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Abstract
Program synthesis remains largely unexplored in the
context of playing games, where exploration and ex-
ploitation are crucial for solving tasks within com-
plex environments. FrAngel is a program synthesis al-
gorithm that addresses both of these aspects with its
fragments used for the generation of new candidate
programs. We introduce a generalised version of the
FrAngel program synthesis algorithm that accepts an
arbitrary iterator and grammar, enabling flexible modifi-
cations. We then formulate Program by Example (PBE)
program synthesis from rewards and apply this frame-
work to Minecraft’s navigation task, where dense re-
wards guide the algorithm’s exploration. Then, we use
the generalised version of the algorithm to conduct ex-
periments in the context of exploration of the algorithm.
The experiments show the importance of exploration
as a step required for the exploitation and finding the
wanted solution to the task while also revealing that
sometimes more exploration does not necessarily mean
reaching the solution faster.

1 Introduction
With the advancements in artificial agents for games such
as Go [1] and StarCraft [2], the field of artificial intelli-
gence has been increasingly interested in the search for au-
tonomous agents capable of learning and adapting to com-
plex game environments [3]. Games are particularly inter-
esting as they are perfect experimenting platforms, provid-
ing environments that can be compared to real-world sce-
narios [4]. However, the application of program synthesis –
a method that can generate various programs to solve dif-
ferent problems – remains largely unexplored in the context
of games. There are still open questions on how to model
the exploration, exploitation and decision-making in com-
plex environments based on rewards to the typical program
synthesis problem specification.

Program synthesis [5] is the process of automatically gen-
erating programs satisfying a given specification. It is ap-
plied in various fields with examples such as FlashFill in Mi-
crosoft Excel [6], allowing fast string manipulation based on
user intent, automating transformations on tree-structured
data [5] and synthesising code snippets to assist developers
in live programming environments [7]. Various techniques
for program synthesis are based on how they search the enor-
mous space of possible programs and the program specifica-
tions they require. This paper focuses on the FrAngel algo-
rithm, a programming by-example (PBE) algorithm, where
programs are generated based on input-output examples.

FrAngel [8] is a PBE program synthesis algorithm that
relies on the idea that larger programs are created from
smaller, useful ones. The algorithm is based on two main
concepts - fragments and angelic conditions. Fragments
combine exploration and exploitation by reusing parts of
programs that partially follow the specification to generate
new programs that align with the desired behaviour. On the
other hand, angelic conditions are placeholders for the con-
ditions of control structures, such as ifs and loops.

Both exploration and exploitation are crucial for the al-
gorithm’s performance. Exploration discovers new useful

fragments and programs from the unexplored search space,
while exploitation reuses these fragments to guide the search
towards the solution. The balance between them ensures that
the algorithm efficiently finds the desired programs by lever-
aging known successes while continually searching for new
potential solutions.

This paper intends to explore the capabilities in terms of
exploration of the FrAngel program synthesizer and bridge
the gap in the application of program synthesis in the context
of playing games with rewards, in particular Minecraft, a
survival sandbox game.

The main question is how to adjust the FrAngel program
synthesizer to discover diverse subprograms in gaming con-
texts like Minecraft that can then be exploited to reach the
solution faster. The paper outlines program synthesis from
rewards and how to discover useful actions in game envi-
ronments. It explores various modifications for exploration
in the FrAngel algorithm and their impact on the overall per-
formance. Different variants for defining the simpler output
examples and their effect on initial fragments and the sub-
sequent iterations are tested. It tries an alternative approach
for generating initial programs, prioritising less frequently
used basic rules so far to accelerate the exploration of pos-
sibly useful ones. Additionally, it examines the impact of
limiting the large fragment symbols to encourage the explo-
ration of different combinations of fragments and randomly
generated rules. Lastly, the paper explores different parame-
ter configurations to adjust the amount of exploration in the
second phase of the FrAngel algorithm, where there are al-
ready some fragments and both exploration and exploitation
are present.

This paper explains a generalised implementation of the
FrAngel algorithm and models the reward problem as check-
points represented in the input-output examples.

The structure of this paper is as follows. In Section 2,
the background of the research and the related work is out-
lined, providing the necessary context. Section 3 discusses
the methodology, provides a generalised version of FrAngel
and defines program synthesis from rewards. Following this,
Section 4 presents the experimental setup, results, and con-
clusions. Next, Section 5 addresses responsible research
practices, emphasising on reproducibility. Finally, Section 6
concludes the research and suggests future work.

2 Background and Related Work
Program Synthesis
Program synthesis [5] is searching the space of possible pro-
grams to find one that meets the specific requirements. There
are various methods for searching leading to different pro-
gram synthesis approaches, including deductive synthesis,
which uses theorem provers to construct logical programs
from formal specifications, and transformation-based syn-
thesis, which iteratively transforms high-level specifications
into low-level programs. More recent methods include in-
ductive synthesis, which relies on input-output examples,
and the use of genetic programming to evolve programs.

Two main challenges in the realm of program synthesis
are the size of the search space and the user intent. The



search space should balance expressiveness and efficiency,
and often domain-specific languages/grammar are employed
to make a program more manageable. The user intent can be
expressed in various ways, such as logical specification, nat-
ural language, and demonstrations. There should be a bal-
ance between how easy and accessible the requirements are
to be written as simpler ones, such as input-output examples,
could lead to more ambiguity given a small number of ex-
amples - while on the other hand, formal specifications could
often end up being as complex as the wanted program.

An example of a simple integer arithmetic program syn-
thesis problem with input-output specification can be seen in
Figure 1. The program synthesiser is given as input the spec-
ification 1a and the domain-specific language 1b and even-
tually should output a solution from the possible rules that
passes all examples as shown in 1c.

Programming by Example (PBE) is a popular inductive
synthesis approach where the goal is to generate programs
that meet a set of input-output examples provided by the
user. PBE algorithms must balance overfitting to the given
examples and generalising to unseen cases. Key challenges
in PBE include handling ambiguous specifications and effi-
ciently searching the large space of possible programs. Fur-
thermore, many existing algorithms have difficulty in gen-
erating complex control structures, such as loops and condi-
tionals, which limits their applicability to more sophisticated
programming tasks.

x = 1 → 3
x = 2 → 5
x = 3 → 7
x = 4 → 9

(a) Input-output spec

Num = 1 | 2
Num = x
Num = Num + Num
Num = Num * Num

(b) Grammar rules

+

*

2 x

1

(c) AST for 2x+1

Figure 1: Program synthesis example for simple integer
arithmetic.

Programming by Rewards (PBR) [9] is a framework for
synthesising and tuning decision functions. It takes input
features, the output data type and a reward function, and with
the use of continuous optimisation methods, it performs the
synthesis. The reward function is a black-box function that
assigns a reward value for the output of the decision function
for the given input, while the decision function is a white-
box function whose structure is being exploited for faster
convergence and better accuracy. However, this framework
is limited to loop-free DSL language with if-else statements.
Furthermore, instead of providing a way to reuse already ex-
isting program synthesis algorithms, it provides a reinforced
learning approach. Therefore, this work is not applicable for
modelling the reward problem in already existing PBE algo-
rithms.

FrAngel
FrAngel [8] is a component-based program synthesis algo-
rithm that generates Java programs given input-output ex-
amples, a signature and libraries/components. It begins by

randomly generating programs up to a particular size and
then evaluating them, keeping fragments from useful ones
that passed at least part of the examples. Furthermore, as
it is often hard to guess the correct conditions for control
structures, it places placeholders called angelic conditions
that are only evaluated if the program is promising, meaning
that it passes some of the tests in the best-case scenarios. The
general structure of the algorithm can be seen in Algorithm
1.

Algorithm 1 FrAngel pseudocode [8]
Input: Target program signature S, set of libraries L, set of test
cases C
Output: A program P that passes all tests
1: procedure FRANGEL(S,L,C)
2: R← ∅ ▷ A set of remembered programs
3: F ← ∅ ▷ A set of fragments
4: repeat until timeout
5: A← RandBoolean()
6: P ← GenRandomProgram(S, L, F, A) ▷ Step (1)
7: T ← GetPassedTests(P, C)
8: if T = ∅ then
9: continue

10: if P contains angelic conditions then ▷ Step (2)
11: P ← ResolveAngelic(P, L, F, T, C)
12: if failed to resolve conditions then
13: continue
14: T ← GetPassedTests(P, C)
15: P ← SimplifyQuick(P, T)
16: T ← GetPassedTests(P, C)
17: if P is the simplest program to pass T then ▷ Step (3)
18: R← RememberProgram(P, R)
19: F ←MineFragments(R)
20: if T = C then
21: return SimplifySlow(P, C)
22: return Failure

The algorithm can be divided into three steps: random
program generation, angelic condition resolving, and frag-
ment mining. First, it randomly generates a program that
may include angelic conditions and previously mined frag-
ments, either entire or mutated. Next, the algorithm resolves
any angelic conditions, resulting in a program without them.
Finally, it re-evaluates the program and mines useful frag-
ments to be used in the generation of subsequent programs.

FrAngel uses random search and angelic conditions to
simplify finding the required program. Angelic conditions
act as placeholders for control structures conditions as
shown in 2b, allowing FrAngel first to create a rough pro-
gram without specific conditions. Once a satisfactory pro-
gram is found, it assigns these placeholders concrete val-
ues. This approach enables FrAngel to handle complex be-
haviours and identify reusable fragments. Angelic condi-
tions evaluate optimistically, choosing true or false to pro-
duce a correct output. The algorithm uses a bitstring rep-
resentation to systematically explore potential execution
paths, optimising the search process by prioritising simpler
paths and pruning redundant ones. If an angelic program
passes enough test cases, then the angelic conditions are re-
solved to generate a concrete program.



Fragments are mined from programs that pass some test
cases to aid in generating new programs, focusing the search
on previously successful components. A fragment is any
complete subtree of a program’s abstract syntax tree (AST)
as shown in 2a. The simplest programs passing any subset of
test cases are remembered and then fragments are extracted
from them. The remembered programs, which may be dis-
carded if simpler versions are found, help FrAngel focus on
useful code components. The concept of special-case sim-
ilarity supports this approach, where simpler (special-case)
programs share meaningful fragments with the target pro-
gram. This method leverages the overlap between these frag-
ments to guide the synthesis process toward the target solu-
tion, although it has limitations when special-case similar-
ity is absent, test cases are insufficient, or fragments are too
complex or irrelevant.

Fragment Num = 5 + x
Fragment Num = 5
Fragment Num = x

(a) Fragments for program 5 + x

if(< angelic >) ...
while(< angelic >) ...

(b) Angelic placeholders

Figure 2: Illustration of fragments and angelic conditions in
FrAngel.

Exploration
Exploration is the process of searching and discovering, and
in the context of reinforcement learning, it involves find-
ing actions that maximise the reward function [10]. It is a
critical aspect because the reward function is often com-
plex, especially in problems with sparse rewards. Various
approaches to exploration include taking random actions,
providing denser rewards, and exploring moves that could
lead to new solutions.

Probe
Probe [11] is a guided bottom-up program synthesis algo-
rithm that shares common possibilities in exploration and
exploitation as FrAngel. It relies on two main ideas - guiding
the search with probabilistic models and just-in-time learn-
ing. The program space is explored in decreasing probabil-
ity, and these probabilities are updated on the fly based on
whether the rules were present in partially successful pro-
grams, only satisfying a subset of the input-output examples.
The algorithm combines the benefits of probabilistic guided
search with the ability to be used on novel problems as it
does not require training data.

3 Methodology
The research questions will be answered in the following
steps: creating a generalised version of FrAngel for the ex-
periments, adapting the reward-based MineRL environment
to a program synthesis problem, defining an appropriate
grammar for the task, and finally conducting experiments,
explained in Section 4.

Generalised FrAngel Algorithm
This subsection outlines a generalisation of the FrAngel al-
gorithm. It extends the original algorithm’s scope, allowing
it to handle more general problems beyond generating Java
programs with a fixed initial program generation method. It
supports any context-free grammar for the search space and
various iterators. Additionally, it allows for changes in how
the fragments are modified and mined. This generalisation,
however, results in the loss of domain-specific optimisations
available in the Java-focused version, such as listing usable
libraries and leveraging grammar-specific knowledge. The
pseudocode is detailed in Algorithm 2, with grey blocks in-
dicating deviations from the original description of the algo-
rithm.

Algorithm 2 Generalisation of FrAngel
Input: Grammar G, program iterator I, set of test cases C, and an-
gelic conditions A
Output: A program P that passes all tests

1: procedure FRANGEL(G, I, C,A)
2: R← ∅ ▷ A set of remembered programs
3: F ← ∅ ▷ A set of fragments
4: V ← ∅ ▷ A set of visited programs

5: S ← null ▷ Initialise state for the iterator

6: AddAngelicRuleNode(G)

7: O ← AddFragments(G) ▷ Store fragment rule offsets
8: repeat until timeout
9: P, S ← Iterate(I, S) ▷ Step (1)

10: P ←ModifyAndReplace(P, F,O,G)

11: if using angelic then
12: P ← AddAngelic(P,G,A)

13: if P ∈ V then ▷ Do not revisit programs
14: continue
15: T ← GetPassedTests(P, C)
16: if T = ∅ then ▷ If passes at least one test
17: continue
18: if P contains angelic conditions then ▷ Step (2)
19: P ← ResolveAngelic(P, F, G, T, C, A, O)
20: if failed to resolve conditions then
21: continue
22: T ← GetPassedTests(P, C)
23: P ← Simplify(P, G, T) ▷ Simplify program
24: T ← GetPassedTests(P, G, C)
25: if T = C then ▷ Return program if all tests pass
26: return P
27: if P is the simplest program to pass T then ▷ Step (3)
28: R← RememberProgram(P, R, T, F, G)
29: F ←MineFragments(R)
30: if F is updated then
31: UpdateFragments(G,F,O)

32: return nothing

The pseudocode follows the main ideas and flow of the al-
gorithm - the generation of a program, possibly with angelic
conditions, which are placeholders for conditions for control
flow structures in the grammar; evaluation of the generated
program based on the provided spec; resolving any angelic



conditions, and possibly mining fragments in case it is the
simplest program so far that solves given subset of the spec.
However, there are some differences:

Allows any context-free grammar. The generalised ver-
sion can generate programs of any grammar, given a starting
symbol, which allows the algorithm to be applied in differ-
ent contexts and for various problems. However, the lack
of default control structures, such as if statements, means
the algorithm must also take as input a description of which
nodes in which rules should be treated as possibly angelic.
Additionally, expressing Java’s complexity as context-free
grammar is a challenge, which limits the algorithm usage in
Java-specific problems that the original implementation can
handle.

Furthermore, not using Java as the search space means
that the algorithm implementation can no longer dis-
tinguish between statements, expressions, and other lan-
guage constructs. This limitation affects the implementa-
tion of certain methods, such as advanced intermediate vari-
able handling and context-specific simplification methods.
While the simplifyQuick method can be generalised, the
simplifySlow method is too context-specific and should be
implemented based on the used context-free grammar.

Allows an iterator to be passed. The version accepts an
iterator that can implement any traversal/generation strategy,
allowing the program space to be explored in different ways
compared to the original algorithm, which generates the new
programs by using already mined fragments and choosing
rules randomly. However, already existing iterators do not
have the concept of fragments, and therefore, to be utilised,
they are added to the context-free grammar itself, allowing
iterators to choose them. Furthermore, the random percent-
ages are also embedded in the grammar, enabling the iterator
to decide whether to use the probabilities and adhere strictly
to the entire algorithm. This approach provides flexibility
and compatibility with various program search algorithms
while maintaining the ability to utilise mined fragments ef-
fectively.

We propose the fragments to be added as two types of
rules - a fragment placeholder, which connects an already
existing symbol to a fragment of that symbol, and fragment
rules, which contain the actual fragment expression. The
split is necessary to allow making a distinction between a
fragment and a grammar rule with the same expression as a
value. An example of a fragment placeholder is Num =
Fragment Num, while examples of fragment rules are
Fragment Num = 5 + x and Fragment Num = 5.
Fragment placeholder rules are added for each symbol with
an initial probability of zero. Once fragments for a sym-
bol are added, the placeholder rule is assigned a probability
equal to the chance of using a fragment.

To allow these changes, the generation of random pro-
grams is split into three subtasks:

(1) Generation of a program, which possibly includes frag-
ment placeholders, with the provided iterator.

(2) Replacing all fragments placeholders and their inner
fragments with the corresponding abstract syntax tree

rule node, equivalent to the rule expression. During this
swap, the fragments can be modified.

(3) The generated rule node tree is traversed, with the pos-
sibility of adding angelic conditions that replace con-
crete nodes with holes, indicating that any value of that
symbol could be used.

Defining Program Synthesis from Rewards
The FrAngel algorithm takes input-output examples, but the
MineRL environment only provides rewards. This raises the
question of how to define program synthesis from rewards.
To address this, we transform the reward problem into mul-
tiple output examples, acting as reward checkpoints that the
output program reward should be equal to or greater. This
enables the algorithm to mine fragments from programs
reaching these checkpoints, which are in increasing order.
For instance, in the navigation task, making progress in the
right direction can be seen as a partially successful program,
and useful actions can be then mined, which are connected
to the solution. For example, if the expected reward is 64,
we can set reward checkpoints at 16, 32, 48, and 64. If a
program achieves a reward of 49, it will pass the first three
checkpoints, resulting in the first three tests passing. A lim-
itation of this approach is that the reward must be approxi-
mately known at the beginning to set the desired percentages
of the maximum reward as checkpoints.

This definition also answers how to discover useful ac-
tion in game environments. We identify useful actions based
on the received rewards and, more precisely, by reaching a
checkpoint. However, this solution relies on dense rewards
and is not effective for sparse rewards, where rewards are
only given upon task completion, negating the benefits of
fragments and angelic conditions provided by the FrAngel
algorithm.

Despite the algorithm’s ability to find high-reward pro-
grams, finding the program that reaches the target location
remains challenging and computationally expensive. To ad-
dress this, we split the solution-finding process into multi-
ple iterations of the algorithm, each building on the previous
one. This approach allows the algorithm to search for a so-
lution passing the output checkpoint or return a high-reward
program for the task, defined as passing most output exam-
ples after a fixed amount of time. Then, the algorithm is run
again, starting from the location that has been reached from
the previous iteration. This approach allows the algorithm to
focus on solutions for the remaining part without influence
from prior fragments or actions, which allows, for example,
turning into an entirely new direction from the last location
to reach the goal without having a larger chance to pick a
direction that used to lead to a higher reward until that mo-
ment. In each subsequent run, the required rewards in the
spec tests are adjusted based on the achieved reward so far.

To balance the generation of high-reward programs with
iteration until timeout, the required outputs for a solution
are set to 80% of the expected remaining reward in the ex-
periments. Other values have not been thoroughly tested,
but this approach allows the algorithm to search without
spending excessive time on complex programs that cannot



be generated in one iteration. The approximated output re-
ward should not be less than the solution reward to avoid
considering negative-reward actions as useful.

Furthermore, to limit the possible search space, the gram-
mar only contains actions related to moving, as seen in Algo-
rithm 3. The mc move function moves the player in the en-
vironment, given a direction, number of moves, and whether
to sprint and jump. Additionally, the function only moves
the player if the current total reward for the run is larger
than -10 to stop programs that are most likely not leading
to the solution. The mc init softly resets the environment
by teleporting the player to the given starting position for
the iteration, while mc end returns information about the
last execution. There are also three boolean helper func-
tions: is done(state) returns if the goal has been reached,
mc has moved(state) verifies if the agent moved in the
last action, and mc was good move(state) which returns
whether the last action had positive reward.

Algorithm 3 Grammar to represent possible MineRL pro-
grams for the navigation task. Each program starts with the
Program symbol.

1: Program = (state = Init; Blocks; End)
2: Init = mc init(start pos)
3: Blocks = Block | (Block; Blocks)
4: Block = (while true

Move ;
Bool || break

end)
5: Block = Move
6: Block = (if Bool Move end)
7: Move = mc move!(state, Direction, Times, Sprint,

Jump)
8: Direction = ([”forward”]) | ([”back”]) | ([”left”]) |

([”right”]) | ([”forward”, ”left”]) | ([”forward”, ”right”])
| ([”back”, ”left”]) | ([”back”, ”right”])

9: Sprint = true | false
10: Jump = true | false
11: Times = 1 | 2 | 3 | 4
12: Bool = is done(state) | mc was good move(state) |

mc has moved(state) | !Bool
13: End = mc end(state)

An example of fragments with the following grammar
consists of anything from an entire program to a sequence
of actions/moves in the game to a direction to move in. Al-
though not all fragments will be useful at all times when
generating new programs, the fragments can guide the rest of
the search. For example, it is often the case that there are di-
rection fragments only in the direction of the goal, as well as
there are fragments for useful boolean conditions and small
utility programs such as moving forwards until an obstacle
is reached.

4 Experimental Setup and Results
This section explains how the experiments were run, shows
the results and draws conclusions.

Setup
FrAngel implementation in Herb.jl. One contribution of
this work, in collaboration with Alperen Guncan, a BSc stu-
dent at TU Delft, is the generalised implementation of the
FrAngel algorithm in Herb.jl, a Julia program synthesis li-
brary developed at TU Delft [12]. This implementation is
then used as a base to conduct the experiments on.

The implementation follows the proposed changes to the
original algorithm in Section 3, with the only further devia-
tion that it introduces program caching to optimise its perfor-
mance. Using caching for already visited programs improves
traversal by excluding previously generated programs iden-
tified as non-solutions. For speed and memory efficiency,
only the hashes of the programs are stored and compared.

When it comes to the used iterator, the implementation
provides FrAngelRandomIterator that simulates the ex-
act generation process as described in the FrAngel paper.

MineRL [13] – Minecraft Environment. MineRL is a
Python library integrating Minecraft with OpenAI Gym, of-
fering agents tasks such as navigation, tree chopping, and re-
source gathering. This paper concentrates on the navigation
task, where agents aim to reach a specified location from
their starting point. The experiments use the version of the
task with dense rewards, where the agent receives a reward
proportional to the distance moved toward or away from the
goal. Although the environment provides visual data, utilis-
ing it requires image processing and is therefore out of the
scope of this paper.

Experiment configuration. Due to Minecraft’s procedu-
ral generation, five world seeds, with different features, are
chosen initially to run the experiments on. Furthermore, due
to FrAngel relying on random number generation, a set of 8
predefined random generator seeds is chosen before any of
the experiments are run to avoid bias.

For the experiments, each run is limited to 300 seconds,
with each algorithm iteration limited to 40 seconds. Output
checkpoints are set at each 10% increment up to 80% of the
expected remaining reward, which is set to 74 based on one
of the worlds. The maximum program size is limited to 40
AST nodes, with a 0.5 probability of using fragments and a
0.2 probability for angelic conditions. The boolean expres-
sion max size is set to 6, and angelic replace attempts are
limited to 4 due to the limited number of boolean options in
the grammar. Furthermore, the FrAngel implementation is
modified to provide more logging data about each run and
to support the concept of the best-found program so far, the
one passing most tests, which is required in this definition of
the problem.

Running the experiments. Instructions for setting up the
environment can be found on GitHub: Julia and Herb.jl in-
stallation instructions1 and MineRL setup instructions2. The
code and run instructions are also available on GitHub here3.

The specifications of the computer that ran the experi-
ments in this paper are the following:

1Julia and Herb.jl installation instructions can be found here
2Instructions on how to set up MineRL.
3Code and run instructions here.

https://github.com/Herb-AI/HerbSearch.jl/wiki/Setup-and-Installation-Julia#1-install-julia
https://github.com/Herb-AI/HerbSearch.jl/wiki/Install-Minecraft-Environment
https://github.com/Herb-AI/HerbSearch.jl/tree/frangel-with-minerl-explore


• Processor: AMD Ryzen 7 4800H
• RAM: 32 GB of DDR4
• GPU: NVIDIA GeForce GTX 1650
• Operating system: Windows 11
• Julia version: 1.10.3+0.x64.w64.mingw32

Running all of the experiments takes approximately 28
hours on the mentioned machine due to the many combina-
tions of world and random seeds for each experiment. Con-
sequently, because of computational limitations and the va-
riety of random seeds and Minecraft worlds, the results are
limited and may not fully represent the overall performance
of the changes.

Experiment 1 – Different Beginning Reward
Checkpoints
Experiment setting One of the crucial factors for the ef-
fectiveness of the FrAngel algorithm is the provided input-
output examples and the fragments that they lead to. The
fragments that are then to be exploited must be relevant to
the solution, and from this comes the question of how much
exploration is needed before considering a fragment as use-
ful.

In this experiment, the smallest reward checkpoints are
increased and decreased, such that the length of the pure ex-
ploration part of the FrAngel algorithm could be increased or
decreased. This should eventually provide different quality
fragments that can be explored after that, possibly influenc-
ing the entire run.

For this experiment, four additional setups are compared
to the base setup. One reduces the first reward checkpoint to
5% of the expected reward, compared to the default of 10%.
The other three setups have their lowest checkpoints set at
20%, 30%, and 40% of the expected reward.

Figure 3: Average runtime of different beginning reward
checkpoints for each world seed.

Interpretation of results From Figure 3, it can be seen
that the runtime depends highly on the particular world seed
and that different reward checkpoints have different effec-
tiveness based on the seed combination. However, it can also
be seen that, on average, the default case with rewards start-
ing at 10% performs the best on average across all worlds.

Selecting the appropriate threshold value to determine the
usefulness of a program is crucial as it guides the rest of

(a) world seed - 999999, random seed - 6354

(b) world seed - 958129, random seed - 1118

Figure 4: Maximum rewards over time for different seed
combinations. Full lines are checkpoints, dotted lines indi-
cate first fragment use.

the search within that checkpoint. Finding useful compo-
nents and using them marks the end of the full exploration
part of the FrAngel algorithm with the combination of ex-
ploration and exploitation. Therefore, it is essential to avoid
extracting fragments that cannot be effectively utilised, as
they do not contribute significantly to the solution, as illus-
trated in Figure 4a. In this scenario depicted by the green
line, FrAngel attempts to exploit previously generated pro-
grams that are not sufficiently useful, resulting in long search
times until a valuable solution is discovered. This highlights
one of the potential drawbacks of using fragments in the al-
gorithm—they are only useful as the output examples are.
Badly chosen fragments can slow down the search process.

There is also the other extreme, where only really useful
programs are considered to be useful, which could lead to
a long period of exploration until such a program is found,
and therefore only relying more on the initial program gen-
eration. Visualized by the grey line in Figure 4b, which con-
tinues the search.

This experiment shows the importance of choosing a
lower bound/easy output example that is both not too easy
and too hard.



Experiment 2 – Limited Fragment Symbols
Experiment setting Another question related to frag-
ments and exploration is whether limiting fragments to only
some of the lower grammar symbols could potentially speed
up the program synthesis by forcing the exploration of di-
verse sequences of actions, both useful and random.

In this experiment, symbols defining entire programs and
sequences of actions are not mined. However, the remaining
mined symbols still allow the discovery of useful blocks like
moving in a certain direction or moving in a loop. This ap-
proach aims to promote the exploration of various potential
program sequences rather than repeating more basic ones
that are already a fragment.

Figure 5: Average runtime with all and with limited symbols
as fragments for each world seed.

Interpretation of results Again, in Figure 5, we can see
that the runtime and impact of the change depend on the
combination of world and random seed. However, mining
all symbols shows better performance overall. I assume this
is the case due to the nature of the task – navigation, where
many actions/fragments are only useful from a particular
starting point, and therefore, generating a different sequence
of them makes them less applicable. This experiment shows
that fragments are often context-dependent, and therefore,
by removing larger fragments that are closer to representing
an entire program, we are no longer exploiting what was al-
ready useful but rather trying to explore something that uses
it, which is not necessarily an easy or efficient task.

Experiment 3 – Initially Generating More Diverse
Programs
Experiment setting By generating programs randomly, it
is possible to use certain rules more often than others, and
from that arises the question of whether this could negatively
impact the exploration and, consequently, the entire program
synthesis process.

In this experiment, the random iterator is modified to give
a higher probability to basic rules used in generation less fre-
quently. This aims to determine if this approach accelerates
the exploration of more useful fragments/rules. The prob-
abilities of the possible rules are multiplied by 1/(1 + n)
and then normalised, where n is the number of times the
rules have been used in program generation so far. These
changes in probabilities will only affect the non-fragment

rules, while the chance to use a fragment will remain as con-
figured.

Figure 6: Average runtime with the default random iterator
and the modified one for each world seed.

Interpretation of results As shown in Figure 6, in most
of the runs the default random iterator performs better. It
could be possibly due to the low amount of iterations of
each checkpoint FrAngel run, such that the change of iter-
ator does not take as much difference, the random seeds, or
it is simply not more effective.

Experiment 4 – Fragments Usage and Modification
Probability
Experiment setting Another question that stands is
whether increasing exploration in the second phase of the
FrAngel algorithm, which involves both exploration and ex-
ploitation, improves the algorithm’s performance.

In this experiment, six different setups are tested with
varying probabilities for fragment modification and usage.
For fragment usage, two values are chosen: 0.3 and 0.5. For
fragment modification chance, three values are used: 0.25,
0.5, and 0.75.

Figure 7: Average runtime of all runs for each frag-
ment configuration. fragment usage change is the chance
to generate the current node with a fragment, while
gen sim new chance is the chance to modify a node in a
fragment.



Interpretation of results From the conducted experiment
runs, highlighted in Figure 7, we can conclude that the de-
fault amount of usage - 0.5 and the default amount of mod-
ification - 0.25, as specified in the FrAngel paper, performs
best on average. While other configurations may perform
more exploration by reducing the fragment usage or increas-
ing the modifications, they also decrease the exploitation,
which increases the time it takes to solve the task.

5 Responsible Research
This section addresses concerns regarding the reproducibil-
ity of the experiments and the credibility of the results and
findings.

The reproducibility of the experiments depends on two
main factors: the experimental setup and the processing
power of the machine running them. All code, along with
instructions on how to run the experiments, can be found on
GitHub4. Also, the repository includes all results from the
runs and the corresponding seeds. Furthermore, to make it
more accessible, the experiments were conducted on a per-
sonal computer, with specifications detailed in Section 4.
Using a fixed set of seeds for random number generation
ensures consistent replication of the results, although mi-
nor variations in runtime may occur due to differences in
computational power. To further ensure reproducibility, the
experiment results include the exact number of algorithm it-
erations in each case.

Due to computational limitations, the experiments have
only been run on a small set of environments and seeds for
random number generation. Although the seeds were chosen
before conducting any experiments to avoid cherry-picking
and bias, it is still possible that the chosen seeds do not
fully represent the general case, potentially influencing the
results. Therefore, future research needs to extend the exper-
iments to a broader range of environments.

6 Conclusions and Future Work
This paper presented a generalised implementation of the
FrAngel program synthesis algorithm in Herb.jl, allowing
any context-free grammar and iterator. Additionally, it de-
fined program synthesis from rewards by modelling reward
checkpoints as input-output examples and outlined a general
algorithm for applying the FrAngel algorithm to the navi-
gation task in Minecraft, where a location must be reached
based on a dense reward.

Various modifications to FrAngel were compared in the
context of exploration. It was found that it is crucial to bal-
ance the difficulty of the simpler specification tests. If these
tests are too easy, the found fragments may not be useful
enough and could guide the search in the wrong direction.
On the other hand, if the tests are too difficult, it becomes
harder to find promising programs to exploit. Another al-
gorithm modification involved limiting the symbols from
which fragments can be mined. Although this change in-
creased exploration, it restricted the use of context-specific

4https://github.com/Herb-AI/HerbSearch.jl/tree/frangel-with-
minerl-explore

fragments, rendering them less useful when they were no
longer part of the larger program.

However, the results from these comparisons are not
definitive due to the experiments being conducted on a lim-
ited set of environments and random number generation
seeds. Future work should expand the range of environments
to allow for more general conclusions. Additionally, the al-
gorithm should be applied to other games and tasks and pos-
sibly to problems with sparser rewards to test its generalis-
ability and potentially discover additional findings.
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