
Language-agnostic Incremental Code
Clone Detection

Master’s Thesis

Stavrangelos Gamvrinos

Language-agnostic Incremental Code
Clone Detection

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Stavrangelos Gamvrinos
born in Athens, Greece

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Software Improvement Group
Fred. Roeskestraat 115

Amsterdam, the Netherlands
www.softwareimprovementgroup.com

www.ewi.tudelft.nl
www.softwareimprovementgroup.com

c©2020 Stavrangelos Gamvrinos. All rights reserved.

Language-agnostic Incremental Code
Clone Detection

Author: Stavrangelos Gamvrinos
Student id: 4771583
Email: s.gamvrinos@student.tudelft.nl

Abstract

Code duplication is a form of technical debt frequently observed in software sys-
tems. Its existence negatively affects the maintainability of a system in numerous ways.
In order to tackle the issues that come with it, various automated clone detection tech-
niques have been proposed throughout the years. However, the vast majority of them
operate using the entire codebase as input, resulting in redundant calculations and un-
desirable delays when this process is repeated for every new revision of a project.
On the other hand, newer incremental techniques address this by storing intermedi-
ate information that can be reused across revisions. However, all these approaches
are language-specific, utilizing language parsers to generate more sophisticated source
code representations, in an attempt to detect more complex types of clones. As a re-
sult, less popular languages, for which finding or building a parser is challenging, are
unfortunately not supported.

In this study we propose LIICD, a language-agnostic incremental clone detector,
capable of detecting exact-match clones. We assess its performance and compare it
with a state-of-the-art commercial-grade detector, found within the Software Improve-
ment Group (SIG). Furthermore, we use a similarity estimation technique called Local-
ity Sensitive Hashing (LSH) in an attempt to extend and improve the original approach.
Our experiments result in some interesting findings. Firstly, the proposed incremental
detector is very efficient and able to scale well for larger codebases. Additionally, it
provides a significant improvement compared to a non-incremental commercial-grade
detector. Lastly, our LSH-based extension proves to have difficulties matching our
original approach’s performance. However, future suggestions indicate how the poten-
tial of the technique can be further investigated.

s.gamvrinos@student.tudelft.nl

Thesis Committee:

University supervisor: Prof. Dr. A. van Deursen, TU Delft
Committee Member: Assistant Prof. Dr. M. Aniche, TU Delft
Committee Member: Assistant Prof. Dr. C.B. Poulsen, TU Delft
Company supervisor: Marco di Biase, SIG

ii

Preface

This study marks the end of my masters studies at TU Delft. Retrospectively, mixed feelings
emerge when looking back at these two years. On the one hand, the curriculum was less
technical and much more research-oriented than I would desire, leading me to question
my decision to pursue it. On the other hand, I learned a lot of things and was able to
discover interests and future aspirations that I would probably have otherwise missed. In
the meantime, I also met great people who supported me throughout this journey.

With the completion of this work, I would first like to thank my university supervi-
sor, Arie van Deursen, for his high-level guidance, feedback and contribution regarding the
direction of this study. Furthermore, I would like to thank Marco di Biase, my daily super-
visor, whose help played a determining role in the completion of this study. Not once did
he complain about all the questions and extra work that I sometimes had to put on him.

From SIG, my gratitude goes to everyone within the research team. I am glad I was
given the opportunity to be hosted at the company’s premises and was able to meet great
people with great minds. Also, kudos to everyone outside the research team, who helped
me one way or the other during the past eight months.

Moreover, I would like to thank my friends for all the memories and support during the
tough, in terms of workload, times during my studies. Last but not least, all this would not
be possible without the immense support of my family, whose help I deeply appreciate.

Stavrangelos Gamvrinos
Delft, the Netherlands

July 20, 2020

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 3
1.3 Scope . 4
1.4 Contributions . 5
1.5 Thesis Outline . 6

2 Background & Related Work 7
2.1 Clone Detection Basics . 7
2.2 Clone Detection Challenges . 10
2.3 Clone Detection Techniques . 10
2.4 Locality Sensitive Hashing . 12

3 Incremental Clone Detector 15
3.1 Overview . 15
3.2 Source Code Preprocessing . 18
3.3 Source Code Representation . 19
3.4 Clone Detection . 20
3.5 Output . 21

4 Incremental Clone Detection with Locality Sensitive Hashing 23
4.1 Motivation . 23
4.2 Overview . 24
4.3 Approach Decomposition . 26

v

CONTENTS

5 Experimental Design 29
5.1 Types of Experiments . 29
5.2 Output Validation . 31
5.3 Tools Configuration . 31
5.4 The Infrastructure . 32
5.5 The Corpus . 32
5.6 Simulation of Commits . 34

6 Experimental Results 35
6.1 LIICD Measurements . 35
6.2 LIICD vs SIG Measurements . 40
6.3 LSH-based Extension Measurements . 42

7 Discussion 49
7.1 Main Findings . 49
7.2 Implications . 51
7.3 Threats to Validity . 52
7.4 Applicability within SIG . 52

8 Conclusion & Future Work 55
8.1 Conclusion . 55
8.2 Future Work . 56

Bibliography 57

A Corpus Collection 63
A.1 Project Snapshots . 63

B Excluded Directories & Files 65

vi

List of Figures

2.1 Locality Sensitive Hashing sub-operations . 13

3.1 Substeps of the Clone Index creation workflow 16
3.2 Substeps of the Incremental Step workflow 17
3.3 Source code normalization step applied in Hummel’s study [24] 18
3.4 Basic preprocessing steps applied in our study 19
3.5 Sliding window hashing based on CHUNK SIZE 19

4.1 Substeps of the LSH-based Index Creation workflow 25
4.2 Substeps of the LSH-based Incremental Step workflow 26
4.3 Conversion of a pre-processed file into a set of shingles 26
4.4 Signature generation via Min Hashing . 27

6.1 LIICD - Execution Time for the Index Creation flow 36
6.2 LIICD - Cumulative Memory Requirements 37
6.3 LIICD - Average Execution Time for the Incremental Step flow 38
6.4 Clone Detection for Ripple . 39
6.5 Clone Detection for Kooboo . 39
6.6 Clone Detection for Tensorflow . 40
6.7 Clone Detection for OpenJDK . 40
6.8 Cumulative comparison of SIG’s detector versus the LIICD detector 41
6.9 Execution Time for the Index Creation flow for the two implementations 43
6.10 Memory requirements for the two implementations 44
6.11 Execution Time for the Incremental Step flow for the two implementations . . . 45
6.12 Index Creation sub-measurements for the LSH-based implementation 46
6.13 Execution Time implications for varying number of hash functions during Min-

Hashing . 47

vii

Chapter 1

Introduction

Technical Debt (TD) is a metaphorical term introduced in 1992 to explain the long-term
implications of quick, hasty technical compromises on the health of a software system
[11][36]. It refers to the trade-off between writing short-term, fast and messy code at the
cost of increased maintenance efforts compared with writing long-term, easier maintainable,
clean code, backed by deliberate thinking [7].

A form of Technical Debt is what is known as code duplication, a term that describes
the duplication of source code in a software system [18]. In most cases, cloning occurs
quite frequently due to the ease of copying and pasting code fragments by developers, when
the business logic of a feature is similar or identical to existing code [45][51]. In fact,
past studies report a significant amount of duplication found in examined software systems,
ranging from 7% up to 29% in large codebases [29][47]. As a result, the maintainability of
the underlying software project is negatively affected.

The existence of significant code duplication in a system’s source code introduces a
number of different problems. In particular, duplicates lead to increased codebase size
and consequently to higher maintenance costs [4]. Furthermore, in case a bug is detected
in one of the clone instances, every other instance has to be checked for the same bug
and potentially be fixed [37]. The latter does not only necessitates one to be aware of a
clone list but also requires an essential amount of time going through all the instances.
Lastly, duplication can be problematic in terms of code comprehension as well as in future
refactoring [4].

Automatically detecting the code clones in today’s software projects is important since
it sets the ground for future manual or automatic refactoring, leading to cleaner and more
maintainable code. In that respect, various clone detection techniques have been proposed,
the vast majority of which operate on the entire codebase of the underlying system. For
each source code revision, such techniques use the whole system as input, regardless of
the magnitude of the introduced changes. Although this might work well for stable legacy
systems that are rarely updated, it is far from ideal in today’s era of agile software devel-
opment. When the clones for the next revision need to be detected, redundant calculations
take place, adding up to the overall execution time of the detection process.

These drawbacks, along with the evolution of software development practices and the
appearance of concepts such as continuous integration/development (CI/CD), agile, and

1

1. INTRODUCTION

sprints, created the need for incremental approaches. In this context, the main idea is the
reuse of information gained from the analysis of a revision to the next one, avoiding unnec-
essary time-inefficient operations.

This study is conducted in collaboration with the Software Improvement Group (SIG), a
consultancy firm that focuses on software quality related challenges. One of the core focuses
of SIG is related to the maintainability of software projects. More specifically, the company
has developed automated tools that assess maintainability based on a number of predefined
criteria, such as the volume and complexity of the code, the coupling of modules etc. One
of these criteria is also the proportion of duplicated code within a project’s codebase, for
the detection of which a clone detector is used. That considered, SIG is highly related to
the topic of this thesis and ideal to guide the development of a clone detector with real word
applicability.

In this study, we develop a language independent, incremental clone detector and eval-
uate its performance within the context of SIG. SIG measures and scores code quality ac-
cording to their maintainability model [22], measuring code duplication as one of their
code properties. In our work, we refer to the developed technique as LIICD (Language-
Independent Incremental Clone Detector).1 We evaluate and compare our approach with
the traditional clone detection approach that SIG uses, employing different software projects
with varying sizes as input. Our experiments indicate improvements to the time needed to
detect the duplicated code fragments. Moreover, we examine if Locality Sensitive Hashing
(LSH) [25]—a nearest-neighbor similarity estimation technique—can be utilized to further
extend and improve the LIICD detector, which we originally propose. Our first findings
indicate that the LSH-based approach does not match the original approach’s performance,
although there is room for future research to explore possible refinements.

1.1 Problem Statement

Code duplication highly affects the maintainability of a software system [22]. Traditional
techniques use the whole system as input, resulting in redundant calculations when the
analysis has to be repeated frequently through time. For each code change, which in practice
we could associate with a commit, traditional approaches need to re-run the clone detection
process, processing the entire software system from scratch, regardless of the magnitude of
these changes, i.e. regardless whether a single line in a single file was updated or multiple
lines in multiple files were updated. Since searching for clones in a large code base can be
expensive both in time and memory demands, the need for more fine-grained, commit-level
approaches emerges.

The idea behind incremental techniques is the reuse of information across revisions so
as to reduce unnecessary operations and bring down the time needed to detect the clones.
Although a number of different incremental approaches have been proposed in the past, the
vast majority of these are language-dependent, requiring a language parser to process the
underlying code. On the one hand, this allows for a deeper analysis and the detection of
more complex higher types of clones, but on the other, it comes with limitations when it

1Pronounced lai-cee-dee

2

1.2. Research Questions

comes to projects written in unpopular languages, for which finding or building a parser is
challenging. Furthermore, if taken in the context of SIG, a language-independent clone de-
tection approach allows to detect code clones uniformly across different programming lan-
guages. This, in practice, translates in maintainability findings that are language-agnostic.
To our knowledge, an incremental technique that is purely language-agnostic is yet to be
proposed.

In this study, we explore how such a language-agnostic incremental clone detector can
be designed and developed. To do so, we build upon an existing text-based incremen-
tal approach, originally proposed by Hummel et al. [24]. Although the approach is not
language-independent by default, we modify it to achieve the desired outcome. To observe
the benefits that such an incremental technique can offer, we evaluate the detector in the
context of SIG, comparing it with the company’s existing detector. Furthermore, we exam-
ine LSH as a way to extend this approach, attempting to overcome some of the drawbacks
of the LIICD detector. We then compare the two approaches with each other and investigate
the potential of LSH in our context.

1.2 Research Questions

Current research in incremental code duplication detection focuses on language-dependent
approaches trying to optimize and detect more complicated types of clones. Addition-
ally, although a number of different studies, utilizing traditional techniques, touch upon
language-independent clone detection, no studies have looked into how the same feature
can be achieved in the context of an incremental technique. Thus, the research questions
investigated in this thesis are the following:

1. RQ1: How can we build a language-agnostic incremental clone detector and what
kind of information do we need to store across revisions?

To answer the first research question we initially look into how traditional text-based
clone detection approaches work. We specifically focus more on text-based detectors
since this is the only category of approaches that does not require a parser, thus is
suitable for a language independent approach. Apart from that, we try to learn from
existing incremental approaches, studying the different stages of the clone detection
pipeline and the intermediate information used between revisions.

2. RQ2: How does the resulting LIICD (Language-Independent Incremental Clone De-
tector) approach perform?

We answer this question by looking into the performance of our clone detector in
terms of two different evaluation metrics. In particular, we assess LIICD by measur-
ing its time and memory requirements during the analysis of a number of different
software systems, processing a series of commits for each system.

3

1. INTRODUCTION

3. RQ3: How does such an approach perform compared to the traditional, industrial-
strength one that SIG is currently using?

SIG uses a broad range of software quality analysis algorithms embedded within its
analyses tools. One of those is the clone detection logic responsible for the detec-
tion of code duplication and existing clones. To answer our question, we isolate the
clone detection process of the respective tool’s pipeline, measure its performance and
compare it with the performance of our proposed method.

4. RQ4: Can we use Locality Sensitive Hashing (LSH) to extend and improve the orig-
inal approach?

To answer our last question we first look into how LSH can be used to extend our
LIICD detector. Then, to investigate the potential of the developed LSH-based tech-
nique in the context of this study, we evaluate it using the same experimental setup as
the one used to assess the performance of LIICD, and then compare the findings for
two approaches.

1.3 Scope

The main focus of this study is to build a language independent, incremental clone detector,
investigate its effectiveness and evaluate its performance. Detecting the clones is essential
for the identification and removal of duplicated code and future maintainability of a software
system. Knowing the existing clones, one can then proceed and manually or automatically
refactor the code (e.g. by merging the duplicates in a single class or function) and as a result
eliminate the drawbacks that come with it and make the codebase future-proof.

1.3.1 Languages & Techniques

Focusing on a specific programming language, especially a popular one such as Java [41],
would allow for a deeper, more detailed clone detection. One such example is an approach
capable of finding more complicated clones, such as semantically similar clones. In that
case, it would also be reasonable to investigate different detection techniques such as token-
based, tree-based, graph-based etc. However, SIG is not limited to the supported languages
and finding or building a parser for less popular languages is challenging. In this context
we focus on language independent detectors which can only be produced by leveraging
text-based techniques.

1.3.2 Clone Types

There are four different types of clones, typically referred to as Type 1, Type 2, up to Type
4 [4][45][51]. In this study, we specifically put our focus on Type 1 clones, which refer to
exactly identical fragments of code. This choice is based on the end goal of comparing our

4

1.4. Contributions

study result with the existing state of the art approach used by SIG. Therefore, we design
and develop our clone detector only accounting for Type 1 clones.

1.3.3 Clone Management

In the context of this study, we do not discuss or support clone management [13][48]. That
means that we do not keep track of how the clones evolved throughout the different revisions
of the underlying software project. On the contrary, we are interested in what happens in the
context of a specific commit, meaning the clones that the specific code revision introduces
or removes.

1.3.4 High Level Evaluation

Neither of our two developed incremental clone detectors is compared with existing state-
of-the-art incremental techniques. Our aim in this study is not to discover whether these
approaches perform adequately when compared with other relevant studies. On the contrary,
our goal for LIICD is to evaluate its performance and examine it in comparison with SIG’s
current clone detection approach. Furthermore, in terms of our LSH-based approach, we
investigate whether LSH can be used to achieve even better performance. Both our tools
are publicly available,2 thus additional studies examining these approaches from different
perspectives can be conducted in the future.

1.4 Contributions

In the process of investigating the aforementioned questions, this study makes a number of
different contributions. These are:

1. We investigate language independence in the context of incremental clone detection
and develop LIICD, a tool based on an existing incremental text-based clone detection
technique by Hummel et al. [24].

2. We investigate the suitability of LSH as a technique that can be leveraged to extend
and improve the originally proposed approach.

3. We develop an incremental clone detector that adopts the LSH technique.

4. We evaluate LIICD’s performance and compare it with SIG’s commercial-grade clone
detection approach to explore the benefits that an incremental approach can offer.

5. We evaluate our LSH-based in terms of efficiency, comparing it with LIICD and
providing findings with respect to the performance of this extension.

2Both tools are available on Github: https://github.com/agamvrinos/LIICD

5

1. INTRODUCTION

1.4.1 Incremental Detection

Our first goal in the context of this study is to develop and assess a language-agnostic in-
cremental clone detection technique. In that respect, we first provide insights on the current
status of the literature in the area of incremental clone detection and research relevant text-
based techniques. Then, we develop a clone detector that satisfies our study’s requirements,
i.e. a detector that works incrementally and is capable of detecting Type-1 clones, while
also being language-independent.

1.4.2 LSH Extension

In the context of our research goal, we further extend our incremental detector by utilizing
Locality Sensitive Hashing (LSH), a technique used to efficiently search for near neighbors.
In our case, this practically translates to efficient similarity estimation between source files.
In particular, we compare the latter with the LIICD detector proposed, discuss the resulting
findings and provide insights for further experimentation.

1.4.3 Evaluation

Having both the LIICD and LSH-based incremental approaches in place, we proceed to their
evaluation. For our LIICD detector, we first measure its performance and then evaluate it
within the context of SIG. More specifically, we isolate the clone detection process of SIG’s
SAT tool—a tool that SIG uses to analyze the quality of a software project and measure
various metrics such as its maintainability—and compare it against our approach. For our
LSH-based detector, we run experiments and evaluate it by comparing its performance with
that of LIICD.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we describe the back-
ground of this study. This includes basic prerequisite knowledge on clone detection, as well
as the related work in the particular scientific area. Then, in Chapter 3 we provide a detailed
description of the proposed incremental clone detector. Chapter 4 introduces an extension to
the original approach which adopts a widely known similarity estimation technique, known
as Locality Sensitive Hashing. Both the original approach and the extension are then used to
run our experiments, the setup and considerations of which are outlined in Chapter 5. Then,
in Chapter 6 we present the results, followed by a discussion in regards to our findings in
Chapter 7. Lastly, in Chapter 8 we summarize the findings and contributions of this study
and provide suggestions for future work.

6

Chapter 2

Background & Related Work

In this chapter we discuss the background information required for this study. Furthermore,
we dive into the existing literature and take a look into the scientific landscape within the
area of clone detection.

2.1 Clone Detection Basics

This section provides information about the different types of clones, as these are identified
by the related literature. Moreover, we look into the categorization of clone detection tech-
niques according to the source code representation they adopt. Lastly, we discuss popular
evaluation metrics, commonly used to assess the performance of clone detection techniques.

2.1.1 Clone Types

Code clones can be found in different forms and are not all the same. In fact, previous
work in the existing literature [4][45][51] has identified and classified clones into four main
categories. The first three categories describe syntactically similar code fragments, whereas
the last one looks into the semantic similarity of two such fragments. These categories are
summarized as follows:

• Type 1: An exact copy of the original fragment, only allowing for differences in
whitespaces, blanks and comments.

• Type 2: Syntactically identical clones with variations in identifiers, literals, types and
comments.

• Type 3: Syntactically identical clones with further modifications such as added/re-
moved statements and variations in identifiers, literals, types, layout, and comments.

• Type 4: Code fragments that are semantically similar are identified as Type 4 clones.
For instance, the functionality of an ”if” statement can be implemented using a ”switch”
statement.

7

2. BACKGROUND & RELATED WORK

An example for each of these types of clones can be seen in the listings 2.2 to 2.5. In these
examples, the higher the clone type the harder it is to detect the corresponding clones.

1 int myFunc(int n) {
2 int sum = 0; // cm1
3 int a = 2;
4 for (int i = 0; i <=n; i++){
5 sum = sum + a;
6 }
7 return sum;
8 }

Listing 2.1: Original code fragment

1 int myFunc(int n) {
2 int sum = 0; // cm1
3 int a = 2; // cm2
4

5 for (int i = 0; i <= n; i++){
6 sum = sum + a;
7 }
8 return sum;
9 }

Listing 2.2: Type 1 clone

1 float myFunc(int n) {
2 float summary = 0; // cm1
3 int a = 2; // cm2
4

5 for (int i = 0; i <= n; i++){
6 summary = summary + a;
7 }
8 return summary;
9 }

Listing 2.3: Type 2 clone

1 int myFunc(int n) {
2 int sum = 0; // cm1
3 // deleted line
4 for (int i = 0; i <= n; i++){
5 sum = sum + 2;
6 i++; // new line
7 }
8 return sum;
9 }

Listing 2.4: Type 3 clone

1 int myFunc(int n) {
2 int sum = 0; // cm1
3 int a = 2;
4 int i = 0;
5 while (i <= n) {
6 sum = sum + a;
7 i++;
8 }
9 return sum;

10 }

Listing 2.5: Type 4 clone

2.1.2 Core Techniques

The majority of the existing clone detection techniques approach the detection of duplicated
code in a conventional way. Over the last few years however, more and more focus is being
given to incremental techniques that approach this on a more fine-grained level and attempt
to avoid redundant recalculations by passing information across revisions. Regardless of
the approach, detection techniques can be classified into four core categories, based on the
way they represent the source code. The technique that a clone detector adopts, affects it in
a number of different ways. For instance, one technique might be more suitable to detect
higher types of clones compared to another but its performance might be worse. It’s a trade

8

2.1. Clone Detection Basics

off. To better understand this we can think of an analogy in the context of the automotive
industry. Car manufacturers build all sorts of different cars (clone detectors), but the engine
types (core techniques) are limited to three or four, each with potential for a unique tuning
(variations of techniques). The four techniques used in the area of clone detection are the
following:

1. Textual techniques: These techniques look at code fragments in terms of textual
equality, without applying any sophisticated transformations on the original source
code. As a result, they achieve great coverage of Type-1 clones and are capable of
detecting clones no matter the underlying language [51]. On the negative side, they
are unsuitable for the detection of more complicated, higher types of clones.

2. Lexical techniques: In this approach, a sequence of tokens is extracted from the
source code with the use of a lexer in a process called lexical analysis. Then, instead
of source code sequences, token sequences are compared with each other. These
techniques are usually very efficient in the detection of clones with minor differences
(Type-2) such as renames [47].

3. Syntactic techniques: These are further split into tree-based and metric-based tech-
niques. In the former, a parser is used to create an Abstract Syntax Tree (AST) and
then its sub-trees are compared. Due to the tree abstraction of the source code, this
category of techniques allows for the detection of more complicated types of clones.
In the case of metrics-based techniques, a number of metrics is computed for each
code fragment, and then the resulting metric vectors are compared in order to detect
the clones.

4. Semantic techniques: These are also further categorized into 2 sub-categories, graph-
based and hybrid techniques. In general, they employ static program analysis to allow
for a semantic, rather than syntactic, comparison of two code fragments. Graph-based
construct a Program Dependency Graph (PDG) from the source code and detect clone
by comparing the sub-graphs. Hybrid on the other hand, use a combination of the
aforementioned techniques.

2.1.3 Evaluation Metrics

In the area of clone detection, the proposed clone detectors are usually compared on the
basis of three distinct evaluation metrics, namely recall, precision and scalability [47][54].
Although in this study we specifically focus in the scalability of the developed tools, the
remaining two are also briefly discussed. These are defined as follows:

• Recall: Refers to the proportion of code duplicates within a codebase that a clone de-
tector is capable of detecting. This is usually challenging to measure since it requires
a benchmark to compare with. The following formula calculates recall [46]:

Recall =
No.o f correctly detected clones
No.o f total detectable clones

9

2. BACKGROUND & RELATED WORK

• Precision: Refers to the proportion of the clones detected by a clone detector, which
are true clones and not false positives. In the context of clone detection, precision is
given by [46]:

Precision =
No.o f correctly detected clones

No.o f total detected clones

• Scalability: Refers to the time & space requirements of the underlying clone detector,
thus its ability to scale to larger codebases.

2.2 Clone Detection Challenges

The design and development of a clone detector comes inherently with several challenges.
One of these is the design of a clone detection tool in such a way that it is capable of de-
tecting multiple types of clones, while also scoring high accuracy and recall when applied
in practice [51]. Especially the detection of semantic, Type-4 clones is considered a rather
challenging task, identified as an undecidable problem by the existing literature [4]. Fur-
thermore, many tools struggle with scalability, meaning they scale poorly when it comes
to the analysis of larger codebases [50]. Lastly, portability, i.e. the ability of a detector to
easily detect clones in multiple programming languages, is yet another challenge that the
creators of detection tools have to face [51].

2.3 Clone Detection Techniques

In this section, we examine the various traditional and incremental techniques that have
been proposed throughout the years.

2.3.1 Traditional Techniques

Traditional detection techniques are those that use the entire codebase of a software project
as input to detect the clones regardless of the size of the changes introduced in a particular
code revision.

Some of the most relevant text-based techniques are Duploc [15] and the techniques
by Marcus et al. [39] and Johnson et al. [27]. Duploc uses a ”dot-matrix” to plot similar
code fragments and then detects clones by parsing it while looking for patterns. Johnson
et al. use substring matching to detect clones in a language-independent manner. Lastly,
Marcus et al. use static analysis to analyze the codebase of a software system and determine
semantically similar code fragments.

For the token-based techniques, CCFinder [28] is the most discussed approach in lit-
erature. In that, the authors use language-specific transformation rules to tokenize the raw
source code. Then, a suffix-tree matching algorithm is used for the actual clone detection.
Dup [2] and CP-Miner [37] have also attracted the community’s interest. The former uti-
lizes a special kind of data structure, called parametrized suffix tree, to be able to detect

10

2.3. Clone Detection Techniques

Type-1 and Type-2 clones, whereas the latter uses frequent subsequent mining, a data min-
ing technique, to efficiently identify copy-pasted source code. Interestingly, more recent
studies such as CCLearner [34] and White et al. [56] explore tokenization in combination
with Deep Learning.

In the area of tree-based and metric-based techniques, CloneDr [3], Deckard [26] and
the work of Mayrand et al. [40] and Kontogiannis et al. [31] are among the most widely
used techniques, respectively. For tree-based approaches, CloneDr generates an annotated
parse tree via the use of a compiler generator. During the detection process, subtrees are
compared using characterization metrics. The authors of Deckard suggest a technique
that uses a combination of Abstract Syntax Trees (ASTs) and Locality Sensitive Hashing
(LSH) to efficiently cluster similar characteristic vectors and consequently detect clones.
For metric-based techniques, Mayrand et al. calculate different metrics from names, lay-
outs, expressions etc. of functions. Then, clones are detected by identifying functions with
similar values for the calculated metrics. Kontogiannis et al. propose an approach that uses
two methods for the detection of clones. The first method numerically compares values ex-
tracted by utilizing popular metrics and categorize code fragments to begin-end blocks. The
second method uses dynamic programming to compute and report begin-end blocks using
minimum edit distance.

Notable techniques in the category of graph-based techniques are Duplix [32], the de-
tector proposed by Komondoor et al. [30] and GPLag [38]. The first two are quite similar,
both being capable of finding maximal similar PDG subgraphs with high precision and
recall. In contrast, GPLag uses PDG mining for the purposes of plagiarism detection. Con-
trary to other plagiarism detection approaches, GPLag can also detect plagiarism code that
has intentionally been disguised.

Lastly, some hybrid techniques can be found in the works of Funaro’s et al. [19] and
the studies of Agrawal et al. [1] and Saini et al. [49]. Funaro’s et al. propose a hybrid
technique combining ASTs to identify code clones and a text-based technique to eliminate
false positives. Agrawal et al. combine token-based with text-based approaches, exploiting
the benefits of each, in order to detect Type-1, Type-2 and Type-3 clones, respectively.
Finally, Saini et al. [49], propose a detector named Oreo, a tool capable of detecting Type-1
up to Type-4 clones with high accuracy and recall, utilizing machine learning, information
retrieval, and software metrics.

2.3.2 Incremental Techniques

The studies that propose incremental techniques are scarce compared to those that introduce
full system analysis tools. The majority of these focus on token, tree or graph-based tech-
niques, which require a lexer or parser to construct the necessary data structures based on
the corresponding programming language(s) of a system. In fact, most of these do not in-
tend to support language-independence to begin with and thus produce detectors that, on the
one hand are capable of detecting more complex types of clones, but on the other, require
language-specific configuration.

Göde and Koschke [21] first introduced an incremental-based clone detection technique.

11

2. BACKGROUND & RELATED WORK

The authors proposed a tree-based technique, employing a global Generalized Suffix Tree
(GST) data structure to represent the underlying source code. A tree-based technique was
also used in ClemanX [42], in which each source file is represented as an AST. Each subtree
of such an AST is further represented as a characteristic vector to allow for similarity com-
parison. Later, Higo et al. [23] suggested the first PDG-based incremental clone detection
technique. In that, during the analysis phase, a PDG is constructed for each method of each
updated file and stored in a database. Then, in the detection phase that follows, the user’s
manual input triggers the fetching of the appropriate PDGs from the database which are
used to detect the clones. Hummel et al. [24] suggests an index-based algorithm. The core
data structure used is a Clone-index, a global data structure resembling a typical inverted
index. To our knowledge, although this technique uses a lexer to transform source code
into tokens, it is the closest the literature has got to a language-independent incremental
technique. Lastly, the recent Siamese of Ragkhitwetsagul et al. [44] employs a technique
based on tokens that further produces four different code representations in order to be able
to detect different types of clones.

2.4 Locality Sensitive Hashing

In principle, the procedure of finding near neighbors, for example similar documents, can
be quite straightforward. Each document is compared with every other document based
on a similarity metric. However, although the brute force approach works well for a small
document pool, it scales poorly due to the time requirements that increase quadratically
as the number of documents grows [5]. Approximate search schemes, such as Locality
Sensitive Hashing (LSH), allow for a significant reduction in the computational time needed
for this process [25]. In this section, we provide a high-level overview of the main concepts
behind LSH. Furthermore, we briefly discuss various applications of it within the area of
clone detection.

2.4.1 Definition

The main idea behind LSH is to hash the underlying data points a number of times using
different hash functions, so as to ensure that similar items have a higher chance to collide
and end up in the same hash bucket, compared to dissimilar items [33]. Then only the items
that end up in the same bucket—also known as candidate pairs—are checked for similarity.

2.4.2 LSH Internals

There is a variety of different LSH schemes that can be used. The selection is determined
by the underlying similarity measure that is used to compare the documents for similarity.
In that respect, different measures such as the hamming distance [20], the cosine distance
[53] and the Jaccard coefficient [6] can be used. In the case of cosine distance for example,
the LSH scheme that is used is known as SimHashing [9] whereas in the case of Jaccard
coefficient, the same is achieved via the use of MinHashing [10]. In our case, we put
our focus on the Jaccard coefficient and Min-hashing since this approach was found to

12

2.4. Locality Sensitive Hashing

outperform Sim-Hashing in a series of experiments [52]. Additionally, Min-Hashing is
capable of detecting quite distant similarities (low percentages), something not possible
with Sim-Hashing. Overall, the underlying components of this process are summarized in
Figure 2.1.

Figure 2.1: Locality Sensitive Hashing sub-operations

Figure 2.1 shows the particular LSH scheme consisting of three main sub-operations, Shin-
gling, MinHashing and the actual LSH. These are defined as follows:

Shingling: This is the process of converting a document into a set of k-shingles. The shin-
gles can be anything from simple k-length substrings, to combinations of k words. The
choice of what we define as a shingle affects the probability of finding matches. For in-
stance, for the extreme case of 1-character shingles, it will be much more likely to find a
match in another document compared to the probability of finding a match for shingles of
greater length.

MinHashing: The resulting sets of the previous step can be quite large, making their com-
parison rather inefficient. To partially solve this problem, MinHashing converts a set of
shingles into a smaller fixed-length representation called signature. Then, rather than ap-
plying the Jaccard coefficient to the set of shingles, we instead apply it to the elements of
the generated signature. That implies that the signatures need to be generated in such a way
that the information of a set is preserved as much as possible. The application of this step
though, does lead to loss of information, meaning that it is not anymore possible to calculate
the exact similarity between two files. In contrast, the similarity is now calculated on the
basis of an estimation, which can still lead to accurate results. All things considered, to gen-
erate the signature that represents a document, we hash every shingle of a set using k-hash
functions and select the minimum hash value for each of these hash functions. For example,
if we have 50 random hash functions, we’ll get a MinHash signature with 50 values. As
can be understood, the fewer hash functions we use, the higher the chance for collisions and
thus the greater the error rate.

Locality Sensitive Hashing: MinHashing addresses the ”curse of dimensionality” that
comes with the sets of shingles. However, we still need to compare every signature with
every other signature, which keeps the whole process inefficient. That is where the last step
of the pipeline, LSH, finds its application. The technique used for this step is called band-
ing where the matrix that holds the k hash values for each document, is split into b bands

13

2. BACKGROUND & RELATED WORK

each consisting of r rows. For instance, if we use 12 hash functions then we can split the
matrix into 4 bands of 3 rows. Then, when a new document Dnew comes in and we want
to identify whether this document should form a candidate pair with another document, we
go over every band and look for documents that share the exact same MinHash values on
every row of that band. If we find a band for which all rows match, only then we proceed
to execute the full comparison between these documents. Lastly, it should be noted that
the selection of the number of bands and rows to be used is crucial since it determines the
similarity threshold, over which we consider two documents similar.

2.4.3 Applications

Locality Sensitive Hashing has found applications in many different fields. In particular,
Verroios et al. [55] and Ebraheem et al. [16] use it in the context of Entity Resolution.
Additionally, the studies of Cappeli et al. [8] and Zhou et al. [58] adopt LSH-based tech-
niques for biometric Fingerprint Indexing. Furthermore, LSH is quite frequently used in the
context of recommendation algorithms and Collaborative Filtering. Google for example,
uses LSH to personalize the widely known Google News [12], whereas Zhang et al. [57]
use it to address the scalability issue of existing collaborative filtering algorithms.

In the context of clone detection, LSH has previously been used in a number of different
past studies. More specifically, the authors of Deckard [26] propose a tree-based detector
that uses LSH to compare the similarity of characteristic vectors extracted by the subtrees
of the generated AST. ClemanX [42] employs a quite similar methodology, again for a tree-
based approach. Lastly, Hummel et al. [24] suggests LSH as a future extension of their
proposed detector to allow for the detection of Type-3 clones.

14

Chapter 3

Incremental Clone Detector

Our inspiration for the proposed LIICD approach derives from an existing study conducted
by Hummel et al. [24]. Unlike the vast majority of incremental studies, which are built on
top of tree-based and graph-based methods and are consequently strictly language-specific,
the specific study introduces a solution based on text. As a result, this technique makes for
a great base for experimentation towards a language-independent solution. Although the
technique is not language-agnostic per se, due to the choice of the authors to include a tok-
enization step, we will see how minor adjustments can result in the desired outcome. More
specifically, this chapter includes a discussion of the changes that were applied to achieve
language independence and how these affect the resulting LIICD detector. Furthermore, we
provide a detailed analysis of the detector’s internals and explain how the various steps of
the detection pipeline work.1

3.1 Overview

The incremental technique discussed in this study consists of two main workflows, each of
which further includes a number of sub-steps. The first flow is related to the creation of
an intermediate representation that is persisted and reused across a project’s revisions. In
the context of this work, this pool of intermediate information is known as the Clone Index.
This flow uses the entire software project as input and runs only once at the beginning of
the whole clone detection pipeline. Then, a second flow referring to the logic that runs the
actual code duplication detection procedure outputs the discovered clones. This process
is triggered when the underlying codebase has been updated, which in a real world setup
would be when a new commit has been pushed to a version control repository.

3.1.1 Clone Index Creation Workflow

The workflow through which the clone detector creates the Clone Index contains a series
of different steps. The whole process is depicted in detail in Figure 3.1. Initially, each of
the files of the software project analyzed is fed into a preprocessing step which modifies

1The source code is available on Github: https://github.com/agamvrinos/LIICD

15

3. INCREMENTAL CLONE DETECTOR

the code (e.g. by removing redundant blank lines) and determines the comparison granu-
larity. During the next phase, the statements of the modified source code are grouped into
sequences based on a predefined configuration parameter that determines the size of the
group, and are subsequently hashed. Lastly, these hashes along with additional metadata
such as the filename and index of a statement within a file are stored in the Clone Index.

Figure 3.1: Substeps of the Clone Index creation workflow

Note that during this flow, we do not execute any clone detection logic to identify the
initial state of the codebase as far as duplication is concerned. Thus, we initially do not have
an overview of all existing clones in a system’s codebase. Nevertheless, this is something
that could be achieved by querying the Clone Index with each file of the initial codebase.
However, since in this study we do not look into how the clones evolved, but are only
interested in the clones that were removed or created in each new revision, we do not apply
such a step.

3.1.2 Incremental Step Workflow

As explained earlier, the incremental step workflow is initiated every time a new commit is
pushed to the version control-based repository hosting the related software system. In the
context of this study though, due to the fact that the proposed detector is not integrated with
an existing version control platform (e.g. in the form of a plugin), we manually simulate
the procedure that would otherwise be automatically triggered in a real world setup. This
is done via a JSON configuration file, which indicates the updated files along with the
type of the corresponding update for every commit we are interested in analyzing. Such a
configuration file can easily be generated from the information included in a typical commit.
An example of such a file is illustrated in Listing 3.1, which shows a configuration file for
the analysis of two commits, each with files that were either modified (M), added (A),
deleted (D) or renamed (R).

16

3.1. Overview

1 {
2 "commits": [
3 {
4 "id": "cb8f645e0f",
5 "changes": [
6 { "type": "M", "filename": "lib/plugins/loader.py" }
7]
8 },
9 {

10 "id": "564907d8ac",
11 "changes": [
12 { "type": "A", "filename": "fragments/test_refactor.yml" },
13 { "type": "D", "filename": "fragments/arch_linux.json" },
14 { "type": "R", "filename": [
15 "test/facts/system/distribution/__init__.py",
16 "test/facts/system/__init__.py"]
17 }
18]
19 }]
20 }

Listing 3.1: Example of a JSON configuration file indicating the changed files per commit

For the most part, the substeps of the incremental step workflow resemble those of the
index creation workflow. In fact, the preprocessing and hash generation phases are identical,
although in this case the related operations are only applied to the affected files, rather than
the entire codebase. In the next step, the generated hashes are compared with those stored in
the persisted Clone Index, during the process shown as ”Clone Detection” in Figure 3.2. A
match of two hashes indicates the discovery of a clone. Nevertheless, as these hash values
are generated by hashing a fixed number of code statements, say N, the discovered clones
are at that point of length N. As a consequence, additional logic that expands the discovery
so as to extend the clones to their maximal length, is also necessary.

Figure 3.2: Substeps of the Incremental Step workflow

17

3. INCREMENTAL CLONE DETECTOR

Lastly, as shown in the last steps of Figure 3.2, the Clone Index needs to be updated, so that
the next iteration can compare the hashes generated by the files in a future commit with the
ones persisted in the updated Clone Index. This process takes place simultaneously with the
detection of the clones.

3.2 Source Code Preprocessing

In the approach of Hummel et al [24], the authors apply a normalization step that includes
tokenization during the preprocessing phase of the source code. The purpose of this step is
to convert the sequences of code into sequences of tokens allowing thus for the detection of
Type-2 clones. An illustration of this, included in the original study, can be seen in Figure
3.3.

Figure 3.3: Source code normalization step applied in Hummel’s study [24]

This step however, requires a parser so that source code elements such as identifiers,
literals etc. can be converted into tokens. Unfortunately, this makes the whole process lan-
guage specific since different programming languages require different parsers. Especially
for less popular languages, finding or creating a parser can be quite challenging. That said,
even if we wanted to maintain a collection of parsers and use the appropriate one based on
the project’s underlying language(s), that would still not meet our research goals.

Based on these facts, in our study we do not tokenize the raw source code but instead
only apply basic preprocessing steps that do not affect the language-independence feature
of the proposed detector. By doing so, we eliminate the possibility to detect Type-2 clones.
However, in the context of this study, our main focus is on exact clones and therefore,
a modification like that still allows us to meet the requirements set earlier in this study.
Having said that, the preprocessing substeps we apply on the parsed source code are:

1. Removal of leading and trailing whitespaces

2. Removal of double whitespaces

3. Removal of blank lines

It should be noted that, in our case we do not remove comments since that would require
additional work to identify all the different commenting styles corresponding to different

18

3.3. Source Code Representation

programming languages. Although this process does not necessarily require a parser, one
would still need to segment the system into components of different languages in order
to automate the process of the identification and removal of comments. A recent study
by Pascarella et al. [43], which looks into source code commenting of open-source and
industrial Java-based software systems, reports low percentages of code-to-comment ratio
in these. In particular, for open-source systems, the measurements range from 6.3% to
12.1%, whereas for the industrial ones the numbers are smaller, ranging from 0.1% to 2.5%.
That said, we do not expect large variations in our findings in the case comments were to
be removed. As a result, we stick to the simple preprocessing steps mentioned above. An
example of an application of these on actual source code, can be seen in Figure 3.4.

Figure 3.4: Basic preprocessing steps applied in our study

3.3 Source Code Representation

The proposed clone detector is text-based implying that there are no special transformations
applied to the raw source code. However, the intermediate information persisted and reused
by each code revision is not comprised of the simple preprocessed statements. Instead,
blocks consisting of a fixed number of statements are hashed and the resulting hash values
along with metadata is the actual information stored in the Clone Index. This happens on
sliding window basis where consecutive blocks of size CHUNK SIZE are hashed one after
the other starting from the range [0, CHUNK SIZE - 1] all the way up to [LINES COUNT
- CHUNK SIZE, LINES COUNT - 1]. An example of this process with a predefined
CHUNK SIZE set to 2 can be seen in Figure 3.5. The choice of a value for the CHUNK SIZE
inevitably also determines the minimum length of a clone.

Figure 3.5: Sliding window hashing based on CHUNK SIZE

19

3. INCREMENTAL CLONE DETECTOR

Every hash value for each hashed block is then stored in the Clone Index along with addi-
tional meta information, used during the phase of the actual clone detection. That is:

1. the filename of the file that contains the hashed block

2. the statement index

3. the start line of the block

4. the end line of the block

Lastly, it should be noted that the Clone Index can either be persisted in memory or in an
actual database. In our case, we persist this information in memory, although in a real-world
setup an actual database would be necessary.

3.4 Clone Detection

The clone detection process is initiated for each new code change, or commit. The detec-
tor preprocesses each file included in that commit and proceeds by hashing the consecutive
blocks of code based on the predefined CHUNK SIZE. The generated hashes are then com-
pared with those stored in the Clone Index. Any pair of matching hash values indicates the
discovery of a clone that consists of exactly CHUNK SIZE lines. However, this alone is not
enough since a clone might consist of more lines than those determined by CHUNK SIZE.
Therefore, the detector runs additional logic that investigates whether the minimal clone
that was identified, can further be extended. The details of this process are analytically
explained in the study by Hummel et al. [24]. However, on a high level, this works by
detecting whether the individual clone instances overlap. For instance, if a clone comprises
5 lines of a file starting from index 0 up to index 4 and another clone in that file is found
between the lines with index 1 and 5, that automatically means that these blocks overlap
and the individual clones can be merged into a single one occupying lines 0 to 5. Note
that that this merging process is only possible because of the nature of this detector, which
specifically focuses on identical blocks of code. This assumption would not be valid in case
of fuzzy clone detection based on estimations.

During the detection of the clones, the clone index is also updated and prepared for
the next time the incremental step flow gets triggered when a new commit arrives. More
specifically, the file changes included in a commit are handled in batches based on the type
of the change. This happens as follows:

• We first handle the batch corresponding to deletions. We query the Clone Index with
the index entries of the deleted files to identify which clones are removed, and then
remove these entries from the index. Handling the deletions first is important, because
otherwise (e.g. if we handled the updated files batch first), we would compare the
respective index entries with an outdated Clone Index.

20

3.5. Output

• We then handle file updates corresponding to renames. This case is similar to the
handling of the deletions. We detect the clones and remove the entries corresponding
to the old filenames and then again add them add new entries matching them with the
updated filenames.

• The next batch in order is that of the updated files. We treat this case as deletions
followed by creations. That means that, as in the case of deletions, we first query the
index with the non-updated versions of the files to find which clones are removed and
then remove the outdated entries from the index. Subsequently, we generate the index
entries for the updated versions of the files and query the index to find the clones that
were added. Finally, we update the index with the new entries.

• Lastly, for the simple case of newly created files, we generate the corresponding index
entries, detect clones and eventually update the index by appending the entries to the
Clone Index.

3.5 Output

The output of the detector is in the form of raw text logs indicating the clones that were dis-
covered. More specifically, these logs include: (1) the filename for each clone instance, (2)
the starting index of each clone in the preprocessed file, (3) the start and end lines, and (4)
the number of blocks of code of CHUNK SIZE length that contributed to the final maximal
clone. An example of this can be seen in Listing 3.2. The specific output corresponds to the
files shown in Listing 3.3 and Listing 3.4.

1 (.../ project/Test.java|0|0-6) -
2 (.../ project/Test2.java|1|1-7) - 2

Listing 3.2: Example of the detector’s output

0 import java.lang.*;
1 import java.io.*;
2 class Test {
3 public static void main(

String []args) {
4 System.out.println("Hello

world");
5 }
6 }

Listing 3.3: Test.java

0 import java.util.*;
1 import java.lang.*;
2 import java.io.*;
3 class Test {
4 public static void main(

String []args) {
5 System.out.println("Hello

world");
6 }
7 }

Listing 3.4: Test2.java

In this case, the clone detector detects a clone between files Test.java and Test2.java. In the
former, the clone instance can be found at lines 0 to 6, whereas in the latter at lines 1 to 7.
Note that the indices correspond to lines after a file has been pre-processed. That means that
for example, if Test.java had a blank line at index 0—thus the clone was moved to lines 1 to

21

3. INCREMENTAL CLONE DETECTOR

7 of the original file—, the clone instance would still be detected to be at lines 0 to 6 because
of the removal of the blank line during the preprocessing phase. Finally, the detector also
outputs the number of blocks of code that contributed to the resulting clone. In this example,
the selected CHUNK SIZE was chosen to be 6. As a result, the number 2 indicates that two
overlapping blocks of code of length 6 were used, resulting in the detection of a clone of
length 7.

22

Chapter 4

Incremental Clone Detection with
Locality Sensitive Hashing

In Chapter 3 of this study we discussed how the original incremental clone detection algo-
rithm proposed by Hummel et al. [24] works and how it can be refined to achieve language
independence. However, a closer look at the empirical results reported in the original study
raises concerns about its performance. In this chapter we introduce an extension of the in-
cremental clone detector discussed in Chapter 3. For that purpose, we use the technique we
introduced in section 2.4, known as Locality Sensitive Hashing (LSH) and investigate its
suitability in the context of the LIICD detector. More specifically, we first explain the moti-
vation about this extension. Then we dive deeper into this approach’s internals and discuss
how it differs from the original approach and which parts of it remain unaltered.1

4.1 Motivation

Our motivation to build an extension of the approach mentioned earlier emerges from the
findings of the experiments conducted by the authors of the study of Hummel et al. [24].
More specifically, in one of the experiments the authors analyze the Eclipse SDK (v3.3), a
software project consisting of more than 42 million lines of code and more than 200,000
Java source code files. In that, the authors measure the time needed to create the initial
Clone Index and the time required to query and update it. The results of this experiment can
be seen in Table 4.1.

Index Creation (complete) 7 hr 4 min

Index query (per file) 0.21 sec median
0.91 sec average

Index update (per file) 0.85 sec average

Table 4.1: Eclipse SDK (v3.3) analysis measurements [24]

1The source code is available on Github: https://github.com/agamvrinos/LIICD

23

4. INCREMENTAL CLONE DETECTION WITH LOCALITY SENSITIVE HASHING

Looking at these measurements, it is easy to see that the time needed to create the Clone
Index, measured at 7 hours and 4 minutes, is rather extensive. Although the authors ran the
specific experiment on rather old—for today’s standards—hardware, this is still a substantial
time requirement. Our goal with the proposed LSH-based extension of this chapter, is
to investigate whether LSH can be utilized to improve the performance of this step and
eventually reduce the time needed to create the intermediate information.

4.2 Overview

The main idea behind this approach is to avoid calculating the entire Clone Index from
scratch, an operation which according to the original paper seems to be very time-expensive.
To do so, we use LSH to efficiently estimate the similarity of the files of a software project.
Then, for those files that were found to be similar, we calculate the index entries on the fly
and perform the detection operation in the exact same way as the one discussed in Chapter
3. Of course, this approach comes with a trade-off. Although intuitively it looks like it could
offer an improvement with respect to the detector’s performance during the index creation
flow, it negatively affects the following two aspects:

• Recall: With this approach, the clone detection process only runs for files that were
found to be similar. Therefore, it is logical to assume that there will be clones that
will be missed, for example in the case of large files that differ for the most part but
have some identical blocks of code. To decrease the chance of missing clones, we
can select a low similarity threshold when comparing the files, although eliminating
this possibility altogether is not realistic.

• Query Performance: Calculating the index entries on the fly for the pairs of similar
files adds extra calculation overhead and thus increases the time needed to query
and detect the clones when a new commit occurs. However, we are tolerant to this
behavior if that means that the creation time of the index drops significantly.

Similar to the clone detector introduced in Chapter 3, here as well, we can distinguish
two main workflows. The first flow is again related to the creation of initial intermediate
information to be reused across revisions. In this case however, this information is different
than the Clone Index of the LIICD detector. On the other hand, the second flow is once again
triggered for every new revision of a software system. Via the use of LSH, the affected files
are placed in buckets along with already existing files which are similar to each of them
above a predefined similarity threshold.

4.2.1 LSH-based Index Creation Workflow

Similarly to the Clone Index creation flow discussed in Chapter 3, this flow includes a num-
ber of substeps, eventually leading to the generation of the initial state of the intermediate
information. The starting point of this pipeline is the same as in the LIICD detector, mean-
ing that the exact same preprocessing steps are applied. However, the remainder of the flow

24

4.2. Overview

is significantly different. In particular, instead of hashing blocks of code and storing them
in what we called a Clone Index, we apply LSH with the purpose of grouping similar files
together. To do that, we employ the LSH substeps explained in section 2.4.2. These are, the
shingling and generation of minhash signatures for the given files, as well as the grouping of
similar ones. Each of these are described in detail in the following sections of this chapter.
Overall, a high-level representation of this process can be seen in Figure 4.1.

Figure 4.1: Substeps of the LSH-based Index Creation workflow

As in the case of the LIICD detector, we call the collection of persisted intermediate infor-
mation, Index in what can be seen as LSH DS in the Figure 4.1.

4.2.2 LSH-based Incremental Step Workflow

Similar to the respective flow of our LIICD approach, the incremental step is initiated every
time the codebase of the underlying software project gets updated to a new revision. Nor-
mally, the preprocessing operations for this flow remain the same. The rest of the pipeline
however is different than the LIICD approach. More specifically, in the case of the LSH-
based detector, we first identify the files in the existing codebase, with which each file
affected by a commit is similar. To do so, we apply LSH and query the LSH-based Index
which results in each file ending up in a hash bucket with similar files. For the similar
files, we follow the same approach as in the LIICD detector, generating the hash values
and performing the exact same clone detection process. A high level overview showing the
substeps of this flow can be seen in Figure 4.2. It should be noted that in this case as well,
the commits are represented via a JSON configuration file.

25

4. INCREMENTAL CLONE DETECTION WITH LOCALITY SENSITIVE HASHING

Figure 4.2: Substeps of the LSH-based Incremental Step workflow

4.3 Approach Decomposition

In this section we break down LSH in the context of our extension and discuss decisions
concerning each individual substep of our implementation. For the purposes of this exten-
sion, we used datasketch,2 a third party library that comes with an embedded MinHash LSH
implementation.

4.3.1 Shingling

As explained earlier in section 2.4.2, shingling is the process of converting a raw document
into a set of shingles. In our case, these documents are the source files of the project under
analysis. After the preprocessing step takes place, we convert the resulting file into a set
of shingles by taking each line of that file as a shingle. The outcome of this process can
be seen in Figure 4.3, which illustrates how a preprocessed file is converted into a set of
shingles corresponding to the lines of that file.

Figure 4.3: Conversion of a pre-processed file into a set of shingles

4.3.2 MinHashing

The next step in the overall LSH algorithm pipeline is MinHashing. As a reminder, the pur-
pose of this step is to eliminate the phenomenon of large sets of shingles which drastically
increase the time required to calculate our similarity metric, the Jaccard coefficient. This is

2The library is available on Github: https://github.com/ekzhu/datasketch

26

4.3. Approach Decomposition

done via the use of k-hash functions which are used to hash every shingle within the set of
shingles for each individual file. Then, the algorithm selects the lower hash value for each
of the k hash functions and by doing so generates the signature. This second step of the
pipeline is depicted in Figure 4.4.

Figure 4.4: Signature generation via Min Hashing

This conversion comes with the cost of loss of information, since the sets are translated into
fixed-length signatures, which can’t be used to calculate exact similarities. However, it has
been demonstrated that in this case we can still get quite accurate estimations [33]. More
specifically, the accuracy of the estimation is a function of the number of hash functions
used, thus the length of the signatures. The larger it is, the better the estimation but the
more time-intensive the process of calculating it. In fact, the error rate of the similarity
estimation is given by the formula:

error = 1/
√

k

where k represents the number of hash functions, meaning that for example, for 256 hash
functions, we get a 6.25% chance of false negatives or false positives. Datasketch supports
the alteration of the number of hash functions via the use of a configuration parameter.

4.3.3 Locality Sensitive Hashing

The final step of the LSH scheme deals with increased computational time needed to com-
pare each signature with every other signature. As mentioned in Chapter 2, this is handled
via a technique called banding. Here, the matrix that contains all the hash values for every
shingle of a set, is split into b bands each consisting of r rows. Then, we consider a doc-
ument D1 to form a candidate pair with another document D2, if every row of a specific
band of D1 matches with every row of the corresponding band in D2. If that is the case, the
documents are considered candidate pairs and end up in the same hash bucket. Although,
in a custom LSH implementation we would have to pick the values for b and r ourselves
—always paying attention to how these affect the similarity threshold—Datasketch works
the other way around, allowing us to define the threshold we want, automatically calculating
the proper values for these parameters.

27

Chapter 5

Experimental Design

In this chapter, we describe the quantitative experiments that we run and explain how these
are aligned with the goals of this study. Furthermore, we mention the various evaluation
metrics that we use and examine their suitability for each individual type of experiment.
Lastly, we describe the process of our corpus collection and discuss how we simulate a
series of incoming commits for the purposes of our analysis.

5.1 Types of Experiments

In this study, we design and run experiments with the goal of answering the research ques-
tions defined earlier in section 1.2. Out of these, our first question does not require running
such experiments, since it is already answered by the fact that we were able to develop two
clone detector implementations with the desired features to begin with. For the rest, we
answer them by running quantitative experiments, corresponding to the research question
we desire to answer in each case. These are described in detail in the following sections.

5.1.1 LIICD Evaluation

With respect to our second research question, we first seek to identify how our language-
agnostic incremental clone detector, LIICD, resulting from adjusting Hummel’s [24] ap-
proach, performs. To do so, we run LIICD for five software systems and measure its time
and memory requirements to gain insights regarding its performance. More specifically, for
each system, we analyze a series of 50 commits and measure the time and memory needed
for the index creation flow and the average time needed to process the 50 commits during
our incremental step flow. We run additional experiments to observe LIICD’s behaviour
with respect to the detected clones. In particular, we analyze the 10 most recent commits
for each system in our dataset, and keep track of the clones that were added and removed.

5.1.2 LIICD vs SIG Evaluation

To answer our third research question, we run experiments with the purpose of comparing
the performance of our LIICD approach with that of SIG’s state-of-the-art traditional clone

29

5. EXPERIMENTAL DESIGN

detection approach. The ultimate goal here is to verify the improvement that an incremental
approach provides, when the detection process is regularly repeated for every new software
project revision.

SIG’s clone detector is different from LIICD in many aspects, making a direct compar-
ison a challenging task. More specifically, SIG’s clone detection process runs within SAT,
a tool that runs a lot more additional processes other than clone detection. This alone, re-
quires that we isolate the clone detection process and measure it separately from the rest
of the processes. Furthermore, SIG’s detector is not incremental and thus outputs all the
clones in a software system’s revision. In contrast, LIICD is designed to only output the
newly added or removed clones in a specific system revision. Consequently, it becomes
obvious that the output of the two approaches in terms of clone detection is not directly
comparable.

In the context of this study, we measure and compare the two approaches on the basis
of the elapsed time they require for the clone detection process. Specifically, we deploy
SIG’s detector for a series of 50 commits, measure the average time needed to process
these and compare the findings with those of LIICD’s individual evaluation. With respect
to the clones each tool detects and considering the described difference in each approach’s
output, we do not verify in practice whether the detected clones for the two detectors match.
However, given that both our approach and SIG’s detector are non-probabilistic, text-based
techniques—meaning that the raw source code does not undergo any transformation that
could lead to loss of information, thus reduced precision and recall—, we can expect the
detected clones of the two approaches to match. In terms of memory, the approaches are
again not comparable due to the complexity to isolate SIG’s clone detection process and
specifically take memory measurements only for that part of the process.

5.1.3 LSH-based Extension Evaluation

Regarding our last question, we are interested in measuring the performance of our LSH-
based extension and compare it with that of LIICD. Similar to LIICD’s evaluation, we
achieve this by measuring the execution time and memory needs of our LSH-based exten-
sion and compare these with the respective findings for the LIICD approach. Since in this
case both approaches are incremental and are built out of the same core idea, we can do
a one-on-one comparison by comparing our metrics for each of the two flows, the index
creation flow and the incremental step flow. Again, we use the same experimental setup,
using five software systems and 50 commits for each of these.

Note that in the context of this study, our research question only aims to examine the
developed LSH-based extension in terms of efficiency, meaning the performance boost that
this technique might offer in either of the two workflows of index creation and incremental
step. Consequently, although it would also reasonable to also measure the recall for the
LSH-based implementation—considering that this approach by definition involves a proba-
bility of missing clones—, we do not run such experiments. Although findings about clone
loss would be informative, these only makes sense after first having identified whether an
LSH-based implementation is efficient enough to improve the LIICD approach, to begin

30

5.2. Output Validation

with. As a result, in this study we only investigate the efficiency of the approach and leave
related empirical experiments about clone loss as a future work.

5.2 Output Validation

The validation of the output of our developed detectors, meaning the assessment of whether
the detected clones are valid and complete (i.e. all the available clones have been detected)
requires a benchmark for the selected software systems. Such a validation dataset was not
available to us during the development of this study. Due to this, we instead manually val-
idated our LIICD and LSH-based approach’s output, in the context of a small-scale project
of ours. More specifically, we have tested and validated multiple use cases regarding the
deletion, update, creation or renaming of a file and crafted commits manually to simulate
the updates of an actual software system. Naturally, for the LSH-based detector we did
not check for completeness due to the nature of this approach. Note that although we only
tested the output for a small-scale project, we expect our approach to work identically for
larger codebases as long as all use-case scenarios are covered. The tests that we ran refer to
the following use cases:

1. Addition of newly created files: We tested scenarios where these files introduced a
single or multiple clones and others where no duplication was added. In the former
type of scenarios, we verified that the clones were correctly detected, whereas in the
latter, we verified that no clones were output.

2. Renaming of files: With respect to renaming, we tested that the clones in renamed
files were detected and logged with the updated filename.

3. Update of files: We tested multiple scenarios where we removed and added blocks of
code in existing files, testing the detection of removed or added clones.

4. Deletion of files: We tested the deletion of files containing clones, in which case we
verified that the removed clones were correctly detected.

5.3 Tools Configuration

Table 5.1 indicates the configuration parameters used for the LIICD and LSH-based clone
detector implementations for the purposes of our experiments. The CHUNK SIZE, which
indicates the number of lines in each hashed block of code, hence the minimum clone size,
was selected to be 6, indicating an identical minimum clone length as the one SIG is cur-
rently detecting by default. The PERMUTATIONS parameter of our LSH-based implemen-
tation, refers to the number of hash functions used for the process of MinHashing. A value
of 64 results in an error rate of error = 1/

√
64 = 12.5% in terms of similarity comparison.

That means that when two files are identified as similar/not-similar, there is 12.5% chance
that this identification is erroneous. Lastly, a THRESHOLD parameter of 0.2, translates to
a percentage of 20%, indicating the lowest threshold of similarity for which two files are
detected as similar.

31

5. EXPERIMENTAL DESIGN

LIICD LSH-based
CHUNK SIZE CHUNK SIZE PERMUTATIONS THRESHOLD

6 6 64 0.2

Table 5.1: Configuration for the LIICD & LSH implementations

5.4 The Infrastructure

For the purposes of our experiments, we run the two categories of tests on a single machine
with the hardware setup as shown in Table 5.2.

Specifications
Memory 32 GB
CPU Intel Xeon E5-2650 v2 @2.6GHz

Table 5.2: Hardware specifications

5.5 The Corpus

In the context of our experiments, we use five open source projects as input to the vari-
ous implementations of detectors. These were chosen in such a way so that we can cover
a relatively wide range of projects with varying sizes and programming languages. More
specifically, we measure the size of each project in terms of LOCs (Lines Of Code), using
CLOC,1 a tool capable of counting blank lines, comment lines, and physical lines of source
code in many programming languages. Due to the nature of our detectors, which output
the clones added or removed in a specific revision instead of all the clones in that revision,
measuring the exact proportion of duplication in the selected systems is not possible. How-
ever, statistics extracted from the analysis of 192 software systems, conducted within SIG,
measured the average duplication to be approximately 13% (std: ±12%). In the rest of
this section, we present the process of measuring the LOCs for each system as well as the
process of filtering out nugatory parts.

5.5.1 Initial Corpus Collection

For the collection of the initial corpus, we measured a large number of open source projects
and selected five of them, with their LOCs ranging from approximately 300,000 up to about
23,000,000 lines of code. The CLOC configuration parameters used during this phase can
be seen in Listing 5.1.

1The tool is available on Github: https://github.com/AlDanial/cloc

32

5.5. The Corpus

1 $ cloc --skip -uniqueness {target_project}

Listing 5.1: CLOC Initial configuration

The selected projects can be seen in Table 5.3. The reason we did not select software
systems with LOCs below the described range, is because the true benefits of an incremental
approach only become visible for projects with a relatively large number of LOCs, when
repetitive detection in traditional approaches becomes sluggish.

Main
Languages No. of Files No. of LOCs

Linux Kernel C 57,205 23,229,768
Openjdk-14 Java 60,444 12,045,316
Tensorflow C++, Python 12,387 3,194,893

Kooboo
C#, JS,
HTML, CSS

4,109 670,265

Ripple C / C++ 1,399 312,011

Table 5.3: The initial corpus of open source projects

As can be seen, the selected pool of software projects covers a wide range of program-
ming languages and LOCs. The presented values for the No. of LOCs column, result from
the addition of the LOCs corresponding to comments and those referring to actual source
code. We do not take into account the empty lines, since these are removed during the
preprocessing phase of each detector.

5.5.2 Filtering Production Code

SAT, the tool that SIG uses to measure the various maintainability metrics, including clone
detection, runs the corresponding analysis only on parts of the codebase that are marked as
production code. In contrast, code marked as test code along with other insignificant files,
such as the README.md or logging files, are ignored. As a result, SAT only processes part
of the entire codebase, which logically leads to a decreased number of processed LOCs.
For a comparison between SAT’s detector and our implementation to be objective, we need
to also account for this removal. Therefore, we again use CLOC to estimate the LOCs for
each project, excluding this time specific irrelevant directories. The exact configuration can
be seen in Listing 5.2. The new measurements for the aforementioned projects can be seen
in Table 5.4.

1 $ cloc --skip -uniqueness --exclude -dir=test ,tests ,doc,examples ,licences
,lib --not-match -f=ˆ.*test.*$ {target_project}

Listing 5.2: CLOC Filtering configuration

33

5. EXPERIMENTAL DESIGN

Main
Languages No. of Files No. of LOCs

Linux Kernel C 56,270 22,963,637
Openjdk-14 Java 23,905 7,498,482
Tensorflow C++, Python 8,610 2,120,650

Kooboo
C#, JS,
HTML, CSS

4,064 668,055

Ripple C / C++ 1,073 207,166

Table 5.4: The filtered corpus of open source projects

5.5.3 Filtering Invalid Files

Every software project, including those selected in our corpus, usually consists of a number
of files in binary format. Processing such files in the context of clone detection is mean-
ingless since there are no valuable insights that can be extracted. Consequently, for both
the LIICD and LSH implementations, we further exclude binary files and files with non-
unicode characters, when processing each corresponding software project. A list stating all
the file extensions that were filtered out can be seen in Appendix B. Note that the removal
of such files, is expected to only marginally affect the number of LOCs mentioned in the
previous sections, as such files typically form only a very small proportion of the entire
codebase.

5.6 Simulation of Commits

To observe and measure how the detectors perform during the incremental step workflow,
we need to simulate the process of commits being pushed to the version control repository
hosting the project under analysis. As explained in Chapter 3, this simulation happens via
the use of JSON configuration files that consist of a list of the commits that we want to
analyze, along with the changes (creations, updates, deletions, renames) that each of these
commits introduces.

In the context of our experiments, we analyze the 50 most recent commits—excluding
merges—for each of the five software projects and measure the metrics corresponding to
each of the described categories of experiments. The most recent commit for each software
project, indicating the snapshot we used at the time of our analysis, can be found in Ap-
pendix A. Since some of these 50 commits might consist of file changes for files that our
detectors by definition exclude, there is a chance of processing less than 50. For instance, if
a commit only includes modifications of test files (which are skipped by the detectors), then
this commit is skipped, because no files are eventually processed.

34

Chapter 6

Experimental Results

This chapter presents the results of the experiments discussed in Chapter 5. More specifi-
cally, we first take a closer look into the outcome of our experiments regarding the LIICD
detector, introduced in Chapter 3. Then, we present the findings of our experimental at-
tempts to measure the performance of SIG’s traditional clone detection approach and com-
pare it with the proposed incremental clone detector. Lastly, we provide the results of our
experiments investigating the efficiency of our LSH-based extension and examine these
comparatively along with the findings of our LIICD experiments.

6.1 LIICD Measurements

The exact measurements for the experiments regarding the evaluation of our LIICD detector
are depicted in Table 6.1. As shown, the LOCs for each project are within a margin error
of approximately 2.7% when compared to the original estimates extracted through CLOC,
apart from Tensorflow and OpenJDK, for which the excluded directories and file extensions
seem to comprise a significant number of the overall codebase. Furthermore, most commits
out of the 50 that were analyzed for each codebase were processed. As a reminder, the
skipped ones refer to commits affecting only files that are ignored by our implementation
in the first place (e.g. test files). The next two columns of the table present the average
elapsed execution time of the index creation and incremental step workflows for the LIICD
implementation. Finally, the last column shows the standard deviation for the incremental
step time measurements.

Project LOCs Read Commits Processed Index Creation
Time (sec)

Average
Incremental Step

Time (sec)

Incremental Step
standard deviation

(sec)
Rippled 208,100 42 3.75 0.85 1.31
Kooboo 681,143 50 16.28 0.03 0.04

Tensorflow 3,814,652 45 65.89 4.29 3.32
Openjdk-jdk14u 3,377,211 46 48.53 4.72 5.07

Linux Kernel 23,603,823 45 321.21 N/A N/A

Table 6.1: LIICD measurements

35

6. EXPERIMENTAL RESULTS

6.1.1 Index Creation

Time Measurements

Figure 6.1 illustrates the time measurements for the index creation flow of our LIICD detec-
tor. As shown, the overall time needed by LIICD for the index creation ranges from a few
seconds for smaller systems, such as Rippled, up to approximately five minutes for large
ones, such as the Linux Kernel, implying that the elapsed time for the completion of this
step is affected by the size of a software system. This is expected considering that systems
with a greater number of source files and LOCs lead to larger clone indexes, requiring more
time to calculate. Nevertheless, the overall index creation time fluctuates in rather low lev-
els, given that this process took at most about five minutes for a system as large as the Linux
Kernel, consisting of more than 20 million LOCs.

Figure 6.1: LIICD - Execution Time for the Index Creation flow

Memory Measurements

The memory needed by our LIICD approach to analyze the five software systems in our
dataset can be seen in Table 6.2. Although these measurements were taken during the
entire analysis of these systems, including both the index creation and incremental steps,
the reported numbers mainly correspond to the memory requirements of the former. As
explained in section 6.1.2, the incremental steps were, for the most part, observed to execute
in a matter of a few seconds, leading to short spikes in the memory usage. Therefore,

36

6.1. LIICD Measurements

their reporting is not of significant importance when considering the overall memory usage
required by the specific detector implementation.

Project Memory (MB)
Rippled 129
Kooboo 348

Tensorflow 1791
Openjdk-jdk14u 1712

Linux Kernel 12500

Table 6.2: LIICD - Memory measurements

Figure 6.2 better illustrates the memory our LIICD approach used during each analysis.
As can be seen, the measurements for the first four systems are rather low, considering to-
day’s memory standards. However, for the considerably larger system of the Linux Kernel,
the memory usage rises to much higher levels.

Figure 6.2: LIICD - Cumulative Memory Requirements

6.1.2 Incremental Step

The measurements for the elapsed time of incremental step flow of the LIICD implemen-
tation can be seen in Figure 6.3. As a reminder, this flow is initiated every time a code
change, in the form of a commit, occurs. Our findings for the systems of Rippled, Ten-
sorflow and OpenJDK indicate that this flow does not require more that a few seconds to

37

6. EXPERIMENTAL RESULTS

complete, on average. As for the outlier of the Kooboo experiments, low measurements
like that can be justified in cases the detection process does not run at all. This can happen
when the files affected by a commit do not introduce, neither remove clones, leading to the
most time-consuming parts of the detection process to not execute. Lastly, for the Linux
Kernel system, our experimental setup was unable to handle the memory load of this pro-
cess. Note that this was not due to the memory requirements of the incremental step per se,
but due to the version control checkout subprocess running within our application, which
for large codebases requires a considerable amount of memory, larger than what was at the
time available in the machine of our experimental setup.

Figure 6.3: LIICD - Average Execution Time for the Incremental Step flow

On a more general note, the execution time required for the incremental step is affected
by multiple different factors. The number of files included in a commit, the type of changes
(creations, updates, deletions, renames), the length of the affected files, as well as the simi-
larity threshold in the case of LSH, are all elements that could impact the results. To obtain
a thorough understanding of the interplay between all these factors, additional experiments
would be needed. Nevertheless, it is interesting to observe that the overall performance of
this step is more efficient when compared to the index creation flow, as can be distinguished
by looking at Figures 6.1 and 6.3 comparatively. This is important, considering that this
flow is the one that gets executed every time a new code change occurs.

38

6.1. LIICD Measurements

6.1.3 Clone Detection

In terms of clone detection, we ran LIICD for the four software systems for which our
machine could handle the load of the incremental step. More specifically, for the sake of
simplicity, we chose to analyze the 10 most recent revisions for each system and count the
clones added and removed, as detected by our tool. Table 6.3 shows a general overview
of the number of files affected in each commit. Although we do not specify the types
of changes these file introduce (additions, updates, renames, deletions), the majority of
these correspond to modifications of existing files. Table entries reported as ”0 (skipped)”
correspond to commits that were not processed because they only included files that are
ignored by LIICD by default (e.g. test files).

Commit
No. # Updated files in commit

Rippled Kooboo Tensorflow OpenJDK-14
1 1 6 1 3
2 2 3 1 1
3 0 (skipped) 1 2 4
4 3 1 0 (skipped) 1
5 1 1 0 (skipped) 0 (skipped)
6 2 1 1 1
7 1 2 1 2
8 3 3 1 5
9 2 1 2 0 (skipped)
10 1 3 1 0 (skipped)

Table 6.3: Affected files per software system for each commit analyzed

Figures 6.4-6.7 show the clones that were added and removed for each commit of ev-
ery software system. As a reminder, LIICD treats modified files as deletions followed by
creations. This has the effect that the clones corresponding to modified files are detected as
removed during the deletion substep and as newly added, during the addition substep. The
latter is also depicted in our figures below, where in many cases the number of removed
clones matches the number of added clones. The difference of the two numbers is the piece
of information that allows us to better understand if eventually any clones were added or
removed.

Figure 6.4: Clone Detection for Ripple Figure 6.5: Clone Detection for Kooboo

39

6. EXPERIMENTAL RESULTS

Figure 6.6: Clone Detection for Tensorflow Figure 6.7: Clone Detection for OpenJDK

Another observation is that the majority of the commits do not affect the proportion
of clones in the respective system’s codebase. In fact, only one commit altered the total
number of clones in Rippled and OpenJDK, whereas two and four commits removed/added
clones in the case of Tensorflow and Kooboo, correspondingly. With respect to the num-
ber of detected clones, we further investigated the output of LIICD for commits for which
the detected number of clones appears to be large (e.g. commit 8 of OpenJDK). In such
cases, most of the reported clones appear to correspond to blocks of code/comments that
are typically shared in many files of a system’s codebase. Such an example is the fixed
licence-related information, usually written at the first lines of some source files.

6.2 LIICD vs SIG Measurements

The results displayed in Table 6.4 refer to the outcome of our experiments, analyzing the
performance of the overall SAT analysis along with the subprocess of clone detection em-
bedded within the same tool. More specifically, we used SIG’s SAT tool to analyze the five
open-source projects constituting the dataset of this study. Since SAT is a complex tool
which includes numerous underlying operations, irrelevant to code duplication detection,
we isolated the relevant parts and measured the proportion of the overall elapsed time that
is directly associated with clone detection.

Project Overall SAT
Analysis Time

Clone Detection
Time

LIICD Index Creation &
Incremental Step time

Rippled 4 min 5.63 sec 4.6 sec
Kooboo 22 min 397 sec 16.31 sec

Tensorflow 8hr 30 min 177.1 sec 91.29 sec
Openjdk-jdk14u N/A N/A 56.34 sec

Linux Kernel N/A N/A >321.21 sec

Table 6.4: SAT measurements and overall LIICD detection time

40

6.2. LIICD vs SIG Measurements

Our experimental setup successfully managed to complete the analysis of the first three
software systems, but failed for the OpenJdk and Linux systems, due to the complexity and
size of these. Nevertheless, we can still observe that SAT needs a considerable amount of
time to execute the analysis, even though the time needed for the detection of clones is only
a small fragment of the overall analysis time. Especially for Tensorflow, the total analysis
time required more than 8 hours, a number that limited the number of revisions we could
analyze to 5. As for the clone detection time, the measurements range from a few seconds
up to a couple of minutes for larger and more complex systems. Note though, that the
detection time in the context of SAT, does not only depend on the the size of the project. The
complexity of the code itself, along with the programming languages the system is written
in, are some additional factors that affect this measurement, hence the reduced detection
time for Tensorflow, compared to the quite smaller Kooboo system.

Although the isolated measurements might look rather small at a glance, they accumu-
late quite fast when the detection process runs repeatedly. Figure 6.8 allows for a better
understanding of the impact of the measured times, when the clone detection process is
repeated frequently. In particular, we used the Tensorflow as an example, to show how the
time needed for clone detection builds up as the number of commits grows.

Figure 6.8: Cumulative comparison of SIG’s detector versus the LIICD detector

As indicated, although the difference for a single commit does not seem large, results
look different for a greater number of commits, such as 100 or 500. In the latter case for
instance, using SIG’s traditional detector would require approximately 1387 minutes—or
about 23 hours—to run the entire analysis. On the other hand, the incremental-based ap-
proach only needs around 37 minutes for the same procedure.

41

6. EXPERIMENTAL RESULTS

6.3 LSH-based Extension Measurements

To evaluate the performance of our LSH-based implementation, we compare it with the re-
sults of the experiments of the LIICD detector. Table 6.5 shows the individual measurements
for the two workflows for each of the two approaches, allowing a one-on-one comparison
between them. Note that for this type of experiments we used the same experimental pro-
cedures as those described in section 6.1, meaning that the same number of LOCs for each
system, as well as the same number of commits were processed.

Project
Index Creation

Time (sec)

Average
Incremental Step

Time (sec)

Incremental Step
standard deviation

(sec)
Memory (MB)

LIICD LSH-based LIICD LSH-based LIICD LSH-based LIICD LSH-based
Rippled 3.75 10.42 0.85 0.82 1.31 1.35 129 60
Kooboo 16.28 37.82 0.03 0.25 0.04 0.44 348 122

Tensorflow 87 192.8 4.29 1.57 3.32 2.13 1791 524
Openjdk-jdk14u 51.62 139.87 4.72 4.36 5.07 6.34 1712 429

Linux Kernel 321.21 954.56 N/A 4.38 N/A 10.23 12500 2600

Table 6.5: LIICD & LSH-based extension measurements

6.3.1 Index Creation

Time Measurements

Results regarding the time needed for the creation of the index, indicate a large time dif-
ference between the two implementations. This is depicted in Figure 6.9, which shows that
for all the software systems in our corpus, the LSH-based extension is almost three times
slower compared to the LIICD approach. As a reminder, for the LSH-based implementation
we use 64 hash functions for the MinHashing process. This number, resulting in a similar-
ity error rate of 12.5%, was purposely selected to be that low, with the goal of creating a
threshold with respect to how much time this extension needs to create an index. Increasing
the number of hash functions, thus decreasing the error rate, would yield additional time
overhead, further growing the index creation time for the LSH-based implementation.

42

6.3. LSH-based Extension Measurements

Figure 6.9: Execution Time for the Index Creation flow for the two implementations

Memory Measurements

Figure 6.10 illustrates the memory needs of the LSH-based extension, plotted along with
our earlier measurements for the LIICD approach. Interestingly, the levels of memory usage
of the LSH-based approach were found to be, in most cases, two to three times lower than
those of the LIICD detector. Especially in the case of the Linux Kernel, there is a substantial
difference between the two approaches, with the LIICD requiring about five times more
memory to complete the detection.

43

6. EXPERIMENTAL RESULTS

Figure 6.10: Memory requirements for the two implementations

6.3.2 Incremental Step

Moving on to the performance of the incremental step for the two implementations, Figure
6.11 illustrates the corresponding measurements. At first glance, the respective findings
look confusing. That is because we would expect a worse performance for all the projects
analyzed by the LSH-based implementation, considering the extra step of calculating the
clone index entries on the fly, compared to the LIICD approach. However, additional inves-
tigation showed that the reason why this is not depicted in our visual is because, in many
cases, the selected similarity threshold of 20% was not low enough to allow for many files to
be identified as similar. As a result, many detections are skipped, resulting in the decreased
time shown in our diagram.

44

6.3. LSH-based Extension Measurements

Figure 6.11: Execution Time for the Incremental Step flow for the two implementations

Further investigation at the reasons behind this large difference between the two imple-
mentations, indicates that the MinHashing part of the overall LSH scheme is quite compu-
tationally heavy. In fact, as shown in Figure 6.12, isolated time measurements of the index
creation step for the LSH-based implementation using the Tensorflow system as input, show
that approximately 37% of the index creation time was spent on the substep of MinHashing.
The remaining 63% was split among the Shingling and the process of banding (shown as
LSH), with the former requiring the most time.

45

6. EXPERIMENTAL RESULTS

Figure 6.12: Index Creation sub-measurements for the LSH-based implementation

6.3.3 Varying Hash Functions

In section 6.3.1, we mentioned that for the purposes of our experiments with the LSH-based
implementation, we used 64 hash functions for the process of MinHashing. Additionally,
it is interesting to explore how alterations in the number of hash functions, affect the in-
cremental step and overall index creation time, considering that MinHashing is one of the
most time-consuming parts of the LSH-based implementation, Figure 6.13 shows the im-
plications of increasing the number of hash functions—hence decreasing the error rate—on
the time needed to create the corresponding index and the incremental step processing time.
More specifically, we used Kooboo and measured the index creation time for 64, 128, 256
and 512 hash functions, which in turn correspond to an error rate of 12.5%, 8.8%, 6.25%
and 4.4%, respectively.

46

6.3. LSH-based Extension Measurements

Figure 6.13: Execution Time implications for varying number of hash functions during
MinHashing

As shown, the number of hash functions plays an important role to the time needed to
process the two workflows. In particular, looking at the measurements of the lowest thresh-
old of 64, and the highest one of 512 hash functions, we can see that the index creation time
almost doubled. The behavior is consistent with the incremental step flow measurements,
where an increase of similar magnitude was observed.

47

Chapter 7

Discussion

In this chapter we interpret the results of our experiments and discuss their implications.
Furthermore, we discuss the threats to validity for this study and provide suggestions for
practitioners, with a closer eye to a potential usage of the proposed detectors within SIG.

7.1 Main Findings

The section reports the conclusions that can be inferred by examining the results of our
experiments. More specifically, we analyze the outcome of our experiments and discuss
how these correspond to our initial intuition.

7.1.1 LIICD Approach

The conclusions that can be drawn from our experiments vary. Firstly, the findings indicate
that the LIICD detector is faster than expected with respect to measurements reported by
Hummel et al. [24]. In particular, LIICD’s index creation time measurements show that
the approach scales pretty well considering that the index for a system of 20 million LOCs
took a bit over five minutes to create. Additionally, our measurements for the incremental
step flow indicate that the particular operation runs in a matter of few seconds. The latter
is crucial taking into account that this flow is initiated frequently, every time a new code
change in the form of a commit occurs. Although additional experiments are needed to
identify how exactly the factors affecting this flow’s performance actually influence it, our
experiments already allow us to conclude that this step runs efficiently.

In terms of memory, our experiments showed that the memory usage of our LIICD ap-
proach is generally low for today’s standards, but can quickly escalate when larger systems
are analyzed. In the case of the Linux Kernel, the memory usage peaked at 12.5GB, a con-
siderable number, despite the fact that such systems are the exception rather than the rule, in
terms of codebase size. As for the failure of LIICD to run the incremental step for the same
project due to insufficient memory, this is not a matter of concern, since that was caused by
the version control revision checkout operation that runs within our application. In a real
world scenario, where commits are not simulated, this operation would not run, eliminating
thus any memory usage spikes caused by this.

49

7. DISCUSSION

7.1.2 LIICD vs SIG

The results of our analysis using SIG’s internal SAT tool provide some valuable insights.
First of all, we observed that SAT shows shortcomings when larger systems are given as
input. The analysis of Tensorflow required more than 8 hours to complete, whereas SAT
was unable to analyze larger and more complex codebases, such as that of OpenJdk and
Linux, despite the experiments being run on a high-spec machine. Even though such large
systems are not that many, this is still a limitation of SIG’s tool.

Additional sub-measurements of the clone detection time within SAT showed that this
process takes a very small proportion of the overall analysis time. However, comparing
these measurements with those of LIICD’s experiments through a series of commit anal-
yses, results in some interesting findings. In particular, although the measurements them-
selves look small when it comes to the analysis of a single system revision, the accumulated
elapsed time grows rapidly as more and more revisions need to be analyzed. This would
not be a problem if the frequency of incoming commits was low, but in today’s era where
tens or even hundreds of commits are pushed daily, it becomes apparent how a traditional
detector, such as the one SIG is using, is impractical in an incremental setting.

7.1.3 LIICD vs LSH-based Extension

Lastly, regarding our experiments evaluating the efficiency of our LSH-based extension,
we can again extract some useful information. More specifically, the index creation step
of our LSH-based approach was found to be two, and in some cases three times slower
compared to the LIICD implementation. Potential reasons causing this, can be found in
the complexity of the MinHashing operation which constitutes a significant proportion of
the overall LSH scheme. This becomes obvious considering that during MinHashing, every
shingle for every set of shingles has to be hashed by the predefined k hash functions. On the
contrary, from the perspective of memory usage, LSH was found to be much more efficient,
resulting in a decrease of up to five times in the case of Linux. However, this alone does not
justify the use of this approach instead of LIICD.

Additionally, the measurements for the incremental step did not match our initial intu-
ition. In particular, we expected the incremental step flow of the LSH-based implementation
to be slower compared to that of LIICD, due to the calculation of the index entries on-the-
fly. However, our findings show contrasting results. Practically, this can be justified by the
similarity threshold that we used, which, as it turns out, did not result in many matches be-
tween the source files. To better understand its behavior, further investigation between the
relation of the similarity threshold and the execution time needed for the incremental step
flow of the LSH-based implementation, is needed.

Another interesting finding is that the size of a software system is not a good indicator
to forecast the time required for the incremental step workflow. Apparently, this time is
affected by factors such as (1) the number of files in a commit, (2) the type of changes and
(3) the length (in LOCs) of these files. Future work should further investigate the behavior
of this workflow against these variables.

Finally, the measurements for the incremental step of the two implementations show

50

7.2. Implications

that the LIICD approach performs better. As for the incremental step, additional experi-
ments for the LSH-based implementation are required to be able to deduct more insightful
conclusions. However, any such attempt would be futile without first investigating whether
the execution time of the index creation step of the LSH-based implementation, can be
reduced to better or similar levels as those of the LIICD approach.

7.2 Implications

The results of our experiments for the LIICD detector are not completely aligned with those
mentioned in the original paper by Hummel et al. [24]. More specifically, we observed
a considerable difference to the time measurements for the index creation and incremen-
tal step workflows. Naturally, minor deviations were expected due to three major factors
affecting our measurements. These are:

1. Experimental Setup: The hardware used for our experiments is faster compared to
the one used in the original study by Hummel et al. [24].

2. Normalization: To account for language independence, our implementation elimi-
nates the tokenization step of the original detector, removing the additional overhead
that this process requires.

3. In-memory persistence: The measurements mentioned in the original study refer
to an implementation that persists the intermediate information in a database. In our
work, we use in-memory persistence.

Considering these factors, we anticipated a decrease in the time needed for the index
creation. Although this expectation is supported by our findings, the difference is much
larger than these factors could justify. In particular, the original study mentions 7 hours and
4 minutes as the time needed to create the index for a project of approximately 40 million
LOCs. However, in our experiment with the Linux Kernel, a project half that size, the index
creation took a little over 5 minutes for LIICD and about 15 for the LSH-based approach,
indicating approximately a 42 and 14 factor difference in the processing time respectively,
assuming that Hummel’s approach scales linearly. This observation alone suggests that the
index creation is much faster than expected, making thus any attempt to further improve it
rather challenging.

As for the incremental step, the findings provide new insights when compared with
the original study. More specifically, our reported measurements allow us to conclude that
the overall incremental step time is affected by the system’s size. This is not logical at
first, considering that querying and updating the hash-based index should result in similar
constant-time measurements. However, for large systems where the index is populated with
a very extensive number of entries, collisions might occur, adding extra overhead to the
overall calculation. Furthermore, multiple factors such as the number of files in a commit,
the length of these files, as well as the type of the changes these introduce, also affect
the individual measurements. Lastly, the original study simulates commits by randomly

51

7. DISCUSSION

removing and re-adding source files. Our findings allow for a better understanding of the
behaviour of the incremental step workflow, since in our case, we used actual commits.

7.3 Threats to Validity

7.3.1 Internal Validity

SAT Measurements

In this study, we used SIG’s SAT tool to compare the performance of the proposed incre-
mental clone detector, with that of the traditional detector embedded within SAT. However,
SAT is a complex tool consisting of multiple different components. Some of these are
related to clone detection, but others are only used for the calculation of other maintainabil-
ity metrics. Furthermore, isolating the operations associated with clone detection is not a
simple task due to the complexity and large number of substeps within SAT. Nevertheless,
although we carefully selected the subset of operations for which we measured the elapsed
time, there might be additional sub-steps that have not been considered. However, we do not
expect these steps, if any, to contribute much in the measured elapsed time, thus invalidate
our findings.

Clone Coverage

In terms of clone coverage for the LIICD detector (i.e. whether our tool correctly detects all
scenarios under which a clone might occur), additional experiments, utilizing benchmarks,
would be ideal to verify this extensively. In our work, we manually tested this by crafting
commits that simulate multiple use cases of adding, modifying, renaming or deleting a
file in the context of a commit. Nevertheless, there might be corner cases that we did not
consider and therefore did not test our detector for.

7.3.2 External Validity

The dataset of software systems used in our experimental design, only consists of five soft-
ware systems. Although we selected these to deliberately differ in codebaze size and the
programming languages they use, new findings might occur by experimenting with a larger
corpus of systems.

7.4 Applicability within SIG

In this section, we examine the applicability of the proposed detectors in the context of SIG.
More specifically, we first dive into the potential usage of these detectors and then discuss
some important points that would need to be considered, if either of these detectors was to
be part of SIG’s collection of tools.

52

7.4. Applicability within SIG

7.4.1 Potential Usage

SIG’s analyses models include the ability to measure maintainability for code changes rather
than for entire codebases utilizing the Delta Maintainability Model (DMM) [14]. This
model allows to incrementally measure code changes and rank their code quality, instead
of measuring the impact of code changes towards the entire system’s maintainability. How-
ever, with respect to clone detection, DMM can only detect clones found within the affected
files of a particular commit. This is not optimal, since an addition in File A might introduce
a clone with File B and in case the latter is not part of the files affected by the specific
commit, the clone will be missed.

Both implementations introduced in this study could potentially be used to overcome
this issue, either as an external tool that the DMM uses or even embedded within DMM’s
implementation. In fact, both support the detection of clones outside a commit’s context, re-
solving DMM’s related limitation. Additionally, the introduced detectors are also language-
independent and are capable of detecting Type-1 clones, two requirements essential for
SIG’s needs. Lastly, there is also the potential to detect Type-2 clones with the addition of
a normalization step. In this case however, a language-specific parser would be necessary,
removing the language-agnostic characteristic of these detectors, scope of this thesis work.

7.4.2 Considerations

Clones Snapshot

One of the characteristics of the proposed incremental detectors is that they only output
the clones that were added or removed at each code revision and not an entire snapshot of
all the clones in a codebase. For the latter to be possible, there are two potential options.
First, the introduction of a clone management logic. This, would allow the aggregation of
clones by looking at those that were added and removed, from the beginning of the codebase
(or a revision where all the clones were known), up to the revision of interest. Secondly,
another way to achieve the same result is through the introduction of an option that allows
the querying of the index using every single file in the codebase. However, such a solution
would be extremely time-demanding, considering that all the files of a system would have
to go through the detection pipeline mentioned earlier in this study.

Data Persistence

Each of the proposed detectors utilizes intermediate information, which is used across the
revisions to detect clones. The existing implementations store this information in memory.
However, in a real-world setup, a database would be more appropriate for this purpose. With
the current setup, the applications need to always be on hold, otherwise the calculated index
will be lost. On the contrary, this would not be a requirement with hard-disk persistence,
with which the index entries could be fetched at any point in time.

53

7. DISCUSSION

Output Format

During the development of the discussed detectors, we did not consider any potential inte-
gration with SIG’s existing or future tools, in which case we would have to investigate how
such tools could be interfaced with our implementations. Consequently, the format of the
output has not been designed in a way so that it can be seamlessly consumed by these, thus
further changes would be necessary to account for that.

Comments Removal

Lastly, the removal of comments could also be a potential desirable feature. This, would
require additional preprocessing of the codebase of a system and possibly its segmentation
into technologies (programming languages) so that different commenting styles can be han-
dled appropriately. In the context of SIG, processes that remove code comments are already
available and could be utilized to achieve this. Therefore, in this context, comments removal
is only a matter of integrating these processes with the discussed detectors.

54

Chapter 8

Conclusion & Future Work

In this final chapter we discuss the conclusions that can be drawn after the completion of
this study and retrospectively relate them to our initial research questions. Furthermore, we
provide suggestions for future work, allowing for further investigation of the potential of
the LSH-based approach.

8.1 Conclusion

The need to tackle the maintainability issues that come with code duplication, combined
with the desire to run the clone detection process repeatedly, brought the appearance of
incremental clone detection techniques. Many such techniques exist, however most of them
require language parsers, a component that automatically eliminates the feature of language
independence for the corresponding proposed clone detectors. Consequently, programming
languages for which finding or creating a parser is challenging, cannot be analyzed in the
context of clone detection.

In this study, our aim was to identify a way to build a language-agnostic clone detector
and investigate what kind of information can be stored, so that this detector works incre-
mentally. In that aspect, we modified Hummel’s original algorithm and examined the use of
LSH in an attempt to extend and improve the original approach. Our findings showed that
the intermediate representation of a modified Clone Index can indeed be used to achieve
language independence, while also satisfying the requirements set at the beginning of this
study. Furthermore, our experiments revealed that the LIICD approach was found to be
much faster that expected, leaving limited room for further improvement. The latter is veri-
fied by observing the performance of the LSH-based implementation, which at its discussed
form, performs worse. All things considered, in the context of this thesis, we successfully
built a language-agnostic incremental clone detector based on the approach by Hummel et
all. [24] and extended this utilizing LSH. However, further research is needed to investigate
the potential of the LSH-based approach, in the context of the original algorithm.

Additionally, another goal of this study was to discover whether such an incremental
approach performs adequately compared to a commercial-grade traditional detector, such
as the one embedded within SIG’s SAT tool. For that purpose, we ran SAT for every system

55

8. CONCLUSION & FUTURE WORK

in our dataset and measured the time needed for clone detection. Although SAT was unable
to process the largest and most complex systems of our corpus, we were still able to extract
results from the analysis of the smaller ones. In comparison with the measurements of the
incremental detector, these results indicate a considerable improvement in the accrued clone
detection time when the detection process is repeated for a series of commits. Consequently,
we conclude that the adoption of such an approach by SIG would be beneficial in terms of
time and resource efficiency. Furthermore, the capability of our detectors to discover clones
outside of a commit’s context sets the ground for a potential future integration of these, in
the scope of the Delta Maintainability Model [14].

8.2 Future Work

One line of future research is to further investigate ways to improve the suitability of Local-
ity Sensitive Hashing as an extension of the incremental detector proposed at the beginning
of this study.

According to the discussed measurements, MinHashing is a rather time-expensive oper-
ation of the specific LSH scheme used in this study. During this step, every shingle of each
shingle-set has to be hashed by k hash functions, a process rather demanding. However,
further research in the area of LSH has yielded approaches that have attempted to eliminate
this bottleneck. Related studies such that of SuperMinHash [17] and Li et al. [35] claim to
be capable of achieving identical behaviour with a single hash function. Such an optimiza-
tion could prove to be a significant improvement to the time needed for the creation of the
corresponding index of the LSH-based approach and would be certainly worth trying.

The LSH-based implementation, by nature, can lead to decreased recall. In this im-
plementation, the clone detection process runs only for files that were found to be similar
based on the defined similarity threshold. Therefore, it would be interesting to investigate
the proportion of the missed clones, while experimenting with varying similarity thresholds.
However, such additional measurements, concerning the incremental step flow of the LSH-
based approach, would only be useful if the time needed for the index creation step could
be brought down to levels comparable with those of the LIICD approach.

One of the factors affecting the performance of any LSH scheme is the number of in-
put elements the method is applied on. In this work, this corresponds to the number of
source files in a software system’s codebase. That considered, measuring and comparing
the performance between projects with similar size—in terms of LOCs—but with a differ-
ent number of source files, could help better understand the impact of this factor on the
method’s performance.

56

Bibliography

[1] Akshat Agrawal and Sumit Kumar Yadav. A hybrid-token and textual based approach
to find similar code segments. In 2013 fourth international conference on computing,
communications and networking technologies (ICCCNT), pages 1–4. IEEE, 2013.

[2] Brenda S Baker. On finding duplication and near-duplication in large software sys-
tems. In Proceedings of 2nd Working Conference on Reverse Engineering, pages
86–95. IEEE, 1995.

[3] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine Bier.
Clone detection using abstract syntax trees. In Proceedings. International Conference
on Software Maintenance (Cat. No. 98CB36272), pages 368–377. IEEE, 1998.

[4] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo. Com-
parison and evaluation of clone detection tools. IEEE Transactions on software engi-
neering, 33(9):577–591, 2007.

[5] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is “near-
est neighbor” meaningful? In International conference on database theory, pages
217–235. Springer, 1999.

[6] Andrei Z Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages
21–29. IEEE, 1997.

[7] Frank Buschmann. To pay or not to pay technical debt. IEEE software, 28(6):29–31,
2011.

[8] Raffaele Cappelli, Matteo Ferrara, and Davide Maltoni. Fingerprint indexing based
on minutia cylinder-code. IEEE transactions on pattern analysis and machine intelli-
gence, 33(5):1051–1057, 2010.

[9] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
380–388, 2002.

57

BIBLIOGRAPHY

[10] Edith Cohen. Size-estimation framework with applications to transitive closure and
reachability. Journal of Computer and System Sciences, 55(3):441–453, 1997.

[11] Ward Cunningham. The wycash portfolio management system. ACM SIGPLAN OOPS
Messenger, 4(2):29–30, 1992.

[12] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google news
personalization: scalable online collaborative filtering. In Proceedings of the 16th
international conference on World Wide Web, pages 271–280, 2007.

[13] Michiel De Wit, Andy Zaidman, and Arie Van Deursen. Managing code clones using
dynamic change tracking and resolution. In 2009 IEEE International Conference on
Software Maintenance, pages 169–178. IEEE, 2009.

[14] Marco di Biase, Ayushi Rastogi, Magiel Bruntink, and Arie van Deursen. The delta
maintainability model: measuring maintainability of fine-grained code changes. In
2019 IEEE/ACM International Conference on Technical Debt (TechDebt), pages 113–
122. IEEE, 2019.

[15] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent
approach for detecting duplicated code. In Proceedings IEEE International Confer-
ence on Software Maintenance-1999 (ICSM’99).’Software Maintenance for Business
Change’(Cat. No. 99CB36360), pages 109–118. IEEE, 1999.

[16] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad Ouzzani,
and Nan Tang. Distributed representations of tuples for entity resolution. Proceedings
of the VLDB Endowment, 11(11):1454–1467, 2018.

[17] Otmar Ertl. Superminhash-a new minwise hashing algorithm for jaccard similarity
estimation. arXiv preprint arXiv:1706.05698, 2017.

[18] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 2018.

[19] Marco Funaro, Daniele Braga, Alessandro Campi, and Carlo Ghezzi. A hybrid ap-
proach (syntactic and textual) to clone detection. In Proceedings of the 4th Interna-
tional Workshop on Software Clones, pages 79–80. ACM, 2010.

[20] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimen-
sions via hashing. In Vldb, volume 99, pages 518–529, 1999.

[21] Nils Göde and Rainer Koschke. Incremental clone detection. In 2009 13th Euro-
pean Conference on Software Maintenance and Reengineering, pages 219–228. IEEE,
2009.

[22] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring
maintainability. In 6th international conference on the quality of information and
communications technology (QUATIC 2007), pages 30–39. IEEE, 2007.

58

Bibliography

[23] Yoshiki Higo, Ueda Yasushi, Minoru Nishino, and Shinji Kusumoto. Incremental code
clone detection: A pdg-based approach. In 2011 18th Working Conference on Reverse
Engineering, pages 3–12. IEEE, 2011.

[24] Benjamin Hummel, Elmar Juergens, Lars Heinemann, and Michael Conradt. Index-
based code clone detection: incremental, distributed, scalable. In 2010 IEEE Interna-
tional Conference on Software Maintenance, pages 1–9. IEEE, 2010.

[25] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing
the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 604–613, 1998.

[26] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard:
Scalable and accurate tree-based detection of code clones. In Proceedings of the 29th
international conference on Software Engineering, pages 96–105. IEEE Computer
Society, 2007.

[27] J Howard Johnson. Substring matching for clone detection and change tracking. In
ICSM, volume 94, pages 120–126, 1994.

[28] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code. IEEE Transac-
tions on Software Engineering, 28(7):654–670, 2002.

[29] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical study
of code clone genealogies. In Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium on Foun-
dations of software engineering, pages 187–196, 2005.

[30] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in
source code. In International static analysis symposium, pages 40–56. Springer, 2001.

[31] Kostas A Kontogiannis, Renator DeMori, Ettore Merlo, Michael Galler, and Morris
Bernstein. Pattern matching for clone and concept detection. Automated Software
Engineering, 3(1-2):77–108, 1996.

[32] Jens Krinke. Identifying similar code with program dependence graphs. In Proceed-
ings Eighth Working Conference on Reverse Engineering, pages 301–309. IEEE, 2001.

[33] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive
Datasets. Cambridge University Press, USA, 2nd edition, 2014. ISBN 1107077230.

[34] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. Cclearner: A
deep learning-based clone detection approach. In 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 249–260. IEEE, 2017.

[35] Ping Li, Art Owen, and Cun-Hui Zhang. One permutation hashing for efficient search
and learning. arXiv preprint arXiv:1208.1259, 2012.

59

BIBLIOGRAPHY

[36] Zengyang Li, Paris Avgeriou, and Peng Liang. A systematic mapping study on tech-
nical debt and its management. Journal of Systems and Software, 101:193–220, 2015.

[37] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: Finding
copy-paste and related bugs in large-scale software code. IEEE Transactions on soft-
ware Engineering, 32(3):176–192, 2006.

[38] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. Gplag: detection of software
plagiarism by program dependence graph analysis. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
872–881. ACM, 2006.

[39] Andrian Marcus and Jonathan I Maletic. Identification of high-level concept clones
in source code. In Proceedings 16th Annual International Conference on Automated
Software Engineering (ASE 2001), pages 107–114. IEEE, 2001.

[40] Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the automatic detec-
tion of function clones in a software system using metrics. In icsm, volume 96, page
244, 1996.

[41] Leo A Meyerovich and Ariel S Rabkin. Empirical analysis of programming language
adoption. In Proceedings of the 2013 ACM SIGPLAN international conference on
Object oriented programming systems languages & applications, pages 1–18, 2013.

[42] Tung Thanh Nguyen, Hoan Anh Nguyen, Jafar M Al-Kofahi, Nam H Pham, and
Tien N Nguyen. Scalable and incremental clone detection for evolving software. In
2009 IEEE International Conference on Software Maintenance, pages 491–494. IEEE,
2009.

[43] Luca Pascarella, Magiel Bruntink, and Alberto Bacchelli. Classifying code comments
in java software systems. Empirical Software Engineering, 24(3):1499–1537, 2019.

[44] Chaiyong Ragkhitwetsagul and Jens Krinke. Siamese: scalable and incremental code
clone search via multiple code representations. Empirical Software Engineering,
pages 1–49, 2019.

[45] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software clone detection: A
systematic review. Information and Software Technology, 55(7):1165–1199, 2013.

[46] Chanchal K Roy and James R Cordy. A mutation/injection-based automatic frame-
work for evaluating code clone detection tools. In 2009 International Conference on
Software Testing, Verification, and Validation Workshops, pages 157–166. IEEE, 2009.

[47] Chanchal K Roy, James R Cordy, and Rainer Koschke. Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Science of com-
puter programming, 74(7):470–495, 2009.

60

Bibliography

[48] Chanchal K Roy, Minhaz F Zibran, and Rainer Koschke. The vision of software clone
management: Past, present, and future (keynote paper). In 2014 Software Evolution
Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse Engi-
neering (CSMR-WCRE), pages 18–33. IEEE, 2014.

[49] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V
Lopes. Oreo: Detection of clones in the twilight zone. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 354–365, 2018.

[50] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. Sourcerercc: Scaling code clone detection to big-code. In Proceedings of the
38th International Conference on Software Engineering, pages 1157–1168, 2016.

[51] Abdullah Sheneamer and Jugal Kalita. A survey of software clone detection tech-
niques. International Journal of Computer Applications, 137(10):1–21, 2016.

[52] Anshumali Shrivastava and Ping Li. In defense of minhash over simhash. In Artificial
Intelligence and Statistics, pages 886–894, 2014.

[53] Sadhan Sood and Dmitri Loguinov. Probabilistic near-duplicate detection using
simhash. In Proceedings of the 20th ACM international conference on Information
and knowledge management, pages 1117–1126, 2011.

[54] Jeffrey Svajlenko and Chanchal K Roy. Evaluating clone detection tools with big-
clonebench. In 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 131–140. IEEE, 2015.

[55] Vasilis Verroios and Hector Garcia-Molina. Top-k entity resolution with adaptive
locality-sensitive hashing. In 2019 IEEE 35th International Conference on Data En-
gineering (ICDE), pages 1718–1721. IEEE, 2019.

[56] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep
learning code fragments for code clone detection. In 2016 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages 87–98. IEEE,
2016.

[57] Kunpeng Zhang, Shaokun Fan, and Harry Jiannan Wang. An efficient recommender
system using locality sensitive hashing. In Proceedings of the 51st Hawaii Interna-
tional Conference on System Sciences, 2018.

[58] Wei Zhou, Jiankun Hu, and Song Wang. Enhanced locality-sensitive hashing for fin-
gerprint forensics over large multi-sensor databases. IEEE Transactions on Big Data,
2017.

61

Appendix A

Corpus Collection

This appendix provides information regarding the status of each of the software systems in
our dataset during the time of our analysis.

A.1 Project Snapshots

Table A.1 shows the status of the git-based repository of every open source project we
used, during the time of our analysis. More specifically, it points out the main branch that
was used along with information about the most recent commit for the particular branch.
Starting from the reported commits for each system and going back 50 commits in each
case—excluding merges—, one can retrieve the software system revisions analyzed in our
study.

Project Branch HEAD commit id HEAD commit meta-info

Rippled develop cd78ce3
Author: Carl Hua
Date: Tue Apr 14 09:50:15 2020 -0400
Add PR automation for project boards

Kooboo master 39406b7
Author: CN name
Date: Mon Jun 15 09:58:57 2020 +0800
fixed monaco bug

Tensorflow master f926d8c

Author: A. Unique TensorFlower
Date: Mon Jun 15 03:38:44 2020 -0700
Introduces a new experimental package that:
- Defines a schema for configuring delegates
- Defines a C++ plugin mechanism using the schema...

Openjdk-jdk14u master e23aaed
Author: Prasadrao Koppula
Date: Thu Jun 11 21:54:51 2020 +0530
8246031: SSLSocket.getSession() doesn’t close...

Linux master 9cb1fd0
Author: Linus Torvalds
Date: Sun May 24 15:32:54 2020 -0700
Linux 5.7-rc7

Table A.1: Project snapshots at the time of analysis

63

Appendix B

Excluded Directories & Files

Table B.1 shows the directories and file extensions ignored by both of our implementations.
This happens at two different phases, during the initial parsing of the codebase and during
the parsing of the changes included in a commit.

EXLUDED
DIRS

node modules, assets, build, classes, gradle, licenses, icu, dcn21, fixtures,
docs, test, tests, examples, changelogs

EXLUDED
FILES

.3dm, .3ds, .3g2, .3gp, .7z, .a, .aac, .adp, .ai, .aif, .aiff, .alz, .ape, .apk,
.ar, .arj, .asf, .au, .avi, .bak, .baml, .bh, .bin, .bk, .bmp, .btif, .bz2, .bzip2,
.cab, .caf, .cgm, .class, .cmx, .cpio, .cr2, .cur, .dat, .dcm, .deb, .dex, .djvu,
.dll, .dmg, .dng, .doc, .docm, .docx, .dot, .dotm, .dra, .DS Store, .dsk, .dts,

.dtshd, .dvb, .dwg, .dxf, .ecelp4800, .ecelp7470, .ecelp9600, .egg, .eol, .eot,
.exe, .f4v, .fbs, .fh, .fla, .flac, .fli, .flv, .fpx, .fst, .fvt, .g3, .gh, .gif, .epub,

.graffle, .gz, .gzip, .h261, .h263, .h264, .icns, .ico, .ief, .img, .ipa, .iso, .jar,
.jpeg, .jpg, .jpgv, .jpm, .jxr, .key, .ktx, .lha, .lib, .lvp, .lz, .lzh, .lzma, .mng,

.lzo, .m3u, .m4a, .m4v, .mar, .mdi, .mht, .mid, .midi, .mj2, .mka, .mkv, .mmr,
.mobi, .mov, .movie, .mp3, .mp4, .mp4a, .mpeg, .mpg, .mpga, .mxu, .nef, .npx,
.numbers, .nupkg, .o, .oga, .ogg, .ogv, .otf, .pages, .pbm, .pcx, .pdb, .pdf, .pea,

.pgm, .pic, .png, .pnm, .pot, .potm, .potx, .ppa, .ppam, .ppm, .pps, .ppsm, .ppsx,
.ppt, .pptm, .pptx, .psd, .pya, .pyc, .pyo, .pyv, .qt, .rar, .ras, .raw, .resources,

.rgb, .rip, .rlc, .rmf, .rmvb, .rtf, .rz, .s3m, .s7z, .scpt, .sgi, .shar, .sil, .whl,
.sketch, .slk, .smv, .snk, .so, .stl, .suo, .sub, .swf, .tar, .tbz, .tbz2, .tga, .xlam,

.tgz, .thmx, .tif, .tiff, .tlz, .ttc, .ttf, .txz, .udf, .uvh, .uvi, .uvm, .uvp,
.uvs, .uvu, .viv, .vob, .war, .wav, .wax, .wbmp, .wdp, .weba, .webm, .webp,
.wim, .wm, .wma, .wmv, .wmx, .woff, .woff2, .wrm, .wvx, .xbm, .xif, .xla,
.xls, .xlsb, .xlsm, .xlsx, .xlt, .xltm, .xltx, .xm, .xmind, .xpi, .xpm, .xwd, .xz,

.z, .zip, zipx, .txt, .md, .bat, .jks, .sh, .prpt, .ini, .db, .plist, .ver, .pb,
.data-00000-of-00001, .index, .golden, .pbtxt.gz, .mdb, .meta, .bytes, .lite, .h5,
.data-00000-of-00002, .data-00001-of-00002, .map, .elf, .skb, .skp, .dtbo, .mat,

.dll, .Rascal, .exr, .blend, .pfb, .xcf, .odg, .out, .sgml, .pfx, .fig, .mo, .install

Table B.1: Excluded Directories & File Extensions

65

	Preface
	Contents
	List of Figures
	Introduction
	Problem Statement
	Research Questions
	Scope
	Contributions
	Thesis Outline

	Background & Related Work
	Clone Detection Basics
	Clone Detection Challenges
	Clone Detection Techniques
	Locality Sensitive Hashing

	Incremental Clone Detector
	Overview
	Source Code Preprocessing
	Source Code Representation
	Clone Detection
	Output

	Incremental Clone Detection with Locality Sensitive Hashing
	Motivation
	Overview
	Approach Decomposition

	Experimental Design
	Types of Experiments
	Output Validation
	Tools Configuration
	The Infrastructure
	The Corpus
	Simulation of Commits

	Experimental Results
	LIICD Measurements
	LIICD vs SIG Measurements
	LSH-based Extension Measurements

	Discussion
	Main Findings
	Implications
	Threats to Validity
	Applicability within SIG

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography
	Corpus Collection
	Project Snapshots

	Excluded Directories & Files

