
TU DELFT

MSC. APPLIED PHYSICS

A spectrally-multiplexed Bell-state
measurements

Towards multiplexed quantum repeaters

Author
Oriol PIETX I CASAS

Supervisors
Gustavo CASTRO DO AMARAL
Wolfgang TITTEL

September 28, 2020



Welcome to Oriol Pietx i Casas’s Master thesis project main report.
This project was carried out during the 2019-2020 academic year in Wolfgang Tittel’s group within

QuTech, TU Delft, in the Netherlands. It is the final project for the MSc Applied Physics (Quantum
devices and quantum technologies).

We hope the reader enjoys this work.



Contents

1 Introduction 6
1.1 Repeater chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Frequency multiplexed quantum repeater architecture . . . . . . . . . . . . . . . . . . . . . 8

2 Qubits and time-bin encoding 10
2.1 Time-bin qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Beam-splitters: around the Bloch-Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Entangled states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Quantum key distribution 15
3.1 The BB84 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 QKD Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Measurement-Device-Independent Quantum Key Distribution . . . . . . . . . . . . . . . . 19

3.3.1 Bell-state measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 From QKD to quantum repeaters 21
4.1 Entanglement swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Quantum relays and repeaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Frequency-multiplexed quantum-repeater architecture 23
5.1 Entangled photon pair source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Absorptive quantum memories with fixed storage time . . . . . . . . . . . . . . . . . . . . 25
5.3 Frequency shifting station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Demultiplexing the BSM: theory and simulation 27
6.1 Virtually Imaged Phased Array (VIPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1.1 Physical appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.2 Operation and behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 Simulations and expected results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Experimental Setup 32
7.1 Host preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Qubit encoding and interferometer stabilization . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2.1 Interferometer stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2.2 Stabilization over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Spectral-to-Spatial Mode-Mapping: characterization . . . . . . . . . . . . . . . . . . . . . . 37
7.4 Control and measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Results 41
8.1 Frequency-multiplexed HOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 Qubit interference curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.3 Secret key rate simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9 Outlook 47
9.1 Demultiplexing and coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.2 New detection setup for BSM detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.3 Towards teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



Appendices 50

A Photon-Statistics 50
A.1 Measuring the auto-correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.2 Second-order correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B Beam-splitters 53
B.1 Classical Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.2 Quantum Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C Hong-Ou-Mandel effect 56
C.1 Photon distinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
C.2 Hong-Ou-Mandel experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

References 60



Before this thesis kicks-off we wanted to provide to the reader who is not familiar with physics, a little overview
of what a quantum repeater is using an analogy of childhood...

A significant part of us, when an innocent child, has played the game of the telephone. For those who
did not have the opportunity, you would line up with your friends with the goal to bring a message from
one end to the other by whispering into the next person in line. Obviously there is no fun in just shouting
the message, hoping the other end will get it, as everyone else in recess would come to discover your
message. Running to the other end is also forbidden as no one has fun like that and it is exhausting...

As an example, imagine a school class. We have Alice who likes Bianca, but she is too shy to go and
tell her. Every once in a while, she finds the courage to stand up and run across the park to find her.
However, as she goes and gets closer and closer, her confidence drops and she starts getting nervous, to
the point that when she is standing in front of Bianca she is confused, does not find the right words, and
only manages to mumble nonsense. Bianca is left completely confused- What does Alice want? One day
Alice has a wonderful idea: she convinces all her best friends to play the telephone game. She will stand
on one end and, mischievously, they will place Bianca at the other end. She has found the game to be
the perfect means to let Bianca know she is in love with her without actually having to tell her in person.
Also because she is actually just telling her secret to a good friend of hers, she can say it loud and clear.
Her best friends would never spill out the message so someone else could hear it, it is forbidden by the
best-friends-forever code.

Alice, however, has played the game many times before and knows that usually only parts of the
initial message will get to Bianca even if everyone is trying their best; after all they are kids during
recess. Who can keep them quiet and forming a line? We can only hope that the chain they are forming
is stable enough and that they are ready to pass on the message when it is their turn so that Bianca gets
to know Alice’s feelings for her. Also, it is obvious that fewer people participating in the game makes
the outcome more reliable and easy to obtain.

The day has arrived. Alice is positive and confident that her message will be received, she has found
two good solution to compensate for the little linklets not paying attention: (i) the linklets will send a
message from the center to the outer parts of the chain by squeezing their hands, effectively notifying
Alice and Bianca that the chain is ready to forward the message; (ii) since Alice has many friends, she can
arrange them in multiple chains, one next to the other, all converging on her and Bianca’s end. That way,
she avoids relying only on one single set of friends having to be ready and cooperate simultaneously.
Her secret will, hopefully, make it through at least one of the chains in one piece, not giving Bianca any
room for misinterpretation.

It is a success! Now the new couple in school, Bianca and Alice, can sit next to each other during the
classes in an awkward silence. Isn’t primary school the best..?

The reader to whom the words "multiplexed quantum repeater architecture" do not mean anything
might be surprised by this brief introduction to the work. I will try my best, in the following text, to
relate the lovely story of Alice and Bianca to the practical technology studied in this thesis. To the more
experienced reader, let this be a quite inaccurate refresher or just an anecdote.



Abstract

In this master’s thesis we report on the characterization of spectral-multiplexed Bell-state measure-
ment, a fundamental building block of spectral-multiplexed quantum repeater architecture. To test our
hypothesis, we show an experimental setup that resembles an MDI-QKD setup, but multiplexed in fre-
quency. The result is an increased secret key rate thanks to the individual contributions of each spectral
mode. We also report characterization of all relevant degrees of freedom that affect Bell-state measure-
ment efficiency, such as spectral-demultiplexing, Hong-Ou-Mandel interference and qubit generation.
To finalize, we discuss on possible improvements and lay down the steps to follow to achieve spectrally-
multiplexed quantum teleportation.
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In this first section we present and motivate the entire work from a "big picture" point of view: the idea of
quantum repeater is introduced and some insights of the frequency-multiplexed quantum repeater architecture
and its protocol to distribute entanglement are given...

1 Introduction

Here in Delft, there is a project to launch a small-scale quantum network shared by a few universities.
Though it may seem a bit far-fetched to state as of now that the design of this experiment will yield the
blueprint for a global network, it is logical to think -as of now- that the new internet will have similar
structure and components to the classical one. Three basic components will be needed to put together a
quantum network on the physical layer:

• End-nodes: these are the quantum computers, in whatever form they will exist. Probably calling
them quantum computers is a bit of an overstatement as a simpler form like quantum processor
(that can send and measure qubits) would suffice, since for most of the existing quantum commu-
nication protocols so far, processing a single qubit at a time is enough [1, 2, 3].

• Switches: in analogy to classical networks, some form of switch is needed to distribute and redi-
rect the communication between channels. The switches avoid placing a quantum channel be-
tween each one of the nodes of the network.

• Quantum repeaters: this component also gets the name from its classical counterpart. Despite
sharing the functionality (making sure that the signal is not lost during transmission), the mode
of operation is completely different. Since quantum states cannot be copied faithfully, the signal
cannot be regenerated after a certain propagation distance (like in a classical repeater). Through
entanglement swapping, quantum information can be distributed without the need of signal re-
generation.

This work focuses on last of the items and, more precisely, in a very concise operation that it carries
out, the Bell State Measurement (BSM). To contextualize the bigger picture for the rest of this text, a
detailed explanation on how a quantum repeater chain is envisioned is given in the following pages.

1.1 Repeater chains

The main goals of any communication protocol are two. First, security, i.e., the protocol must be
secure against any possible attack that attempts to disclose the transmitted information. Second, use-
fulness; it must be possible to communicate by following the protocol. Having the latter without the
former is not good enough as we want to keep our messages secret and private and, in case of intrud-
ers, detect their presence. There are many possible communication protocols that are both secure and
useful, such as whispering, or signing. However, as the distances increase, one or the other has to be
compromised because the signals that carry the information experience intrinsic attenuation. This was
exemplified before by Alice loosing her confidence when she would try and run towards Bianca.

The goal of a repeater is to make sure that the information transmitted arrives at the destination
in the best condition possible, ideally regardless of the distance. For that purpose, we will divide the
communication distance in smaller segments named elementary links for which we can ensure that the
information does not get lost and, by using the appropriate protocols, also secure. Simply by concate-
nating more elementary links, we will be able to cover the full distance. Up to this point the definition
and use of repeaters is valid for both quantum and classical communications. However, there is a fun-
damental difference on how these two types operate.
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A simplified chain of elementary links for classical communication consists of elements that receive
the signal and regenerate it so that it can be forwarded to the next repeater, making the loss of informa-
tion minimal. The reconstruction of classical information depends on creating a carrier signal resilient
enough so that it can still be detected by the repeater element. Some attempts and novel ideas exist to
implement this repeating-station for the quantum case [4, 5, 6, 7]. Here, we will focus on quantum re-
peater architectures [8] based on absorptive quantum memories – which store quantum states encoded
into photons that are created elsewhere – and entangled photon-pair sources – which generate entangled
states –, as depicted in figure 1a. A third element in 1a, the BSM, is responsible for implementing the en-
tanglement swapping operation effectively concatenating the elements within and between elementary
links. Moreover, it can herald which attempts yielded a successful entanglement swap.

& &

QM EPPS Photon detectors

& &

BSM

BSM BSM

BSM

Elementary Link

Alice Bianca

a)

b)

Figure 1: Schematics of memory based quantum repeater chain. In a, the different elements composing
the elementary link are depicted. In b, we showcase, as we follow the protocol, the memories that share
entanglement.

The entanglement swapping protocol that allows connecting multiple elements in the elementary
link (quantum repeater) chain works in the folllowing way, as depicted in figure 1a: for both sides of the
elementary link, entangled photon pairs will emerge from each of the entangled photon-pair sources
(EPPS); while one is stored in one of the quantum memories, the other is transmitted (through a quan-
tum channel) to a remote (distant) location where the BSM will be performed. The BSM consists in the
projection of the joint quantum state of two photons (which, in this case, have not previously interacted)
onto the Bell state basis. Uxpon a successful result, a set of unitary operations can be applied to the
quantum states stored in the quantum memories such that entanglement between these two remaining
states is established. Let us assume that we have distributed entanglement across our elementary links.
It is noteworthy the role of the quantum memories: the elementary links in the chain will not necessarily
establish entanglement synchronously. The presence of quantum memories combined with heralding of
successful entanglement swapping operations, allows the temporal storage of entangled photons while
other sections of the chain are still trying to distribute entanglement. Now, if we look at 1b, we only
have to perform a set of BSM operations between adjacent memories to swap entanglement to the outer
limits of our chain. For that, we will make use of our ability to pinpoint (thanks to heralding) the suc-
cessful modes stored in the memories and perform the subsequent entanglement swapping operations
only with those. In figure 1b, only the memories that are entangled with each other are depicted; they
are connected with a green link. As the protocol progresses (going down in the figure), the memories
that are entangled become more and more distant from each other. Once the chain is completed we can
use this entanglement for any computing and/or communication protocol.
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It is important to note how we have managed to cover a large distance without the need of sending
a single photon across the entire chain. In this way, the transmitted quantum channels are not required
to experience the transmission loss between end-nodes; however, they are still subject to the loss within
each one of the elementary links.

1.2 Frequency multiplexed quantum repeater architecture

If everything were fields and flowers as that simple explanation we provided before, this thesis
would not be needed but as we all know reality is never as simple. As previously mentioned, ineffi-
ciency of the components poses a limitation to the achievable throughput and/or distances covered by
a quantum repeater chain. These come in two main forms: the loss in memory (out of the scope of this
thesis) and the communication channel, which, in an optical fiber, are governed by the Beer-Lambert
Law [9]; and a 50% maximum efficiency associated to the linear-optics-based BSM 1, which is in the core
of the entanglement swapping protocol. In order to overcome these two forms of inefficiency, frequency
multiplexing can be implemented in the quantum-repeater chain. The idea of multiplexing was already
exemplified in the explanation of figure 1, in which the elementary links are concatenated using en-
tangled states generated during different rounds (temporal multiplexing). For frequency multiplexing,
instead of creating entangled photon-pairs that occupy a single spectral mode, a discrete collection of
spectral modes is created such that the chance of at least one of them reaching the remote station after
long-distance propagation and, then, producing a successful BSM, is increased, ideally up to 100%.

By implementing this extra layer, we can draw figure 2 of the frequency multiplexed elementary
link. As we can see, it is composed by the same devices as in figure 1 but engineered to deal with
many frequencies simultaneously. This new architecture is important for this work because it defines
two types of BSMs. Both of them were also depicted in the more simplified version of the repeater
chain but, once spectral multiplexing is added, a fundamental difference between them arises: on one
hand, we have the remote BSM, within the elementary links; on the other, we have the local BSM,
that concatenates adjacent elementary links. Since the former is distant from the sources, spanning the
majority of the elementary link length, the propagation loss is significant (as it scales exponentially with
distance); the latter, being local, does not suffer from this effect. Therefore, it is possible to formally
define the probability of performing a successful BSM in these two cases, as follows:

Premote = ηch1ηch2ηBSM = e−αL/2e−αL/20.5 (1)
Plocal = ηBSM = 0.5, (2)

where ηch1,2 are the channel efficiencies for photons coming from either sources in the elementary link,
ηBSM is the linear-optic-based BSM efficiency, L is the total elementary link length, and α is the fiber’s
loss coefficient, in [dB/km].

When one considers the multiple (n) discrete frequency modes emitted by the source in the frequency-
multiplexed scenario, the probability of at least one frequency mode being successful in the remote BSM
can be written as:

Premote-mux = 1− (1− 0.5e−2αL)n, (3)

effectively counteracting the detrimental exponential loss due to long-distance propagation in the fiber.
In case the number of frequency modes can be increased significantly, close to deterministic entangle-
ment swapping can be reached even for distances in the tens-of-kilometers range.

Very much like in the temporal multiplexing, when a spectral mode is successful in the remote BSM,
all the other modes are discarded. Therefore, in order to achieve entanglement swapping between el-
ementary links, the matching photonic quantum state previously stored in the quantum memory must

1Refer to section 3.3.1 for the mathematical derivation of this value.
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be retrieved. Not only that, but a frequency-shifting operation is required so that modes stored and
retrieved from adjacent elementary links are matched2. This is the role of the classical communication
channel and of the frequency-shifting operation, both depicted in figure 2. After this operation, a single
frequency mode interacts in the local BSM, which, thus, remains unchanged from the non-spectrally
multiplexed case.

REMOTE BSM: 
  STATION A

       BSM
      LOCAL

ELEMENTARY LINK A ELEMENTARY LINK B 

Successful 
   mode

Successful 
   mode

REMOTE BSM:
  STATION B

Fr
eq

ue
nc

y 

  s
hi
fti

ng
Frequency 

  shifting

Classical communication
      successful mode

Classical communication
      successful mode

QM: M AL

QM: M AR

Source: S AL Source: S AR Source: S BL Source: S BR

QM: M BL

QM: M BR

&
Classical communication
      successful mode

Classical communication
      successful mode &

Successful
   mode

Figure 2: Depiction of two concatenated elementary links of a frequency-multiplexed quantum repeater.
Elements in the same color-block are located together whereas the different blocks are at distant locations

In the drawing, we can see, in more detail, the different constituents of the frequency-multiplexed
quantum repeater and a local BSM operation to concatenate elementary links. Although the reader now
has an intuition on how it works, it is the goal of the following chapters to unveil the pieces to build
such a quantum repeater and to explain in more detail how it works. Moreover the central piece of this
project is regarding the frequency-multiplexed Bell-state measurement which will be explored in depth
in the experimental section of the report.

Once the existence of quantum repeaters is argued necessary for a large scale quantum network, and their
functionality is established, there’s no other way but to start the road towards building one.

2A condition for the linear-optics-based BSM, as explained in Appendix C
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A brief introduction to qubits and the encoding systems used in our lab will be our starting point that later
will be used to carry out communication protocols.

2 Qubits and time-bin encoding

We will introduce the notion of qubit by going to the roots of quantum mechanics, to its initial
postulates:

1. At each instant the state of a physical system is represented by a ket |ϕ〉 in the space of states that
contains all there is to know about the system. Independent systems can be represented together
by using the tensor product |ϕ〉 ⊗ |ψ〉

2. Every observable attribute of a physical system is described by an operator that acts on the kets
that describe the system.

3. The only possible result of the measurement of an observable A is one of the eigenvalues of the
corresponding operator Â.

4. When a measurement of an observable A is made on a generic state |ϕ〉, the probability of obtain-
ing an eigenvalue an is given by the square of the inner product of |ϕ〉 with the eigenstate |an〉,
|〈an|ϕ〉|2.

5. Immediately after the measurement of an observable A has yielded a value an, the state of the
system is the normalized eigenstate |an〉.

6. The time evolution of a quantum system preserves the normalization of the associated ket. The
time evolution of the state of a quantum system is described by |ϕ(t)〉 = Û (t, t0) |ϕ(t0)〉, for some
unitary operator Û .

If we apply these concepts to a 2-level system, we obtain the formal definition of a qubit. Let us
exemplify, using the postulates, what are: the qubit; the names given to the space we use; and the
eigenvectors and eigenstates.

The qubit receives its name from its classical counterpart, the bit. Being the bit the simplest unit of
information that can be processed by a computer, the qubit is the same for a quantum computer. Just like
the bit can be in the states 0 and 1, the qubit can be written as a linear combination of the quantum states
|0〉 and |1〉 that define our principal basis, the computational basis. The computational basis is associated
to the observable Z, i.e., they are its eigenvectors, effectively defining the 2-level system. Given a qubit,
if we apply the fourth postulate and measure in the Z-basis we obtain, as a result, one of its eigenvalues,
associated to the basis on which the measurement was performed. The eigenvalues are 1 for the state
|0〉 and −1 for |1〉, but a one-to-one mapping can be performed to associate the measurement results to
classical bits 0 and 1.

Applying a unitary transformation Û such as described in postulate six, we can bring the quantum
state from an eigenvector of the Z-basis to a general state like

(
α |0〉 + β |1〉

)
, a superposed quantum

state. There are some superpositions which are more interesting than others: imagine we apply a trans-
formation that brings the qubit to a state that has the same probability of measuring |0〉 or |1〉 when
using the Z-basis. We define the states |±〉 = 1√

2

(
|0〉 ± |1〉

)
, which are the eigenvectors of the so-called

X-basis; simultaneously, the vectors |±i〉 = 1√
2

(
|0〉 ± i |1〉

)
are associated to the so-called Y-basis. One

can prove that the eigenvalues of the new basis are the same given that the transformation is unitary.
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Figure 3: The Bloch sphere. The car-
dinal points representing the states
|0〉 , |1〉 , |+〉 , |+i〉 are marked. In
purple an arbitrary state that can be
defined by equation 6. In blue a uni-
tary transformation that brings |0〉
to |+〉.

To exemplify how the measurements in different basis (or ob-
servables) work, we can think of the following examples. Imag-
ine we have a qubit in the X-basis and we want to discover the
probability of obtaining 0 while measuring on the Z-basis:

|〈0|+〉|2 =

∣∣∣∣〈0| · 1√
2

(
|0〉+ |1〉

)∣∣∣∣2 =

∣∣∣∣ 1√
2
〈0|0〉

∣∣∣∣2 =
1
2

(4)

We obtain a 50% probability to measure 0 and, therefore, also
to measure 1. Once this measurement happens the fifth postu-
late applies. Note how our state could have been defined on
the Z-basis and measured using the X-basis and we would have
found the same results. Finally, note how if one measures a qubit
in the basis that it was prepared, the result is deterministic, i.e.,
|〈−|−〉|2 = 1.

The three aforementioned bases (Z, X, Y) can be arranged in a
geometrical structure called the Bloch-Sphere, which grants ease
of visualization. The Bloch-sphere defines a surface which con-
tains all possible states of a qubit; therefore, they can be depicted
by a unitary vector from the origin to a point of the surface (pur-

ple vector in figure 3). Any point on the surface can be accessed by applying a unitary transformation
that will conform a rotation of the vector defined between the point on the sphere and its center (blue
curve in figure 3). On the cardinal points, we can find all six eigenvectors that define the three bases.

Although a unitary operation can be found to map a qubit state to any other, as previously men-
tioned, a remarkable theorem from quantum mechanics states that there is no single unitary transfor-
mation that maps any qubit to any other preserving the state of the first one. Formally (No-Cloning
Theorem): Given |φ〉 , |θ〉 arbitrary quantum states and Ûc, an arbitrary unitary operator such that:

|φ〉 ⊗ |0〉 Û−→ |φ〉 ⊗ |φ〉

|θ〉 ⊗ |0〉 Û−→ |θ〉 ⊗ |θ〉 ,

then 〈φ|θ〉 is 0 or 1, i.e., it is only possible if the states are the same or orthogonal.

2.1 Time-bin qubits

t

𝜏 𝜏
t0 t1

⟩�e⟩ ⟩�e⟩

Figure 4: Time bins of two consecu-
tive qubits (in different colors). We can
see there is a time-window in which the
photon (darker shade) is expected to be
found. The first window is defined by a
time reference whereas the second by a
fixed delay τ from the first.

The formal definition of a qubit is an abstract mathemat-
ical object. When reality comes into play, many 2-level sys-
tems can be used or engineered to replicate the expected
behaviour of qubits. The most famous ones are: the spin
of an electron [10, 11]; the polarization of a photon [12]; or
the charge/flux on a superconducting qubit chip [13]. Note
that, for quantum communications, the qubits need to be
transported between far locations. The use of optical pho-
tons as host particles to encode the qubit seems the most
logical way to communicate, mainly for the speed at which
it travels and the low attenuation (although not negligible)
that it experiences through optical fibers.

In this experimental thesis, we will be working using
time-bin qubits. The ideas behind time-bin qubit encoding
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is simple to grasp, yet it comes at the expense of more complicated physical implementation. The 2-level
system is defined given a reference on time for the first level, and a certain delay in which we may find
the second level of the qubit. We can see in figure 4 how the bins are defined. This type of encoding
is particularly useful when attempting to communicate over long distances: decoherence (loss of quan-
tum information) of the qubits and chromatic dispersion on the quantum channels can be neglected and
compensated in many cases [14].

Imagine we have an on-demand source of single photons that it is regularly pulsed. Along with
each pulse we can already define our first time-bin: we will call it early, such that |e〉 ≡ |0〉. With this
definition, we have now a long time delay until the next qubit is defined (the difference between t1
and t0 in figure 4). We will make use of this time in between pulses to define a late time-bin |`〉 ≡ |1〉,
a second time-window after some time τ. Like this, we have completed the definition of the 2-level
system we use for the Z-basis.

2.2 Beam-splitters: around the Bloch-Sphere

We have a way of defining the Z-basis for the qubits. However, we are still missing a way to imple-
ment unitary transformations that could bring us anywhere around the Bloch-sphere.

Although there is at least a couple of ways of implementing arbitrary time-bin qubits, we will use
the initial proposal by [15]. Equation 5, is our starting point3. It describes a single photon input in an η
beam-splitter (BS).

|Ψout〉 =
(
UBSa†

in
)
|0〉a |0〉b =

√
η |1〉a |0〉b +

√
1− η |0〉a |1〉b (5)

The resulting state is in a superposition of the possible modes the input photon can take at the output.
We connect each output to a different path length and we re-connect both of them to an optical switch.
Note that, because both arms have different lengths, the photons will take a different amount of time to
reach the switch. The difference in optical path is τ, hence defining our |`〉 bin in reference to the |e〉.
The optical switch is operated letting through the expected photons at their arrival times, combining
the qubit again in the same spatial mode. This way, we have managed to construct a superposed state
starting from a Z-basis qubit.

BS-𝜂

𝛟

Switch

𝛟 𝛟

𝛟

𝜏 𝜏

Figure 5: Pictorial representation of multiple qubits (different colors) undergoing the same unitary trans-
formation. The coupling η and the applied phase Φ determine the qubit state.

Finally, we can add a phase-modulator in one of the arms; it will result in the possibility of accessing
any point in the Bloch-sphere by properly combining the setting of η and φ. As we can see, equation 6
is a complete representation of any 1-qubit state on the Bloch-sphere. We can create any superposition
by changing the coupling parameters η and the relative path between the arms.

|Ψout〉 =
√

η |e〉+ eiφ√1− η |`〉 (6)

3Visit AppendixB for derivation and notation
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For practical reasons, and because some communication protocols have been proven secure in this
condition, we can restrict the qubits to just Z- and X- basis instead of accessing all possible states. Like
that, we can decide to fix the η BS to a 50:50 BS and φ such that the |+〉 and |−〉 states are created.
Moreover, substituting the optical switch for another 50:50 BS at the expense of 50% loss of light al-
lows to have only passive elements. The configuration with two BSs corresponds to a Mach-Zender
interferometer, with output

|Ψout〉 =
1√
2

(
|e〉+ eiφ |`〉

)
; φ ∈ [0, π]. (7)

Creation of time-bin qubits using interferometers comes with two main consequences:

• There is a restriction on the duration of qubits τ combined with the repetition rate of the source to
avoid time-bins from different qubits to mix or interfere at the beam-splitter.

• If one wants to create qubits on the Z-basis with this configuration, one needs to block one of the
arms of the interferometer letting |e〉 or |`〉 through and increase the intensity of the light before-
hand to compensate the loss.

2.3 Measurements

It is straightforward to realize that with the previously set configuration, the interferometers are
performing a mapping onto the X-basis. By controlling the phase, mapping onto the Y-basis is also
possible. Therefore, the same interferometers that create qubits can be used to measure such qubits in
different bases. By placing detectors at the outputs of the interferemeter, a projective measurement onto
these bases is perforned. Creation and measurement of photonic time-bin qubits using interforemeters
requires a stability of the phase. Inability to control the phase will impact crucially on the accuracy of the
measurement. This thesis reports, in section 7.2.1, a more detailed explanation on the hows and whys
of phase-stabilization.

2.4 Entangled states

A single qubit is already a powerful tool to exploit the properties of quantum mechanics applied
to communications, but its applications are limited to quantum key distribution. Quantum computers
consume resource in terms of entanglement and, in order to interconnect quantum computers, a quan-
tum repeater must distribute entanglement. Entanglement leads to strong quantum correlations, which
can be shared between two or more systems; it stems from the first postulate of quantum mechanics.

Even though more than two particles can be entangled, we will focus on the case of 2-particle entan-
glement since it exhibits a specific property named monogamy. Entanglement monogamy is referred to
the specific type of entanglement in which the two qubits cannot be entangled to anything else; it is also
said that the qubits are maximally entangled. These states are the so-called Bell-states and are the basis
of any two-qubit state. These are denoted by:∣∣Φ+

〉
=

1√
2

(
|00〉+ |11〉

)
;

∣∣Φ−〉 = 1√
2

(
|00〉 − |11〉

)
;

∣∣Ψ+
〉
=

1√
2

(
|01〉+ |10〉

)
;

∣∣Ψ−〉 = 1√
2

(
|01〉 − |10〉

)
,

(8)
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where the first number in each ket refers to one of the particles and the second, the other one.
The fine characteristic about entangled particles is that despite being two physically separate entities,

they cannot be fully described by two separable quantum states.∣∣∣Ψentangled

〉
6= |φ1〉 ⊗ |φ2〉

Therefore, they conform a single system as stated by the first postulate. That results in what some
people refer as maximal coordination upon measurements: when one of the qubits is measured that
will, following the fifth postulate, change the state and condition a measurement on the other qubit.
The Bell states are the states onto which a BSM project. In the following sections, the mathematical
formalism and applications of this measurement will be clarified.
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The following section introduces several well-known general concepts used in the field of study. To help the
reader, these concepts are surrounded by explanations of the BB84 and the MDI-QKD protocols. One will see that
these concepts become relevant as the thesis progresses.

3 Quantum key distribution

Quantum 
   node

Quantum 
   node

Quantum channel

Classical channel

Encryptor Cyphertext (public) Encryptor

key key

Secret messageSecret message

Alice Bianca

Figure 6: Secure communication application
based on a QKD system: QKD establishes a
secret key to be used by the encryptors (also
decryptors). Once the message is encoded, it
can be sent via classical public channels and
only be deciphered by the other encryptor that
holds the same key.

The need to communicate with others in a public
environment without disclosing the secret to any by-
passer dates back more than 3000 years, and up to the
present day, we are still in search for safer and faster
communication protocols. Cryptography protocols are
generally divided into two classes: private key and
public key protocols. Before the advent of the RSA [16]
public key protocol (named after its creators) in 1978,
private key protocols, where only the sender and the
receiver of the encoded message have access to the key,
were the standard. It is straightforward to observe that
the complexity involved in establishing a key only ac-
cessible to two parties to is the same as transmitting
information that only two parties have access to, i.e.,
the key becomes the message. The obvious difference is that the key contains no information, and can
be a random string of digits, so, if it is leaked to a third-party, no information is leaked with it.

In 1917 Gilbert Vernam demonstrated a mathematical security proof of the so-called One-Time Pad
cryptography protocol. In this protocol, the sender and the receiver share a perfectly random key that
can be used once; the sender, then, performs a simple two-bit operation between the message and the
key, transmits the resulting signal through a public channel, and the receiver performs the same opera-
tion between the received signal and the key to recover the original message. The requirement that the
key can only be used once, by one of the parties, prevents widespread use of this protocol, as it poses
a strong practical limitation. Quantum key distribution (QKD) offers, in theory, a secure way of dis-
tributing such keys granted by the laws of quantum mechanics. Once the key is established, the parties
can communicate via a public channel using the One-Time Pad; a schematic of the whole protocol is
presented in figure 6.

A number of QKD protocols have been proposed, in general, they feature the following characters:

• Alice, who wants to share some information with Bianca.

• Bianca, Alice’s communication partner.

• Eve, an all-powerful eavesdropper, decided to spy on Bianca’s and Alice’s communication without
being noticed.

As previously stated, the goal of any QKD protocol is to ensure that Alice and Bianca establish a random
key that can be used for the One-Time Pad. Ideally, no information regarding the key is to be leaked
to Eve, in which case it would be possible for the latter to tap into the communication and have access
to the encoded message. Motivated by the No-Cloning Theorem, presented in the previous section,
Bennett and Brassard developed the first QKD protocol in 1984.

3.1 The BB84 Protocol

Consider that Alice has access to a source of single photons and, by means of the interforemeter
described in Section 2, she is able to encode quantum information in the temporal degree-of-freedom
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of said photons, i.e., time-bin qubits. Everytime a single-photon is emitted from her source, Alice can
choose (randomly) which basis is going to be used for time-bin encoding (Z- or X- basis) and its corre-
sponding eigenstate (|e〉, |`〉 or |+〉, |−〉). Since two binary choices are required, the combination of the
classical bits, ai and bi, determines the encoded quantum state, as seen in table 1.

ai = 0 ai = 1
bi = 0 |e〉 |+〉
bi = 1 |`〉 |−〉

Table 1: The four possible states used in the BB84 protocol that Alice can generate, depending on the
random bits ai and bi.

𝜏

𝛟1

𝜏

𝛟2

𝜏 𝜏 𝜏 𝜏

𝛟2

𝜏

𝛟 𝛟

Alice Bianca
ai

bi

a'i

Basis selection   Z     X      X     Z     Z     X      Z 

Encoded bit (bi)   0     0      1     0     1     1      0 

Qubit state     e      +       -       e       l     -       l 
Measurement basis

Detection result (b'i)

Z     Z      X     X     Z    X     X

0     0      1     0     1     1     1 

Compatibility

Raw-Key

Compatibility

Raw-Key0      .      1      .     1     1     . 

b'i

Figure 7: Steps of the BB84 protocol. In the top, the basis string used by Alice, the encoded bit and
the corresponding sent qubit (according to table 1). On a second step, the bases Bianca used and her
detection results. Finally, sifting yields some bits of raw-key.

After preparing her photonic qubit states, Alice sends them through a quantum channel (possibly
an optical fiber) to Bianca, whose responsibility is to measure each of the incoming photons. In order to
do so, she utilizes a measurement apparatus that is able to make projections of the time-bin qubit states
onto the same bases used by Alice, i.e., Z- and X- basis; as previously discussed in Section 2, Biance
employs, for measurement, an interferometer identical to the one Alice employed for state preparation,
as depicted in figure 7 (with the addition of two detectors). The first part of the protocol (the quantum
part), then, follows these steps:

• Alice sends 4n qubits, encoded at random, and records the strings of bits used for basis (a =
[a0, a1, a2, ..., a4n]) and state selection(b = [b0, b1, b2, ..., b4n]).

• Bianca projects the incoming photonic qubits onto randomly chosen bases, also recording the bit
associated to the basis choice (a′ = [a′0, a′1, a′2, ..., a′4n]) and the bit associated to the measurement
result (b′ = [b′0, b′1, b′2, ..., b′4n]).

After quantum state transmission and measurement is performed, Alice and Bianca are each in pos-
session of two 4n-long strings of bits. They then turn to a classical public channel and announce to
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each other (and to anyone else, including Eve) the string of bits corresponding to the basis choice. For
those cases where Alice and Bianca used the same basis for both state preparation and measurement,
they keep the bit associated to the state (prepared and measured, respectively). This step called basis
reconcilliation or key sifting is necessary because, as demonstrated in equation 4, the result of a projective
measurement onto a basis different than the one used for preparation yields a probabilistic outcome.
Conversely, if the same bases are used, the outcome is deterministic, i.e., Alice’s and Bianca’s bits will
be identical (provided there is no eavesdropper)[17]. It is important to note that only the information
about the bases was disclosed publicly and not on the state preparation and measurement, which will
be used as the final key.

Consider, now, the presence of Eve in the quantum channel and her attempt to extract information
about the key shared by Alice and Bianca. Although many practical security breaches that could be
exploited by Eve in her attempts have been found over the years for the BB84 protocol, assume ideal
state preparation and measurement. The smartest strategy adopted by Eve would be to intercept the
photons sent from Alice to Bianca, measure them, record the result, and relay them to Bianca. Since Eve
has no access to the preparation basis used by Alice to encode her qubits, however, the measurement
results will, as for Bianca, be either deterministic or probabilistic (on average half of the time each, since
there are two possible preparation and measurement bases). Furthermore, Even will only have access to
whether her result was one or the other during basis reconciliation between Alice and Bianca, by which
time she would already have relayed the states to Bianca so that she can measure them not suspecting a
man-in-the-middle.

The above analysis is important because it highlights the fact that, by intercepting and resending the
quantum states, Eve is altering the conditions of the quantum channel specifically because she is unable
to copy the states sent by Alice (keeping one and sending the other to Bianca) due to the No-Cloning
theorem. Finally, the strength of the BB84 (and other QKD protocols), comes from the fact that, by
sacrificing a subset of the bits after basis reconciliation, Alice and Bianca can estimate the quantum bit
error rate (QBER) of their channel, i.e., the probability of incorrectly measuring a certain qubit provided
that it has been sent. Based on the estimated QBER value, Alice and Bianca can detect the presence of Eve
(with some certainty, which is diminished due to the presence of inherent noise in the system). In case
Eve is detected, Alice and Bianca can choose not to use the key that had been previously shared, thus
not compromising sensitive information. There are, also, protocols that allow to distill secure keys with
a certain security threshold if the QBER is small enough; These are known as error correction protocols
and privacy amplification [14]. Furthemore, it is important to note that the intercept-and-resend attack
is not the best possible one [14], but common to all is the fact that Eve cannot extract information without
increasing the QBER.

3.2 QKD Parameters

The No-Cloning Theorem is the basis of QKD and leads to the conclusion that, if an eavesdropper
attempts to intercept the quantum state transfer that produces the key between the communicating
parties, its presence will be detectable. However, it is only after the protocol has run its course that
Alice and Bianca can estimate the channel parameters that allow them to extract the QBER and, finally,
determine whether or not Eve acted. The estimation of the QBER is, thus, a core procedure during
any QKD protocol. In the protocol utilized by Alice and Bianca so far, the photonic qubit states have
no experimental imperfections and can be idealized as single-photons. In this scenario, the QBER is
extracted in a straightforward way: consider that Alice and Bianca have, after basis reconciliation, a
number n of shared bits; the measurements that were performed by both Bianca and Eve are, on average,
different from the basis used by Alice half of the times, meaning that ∼ 2n quantum states have been
transmitted; because of Eve’s presence, the probability that an intercepted photonic qubit generates an
error is, thus, 25% (50% × 50%); in conclusion, if Alice and Bianca sacrifice m bits (out of the n they

17



have), they will identify the presence of Eve (through the QBER) with a probability

Peve = 1−
( 3

4
)m

. (9)

In this idealized scenario, Alice and Bianca need only sacrifice a rather negligible amount of bits in order
to consider their shared key secure within a robust certainty margin.

Unfortunately, deterministic single-photon sources with a high rate are not yet available; Alice and
Bianca must, then, resort to practical photon sources that produce a photon-number distribution rather
than a well-defined number state. This creates a security breach since Eve can, in principle, split the
photons contained in a photonic qubit state prepared by Alice, hold on to one, and relay the remaining
ones to Bianca. In this way, no cloning takes place, but Eve is able to access the qubit that was transmitted
without being detectable in the QBER estimation. This strategy translates the so-called photon-number
splitting attack [18], which creates the requirement of a robust estimation of the channel parameters
taking into account the photon source used by Alice and its photon-number distribution: the decoy-
state protocol [19].

In this protocol, Alice uses an imperfect source to encode qubits, but modulates the intensity of the
pulses randomly, i.e., Eve has no access to the parameters associated to the photon-number distribu-
tions at each transmitted pulse. In general, and due to their availability and versatility, coherent sources
(lasers) are employed as photon sources for decoy-state QKD; in this case, the photon-number distribu-
tion is Poissonian and the parameter used to describe the decoy-state protocol is the mean-photon-number
µ4. Many different values of mean-photon-numbers can be employed for different compromises be-
tween accuracy of channel estimation and achievable rate, but we consider a three-state decoy protocol,
where µv, µs and µd are used and refer to vacuum, signal, and decoy, respectively. After basis reconcili-
ation, an extra round of communication between Alice and Bianca is necessary so that the mean-photon
values associated with all the transmitted pulses is disclosed. This way, Alice and Bianca can extract the
following parameters, provided that the source’s photon-number distribution is known:

• Yield (Yn): The yield is the conditioned probability that a quantum state encoded into n photons
is measured (in the same basis) by Bianca provided that it was emitted by Alice. It takes into
account the intrinsic transmission loss across the quantum channel, the efficiency of the detectors
employed by Bianca, and the presence of Eve.

• Gain (Qµ): The gain corresponds to the probability of extracting a bit of raw-key per transmitted
pulse when the mean-photon-number µ is used. In other words, it is the Yield weighted by the
probability of Alice emitting an n-photon pulse (this depends on µv, µs and µd).

• Error rate (en): The error rate reflects the probability that a n-photon pulse detection extracts a
wrong bit of key. It takes into account Bianca’s detector’s dark counts, the mismatch between
bases, and Eve’s presence.

• QBER (Eµ): Finally, the QBER, as previously, is the probability of a pulse with a mean-photon-
number µ yielding an incorrect bit of key provided the same basis was used for state preparation
and measurement.

After estimation of each individual parameter, the following inequality can be written for the param-
eters S, the key generation rate, or number of successfully distributed bits per attempt [20]:

S ≥ Qµ

{
− H2

(
Eµ

)
+ Ω

[
1− H2

(
e1
)]}

, (10)

4See Appendix A
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where Ω is the fraction of Bianca’s detection that were due to Alice sending a single-photon state, e1
is the error in the same case as before, and Qµs and Eµs are the gain and QBER of the signal state; H2
is the binary Shannon entropy [19]. The first term of the right-hand side of equation 10 is related to
the amount of bits lost to error correction. The second term is associated to the total amount of raw-
key that Alice and Bianca manage to produce. The final term is related to potential leaked information
due to eavesdropping. Equation 10 not only provides a lower-bound for S but can only be positive if
Eve’s presence is not disruptive to the QKD section. Furthermore, it allows one to estimate the effect of
different parameters on the key generation rate, including the distance that separates Alice and Bianca.
It has been shown by theoretical and experimental realizations [21] that this distance cannot extend over
a few hundred kilometers [22].

3.3 Measurement-Device-Independent Quantum Key Distribution

The decoy-state protocol enables a QKD session with imperfect single-photon sources, i.e., sources
that produce photon-number distributions rather than deterministic single-photons, by circumventing
the photon-number-splitting attack. Over the years, however, many other breaches have been discov-
ered and exploited in the detection part of the QKD link; these breaches would allow Eve to extract
information without being detected. The Measurement-Device-Independent QKD (MDI-QKD) protocol
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Figure 8: First proposal of
MDI-QKD schematics by [2],
using polarization qubits and
decoy states.

eliminates all the detector side-channel attacks by combining the
decoy-state protocol with an architecture that allows delegating the
measurement to an non-trusted third-party (other than Alice and
Bianca), usually called Charlie.

In this scenario, both Alice and Bianca prepare and send states in
the same fashion as described for Alice in the BB84 protocol; but in-
stead of sending states one to the other, they both send them to Charlie,
which is placed in between – refer to figure 8. The security of the pro-
tocol is due to the nature of the measurement performed by Charlie: a
Bell-State Measurement (BSM). For this measurement, the joint-states
of the photonic qubits prepared by Alice and Bianca are projected on
the Bell-basis (the states presented in equation 8); after a successful
BSM, Charlie discloses the output state information.

Even though the states are not previously correlated, a successful
joint projection onto the Bell-basis allows Alice and Bianca to estab-
lish a key: in possession of the Bell-state projection information, one
can only determine unambiguously which states were prepared with
information of at least one of them, i.e., information that only either
Alice or Bianca have, since they were the ones that prepared the states.
The MDI-QKD protocol uses the properties of entanglement to ensure
the distribution of key. However, instead of generating entangled particles and distributing them, in-
dependent pulses of light are projected onto a Bell state in a remote station; one could think of this as a
time-reversed entanglement distribution protocol. Note that there is no assumption that Charlie actu-
ally performs a BSM; she has all control about her station. However, any attempt from her side to learn
more about the states she receives would yield errors on the BSM projections, increasing the QBER and
effectively making her visible or denying service of communication between Alice and Bianca.

3.3.1 Bell-state measurement

A Bell-state measurement, as discussed before, is a projective measurement of any bipartite qubit
state onto the Bell basis, composed of the four maximally-entangled Bell states. As will be discussed in
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the following section, this operation is not only at the heart of the MDI-QKD protocol but also of the
quantum teleportation and entanglement swapping operations and hence the quantum repeater. It is
also the focus of this thesis, since the possibility of performing a frequency-multiplexed BSM is the goal
of the project.

It is interesting to observe that a BSM can be easily performed in a quantum computer through a C-
NOT gate between the two input states followed by X-basis measurements. The states sent by Alice and
Bianca, however, are photonic qubits, i.e., the quantum information is encoded in the degree of freedom
of optical photons, which are not directly compatible with a quantum computer. Fortunately, one can
harness the photon-bunching effect when two indistinguishable photonic wave-packets are directed to
a symmetric beamsplitter in order to implement a so-called linear-optics-based BSM (LO-BSM). This
alternative comes with a limitation in the achievable efficiency: consider that a LO-BSM receives, at
its inputs, the four Bell-states; the detection patterns at the detectors connected to the output of the
beamsplitter can be found to be∣∣Φ+

〉
=
(
(a†

e )in(b†
e )in + (a†

l )in(b†
l )in

)
|0〉a |0〉b

BS−→ 1
2
√

2

[
(a†

e )
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2

]
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l

]
|0〉a |0〉b , (14)

where a† and b† are the creation operators associated to both output spatial modes of the beam-splitter
and the subscripts e and l refer to time-bins early and late, respectively. As can be seen, the states
|Φ〉± produce ambiguous detection patterns and, thus, cannot be distinguished. However, states |Ψ〉±
produce unambiguous detection patterns, yielding an overall LO-BSM efficiency of 50%.

There is a number of theoretical proposals that would allow breaking the degeneracy (the one of
|Φ+〉 and |Φ−〉) of the LO-BSM and, thus, increase the efficiency of the measurement. These proposals
involve: using hyper-entanglement to extend the correlations to a higher dimensional Hilbert space and
make use of correlations of entanglement in that dimension [23]; the use of ancillary qubits to gradually
increase the efficiency [24]; or the use of non-linear crystals to condition interaction based on the quan-
tum information [25]. All of the above report, theoretically, a more than a 50% efficiency and even an
achievable 100% efficiency for the latter. Physical implementation, however, is extremely complex and,
up to this day, has not been demonstrated with reasonable rates.

QKD is one of the simplest forms of quantum communication. We used this framework to showcase how
qubits can be generated and measured to obtain a secret key, what the presence of intruders does to our communi-
cation and how can we model the throughput of these protocols. Moreover we presented a BSM and discussed its
implementation and limitations.
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As of now, we have gone many most of the basic tools of quantum communication. It is time to move to more
complicated quantum communication protocols and start putting together the pieces that, at first, may seem totally
unrelated, in order to build a quantum repeater.

4 From QKD to quantum repeaters

The driving force of the quantum repeater technology is the possibility to distribute quantum infor-
mation over arbritrarily large distances, effectively beating what is known as the repeaterless bound.
This bound is imposed by the channel loss, which, even though small, scales exponentially.

4.1 Entanglement swapping

Quantum teleportation (figure 9) is an operation by which a quantum state can be transferred be-
tween parties that share an entangled state. Assume Alice has a qubit she wants to transfer

EPPS

Figure 9: Quantum teleporta-
tion. Distance on the horizon-
tal axis and time on the verti-
cal. Undulated lines represent
quantum information and the
solid line classical communica-
tion. The source emits maxi-
mally entangled states. Figure
from [26].

to Bianca. A third party, Charlie, creates and distributes Bell states
encoded into optical photons to Alice and Bianca. The protocol works
as follows

• In a first step Charlie sends one of the photons of the Bell state
to Bianca and the other to Alice. Note how Alice and Bianca can
be as far apart as they want, as long as they are in reach with
Charlie.

• Upon receiving the photon from Charlie, Alice projects the joint
state of the quantum state to be transferred and that of Charlie’s
onto a Bell state, effectively performing a BSM.

• If successful (as there are also inefficiencies associated to such
measurements), she can communicate her results to Bianca over
a classical channel. Depending on the information received,
Bianca performs a predetermined unitary transformation on the
state she received from Charlie in order the reconstruct the quan-
tum state Alice wanted to transfer.

Formally, the protocol can be described as follows. The states of the photons involved are: an ar-
bitrary qubit to be teleported |φA〉; and the Bell state

∣∣∣Φ−A′ ,B〉, where the subscripts are associated with
Alice (A, A’) and Bianca (B). The three particle joint state reads:∣∣ΠA,A′ ,B

〉
= |φA〉 ⊗

∣∣∣Φ+
A′ ,B

〉
=

α√
2

{
|0A0A′0B〉 − |0A1A′1B〉

}
+

β√
2

{
|1A0A′0B〉 − |1A1A′1B〉

}
(15)

It can be rearranged as ∣∣ΠA,A′ ,B
〉
=

α

2

{ ∣∣∣Φ+
A,A′

〉
⊗
(
α |0B〉 − β |1B〉

)
+
∣∣∣Φ−A,A′

〉
⊗
(
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)
+
∣∣∣Ψ+

A,A′

〉
⊗
(
α |1B〉+ β |0B〉

)
+
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〉
⊗
(
α |1B〉 − β |0B〉

)}
(16)

21



The result indicates that, after a projection onto the Bell basis by Alice, the quantum state of the
photon in Bianca’s possession will require a unitary transformation to recover Alice’s input state. For-
tunately, Bianca knows exactly which transformation to perform given the result of the BSM. It is also
noteworthy that no party involved in the transfer of |φ〉 from Alice to Bianca had access to the actual
quantum state (except for Alice, who created it).

Figure 10: Entanglement
swapping operation. The
entanglement shared between
the pairs of photons [A,B] and
[C,D] is teleported to the pair
[A,D] upon a successful Bell-
state measurement. Distance
in the horizontal axis and time
on the vertical. Picture taken
from [27].

We have portrayed a basic teleportation setup. What would hap-
pen if the qubit to be teleported was entangled with another particle
as in figure 10. In this case, there is initial entanglement between the
pairs [A,B] and [C,D]. Qubits B and C are sent to a central station, and
projected onto a Bell state. If said measurement is successful, we end
up with particles A and D, which, after a unitary operation dependent
on the measurement outcome, become entangled, even though they
never interacted. This is called entanglement swapping.

4.2 Quantum relays and repeaters

The operation of entanglement swapping is the key ingredient for
quantum repeaters. As we can see the result is two entangled particles
that never interacted and moreover, if distances are taken into account:
supposing the repeaterless bound to be L. Particles B and C can travel
L towards the central station, meaning the sources they were emitted
from can be 2L from each other. Also, A and D can travel in opposite
direction such that in the end A and D cover a distance of 4L.

If we were to implement a second BSM station where particle D
is with another entangled pair, we could extend that distance again by 2L, reaching 6L between A
and one of the new particles. We can see how this configuration allows us to extend arbitrarily the
distance we cover by adding more and more entangled photon pair sources and their corresponding
Bell-state measurement stations, forming a chain. The protocol explained in the previous section can be
extended to a chain, in which bi-partite entanglement can be distributed to arbitrarily distant parties. By
concatenating entangled photon pair sources and BSMs, long distances can be covered since the photons
are not requiered to travel farther than the repeaterless bound.

The architecture previously described is known as a quantum relay. Despite having the ability to
entanglement swap and, therefore, distribute entanglement above the repeaterless bound, it is not prac-
tical: loss and BSM inefficiency render the chances of having multiple, synchronous and successful
entanglement swapping operations to zero. To complement the quantum relay and elevate it to the
status of quantum repeater, we make use of quantum memories with the feed-forward capabilities that
were explained in the Introduction. Just like that, we can overcome the inefficiency of the entire chain by
reducing it to the smaller sections, whose efficiency can be increased by spectral-multiplexing and the
BSM for concatenation. In fact, this realization leads to the concept of the elementary link, the minimum
cell of the quantum repeater chain, which contains the building blocks of the architecture: two EPPS,
two quantum memories (QM), one BSM station and both classical and quantum information channels.
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The previous section finished with the blueprint for a repeater chain. In this following section we will see how
to get that idea and bring it to a reality, discussing the specific details and parts. It also revisits the concept of
frequency multiplexing and then focuses on frequency-multiplexed quantum repeater architecture.

5 Frequency-multiplexed quantum-repeater architecture

The motivations for multiplexing were explained in the introductory part of the text: it is a mean of
overcoming losses in the channels and the inefficiency of the BSM. Even though different technologies
allow different degrees and types of multiplexing (spatial [28], temporal [29] and frequency [8] being
the usual). All of them satisfy equation 3 and can be employed simultaneously. In this thesis we mainly
study the frequency-multiplexed quantum repeater architecture and its blueprint can be seen in figure
11.
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Figure 11: Schematics of frequency-multiplexed quantum-repeater architecture

In a single attempt to establish entanglement between the two nodes of an elementary link A, the
entangled photon-pair shources (EPPS) SAR and SAL will emit maximally entangled Bell states in many
frequencies or spectral modes (depicted by different colors). One of the photons of each pair travels
towards the remote BSM, and the other towards the quantum memories (QM) MAR and MAL, where
the quantum state will be stored. When the photons reach the remote BSM stations, each spectral mode
will be subjected to a BSM. If this operation is successful for at least one of the frequencies (spectral mode
blue for elementary link A) entanglement swapping to the corresponding spectral modes stored in the
QMs takes place. Exactly the same procedure happens for the elements in elementary link B, where the
successful mode is red.

At this point, another entanglement swapping step entangles photons in the far-edge QMs MAL and
MBR. For this to happen, however, the photons must be indistinguishable in the local BSM. Statistically,
and as depicted in figure 11, this is unlikely, and the successful spectral modes from different elemen-
tary links will not be matched. It is thus necessary to map them to a common spectral mode. That is the
purpose of the frequency-shifting operation, which requires the information from the remote BSM. After
shifting and filtering, photons emerging from adjacent elementary links will be indistinguishable in all
degrees of freedom (since spatial mode, temporal mode, and polarization mode are already matched).
The local BSM is thus not multiplexed, and will have an efficiency limited by the linear-optics-based
setup; if this final entanglement swapping operation is successful, QMs MAL and MBR will share entan-
glement.

In the following subsections, the individual building blocks of the FM-QRA depicted in figure 11 will
be analyzed more deeply, namely the entangled photon-pair sources, the absorptive quantum memories,
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and the frequency-shifting and filtering stations. Since the frequency-multiplexed BSM is the focus of
this thesis, a more complete analysis is presented in the next section.

5.1 Entangled photon pair source

A fundamental tool in building a quantum repeater is the entangled photon-pair source (EPPS). Due
to its versatility, especially in terms of frequency-multiplexing, we opt in the context of a frequency-
multiplexed quantum repeater for EPPSs based on Spontaneous Parametric Down Conversion (SPDC).
SPDC is a non-linear optical process that enables the creation of two photons based on the annihilation
of a so-called pump photon. The process requires two conditions (energy and momentum conservation)
to hold in a crystal exhibiting second-order susceptibility non-linearity. The Hamiltonian of the SPDC
process can be shown to yield, up to a first-order approximation, a time-evolution operator (according
to the sixth postulate of quantum mechanics, as presented in the Introduction) that corresponds to the
well-known squeezing operator [30], of the form:

Ŝ(t) = eξtâ†
s â†

i −ξ∗tâs âi , (17)

where ξ is a coefficient that depends on the electric field amplitude of the pump beam, and the subscripts
s, i are associated with the two output fields, historically dubbed signal and idler.
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Figure 12: Depiction of the spectral emis-
sion of the source on the idler and signal
regions. With no cavity (big colored area)
and with cavity (defined spectral modes).
With letters we have tagged the modes
that are created together by conservation
of energy

By designing a crystal with the correct parameters, a
pump at 523.5nm can generate signal and idler beams at
795nm and 1532nm wavelengths that match: (i) the optical
transition of the employed absorptive quantum memories,
based on Tm; and, (ii) the minimum attenuation in optical
fiber propagation. Moreover, it can be shown that, if the
pump beam is cast into a superposition, for instance an X-
basis time-bin |ϕ〉p = 1√

2

(
|e〉p ± |`〉p

)
, the output state will,

considering the annihilation of a single pump photon, be the
maximally entangled state∣∣Φ±〉 = 1√

2

(
|e, e〉s,i ± |`, `〉s,i

)
. (18)

Separation between signal and idler photons can be per-
formed with a wavelength demultiplexer (such as a dichroic
mirror), so that they can be collected individually and di-
rected either to the quantum memory or to the remote BSM
through a long fiber.

Due to the broadness of the output spectrum of an SPDC
source (that stems from both the short length of the em-
ployed non-linear crystal and the broad pump spectrum
[31]) it can be engineered into a discrete set of narrow spec-
tral modes. One solution is post-filtering, i.e., using an op-
tical cavity to filter the output allowing only the spectral
modes of interest to be transmitted. Due to the energy con-

servation requirement, signal photons in specific spectral modes will be correlated (ideally, entangled)
with idler photons occupying a corresponding spectral modes. Although effective, this solution has the
drawback of wasting spectral power density after the SPDC process takes place, since the cavity will
filter unwanted modes. In other words, very high pump intensity is required to create pairs with a rea-
sonable effieciency within a small spectral window. A way to overcome this limitation is to embed the
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SPDC crystal within a cavity, such that the spectral power density of the output states is concentrated
in the allowed modes. Figure 12 depicts possible output spectra from cavity-embedded SPDC sources;
such a source has been designed to produce spectral modes separated by 6GHz with a bandwidth of
700MHz [32].

5.2 Absorptive quantum memories with fixed storage time

The quantum repeater architecture introduced above requires heralding of a successful entangle-
ment swapping operation across an elementary link. That happens only after a certain time from the
creation of the entangled photon-pairs in the source, since the BSM station is distant from the nodes of
the elementary link. It is straightforward to show that the time necessary for the photon to traverse the
distance between either nodes and the BSM station and, afterward, for the measurement information
to propagate back to the nodes is t = L

c , where L is the node-to-node length of the elementary link. It
is, thus, necessary for the remaining photon of the generated pair to be stored efficiently during this
time so that, afterwards, and assuming a successful BSM result, it can be used to perform subsequent
operations.

Absorptive quantum memories based on rare-earth-ion-doped crystals are the candidates of choice
for implementation of a frequency-multiplexed quantum repeater since they offer broad inhomoge-
neous broadening of the optical transition and long-coherence times that can match elementary link
lengths up to tens of kilometers [33]. A well suited quantum memory protocol is the atomic frequency
comb (AFC) protocol, which involves the selective optical pumping of ions into a shelving level with a
certain periodicity to engineer a so-called atomic frequency comb. Upon absorption, the joint state of the
ensemble is cast into a Dicke state [33]; the collective excitation rephases at a time inversely proportional
to the engineered periodicity of the created comb [33]. This way, a fixed storage time that corresponds
to the time necessary for the information sent from the BSM station to arrive at the elementary link node
is programmed into the quantum memory.

5.3 Frequency shifting station

Frequency-multiplexing is only possible if the frequency modes simultaneously stored in the quan-
tum memories can be accessed individually. This follows from the previously mentioned observation
that, in the frequency-multiplexed BSM, all the modes will be discarded except for the one that yielded
a successful BSM result. Concatenation of multiple elementary links then relies on the efficient mapping
of the successful mode onto the desired – previously agreed upon – mode. This last step guarantees that
the local BSM can be performed between modes emerging from two adjacent elementary links.
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Figure 13: Proposal [32] for the frequency conversion station. A bank of frequency modes is prepared
(by frequency-shifting νpump). Each one will induce an slightly different quantum frequency conversion
of the memory-retrieved photons, effectively selecting the desired one (correlated with the successful
mode in the remote BSM) after spectral filtering. The conversion takes place in a non-linear crystal.

Following figure 13, the information about which spectral mode produced a successful BSM result
is sent to the QM. At this point, the photonic qubits previously stored are reemitted from the QM and,
in the solution proposed in [32], are directed to a non-linear crystal. There, they interact with a strong
pump beam whose center wavelength can be shifted and selected such that it conforms with the follow-
ing frequency relation: (

νpump ± fshi f t

)
±
(

νsignal ∓ fsuccess

)
= ν f ilter, (19)

where ν f ilter is the previously agreed upon optical frequency mode common to the elementary links;
fsuccess is the frequency shift of the successful frequency mode on the remote BSM relative to νsignal ,
the central spectral mode emitted by the EPPS; and fshi f t is the corresponding frequency shift imposed
onto νpump. To select the spectral mode that will be used as pump, a reservoir of possible pumps is at
disposal to be sent through the crystal. An optical cavity aligned to ν f ilter ensures that only the spectral
mode of interest is directed to the local BSM. This process is called feed-forward spectral mode-mapping
(FFSMM), since the spectral modes are shifted based on the information received from the remote BSM.

With this section the more formal and theoretical introduction to the topic finishes. We have exemplified
and showcased most of the tools needed to understand the concept of frequency-multiplexed quantum repeater
architecture, why is it needed, what it does and how it can be used. The following part of the thesis takes on a
more experimental approach starting with the problem of demultiplexing of a frequency-multiplexed BSM; and
culminating with experimental results.
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In this section we dive into the core of the thesis. We report the chosen SSMM for frequency-demultiplexing
and explain its characteristics and expected results.

6 Demultiplexing the BSM: theory and simulation

As previously mentioned, it is crucial for the operation of the frequency-multiplexed quantum re-
peater that one can identify which spectral mode yielded a successful BSM result. For that purpose,
spectral demultiplexing is required. In order to reduce the complexity of the experimental setup, we
choose to perform such demultiplexing after the multiple frequency modes interacted in the BSM’s
beamsplitter. In our case, demultiplexing maps spectral modes onto spatial modes. Hence, even though
only a single beamsplitter is necessary, an array of single-photon detectors after the beamsplitter is re-
quired. This way, detections in specific single-photon detectors are associated with the corresponding
spectral mode.

6.1 Virtually Imaged Phased Array (VIPA)

Due to the nature of the demultiplexing operation considered here, it will henceforth be dubbed
spectral-to-spatial mode mapping (SSMM). In general, SSMM can be achieved in the optical domain
by employing the mechanism of chromatic dispersion, whereby different wavelengths (thus, different
spectral modes) experience differente indices of refraction when propagating through a given material:
an example of this technology is a prism. The spectral resolution, or capacity of distinguishing between
two adjacent spectral modes, of a prism, however, is limited to several nanometers. Another technology,
which allows for finer spectral resolution, is the Bragg grating, where a periodic structure is created and
the periodicity allows filtering a specific spectral mode. By concatenating several of these structures,
multiple spectral modes can be mapped onto different spatial modes. An example of this technology
are free-space Bragg-gratings and Fiber Bragg gratings. While the former has already been put into
practice in [34] for similar purposes with a spectral resolution of∼ 20GHz, the former can reach spectral
resolutions in the order of hundreds of MHz. Such devices, become severely inneficient if the number
of spectral modes increases and, by conseguence, also the number of concatenated structures.

Finally, arrayed waveguide gratings (AWG), which function based on the constructive/destructive
interference of different spectral modes that acquire incremental phases while propagating through
waveguides of slightly different lengths, can also be employed for SSMM. An example are commer-
cially available wavelength division multiplexers (WDMs), which, offer the ability to distinguish ad-
jacent spectral modes at a spectral distance of ≈ 22GHz at 1550nm with reasonable (∼ 6dB) insertion
loss.

Since the strength of the frequency-multiplexed quantum repeater architecture lies in how extensive
the multiplexing can be, our goal is to push the spectral resolution of the SSMM solution as much as
possible. The previously mentioned ones, even though well established, are limited either by loss (in
case of fiber Bragg gratings) or by the resolution itself, in the range of GHz. A device called Virtual
Imaged Phased Array, or VIPA, for short, is extremely interesting for our application as it achieves
MHz-range spectral resolution and theoretical loss in the range of 2dB [35] while dealing with multiple
spectral modes.

6.1.1 Physical appearance

In figure 14, the VIPA is presented in comparison with a typical etalon cavity. As we can see, the
design is rather similar: both have two parallel reflection-coated surfaces such that the beam of light
bounces between one and the other. The main difference is that one of the surfaces of the VIPA is
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completely reflective (R) and has a small opening into which the input light beam should be directed,
while the other is partially reflective (r); this is in contrast with the etalon cavity, where the coating is
homogeneous across both surfaces. The result is that no spectral modes are reflected by the VIPA, as is
the case for the Etalon cavity.

Solid Etalon Solid VIPA

Anti-reflective
coating

Partially-reflective
coating

High-reflective
coating

Partially-reflective
coating

R r

Figure 14: Etalon cavity (left), for compar-
ison, and VIPA (right).

The devices considered in our experimental implemen-
tation were chosen such that the reflective coatings are
matched for the optical telecommunication C and L bands,
with R ≈ 1 and r ≈ 0.95. They are t = 1.686mm thick
and are based on fused silica, with an index of refraction
n = 1.46. The physical dimensions of the device, as well
as the reflection coefficient of the coatings and the index of
refraction of the bulk material, will define its spectral prop-
erties, which will be discussed further on.

6.1.2 Operation and behaviour

The main characteristics of the light that outputs the
VIPA we are interested in are: spectral power density, spectral/spatial resolution of adjacent spectral
modes, and cross-talk. These are determined by the physical parameters of the VIPA and of the input
light (spatial mode, focal point, beam waist, and incident angle).

Figure 15: Principles of the VIPA. In a, an input beam of wavelength λ is coupled to the VIPA and
generates the array of virtual images that emit at an angle θλ. In b, the VIPA in its working setup with
the coupling and focusing lenses. Three wavelengths are demultiplexed as they output at different
angles. Picture extracted from [36]

Consider a collimated beam of light containing multiple spectral modes that impinges on a cylindri-
cal lens; the output beam will be focused on one transverse spatial coordinate (say, x̂), giving the spatial
profile of the beam an ellipsoidal shape. The position of the back surface of the VIPA (the one coated
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with r) is chosen such as to match the focal point of the cylindrical lens and such that the beam hits
the opening of the front surface (the small anti-reflective coated region coated, see figure 15b). As the
beam propagates, it will transmit through the back surface with a rate 1− r; since r is close to unity, the
majority of the optical power will reflect off forming an angle 2Θin with respect to the incident beam.

If the incident angle is correctly adjusted, the reflected beam hits the high-reflecting coated part of
the front surface in such a way the beam progressively bounces between the two surfaces. At each
reflection on the back surface, a new wave is formed whose position can be mapped to a vitual image
at a periodic position on an axis defined by ΘVIPA (refer to figure 15a). The resulting wave-front is a
coherent combination of the array of virtually images, producing an angle Θλ at the output. Due to
chromatic dispersion as the beam propagates through the bulk material, different spectral modes will
propagate at slightly different angles and, thus, output at slightly different Θλs. Although we focus on
the dependece of Θλ on the input wavelength, it is important to keep in mind that is also depends on
the thickness t, index of refraction n, and angle with respect to normal incidence ΘVIPA.

In figure 15b, the full setup for the VIPA-based SSMM is shown. In this case, the input light contains
three different spectral modes that exit the VIPA at three different angles. It is interesting to note that,
due to the coherent combination of arrayed-virtual images, the output beam is collimated [37]. By
placing a focusing lens at the output, the different angles can be mapped onto different spots (according
to the inherent Fourier transform of the lens) at the lens’s focal plane and, thus, collected at individual
spatial modes, either by optical fibers or by so-called pick mirrors. If many spectral modes compose
the input light beam, the output will look like a 1D array of the demultiplexed frequencies in the focal
plane.

In an etalon cavity, the free-spectral-range (FSR) is a measure of how far in frequency, from the
spectral mode that is being transmitted, we can go until we find another allowed spectral mode. For the
VIPA, the concept of FSR takes on a slightly different meaning: two frequencies spaced by the VIPA’s
FSR will fulfill the same interference conditions and output at the same spatial mode, making them
spatially indistinguishable. In other words, the VIPA has a limited bandwidth within which the VIPA-
based SSMM can occur without spectral mode overlapping. An intersting proposal to overcome this
limitation is to use a Bragg grating at the output of the VIPA so that a 2-dimensional grid of spatial
modes with extended SSMM bandwidth is produced; this, of course, comes at the expense of decreased
coupling efficiency [38].

6.2 Simulations and expected results

Under the correct conditions, the VIPA can be used as a suitable SSMM. Figure 16 shows a simulation
of the expected SSMM light at the output when the input consists of a distinct 9-spectral-mode comb-like
flat-top spectrum spanning over 54GHz centered at λ0 = 1550nm. The physical parameters of the VIPA
are chosen such that the FSR is 60GHz. They correspond to the ones used throughout the experimental
part of the work. The equation that governs the VIPA-based SSMM is as follows:

Iout(xF, λ) ∝ exp
(
− 2

f 2
c x2

F
f 2W2

)
· 1

(1− Rr)2 + 4(Rr) sin2
(

k∆
2

) , (20)

where the first term describes the spectral/spatial envelope and the second the interference conditions,
which satisfy

k∆ = k
[
2t cos(θi)−

2t sin(θi)xF
F

−
t cos(θi)x2

F
F2

]
= 2mπ. (21)

Where, fc = 150mm and F = 1000mm are the input (cylindrical) and output (focusing) lenses’ focal
distance, W = 2.1mm is the waist size of the initial collimated beam, r = 0.95 and R = 1 are the low and
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high reflectivities of the back and front surfaces, respectively, θi is the angle of incidence and xF is the
horizontal position at the focal plane. Whilst the master equation 20 gives the intensity and position of
the peaks depending on the frequency, equation 21 gives only the interference condition from which we
can derive many parameters like the FSR or the output linewidth.
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Figure 16: VIPA output simulation of a comb-like input spec-
tra spanning 54GHz. The same spectral mode is highlighted
showing the FSR with highest power density.

A few important observations can
be made based on the results of fig-
ure 16. It is clear that the VIPA con-
figuration is optimized to transmit a
given spectral mode centered at λ0 and
that the transmission of modes farther
from this value decreases according to
equation 20; even though the FSR can
be increased to minimize the relative
transmission loss as the detunings of
the spectral modes increases. However,
this comes at the expense of overall re-
duced transmissivity. In order words,
transmissivity can be engineered to be
more homogeneous across a broader
spectral region by sacrificing its abso-
lute value. This compromise is asso-
ciated with the fact that a single spec-
tral mode is mapped to different spa-
tial modes: as can be seen in figure
16, all the colors appear more than
once in the span of the envelope. As
the envelope becomes broader, that ra-
tio of multi-spectral mode mapping in-

creases. Note that for the parameters of the input light for which the VIPA’s FSR was matched, there
is no overlap of spectral modes in the same spatial mode. That is the reason behind highlighting the
FSR region in figure 16: if another spectral mode, with the same spacing, would be added, it would
coincide with a spatial mode already occupied. The simulation considering the current physical param-
eters allows an estimated SSMM of up to 9 spectral modes spaced by 6GHz with a spectral resolution of
≈ 700MHz and a Signal-to-noise Ratio (SNR) – dominated by the cross-talk between spectral modes –
of about 18dB.

BS

Alice

Bianca

&

Figure 17: Configuration for frequency-multiplexed BSM and posterior demultiplexing using VIPAs as
SSMMs. Detection signals of individual spectral modes are correlated after demultiplexing.

In possession of the SSMM described above, the frequency-multiplexed BSM (FM-BSM) can be as-
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sembled. The setup depicted in figure 17 showcases the arrangement of beam-splitter, VIPA-based SS-
MMs, and a logic unit. It is important to stress that logic operations between detections stemming from
detectors associated with different spectral modes, are not expected to yield BSM results. This is due to
the fact that photons occupying distinct spectral modes are distinguishable and, therefore, do not exhibit
HOM interference for the derivation, which is a requirement for the linear-optics-based BSM. However,
the VIPA-based SSMM is not ideal and some level of cross-talk between spectral modes is expected, as
will be discussed in the Results section.
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It is time to put things into practice and implement experimentally the main object of the thesis: a FM-BSM. In
the following sections a detailed explanation of the experimental apparatus and their characterization is provided.
Finally, the obtained figures of merit are showed and discussed.

7 Experimental Setup

Between the three main steps towards a repeater chain that we have discussed, QKD, teleportation
and entanglement swappings; the MDI-QKD is the simplest form that showcases a BSM. For that rea-
son, we have put together a setup that replicates an MDI-QKD experiment. Moreover, the experimental
setup, depicted in figure 18, is multiplexed in frequency like the one in frequency-multiplexed quantum
repeater architecture. As the reader will come to learn, the design of this experimental setup was made
such that an upgrading towards quantum teleportation is possible by just replacing a few fibers and
adjusting parameters from our control-unit. We use the setup to characterize different pieces of technol-
ogy, that will be employed in building a quantum repeater and that were partly developed during the
thesis. Mainly, interferometer-stabilization and frequency-multiplexed BSM.
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In the picture, we can distinguish differently colored areas. Each one has a specific purpose:

• Host preparation (Blue): This part is in charge of generating and shaping the light that will be
distributed through the entire system. It starts with a laser and, at the end, we have two fibers,
each one containing pulsed light at the single-photon level. Moreover, these pulses are frequency-
multiplexed, mimicking a simpler version of the emission from the EPPS, as only two spectral
modes are considered. One could think of this setup as an MDI-QKD setup in which Charlie also
distributes the light to Alice and Bianca to ensure they have the same spectral distribution and the
correct timing.

• Intensity stabilization (Yellow): For reasons that will become clear later, Alice and Bianca also
share a different laser than the one for communication. It will be used for stabilization of the
interferometers. This part ensures that the output power of the stabilization laser is constant and
is distributed to Bianca and Alice.

• Qubit encoding (Salmon): Here, having received the light form Charlie, Alice and Bianca encode
their qubits using their respective interferometers. The setup for controlling their phases and sta-
bilization is also depicted.

• Frequency-multiplexed BSM (Pink): After the interferometers, the qubits travel towards Charlie.
Bianca is 20km of spooled fiber away from Charlie, whereas Alice is quite close by. The polarization
can be adjusted by Charlie right before the interference of the qubits in the BS. After interference,
Charlie demultiplexes the frequencies to distinguish which ones were successful and the states
they were projected on. In this part, the VIPAs are used and the spectral modes coming from
either output of the BS are collected individually and detected. Since this part is related to the final
results of the thesis, it will be thoroughly discussed in the Results section.

• Control and measurement (Green): This part is in charge of collecting and processing data as well
as controlling the entire experiment and its parameters.

7.1 Host preparation

We start with the continuous-wave laser, or carrier, as the main source of light that will be shaped
and distributed. The laser, with its output already fiber coupled, emits at 1532.68nm(λ0) with an output
power ≈ 4.5mW. It is sent through a polarization beam-combiner (PBC) to ensure one pure polariza-
tion state, which is important as our devices’ efficiency depends on the input polarization mode. A
phase-modulator (PM), driven by a 4GHz sinusoidal electrical signal, creates multiple side bands [39].
Effectively, we are only interested in the first side bands as they have the most power and an equal
power distribution. The laser is modulated in frequency such that ν± = ν0± 4GHz. In the end, we have
two spectral modes separated by 8GHz and a central mode (the carrier) that will be suppressed, as it is
not relevant.

The output of the PM is split equally and sent to two identical arms; as explained before, either
arm represents Alice and Bianca. Sharing the same source of light for their qubits facilitates the exper-
imental procedures as no laser-locking for frequency stabilization is needed. If Alice and Bianca send
their qubits encoded into the same spectral modes, one of the conditions for two-photon interference is
instantaneously met. First, the continuous laser light is sent through an intensity modulator (IM) that
acts as a shutter, pulsing the light. The IMs are pulsed periodically with squared electrical signals of
625ps of duration and 80MHz repetition rate. To ensure perfect time overlap of the pulses on Char-
lie’s beam-splitter, one of the IMs is driven by an electrical pulse that can be delayed with respect to
the other. Although higher frequencies could have been used, the 80MHz rate is chosen to match that
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of an SPDC-source that is present in the same lab. The reason behind this is to use part of the experi-
mental setup to perform frequency-multiplexed quantum teleportation in the near future. Secondly, the
pulses are attenuated by a set of remote controlled variable optical attenuators (VOA). That will bring
our pulses to the single photon level, and by adjusting the bias voltage on the attenuators one can adjust
the mean photon number µ contained in each pulse. This is an important practical aspect of the decoy
state method implementation.
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Figure 19: Mean number of photons in each
arm reaching the beam-splitter versus the ap-
plied voltage to the VOAs.

The characterization of the attenuation and loss in
the optical setup, combined with the detection effi-
ciency is summarized in figure 19. As will be demon-
strated later in section 8.1, when dealing with non-
ideal single photon sources (a coherent source, in our
case) one has to ensure the same mean number of pho-
tons in each input-arm of the BS in order to maximize
the efficiency of the linear-optics BSM.

Finally, an optical switch (OS) is placed for mere
testing purposes: it allows us to turn on and off
each one of the arms individually without the need
to break the connections in the setup. This is used
for characterization and control of the IMs, attenua-
tors and polarization, as well as characterization of the
temporal shape of the pulses in each arm individu-
ally.

7.2 Qubit encoding and interferometer stabilization

Driver

𝝫

Figure 20: Mach-Zender inter-
ferometer with a movable mir-
ror mounted on a piezo-stage
that allows controlling over the
phase Φ by adjusting the path-
length difference.

In section 2.2, we explained how, by means of a Mach-Zender in-
terferometer, we could can any qubit state. In this section we report
the physical implementation of such interferometer, including the nec-
essary phase stabilization.

Following picture 20, the employed interferometers are folded,
free-space-based Mach-Zender interferometers with large path-langth
difference. Pulses of light or photons enter the interferometer and
splits, into different arms; retro reflectors are situated in such a config-
uration that the photons are sent back to the initial BS along a slightly
different optical path. Because of the path length difference the opti-
cal pulses arrive at different times defining the two temporal modes
of a time-bin qubit. Careful optical alignment ensures that early and
late time-bins are collected in the same spatial mode. Note that figure
18 does not depict folded interferometers simply for readability of the
drawing.

As previously discussed, the element that allows controlling the
phase between early and late time-bins is the length difference be-
tween the arms. Hence, to stabilize the phase of the photonic qubits, it
is mandatory that all changes in environment that can affect the rela-
tive path are taken care of and countered, i.e. controlled

As a first step, the interferometers are enclosed in a thermally con-
trolled box, regulated with a resistive element that maintains a con-
stant temperature due to a feedback loop implemented with a temper-
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ature sensor. This becomes much easier with a folded interferometer as the volume is smaller. However,
this solves the problem only potentially. To acquire absolute stability, we also send frequency stabilized
continuous wave laser light through the interferometers. To ensure minimum cross-talk, its frequency
and spatial mode differs from those of the photons used for quantum communication. The measured
intensity captured at the detector of the output is:

I ∝ |E1 + E2|2 =
∣∣∣e−iϕ(E0 + E0eiΦ)∣∣∣2 = 2(E0)

2(1 + sin Φ
)

(22)

where E0 is the electric field amplitude in each arm and Φ is the acquired relative phase difference.
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Figure 21: User selected setpoint for PID-
stabilization (black dot) at Φ = 100deg. In blue
(dashed line), the applied voltage to the piezo-
controller. In red, the corresponding transfer-
function according to 24. In green, the vecinity
of the setpoint. (Horizontal axis in arbitrary
units instead of seconds).

Using a laser with a very well defined and stable
frequency (therefore, a long-coherence time), one can
measure the output power and observe how it changes
according to the optical path variation. To counter-
act the phase-drifting, one of the mirrors is replaced
by a movable-mirror mounted on a piezoelectric ele-
ment. By changing the voltage applied to the piezo el-
ement, the path length difference is altered, thereby the
relative acquired phase, and, finally, the measured in-
tensity. Figure 22 shows the configuration: the optical
path for the stabilization (light orange) with its corre-
sponding detector and a micro-controller that allows
for automatic correction of the phase by acting on the
piezo element through a driver.

Relevant aspects for phase stabilization using this
technique are: highly coherent light; and intensity sta-
bility. If the latter were to change over time, the feed-
forward loop would understand it as a change of the
interferometer’s phase. That is why we also submit
the light to a loop for intensity stabilization. For this
purpose, we make use of an electro-optical modula-
tor (EOM) a beam-splitter, a detector, and a microcon-
troller that closes the feedback loop.

7.2.1 Interferometer stabilization

Three main components are used for the stabilization of the interferometers we employ. These are a
piezo-element that acts on the phase; a detector that allow us to probe the phase; and a micro-controller
that, based on the detector’s reading, controls the applied voltage to the piezo.

The micro-controller board consists of an Arduino (programable processing unit with a small flash
memory) board equipped with an analogic-to-digital converter (ADC) and a digital-to-analog converter
(DAC). The micro-controller, although programmed to work as a stand-alone unit, is constantly com-
municating with a personal computer so that the user can periodically check the status of the system.

The main function of the micro-controller is implementing what is known as a proportional-integral-
derivative controller, or PID, for short. A PID is a control loop that produces a correction signals based on
the calculation of an error value. The latter is determined as the difference between a so-called "set point"
and the current value of a given observable variable of the system. The former can then be used to act on
the system so that the error signal is minimized. PID’s are present in a lot of environments in our daily
life. A very familiar application of a PID system is the cruise control of a car: a desired velocity is fixed
and, to maintain the velocity stable, the engine will automatically regulate the acceleration accordingly
to dynamic environmental changes.
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The correction needed for the system u(t) from equation 23 takes into account how far the system
is from the stabilization point in terms of the current (proportional term), the past states (integral term)
and the immediate change of the observable (derivative term). All these contributions are weighted by
the coefficients Kp, Ki, Kd which need to be adjusted based on the properties of each individual system.

u(t) = Kpe(t) + Ki

∫ t

0
e(t′)dt′ + Kd

d
dt

e(t) (23)

PID’s are usually used in a feed-forward configuration, very much like the one we have depicted:
there is a system (the interferometer), whose phase we want to control. The observable, however, is the
intensity measured at its output, which of course, has a direct (a priory known) relationship with the
phase. How to determine this relationship is an important part of the stabilization. When the weights
(Kp, Ki, Kd) are correctly tuned, the correction signal will act to stabilize the signal over time such that
the mean is equal to the set point and the standard deviation is minimal.

In order to implement the control routine in a micro-controller, it is necessary to resort to the discrete
time version of the PID control loop, where integrals become summations and derivatives become first-
differences. Provided that the sampling rate of the ADCs and DACs meets the Nyquist criterion of
the system’s time evolution transfer function, convergence will be achieved. The following is a simple
schematics of the protocol that the PID runs inside the micro-controller for phase stabilization:

0. The phase is stable at Φ0, corresponding to a fixed measured output power P0 and mirror position
x0.

1. A phase altering phenomena happens and the optical power measured at the detector increases
(decreases) to P1.

2. The corresponding electrical signal is fed into the micro-controller which, based on the current and
previous states of the system, computes de correction needed in a given iteration.

3. A signal is sent from the micro-controller to the driver that acts on the piezo so that the mirror is
displaced to a new position x1, with a micro metric precision.

4. Go to 1.

7.2.2 Stabilization over time

The interferometer phase stabilization offers an extra degree of complexity due to: (i) the non-linear
relationship between the applied and measured signals (as of equation 24); and, (ii) the fact that the
piezos have a maximum displacement range. The effect of (i) and (ii) is that, as time goes on, the system
evolves to maintain the error signal at a minimum value but with no guarantee that the actual phase of
the interferometer is the required one. Consider the transfer function of the system, hereby defined as

Vout

Vin
= I0 · cos(∆Φ) (24)

It can be readily seen that, for multiple values of the relative path phase difference ∆Φ, the function
assumes the same value, which is the effect of (i). Consider in addition that the environmental changes
over time direct the output to its absolute maximum value, corresponding to a maximum displacement
of the piezeo element. Further changes will not be correctly compensated by the system because the
piezo simply has no room left to move. Given that both these effects would compromise the reliability of
the phase and, in turn, of any measurement that depends on it, a routine was developed to periodically
confirm the stability of the phase value. During the initial step of the stabilization procedure, as already
mentioned, the piezo’s displacement is swept and the corresponding intensity values are measured and

36



stored; this allows the user to select any given set point of the phase based on the value of the intensity. It
also provides a reference measurement of what the vicinities of any given point in the transfer function
should look like. The check routine is simply a comparision of said vicinity (as the time evolves and
also the PID) with the very first reference measurement. In practice, it is implemented periodically at
every 25 seconds, i.e, the system, with the PID, evolves freely for 25 seconds and, then, a quick sweep
around the current value is performed (200ms long) so that the region around the current set point is
determined. The system then compares this measurement with the first one and either resumes the PID
routine in case the curves are similar (in a least-squares error sense) or warns the user that the system
needs to be recalibrated. In order to showcase the stability achieved with our solution over time, we
present, in figure 22, the superposition of more than 4000 curves measured with the check routine over
a period of 36 hours.
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Figure 22: Time-evolution of the vecinity of the stabilized Setpoint. The heatmap is obtained by super-
posing more than 4000 measurements taken over a period of 36 hours.

This result proves that we have been able to guarantee phase stability over times long enough so
that experiments can run reliably. Probing of the state of the PID during the self-check routine disturbs
the system for a small time but does not prevent it to recover the same stabilization point, providing a
robust way to monitor its evolution. Times as short as 1ms are enough to stabilize the system.

The intensity control loop for the probing laser operates in a similar way, but without the need of a
check routine since the measured value already corresponds to the information of interest (the intensity).

7.3 Spectral-to-Spatial Mode-Mapping: characterization

Following figure 18, the frequency-multiplexed states prepared by both Alice and Bianca are sent to
both inputs of a symmetric beam-splitter. At the output, after going through a polarization beam-splitter
for polarization stabilization (discussed in the next section), the output beams are cast into free-space
and input into the VIPA-based SSMM setup. The spectral modes of interest are those corresponding to
the sidebands at ±4GHz, as created by the PM; thus, at the focal plane of the focusing lens, a so-called
offset mirror is placed such that the center spectral mode (the original optical carrier) is spatially filtered
by a narrow gap. The shifted spectral modes are displaced such that they bounce off of the mirrors and
can be efficiently coupled into individual fibers. We estimate a 5-10% system efficiency i.e., fiber-to-fiber
coupling efficiency of the different spectral modes through the VIPA. We assume that the losses are due
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to spatial mode mismatch at the input of the single-mode collection fibers since the ellipticity induced
by the cylindrical lens might not be perfectly compensated by the VIPA. At the input of the collection
fiber, it is possible to measure a ∼ 60% transmission through the VIPA using a free-space power-meter.
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Figure 23: VIPA demultiplexing characterization.

One important characteristic of the de-
multiplexing is the signal-to-noise ratio
(SNR), with cross-talk of adjacent spectral
modes being its main component. Figure
23 reports normalized single-photon counts
detected by detectors matched to the spa-
tial modes associated (through the VIPA-
based SSMM) to the ±4GHz spectral modes
generated up to a first order approximation
by the PM. The figure is obtained scanning
by frequency-shifting the optical carrier in
a ±8GHz range using serrodyne modula-
tion, effectively shifting the optical carrier to
a specific spectral mode as opposed to cre-
ating multiple sidebands. Using this tech-
nique, we can scan the frequency of the shift-
ing across a broad spectrum and spectrally
characterize the VIPA-based SSMM, thus al-
lowing us to compute the cross-talk at each

spatial mode.
The two spectral windows emphasized in figure23 correspond to the modes of interest (±4GHz). To

estimate the cross-talk at spectral mode 1 of VIPA 1, one can sum the contributions from the carrier and
spectral mode 2 of VIPA 1, obtaining 6.3dB SNR. The cross-talk for the other modes are obtained in a sim-
ilar fashion. The significant difference between the simulated ∼ 18dB and the experimentally measured
results is remarkable. Once again, we associate these differences to the spatial mode-mismatch and the
rather static configuration of the offset mirrors, that, although able to suppress the central mode, does
not allow for perfect filtering the sidebands. Despite the discrepancy, the estimated cross-talk values are
in a range that allows for a clear distinction between spectral modes.
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Figure 24: Temporal mode profile for
qubit states measured after demultiplex-
ing.

In the real-case scenario, one would have one single-
photon detector at the end of each spatial mode. How-
ever, due to current resource limitation in the laboratory,
only two such detectors are available. In order to enable
automated measurement of all the possible combinations of
spectral modes, the outputs of the SSMM were directed to
two optical switches (refer to figure 18) that can be remotely
controlled. Although the current method prevents us from
achieving the higher throughput enabled by the frequency-
multiplexing, it allows for full system characterization; the
successful BSM rate that would be achieved with active mul-
tiplexing is the sum of the rates of each spectral mode.

In figure (24), the time-referenced normalized counts
measured using a time-to-digital converter after the VIPA-
based SSMMs are depicted for different qubits: |`〉 and |+〉.
The detectors employed are Superconducting-Nanowire
Single-Photon Detectors (SNSPD) working inside a cryostat
at 0.83K, reporting a sim60% detection efficiency with 300Hz
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dark-count rate. We can see that they exhibit a full-width at half maximum (FWHM) of roughly 615ns;
this is expected, since the electrical pulses used to generate the optical pulses exhibit a temporal du-
ration of 625ns. Also, the design of our interferometers creates a late time-bin with a 1.4ns delay with
respect to the early bin. One factor that affects the purity of our states is the little cross-talk between
the temporal bins of the |+〉 state, partly due to response capabilities of the detector. As indicated in a
previous section, µ was adjusted to be the same when generating Z- and X- basis qubits.

7.4 Control and measurement

Figure 25: Main tab of user interface to control and au-
tomate sub-routines. The second and third tabs (not
shown) are for SNSPD control and interferometer stabi-
lization (figure 21 is extracted from this tab).

The last major unit that composes the
experimental setup is a computer program
(doted with an user-friendly interface, figure
25) that enables the control and automation
of all aspects of the experiment. A variety
of functionalities is implemented by the con-
trol program, including, but not limited to:
the VIPA-based SSMM characterization pre-
sented in figure 23; electric pulse generation
control – that, in turn, controls the arrival
time of optical pulses at the remote BSM –;
automatic adjustment and unlatching of the
employed SNSPDs; and phase selection and
phase-stability monitoring for X-basis qubit
generation.

The goal of an automated control unit is
being able to control and stabilize, over time,
all the degrees-of-freedom of the photonic
wave-packets that interact in the BS, i.e., po-
larization, intensity, temporal mode, spec-
tral mode, and spatial mode. The last two
do not require control: the latter because the

fibers employed are single-mode fibers, thereby defining the spatial mode of the wave-packets; and the
former because a single laser was employed to distribute light to Alice’s and Bianca’s station, rendering
the spectral modes identical. Polarization is controlled through a feedback system composed of the re-
maining output of the PBC, a single-photon detector, and a remote polarization controller. After coarse
manual control, the polarization can be kept stable for days with the control unit.

Intensity, as has been previously mentioned, is controlled using an electrically-tunable optical atten-
uator (VOA). The control routine detects deviations in the measured counts and can compensate in the
event they cross a pre-established threshold. Finally, and more importantly, by controlling the temporal
modes of the wave-packets in terms of the arrival time of the optical pulses at the BSM, it is possible to
extract the so-called HOM-dip, i.e., the reduction of the measured coincidence counts as the pulses be-
come indistinguishable5. This important measurement is performed by controllably sweeping the delay
time at small steps and recording the measured coincidences.

One fundamental limitation can already be discussed. Given the sample rate of the arbitrary wave-
form generator (AWG) that was used (16GSamples/s) one can only obtain a temporal resolution of
62.5ps, that is 10% of the duration of the optical pulses. Given our limited temporal resolution, there
might be some configurations of the delay that do not allow for the visibility to reach maximum. This
effect is revealed when consecutive HOM dip measurements are performed, yielding vastly different

5Refer to Appendix C and section 8.1 for a discussion regarding the experimental HOM dip.
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traces ( different positions of the minimum and visibilities) due to changes in the 20km optical fiber coil.
Subtle changes of the local temperature cause stretching of the fiber and change of the refractive index
affecting the optical path. That leads to a limitation of the time during which we have to perform one of
such measurements before the state of the system changes too much; as well as post-processing if one is
averaging over measurements.
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8 Results

The experimental setup described in the previous section implements a simplified MDI-QKD link,
with Alice and Bianca sharing the light source used to prepare their photonic qubits. The point of this
experiment, as previously stated, is to provide a robust framework for testing the demultiplexing ca-
pabilities of the proposed VIPA-based spectrally-multiplexed LO-BSM solution. Although the actual
BSM information (the projection on one of the four Bell states) is the ultimate goal of the experiment,
the characterization of the HOM effect, the core of the LO-BSM6, provides a rich tool to investigate the
characteristics of our system. Based on the parameters extracted from the so-called HOM-dip visibil-
ity, it is possible to estimate, through a robust simulation tool, the secret-key rates achievable for each
employed spectral mode and, thus, an overall improvement factor of the spectraly-multiplexed versus
regular LO-BSM in an MDI-QKD scenario.

8.1 Frequency-multiplexed HOM

The Hong-Ou-Mandel effect is a two-photon interference phenomenon that takes place in a sym-
metric beamsplitter fed by two indistinguishable photonic wave-packets. Its basic physical underlying
principle is the destructive interference of the joint wave-packet that describes the two input states
taking opposite spatial modes at the output. The phenomenon is characterized by a reduction of the co-
incidence detection rate between two photodetectors placed at the output of the beamsplitter. Because
the destructive interference is associated to the joint wave-packet, it only materializes when the two
input states are indistinguishable, becoming a useful asset for measuring the degree of distinguishabil-
ity between photonic wave-packets [40]. Experimentally, we are interested in the so-called HOM dip
visibility, i.e., the contrast in coincidence detection rates between the distinguishable and indistinguish-
able cases. Therefore, in order to experimentally acquire a HOM dip, one must have full control of all
degrees-of-freedom of the interfering wave-packets – intensity, temporal mode, spectral mode, polariza-
tion mode, and spatial mode – so that, not only can they be made indistinguishable, but also controllably
distinguishable.

With ideal single-photons, the HOM visibility can reach 100%; it decreases in case the photon-
number distribution deviates from the ideal case. In the presented experimental setup, Alice and Bianca
utilize weak coherent states for their MDI-QKD section, which corresponds to a photon-number distri-
bution even farther away from ideal than of those states generated in an SPDC source7.

Let us consider the input weak coherent states received by Charlie in the remote station. For simplic-
ity, let us also consider that the states occupy a single spectral mode, instead of multiple ones, and that
all other degrees-of-freedom are indistinguishable except for the parameter of the coherent state. Under
these conditions, the joint input state can be written as

|Ψin〉 = |α〉ain
⊗ |β〉bin

= D̂ (α)ain
⊗ D̂ (β)bin

|0〉ain
|0〉ain

(25)

where D̂(α) is the displacement operator8. The coherent state parameters α and β are complex, and
contain phases that have to be taken into account. Because care is taken in the experimental realization
to make sure that the interfering photonic qubits are outside of each other’s coherence region, these
phases are random and, thus, the input state’s density matrix can be written as:

ρin =
∫ 2π

0

dθα
2π

∫ 2π

0

dθβ

2π |Ψin〉 〈Ψin| (26)

6The reader is referred to Appendix C for a more in-depth discussion.
7see Appendix A
8same notation from the appendices is used for this derivation
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After the BS transformation9, the structure of the displacement operators allows one to write the
output state as:

|Ψout〉 = e−
µa+µb

2 eα(
√

ηa†+
√

1−ηb†)eβ(
√

1−ηa†−√ηb†) (27)

One can find the probability of obtaining m (n) photons at the output port a (b) to be

P(out)
m,n = e−µ′a−µ′b

(µ′a)
m(µ′b)

n

m!n!
(28)

where
µ′a = µaη + µb(1− η) + 2|αβ|√η

√
1− η cos

(
θα − θβ + θ0

)
µ′b = µa(1− η) + µbη − 2|αβ|√η

√
1− η cos

(
θα − θβ + θ0

)
The probability of having a coincidence i.e. at least a photon in each output, can be then obtained

from equation 28 as
P(coinc) =

(
1− e−µ′a

) (
1− e−µ′b

)
, (29)

which after integrating for phase-randomization like in equation 26 one can obtain

P(coinc) = 1− e−(µaη+µb(1−η)) I0

(
2
√

µaµb
√

η
√

1− η
)
− e−(µa(1−η)+µbη) I0

(
2
√

µaµb
√

η
√

1− η
)

(30)

Moreover, the individual probabilities of having at least a photon in each arm regardless the state of the
other are

P(a) = 1− e−(µaη+µb(1−η)) I0

(
2
√

µaµb
√

η
√

1− η
)

(31)

P(b) = 1− e−(µa(1−η)+µbη) I0

(
2
√

µaµb
√

η
√

1− η
)

(32)

where I0 is the zero-order modified Bessel function.

The HOM-dip visibility can be calculated using

VHOM =
P(a)P(b) − P(coinc)

P(a)P(b)
(33)

and, finally, we can simplify our equations 30, 31, 32 by using a 50:50 BS (η = 0.5, this implies
P(a) = P(b)) and using µa = µ, µb = λµ whereλ ∈ [0, 1], to obtain:

VHOM = 1−
1− 2e−

µ(1+λ)
2 I0

(
µ
√

λ
)

(
1− e−

µ(1+λ)
2 I0

(
µ
√

λ
))2 . (34)

One can demonstrate that equation 34 has maximum for λ = 1 i.e., both sources have the same
mean-photon number. Moreover one can show that 0 ≤ VHOM ≤ 0.5, achieving 0.5 as µ → 0 [41]. The
reason behind the HOM-dip visibility drop as µ increases is due to the increased likelihood of multi-
photon pulses. These pulses can either yield coincidences on their own given a multi-photon pulse on
one arm of the BS and a a |0〉 on the other; or, interfere and still give coincidences due to the presence of
more photons on one side than the other.

9The reader is referred to Appendix B for an in-depth discussion.
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Finally, it is noteworthy to mention that experimentally, despite being true that lower µs result on
higher visibilities and therefore, higher BSM efficiencies; decreasing too much the value will increase
the number of pulses containing no-photons and hampering our rate heavily. One must find a balance
between both.
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Figure 26: Frequency-multiplexed HOM dip. The four curves report the trace obtained by detecting
matching and un-matching spectral-modes. The temporal degree of freedom is scanned by modifying
the delay on the pulse generation.

Figure 26 reports the results of the frequency-multiplexed HOM dip between the different combi-
nations of spectral-modes coupled after the VIPAs, allowed by acting on the optical switches for mode
selection. The pulses employed are obtained by blocking one of the arms of the interferometers, in this
case |e〉.

The obtained results for matching spectral modes imply that the experimental setup grants enough
control over all relevant parameters, as the reported values are close to the limit for µ ≈ 0.09 of ∼ 48%
[41]. On the other hand, the curves obtained from non-matching spectral modes suggest that the optical
alignment of the demultiplexing could be optimized. Moreover, having a HOM-dip trace with non-
correlated spectral modes, while achieving a high visibility with the correlated ones, suggests that the
imperfections in the optical alignment result in coupling loss but not necessarily in a worse BSM. In
other words, the gain is reduced whilst keeping a similar QBER.

Despite having a certain degree of indistinguishability in non-matching spectral modes, when per-
forming an MDI-QKD protocol one would only look at channels that are correlated, because no relevant
information can be obtained from the crossed ones. A more discussion is procured in section 8.3.

Lastly, we obtain an average FWHM of the dips 627ps a value that is in excellent agreement with the
expected pulse width of 625ps and the measured temporal profile of 615ps .
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8.2 Qubit interference curves

Once a good, consistent and reproducible degree of indistinguishability has been obtained, we can
use both arms of the interferometers to create qubits at the equator of the Bloch sphere. As explained,
µ needs to be adjusted given that now our pulses are doubled in energy so that we recover the same
µ ≈ 0.09.
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Figure 27: Qubit visibility curve obtained performing a HOM-like experiment while varying the relative
phase of the qubits.

Figure 27 reports the results of a HOM-like experiment using superposed states and collecting only
spectral mode 2 (maximum visibilty obtained is 45%). Each point represents an average of 10 HOM
experiments following the same procedure than in the previous section. To obtain the curve one varies
the relative phase between Alice’s and Bianca’s interferometers so that V ∝ Vmax cos (φA − φB).

We report in this experiment Vmax = 42%, confirming that the efforts for phase selection and the time-
stabilization work as expected since we obtained almost the same results on our HOM-like experiments.

8.3 Secret key rate simulation

Based on [42, 43] we have performed a very thorough simulation of secret key rate in our MDI-QKD
experiment that takes into account all physical parameters of the qubits and quantum channel. The
simulation takes into account the SNR of the qubits, the reported HOM-dip visibility, and we have also
supposed that Bianca and Alice are both communicating with Charlie using a quantum channel that has
6.5dB of attenuation. The qubit model uses
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Figure 28: Qubit parametrization following
equation 35. In red, the temporal profile of |+〉
and in black |`〉. S and B for each time-bin and
state can be extracted from the noise level and
the height with respect the ideal value.

|ϕ〉 = 1√
1 + 2b

(√
m + b |e〉+ eieφ

√
1−m + b |l〉

)
m =

Se

Se + Sl
; b =

B
Se + Sl

(35)

and takes into account background noise, dark
counts and cross-talk as well as the fidelity of X-
and Z- basis qubits. Some of this parametrization
can be seen in figure 35. With the reported values
and characterizations from our experimental setup, the
simulation yields the following secret key generation
rates

Mode 1 Mode 2
Mode 1 4.5kHz 0Hz
Mode 2 0Hz 6.0kHz

Table 2: Simulated key generation rates

We have stated previously in this work that looking at non-correlated spectral modes does not pro-
vide any relevant information for a possible eavesdropper, even if they would yield successful results
on a BSM. We based this statement in the assumption that, in the MDI-QKD protocol, Charlie is a non-
trusted party. Moreover, she plays a key role in the protocol by performing the BSM and forwarding the
results: Charlie has all the information there is to know about the BSM and it is up to her to decide what
correlations (and information) she looks at, once the photons have been detected. As we can see from
table 2, if Charlie tries to implement the protocol using a combination of non-matching spectral modes,
she will be effectively implementing a denial of service attack as the QBER is too high to yield any key.
On the other hand, if she wishes to provide service and, at the same time, keeping the correlations of
non-matching spectral modes to herself, Alice and Bianca will generate keys at the rate of 10.5kHz, but
Charlie will not be gaining information about the basis used or the generated key. Also, since Bianca and
Alice implement a decoy-state protocol, any attempt to perform an attack by Charlie will be detected.

However, we acknowledge that: (i) our experimental setup encodes (at each round) the exact same
qubit on the different spectral modes; (ii) using the same source of light for the different spectral modes
adds a correlation between the decoy-states employed at each round of the protocol; (iii) our simulation
is based in non-multiplexed MDI-QKD setups and the different spectral modes are treated indepen-
dently (besides increased noise and decreased BSM efficiency due to the multiplexing). Although we
have provided argumentation towards proving a secure protocol, Bianca and Alice, currently, cannot
implement a communication protocol independent for each spectral mode and, to prove security, it is
necessary to evaluate whether these constraints open a possible side-channel for attacks.

The main reason why this part was left as a simulation rather than brought to reality is related to the
photon-detection apparatus. The employed SNSPDs have a recovery time of ∼ 100ns. This prevents
us from detecting two consecutive photons on the same SNSPD corresponding to |e〉 and |`〉. See how
|Ψ+〉’s projection pattern is based on this exact detection. Therefore, only |Ψ−〉 can be measured by our
detectors. Moreover, the detection signals from the SNSPDs were processed by Digital Delay Generators
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(DDG). The ones used had a maximum response rate of 8MHz, making it impossible to distinguish
whether a detection had come from an |e〉 or |`〉 bin and also, limiting our key generation rate as we
pulse with a rate of 80MHz. These are the main reasons why no actual BSM was performed in this
work but rather just the characterization of its efficiency using HOM and HOM-like experiments. In the
following section, some insights about the new (already working) signal processing unit works, one that
allows distinguishing |Ψ−〉 and does not limit the detection rate.
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We consider the main part of this work finished. This last section concludes the report and lays down the
milestones that will be pursued next for the improvement and evolution of the project bringing it to the next step:
experimental realization of frequency-multiplexed quantum teleportation.

9 Outlook

9.1 Demultiplexing and coupling
F

......
d

Figure 29: Fiber-bundle based
demultiplexed system.

In figure 23 we reported a demultiplexing efficiency of 5 − 10%
with 6.3 − 9.6dB SNR. Although it allows for spectrally multiplexed
BSM, the loss of light must be reduced to a minimum. In [37], an initial
−10dB coupling is reported which is then simulated to be improvable
to −3dB by correcting the eliptically-shaped beams before fiber cou-
pling. We propose, as a follow up study using independent cylindrical
lenses for the x̂ and ŷ directions [37].

Also, the use of a lens with focal length F = 1000mm, although it
facilitates the manual coupling now, is inconvenient for a large-scale
application. We suggest moving towards a more compact demulti-
plexing system based on VIPA and a fiber-bundle array (as depicted in figure 29).

9.2 New detection setup for BSM detection

Even though in this work we talked a lot about BSM, no actual BSM was implemented because the
limitations in the detection apparatus, as we have explained in section 8.3. The detection electronic box
is already updated and now contains all the electronics necessary to detect projections onto |Ψ−〉. The
box consists of three different pieces of electronic equipment designed specifically for this task:

1. The analog signal by the breaking of cooper-pairs in the SNSPD (a detection) is sent to a compara-
tor board. This board compares the input with a previously set bias-voltage and outputs a digital
signal if V0 > VBias. There is one comparator for each SNSPD.

2. The digital signal from the comparator is sent to a digitizer board. This board receives besides the
signal, a master clock reference, which is used for system synchronization. Configuring the board
properly with the parametrization of our qubits and the delay between the reference clock and the
detection signals allows us to obtain at one of its two outputs all the detections that correspond
to a |e〉 time-bin and, on the other output, the ones from |`〉. There is one such board for each
detector.

3. Finally, the two outputs of both digitizers are sent to a Field Programmable Field Arrays (FPGA)
that is programmed to compare, within the same reference clock cycle, the detections obtained.

More specifically, the FPGA implements the operation
(
|e〉1 AND |`〉2

)
OR
(
|`〉1 AND |e〉2

)
, thereby

indicating |Ψ−〉 projections, although it could be also be programmed to herald |Ψ+〉 (if the SNSPDs
allowed for its detection).

The use of the comparator for digitizing the signal avoids limiting our detection rate as it happened
with the DDGs. The digitizers also provide a huge improvement, not only because we can now dis-
tinguish between time-bins but because the detection window is set to match the width of the optical
pulse, i.e, we disregard any unwanted detections that do not occur during the designated time-bins.
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9.3 Towards teleportation

In this thesis we put together an MDI-QKD setup as this is the simplest quantum communication
protocol that requires a BSM. Naturally, the next step towards entanglement swapping –a key ingre-
dient in a quantum repeater– is quantum teleportation. Not many changes need to be made to the
experimental setup, the most important being that we have to replace Bianca’s setup by an SPDC source
that produces a maximally entangled state, e.g. |Φ+〉. One photon from this source and one photon
from Alice will be subjected to a BSM, resulting in teleportation of Alice photon’s state onto the sec-
ond photon of the entangled pair, up to a unitary transformation. Obviously, this BSM, and hence the
teleportation, will also be frequency-multiplexed. While the demonstration of spectrally multiplexed
quantum teleportation is similar to that of MDI-QKD, the spectral degree of freedom and the temporal
shape of the pulses will need to be treated more carefully as the light proceeds from two different types
of sources. In particular, the distribution of the number of photons is different: Poissonian in the case
of the laser pulse, and thermal in the case of members of photon pairs. According to the Supplemen-
tary Material of [44], which presents a context equivalent to the one discussed here, the HOM visibility
is limited to a value close to 30% (experimentally determined with an estimated indistinguishability of
68%). However, heralding the input from the pair source – and thereby making it approximately a single
photon – changes the result, as described by the following derivation.

Let us consider for the different inputs of the BS a highly attenuated laser-pulse (a WCP |α〉 with
|α|2 = µ) as well as a single photon. They are by all other degrees of freedom indistinguishable:

|Ψout〉 = UBS |α〉ain
|1〉bin

≈ e−µ/2
√

2

[ (
a† − b†

)
+

√
µ

2

(
a†2 − b†2)

+
µ

2
√

2

(
a†3 − b†3 − b†2

a† + a†2
b†
)
+O(µ2)

]
|0〉a |0〉b

(36)

Assuming µ � 1, we truncated the infinite series that describes the coherent state after the second
order. We can also compute a good estimate of the theoretical maximum value of the visibility using
equation 33. As opposed to the case without heralding, we find that 0 ≤ VHOM ≤ 1 with maximum as
as µ→ 0 [45].
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Conclusion

We have reported an experimental setup that grants the user control over all degrees of freedom that
affect indistinguishability of qubits headed for a frequency-multiplexed Bell-state measurement. This
yields results such as the reported interferometer phase-stabilization, multiplexed HOM-dip visibilities
and the qubit interference curve. Moreover, the simulated 10.5kHz key generation rate obtained by
combining the contribution from both spectral modes showcases the benefits of multiplexing.
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Appendices

A Photon-Statistics

Light can be characterized by many properties: wavelength, energy, spectral shape, spatial mode...
In this appendix we will provide a brief experimental view on how to characterize it based on the photon
statistics. To understand the concept of photon statistics let us draw a mental picture: imagine a beam
of light, that can be frozen in time and of which a picture can be taken. If we were able to pinpoint
the positions of the photons conforming the beam, one could try and look for correlation on how these
photons are distributed in space and arranged between themselves.

Firstly, we will introduce the experimental setup that allows us to asses this property and, secondly,
some insights on the theory behind it: the well-known second order auto-correlation function g2(τ).
Finally we will discuss the most relevant cases for this thesis, the coherent state of light and the single
photon level.

A.1 Measuring the auto-correlation function

Figure 30: Experimental setup to test
photon statistics. Figure borrowed form
[46].

In figure 30 we can see the simplest experimental setup
that one can use to measure g2(τ) [46]. It is composed of
a 50:50 beam-splitter, two single-photon detectors and one
logic unit. The light is input into the beam-splitter and with
equal probability the photons will end up at either of the
output arms, where they will be detected. The logic unit
will start a timer when D1 detects and stop it by detections
at D2.

To distinguish different statistics, let us look at figure 31.

• One extreme case is if the photons arrive at the beam-
splitter one by one. There will a collection of random
delays between start and stop of the timer. However,
since there is only a single photon it cannot start and
stop the timer with τ = 0 i.e., it cannot yield a coincidence detection in both detectors. The
randomized delay times will provide a base-line from which a dip appears as one approaches
τ = 0. This case is labeled as anti-bunching in figure 31.

• The other extreme case is when the photons are orga-
nized in bunches. With small probability all of them
will go to the same arm. This will result in an in-
crease in the coincidence counts (τ = 0) compared to
the base-line. This case is labeled as thermal light or
photon-bunching in figure 31.

The photon statistics can be discovered by the shape of the histogram at around τ = 0. The figure of
merit that is the histogram is well known as the g(2)(τ) cross-correlation function. One can show that

g(2)(0) =
P1,2

P1P2
(37)

where P1,2 is the probability of a coincidence measurement whereas P1,P2 are the individual probabilities
of only one of them detecting.
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Figure 31: Sketch of light statistics with different degree of bunching and the corresponding auto-
correlation histogram trace.

A.2 Second-order correlation function

The correlation or coherence functions introduced by Glauber during the 1960s [47] are used to de-
termine the degree of coherence of an electromagnetic field. The first-order correlation function investi-
gates correlations between the phases of fields, yielding results like the two-slit diffraction by Young[48].
In the second-order one analyses correlations between the intensities of fields, and specifically in the
quantum case, between single photons.

The second-order auto-correlation function can be described by

g(2)(0) =
〈a†a†aa〉
〈a†a〉2 = 1 +

〈(a†a)2〉 − 〈a†a〉2 − n̄
n̄2 (38)

where we use the variance of the number of photons

V(n) = 〈(a†a)2〉 − 〈a†a〉2 (39)

As we experimentally discussed and depicted in figure 31, light can be classified by its degree of
bunching that is mainly determined by the variance with respect to the mean number of photons. In
this thesis we are mainly interested in the transition between anti-bunching and bunching. The state
corresponding to the limit between the regimes is known as coherent state. It is named like for historical
reasons and because its photons share a first order correlation in phase. This state is the eigenvector of
the annihilation operator i.e., a† |α〉 = α |α〉. It can be proven that such states have a photon-statistics
following a Poissonian distribution. The coherent state is described by the following superposition of
number-states 40:

|α〉 = e
−
|α|2

2
∞

∑
0

αn
√

n!
|n〉 . (40)

Expression 40 is often written in a more compressed form by using Glauber’s displacement operator
D̂(·)

D̂(α) |0〉 = |α〉 (41)

These states, although uncommon in nature, can be engineered: a laser is a coherent source of light
given that the emission is started be a single spontaneously-emitted photon that stimulates emission of
other atoms in the medium. We can compute the average number of photons and the probability of
obtaining an n-photon state

〈n〉 = 〈α| aa† |α〉 = |α|2 = µ

Pn(µ) = |〈n|α〉|2 = e−µ µn

n!
(42)
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Moreover, the Poissonian distribution has its mean equal to the variance. Therefore, using equation 38,
we obtain that the auto-correlation function for a coherent source yields

g(2)(0) = 1 (43)
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B Beam-splitters

A beam-splitter (BS) is a passive optical device that does what it suggests by name: splits an incoming
beam of light into two.

In many scenarios and applications during experimentation one can make use of a BS and they con-
form a basic element for almost all of our setups, being the fundamental piece for one figure of merit
known as the HOM dip. That’s why we think it is important to give the reader some basic notions on
how it works and the properties that it unleashes when we jump to the quantum optics realm.

Firstly we will provide a classical description to get acquainted with it and then we will have to build
up again our intuition to comprehend its quantum mechanical behavior.

B.1 Classical Treatment

The classical BS is a linear optical device with two input and two output ports, characterized by its
intensity reflection coefficient (η). The BS acts like a partial reflector:if η = 0, the light will be completely
transmitted through the device, and if it is η = 1, then the BS acts like a perfect mirror. We will use
the notation shown in figure 32. The input electric field is defined as ainexp[i(2πω0t + φin)] and we will
assume an ideal non-polarizing BS that has no loss and the input/output frequencies are the same.

When light enters through one of the input ports (we will use port ain), the BS transforms it such that
the intensities at the outputs are

|a|2 = η|ain|2

|b|2 = (1− η)|ain|2 (44)

In the classical case, we can consider the port bin to be closed and not contribute to the output.
Assuming only an input in ain, the outputs fields are

aeiφ =
√

ηainei(φin−φ)

beiϕ =
√

1− ηainei(φin−ϕ) (45)

And similar if we switch the ports. Alternatively, both input ports can contribute at the same time.
Our next step is to determine the relative phase between the beams. If frequencies of the inputs are
identical, we can write the input-output relations as

aeiφ =
√

ηainei(φin−φ) +
√

1− ηbinei(ϕin−φ)

beiϕ =
√

1− ηainei(φin−ϕ) +
√

ηbinei(ϕin−ϕ) (46)

The relative phases are set by solving Fresnel’s equations under the assumption of energy conserva-
tion, and there are multiple conventions that correspond to different mirror compositions, but we will
use the convention shown in figure 32, in which the relative phase between b and bin is π and the relative
phase shifts of all other beams are zero
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Figure 32: A diagram of a BS. a and b
used for the electric fields and φ, ϕ are the
phases.

a =
√

ηain +
√

1− ηbin

b =
√

1− ηain −
√

ηbin (47)

With our phase convention set, we can move on to the
transformation matrix that describes the action of the BS
on the amplitudes of the input and output fields. This for-
malism is referred to as "input-output relations" [30]. Using
equation 47, we find:[

a
b

]
=

[ √
η

√
1− η√

1− η −√η

] [
ain
bin

]
(48)

Now that we have characterized the non-polarizing BS,
we will move on to a quantum treatment of the same ele-
ment and discover some surprising differences between the

behavior of light in the classical and quantum case.

B.2 Quantum Treatment

We will proceed by upgrading our fields to quantum operators creating (annihilating) single pho-
tons. Being bosons they satisfy the usual commutation relations:

[âk, â†
k′ ] = [b̂k, b̂†

k′ ] = δk,k′ [â, b̂†] = 0 (49)

Note that we will not use hats on the operators for the rest of this section.

Let us firstly, again, consider the case where a beam ain is present, and where nothing enters the
other port, bin = 0. Using equation 47, we see a =

√
ηain. Let us now try and find the commutation

relations of a and ain:

[a, a†] = [
√

ηain,
√

ηa†
in] = η[ain, a†

in] =⇒ η = 1 (50)

We immediately see a problem: these commutators [a, a†] and [ain, a†
in] are equal to 1, so this expres-

sion sets η = 1, which is not always true. This does not imply that quantum BS are impossible to make,
but rather that our theory is incomplete: one cannot consider the input bin to be nonexistent as this ig-
nores the vacuum. When we acknowledge this subtlety and write a =

√
ηain +

√
1− ηbin, we find that

the commutation relations are fixed:

[a, a†] = [
√

ηain,
√

ηa†
in] + [(

√
1− η)bin, (

√
1− η)b†

in] =

η[ain, a†
in] + (1− η)[bin, b†

in] = η + 1− η = 1 (51)

Now, we want to find the effect of a BS in terms of a unitary matrix that acts on the photon creation
and annihilation operators. That is, we want to find UBS such that

|Ψout〉 = UBS |Ψin〉
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where |Ψin〉 can be written as the state with m photons incident at ain and n photons incident at bin:

|Ψin〉 =
1√

n!m!
(b†

in)
n(a†

in)
m |0〉ain

|0〉bin

.
The operators of the inputs and outputs change as they go through the BS, as described by the BS

matrix a = U†
BSa†

inUBS, b = U†
BSb†

inUBS. Let us examine the case where a single photon enters port ain.
We can write the action of the BS on the input state:

|Ψout〉 = UBS |Ψin〉 = UBSa†
in |0〉ain

|0〉bin
(52)

We now insert the identity in the form I = U†
BSUBS:

UBSa†
inU†

BSUBS |0〉ain
|0〉bin

=
(
UBSa†

inU†
BS
)
|0〉a |0〉b (53)

Then, using equation 48, we find that our operators evolve as

UBSa†
inU†

BS =
√

ηa† +
√

1− ηb†

UBSb†
inU†

BS =
√

1− ηa† −√ηb† (54)

and so we can continue simplifying equation 53 and find the final states of the system:

|Ψout〉 =
(
UBSa†

inU†
BS
)
|0〉a |0〉b =

√
η |1〉a |0〉b +

√
1− η |0〉a |1〉b (55)

Before concluding this appendix it is worth pondering the nature of the element we have just char-
acterized. Giving it a first look, we can see that the single photon used for the input becomes entangled
with the vacuum. If we take the expectation value of the number operator 〈Ψout| a†a |Ψout〉 = η (or
1− η for the other output port) we see that the photon is in either of the outputs with the respective
probabilities but not in both, as we can see from the joint number operator 〈Ψout| a†ab†b |Ψout〉 = 0. The
photon does not split into two, as there is no probability of finding a particle in both outputs. Another,
probably more intuitive, way of looking at it is considering that the photon now is in a superposition of
having taken both arms if one disregards the role of the vacuum.
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C Hong-Ou-Mandel effect

The motivation for two-photon interference experiments comes from the need to characterize the
output of anti-bunched light sources. As the first single photon sources appeared, laser-driven Type-1
SPDC [49, 50], one could ask the first obvious question: how similar are the states of two emitted pho-
tons? One tool that helps to characterize single photon sources is the HOM dip, a quantum interference
effect that provides an effective measure of how similar the states of two emitted photons are. In many
quantum communication applications a Bell-state measurement is performed assisted by this effect in
a beam-splitter10. The characterization of indistinguishability is performed in a similar environment:
two photons (or more, as we discuss in the main text), supposedly indistinguishable in all degrees of
freedom are sent to a BS. Upon changing the degree of (in-)distinguishability of the photons, a signature
trace will reveal itself: the HOM dip.

C.1 Photon distinguishability

Photons have degrees of freedom that allow one photon to be different from another. Let us consider
the scenario where one photon enters each input port of a BS and interfere before exiting. Each photon
has some characteristics, written as j and k, that can potentially distinguish it from the other. Properties
j and k can be the polarization, spectrum, spatial and temporal modes. If we are working with a 50:50
BS (η = 1

2 ), the evolution of our system is given by applying equation 54

|Ψout〉 = UBSa†
j b†

k |0〉a |0〉b =
( 1√

2
a†

j +
1√
2

b†
j
)( 1√

2
a†

k −
1√
2

b†
k
)
|0〉a |0〉b (56)

Simplifying further, we find

1
2

(
a†

j a†
k + b†

j a†
k − a†

j b†
k − b†

j b†
k

)
|0〉a |0〉b (57)

These four terms correspond to the four ways that these photons can interfere on the beamsplitter,
and are represented by the images of figure 33. Note that the terms a†

j a†
k and b†

j b†
k (subfigures i and

iv) are scenarios where one detector clicks twice and the other does not, whereas the terms a†
j b†

k and

b†
j a†

k (subfigures ii and iii) are scenarios where both detectors click once. We define the latter event
as a ’coincidence’ and note that by monitoring two photon detectors, one can differentiate between
coincidence and non-coincidence events.

If we take as a measurement the number of coincidence-clicks that we have at our detectors, we are
able to identify between events that come from (in-)distinguishable photon interference as well as their
degree of indistinguishability.

First, let us take the case where the photons are completely distinguishable (that is, j 6= k). We can
calculate the probability of a coincidence event using Born’s rule, summing the absolute value squared
of the prefactors of the second and third terms. We find that the coincidence probabilility is

pc =

∣∣∣∣12
∣∣∣∣2 + ∣∣∣∣−1

2

∣∣∣∣2 =
1
2

(58)

Let us contrast this with the case where all distinguishing features are identical between the two
photons (that is, i = j). We re-examine equation 57 and use the fact that [b†, a†] = 0

10The derivation of the BS transformation is explained in AppendixB.
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Figure 33: Each subfigure describes one way two distinguishable photons can behave on a BS. They are
labeled corresponding to the four terms in equation 57. In this image one photon enters each input port
and is detected at either detector a or b. Events ii and iii correspond to coincident events.

1
2

(
a†a† + b†a† − a†b† − b†b†

)
|0〉a |0〉b =

1
2

(
a†a† + [b†, a†]− b†b†

)
|0〉a |0〉b

=
1
2

(
a†a† − b†b†

)
|0〉a |0〉b =

1√
2

(
|2〉a |0〉b − |0〉a |2〉b

)
=⇒ pc = 0 (59)

In this case, we find a remarkable result: the coincidence probability is zero. Indeed, when the
photons are identical, the probability amplitudes of the processes corresponding to subfigures ii and iii
of figure 33 interfere destructively with each other [48]. Therefore, one photon goes into each input port
of the BS but both must leave through the same output. This behavior seems counter-intuitive and has
no classical analog.

As hinted before, by taking many of such measurements and computing the coincidence probability,
one can deduce whether two photons are (in-)distinguishable. Moreover, the degree of distinguishabil-
ity can be calculated by taking a HOM dip measurement. This measurement scans one of the degrees of
freedom of the photons that affect distinguishability and computes the coincidence probability.

Let’s now analyze these four degrees of freedom and their effect on the measurement and coinci-
dence probability [51].

• Polarization

One characteristic of light is its polarization. The electromagnetic field has two orthogonal polariza-
tions, and one can distinguish between the two using a polarizing filter. If one were to input horizontally
polarized light into one input of a BS and vertically polarized light into the other, one would measure
a coincidence probability of 0.5. However, if the vertically polarized light is tuned towards horizontal,
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the coincidence probability would drop towards zero. The math for the limit cases H and V is exactly
analogous as shown in equation 59. Any polarization in between would show a reduced coincidence
probability.

• Temporal distinguishability

Another property that can distinguish photons is their time of arrival at the BS. If two identical pho-
tons exit a photon source, but the two travel for very different distances before reaching the beamsplitter,
the two photons will not interfere. This path-length difference can be characterized by a delay time τ.
Our goal now is to calculate the coincidence probability as a function of the delay time - this is the
relation measured in Hong, Ou, and Mandel’s original 1987 experiment.

In order to do so we must consider the spectral amplitude function of the photons. As the delay time
is varied, these functions will change their overlap, which determines the coincidence probability. For
now, we will consider the case where both photons have the same spectral amplitude function, φ(ω).
We can consider the path lengths to the input spatial modes a and b of the beasmplitter; this will be
represented by the phase e−iωτ and can be viewed as a difference in the arrival time of the two wave-
packets at the beamsplitter. We begin by calculating the time-delayed input state before the beamsplitter
transformation:

|Ψin〉 =
∫

dω1φ(ω1)a†
in(ω1)

∫
dω2φ(ω2)b†

in(ω2)e−iω2τ |0〉 |0〉 (60)

The calculation is a bit too long to write out in full, but the individual steps are covered in Section
4.1 of [51]. One applies the unitary operators from equation 54 as before and projects the result onto
states where one photon is present at each detector, Pa ⊗ Pb. The coincidence probability is calculated as
pc =

〈
Ψin|U†

BSPa ⊗ PbUBS
∣∣Ψin

〉
, which yields

pc =
1
2
− 1

2

∫
dω1 |φ (ω1)|2 e−iω1τ

∫
dω2 |φ (ω2)|2 eiω2τ (61)

If we only want to take into account the relevance of the time delay, we can set the central frequencies
ω1 = ω2 and give the photons a spectral lineshape φ(ω) that is a normalized Gaussian with width σ.
This leads to

pc =
1
2
− 1

2
e−

σ2τ2
2 (62)

Extreme cases of this result are easily checked: as we decrease the delay time to zero, the photons are
completely identical when they interfere on the BS and we find that the coincidence probability drops
to zero; when the delay time grows large, the coincidence probability tends towards 1

2 , as expected. Of
course, one can plug in different spectral profiles of photon wave-packets and retrieve different expres-
sions for the coincidence probability.

As a result, when one measures the coincidence probability against the delay time, one gains infor-
mation about the spectral amplitude function.

• Spatial and Spectral Profile

Now assume that photons arrive at the BS as wave-packets that have some transverse spatial mode
as well as a spectral lineshape. One can measure the HOM effect using the spatial or spectral profile as
the distinguishable property.

Taking a general function for the photons’ amplitude function f (ω1, ω2) we can follow the same
derivations as before to yield the general case
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pc =
1
2
− 1

2

∫
dω1

∫
dω2 f ∗ (ω1, ω2) f (ω2, ω1) ei(ω2−ω1)τ (63)

If we were to consider f (ω1, ω2) = φ(ω1)ϕ(ω2) (independent and separable) we automatically re-
cover a similar result as 61 but now with two different spectral amplitude functions.

However, what if the spectral amplitudes are entangled, very much like in SPDC processes and their
Joint Spectral Amplitude (JSA)[51]. This calculation is not easy because joint spectral amplitudes are
not typically simple expressions. However, using numerical integration and some approximations one
can find that entangled photons have a different coincidence probability function than non-entangled
photons. In fact, one can even distinguish between different entangled spectra. For example, the shape
of the Hong-Ou Mandel dip using SPDC pumped by a pulsed laser to generate photons is different from
the HOM dip in an experiment that uses a continuous wave laser instead [51].

C.2 Hong-Ou-Mandel experiments

Figure 34: HOM dip trace ob-
tained by Hong, Ou, and Man-
del [50].

The figure or merit obtained by HOM-dip experimental setups is
the measurement of the coincidence probability function, shown in
figure 34 which, in turn, yields the HOM visibility. This is done by
gradually modifying one degree of freedom of the input photons and
therefore changing their distinghuishability; and and detecting the co-
incidence events. Adding temporal delay to one of the pulses is usu-
ally one of the easiest parameters to scan. In the original paper [50],
this delay was induced by a piezoelectric transducer that had a min-
imum shift of about 1 micron, which allowed for shifts in the beam
path that correspond to time delay shifts on the order of femtoseconds.
There are two other features of the dip that are usually measured and
discussed. Firstly the shape and width. This feature indicates the re-
gion in which the photons have some degree of indistinguishability. The other feature is the visibility, or
the relative height, V = hmax−hmin

hmax
, of the HOM dip. The dotted line in figure 34 corresponds to a fitted

Lorentzian with 90% visibility.

In this section we have described that different properties of photons can lead to different interfer-
ence effects and learned how to calculate the coincidence probability function, otherwise known as the
Hong-Ou-Mandel dip. The dip contains information about the temporal, spatial, spectral, and entan-
glement characteristics of the light impinging onto the BS, which is why it has been such a useful tool in
quantum optics and is so often repeated.
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