has produced a generic code which con-
structs the simplex triangulation and domain decomposition, as well as the local
B-spline models, reconstruction matrices and data structures for the H-PME, from
a coordinate vector indicating the reference center locations of the illuminated SH
subapertures. For the distributed DM projection, the shapes and center locations
of the actuator influence functions are further required. The low level CUDA im-
plementation of the D-SABRE method can be easily inserted in a C/C++ code en-
vironment and was created with the intention that only minor adjustments are
required in case of a potential real-time application.

6.2.2. NONLINEAR SPLINE-BASED WAVEFRONT RECONSTRUCTION
The boost of the reconstruction accuracy achievable with a given SH lenslet array through
the employment of higher order B-spline polynomials with the approaches of SABRE-M
(for Moment measurements) and SABRE-I (for Intensity measurement) was substanti-
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ated through numerical experiments based on Fourier simulations [7] of small scale SH
arrays. Numerical experiments with more advanced simulation tools or preferably tests
on an optical bench are recommended to provide the insight that is necessary to either
demonstrate or further improve the maturity of the proposed methods.

• When including Zernike modes of polynomial order > 30 in the computation of
the Kolmogorov phase screens used in the numerical experiments with SABRE-M,
an increased reconstruction error was noted for the obtained wavefront estimates,
reducing the advantage expected in comparison with the gradient-based SABRE
method. This observation was explained with simulation errors that are caused
by the limited number of samples in the CCD grid. Because the second moment
method considers the square of the phase gradient, which oscillates twice as fast
as the gradient used by the first moment method, the simulation for the former
reaches the limitation imposed by the Nyquist criterion earlier. Hence, in order to
guarantee a fair comparison of both methods in the numerical experiments, aber-
rations constructed with Zernike modes of the first 25 spatial orders were used,
which according to the literature [28, 101] suffice for an accurate representation
of the turbulent phase. A more detailed study of this matter will be necessary to
ensure the benefit and robustness of the SABRE-M method for the scope of high
resolution wavefront reconstruction. Since a large pitch of 32 pixels per subaper-
ture was considered in the simulations, it should be verified if the spatial orders
in the wavefront, that are retrievable with SABRE-M, are critically limited if a SH
array equipped with an, in terms of the number of pixels, smaller CCD detector is
used. Both theoretical and experimental investigation might be necessary to un-
derstand if the novel method is applicable and beneficial for the currently available
and commonly employed SH sensor arrays.

• Further research is required to understand and improve the resilience of the sec-
ond moment measurements to noisy environments. In numerical experiments,
the SABRE-M performance has shown to be sensitive to the influence of measure-
ment noise which was simulated as Gaussian noise introduced to the CCD pixel
intensities. The standard procedure of thresholding the intensity distributions did
ease the effect, however for decreasing signal-to-noise ratios (SNRs) the superior-
ity in reconstruction accuracy to the SABRE method significantly diminishes. The
improvement, observed for noise free or very low noise scenarios, of the relative
RMS (root mean square) reconstruction error obtained with the SABRE method by
about 50% when employing the SABRE-M method is cut down to a 25% gain for
SNR levels of ∼ 20 dB. In order to improve the second moment measurements in
the presence of noise, schemes such as thresholding, weighted sums and matched
filter algorithms, that are commonly applied for centroid computation and dis-
cussed in the works of Thomas et al. [151] and Leroux and Dainty [150], should be
considered. Further suggestion for investigation is the question if the introduction
of a known diversity could improve the noise rejection properties of the SABRE-M
sensor model.

• Another point to mention concerning the SABRE-M method is the non-uniqueness
of the solution if only a single subaperture is considered. The sign ambiguity in the
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quadratic relationship between the second moments of intensity distribution and
the B-coefficients of the phase representation yields an invariance of the second
moment measurements to certain wavefront modes. In the global problem for-
mulation for the entire SH array the continuity constraints imposed between the
lenslets ensure a unique solution. The determination problem for the SABRE-M
method on a single subaperture might however be of importance if a distributed
version of the algorithm for computation of the global estimates shall be derived.
As the ambiguity of the local wavefront estimates exists with the in-focus SH ar-
ray, the introduction of a phase diversity by defocusing the lenslet array could be
a potential solution. It should be mentioned that employing a defocused SH array
would, to some extent, reduce the dynamic range of the measurements.

• In the case of the SABRRE-I method, a single focal spot pattern per iteration is
required that is recorded with a known diversity phase to avoid a sign ambigu-
ity in the even modes. In the presented work a constant defocus phase of 2 rad
RMS is simulated in each subaperture, which corresponds to a custom SH sensor
with the CCD detector deplaced from the focal plane of the lenslet array. Accord-
ing to the literature [167], the adoption of a large defocus offset is beneficial for
the retrieval of high spatial orders which is the goal of the SABRE-I method. A
closer study, based e.g. on the Cramér–Rao lower-bound [154], of the effects of
the phase diversity shape and size on the dynamic range, sensitivity and robust-
ness of the measurements could bring valuable insight in potential optimality of
these parameters. Further thought has to be given to how the SABRE-I method can
be practically implemented in combination with the precorrection step computed
with the gradient-based SABRE method, which is vital for the applicability to large
aberrations. In the simulations, the local gradients were obtained via the focal spot
centroids of the same SH array, but computed without phase diversity. If a custom
lenslet array with included diversity phase is employed in a potential optical set
up, a second in-focus SH array will be required to compute the precorrection step.
It should be investigated if the necessity of a second SH array can be avoided by ei-
ther incorporating the known phase diversity in the computation of the gradients
or by introducing the phase diversity through a deformable mirror for the SABRE-I
correction steps only. Following this train of thought, it should be considered if
a sequential phase diversity [109] scheme for which the DM correction gives the
diversity as e.g. adopted in the FF method [108] could be a solution.

• Further research on the noise rejection of the SABRE-I method is recommended
because the method has shown sensitive to strong levels of measurement noise,
in this work simulated as Gaussian noise. Since the intensity-based method re-
trieves higher resolution phase estimates from a given SH sensor array, a prede-
fined reconstruction accuracy will be achievable through a SH sensor carrying less
lenslets than with the common gradient-based methods. As a consequence, at a
given number of captured photons, the application of SABRE-I would create a sce-
nario with improved SNR levels. By understanding the performance and hardware
requirements for relevant AO systems and determining the prevailing SNR condi-
tions, it has to be verified if the noise rejection properties of SABRE-I suffice for
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the resulting noise conditions. Methodologically, the robustness of SABRE-I could
be improved through investigation of a potential link between the noise resilience
of the method and the chosen phase diversity. Also the employed compressive
sampling schemes, which were introduced to select the processed intensity val-
ues, may be tailored towards choosing pixels with the best SNR.

• A clear advantage of the quadratic focal spot model towards the linear model was
proven for large initial aberrations. Since the quadratic SABRE-I variant is compu-
tationally more expensive, the model choice results in a trade-off between com-
putation time and number of correction steps which should be based on the hard-
ware at hand, referring hereby to processor speed, SH sensor frame rate, and DM
reaction time.

• For numerical experiments with both methods, the noise that acts on the SH wave-
front sensor measurements was simulated through Gaussian white noise added to
the intensity patterns. Any further simulations must include Poisson-distributed
photon shot noise and presented results should be verified for this more realistic
noise scenario. Besides this, the subapertures were treated independently for the
computation of the SH patterns and interference between adjacent focal spots was
neglected in the simulations. Improvement in accuracy is expected for the second
moment and intensity-based methods when increasing the size of the diffraction
limited focal spots. In this case, crosstalk between the subapertures will however
intensify, motivating the interesting research topic of how to adequately take into
account the focal spot interferences.

• The priority of future work should be given to continued experimental validation
of the SABRE-I and SABRE-M procedures and their demonstration on an optical
setup. Nevertheless, additional work on the proposed global and distributed algo-
rithms which solve the nonlinear optimization problems occurring in both meth-
ods could result in improvements in terms of accuracy, robustness and compu-
tation time. The Gauss-Newton method with a damped update rule which was
suggested for globally solving the estimation can potentially benefit from a more
careful selection of the step size and be further stabilized by reformulation into
a trust region method [32]. For the distributed solution via the ADMM method,
the formulation of a stopping criterion would limit the number of iterations and
an adaptive penalty term increase the convergence [130]. At the time of investiga-
tion, proofs on the convergence of non-convex ADMM problems assumed an ex-
act solution of the primal variable update step. This condition is not fulfilled in the
presented procedure where the primal update is computed via the Gauss-Newton
method. Further work is therefore required to gain confidence in the convergence
of the approach which should be followed by a parallel implementation of the dis-
tributed solution. Alternative approaches for computationally efficient solutions
might be achieved through convex reformulation of the optimization problem al-
lowing for the application second order cone [168] or semidefinite programming
[169].
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SPLINE-BASED WAVEFRONT

RECONSTRUCTION

CHAPTER ABSTRACT
This chapter discusses the Spline-based ABerration REconstruction (SABRE), a method
for zonal wavefront reconstruction in adaptive optics this thesis is based on. The SABRE
method uses bivariate simplex B-spline basis functions [118] to estimate the unknown
wavefront from local wavefront slope measurements. It achieves wavefront estimates
on nonrectangular and partly obscured sensor grids and is further not subject to the
waffle mode. This introductory chapter is largely based on the original publication of the
method by de Visser and Verhaegen [117] and should enable the reader to treat this thesis
as a stand alone document. Only the theoretical aspects of the algorithm are covered,
which includes a conceptual comparison with the finite difference (FD) method in order
to contextualize the SABRE method in the literature. For the detailed results of numerical
experiments comparing reconstruction accuracy and noise rejection capabilities of the
methods, the reader is referred to the above cited contribution.
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A.1. PRELIMINARIES ON MULTIVARIATE SIMPLEX B-SPLINES

T he following short introduction into the theory of bivariate simplex B-splines in-
tends to ease the understanding of the presented SABRE framework. For a more

comprehensive and general overview on the theory of multivariate simplex B-splines,
the reader is referred to the literature [118].

A.1.1. BARYCENTRIC COORDINATES AND TRIANGULATIONS OF SIMPLICES
The basis polynomials of the simplex B-splines are functions in terms of barycentric co-
ordinates. The Barycentric coordinate system is hereby locally defined on an individual
simplex, which consists in the bivariate i.e. 2-dimensional case of a triangle. Consider a
2-simplex t , which is formed by the convex hull

t :=
〈[

v0x

v0y

]
,

[
v1x

v1y

]
,

[
v2x

v2y

]〉
⊂R2 (A.1)

of its 3 non-degenerate vertices {v 0, v 1, v 2} ⊂R2. The normalized Barycentric coordinate
(b0,b1,b2) ∈ R3 with respect to the triangle t of a point x = (x, y) ∈ R2 on the Cartesian
plane can be determined by solving the system of equations

[
x
y

]
=

[
v 0x v 1x v 2x

v 0y v 1y v 2y

]b0

b1

b2

 , b0 +b1 +b2 = 1. (A.2)

The normalization condition ensures the unique representation of any point x ∈ R2 in
the Barycentric coordinate space. A shorthand notation for the Cartesian-to-Barycentric
coordinate transformation on the triangle t is introduced with

b(x) := (b0,b1,b2) ∈R3, x ∈R2. (A.3)

Combining several simplices into a structure called triangulation, allows to increase the
approximation power of the multivariate simplex B-spline. A triangulation T is defined
as a special decomposition of a domain into a set of J non-overlapping simplices

T :=
J⋃

i=1
ti , ti ∩ t j ∈

{;, t̃
}

, ∀ti , t j ∈T . (A.4)

In the case of a 2-dimensional triangulation, the edge simplex t̃ consists of either a
line (1-simplex), or a vertex (0-simplex). There are a number of algorithms available
which create triangulations from a given set of vertices, with the Delaunay triangulation
method being the most widely known. In this work, a non-Delaunay technique based on
grid cell subdivision scheme is applied [119].

A.1.2. BASIS FUNCTIONS AND B-FORM OF THE SIMPLEX B-SPLINES
The simplex B-spline basis functions are Bernstein polynomials derived with the multi-
nomial theorem which states that any polynomial of total degree d ∈N, here in terms of
Barycentric coordinates for simplex t , can be expanded into a sum of monomials. The
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Bernstein basis polynomials of the simplex B-splines are then defined as the individual
monomials and set equal to 0 for evaluation points x outside of triangle t :

B d
κ (b(x)) :=

{
d !

κ0!κ1!κ2! b
κ0
0 bκ1

1 bκ2
2 , x ∈ t ,

0, x ∉ t ,
(A.5)

where κ= (κ0,κ1,κ2) is a multi-index that adheres to the properties the properties

|κ| = κ0 +κ1 +κ2 = d , κ0,κ1,κ2 ≥ 0. (A.6)

Any polynomial p(x) of degree d on a simplex t can be written as a linear combination
of Bernstein basis polynomials, referred to as the B-form [170],

p(x) =
{∑

|κ|=d c t
κB d

κ (b(x)), x ∈ t

0, x ∉ t ,
(A.7)

which is uniquely determined by the B-coefficients c t
κ ∈ R. For the 2-dimensional case,

the total number of B-coefficients and basis polynomials per simplex is for a given poly-
nomial degree d equal to

d̂ := (d +2)!

2d !
. (A.8)

Inside their parent simplex, the B-coefficients follow a special geometric ordering,
called the B-net, for which an example is depicted in Fig. A.1. This B-net is essential for
defining continuity of the piecewise defined simplex B-spline function at the edges of
the simplices, and for imposing local external constraints [118, 121, 132].

structure called a triangulation. A triangulation T is a special
partitioning of a domain into a set of J nonoverlapping
simplices:

T ≔ ⋃
J

i�1

ti; ti∩tj ∈ f∅; ~tg; ∀ ti; tj ∈ T (6)

with the edge simplex ~t either a line (1-simplex), or a vertex (0-
simplex) in the case of a two-dimensional triangulation con-
sisting of triangles.

A number of algorithms can be used to create triangulations
from a given set of vertices. The most widely known of these is
the Delaunay triangulation method, which has a standard im-
plementation in Matlab. The triangulations used in this paper
were all created with a different (non-Delaunay) technique
based on the grid cell subdivision scheme introduced in [19].

C. Basis Functions of the Simplex B-Splines
The basis polynomials of the simplex B-splines are Bernstein
polynomials in terms of Barycentric coordinates. The basis
polynomials are derived using the multinomial theorem,
which states that any polynomial of total degree d can be
expanded into a sum of monomials. In R3 the result of the
multinomial theorem is the following:

�b0 � b1 � b2�d �
X

κ0�κ1�κ2�d

d!
κ0!κ1!κ2!

bκ00 b
κ1
1 b

κ2
2 (7)

with κ � �κ0; κ1; κ2� a multi-index with the properties

jκj � κ0 � κ1 � κ2 � d; κ0 ≥ 0; κ1 ≥ 0; κ2 ≥ 0: (8)

The Bernstein basis polynomials of the simplex B-splines
are defined as the individual monomials in (7), with the
additional rule that they are equal to 0 by definition when
the evaluation point x is outside of the triangle t:

Bd
κ �b�x��≔

�
d!

κ0!κ1!κ2!
bκ00 b

κ1
1 b

κ2
2 ; x ∈ t

0; x∉ t
: (9)

Any polynomial p�b�x�� of degree d on a simplex t can be
written as a linear combination of basis polynomials in what is
known as the B-form as follows [25]:

p�b�x��≔
( P

jκj�d
ctκBd

κ �b�x��; x ∈ t

0; x∉ t
(10)

with ctκ the B-coefficients that uniquely determine the
polynomial p�b�x�� on the triangle t. The B-coefficients have
a special geometric ordering inside their parent simplex [see
Fig. 2]. This ordering is called the B-net and is essential for
defining continuity between simplices and for enforcing
local external constraints on the simplex B-spline function
[20–22].

The total number of B-coefficients and basis polynomials is
equal to d̂, which for the two-dimensional case and a given
degree d is given by

d̂≔
�d� 2�!

2d!
: �11�

D. Vector Formulations of the B-Form
In [20] a vector formulation of the B-form from (10) was in-
troduced. With (5) the vector formulation for a B-form
polynomial p�b�x�� in Barycentric R3 is

p�b�x��≔
�
Bd�b�x�� · ct; x ∈ t

0; x∉ t
(12)

with b�x� the Barycentric coordinate of the Cartesian x
according to (5).

The row vector Bd�b�x�� in (12) is a vector that is con-
structed from individual basis polynomials that are sorted
lexicographically according to [26]:

Bd�b�x��≔ �Bd
d;0;0�b�x�� Bd

d−1;1;0�b�x�� � � �
� � � Bd

0;1;d−1�b�x�� Bd
0;0;d�b�x�� � ∈ R1×d̂: (13)

The column vector ct the vector of lexicographically sorted
B-coefficients on the triangle t:

ct � � cd;0;0 cd−1;1;0 � � � c0;1;d−1 c0;0;d �⊤ ∈ Rd̂×1: (14)

For example, for a B-form polynomial p�b�x�� of degree d �
jκj � 1 in Barycentric R3 on the triangle t we have
κ ∈ f�1; 0; 0�; �0; 1; 0�; �0; 0; 1�g. In this case the vector formula-
tion of the B-form from (12) is

p�b�x�� � B1�b�x�� · ct

� � b10b01b02 b00b
1
1b

0
2 b00b

0
1b

1
2 �� ct1;0;0 ct0;1;0 ct0;0;1 �⊤:

The simplex B-spline function srd�b�x�� of degree d and con-
tinuity order r, defined on a triangulation T J consisting of J
triangles, is defined as follows:

srd�b�x��≔Bd · c ∈ R; x ∈ T J ; (15)

where the continuity order r, also denoted by Cr , signifies that
all derivatives up to order r of two B-form polynomials defined
on two neighboring triangles are equal on the edge between
the two triangles. For example, C0 continuity means that only
the values of the B-form polynomials are equal on an edge be-
tween two neighboring triangles, while C1 continuity means
that both the first order derivatives and the values of the
B-form polynomials match on the edge.

Fig. 2. B-net for a 4th degree spline function on a triangulation
consisting of the three triangles ti, tj , and tk.
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Figure A.1: B-net for a B-spline function of 4th degree on a triangulation consisting of the three triangles ti ,t j ,
and tk . (Image credit: de Visser et al. [117].)

On a triangulation T consisting of J triangles, the simplex B-spline function sd
r (b(x))

of polynomial degree d ∈N and continuity order r ∈N0 is defined as

sd
r (b(x)) := B d (b(x))c ∈R, x ∈T , (A.9)
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where the continuity order r , also denoted by C r , indicates that all mth order derivatives,
with 0 ≤ m ≤ r , of the B-form polynomials defined on two neighboring simplices are
equal on the edge between the two simplices.

In Eq. (A.9), the global vectors of Bernstein basis polynomials and the global vector
of B-coefficients are constructed as [121]

B d (b(x)) :=
[

B d
t1

(b(x)) B d
t2

(b(x)) · · · B d
t J

(b(x))
]
∈R1×J d̂ (A.10)

c :=
[

c t1> ct2> · · · c t J >
]> ∈RJ d̂×1, (A.11)

where the per-simplex vectors B d
t1

(b(x)) ∈ R1×d̂ and ct j ∈ RJ ·d̂ of triangle t j contain the

lexicographically sorted [171] basis functions B d
κ (b(x)) and B-coefficients c

t j
κ from Eq. (A.7).

For the example of a B-form polynomial of degree d = |κ| = 1 the lexicographical order
of the multi-indices is given by κ ∈ {(1,0,0), (0,1,0), (0,0,1)}. The global vector of basis
polynomials B d is sparse, since the basis polynomials are equal to zero for all evaluation
locations x ∈R2 outside of the respective triangle.

A.1.3. CONTINUITY CONDITIONS
A spline function is by definition a piecewise built polynomial function that satisfies a
predefined continuity order between its polynomial pieces, as illustrated in Fig. A.2.
For simplex B-splines, continuity between neighboring simplices is enforced by a set of
continuity conditions.

The following formulation of the conditions for continuity order r between two neigh-
boring triangles ti and t j demonstrates the principle of continuity conditions in the 2-
dimensional case. Considering the triangles ti := 〈v 0, v 1, w〉 and t j := 〈v0, v 1, v 2〉 which
differ by only one vertex w and share the line t̃ := ti ∩ t j = 〈v 0, v 1,〉, the following condi-
tions have to be enforced to create C r continuity between the simplices[118, 172]:

− c ti
(κ0,κ1,m) +

∑
|γ|=m

c
t j

(κ0,κ1,0)+γB m
γ (b(w )) = 0, 0 ≤ m ≤ r, (A.12)

where multi-index γ= (γ0,γ1,γ2) is independent of κ. For continuity order r , the formu-
lation of Eq. (A.12) results in a a total of Q continuity conditions per edge with

Q :=
r∑

m=0
(d −m +1). (A.13)

The formulation provided in Eq. (A.12) is only valid for certain B-net orientations
[121] as e.g. prevalent in the example of Fig. A.1. For an introduction on the B-net ori-
entation rule which is necessary for a more general formulation of the continuity condi-
tions, the reader is referred to the work of de Visser et al. [119].

The continuity conditions for all E edges of global triangulation T are collected into
a set of linear equations which apply to the global B-coefficient vector of Eq. (A.11):

Hc = 0, (A.14)

with the so-called global smoothness matrix H ∈ REQ×J d̂ , where each row in H contains
a single continuity condition. The details of the non-trivial construction of H are ad-
dressed in the works of Lai et.al [118] and de Visser et al. [119, 121].
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nonrectangular, nonhomogeneous, or partially obscured
WFS grids, their implementation becomes more complex [15].

The objective of this paper is to present a new method for
WFR from wavefront slope measurements that uses bivariate
simplex B-splines (Fig. 1) inside a linear regression frame-
work [18–22]. This new method, which we call Spline based
ABerration REconstruction (SABRE), aims to be a truly
general WFR method. In essence, SABRE locally models
the wavefront with linear and nonlinear simplex B-spline
basis functions on triangular subpartitions of the WFS domain
using local WFS measurements. While this paper presents
only a least squares (LS) estimator for the simplex spline
coefficients (i.e., B-coefficients), it is compatible with any
more advanced linear regression parameter estimation
technique.

SABRE has five important advantages over other WFR
methods. First, SABRE is invariant of WFS geometry in the
sense that it can be used without any modification on nonrec-
tangular, nonhomogeneous (misaligned), and partially ob-
scured sensor grids. This is a significant advantage in real
life AO setups, where nonrectangular WFS grids with misa-
ligned lenslet images are often encountered. Second, SABRE
allows WFR using nonlinear basis functions, resulting in a
more accurate approximation of the physical wavefront.
Third, SABRE has an inherent noise smoothing capability that
makes it highly resilient to sensor noise. Fourth, in contrast to
the Fried-geometry based FD method, the SABRE is not sub-
ject to the waffle mode [23,24]. Finally, the local nature of
SABRE means that it can be implemented on multicore hard-
ware resulting in a distributed SABRE (D-SABRE) that can
significantly increase computational efficiency. This paper
will focus primarily on the first four of these advantages, while
the D-SABRE will be explored in a forthcoming paper.

This paper is outlined as follows. In Section 2 we provide
preliminaries on bivariate simplex B-splines as they are cen-
tral to the new WFR method. Then, in Section 3 we introduce
the SABREmethod and present an LS estimator for estimating
the SABRE model parameters. Additionally, we show in
Section 3 that for fundamental reasons the SABRE is not sub-
ject to the waffle mode. In Section 4 the results from a number
of numerical experiments utilizing a Fourier optics based

Shack–Hartmann (SH) sensor simulation are presented. In
the experiments it is shown that SABRE can reconstruct non-
linear wavefronts that are closer to physical reality than
wavefronts produced by any FD method. Subsequently, the
ability of SABRE to reconstruct wavefronts on nonrectangular
domains is demonstrated. In Section 5 we conclude the paper
and provide pointers for future research.

2. PRELIMINARIES ON MULTIVARIATE
SIMPLEX B-SPLINES
To provide the reader with a basic understanding of the theory
behind SABRE a brief introduction into the theory of bivariate
simplex B-splines is given. For a more complete and general
introduction into the theory of multivariate simplex B-splines
we refer to [22].

A. Two-Simplex and Barycentric Coordinates
Let t be a two-simplex (triangle) formed by the convex hull of
its three nondegenerate vertices �v0; v1; v2� ∈ R2 as follows:

t≔
��

v0x
v0y

�
;
�
v1x
v1y

�
;
�
v2x
v2y

��
∈ R2: (1)

The basis polynomials of the simplex B-splines are func-
tions in terms of Barycentric coordinates. The Barycentric co-
ordinate system is a local coordinate system that is defined on
an individual simplex. If x ∈ R2 is a point on the Cartesian
plane, then the normalized Barycentric coordinate b ∈ R3

of x with respect to the triangle t can be determined using
the following equations:

�
x1
x2

�
�

�
v0x v1x v2x
v0y v1y v2y

�24 b0
b1
b2

3
5; b0 � b1 � b2 � 1: (2)

The condition b0 � b1 � b2 � 1 is a normalization condi-
tion, which ensures that any x ∈ R2 has a unique representa-
tion b ∈ R3 in Barycentric coordinate space. Now define the
normalized simplex vertex matrix V as follows:

V≔
� �v1x − v0x � �v2x − v0x�
�v1y − v0y � �v2y − v0y�

�
: (3)

Using the matrix V from (3), the Barycentric coordinate
b � �b0; b1; b2� ∈ R3 of the Cartesian coordinate x ∈ R2 is cal-
culated as follows:

� b1
b2

�
� V−1

� x1
x2

�

b0 � 1 − b1 − b2: (4)

In the remainder of the paper, we shall use the following
shorthand notation for the Cartesian-to-Barycentric coordi-
nate transformation from x ∈ R2 to b ∈ R3 on the triangle t:

b�x�≔ �b0; b1; b2� ∈ R3; x ∈ R2: (5)

B. Triangulations of Simplices
The approximation power of the multivariate simplex B-spline
can be increased by combining many simplices into a

Fig. 1. Principle of the multivariate simplex spline: A 5th degree
spline function with C1 continuity defined on four triangles with (left)
the four individual spline pieces [p1�b�, p2�b�, p3�b�, and p4�b�] and
(right) the global spline function p�b� formed by combining the four
spline pieces.
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Figure A.2: The principle of the multivariate simplex spline; a 5th degree spline function with C 1 continuity
defined on 4 triangles with (left) the 4 individual spline pieces p1(b), p2(b), p3(b), and p4(b), and (right) the
global spline function p(b) formed by combining the 4 spline pieces. (Image credit: de Visser et al. [117].)

A.1.4. MATRIX FORM OF THE DIRECTIONAL DERIVATIVE
This overview the theory of simplex B-spines closes with introduction of the directional
derivative for a B-spline function.

For a unit vector e ∈R2 in the Cartesian coordinate space, the directional coordinate
ae ∈ R3 gives the barycentric representation with respect to a given triangle t . If the
Cartesian unit vector is expressed as difference vector e = v −w of two points v , w ∈ R2

in the Cartesian plane, the directional coordinate ae is defined as

ae := b(v )−b(w ) ∈R3, (A.15)

using the short-hand notation from (A.3), where b(v ) and b(w ) are the barycentric coor-
dinates of v and w with respect to t .

On a single triangle t , the directional derivative of order m in the direction e of a
B-form polynomial p(b(x)) can then be formulated in terms of the original vector of B-
coefficients as [132]

Dm
e p(b(x)) = d !

(d −m)!
B d−m

t (b(x))P d ,d−m(ae )c t . (A.16)

The matrix Pd ,d−m(ae ) ∈ R (d−m+2)!
2(d−m)! ×d̂ is hereby the de Casteljau matrix [132] from degree

d to d −m which is expressed in terms of the directional coordinate ae . The vectors
B d−m

t (b(x)) and c t in Eq. (A.16) contain the B-coefficients and Bernstein basis polyno-
mials of a single simplex from Eq.(A.7) for polynomial degree d −m .

The full-triangulation formulation of de Casteljau matrix for a triangulation T con-
sisting of J triangles is a block diagonal matrix

Pd ,d−m
e := diag

(
Pd ,d−m(ae )

)J

j=1
∈RJ (d−m+2)!

2(d−m)! ×J d̂ , (A.17)

with J blocks of the form Pd ,d−m(ae) introduced in Eq. (A.16) on the main diagonal. The
directional coordinate ae of the derivative direction e is formed with regard to the re-
spective triangle t j , j = 1, · · · , J .
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The full triangulation form of the directional derivative of the global simplex B-spline
function sd

r (b(x)) from Eq. (A.9) is then obtained with Eqs. (A.10), (A.11) and (A.17) as

Dm
e sd

r (b(x)) = d !

(d −m)!
B d−m(b(x))Pd ,d−m

e c . (A.18)

A.2. WAVEFRONT RECONSTRUCTION WITH SIMPLEX B-SPLINES
In this section, the Spline-based ABerration REconstruction (SABRE) method for wave-
front reconstruction with simplex B-splines from SH gradient measurements [117] is in-
troduced and connected to the literature.

A.2.1. THE SLOPE SENSOR MODEL
The SABRE sensor model is based on the following system of first order partial differen-
tial equations which describe the relationship between the aberrated wavefront and its
spatial gradients [31]:

σx (x, y) = ∂φ(x, y)

∂x
, σy (x, y) = ∂φ(x, y)

∂y
, (A.19)

where φ(x, y) denotes the unknown wavefront , and σx (x, y) and σy (x, y) the wavefront
slopes, in the directions x and y respectively, at coordinate (x, y) in the telescopes pupil
plane.

Figure A.3: The Fried sensor geometries compared with two SABRE geometries (based on Type-I and Type-II
triangulation). The open circles visualize, the locations of the slope measurements, the black dots the phase
point locations and the horizontal and vertical lines the slope measurements in x and y direction, respectively.
In the SABRE geometries, the triangle edges are indicated by gray lines, while the shaded area inside the trian-
gulations is the area for which phase is defined. (Image credit: de Visser et al. [117].)

Within the SABRE framework, the unknown wavefront is approximated with a bi-
variate simplex B-spline model of polynomial degree d ≥ 1 and continuity order r ≥ 0 as
introduced in Eq. (A.9), such that

φ(x, y) ≈ sd
r (b(x, y)) = B d (b(x, y))c , (x, y) ∈T . (A.20)

Under the assumption that Eq. (A.20) holds and using the expression for the directional
derivatives of a B-spline function in Eq. (A.16), the following slopes sensor model for
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simplex t is obtained from the partial differential equations of Eq. (A.19):

σx (x, y) = d !

(d −1)!
B d−1

t (b(x, y))Pd ,d−1(ax )c t +ηx (x, y),

σy (x, y) = d !

(d −1)!
B d−1(b(x, y))Pd ,d−1(ay )c t +ηy (x, y), (A.21)

applying the directional coordinates ax and ay respectively of ex and e y with respect to
the triangle t . The residual terms η(x, y),ηy (x, y) ∈ R contain the sensor noise as well as
modeling errors.

In order to perform the SABRE method, a new triangular sensor geometry has to be
introduced. In Fig. A.3, two examples of basic SABRE sensor geometries are depicted
next to the Fried geometry [29] of the standard finite difference (FD) method. While
for all FD variants [29, 30, 47] the unknown wavefront is defined only at discrete phase
grid locations, the SABRE method applies a parametric representation of phase which
provides phase estimates at all locations (x, y) ∈T . Therefore, the SABRE method allows
for decoupling of the slope measurement and phase point locations, while maintaining
the local character of a zonal method due to the piecewise defined B-spline phase model
[117].

A.2.2. THE ANCHOR CONSTRAINT
For the final formulation of the SABRE problem, a new type of constraint, which is essen-
tial for producing a well-conditioned parameter estimation problem for the B-coefficients
of the SABRE model. The anchor constraint [117] predefines the value of the unknown
piston mode of the wavefront estimate which arises as unknown integration constant
when solving the first order PDE from Eq. (A.19).

For the derivation of the anchor constraint, both sides of Eq. (A.18) with m = 1 are
integrated which results in the B-spline model of the wavefront

sd
r (b(x)) = B d (b(x))c +k (A.22)

= B d (b(x))(c +k ·1). (A.23)

with an unknown constant k proportional to the piston mode. The affine property of the

B-coefficients yields Eq. (A.23) with a row vector 1 ∈RJ ·d̂×1 which has all elements equal
to one.

The anchor constraint is then formulated for the first B-coefficent −c t1
d ,0,0 ∈ R of the

global coefficient vector c ∈RJ ·d̂×1 as

k =−c t1
d ,0,0, (A.24)

which renders the SABRE model with a fixed piston mode if substituted into Eq. (A.23):

sd
r (b(x)) = B d (b(x))

[
0

c̃ − c t1
d ,0,0 · 1̃

]
, (A.25)

where c̃ ∈R(J ·d̂−1)×1 contains the second to last of the B-coefficients, and 1̃ ∈R(J ·d̂−1)×1 is
again a vector of 1s.
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With the introduction of the anchor vector h := [1 0 · · · 0], the anchor constraint of
Eq. (A.24) can rewritten into the vector form

h(c +k ·1) = 0. (A.26)

A.2.3. LEAST-SQUARES ESTIMATOR FOR THE B-COEFFICIENTS
With Eq. (A.21), the global SABRE WFR problem for a total of K slope measurements is
formulated on a complete triangulation consisting of J simplices as the equality con-
strained linear regression problem

σ= Dc +n, (A.27)

0 = Ac , (A.28)

where σ ∈ RK×1 denotes the vector of measured wavefront slopes, commonly obtained
from a SH lenslet array and n ∈ RK the residual terms which contain both measure-
ment noise and modeling errors. The system matrix is defined via the local slopes sensor
model of Eq. (A.21) as

D := dB d−1Pd ,d−1
e , ∈RK×J d̂ , (A.29)

where the rows of matrix B d−1 ∈ RK×J (d+1)!
2(d−1)! contain the global vector of basis polyno-

mials of polynomial degree d −1 from Eq. (A.10) evaluated at the reference location of

the respective slope measurement. Further, Pd ,d−1
e ∈ RJ (d+1)!

2(d−1)! × is the de Casteljau matrix

from Eq. (A.17), and c ∈ Rd̂ J×1 the global vector of B-coefficients from Eq. (A.11). The

constraint matrix A is constructed with the global smoothness matrix H ∈R(EV )×J d̂ from

Eq. (A.14) and the anchor vector h ∈R1×J d̂ from Eq. (A.26), such that

A :=
[

H
h

]
∈R(EV +1)×J d̂ . (A.30)

It should be mentioned that for a linear B-spline model, the SABRE sensor model of
Eq. (A.27) is independent of the pupil plane coordinates (x, y); the wavefront gradient is
therefore considered as constant over the entire triangle. For nonlinear variants method
on the other hand, the SABRE model is a function of the geometric location of the slope
measurements, since the B-form matrix B d−1 depends for d ≥ 2 on the (barycentric)
coordinates b(x, y) of the SH reference centers [117].

While de Visser and Verhaegen [117] discuss a least-squares (LS) estimator for the
simplex B-spline coefficients of the SABRE model, more advanced linear regression tech-
niques can be employed for the parameter estimation. The SABRE WFR problem is now
solved in form of the equality constrained least-squares optimization problem

min
c∈RJ d̂

1

2
‖σ−Dc‖2

2 subject to Ac = 0. (A.31)

In order to eliminate the constraint equations in Eq. (A.31), a projection onto the nullspace
of the constraint matrix A from Eq. (A.30) is performed. The projected system matrix D
is hereby defined as DA := DNA, where NA := null(A) contains an orthogonal basis of the
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null space of A. The least-squares estimate of the B-coefficients of the SABRE model is
then obtained with

ĉ LS = NA(D>
A DA)−1D>

Aσ,

= Qσ, (A.32)

where the SABRE reconstruction matrix Q := NA(D>
A DA)−1D>

A can be precomputed for a
given sensor geometry. The resulting B-spline model may then be evaluated at any pupil
plane coordinate x ∈R2 with the B-form matrix, providing the wavefront estimate

φ̂LS (x) = B d (b(x)ĉ LS . (A.33)

The fact that the matrix D>
A DA is of full rank further distinguishes the SABRE method

from the FD method. The latter suffers from a rank deficiency of 2, since the system
matrix is insensitive to the piston mode and, in case of the Fried geometry [29], also the
waffle mode [173, 174]. Within the SABRE framework, the piston mode is predefined
with the anchor constraint and the method is not subject to the waffle mode due to the
workings of the continuity constraints [117].

The work of de Visser and Verhaegen [117] additonally assessed the performance
of the SABRE method for various sensor geometries and noise scenarios in numerical
simulations. The method showed no loss in reconstruction accuracy for application on
nonrectangular and partially obstructed SH arrays. Further, good noise resilience was
demonstrated with results that outperformed the FD method for Fried geometry at all
considered noise levels.
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