
Delft Center for Systems and Control

Low-memory Visual Route
Following for Micro Aerial
Vehicles in Indoor Environments

Tom van Dijk

M
as

te
ro

fS
cie

nc
e

Th
es

is

Low-memory Visual Route Following
for Micro Aerial Vehicles in Indoor

Environments

Master of Science Thesis

For the double degree of Master of Science in Systems and Control and
Mechanical Engineering at Delft University of Technology

Tom van Dijk

October 9, 2017

Kimberly McGuire Daily supervisor, AE
Guido de Croon Supervisor, AE
Pascual Campoy Supervisor, SC
Pieter Jonker Supervisor, ME-BMD

Faculty of Mechanical, Maritime and Materials Engineering (3mE)
·

Delft University of Technology

Copyright c© Delft Center for Systems and Control (DCSC), BioMechanical Design
All rights reserved.

Summary

Micro Aerial Vehicles (MAV) are ideal for indoor missions such as search and rescue because
of their small size. Indoors, however, the presence of walls, ceilings and other obstacles means
that the availability of an RF link with a ground station for remote control is not guaranteed;
therefore, the drone should be able to operate autonomously. GPS is not available either for
the same reason, so the drone needs to rely on another form of navigation, in this thesis:
visual navigation.
The goal of this thesis is to find a visual route following method that can be used on MAVs.
Unlike larger Unmanned Aerial Vehicles (UAV), lightweight (<50 grams) MAVs carry only a
simple microcontroller that is incapable of running the Simultaneous Localization and Map-
ping (SLAM) algorithms that are typically used for visual navigation. The small amount of
memory available on the microcontroller is a major limitation, therefore this work attempts
to find an alternative method of route following that consumes as little memory as possible.
To accomplish this goal, a biologically inspired approach towards navigation is followed in
this thesis: using a combination of visual homing and odometry, the drone can travel long
distances with a tiny map.
Visual homing allows the drone to return to the location where a reference image — a snapshot
— was taken. While there is ample literature on visual homing, its memory consumption has
received hardly any attention. To minimize the memory consumption of navigation, this work
therefore identifies three visual homing methods that might still work with tiny snapshots:
search-based homing, Matched Filter Descent in Image Distances (MFDID) and Fourier-based
homing. The performance of these methods is evaluated and compared while the snapshot
is reduced to a size of 64 bytes or less. Fourier-based homing performs best under these
conditions, allowing the drone to return to a reference position using a snapshot compressed
to only 8 to 12 bytes.
In order to follow longer routes, the drone can use visual homing to move from waypoint to
waypoint along the route: sequential visual homing. However, visual homing only works over
a short distance so this would require a large number of waypoints. Instead, odometry is first
used to bring the drone close to the next waypoint before homing is attempted. This allows
the distance between waypoints to be increased, resulting in a sparser and therefore more
memory-efficient map.

Master of Science Thesis Tom van Dijk

ii

The proposed route following method is tested in simulation and on a real drone. Visual
homing towards a single point is shown to work on both platforms. Next, route following
using sequential visual homing with and without odometry is demonstrated on a Parrot
AR.Drone 2.0 in a short corridor section. With odometry, the waypoints can be spaced
at a larger distance, leading to a more memory-efficient map. Using the same autopilot and
settings, a simulated drone performs a similar experiment along a 63 meter route in a realistic
indoor environment. In both experiments, the drone was able to follow the route with a map
that consumes as little as 17.5 bytes per meter.

Tom van Dijk Master of Science Thesis

Table of Contents

Preface v

Thesis structure vii

Low-Memory Visual Route Following for MAVs in Indoor Environments 1

Abstract 1

Nomenclature 1

1 Introduction 1

2 Related work 2
2-1 Route following . 2
2-2 Visual homing . 2
2-3 Image-based homing . 3

3 Memory efficiency of image-based homing 4

4 Distance between waypoints 5

5 Practical implementation on a UAV 6
5-1 Panoramic vision and image derotation . 6
5-2 Velocity estimation and odometry . 7
5-3 Closed-loop position control . 8

6 Experimental results 9
6-1 Experimental setup . 9
6-2 Visual homing . 9
6-3 Route following . 10
6-4 Long-range route following . 11

Master of Science Thesis Tom van Dijk

iv Table of Contents

7 Discussion 13
7-1 Limitations of Fourier-based homing . 13
7-2 Odometry and measurement bias . 13
7-3 Further reductions in memory consumption . 14
7-4 Fourier-based homing on microcontrollers . 14

8 Conclusion 14

Appendix: Fourier-based homing 15

References 15

Appendices 17

A Review of image-based homing methods 19
A-1 Image warping . 20
A-2 Search-based homing . 21
A-3 Matched Filter Descent in Image Distances (MFDID) 22
A-4 Fourier-based homing . 24

B Online estimation of the catchment area radius 29
B-1 What happens around the edge of the catchment area? 30
B-2 Detecting the edge of the catchment area . 35

C Unscaled visual odometry 39
C-1 Visual odometry using the homing vector . 39
C-2 Use of intermediate snapshots to reduce drift 40
C-3 Results . 42
C-4 Comparison with drag-based odometry . 45

D Paparazzi + Gazebo: a new simulator for vision-based UAV control 47
D-1 Implementation . 48
D-2 Environments . 50

Bibliography 55

Glossary 57

Tom van Dijk Master of Science Thesis

Preface
I’ve always found robot navigation a fascinating problem. It is a very basic, almost essential
first step towards completely autonomous behavior of robots with clear, practical applications.
Navigation seems so simple to humans that we often don’t even think about it, yet it remains
a real challenge for machines.
This project seemed like an excellent opportunity to get to work with Simultaneous Local-
ization and Mapping (SLAM), a very interesting non-linear filtering problem that is often
used as the cornerstone for robot mapping, navigation and exploration. However, it quickly
became clear that this is not going to work on smaller platforms. Instead, during this project
I had the chance to look at alternative approaches to navigation, not just for robots but also
navigation techniques used by insects such as bees or ants or the occasional rat or box jelly-
fish. Not a field I had expected to work with but very inspiring nonetheless; it seems there is
more to copy from nature than smart mechanisms, it also provides smart control strategies.
In this thesis I present a solution to a problem that has received relatively little attention in
literature: how can you minimize the memory consumption of visual navigation? I hope that
the method presented here provides new opportunities to people working with tiny Micro
Aerial Vehicles (MAV) or other mobile robots and that it may inspire further research into
this fascinating field.

During this project I have received help from a number of people who I want to thank
here, first of all Kimberly McGuire. You really put in a lot of time and effort which is
hugely appreciated, you were always willing to help and have reviewed countless revisions of
everything I have written during this research. Not only did this improve the quality of this
work, it was also really motivating during the tougher parts of this project. Thank you for
doing a fantastic job!
I would also like to thank Guido de Croon for his endless enthusiasm about the project and
for the insightful discussions we’ve had; I always left with new ideas. Similarly, I would like
to thank Pascual Campoy and Pieter Jonker for their support of this work.
Thanks to Titus Braber and the other people at the MAVLab for thinking along when I got
stuck. I also want to thank Erik van der Horst for his support with all the practical aspects
of working with drones and Paparazzi.
Finally, I want to thank my parents and my sister for their encouragement and support and
for reminding me to step back and relax every once in a while.

Delft, University of Technology Tom van Dijk
October 9, 2017

Master of Science Thesis Tom van Dijk

vi Preface

Tom van Dijk Master of Science Thesis

Thesis structure

This thesis consists of two parts: a paper and a collection of appendices.

The paper is the main part of this thesis. It contains a detailed account of my work and results
on low-memory visual route following for Micro Aerial Vehicles. The paper presents the topic
and research question of this thesis, an overview of related work, the methods used in this
thesis and the results, discussion and conclusion. The paper is a self-contained document: it
can be read on its own and it has its own appendix and list of references.

The appendices expand on the paper by presenting additional work that was performed for
this thesis but that did not make it into the final paper, for reasons of brevity or because the
work was abandoned in favor of different approaches. Since the appendices expand on parts
of the paper, the paper should be read first.

Appendix A presents a detailed review of the image-based homing methods that were reviewed
in Section 3 of the paper. This review would have taken up too much space in the paper, but
is included here to ensure the reproducibilty of the experiments in this thesis.

Appendix B presents a method by which the radius of the catchment area could be estimated
in-flight. As proposed in Section 4 of the paper, this information can be used to increase the
distance between waypoints on the map, leading to an even lower memory consumption.

Appendix C explores the use of the omnidirectional camera for odometry as an alternative
to the IMU-based odometry presented in the paper. Flight tests show that route following is
also possible with visual odometry, although its performance is more difficult to predict as it
depends on the shape and texture of the environment.

Appendix D presents a brief overview of the simulator used to demonstrate long-range visual
route following. This simulator was developed as part of this thesis, as no suitable simulator
existed that could be used to test vision-based control with the Paparazzi autopilot. The
appendix gives a brief overview of its implementation and the environments that were built
for this thesis.

Master of Science Thesis Tom van Dijk

viii Thesis structure

Tom van Dijk Master of Science Thesis

Low-Memory Visual Route Following for Micro
Aerial Vehicles in Indoor Environments

Tom van Dijk Kimberly McGuire Guido de Croon Pascual Campoy Pieter Jonker

Abstract— This paper presents a visual route following
method that minimizes memory consumption to the point that
even Micro Aerial Vehicles (MAV) equipped with only a simple
microcontroller can traverse distances of a few hundred meters.
Existing Simultaneous Localization and Mapping (SLAM) algo-
rithms are too complex for use on a microcontroller. Instead, the
route is modeled by a sequence of snapshots that can be followed
back using a combination of visual homing and odometry. Three
visual homing methods are evaluated to find and compare their
memory efficiency. Of these methods, Fourier-based homing
performed best: it still succeeds when snapshots are compressed
to less than twenty bytes. Visual homing only works from a
small region surrounding the snapshot, therefore odometry is
used to travel longer distances between snapshots. The proposed
route following technique is tested in simulation and on a Parrot
AR.Drone 2.0. The drone can successfully follow long routes
with a map that consumes only 17.5 bytes per meter.

NOMENCLATURE
ak, bk Coefficients of Fourier-transformed image [-]
ax, ay Accelerometer measurements in

body frame (forward, right) [m/s2]
β Bearing relative to current heading [rad]
cx, cy Lens center [px]
γ Vertical image resolution [px/rad]
φ, θ, ψ Roll, pitch, yaw [rad]
h Homing vector [-]
IC(β) Pixel intensity in current image [-]
IT (β) Pixel intensity in target image [-]
Î(β|ξ, η, ς) Pixel intensity in predicted image [-]
m Mass [kg]
µ Linear drag coefficient [N/(m/s)]
R Environment radius [m]
r Minimum catchment area radius [m]
r Horizon sampling radius [px]
∆r(β|φ, θ) Horizon attitude correction [px]
ς Relative orientation [rad]
ς0 Relative orientation (coarse) [rad]
∆ς Relative orientation (correction) [rad]
u, v Velocity in body frame (forward, right) [m/s]
x, y Relative position [m]
ξ, η Relative position, unknown scale [-]

I. INTRODUCTION

M ICRO Aerial Vehicles (MAV) can be used for a vari-
ety of tasks of which search-and-rescue is an often-

mentioned example. An MAV could, for instance, search for
people inside the unstable remains of a building after an
earthquake without putting the lives of firefighters or other
personnel in immediate danger. In indoor scenarios such as
these, availability of GPS or remote control is not guaranteed,
so the drone would need to be able to navigate autonomously.
This navigation typically relies on vision, as cameras provide
a large amount of data for relatively little weight and do

not require external infrastructure or modifications to the
environment.

On larger UAVs, onboard visual navigation is typically
performed using Simultaneous Localization and Mapping
(SLAM) (e.g. [1], [2]). However, these algorithms are too
complex to be performed on an MAV that only carries a
microcontroller. Memory consumption tends to be another
limiting factor, as visual SLAM consumes megabytes or gi-
gabytes of memory when mapping long trajectories. Without
SLAM, an alternative method of navigation has to be found.

In nature, honeybees and ants can successfully navigate
over long distances without a detailed geometrical map of
the environment. Instead, it is theorized that these insects
remember images (‘snapshots’) seen during exploration and
try to match these during navigation using a process called
visual homing. Cartwright and Collet presented the snapshot
model [3] to explain the homing behavior in bees and
replicate it in simulation. Numerous other works have since
been published on visual homing (Section II-B). Navigation
using the snapshot model has been demonstrated successfully
on mobile robots [4], [5] and quadrotors [6].

The goal of this work is to minimize the memory consump-
tion of visual route following on Unmanned Aerial Vehicles.
This makes it possible to perform long-range route following
on microcontrollers and frees up resources on platforms with
more computational power. Route following can be used to
bring the drone back to its starting location, for instance to
recharge or to re-establish communications with a ground
station, or as part of a topological navigation strategy [7].

A route following technique is proposed that uses a
combination of Fourier-based visual homing and odometry
to traverse long distances up to 500 m while consuming less
than ten kilobytes of memory. This technique is evaluated in
simulation and in test flights on a Parrot AR.Drone 2.0. To
achieve low memory consumption, the following contribu-
tions were made:

1) The memory efficiency of three image-based homing
methods — search-based homing [8], Matched Filter
Descent in Image Distances (MFDID) [9] and Fourier-
based homing [5] — is evaluated and compared. The
influence of the snapshot size on the performance of
search-based homing and MFDID had not been evalu-
ated before. Its influence on Fourier-based homing was
investigated in [5] but not compared to other methods.

2) Fourier-based homing is implemented on a UAV. Ear-
lier work has only used Fourier-based homing in
simulation or on a wheeled mobile robot [5].

1

Master of Science Thesis Tom van Dijk

3) Fourier-based homing is combined with odometry to
increase the distance between snapshots along the
route. The use of odometry was originally proposed by
Vardy [10] to increase the distance between snapshots
but no further attempts were made to minimize mem-
ory consumption. It is the combination with Fourier-
based homing proposed here that leads to the dramatic
decrease in memory consumption. Unlike [10], the
combination of homing and odometry is also evaluated
on a vehicle in the real world.

The remainder of this paper is structured as follows:
Section II gives an overview of related work on visual route
following and visual homing techniques. Section III evaluates
and compares the memory efficiency of three image-based
homing methods. Section IV then shows how visual hom-
ing can be combined with odometry to efficiently traverse
longer distances. In Section V, Fourier-based homing is
implemented on a UAV. In Section VI, Fourier-based homing
and the proposed visual route following method are tested in
simulation and on a real UAV. The results are discussed in
Section VII and the conclusions of the paper are presented
in Section VIII.

II. RELATED WORK

A. Route following

Long-range navigation techniques that do not rely on
SLAM tend to use one (or more) of the following behaviors:
path following, visual compass following or sequential visual
homing. Path following uses existing paths in the environ-
ment for navigation, for example corridors [11], [12]. Path
following can be used over long distances while little to
no data needs to be stored to recognize the path’s end and
is therefore highly memory efficient. The main limitation
of path following, however, is that it requires the drone
to follow clearly distinguishable paths in the environment;
these paths may not be present or the drone could follow
other trajectories, therefore path following is not generally
applicable.

Visual compass following controls the drone’s direction of
travel to follow a recorded path. The horizontal offset of a
reference image in the drone’s forward field-of-view is used
to determine the steering angle, correcting both lateral and
course errors. Zhang and Kleeman prove that this scheme
converges when 1) only features in the 180◦ forward field-of-
view are used and 2) the reference images along the route are
close together [13]. The latter requirement limits the memory
efficiency of visual compass-based navigation.

Examples of visual compass following are [13], [14],
where [13] is one of the very few examples where
appearance-based navigation is demonstrated over long dis-
tances with trajectories up to 600 meter. However, with
raw images stored every thirty centimeters it consumes
too much memory for use on a microcontroller. In [15]
Baddeley et al. use visual compass following to simulate ant
behavior, but instead of storing reference images an Infomax
neural network is trained to recognize ‘familiar’ images. The

memory consumption is hard to judge as the capacity of the
network is not known, however the large number of weights
and the need to train the network during exploration make it
unlikely to work on a microcontroller. In [16] De Cristóforis
et al. use a combination of visual compass following and
path following; the former allows navigation in arbitrary
environments while the latter reduces the size of the map
when paths are available.

Visual homing allows the drone to return to the location
where a reference image was taken. Sequential visual homing
allows long routes to be followed by homing from one
waypoint to the next. Examples are [17]–[19]. Visual homing
only works from a limited region surrounding the target
image, the catchment area. If waypoints are spaced far apart,
a different navigation method is required to bring the drone
inside the next catchment area before homing is attempted.
In [6] Denuelle and Srinivasan control the drone’s position
inside the catchment areas. The waypoints are spaced such
that their catchment areas only slightly overlap, the drone is
then guided through this overlap from one catchment area
to the next. This effectively doubles the maximum distance
between waypoints. In [10], Vardy uses odometry to move
towards the next catchment area. This allows even longer
distances to be traversed between waypoints.

Sequential visual homing is more generally applicable than
path following and allows a larger distance between reference
images than visual compass following. Therefore, this paper
will use sequential visual homing for long-range navigation.
As in [10], odometry will be used to traverse longer distances
between waypoints. The next paragraphs will take a closer
look at visual homing techniques.

B. Visual homing

Visual homing uses a reference image to guide the drone
back to a known location. In 1983, Cartwright and Collett
published a paper in which they model the homing behavior
of bees. Their snapshot model assumes that bees compare
their current visual input to an image taken at the target
location — the snapshot — and use differences in feature
bearings and sizes to estimate a homing vector that points
towards the target. The snapshot model has inspired a large
number of visual homing methods that can be broadly clas-
sified under two categories based on the way the snapshot is
represented: feature-based homing and image-based homing.

Feature-based homing treats the snapshot as a collection
of local features that each have their own bearings. Changes
in these bearings are used to find a homing vector that points
in the target direction. Examples are [3], [4], [19]. Feature-
based homing requires the same features to be used in the
current and target images. Practical applications therefore of-
ten rely on descriptors like SIFT [20] to match corresponding
features between images. Given the generally large number
of features, the size of the descriptor has a strong influence on
the total size of the snapshot. Memory consumption can be
dramatically reduced by choosing small descriptors such as
D-BRIEF [21] which consumes only four bytes per feature.
Memory consumption can be further reduced by sharing

2 Related work

Tom van Dijk Master of Science Thesis

Fig. 1. Image Dissimilarity Function (IDF) along a single axis. The
difference between the current image and the snapshot increases with the
distance from the snapshot’s location. Image-based homing tries to minimize
the difference between the two images (e.g. through gradient descent) in
order to move back towards the snapshot’s location.

descriptors (and bearings) between multiple snapshots, as
demonstrated in [22], [23].

Image-based homing uses the entire images to find a hom-
ing vector without extracting local features. Homing is then
performed by minimizing the difference between the current
and target images. While raw images consume significant
amounts of memory, the snapshots used for image-based
homing can be strongly compressed to reduce their memory
consumption. An example is the work of Stürzl and Mallot
[5] in which a mobile robot successfully homes to a target
location using only the first five complex coefficients of a
Fourier-transformed image.

A feature-based snapshot of similar size could only hold
the bearings towards a handful of undescribed features.
Furthermore, feature-based homing requires the detection
and matching of features between the images, which are
often computationally intensive steps. For these reasons,
this work will use image-based homing to navigate towards
nearby waypoints. The next paragraphs give a short overview
of the image-based homing methods that will be compared
in Section III.

C. Image-based homing

The key observation behind image-based homing is that
the difference between the current and target images in-
creases with the distance from the target [24], [25] (Fig. 1).
The target is located at the (global) minimum of this image
difference function (IDF); homing is performed by moving
such that the difference between the images is minimized.
Image-based homing can already be performed when only
the difference to the target image is available, as demon-
strated by Zeil et al.’s RunDown method [24].

In [8], Franz et al. present a method to predict new images
for small, hypothetical movements (translation and rotation)
by warping the current observation. Images are predicted for
a large number of movements, the one resulting in best match
with the target image is used as homing vector. This method
will be called search-based homing for the remainder of this
paper.

Instead of explicitly searching for the minimum of the
IDF, it can also be found through gradient descent. Predicted
images produced with Franz et al.’s warping method [8] can
be used to estimate the spatial gradient of the IDF at the
current position. Such an approach is taken in Möller and

Fig. 2. Fourier-transformed horizon image. a) Original image. b) Extracted
one-dimensional horizon image. c) Power spectral density of the horizon
image. Note that most of the power is contained in the low-frequency
components (highlighted), the high frequency components add relatively
little information. Components in the highlighted region are stored for
navigation while the others are discarded. The DC value is discarded as
well as it does not provide directional information. d) Reconstructed horizon
image using only the highlighted components.

Vardy’s Matched Filter Descent in Image in Image Distances
(MFDID) [9], [26]. Since it does not need to predict large
amounts of images, MFDID is less computationally intensive
than search-based homing. However, its use of gradient
descent instead of search might cause it to get stuck in
local minima of the image difference function that would
be ignored by search-based homing.

In [5], Stürzl and Mallot transform search-based homing
to the frequency domain: Fourier-based homing. Under the
observation that most information in images tends to be
found in the lower frequencies (Fig. 2), only the first K
low-frequency components are used while the others are
discarded. Successful homing is demonstrated on a mobile
robot with K = 5. With appropriate rounding, this snapshot
would consume only ten bytes in total. Furthermore, the
warping procedure of Franz et al. is replaced by its first-order
Taylor approximation. Since the resulting difference function
is quadratic in the hypothetical movements, its minimum can
then be found directly and a computationally intensive search
is avoided. (A summary of the mathematics behind Fourier-
based homing can be found in the appendix of this paper.)

These image-based homing methods are reviewed in more

2-3 Image-based homing 3

Master of Science Thesis Tom van Dijk

detail in Appendix A of the thesis.

III. MEMORY EFFICIENCY OF IMAGE-BASED HOMING

The previous section has presented three image-based
homing methods: search-based homing, MFDID and Fourier-
based homing. For memory-efficient navigation, the snapshot
used by these methods should be small, but apart from
Fourier-based homing the homing performance at very small
snapshot sizes has not received much attention in literature.
Therefore, this section will evaluate the homing performance
at very small snapshot sizes to determine the memory effi-
ciency of these methods. Using these results, the methods
can be compared and the most efficient approach can be
identified.

For long-range trajectories, the total size of the map
depends on two factors: the size of the snapshot images and
the distance between them. The size of the snapshot is used
as independent variable in this experiment, it is therefore
known beforehand. The distance between the images follows
from the catchment area, the region surrounding the snapshot
from which homing will succeed. A larger catchment area
means that homing can be performed over longer distances;
the distance between waypoints can be increased and the
map becomes sparser and more memory-efficient. The size
of the catchment area will therefore be used as a performance
measure by which the selected methods can be compared.

The catchment area is defined as the region surround-
ing the target image from which homing will succeed. It
therefore has to be found through trial-and-error. A simple
simulation based on a grid of panoramic images is used
to generate a large number of homing trajectories; the
trajectories that end close to the target position define the
catchment area. For a single target, the catchment area is
measured using the following procedure:

1) For each image in the grid, a homing vector towards
the snapshot is calculated (Fig. 3a).

2) Starting at each grid position, a homing run is sim-
ulated (Fig. 3b). The trajectories are calculated with
MATLAB’s stream2 function, which interpolates the
homing vectors surrounding the current position and
advances the trajectory in steps of 0.1 grid cell until the
homing vector becomes zero or a maximum number
of steps is reached. The final error between the end of
the trajectory and the target position is stored in the
starting cell.

3) All starting cells with a final position error below a
threshold (here: 1 grid cell, 12.7 cm) form the catch-
ment area (Fig. 3c). The total size of the catchment
area is stored for this target position.

This procedure is repeated for 112 target positions spread
evenly throughout the test environment.

Panoramic images that are used as snapshots and current
observations are obtained from a dataset published by Gaffin
and Brayfield in 2016 [25]. The dataset contains 100×100 px
grayscale images taken at 12.7 cm intervals in a 7.3× 6.9 m
room and part of the adjacent corridor. Pixels around the
horizon are sampled using nearest-neighbor interpolation

to create the one-dimensional horizon images used by the
homing methods, where the resolution of the horizon image
is equal to the snapshot size in bytes. For Fourier-based
homing, the snapshot size follows from the number of
coefficients, where each complex coefficient consumes two
bytes of memory.

To ensure a fair comparison between the homing methods,
their tuning parameters were optimized for each individual
image size. For MFDID, these are the cutoff frequency of
the low-pass filter and the use of a Hessian correction, for
Fourier-based homing this was the number of iterations Nit.
A horizon image of 256 px was used as input for Fourier-
based homing’s DFT.

The resulting catchment areas are averaged over all target
positions to produce the graph shown in Fig. 4a. At small
image sizes, Fourier-based homing has a significantly larger
catchment area than search-based homing or MFDID. The
statistical significance of this result was evaluated using a
one-tailed paired-samples sign test. At snapshot sizes of 20
bytes or less, the median difference between MFDID and
Fourier-based homing is significant with p ≤ 2.0 · 10−7,
N = 112.

The catchment areas of search-based homing and MFDID
increase with larger image sizes. When the image size is in-
creased, search-based homing performs better than MFDID.
A possible reason is that MFDID’s gradient descent gets
stuck in local minima, while search-based homing explicitly
searches through all possible movements and can therefore
look beyond these incorrect minima.

The catchment area of Fourier-based homing, however,
decreases at large snapshot sizes. A maximum of approxi-
mately 4 m2 is achieved at a snapshot size of 10–12 bytes, but
the area reduces when the size of the snapshot is increased
further. This counter-intuitive result was also observed by the
original authors who noted linearization errors and errors
in relative orientation estimation as likely causes [5]. The
catchment area also drops at snapshot sizes below 8 bytes.
At these sizes the final position error increases and more
starting cells fall outside the selected threshold of one grid
cell.

The total size of the map depends on both the size of
the snapshots and the distance between them. Therefore,
both Fourier-based homing (moderately sized catchment ar-
eas and small snapshots) and search-based homing (large
catchment areas with large snapshots) could lead to a low
total memory consumption. Under the assumption that the
distance between waypoints grows linearly with the size of
the catchment area, a measure of ‘efficiency’ can be obtained
by dividing the size of the catchment area by the snapshot
size in bytes (Fig. 4b), where a larger catchment area per byte
indicates a higher memory efficiency. Using this efficiency
measure, it follows that Fourier-based homing should lead
to a lower memory consumption than search-based homing
when long trajectories are mapped. Note that for Fourier-
based homing, the largest catchment area is obtained at
a snapshot size of 10-12 bytes (Fig. 4a). However, for a

4 Memory efficiency of image-based homing

Tom van Dijk Master of Science Thesis

Fig. 3. Evaluation of the catchment area surrounding the target indicated by the red cross. a) For each image in the grid a homing vector towards the
snapshot is calculated. b) Using these homing vectors, homing trajectories starting at each grid cell are generated. c) For each trajectory, the final position
error relative to the snapshot location is determined. Starting positions where this error falls below the given threshold (here 1 grid cell, 12.7 cm) belong
to the catchment area. The boundary of the catchment area is shown in red.

Fig. 4. Memory efficiency of search-based homing, Matched Filter Descent
in Image Distances (MFDID) and Fourier-based homing. a) Average size of
the catchment area as a function of the snapshot size in bytes. At snapshot
sizes ≤ 32B, Fourier-based homing has the largest catchment area, while
search-based homing performs best at snapshot sizes of 64 bytes. b) Average
catchment area size per byte, used as a measure of memory efficiency. This
plot is found by dividing a) by the snapshot size. Fourier-based homing is
the most efficient at a snapshot size of 8 bytes.

maximal efficiency of 0.48 B/m a snapshot of eight bytes
should be used (Fig. 4b).

Instead of the area, the minimum radius of the catchment
area can also be used as a measure of performance (see
Section IV). The results are the same, Fourier-based homing
performs better than MFDID, with a maximum catchment
area at twelve byte snapshots and an optimal efficiency at
eight bytes.

At small snapshot sizes, Fourier-based homing performs
better than search-based homing and MFDID. Therefore, this
method will be used in the remainder of this paper.

IV. DISTANCE BETWEEN WAYPOINTS

With the memory consumption of the snapshot minimized,
the next step is to maximize the distance between successive
waypoints. When only visual homing is used to move
between waypoints, each waypoint has to lie inside the
catchment area of the next. This means that waypoints need
to lie closely together at distances in the order of one meter or
less, leading to a dense and memory-inefficient map. Instead,
other navigation techniques should be used bring the drone
towards the next waypoint before homing is attempted. In
this paper, IMU-based odometry is used to traverse longer
distances between waypoints because it does not make any
assumptions about the environment and is therefore generally
applicable.

The maximum distance between waypoints depends on
the size of the catchment area of the next waypoint and the
uncertainty in the drone’s position at the start of the homing
maneuver. After dead reckoning, the probability that the
drone is inside the next catchment area should be sufficiently
large, especially since this procedure should be repeated
many times without failure.

Consider the following example: the drone should be able
to follow a 500 m trajectory with waypoints every meter with
an 80% reliability. The success rate with which the drone
arrives inside the catchment area of the next waypoint should
then be higher than 0.801/500 ≈ 0.9996, because a single

5

Master of Science Thesis Tom van Dijk

Fig. 5. The maximum distance between waypoints depends on the size
of the catchment area r and the odometric uncertainty. The odometric
uncertainty σ(t) increases with time, but should remain small enough so
that the UAV arrives inside the next catchment area with a sufficiently high
success rate.

failure could already cause the drone to get lost. Assuming
that the odometric error is normally distributed, this success
rate is achieved when the minimal catchment area radius is
larger than Nσ = 3.5 times its standard deviation (Fig. 5).

Odometry estimates the drone’s position by integrating
noisy velocity measurements. The standard deviation of
integrated white noise grows with the square root of time,
while an integrated bias grows linearly with time. Constant-
speed drifts in position in the order of 20 cm/s or larger
are not unheard of on drones. These could, for instance, be
caused by a slight offset in the attitude estimation. Because
these errors tend to be significantly larger than those caused
by white measurement noise, the standard deviation of the
position error will be assumed to grow linearly with time:

σ(t) = σdriftt (1)

Apart from the odometric uncertainty, the size of the catch-
ment area is required to determine the maximum distance
between waypoints. A constant minimum radius r could be
assumed for the size of the catchment area. In this case, the
time between waypoints would also be constant:

tmax =
r

2Nσσdrift
(2)

where factor Nσ follows from the required success rate as
shown in the example above. The maximum time is divided
by two because the error is integrated during recording as
well as during traversal on the way back. As an example,
with an unknown, constant drift sampled from a zero-
mean normal distribution with standard deviation σdrift =
20 cm/s, a catchment area radius of r = 1.5 m and Nσ =
3.5, the maximum time between the recording of waypoints
is 1.1 s.

In practice, however, the size of the catchment area
varies per waypoint. When catchment areas are larger than

expected, the odometric error can be allowed to grow further
and the distance between waypoints can be increased, leading
to a sparser and more memory-efficient map. The converse
is also true, when the catchment areas become smaller, more
waypoints should be created to prevent failures, however this
can already be prevented by choosing a conservative value
for the time between snapshots.

Appendix B of the thesis presents the first steps towards
a method that can be used to estimate the radius of the
catchment area in-flight. The experiments in Section VI,
however, still use a constant time between waypoints for
simplicity. The constant time between waypoints is increased
until route following fails.

V. PRACTICAL IMPLEMENTATION ON A UAV

The experiment of Section III was performed using a
dataset of panoramic images and did not include any quadro-
tor dynamics. For a proper evaluation, the proposed route
following method has to be implemented on a real UAV. This
section highlights some practical aspects of this implemen-
tation that have not been covered in the previous sections.
The solutions presented here are applied on both the real and
simulated drones in the experiments of Section VI.

A Parrot AR.Drone 2.0 will serve as testing platform.
The drone is controlled using the Paparazzi autopilot1 which
provides attitude estimation and control, video handling and
logging.

Before route following with visual homing and odometry
can be performed on a UAV, the following problems need to
be solved: 1) the UAV will pitch and roll, these movements
need to be corrected when sampling the horizon from a
panoramic image; 2) the velocity of the UAV needs to be
estimated for use in odometry; and 3) a control loop is
required to follow the homing vector.

A. Panoramic vision and image derotation

To capture panoramic images, the bottom camera of the
AR.Drone 2.0 is fitted with a panoramic lens2 (Fig. 7). The
camera has a resolution of 320× 240 px, however as shown
in Fig. 8 only a small part of this image around the horizon
is sampled. Camera frames are captured at 25 fps.

The horizon is sampled between a radius rbottom and rtop
around the center of the lens cx, cy:

I(β, r) = I(cx + (r + ∆r(β|φ, θ)) cosβ,

cy + (r + ∆r(β|φ, θ)) sinβ) (3)

with rbottom ≤ r ≤ rtop and with β the bearing relative to
the drone’s forward axis. The minimal and maximal sampling
radius were tuned by hand such that a large vertical portion
of the image was sampled to provide robustness against
altitude deviations, but not too large that parts of the floor
and ceiling are sampled in an average office room. Fig. 8
gives an example of the raw image from the camera, the
sampling region and the extracted horizon image.

1https://wiki.paparazziuav.org/wiki/Main_Page
2Kogeto Dot 360◦

6 Practical implementation on a UAV

Tom van Dijk Master of Science Thesis

h
R

1
Tff

Kp

Kd
−

Ki

v̂

φ, θ

∫

Quadrotor h

v̂

Fig. 6. Position control loop. The position of the quadrotor is controlled using the homing vector h (replaced by the odometry vector when traveling
between waypoints) and the estimated velocity v̂. The homing vector h is scaled by the environment radius R (set by the operator) to produce a position
setpoint in meters. In the ‘to 200Hz’ block, the velocity estimate is used to update the position setpoint between camera frames. Time constant Tff is used
to generate a velocity reference. Note that both h and v̂ are already expressed in the drone’s body-fixed coordinate frame and therefore do not need to be
rotated by the heading of the drone.

Fig. 7. Bottom side of the AR.Drone 2.0 with panoramic lens.

Pitch and roll movements θ, φ are corrected by adjusting
the sampling radius:

∆r(β|φ, θ) ≈ γ(φ sinβ + θ cosβ) (4)

This model assumes small bank angles and a constant vertical
resolution γ in px/rad around the horizon. To obtain a one-
dimensional horizon image, each pixel at bearing β was
averaged over ten samples between rbottom and rtop.

B. Velocity estimation and odometry

Compared to mobile robots, odometry is difficult to
perform on a UAV as it has no physical contact to the
ground and can therefore drift in all directions. An Inertial
Measurement Unit (IMU) can be used to measure acceler-
ations and angular velocities of the UAV, but integration of
these measurements causes drift. This drift is particularly
pronounced in the horizontal plane [27], because an attitude
error of a few degrees can already cause a large change
in horizontal velocity. Unknown biases in the gyroscopes
and accelerometers can quickly cause such an offset in the

Fig. 8. Horizon images as captured by the AR.Drone 2.0. Top: raw image
captured by the bottom camera. The white circle indicates the center of
the lens. The horizon is sampled between the two red circles. Middle:
unwrapped view of the horizon. Bottom: extracted one-dimensional horizon
image.

attitude estimation. These biases tend to drift over time and
are therefore difficult to eliminate through calibration.

The problem of estimating velocity is typically solved
using a bottom camera. This camera measures the optical
flow of the floor and is combined with a height sensor to
provide an estimate of the drone’s velocity. This, however,
assumes that the floor has sufficient texture, which can not
always be guaranteed in indoor environments. Similarly, a
top-facing camera could be used to measure optical flow of
the ceiling, although the same limitations apply here.

5-2 Velocity estimation and odometry 7

Master of Science Thesis Tom van Dijk

Fig. 9. Forces acting on the quadrotor during sideways acceleration. Gravity
g is not measured by the accelerometer and thrust FT only acts along the
body-fixed z-axis. Therefore, the only acceleration that is measured on the
body-fixed x (and y) axis comes from the drag Fd. A drag model can be
used to estimate the velocity from this drag measurement.

Alternatively, the panoramic camera can be used to esti-
mate the velocity of the drone.3 The main difficulty of this
method is that the distance towards tracked features needs
to be known. Monocular vision-only solutions can therefore
typically only estimate velocity up to an unknown scale.
Visual-inertial odometry combines these measurements with
readings from the IMU to provide an absolute scale. Visual-
inertial odometry tends to be computationally complex as
it has to maintain an estimate of the distance towards the
tracked features.

Yet another method is suggested in [28], [29]. Here, the
accelerometer is used to measure the drag force acting on the
quadrotor. During flight, three forces act on the quadrotor:
thrust FT , drag Fd and gravity mg (Fig. 9). Accelerometers
do not measure gravity (they measure proper acceleration,
i.e. acceleration relative to an inertial frame in free fall),
therefore only the thrust and drag are measured by this
sensor. Since the thrust is assumed to act along the body’s z-
axis, the only force that remains to be measured on the body
x- and y-axes is the drag (ax in Fig. 9). Using a drag model,
the airspeed of the drone (and ground velocity, assuming
wind-still conditions) can then be found directly from the
drag measurements ax, ay . In practice, at low speeds the
drag acting on the quadrotor tends to grow linearly with
velocity. Paradoxically, the accelerometer can therefore be
used to measure the drone’s velocity without integration
(Fig. 10):

û =
ax

(µ/m)
, v̂ =

ay
(µ/m)

(5)

A drag term (µ/m) of 0.75 s−1 was found by minimizing
the error between the measured and ground-truth velocities
obtained during a test flight. Because of its simplicity and
because it does not make assumptions about the environment,
drag-based velocity estimation will be used to measure the
velocity of the drone.

3This option is further explored in Appendix C of the thesis.

Fig. 10. Velocity estimation using the IMU and a linear drag force model.
a) Comparison between the estimated velocity and the true velocity obtained
through motion capture. b) Scatterplot of true and estimated velocities.

A downside of drag-based velocity estimation is that any
bias of the accelerometer is directly visible in the velocity es-
timate. The accelerometer bias tends to slowly drift over time
and is therefore difficult to estimate and correct. Temperature
calibration of the accelerometer is required to bring the
bias drift down to usable levels. Calibration was performed
during four test flights, where the drone hovered in one
position for ten to fifteen minutes while the temperature and
accelerometer measurements were logged. These were used
to generate a look-up table that provides a bias correction
for a given temperature.

To construct odometry vectors between waypoints, the
velocity is sampled and integrated at 200 Hz. The estimated
heading, based on gyroscope and magnetometer, is used to
determine the direction of movement.

C. Closed-loop position control

A PID controller is used to track the position setpoints
provided by the homing vector or the odometry. The con-
troller is shown in Fig. 6. The controller generates attitude
setpoints φ, θ for the low-level stabilization controller of
Paparazzi. An integrative action is required to correct offsets
in the attitude estimate, which can have errors in the order
of two degrees. The control actions are saturated to limit the
bank angle of the drone to a maximum of ten degrees; this
prevents the frame of the quadrotor from blocking parts of

8 Practical implementation on a UAV

Tom van Dijk Master of Science Thesis

the horizon.
The gains Kp, Kd and Ki use the default values of

Paparazzi’s AR.Drone 2.0 configuration. Environment radius
R is tuned by hand based on the size of the environment.
With a correct setting of R, the length of Rh should be
roughly equal to the distance to the snapshot.

The homing vector is updated at 25 Hz as it is limited
by the camera framerate. The 200 Hz velocity measurements
are used to update the position setpoint between camera
frames. When a new homing vector h arrives, it overwrites
the existing setpoint.

Low-level attitude control is performed using Incremen-
tal Nonlinear Dynamics Inversion (INDI) [30] as provided
by Paparazzi. The tuning parameters were estimated using
Adaptive INDI during a test flight.

Vertical guidance of the UAV is performed using the on-
board sonar or using the altitude provided by an external
motion capture system.

VI. EXPERIMENTAL RESULTS

The previous sections have presented a navigation method
for quadrotors that drastically reduces the amount of memory
required for route following. The working principles and
efficiency of visual homing were demonstrated in a simple
simulation without quadrotor dynamics. In this section, the
presented method will be evaluated on a simulated and a real
quadrotor.

This section will demonstrate that:
1) visual homing as presented in Section III works on a

real quadrotor.
2) routes can be traversed using sequential visual homing,

optionally combined with odometry.
3) the use of odometry increases the maximum allowable

distance between waypoints.
4) a memory consumption of less than twenty bytes per

meter is achieved.

A. Experimental setup

Flight tests will be performed in simulation and on a
Parrot AR.Drone 2.0. This section gives a brief overview
of the equipment used for the experiment; the experiments
themselves and their results are described in Sections VI-B
to VI-D.

1) Simulation: The quadrotor simulations are performed
in Gazebo4,5. The drone is modeled as a rigid body with four
forces and torques acting upon it. Drag acting on the drone
grows linearly with velocity. The simulated drone is equipped
with an omnidirectional camera at its bottom side with a
resolution of 240 × 240 px. The image is disturbed using a
per-pixel Gaussian noise signal with a standard deviation of
0.007 (with pixel values between [0..1]).

The simulated drone is controlled using the same autopilot
as the real drone. This includes the low-level attitude control

4http://gazebosim.org/
5More information on the simulator can be found in Appendix D of the

thesis.

loop. Measurements from the simulated drone are disturbed
by noise that should roughly match that of the real platform.

During the outbound flight, the true position is used to
guide the drone through the environment. On the way back,
the true position is not available to the controller but only
logged for later evaluation.

2) Experimental: The real-world experiments are per-
formed on the AR.Drone 2.0 described in the previous
section. The experiments are performed in the TU Delft’s
Cyberzoo, a 10×10×7 m testing ground for UAVs. The area
is surrounded by black curtains to prevent disturbances from
outside the test area. These curtains do not provide useful
features for navigation, so additional texture was provided
by shower curtains hanging around the edge of the test area
(Fig. 11).

The position of the drone is recorded using an Optitrack6

motion capture system. This position is logged for later
analysis and used to control the drone’s position when not
flying autonomously. This position measurement is also used
to guide the drone along its outbound trajectory during
recording.

B. Visual homing

In this first experiment, the drone homes towards a single
target image in the test environment. The goal of this experi-
ment is to show that visual homing works on a UAV despite
the additional dynamics and disturbances, and to show that
the catchment area is sufficiently large for navigation.

In simulation, homing is evaluated in Gazebo’s Café
environment7 (Fig. 12). In the real experiment, homing is
performed inside the cyberzoo (Fig. 11). One of the curtains
was opened and shower curtains were hung on the other sides
to provide additional features to the otherwise featureless
walls.

The following procedure was used for the experiment:
first, the drone takes off and hovers at a central position
where it records its target image. Then, the drone moves to
its starting position (selected from a 5× 5 grid surrounding
the target, see Fig. 13) from which homing is attempted. The
drone follows the homing vector until 1) the vector (ξ, η)
becomes smaller than 0.01, indicating arrival at the target,
or 2) 20 seconds have passed. The resulting trajectories are
shown in Fig. 13.

In both the simulation and the real test flight, the drone can
successfully find its way back towards the target location in
most runs. In simulation, 14 out of 15 runs were successful,
the other run did not arrive at the target in time but appeared
to follow a correct trajectory.

On the real drone, 13 out of 15 runs were successful.
During the other two runs, the drone moved in an incorrect
direction, indicating that it was outside the catchment area
of this snapshot. The closest failed run started at a distance
of 1.79 m from the target position, which is assumed to be
the minimum radius of the catchment area of this snapshot.

6http://optitrack.com/
7http://models.gazebosim.org/cafe/ by Nate Koenig.

9

Master of Science Thesis Tom van Dijk

Fig. 11. TU Delft’s Cyberzoo, a 10×10×7m testing area for UAVs. To provide additional texture for visual homing, the left curtain is partially opened
and shower curtains are hanged on the back- and right walls.

Fig. 12. Gazebo’s Café environment.

TABLE I
MAXIMAL MEMORY-EFFICIENCY IN THE CORRIDOR ENVIRONMENT.

Strategy Wpt. distance [m] Map size [B/m]

Snapshots only 0.3 56.7
Snapshots + IMU odo. 1.2 17.5

When the two failed runs are discarded, the average final
position error in the Cyberzoo is 35 cm (SD = 16 cm, N =
22). In Gazebo the average final position error is 22 cm (SD
= 11 cm, N = 23).

C. Route following

In the second experiment, the drone follows routes that
are too long to perform in a single visual homing maneuver.
Routes are followed by sequentially homing towards way-
points along the route, with and without odometry. The goal
of this test is to show that long-range navigation is possible
using sequential visual homing and that the use of odometry
increases the maximum distance between waypoints, thereby
improving the memory efficiency of the map.

Route following is evaluated on the real drone in a
‘corridor’ setup inside the Cyberzoo (Fig. 14). Compared
to Section VI-B, the nearby walls drastically reduce the size
of the catchment areas; it is not possible to fly from one

end of the corridor to the other in a single visual homing
maneuver.

The drone uses its ground truth position to fly along the
corridor while recording waypoints and odometry vectors.
The drone then follows the route back to its starting location
using sequential visual homing. Waypoints were recorded at
0.3, 1.0, 2.0 and 4.0 second intervals whilst flying at a speed
of 0.3 m/s (corresponding to 10, 30, 60 and 120 centimeter
distances between waypoints). The largest intervals between
snapshots that still resulted in at least one successful return
flight are compared, this ensures that the maps are as sparse
as possible. On the way back, the drone follows the odometry
vector until it is twenty centimeters from its endpoint (if
applicable), followed by a visual homing maneuver that is
performed for four seconds (this time was required to arrive
and stabilize at the waypoint).

The resulting flight trajectories are shown in Fig. 15.
The maximum distances for which successful runs were
observed are listed in Table I. When only snapshots are
used for navigation, the maximum distance achieved between
waypoints was 30 cm. With odometry a maximum distance
of 1.2 m was achieved.

The memory consumption of the map is calculated by
dividing the size of the snapshot plus the odometry vector
(if applicable) by the distance between the waypoints. In
this test, the snapshots were 17 bytes in size, 16 bytes
for the complex coefficients (this value was found in an
earlier version of the simulation in Section III) and an
additional byte for the compass heading used to improve
orientation estimation. Snapshot-only navigation consumed
56.7 bytes per meter. When odometry is used to move
between waypoints before homing is attempted, the memory
consumption of the map is reduced to 17.5 bytes. The use
of odometry is therefore an effective way of lowering the
memory consumption of navigation, in this case memory
consumption was reduced by 69% compared to sequential
visual homing without odometry.

The trajectories in Fig. 15 also show that visual homing
successfully brings the UAV close to its waypoint, but that
the IMU-based dead reckoning has large errors in both
direction and distance. At these distances between waypoints,
visual homing is just able to correct these errors. If the

10 Experimental results

Tom van Dijk Master of Science Thesis

Fig. 13. Visual homing results. The drone homes towards a snapshot
taken at the red cross. The lines show the quadrotor trajectories, the black
dots the endpoints. a) Homing trajectories in Gazebo’s Café environment
(Fig. 12). b) Homing trajectories in the cyberzoo (Fig. 11). The two bottom-
right trajectories do not guide the drone towards the snapshot; these starting
points therefore lie outside the catchment area.

Fig. 14. ‘Corridor’ environment inside the Cyberzoo. The corridor is a
rectangular area of approximately 10 × 3m. Shower curtains have been
placed along the sides of the corridor to provide sufficient texture for
navigation.

Fig. 15. Route-following results without (top) and with (bottom) odometry
between snapshots. Dotted lines indicate dead-reckoning using odometry,
while solid lines indicate visual homing maneuvers. The waypoints along
the route are indicated by black crosses. The drone travels from the top
left to the bottom right. The use of odometry allows for a larger distance
between waypoints.

odometric error could be reduced further, an even larger
distance between waypoints might be achieved.

D. Long-range route following

The previous experiment has demonstrated the use of
sequential visual homing and odometry to travel longer
distances. The environment, however, was limited in size
and had different visual features than a generic indoor
environment. To show that route following also works over
long distances in realistic environments, a similar experiment
is repeated in a model of (part of) the Aerospace Engineering
faculty of the TU Delft (Fig. 16).

In this environment, the drone follows a trajectory of 63 m.
The same settings are used as in the previous experiment:
four seconds between snapshots whilst flying at a speed of
0.3 m/s. The resulting trajectory is shown in Fig. 17.

The drone successfully followed the recorded route. Since
the recording settings were unchanged, this map also con-
sumes 17.5 B/m, showing that this is sufficient for naviga-
tion over long distances. On one occasion, visual homing
failed to bring the drone back to its intended waypoint, but
the homing maneuver at the next waypoint corrected this
error before the drone got lost.

6-4 Long-range route following 11

Master of Science Thesis Tom van Dijk

Fig. 16. Aerospace Engineering indoor environment in Gazebo. This environment is modeled after the area surrounding TU Delft’s MAVLab.

Fig. 17. Simulation results of long-range route following in the Aerospace Engineering environment (Fig. 16). The trajectory has a total length of 63m.
The drone travels counterclockwise, the black circles in the top-left corner indicate the start and end of the trajectory. Odometry and visual homing are
used with waypoints at 1.20m intervals. Inset: visual homing failed on one occasion, but this was corrected at the next waypoint.

12 Experimental results

Tom van Dijk Master of Science Thesis

VII. DISCUSSION

The experiments of Section VI have shown that sequential
visual homing, combined with odometry, is a viable way of
route following in indoor environments. The short ‘corridor’
experiment has shown that this concept works on a real
drone and the long-range experiment in the ‘Aerospace En-
gineering’ environment shows that it also works over longer
distances and in more difficult environments. However, that
does not mean that this route following method is without
limitations. Section VII-A will discuss the limitations of
Fourier-based homing. Section VII-B discusses the inaccu-
racies of IMU-based odometry and suggests ways to reduce
its drift.

In the experiments, a memory consumption of 17.5 bytes
per meter was achieved. Odometric uncertainty limited the
maximum distance between waypoints. Section VII-C sug-
gests that path following can be used to lower the memory
consumption even further.

Memory consumption has been the focus of this work,
as this allows visual route following to be performed on a
microcontroller-equipped MAV. Computational complexity,
however, has not been investigated. Section VII-D will argue
that Fourier-based homing should not have problems running
on a microcontroller, and that sequential visual homing with
odometry is a valid solution for visual route following on
MAVs.

A. Limitations of Fourier-based homing

Fourier-based homing has been shown to work in realistic
environments with very small snapshots. However, it is
not without limitations. Like other visual homing methods,
Fourier-based homing assumes that there is sufficient texture
around the UAV. Homing will not succeed in a featureless,
gray room as the image difference function does not change
with position and there is therefore no minimum to converge
to. However, lack of texture would also cause these problems
in other visual navigation methods. The use of panoramic
images should at least provide some advantage to homing
methods that look at the floor or ceiling, as more features
are expected around the horizon.

Repetitive environments also adversely affect the shape of
the image difference function, as it creates many closely-
spaced local minima next to each other. In this case, odom-
etry would not only help the drone traverse longer distances
between waypoints, but it also helps the drone converge to
the correct local minimum by placing it roughly besides it.

Another assumption of Fourier-based homing is that the
environment is static, including illumination. In real envi-
ronments, changes in natural light could cause problems
near windows. Auto-exposure, used to prevent under- and
overexposure of parts of the image, can also cause pixel
intensities to change. On the other hand, a lack of auto-
exposure could cause saturation of pixel intensities. Light
flicker (from TL or LED lighting) has also been observed to
affect homing performance in test flights.

Fourier-based homing discards the mean brightness of the
image and is therefore expected to cope reasonably well

with changes in overall illumination brightness. Changes
in camera gain or illumination direction, however, are not
canceled by this operation and could have a large effect on
the homing performance. Visual navigation using keypoint
detectors and descriptors might be more reliable under these
circumstances as descriptors like SIFT and D-BRIEF tend
to be robust against illumination changes, but feature-based
homing consumes more memory. Instead, part of the problem
might be solved by preprocessing the images before they
are transformed to the frequency domain. In [8], [25] his-
togram equalization is used to control the brightness and
contrast of the image, but its influence on homing per-
formance is not investigated. Histogram equalization might
even cause pixel intensities of parts of the environment to
unintentionally change, thereby actually hindering homing
performance. Papers [5], [9], [31], on the other hand, do not
use histogram equalization. Zhang and Kleeman use patch
normalization in [13] to support visual route following in
mixed indoor/outdoor environments under varying lighting
conditions. While this works with raw images, it is not
known how this operation would affect the Fourier-transform
of the image. By equalizing small patches in the image,
large bright and dark regions in the image are replaced by
smaller, highly contrasted regions that all have an equal av-
erage brightness. Additionally, noise is amplified in uniform
regions. Neither of these effects is expected to have a positive
effect on the homing performance of Fourier-based homing,
as this method primarily relies on the low-frequency content
of the image.

B. Odometry and measurement bias

Fourier-based homing is combined with odometry to in-
crease the distance between waypoints, thereby increasing
the sparsity of the map. The odometry method used in this
work is extremely simplistic: estimation of the velocity only
requires scaling and low-pass filtering of the accelerometer
measurements. However, this method is not without prob-
lems, as demonstrated in the ‘corridor’ test in the Cyberzoo
where the largest deviations from the planned path occur
whilst flying with odometric guidance. Firstly, this method
measures the the airspeed of the drone, not its speed relative
to the ground. This means that deviations caused by wind or
other airflows can not be measured or corrected. The main
cause of error, however, is the bias of the accelerometer. It
is not constant but drifts slowly over time and is therefore
difficult to correct.

Part of the bias drift comes from the temperature of the
sensor. Calibration of the temperature response is essential
to bring the bias drift to usable levels. The sensor on the
AR.Drone 2.0 was calibrated by hovering in one position
using the Optitrack system until the battery was empty after
about fifteen minutes. The temperature and accelerometer
readings were logged and used to construct a lookup-table of
bias values. After this correction, the odometric drift stayed
within 20 cm/s during hover. While this is quite decent for
IMU-only odometry, this bias is still significant in corridors
that are only two to three meters wide; within a few seconds

13

Master of Science Thesis Tom van Dijk

the drone would drift so much that it collides with the wall.
This problem could be reduced if the bias can be estimated

and corrected during the flight. This requires the velocity of
the drone to be known. One way to achieve this is to hover
at intermediate snapshots. Since the drone is stationary, its
velocity is zero, so any deviations in the velocity estimate
can then be assumed to come from sensor bias.

Alternatively, the bias might be estimated once the drone
detects arrival at a waypoint. The odometry vectors recorded
during the outbound and inbound flight should sum to zero
(assuming that the drone’s heading did not change). The
remaining odometry vector could then be assumed to be
a result of bias, and divided by time to find the average
velocity error during the outbound- and inbound flight. This
does, however, assume that the bias during route following
is the same as during recording, which might not be true if
a large amount of time has passed.

If the bias is difficult to correct, its influence might at least
be avoided by flying faster. The odometric uncertainty caused
by bias grows linearly with time, therefore less time spent
between waypoints means a smaller error in the position
estimate. The speed of the drone is ultimately bounded by the
sensors and control loop: large overshoots must be avoided,
but the IMU-based speed estimate is noisy so the differential
gain Kd can not be set too high. Additionally, the shutter time
of the camera might place an upper bound on the speed of
the drone: the images should not become (too) blurry.

Regardless of the underlying method, any reduction in
odometric error improves the memory efficiency of the map,
as the distance between waypoints can be increased.

C. Further reductions in memory consumption

Odometry was used to travel between waypoints because
it does not depend on the environment and is therefore
always applicable. However, other methods of navigation
could also be used to travel towards the next waypoint and
might actually be preferable in terms of reliability and/or
memory consumption. Corridor following, for instance, does
not need to store any data and can be performed over
arbitrary distances as long as the end of the corridor can
reliably be detected. It does, however, require the drone to be
inside a corridor which makes it less generic than odometry.
To truly minimize the memory consumption of navigation,
ad-hoc solutions like these should be used to minimize the
number of waypoints that need to be stored and to maximize
the distance between them.

D. Fourier-based homing on microcontrollers

Minimization of memory consumption is essential for the
use of visual route following on microcontroller-equipped
MAVs. This work has proposed an approach to visual route
following that should be simple enough to run on such a
platform. In terms of memory consumption this is clearly the
case, but the computational complexity of the algorithm was
not evaluated. Fourier-based homing has few computationally
intensive steps, though. The Fourier transform of the horizon
can be performed efficiently on microcontrollers; the FFT is

commonly used in Digital Signal Processing and efficient im-
plementations are therefore widely available. Fourier-based
homing also requires a matrix inversion, but since this matrix
is only 3 × 3 no problems are expected here either. Stürzl
and Mallot also published an efficient relative orientation
estimation that avoids the need to inefficiently search through
all possible orientations. The complexity of the other op-
erations grows linearly with the number of coefficients K,
which is very low in practice. Other problems might be
caused by the lack of a Floating Point Unit (FPU) on some
microcontrollers. The Fourier-transformed images, however,
are already stored in a fixed-point format to reduce their size,
so rounding errors in the stored images have already been
shown to have little influence on the homing performance.
The influence of rounding errors in intermediate steps was
not investigated and is left for future work.

Since both memory consumption and computational com-
plexity have been reduced to the point that they can be run
on a microcontroller, this work has succeeded in its goal of
bringing visual route following to Micro Aerial Vehicles.

VIII. CONCLUSION

This paper has presented a route following method that
focuses on low memory consumption. This allows navigation
to be performed as a lightweight background process, or
to be performed on simple microcontrollers, allowing even
the tiniest drones to navigate over long distances in indoor
environments.

Three image-based homing methods were compared, of
which Fourier-based homing by Stürzl and Mallot [5] was
shown to be the most memory efficient. Fourier-based hom-
ing was implemented and tested in simulation and on a real
quadrotor. In both cases it was able to successfully guide the
drone back to a target location with snapshots compressed
to 16 bytes. The results of Section III suggest that the size
of the snapshot could be reduced further to only 8–12 bytes.

Sequential homing between waypoints is a viable method
of long-range navigation, but it requires each waypoint to
lie inside the catchment area of the next. Odometry can be
used to travel towards the next waypoint before homing is
attempted. This concept was tested on an AR.Drone 2.0 in
a short corridor environment. A memory consumption of
17.5 bytes per meter was achieved, with 1.20 m between
snapshots. The same concept was successfully demonstrated
over longer distances in simulation.

APPENDIX
FOURIER-BASED HOMING

In Section III, Fourier-based homing is found to be the
most memory-efficient image-based homing method evalu-
ated in this work. Its ability to work with heavily compressed
images is essential in bringing down the memory consump-
tion of long-range visual navigation. Therefore, this section
will briefly summarize the work of Stürzl and Mallot [5].

Search-based homing, from which Fourier-based homing
originates, finds a homing vector h = (ξ, η) and rotation
ς that minimizes the difference between the rotated target

14 Conclusion

Tom van Dijk Master of Science Thesis

image IT (β|−ς) and the predicted image Î(β|ξ, η) (Fig. 18),
where I(β) is the intensity of the pixel at bearing β in image
I and where ξ = x/R and η = y/R with R assumed known:

E(ξ, η, ς) =
1

2

∑

β

(
Î(β|ξ, η)− IT (β| − ς)

)2

(6)

(h, ς) = arg min
(ξ,η),ς

E(ξ, η, ς) (7)

Unlike search-based homing, Fourier-based homing uses
the Fourier-transform of the horizon images. The images
are approximated using only the first K low-frequency
components:

I(β) ≈ 1

2
a0 +

K∑

k=1

ak cos kβ + bk sin kβ (8)

where K ≤ w/2 with w the width of the original horizon
image in pixels. Through Parseval’s theorem, the error be-
tween the Fourier-transformed predicted and target images
can be found directly from the coefficients ak, bk:

E(ξ, η, ς) =
1

2

K∑

k=1

(âk(ξ, η)− aTk (−ς))2

+(b̂k(ξ, η)− bTk (−ς))2 (9)

The DC value â0 (and aT0) is excluded from this error as it
does not depend on ξ, η or ς and therefore does not provide
any directional information.

The predicted image Î(β|ξ, η), defined by its coefficients
âk(ξ, η), b̂k(ξ, η), is replaced by its first-order Taylor ap-
proximation:

âk(ξ, η) = aCk + aCk,xξ + aCk,yη (10)

b̂k(ξ, η) = bCk + bCk,xξ + bCk,yη (11)

where aCk,x, aCk,y , bCk,x, bCk,y are linear combinations of the
coefficients of the current image:

aCk,x =
1

2

(
−(k − 1)aCk−1 + (k + 1)aCk+1

)

aCk,y =
1

2

(
(k − 1)bCk−1 + (k + 1)bCk+1

)

bCk,x =
1

2

(
−(k − 1)bCk−1 + (k + 1)bCk+1

)

bCk,y =
1

2

(
−(k − 1)aCk−1 − (k + 1)aCk+1

)
(12)

Similarly, the relative orientation ς = ς0 +∆ς of the target
image is replaced by its first order Taylor approximation:

aTk (ς) ≈ aTk (ς0) + bTk (ς0)k∆ς

bTk (ς) ≈ bTk (ς0)− aTk (ς0)k∆ς (13)

with ak(ς) = ak cos kς + bk sin kς and bk(ς) = bk cos kς −
ak sin kς . The coarse orientation ς0 is estimated beforehand
using the phase information of the low-frequency compo-
nents. The relative orientation is refined by estimating a
correction ∆ς during relative pose estimation below.

The linear approximations of the coefficients of Î(ξ, η)
(11) and the rotated target image (13) can then be inserted

Fig. 18. Image warping [8]. After a small movement (x, y) and rotation
ς , the new bearing β̂ towards feature F can be predicted, assuming that
distance R is known. During image warping, the intensities of all pixels in
the predicted image Î at bearings β̂ are sampled from the current image IC

at bearings β, where β = β̂+ς−sin−1
(

x
R

sin(β̂ + ς)− y
R

cos(β̂ + ς)
)

[5]. Distance R is known and constant under the equal distance assumption
[8].

into (9) to produce an error function that is quadratic in
ξ, η, ∆ς . The minimum of the error function can be found
by setting the gradient of (9), ∇ξ,η,∆ςE(ξ, η, ς0+∆ς), which
is affine in ξ, η,∆ς to zero through a 3×3 matrix inversion.

(h, ς) = arg min
((ξ,η),ς0+∆ς)

1

2

K∑

k=1

(âk(ξ, η)− aTk (−ς))2

+(b̂k(ξ, η)− bTk (−ς))2 (14)

The homing vector can be found directly from (14) or
estimated over multiple iterations where the warped version
of the current image is used as the starting point for the next
step.

REFERENCES

[1] K. Schmid, P. Lutz, T. Tomić, E. Mair, and H. Hirschmüller, “Au-
tonomous Vision-based Micro Air Vehicle for Indoor and Outdoor
Navigation,” Journal of Field Robotics, vol. 31, no. 4, pp. 537–570,
2014.

[2] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart, “Real-time
visual-inertial mapping, re-localization and planning onboard MAVs in
unknown environments,” IEEE International Conference on Intelligent
Robots and Systems, vol. 2015-Decem, pp. 1872–1878, 2015.

[3] B. A. Cartwright and T. S. Collett, “Landmark Learning in Bees
Experiments and Models,” Journal of Comparative Physiology, vol.
151, pp. 521–543, 1983.

[4] D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A
mobile robot employing insect strategies for navigation,” Robotics and
Autonomous Systems, vol. 30, no. 1, pp. 39–64, 2000.

[5] W. Stürzl and H. A. Mallot, “Efficient visual homing based on Fourier
transformed panoramic images,” Robotics and Autonomous Systems,
vol. 54, no. 4, pp. 300–313, 2006.

[6] A. Denuelle and M. V. Srinivasan, “A sparse snapshot-based
navigation strategy for UAS guidance in natural environments,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, may 2016, pp. 3455–3462.

[7] M. O. Franz and H. A. Mallot, “Biomimetic robot navigation,”
Robotics and Autonomous Systems, vol. 30, no. 1, pp. 133–153, 2000.

[8] M. O. Franz, B. Schölkopf, H. A. Mallot, and H. H. Bülthoff, “Where
did I take that snapshot? Scene-based homing by image matching,”
Biological Cybernetics, vol. 79, no. 3, pp. 191–202, 1998.

15

Master of Science Thesis Tom van Dijk

[9] R. Möller and A. Vardy, “Local visual homing by matched-filter
descent in image distances,” Biological Cybernetics, vol. 95, no. 5,
pp. 413–430, oct 2006.

[10] A. Vardy, “Long-range visual homing,” 2006 IEEE International
Conference on Robotics and Biomimetics, ROBIO 2006, pp. 220–226,
2006.

[11] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, “MAV navigation
through indoor corridors using optical flow,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 3361–3368,
2010.

[12] C. Bills, J. Chen, and A. Saxena, “Autonomous MAV flight in indoor
environments using single image perspective cues,” Proceedings -
IEEE International Conference on Robotics and Automation, pp.
5776–5783, 2011.

[13] A. M. Zhang and L. Kleeman, “Robust Appearance Based Visual
Route Following for Navigation in Large-scale Outdoor Environ-
ments,” The International Journal of Robotics Research, vol. 28, no. 3,
pp. 331–356, 2009.

[14] Y. Matsumoto, M. Inaba, and H. Inoue, “Visual navigation using
view-sequenced route representation,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 1. IEEE,
1996, pp. 83–88.

[15] B. Baddeley, P. Graham, P. Husbands, and A. Philippides, “A model of
ant route navigation driven by scene familiarity,” PLoS Computational
Biology, vol. 8, no. 1, 2012.

[16] P. De Cristóforis, M. Nitsche, T. Krajnı́k, T. Pire, and M. Mejail, “Hy-
brid vision-based navigation for mobile robots in mixed indoor/outdoor
environments,” Pattern Recognition Letters, vol. 53, pp. 118–128,
2015.

[17] F. Labrosse, “Short and long-range visual navigation using warped
panoramic images,” Robotics and Autonomous Systems, vol. 55, no. 9,
pp. 675–684, 2007.

[18] E. Mair, M. Augustine, B. Jäger, A. Stelzer, C. Brand, D. Burschka,
and M. Suppa, “A biologically inspired navigation concept based on
the Landmark-Tree map for efficient long-distance robot navigation,”
Advanced Robotics, vol. 28, no. 5, pp. 289–302, 2014.

[19] J. Courbon, Y. Mezouar, N. Guénard, and P. Martinet, “Vision-
based navigation of unmanned aerial vehicles,” Control Engineering
Practice, vol. 18, no. 7, pp. 789–799, 2010.

[20] D. G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” International Journal of Computer Vision, vol. 60, no. 2,
pp. 91–110, nov 2004.

[21] T. Trzcinski and V. Lepetit, “Efficient Discriminative Projections for
Compact Binary Descriptors,” in European Conference on Computer
Vision. Springer, 2012, pp. 228–242.

[22] M. Augustine, F. Ortmeier, E. Mair, D. Burschka, A. Stelzer, and
M. Suppa, “Landmark-Tree map: A biologically inspired topological
map for long-distance robot navigation,” in 2012 IEEE International
Conference on Robotics and Biomimetics (ROBIO). IEEE, dec 2012,
pp. 128–135.

[23] A. Stelzer, E. Mair, and M. Suppa, “Trail-Map: A scalable landmark
data structure for biologically inspired range-free navigation,” in 2014
IEEE International Conference on Robotics and Biomimetics (ROBIO
2014). IEEE, dec 2014, pp. 2138–2145.

[24] J. Zeil, M. I. Hofmann, and J. S. Chahl, “Catchment areas of panoramic
snapshots in outdoor scenes,” Journal of the Optical Society of
America A, vol. 20, no. 3, pp. 450–469, 2003.

[25] D. D. Gaffin and B. P. Brayfield, “Autonomous Visual Navigation
of an Indoor Environment Using a Parsimonious, Insect Inspired
Familiarity Algorithm,” Plos One, vol. 11, no. 4, p. e0153706, 2016.

[26] R. Möller, A. Vardy, S. Kreft, and S. Ruwisch, “Newton-based
matched-filter descent in image distances,” Biological Cybernetics
(Submitted), 2006.

[27] O. J. Woodman, “An Introduction to Inertial Navigation,” University
of Cambridge, no. 696, pp. 1–37, 2007.

[28] P. J. Bristeau, F. Callou, D. Vissière, and N. Petit, The Navigation
and Control technology inside the AR.Drone micro UAV. IFAC,
2011, vol. 18, no. PART 1.

[29] R. C. Leishman, J. C. MacDonald, R. W. Beard, and T. W. McLain,
“Quadrotors and accelerometers: State estimation with an improved
dynamic model,” IEEE Control Systems, vol. 34, no. 1, pp. 28–41,
2014.

[30] E. J. J. Smeur, Q. Chu, and G. C. H. E. de Croon, “Adaptive
Incremental Nonlinear Dynamic Inversion for Attitude Control of

Micro Air Vehicles,” Journal of Guidance, Control, and Dynamics,
vol. 39, no. 3, pp. 450–461, 2016.

[31] A. Vardy and R. Möller, “Biologically plausible visual homing meth-
ods based on optical flow techniques,” Connection Science, vol. 17,
no. 1-2, pp. 47–89, 2005.

16 Conclusion

Tom van Dijk Master of Science Thesis

Appendices

Master of Science Thesis Tom van Dijk

Appendix A

Review of image-based homing
methods

Nomenclature
ak, bk Coefficients of Fourier-transformed image [-]
Ak Amplitude of the k-th frequency component [-]
A, b, c Coefficients of E(ξ, η,∆ς|ς0) [-]
β Bearing relative to current heading [rad]
E(ξ, η, ς) Error between predicted image Î(β|ξ, η, ς)

and target image IT (β) [-]
E(ξ, η,∆ς|ς0) Quadratic approximation of E(ξ, η, ς)
φk Phase of the k-th frequency component [rad]
h Homing vector [-]
IC(β) Pixel intensity in current image [-]
IT (β) Pixel intensity in target image [-]
Î(β|ξ, η, ς) Pixel intensity in predicted image [-]
∇βI

C(β) Gradient of current image [rad−1]
k Frequency [-]
K Number of frequencies in snapshot [-]
R Environment radius [m]
ς Relative orientation [rad]
ς0 Relative orientation (coarse) [rad]
ςk Relative orientation at frequency k [rad]
∆ς Relative orientation (correction) [rad]
w Image width [px]
wk Weight of orientation estimate at frequency k [-]
x, y Relative position [m]
ξ, η Relative position, unknown scale [-]

In Section 3 of the paper, the performance of three image-based homing methods was com-
pared: search-based homing [1], Matched Filter Descent in Image Distances (MFDID) [2]
and Fourier-based homing [3]. These methods were only briefly mentioned in Section 2, but
the underlying equations of search-based homing and MFDID were not presented. For the

Master of Science Thesis Tom van Dijk

20 Review of image-based homing methods

completeness of this thesis and to ensure its reproducibility, this appendix summarizes the
mathematics behind image warping, search-based homing, MFDID and Fourier-based hom-
ing.

The following sections summarize existing homing methods for the completeness
of this thesis. The methods presented here are not my own work.

A-1 Image warping (Franz et al. 1998) [1, 3]

While image-based homing can be performed with exploratory movements, these are difficult
to perform accurately on a UAV and could use a considerable amount of energy. Instead,
nearby images are predicted through a procedure called image warping. These predicted
images can then be used to search for the target location. The idea of image warping was
originally published by Franz et al. as part of their homing method [1]. This section, however,
will summarize image warping under a Cartesian movement (x, y) as described in [3] as this
formulation is easier to integrate into the other two homing methods.

Images are modeled as a function I(β), where β is the bearing of a pixel with intensity I(β).
To minimize memory consumption, only one-dimensional horizon images will be considered
here.

The goal of image warping is to predict a new image Î(β) that would be expected after a
hypothetical movement (x, y) and rotation ς from the current position (Figure A-1). As the
name suggests, this predicted image is found by warping the image IC(β) observed at the
current location. For each bearing β̂ in the predicted image, a corresponding bearing β in the
current image IC(β) can be found:

β = β̂ + ς − sin−1
(
x

R
sin(β̂ + ς)− y

R
cos(β̂ + ς)

)
(A-1)

However, this requires the distance R to all features to be known. Franz et al. assumed
this distance to be known and equal for all features, the equal distance assumption [1], this
assumption is also made by the other methods under review in this section [2, 3]. Under
the equal distance assumption, (A-1) can be expressed in the unscaled coordinates ξ = x/R,
η = y/R. For small movements ξ2 + η2 � 1, (A-1) can then be approximated as follows:

β ≈ β̂ + ς − ξ sin(β̂ + ς) + η cos(β̂ + ς) (A-2)

And therefore:
Î(β|ξ, η, ς) = IC(β + ς − ξ sin(β + ς) + η cos(β + ς)) (A-3)

This predicted image is used in all of the following methods.

Tom van Dijk Master of Science Thesis

A-2 Search-based homing 21

Figure A-1: Image warping under the equal distance assumption. When the distance R to a
feature F at bearing β is known, it is possible to predict its new bearing β̂ after a small movement
(x, y) and rotation ς. During image warping, the intensities of all pixels in the predicted image Î
at bearings β̂ are sampled from the current image IC at bearings β.

A-2 Search-based homing (Franz et al. 1998) [1]

Search-based homing was introduced by Franz et al. in [1] as an alternative to existing
feature-based homing methods that required an equal distribution of landmarks. To estimate
the homing vector, the authors used the warping procedure described above to produce a
large number of predicted images for all hypothetical displacements ξ, η and rotations ς
under consideration. These predicted images are then compared to the target image IT (β)
to obtain an error E(ξ, η, ς):

E(ξ, η, ς) = 1
2
∑
β

(
Î(β|ξ, η, ς)− IT (β)

)2
(A-4)

The hypothetical movement that results in the smallest error is then selected as the homing
vector h:

(h, ς) = arg min
((ξ, η),ς)

E(ξ, η, ς) (A-5)

Figure A-2: Sampling points for search-based homing used in this thesis.

Master of Science Thesis Tom van Dijk

22 Review of image-based homing methods

In this thesis, ξ, η are radially sampled at twenty directions from the current position and at
ten distances up to 2

3 together with the point (0, 0) (Figure A-2). While search-based homing
typically produces good results, it has the disadvantage that a large number of images need
to be predicted which makes it computationally intensive compared to the two other methods
summarized next.

A-3 Matched Filter Descent in Image Distances (Möller and Vardy,
2006) [2]

Instead of directly searching for the best match with the target image, Möller and Vardy’s
Matched Filter Descent in Image Distances (MFDID) uses the (negative) spatial gradient of
the error E(ξ, η) as the homing vector. As long as the UAV follows this vector, the error will
decrease until it is minimized when the drone is at the target location (provided that it does
not get stuck in a local minimum of E(ξ, η)).

Unlike search-based homing, MFDID does not include the orientation ς in its relative pose
estimation. The orientation therefore has to be found and corrected beforehand. The relative
orientation is found by searching for a rotated version of the current image that has the lowest
difference to the target image:

ς = arg min
ς

1
2
∑
β

(
Î(β|ς)− IT (β)

)2
(A-6)

Because the images are aligned beforehand, the relative orientation ς is not included in the
pose estimation below.

Instead of searching through all possible movements, MFDID estimates the spatial gradient
of the error at the current position (ξ, η) = (0, 0) and uses this as the homing vector h:

h = −∇ξ,ηE(0, 0) (A-7)

= −
∑
β

(
IC(β)− IT (β)

)
·∇ξ,η Î(β|0, 0) (A-8)

To find the spatial gradient ∇ξ,η Î(β|0, 0), Möller and Vardy use the following procedure:
Consider the pixel intensity Î(β + ∆β|ξ, η) sampled from the predicted image. For small ∆β
and ξ2 +η2, the intensity of this pixel can be found from the first-order Taylor approximation:

Î(β + ∆β|ξ, η) ≈ IC(β) +∇>β IC(β)∆β + ∇>ξ,η Î(β|0, 0)
[
ξ η

]>
(A-9)

When ∆β is chosen such that the same feature is in view in both images, the pixel intensities
should be equal:

IC(β) +∇>β IC(β)∆β + ∇>ξ,η Î(β|0, 0)
[
ξ η

]>
≈ IC(β) (A-10)

and therefore:
∇>ξ,η Î(β|0, 0)

[
ξ η

]>
≈ −∇>β IC(β)∆β (A-11)

Tom van Dijk Master of Science Thesis

A-3 Matched Filter Descent in Image Distances (MFDID) 23

MFDID
Newton-MFDID

Figure A-3: Average catchment area vs. snapshot size for MFDID [2] and Newton-MFDID [4].

Factors ∆β/ξ and ∆β/η are then obtained from an optic flow equation for two dimensional
images. In this review, this equation is replaced by warping equation (A-2) (with ∆β = β̂−β),
producing the same result:

∇ξ,η Î(β|0, 0) = ∇>β IC(β)
[
− sin β cosβ

]>
(A-12)

This spatial gradient can then be inserted into (A-8) to find the homing vector h:

h =
∑
β

[
sin β − cosβ

]>
∇IC(β)

(
IC(β)− IT (β)

)
(A-13)

The gradient image ∇IC(β) can be obtained by filtering the current image using a simple
kernel like [−1 0 1]/2.
As an additional preprocessing step, Möller and Vardy apply a low-pass filter to the images.
Low-pass filtering of the images is observed to improve the homing performance as long as
the cut-off frequency is not set too low. In this thesis, the low-pass filtering is applied to a
1024 px horizon image before it is subsampled to the low resolutions used in the comparison
of Section 3 of the paper. The cut-off frequency of the low-pass filter was optimized for each
snapshot size.
In [4], Möller et al. noted that in anisotropic environments, the spatial gradient of the error
does not always point straight towards the target location. Inspired by Newton’s method
for optimization, the authors correct for this effect using the Hessian of the error surface
evaluated at the target position. The homing performance of MFDID was evaluated with
and without this Hessian correction where the best results were kept for the comparison of
Section 3. As shown in Figure A-3, there is little to no difference between the performance
of MFDID and Newton-MFDID when applied to this dataset.

Master of Science Thesis Tom van Dijk

24 Review of image-based homing methods

A-4 Fourier-based homing (Stürzl and Mallot, 2006) [3]

In [3], Stürzl and Mallot transform search-based homing to the frequency domain. An image
I(β) is approximated by its first K frequency components:

I(β) ≈ 1
2a0 +

K∑
k=1

ak cos kβ + bk sin kβ (A-14)

where K ≤ w/2 with w the width of the original horizon image in pixels.

Through Parseval’s theorem, the error between the predicted and target images (A-4) can be
found directly from the coefficients ak, bk of the two images:

E(ξ, η, ς) = 1
2

K∑
k=1

(âk(ξ, η)− aTk (−ς))2

+(b̂k(ξ, η)− bTk (−ς))2 (A-15)

where coefficients aTk (ς) and bTk (ς) form a rotated version of the target image IT (β):

aTk (ς) = aTk cos kς + bTk sin kς
bTk (ς) = bTk cos kς − aTk sin kς (A-16)

Note that the DC values a0 are not included in error E(ξ, η, ς) as they do not depend on
bearing β and therefore do not provide any directional information.

Estimation of the homing vector is performed in two steps: first, as in MFDID the current
and target images are rotationally aligned. This alignment is performed using the phase of the
frequency components of the image, resulting in a coarse estimate of the relative orientation
ς0. Then, the pose of the rotated target image relative to the current image is estimated.
Unlike MFDID, however, this pose estimation also includes a correction ∆ς of the orientation
estimate.

Coarse orientation estimation Fourier-based homing relies on the phase information of the
frequency components to estimate the orientation of the target image relative to the current
image. Each frequency component has an amplitude Ak and phase φk:

Ak =
√
a2
k + b2k, φk = atan2(bk, ak) (A-17)

A first guess of the orientation ς0 is made using the phase of the first component:

ς̄1 = ς1 = φC − φT (A-18)

with weight
w1 = AC1 AT1 (A-19)

This initial estimate is then refined by repeating the following steps for k = 2 . . .K:

1. nk = round
(
φT−φC+kς̄k−1

2π

)
Tom van Dijk Master of Science Thesis

A-4 Fourier-based homing 25

2. ςk = φC−φT+2πnk
k

3. wk = ACk ATk k2

4. ς̄k =
∑k

l=1 wlςl∑k

l=1 wl

The final orientation estimate ς0 is found by taking the weighted average of the orientation
estimates ςk:

ς0 =
∑
wkςk∑
wk

(A-20)

This procedure works as long as the amplitude of the first frequency component is large
enough, because it cannot recover from an initial guess that is more than 180◦ off. When w1
is small, Stürzl and Mallot also start a second estimation procedure from angle ς̄1 = ς1 + π.

However, because the coefficients of the image are rounded to 8-bit fixed point numbers, cases
where w1 and w2 were exactly zero were occasionally encountered during early test flights
performed for this thesis, leading to divide-by-zero errors in the fourth step of the algorithm.
To solve this problem and to increase the accuracy of the orientation estimate, the heading
of the drone is stored in an additional byte in the snapshot and used to provide an initial
guess of the relative orientation that is averaged with ς1. The weight of the drone’s heading
estimate was set to wψ = 5000. With a nonzero weight for the drone’s heading, the weight of
the initial guess w1 can never become zero.

Relative pose estimation Once the images have been aligned, Fourier-based homing aims
to find ξ, η, ∆ς that minimize the error E(ξ, η, ς). However, unlike search-based homing it
does not search through all possible movements. Instead, the error E(ξ, η, ς) is approximated
as a quadratic function of which the minimum can be found directly. To form this quadratic
approximation, the predicted image Î(β|ξ, η) is replaced by its first-order Taylor approxima-
tion.

Î(β|ξ, η) ≈ IC(β) + ∇>ξ,η Î(β|0, 0) ·
[
ξ η

]>
(A-21)

The spatial gradient ∇ξ,η Î(β|0, 0) is found using (A-3) and the chain rule:

∇>ξ,η Î(β|0, 0) = ∇>ξ,η
(
IC(β − ξ sin β + η cosβ)

)
(A-22)

= ∇βIC(β)
[
− sin β cosβ

]
(A-23)

where the gradient image ∇βIC(β) is found through:

∇βIC(β) =
K∑
k=1
−kaCk sin kβ + kbCk cos kβ (A-24)

The spatial gradient (A-23) is inserted into (A-21) to produce:

Î(β|ξ, η) ≈ IC(β) +∇βIC(β) · (−ξ sin β + η cosβ) (A-25)

Master of Science Thesis Tom van Dijk

26 Review of image-based homing methods

Which, when written out, becomes:

Î(β|ξ, η) = 1
2a

C
0 +

K∑
k=1

(
aCk cos kβ + bCk sin kβ+

(−kaCk sin kβ + kbCk cos kβ)(−ξ sin β + η cosβ)
)

(A-26)

Using the trigonometric product identities, the final product can be rewritten as:

−kaCk sin kβ · −ξ sin β = −kaCk
cos ((k − 1)β)− cos ((k + 1)β)

2 ξ

−kaCk sin kβ · η cosβ = −kaCk
sin ((k + 1)β) + sin ((k − 1)β)

2 η

kbCk cos kβ · −ξ sin β = −kbCk
sin ((k + 1)β)− sin ((k − 1)β)

2 ξ

kbCk cos kβ · η cosβ = kbCk
cos ((k + 1)β) + cos ((k − 1)β)

2 η (A-27)

After shifting the indices such that all sines and cosines are expressed in kβ and using the
fact that ak, bk were assumed zero for k > K, (A-27) can be rewritten in the form:

Î(β|ξ, η) ≈ 1
2a

C
0 +

K∑
k=1

âk(ξ, η) cos kβ + b̂k(ξ, η) cos kβ (A-28)

with

âk(ξ, η) = aCk + aCk,xξ + aCk,yη

b̂k(ξ, η) = bCk + bCk,xξ + bCk,yη (A-29)

and where

aCk,x = 1
2
(
− (k − 1)aCk−1 + (k + 1)aCk+1

)
aCk,y = 1

2
(
(k − 1)bCk−1 + (k + 1)bCk+1

)
bCk,x = 1

2
(
− (k − 1)bCk−1 + (k + 1)bCk+1

)
bCk,y = 1

2
(
− (k − 1)aCk−1 + (k + 1)aCk+1

)
(A-30)

The important point here is that the coefficients âk(ξ, η), b̂k(ξ, η) of the predicted image
Î(β|ξ, η) are linear in ξ, η.

In a similar way, the relative orientation ς = ς0 + ∆ς of the target image (A-16) is replaced
by its first-order Taylor approximation:

aTk (ς) ≈ aTk (ς0) + bTk (ς0)k∆ς
bTk (ς) ≈ bTk (ς0)− aTk (ς0)k∆ς (A-31)

Tom van Dijk Master of Science Thesis

A-4 Fourier-based homing 27

The linear approximations of the coefficients of Î(β|ξ, η) (A-28) and the rotated target image
(A-31) can then be inserted into (A-15) to produce an error function that is quadratic in
ξ, η, ∆ς:

E(ξ, η,∆ς|ς0) = 1
2

K∑
k=1

(
aCk + aCk,xξ + aCk,yη − aTk (−ς0) + bTk (−ς0)k∆ς

)2
+

(
bCk + bCk,xξ + bCk,yη − bTk (−ς0)− aTk (−ς0)k∆ς

)2
(A-32)

The idea behind the use of the first-order Taylor approximation is that the error (A-32) is
now quadratic in (ξ, η, ∆ς), which means that its minimum can be found directly without
searching. Stürzl and Mallot correctly note that the gradient of the error, which should be
set to zero, is a linear function of the homing vector ξ, η and ∆ς, but the exact form of this
equation is not presented in their paper. It can be found as follows: the error is first rewritten
as:

E(ξ, η,∆ς|ς0) = 1
2

K∑
k=1

[aCk,x aCk,y bTk (−ς0)k
]  ξ

η
∆ς

+ aCk − aTk (−ς0)


2

+

[bCk,x bCk,y −aTk (−ς0)k
]  ξ

η
∆ς

+ bCk − bTk (−ς0)


2

(A-33)

Then, (A-33) is rewritten as the following quadratic surface:

E(ξ, η,∆ς|ς0) = 1
2h
>Ah+ b>h+ c (A-34)

where

h =
[
ξ η ∆ς

]>
(A-35)

A =
K∑
k=1


 aCk,x

aCk,y
bTk (−ς0)k

 [aCk,x aCk,y bTk (−ς0)k
]

+

 bCk,x
bCk,y

−aTk (−ς0)k

 [bCk,x bCk,y −aTk (−ς0)k
]

(A-36)

b =
K∑
k=1

(aCk − aTk (−ς0))

 aCk,x
aCk,y

bTk (−ς0)k

+ (bCk − bTk (−ς0))

 bCk,x
bCk,y

−aTk (−ς0)k


 (A-37)

c = 1
2

K∑
k=1

(
(aCk − aTk (−ς0))2 + (bCk − bTk (−ς0))2

)
(A-38)

The minimum of this error can be found by setting the gradient of the error to zero:

Ah+ b = 0 (A-39)

The solution of which can be found through a 3× 3 matrix inversion of A:

h = −A−1b (A-40)

Master of Science Thesis Tom van Dijk

28 Review of image-based homing methods

Figure A-4: Influence of the number of iterations Nit on the performance of Fourier-based
homing. The difference is only a few square centimeters on average.

Multiple iterations The homing vector can be found directly from (A-40) or estimated over
multiple iterations where the warped version of the current image is used as the starting point
for the next step. The number of iterations Nit was optimized for the comparison. However,
as shown in Figure A-4 it has very little influence on the homing performance, therefore a
value of Nit = 1 was used in the thesis to avoid wasting unnecessary CPU cycles.

Coarse-to-fine homing Stürzl and Mallot observed that the catchment area is larger when
a small number of frequencies is used for homing. On the other hand, the final homing error
is observed to increase as well. To achieve both a large catchment area and a small final error,
the authors propose a coarse-to-fine approach where homing is first performed using a small
number of frequencies to bring the drone close to the target position and then followed with
a larger number of frequencies to reduce the remaining error.

The authors also proposed an alternative coarse-to-fine approach to the iterations of Fourier-
based homing by increasing K with each step. This latter approach would have the advantage
that the drone does not have to physically converge to an intermediate location before the
number of componentsK can be increased, but unfortunately this was not further investigated
in [3].

Coarse-to-fine homing was not implemented in this thesis but could increase the size of the
catchment area, thereby leading to a sparser and more memory-efficient map.

Tom van Dijk Master of Science Thesis

Appendix B

Online estimation of the catchment
area radius

In Section 4 of the paper, it was argued that the maximum distance between waypoints
depends on the odometric uncertainty and the size of the catchment area. If the maximum
distance is increased, the map becomes sparser and its memory consumption decreases. While
the odometric uncertainty is relatively straightforward to estimate when using IMU-based
odometry, there are no known methods to estimate the size of the catchment area. The
paper uses a simple time interval between the creation of snapshots, but the major downside
of this method is that it does not adapt to the size of the catchment areas; as a result it
will produce more waypoints than necessary. Therefore, this appendix makes the first steps
towards the estimation of the radius of the catchment area, as this would lead to a further
reduction in memory consumption. A method is presented that can reliably detect the edge
of the catchment area using a change in the direction of the homing vector. However, because
of time constraints this method has not been implemented on the UAV.

Estimation of the size of the catchment area could be approached in two ways: it could be
estimated from a single image, or from a signal that changes when crossing the boundary
of the catchment area. In the first case, it might be possible to use machine learning to
estimate the (minimal) radius of the catchment area directly from the raw snapshot image or
perhaps even its Fourier transform. This option, however, is left open for further research as
it diverges too far from the original research direction of this thesis.

Instead, this appendix explores the second option: signals that are already available for
homing are examined to see if they respond to the crossing of the edge of the catchment area.
The catchment area results directly from the visual homing process, therefore the only signals
that could contain information about the catchment area are the visual input and the homing
vector. (In other words, the IMU and other sensors won’t be of much help here.) Section B-1
gives a qualitative overview of the behavior of these signals around the edge of the catchment
area. Section B-2 then constructs and evaluates a ‘detector’ that measures the radius of the
catchment area.

Master of Science Thesis Tom van Dijk

30 Online estimation of the catchment area radius

Figure B-1: Trajectories along which the detection of the catchment area’s edge will be evaluated.
The snapshots are shown as black dots, the trajectories themselves as blue lines. The trajectories
and snapshots are spread evenly throughout the environment.

B-1 What happens around the edge of the catchment area?

This section examines the behavior of image dissimilarities and the homing vector when
crossing the edge of the catchment area. This investigation is performed in MATLAB using the
following procedure: first, a grid of Fourier-transformed images is constructed by extracting
and transforming the horizon of the images in Gaffin and Brayfield’s dataset [5]. Then,
straight-line ‘trajectories’ are extracted from this dataset, starting from a snapshot taken at
a random position (Figure B-1). When these trajectories contain at least as many cells inside
the catchment area of the target position as outside that catchment area, they are stored for
further analysis. This resulted in a collection of 203 trajectories that all cross the edge of a
random catchment area.

For each of these trajectories, various signals can be examined. In this section, the following
signals are logged and investigated:

• Image dissimilarity:

– Between the current and target images.
– Between the warped and target images. The ‘warped’ image is the result from the

hypothetical movement that provides the best match with the target image (i.e.
the ‘warped’ image is obtained by warping the current image using the homing
vector).

• Homing vector:

Tom van Dijk Master of Science Thesis

B-1 What happens around the edge of the catchment area? 31

Figure B-2: Behavior of image dissimilarity when leaving the catchment area. The left column
plots the dissimilarities against the true distance from the snapshot. The middle column is plotted
against a normalized distance, where 1 corresponds to the edge of the catchment area along the
direction of travel. In the right column, the distance of 1 corresponds to the minimal radius of the
catchment area. The edge of the catchment area is indicated by a black dotted line. The top row
shows the dissimilarity of the current and target images. The bottom row shows the dissimilarity
between the warped and target images. None of the signals shows a drastic change in behavior
when crossing the edge of the catchment area.

– Length
– Direction (compared to true homing direction)
– Relative orientation

The image dissimilarities and homing vectors are based on Fourier-transformed images with
K = 8 and Nit = 1.

The behavior around the edge of the catchment area is evaluated by plotting these signals
against a ‘normalized distance’. This is the distance from the target image divided by 1) the
radius of the catchment area along the direction of travel, or 2) the minimum radius of the
catchment area. In these cases, a distance of 1 indicates the edge of the catchment area. In
order to detect this edge, the signal should change drastically when crossing a normalized
distance of 1.

Image dissimilarity The behavior of image dissimilarity is shown in Figure B-2. The dissim-
ilarity is shown to increase with distance, but there is no sharp transition around the edge of
the catchment area. It is therefore not possible to use a threshold on the image dissimilarity
to determine whether the current image was taken inside or outside the catchment area.

Master of Science Thesis Tom van Dijk

32 Online estimation of the catchment area radius

Similarly, the dissimilarity between the target and the warped image is evaluated. The warped
image should provide a good match with the target image as long as such a match can be
found. It could therefore have shown a stronger transition around the edge of the catchment
area, but Figure B-2 shows that it does not. Like the dissimilarity between the current and
target images, there is no clear opportunity to threshold this signal to find the edge of the
catchment area.

Homing vector The same procedure is used to examine the behavior of the homing vector,
the results are shown in Figure B-3. Similarly to the image dissimilarity, the length of the
homing vector might be used to detect when the drone is too far from the target snapshot.
However, as seen in Figure B-3, the length of the homing vector already stops increasing
before the edge of the catchment area. There is no clear opportunity to threshold the length
of the homing vector to separate samples inside and outside the catchment area.

Fourier-based homing uses a visual compass to rotationally align the target image to the
current image. This produces an estimate of the relative orientation ς. The alignment of the
two images has been observed to fail when the distance between them is too large. Figure B-3,
however, shows that errors in the orientation estimate do not seem to occur sharply at the
edge of the catchment area.

Finally, the direction of the homing vector is investigated. Inside the catchment area, the
homing vector points more-or-less towards the target location. Outside of the catchment
area, however, the vector appears to point in a random direction (see also Figure B-4). In
fact, around the edge the vector tends to point away from the catchment area, because if it
pointed towards it, it would likely have been part of the catchment area in the first place.
Unlike the signals examined before, this effect is clearly visible in the results of Figure B-3
(see the outlined results). A very sharp transition in the distribution of the direction errors
is observed when crossing the edge of the catchment area. Figure B-5 shows the distribution
of the angular error inside and outside the catchment area.

Tom van Dijk Master of Science Thesis

B-1 What happens around the edge of the catchment area? 33

Figure B-3: Behavior of the homing vector around the edge of the catchment area. The left
column is shown against the true distance from the snapshot, the distance in the middle column
is normalized with the radius of the catchment area along the direction of travel, the right column
with the minimum radius of the catchment area. The edge of the catchment area is located at a
normalized distance of 1 and indicated with a black dotted line. The top row shows the length
of the homing vector. The second row shows the error in the relative orientation estimate ς. The
bottom row shows the angular error between the estimated homing vector and the true vector
pointing back to the snapshot. None of the signals seem straightforward to threshold, except for
the angular error of the homing vector (bottom row, indicated by black borders). The angular
error shows a large difference when crossing the edge of the catchment area, and might therefore
be used to detect it.

Master of Science Thesis Tom van Dijk

34 Online estimation of the catchment area radius

Figure B-4: Example of homing vectors inside and outside the catchment area. The catchment
area is highlighted in blue. Inside the catchment area, the vectors point roughly towards the
snapshot’s location indicated by the red cross. Outside the catchment area, the vectors tend to
point away from the catchment area. A sharp change in the direction of the homing vector is
observed at the edge of the catchment area.

Figure B-5: Distribution of the angular error of the homing vector inside and outside the catch-
ment area. a) Inside the catchment area, the homing vector point roughly towards the snapshot:
the distribution is centered around an error of 0◦. b) Outside the catchment area, the angular
error appears to be distributed uniformly.

Tom van Dijk Master of Science Thesis

B-2 Detecting the edge of the catchment area 35

B-2 Detecting the edge of the catchment area

The error in the direction of the homing vector shows a clear change when crossing the edge
of the catchment area. If this change can be reliably detected, it could be used to measure
the radius of the catchment area. In this section, signals such as the angular error and the
angular rate of the homing vector and others are thresholded to determine when the UAV
crosses the edge of the catchment area (Figure B-6). The UAV leaves the catchment area
when the signal exceeds a preset threshold t. The accuracy with which these methods detect
the edge of the catchment area is evaluated and compared.

The crossing of the edge of the catchment area is detected by thresholding one of the following
signals:

• Homing vector

– Angular error
– Angular rate
– Length and rate of length change
– Relative orientation and rate of relative orientation

• Dissimilarity

– Between current and target images, and rate of change of dissimilarity between
current and target images

– Between warped and target images, and rate of change of dissimilarity between
warped and target images

• Distance

Given the results of Section B-1, the best results are expected for the homing vector’s angular
error and possibly angular rate.

In order to compare these detection methods, a performance measure is required. The RMS
of the percentual error will be used as a performance measure:

E(t) =

√√√√ 1
N

N∑
i=1

(
ri,est(t)
ri,true

− 1
)2

(B-1)

Lower values of E(t) indicate better performance, E(t) is zero when all estimated radii ri,est(t)
are exactly equal to the true catchment area radii ri,true.

The estimated radii ri,est(t) are evaluated using the same trajectories as used in Section B-1.
The first position along trajectory i where threshold t is exceeded is used as the estimated
radius ri,est(t) (Figure B-6). If during one of the trajectories the threshold t is not exceeded
at all, the result is invalid and E(t) is undefined for that value of t.

The estimated catchment area radii ri,est(t) and therefore the error E(t) depend on the choice
of the threshold t. Threshold t will be optimized such that the error E(t∗) is minimal. The
same threshold is used for all trajectories.

Master of Science Thesis Tom van Dijk

36 Online estimation of the catchment area radius

Figure B-6: Estimation of the radius of the catchment area along the direction of travel. A
signal, in this case the angular error of the homing vector, is thresholded to find the radius ri,est

of the catchment area. a) Top view of the trajectory, catchment area and homing vectors. The
trajectory is shown as a red line starting at the snapshot shown as a black dot. The catchment
area is highlighted in blue. The arrows depict the homing vectors. b) Angular error of the homing
vector (blue) and the threshold t∗ (yellow). When the angular error first exceeds the threshold,
the edge of the catchment area is detected at radius ri,est. The horizontal axes of both plots are
aligned.

Tom van Dijk Master of Science Thesis

B-2 Detecting the edge of the catchment area 37

Table B-1: Comparison of catchment area edge detection methods.

Signal E(t∗) t∗

Angular rate (abs) 0.38 113.92 ◦/m
Angular error (abs) 0.58 34.35 ◦

Dissimilarity after warping 0.66 0.00 -
Distance 0.72 0.39 m
Dissimilarity rate 0.75 0.01 m−1

Dissimilarity 0.78 0.01 -
Relative orientation rate (abs) 0.79 10.79 ◦/m
Relative orientation (abs) 0.86 1.49 ◦

Homing vector length 0.87 0.12 -
Dissimilarity rate 0.89 0.02 m−1

Homing vector length rate 0.95 0.39 m−1

Table B-1 lists the resulting RMS errors E(t∗) and optimal choice of thresholds t∗ for all
methods. Detection methods based on the direction of the homing vector have the smallest
error. The angular rate of the homing vector appears to be a better predictor of the edge of
the catchment area than the error between the estimated and true homing vector directions.

The distribution of the catchment area radii estimated by the three best detectors of Table B-
1 is shown in Figure B-7. Both the angular rate and angular error of the homing vector show
a large peak around 1, indicating that in roughly 50% of the cases the estimated radius
ri,est is equal to the true radius ri,true. The other 50% of the distribution appears to lie at
estimated radii below 1. In these cases, the estimated catchment area radius is smaller than
its true value. Waypoints will then be created closer together than necessary, but this will
only reduce the memory efficiency of the map, whereas an overestimation of the radius would
space waypoints too far apart and could cause the drone to get lost.

The method presented in this appendix is a first step towards the estimation of the size of the
catchment area. This estimate can be used to make the route following method presented in
the paper even more memory-efficient by increasing the maximal distance between waypoints.

Master of Science Thesis Tom van Dijk

38 Online estimation of the catchment area radius

Figure B-7: Catchment area radius estimations by the three best-scoring methods. The estimated
radius is normalized by the true radius along the direction of travel. The angular rate of the
homing vector and its angular error show similar behavior: in roughly 50% of cases the size of
the catchment area is measured correctly; in the other cases the estimate is smaller than the true
radius, which would place waypoints too close together, resulting in a less efficient map but not
in failure of the visual homing maneuvers. Dissimilarity after warping performs significantly worse
than the first two methods.

Tom van Dijk Master of Science Thesis

Appendix C

Unscaled visual odometry

In the paper, a choice was made to use IMU-based odometry with a drag force model of
the drone because of its simplicity and independence of the environment. As an alternative,
it might be possible to use the omnidirectional camera to estimate the movement of the
drone. A disadvantage of the use of an omnidirectional camera is that the distance to the
environment is not known, therefore the movement can only be estimated up to an unknown
scale. However, when the drone follows the same route back, the environment is located at
the same distance and the movements should still sum to zero. Odometry can be performed
by integrating the homing vector between successive frames.

Section C-1 briefly reviews properties of the homing vector that are relevant for unscaled visual
odometry. The homing vector can then be integrated from frame to frame, but Section C-2
will show that drift can be reduced if movements are only integrated once the drone is far-
away enough from the previous reference image. Section C-3 presents results of flight tests
that show that the drone can find its way back to the starting point and that unscaled visual
odometry can successfully replace IMU-based odometry in the route following experiments of
Section 6 of the paper with a distance of 1.20 m between snapshots. Finally, Section C-4 will
briefly discuss the differences between unscaled visual odometry and IMU-based odometry
with the drag model.

C-1 Visual odometry using the homing vector

Appendix B showed that there is little to no correlation between the length of the homing
vector and the true metric distance to an arbitrary snapshot (Figure B-3 on page 33). How-
ever, the reason that the length of the homing vector correlates so poorly to metric distance
from an arbitrary snapshot is that the environment is located at wildly differing distances,
which causes the scale of the homing vector to differ between snapshots.

When the drone retraces its route back to the starting position, the environment will be
located at the same distance as during recording. For a single snapshot, as opposed to
all snapshots examined in Appendix B, the length of the homing vector is actually linearly

Master of Science Thesis Tom van Dijk

40 Unscaled visual odometry

Figure C-1: Behavior of the homing vector around a single snapshot. The length of the homing
vector is linearly correlated with the distance from the snapshot, but only in a small (approx.
< 0.5 m) region surrounding the snapshot where |h| ≤ 0.18 (dotted area). The direction of the
homing vector is accurate up to approximately 0.6 m.

correlated to the true distance from the snapshot, as shown in Figure C-1. This means
that the length of the homing vector can be used to measure distances along the route.
Distances between successive frames can be integrated to estimate the position of the drone
along the route. While this estimate is not guaranteed to be metrically accurate (the size of
the environment and therefore scale of the homing vector can change along the route), the
distance estimate is at least repeatable when following the same trajectory. For navigation
using odometry, repeatability is more important than metrical accuracy; the drone should
end up at the same real-world location, it does not matter if it estimates to have moved 1
meter or 100 meter.

While the length of the homing vector can be integrated to estimate the distance from a
snapshot in a straight line, this becomes more complicated when trajectories with corners or
curves are mapped. If the scale of the homing vector changes after the drone has changed
direction, the displacements can not be summed together because the direction of the homing
vector will then be incorrect. This problem can be solved by only travelling in straight lines
between waypoints. If a change in direction is observed, a waypoint can be created at that
location. Even without unscaled visual odometry this is desirable behavior, as it prevents the
drone from cutting corners when following the route. Any errors caused by a change in the
environment size are then eliminated by homing towards the waypoints along the route.

C-2 Use of intermediate snapshots to reduce drift

The simplest way of estimating the position of the drone is to sum the homing vectors obtained
between successive camera frames. However, as the homing vector always contains a small
error, the position estimate will quickly drift from the true position of the drone.

When the drone receives a new image Ik, this image is compared to the previous image Ik−1

Tom van Dijk Master of Science Thesis

C-2 Use of intermediate snapshots to reduce drift 41

Figure C-2: Position estimate of the drone while stationary. If the homing vectors are integrated
according to (C-2) (t = 0), the position estimate drifts away from the true position (which is 0
as the drone is stationary). When the position is estimated relative to a reference snapshot as in
(C-4) with threshold t = 0.05, the drone’s estimated position does not drift.

to estimate the homing vector between them:

hk = h(Ik, Ik−1) + εk (C-1)

with εk the measurement error of the homing vector. These homing vectors are summed to
estimate the position of the drone x̂k:

x̂k = x̂k−1 + hk (C-2)

At each timestep, a new error εk is added to the position estimate x̂k, which causes drift.

However, when the drone is stationary, it is not necessary to estimate the drone’s position
relative to the last image. Instead, an earlier image Ir could be used as a reference snapshot:

hk|r = h(Ik, Ir) + εk (C-3)

where r ≤ k − 1. The current position x̂k,r is then estimated through:

x̂k|r = x̂r|r + hk|r (C-4)

The difference here is that only a single homing vector is added to the estimated position of
the reference snapshot x̂r|r instead of all homing vectors between times r and k as in (C-2).
This means that also only a single error εk is added to the reference position x̂r|r. The drift
is therefore significantly smaller; in fact, as long as the previous position estimate x̂r|r is not
updated, the estimated position of the drone x̂k|r will not drift at all. It only contain a single
measurement error εk at each timestep, this error is not accumulated between successive
images (Figure C-2).

This method works as long as the drone stays close to the last reference position x̂r|r, because
otherwise the length of the homing vector hk|r no longer correlates to the true distance from
the reference snapshot. Therefore, the reference snapshot Ir and position x̂r|r are replaced by
the current image and position estimate Ik, x̂k|r when the length of the homing vector hk|r
exceeds a threshold t. According to Figure C-1, this threshold should lie somewhere between

Master of Science Thesis Tom van Dijk

42 Unscaled visual odometry

0 and 0.18. The threshold should be picked as small as possible (to ensure that the homing
vector stays linearly correlated to the true distance from the snapshot), but large enough that
the reference snapshot is not unnecessarily updated during hover. A threshold of t = 0.05
produced good results during test flights and will be used for the remainder of this appendix.

C-3 Results

Repeatability in the Cyberzoo To test whether unscaled visual odometry works can be used
to retrace the path of the drone and to evaluate its accuracy, test flights were performed on
the AR.Drone 2.0 in the Cyberzoo. The estimated position can not be compared to the true
position as it does not have a defined scale, but its repeatability can be evaluated as follows:
the drone uses odometry to record its outbound flights (straight lines of varying length) and
then returns to the starting position by steering the estimated position back to zero. The
remaining error gives an indication of the accuracy of the odometry.

The resulting trajectories are shown in Figure C-3. The drone is able to return to within
approximately 1 to 2 m of the starting position. In most cases, the drone arrived short of the
target position. Figure C-4 shows the relation between the starting distance and the final
position error of the drone. The odometric error grows with distance.

Figure C-5 compares the estimated distance to the true distance from the starting point.
Samples were collected during the inbound and outbound parts of all runs. Despite the
dependence on the size of the environment, the estimated distance appears to be linearly
correlated to the true distance from the starting point.

Route following Unscaled visual odometry was also evaluated in the ‘Corridor’ environment
in the Cyberzoo. The result is shown in Figure C-6. The drone is able to follow the route
back with a distance of 1.20 m between waypoints, thereby achieving the same performance
as IMU-based odometry in the paper. Errors in route following in this run appear to come
mostly from errors in visual homing rather than from the unscaled visual odometry.

Tom van Dijk Master of Science Thesis

C-3 Results 43

Figure C-3: Trajectories when retracing outbound flights using unscaled visual odometry. The
endpoints are marked by black circles.

Master of Science Thesis Tom van Dijk

44 Unscaled visual odometry

Figure C-4: Final position error as function of the starting distance. The two appear to be linearly
correlated with an average final error of 36% of the starting distance. Taking into account that
part of this error was also incurred during the recording of the outbound flight, the odometric
drift lies in the order of 18% of the traveled distance.

Figure C-5: Estimated distance from the start position. Despite the unpredictable nature of the
scale of the environment and therefore length of the homing vectors between images, the unscaled
odometric distance appears to be linearly correlated with the true distance in this experiment.

Tom van Dijk Master of Science Thesis

C-4 Comparison with drag-based odometry 45

Figure C-6: Route following results in the ‘corridor’ environment in the Cyberzoo (see Section 6
of the paper). The drone travels from the top left to the bottom right. It can successfully follow
a route with 1.20 m distance between waypoints using unscaled visual odometry; in fact, in this
trajectory most errors appear to come from visual homing.

C-4 Comparison with drag-based odometry

Unscaled visual odometry and drag-based odometry have some fundamentally different prop-
erties. The most important difference is that the behavior of visual odometry strongly depends
on the shape and texture of the environment. While IMU-based odometry behaves the same
in any environment, the same cannot be said for unscaled visual odometry. The fact that
the length of the homing vector and its error scale with the size of the environment makes
it difficult to model the uncertainty of the position estimate. This is the main reason why
unscaled visual odometry was not used in the paper.

Interestingly, the size of the catchment area also scales with the size of the environment.
Unlike IMU-based odometry, unscaled visual odometry therefore automatically ‘adapts’ to
the size of the catchment area. How this compares to IMU-based odometry with estimation
of the catchment area radius was not investigated for this thesis.

Finally, unscaled visual odometry differs from IMU-based odometry in terms of drift. Using
the intermediate snapshots as proposed in Section C-2, its error is expected to grow with
distance rather than time, which might be advantageous when flying slowly.

Unscaled visual odometry has been shown to work as a replacement for IMU-based odometry
in route following. Further research would be required to compare the two and decide which
approach leads to the most memory-efficient map.

Master of Science Thesis Tom van Dijk

46 Unscaled visual odometry

Tom van Dijk Master of Science Thesis

Appendix D

Paparazzi + Gazebo: a new simulator
for vision-based UAV control

The use of simulation has proven extremely helpful during this thesis. There are many
advantages to the use of simulation: firstly, simulation gives easy access to ground truth
information on the state of the quadrotor, and this information can also be used by the
autopilot which means that algorithms can be tested without noise or other disturbances.
Secondly, simulations can be performed much quicker then flight tests. Small changes in the
code can be tested in a matter of seconds. Thirdly, simulation can also be used to reduce the
time required for real-world flight tests. Many of the experiments performed for this thesis
were first tested in simulation, the actual flight test could then be finished in as little as thirty
minutes. Finally, simulation allowed the route following algorithm to be evaluated over long
trajectories, while such an experiment is difficult to perform in the real world; there are for
instance no clear-cut solutions that allow the true position of the drone to be recorded over
the entire trajectory.

Like most of the work at TU Delft’s MAVLab, the code for this research is based on the
Paparazzi autopilot1. While a simulator based on JSBSim2 was included with Paparazzi, this
simulation was limited to the dynamics of the UAV; vision was not part of the simulation.
Paparazzi’s simulator could be connected to FlightGear3 for visualization for the user, but
there was no way to feed this information back into the autopilot.

As no suitable simulator was available for the experiments in this thesis, I have extended
Paparazzi’s NPS (New Paparazzi Simulator) framework with the ability to use the Gazebo4

simulator. The new simulator is able to send images captured by simulated cameras back to
the autopilot and therefore allows closed-loop simulation of vision-based control schemes for
UAVs.

1https://wiki.paparazziuav.org
2http://jsbsim.sourceforge.net/
3http://www.flightgear.org/
4http://gazebosim.org/

Master of Science Thesis Tom van Dijk

https://wiki.paparazziuav.org
http://jsbsim.sourceforge.net/
http://www.flightgear.org/
http://gazebosim.org/

48 Paparazzi + Gazebo: a new simulator for vision-based UAV control

While not as relevant to my own work, the use of Gazebo is also a first step towards the simu-
lation of interaction between the drone and the environment. For instance, range finders can
be used to measure distances towards obstacles in the environment. Other interactions such
as picking up and carrying objects could also be simulated. Whilst not currently supported,
further developments of the Gazebo simulator for Paparazzi could also allow simulations to
be performed with multiple drones, allowing swarming or cooperative carrying to be tested
in simulation as well.

The Gazebo extension for NPS was merged with the ‘master’ branch of Paparazzi on June
13, 20175. Since then, the simulator has already been used for other projects at the MAVLab.

Section D-1 of this appendix gives an overview of the implementation of the simulator. Sec-
tion D-2 shows the environments that were used in the experiments for this thesis.

D-1 Implementation

The role of Gazebo and NPS in the overall control loop is shown in Figure D-1. The sim-
ulation starts with motor commands coming from the stabilization controller. The motor
commands are transformed into forces and torques that are applied to a rigid-body model
of the quadrotor. The parameters of the quadrotor model — mass, inertia, nominal motor
thrusts and torques — were copied from the original JSBSim model. They were not vali-
dated for the experiments in this thesis but result in behavior that is comparable to the real
AR.Drone 2.0. Aerodynamic effects on the quadrotor are mostly neglected as they were not
that relevant for the experiments in this thesis. A simple linear model is used for drag; the
results in Section 5-2 of the paper show that this is sufficiently accurate.

To provide feedback to the autopilot, sensor measurements are generated based on the true
state of the quadrotor. The generation of sensor measurements is handled by the NPS frame-
work. The measurements are corrupted with realistic disturbances, for instance the IMU
measurements contain an unknown bias and white measurement noise and the GPS sensor
(unused in this thesis) produces delayed output.

NPS uses an existing interface, ABI messages6, to share these measurements with other parts
of the autopilot. This decouples modules and other parts of the autopilot from a specific
sensor implementation. As a result, these parts do not require any modifications to work
with the simulator.

An effort was made to treat video handling in a similar way: by emulating the video_thread7

module that is normally used on Linux-based autopilots, the video output of Gazebo can be
used without modification by the subscribing modules.

The camera images are obtained from virtual cameras attached to the quadrotor. Gazebo
supports standard pinhole cameras, but also cameras with more exotic types of lenses. For
the experiments of this thesis, the drone was fitted with an omnidirectional camera on its
bottom side. The horizon can be extracted from these images using the same procedure as
described in Section 5-1. The cameras are continuously polled during simulation. When a

5https://github.com/paparazzi/paparazzi/pull/2069
6https://wiki.paparazziuav.org/wiki/ABI
7http://docs.paparazziuav.org/v5.10/module__video_thread.html

Tom van Dijk Master of Science Thesis

https://github.com/paparazzi/paparazzi/pull/2069
https://wiki.paparazziuav.org/wiki/ABI
http://docs.paparazziuav.org/v5.10/module__video_thread.html

D-1 Implementation 49

ABI

video_thread

ABI

state

state

Modules,
Flight plan

Position, velocity cmds.

Guidance

Attitude cmds.

Stabilization
State estimation
(AHRS, INS)

Sensors
(IMU, GPS, etc.)

Vision

Quadrotor

Motor cmds.

Gazebo / NPS

Figure D-1: Gazebo and NPS in the overall control loop. Simulation starts with the motor
commands coming from the stabilization controller that are applied as forces and torques on
a rigid-body model of the quadrotor. Realistic sensor measurements including noise and other
disturbances are generated based on the true state of the simulated quadrotor. State estimation
can performed using these measurements or replaced by the true state of the quadrotor; the latter
is used in this thesis. Vision is handled through emulation of the video_thread module that would
normally be used on Linux-based autopilots such as on the AR.Drone 2.0. By communicating
through existing interfaces (ABI, video_thread and state), the modules, guidance, stabilization
and optionally AHRS and INS can be used in Gazebo without modification.

Master of Science Thesis Tom van Dijk

50 Paparazzi + Gazebo: a new simulator for vision-based UAV control

new image is available, it is converted to the YUV422 format used by Paparazzi and passed
to the rest of the autopilot through the video_thread mockup.

State estimation in the autopilot can be handled in two ways: the existing filters can be used
with the simulated data, or the estimated state can be overwritten by the drone’s true state
obtained directly from Gazebo (see Figure D-1). In this thesis, the latter option is used as
the state estimation is not yet validated in simulation and could contain unexpected bugs.

The other parts of the autopilot, most notably the modules and the guidance and stabi-
lization controllers collect all their data through ABI messages, the state interface or the
video_thread module. They can therefore be used in Gazebo without modification. This
saves on development time and ensures that the drone behaves the same in simulation as in
the real world.

D-2 Environments

In order to perform visual route following experiments, realistic indoor environments are
required. This section briefly showcases the environments that were used and developed for
the experiments of this thesis.

Café Small-scale experiments were performed in the ‘Café’ environment (Figure D-2). The
Café model is created by Nate Koenig and publicly available through Gazebo’s model database8.
The model contains a large, open room (and a kitchen that is too small for quadrotor opera-
tion) with windows an furniture along the walls. The drone could successfully home towards
snapshots in this environment, as shown in Section 6 of the paper.

Cyberzoo On occasion, flight tests that worked in the Café environment failed when they
were performed in the real Cyberzoo. A likely cause for these failures was the lack of features
along the walls of the cyberzoo. In order to verify this, a simple model of the Cyberzoo
was made for Gazebo (Figure D-3). Simulation results from this environment could then be
compared to those obtained in the Café environment. Tests that work in the Café environment
but failed in the real and simulated Cyberzoo likely suffered from a lack of texture.

Aerospace Engineering To test long-range route following, a large indoor environment was
required. Unfortunately, no suitable models were found online. The only indoor models in
which trajectories of 100 meter or more could be evaluated often have no textures as they are
designed for SLAM with range-finders.

Therefore, a new indoor environment had to be created for the experiments of this thesis. The
new environment is based on the faculty of Aerospace Engineering at TU Delft, specifically
the part surrounding the MAVLab. The environment model is created in SketchUp based on
a floorplan and photographic material of the faculty (Figure D-4, D-5).

The environment consists mostly of corridors, but also contains some irregularly shaped junc-
tions and a curved wall in the middle. Several props were made to add texture to the

8http://models.gazebosim.org/

Tom van Dijk Master of Science Thesis

http://models.gazebosim.org/

D-2 Environments 51

Figure D-2: ‘Café’ environment used in Gazebo. This environment is used for small-scale
experiments such as homing towards a single snapshot.

Figure D-3: ‘Cyberzoo’ environment in Gazebo. By comparing simulation results in this envi-
ronment to those obtained in the ‘Café’ environment, a lack of features can be confirmed as a
cause of failure of flight tests performed in the real Cyberzoo.

Master of Science Thesis Tom van Dijk

52 Paparazzi + Gazebo: a new simulator for vision-based UAV control

Figure D-4: ‘Aerospace Engineering’ environment used to demonstrate route following over
longer distances. This environment is modeled after the part of the Aerospace Engineering faculty
of the TU Delft surrounding the MAVLab. Black bars are added to the walls to compensate for
the lack of illumination differences and lack of small-scale features in the environment.

Figure D-5: Floorplan of the Aerospace Engineering environment.

Tom van Dijk Master of Science Thesis

D-2 Environments 53

environment: doors, posters, noticeboards. However, because the environment still lacked
in contrast (for instance, there were no dark or bright spots on the walls because the whole
scene is lit by a single, global light source), black bars were added to the walls to compensate
for this missing texture.

In Section 6 of the paper, this environment is used to demonstrate that the drone can follow
long routes in realistic environments.

Master of Science Thesis Tom van Dijk

54 Paparazzi + Gazebo: a new simulator for vision-based UAV control

Tom van Dijk Master of Science Thesis

Bibliography

[1] M. O. Franz, B. Schölkopf, H. A. Mallot, and H. H. Bülthoff, “Where did I take that
snapshot? Scene-based homing by image matching,” Biological Cybernetics, vol. 79, no. 3,
pp. 191–202, 1998.

[2] R. Möller and A. Vardy, “Local visual homing by matched-filter descent in image dis-
tances,” Biological Cybernetics, vol. 95, pp. 413–430, oct 2006.

[3] W. Stürzl and H. A. Mallot, “Efficient visual homing based on Fourier transformed
panoramic images,” Robotics and Autonomous Systems, vol. 54, no. 4, pp. 300–313, 2006.

[4] R. Möller, A. Vardy, S. Kreft, and S. Ruwisch, “Newton-based matched-filter descent in
image distances,” Biological Cybernetics (Submitted), 2006.

[5] D. D. Gaffin and B. P. Brayfield, “Autonomous Visual Navigation of an Indoor Environ-
ment Using a Parsimonious, Insect Inspired Familiarity Algorithm,” Plos One, vol. 11,
no. 4, p. e0153706, 2016.

Master of Science Thesis Tom van Dijk

56 Bibliography

Tom van Dijk Master of Science Thesis

Glossary

Catchment area Region surrounding a snapshot from where visual homing succeeds.

Dead reckoning Navigation method where odometry is used to move between locations.

Drag-based velocity estimation Estimation of the drone’s velocity that uses the IMU to
measure the drag acting on the quadrotor and a drag model to convert this drag into a
velocity.

Homing, Feature-based Class of visual homing techniques that uses the bearings towards
local features in the current and snapshot images to find the homing vector. Contrast
with image-based homing.

Homing, Fourier-based Image-based homing method presented in [3] that uses Fourier-
transformed horizon images as snapshots.

Homing, Image-based Class of visual homing techniques that uses raw or compressed im-
ages as snapshots. Homing is performed by moving such that the difference between
the current and snapshot images is minimized; the snapshot is located at the global
minimum of the Image Difference Function. Contrast with feature-based homing.

Homing, Search-based Image-based homing method presented in [1] that uses warping to
predict a large number of images for hypothetical movements. The movement that
results in the best match with the snapshot is used as homing vector.

Homing, Visual Navigation method where the drone compares its current observation to
a snapshot to find a homing vector that guides the drone to the location where the
snapshot was taken.

Homing vector Vector that, when followed, guides the drone to the location of a snapshot.
Note that the vector does not necessarily point straight towards the target location; it
can also point to the side of it, which results in curved homing trajectories. An error of
less than ±90◦ is sufficient for successful homing [1]. Depending on the homing method,
the length of the homing vector might give an indication of the distance towards the
snapshot.

IDF See Image Difference Function.

Master of Science Thesis Tom van Dijk

58 Glossary

Image Difference Function Function of position with a value equal to the difference be-
tween an image taken at that position and a snapshot. Used in image-based homing.

MFDID See Matched Filter Descent in Image Distances.

Matched Filter Descent in Image Distances Image-based homing method presented in
[2] that uses the spatial gradient of the Image Difference Function as homing vector.

Odometry Estimation of the position of the drone by integration of velocity measurements.

Odometry, IMU-based Odometry method that integrates drag-based velocity estimates.
Can also refer to the integration of accelerations and angular velocities measured by the
IMU, but this method is not used in this thesis.

Path following Navigation method where the drone follows a clearly distinguishable path
in the environment such as a wall or corridor. Contrast with route following.

Route following Navigation method where the drone follows a route that has been recorded
earlier. Unlike path following, the drone is not necessarily bound to a clearly distin-
guishable path in the environment.

Sequential visual homing Route following method that relies on visual homing to move
the drone along a sequence of waypoints. Can be combined with odometry to increase
the distance between waypoints.

Snapshot Reference image; visual homing can be used to return to the location where the
snapshot was taken. See also waypoint.

Visual compass Estimation of the orientation of the drone relative to a snapshot or other
reference image.

Visual compass following Route following technique where the drone uses a visual com-
pass to adjust its heading to match the orientation of reference images taken along the
route.

Warping Method presented in [1] that predicts images that would be obtained after small,
hypothetical movements.

Waypoint Point along the recorded route that the UAV will home towards. Contains a
snapshot. Is connected to other waypoints and can contain an odometry vector that
points towards the next waypoint.

Tom van Dijk Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Preface
	Thesis structure

	Main Matter
	Low-Memory Visual Route Following for MAVs in Indoor Environments
	Abstract
	Nomenclature
	Introduction
	Related work
	Route following
	Visual homing
	Image-based homing

	Memory efficiency of image-based homing
	Distance between waypoints
	Practical implementation on a UAV
	Panoramic vision and image derotation
	Velocity estimation and odometry
	Closed-loop position control

	Experimental results
	Experimental setup
	Visual homing
	Route following
	Long-range route following

	Discussion
	Limitations of Fourier-based homing
	Odometry and measurement bias
	Further reductions in memory consumption
	Fourier-based homing on microcontrollers

	Conclusion
	Appendix: Fourier-based homing
	References

	Appendices
	Appendices
	Review of image-based homing methods
	Image warping
	Search-based homing
	Matched Filter Descent in Image Distances (MFDID)
	Fourier-based homing

	Online estimation of the catchment area radius
	What happens around the edge of the catchment area?
	Detecting the edge of the catchment area

	Unscaled visual odometry
	Visual odometry using the homing vector
	Use of intermediate snapshots to reduce drift
	Results
	Comparison with drag-based odometry

	Paparazzi + Gazebo: a new simulator for vision-based UAV control
	Implementation
	Environments

	Back Matter
	Bibliography
	Glossary

